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Abstract 

Penile circumcision reduces HIV susceptibility by up to 60% in men; however, many 

men prefer to remain uncircumcised for personal or cultural reasons. Penile circumcision 

protects against HIV by reducing anaerobic bacteria on the penis. Penile anaerobes cause 

local inflammation and the recruitment of HIV-susceptible CD4+CCR5+ cells, increasing the 

likelihood that exposure to HIV during intercourse results in infection. To determine if a non-

surgical intervention can reduce penile anaerobes and HIV target cells, we randomized men 

to antimicrobial treatment prior to circumcision. To be able to quantify the effect of 

antimicrobials, we developed a novel deep-learning algorithm to quantify HIV target cells in 

immunofluorescent microscopy images of foreskin. We found that men who received 

antimicrobials had a lower density of HIV target cells, which correlated with reductions in 

penile anaerobes and secreted inflammatory mediators. These results suggest that 

microbiome-based interventions could be a potential tool for HIV prevention. 

 

Keywords 

Human Immunodeficiency Virus, Susceptibility, Prevention, Microbiome, Anaerobic 

Bacteria, Inflammation, T Lymphocytes, Immunofluorescent Microscopy, Deep Learning, 

Foreskin, Circumcision 

 

 

 

 



 

iii 

 

Summary for Lay Audience 

Male circumcision has been shown to be able to reduce the risk of acquiring HIV by 

up to 60% in men. Despite these benefits, many at-risk men still choose to not undergo this 

procedure and it is not completely understood how circumcision can have a protective effect 

against HIV infection. One way that circumcision protects against HIV is by eliminating 

specific species of anaerobic bacteria that have been shown to recruit HIV-susceptible cells 

in the penis. To determine if a non-surgical intervention could similarly eliminate anaerobes 

from the penis, we completed a clinical trial testing the effect of commonly available 

antibacterial agents on penile bacteria and the abundance of HIV-susceptible cells in penile 

tissue. To accomplish this, we developed a machine learning program to automatically 

analyze and quantify HIV target cells in microscopy images generated from tissues collected 

after the course of antimicrobials. We found that antibiotic treatments reduced penile 

bacteria, inflammation, and abundance of HIV-susceptible cells. The results from this study 

shown that antibiotic treatment could be used as a potential tool for HIV prevention.  
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Chapter 1  

1 Introduction 

1.1 HIV prevention strategies  

Over the past 4 decades, considerable progress has made in implementing HIV 

prevention strategies and improving the life expectancy of HIV infected individuals (1,2). 

While there is currently no cure for HIV, providing early and effective antiretroviral 

therapy (ART) for individuals infected with HIV significantly reduces the risk of further 

transmission to their partner and allows infected individuals to live long healthy lives. 

Furthermore, consistent use of antiretroviral drugs as prophylaxis (PrEP) by uninfected 

individuals can reduce their risk of acquiring HIV by up to 95% (3,4). However, despite 

the wide range of effective HIV prevention strategies that are available, according to 

estimates from UNAIDS, over 670,000 people acquired HIV in 2020 alone (5). HIV 

continues to be a major public health issue. While there has been a large scale-up of HIV 

treatment, the current rate of ART and PrEP provision is still outstripped by the global 

rate of new infections occurring each year (6,7). The effectiveness of current treatments 

in key populations is further threatened by the lack of political will to invest in and 

systematically implement HIV prevention programs in endemic countries and the 

emergence of antiretroviral drug resistance in eastern and southern Africa (8–11). The 

development of new strategies and continued adoption of other effective prevention tools 

tailored to reach key populations is essential for achieving steep reductions in new HIV 

infections (2,12,13).  

1.2 Voluntary penile circumcision for HIV prevention 

Voluntary penile circumcision (PC) has been recommended by UNAIDS and the 

WHO since 2007 as a part of a broader strategy for reducing new HIV infections in men. 

As demonstrated through three large randomized controlled trials, PC decreases HIV 

susceptibility in men by at least 60%. Safe PC remains the only one-time HIV prevention 
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method to date (14–16). PC campaigns are actively implemented in 15 priority countries 

in sub-Saharan Africa with high HIV prevalence and low PC rates (17,18). In addition to 

reducing HIV risk, PC has also been found to reduce acquisition of classical sexually 

transmitted infections (STI), such as herpes simplex virus type 2 (HSV-2) and high-risk 

strains of human papillomavirus (HR-HPV), and to reduce the prevalence of genital 

ulcerations among men (14–16,19–21). Asymptomatic HSV-2 infection is associated 

with a three-fold increase in HIV acquisition and the presence of genital ulcers is 

associated with an five-fold increase in HIV acquisition (22–24). PC is also associated 

with reduced acquisition of HR-HPV, BV, trichomoniasis, and genital ulcerations in the 

female partners of heterosexual men (25–27). Despite the benefits of PC, many eligible 

men still choose to not undergo this surgical procedure and PC programs are falling well 

short of their targets (1,5,18). The foreskin has previously been shown to be the main site 

of HIV acquisition in heterosexual men during sexual transmission (28–32). Due to the 

important role that the foreskin plays in HIV acquisition and the incomplete uptake of PC 

among at-risk men, it is important to develop new non-surgical prevention tools that can 

be offered to at risk men who choose to remain uncircumcised.  

1.3 Immunopathogenesis of HIV in the foreskin 

Sexual transmission of HIV occurs across the anogenital mucosa (penile, cervical, 

vaginal, rectal) exclusively through HIV strains that use CCR5 and CD4 as receptors for 

entry (33,34). In most cases of sexual HIV transmission, initial infection is typically 

acquired from a single virus genotype despite the diversity of HIV genotypes found in an 

infected partner’s genital secretions (35,36). Sexual transmission of HIV is surprisingly 

inefficient (HIV is only transmitted in ~1/100 of penile-vaginal sex acts where the female 

partner is viremic) (24,37). A wide variety of factors contributes to risk of HIV 

transmission. Among these factors, the availability of CCR5+/CD4+ target cells in the at-

risk partner’s genital mucosa is a critical determinant of an individual’s risk for HIV 

infection (38). A variety of immune cells present in the mucosa express these two 

receptors. Two dendritic cell subsets (epidermal Langerhans’ cells and dermal DC-

SIGN+ dendritic cells) can express CD4 and CCR5 and are abundant in the mucosa. 
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While human dendritic cells are resistant to productive infection with HIV-1, they can 

efficiently transmit intact, infectious virus particles to CD4+/CCR5+ T cells through a 

process called trans-infection (39,40). Among the two dendritic cell subsets, Langerhans’ 

cells are especially important due to the proximity of these cells to the mucosal surface 

(39,41). In addition to dendritic cells, CCR5+/CD4+ T cells are critical to establishing 

HIV infection, and HIV pathogenesis and AIDS is caused by the progressive depletion of 

CD4 T cells systemically (42). Mucosal CD4 T cells subsets, including Th17 cells, Th1 

cells, and CD4 T cell subsets that express the integrins α4β7 or α4β1, have been shown to 

be more susceptible to HIV infection than other CD4 T cell subsets (43–49). In animal 

models, in vivo HIV susceptibility has been associated with the number of mucosal 

CCR5+ CD4 T cells and/or α4β7+ CD4 T cells (50,51). Previous work by our group has 

shown that men who remain seronegative despite regular unprotected sex with a viremic 

partner have reduced abundance of Th17 and activated CD4 T cells in their foreskin 

tissue (52). This suggests that the availability of specific highly susceptible HIV target 

cells is a key determinant of HIV susceptibility. 

1.4 Mucosal inflammation is critical to acquiring HIV 

In the absence of inflammation, dendritic cells are generally much more abundant 

than CD4 T cells in the genital mucosa. However, when the genital mucosa is inflamed, 

CCR5+ CD4 T cells are recruited into the mucosa, providing additional target cells for 

HIV that results in a state of increased HIV susceptibility. HIV preferentially infects and 

replicates in activated CD4 T cells and so inflammation may facilitate the establishment 

of productive mucosal infection by increasing both the density and the permissiveness of 

mucosal CD4 T cells available for infection (36,53–57). Additionally, local immune 

activation in the genital mucosa can also promote the maturation of dendritic cells, and 

dendritic cells that have been exposed to bacterial antigens are more proficient at 

facilitating trans-infection (39,58,59). All together, these findings emphasize the 

importance of the inflammatory state of the genital mucosa in the early stages of HIV 

acquisition. Bacterial STIs are strongly related to the transmission and acquisition of HIV 

infection. In women, vaginal levels of pro-inflammatory cytokines/chemokines IL-1β, IL-
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8 and RANTES, as well as innate immune factors such as α-defensins, LL-37 and 

lactoferrin which have pro-inflammatory properties, has been correlated with increased 

density of HIV target cells in the genital mucosa and HIV acquisition (60–63). In men, 

increase in penile levels of chemotactic cytokine IL-8 and MIG are directly associated 

with increased risk of HIV acquisition. Penile levels of IL-8 are correlated with the tissue 

density of CCR5+CD4 T cells and highly HIV-susceptible CD4 T cell subsets such 

including Th17 cells (64). Increased levels of antimicrobial peptides including α-

defensins and secretory leukocyte protease inhibitor (SLPI), which are normally 

associated with innate immune response to bacterial pathogens, are also associated with 

HIV seroconversion (65). 

1.5 Penile anaerobes are associated with HIV 
seroconversion, inflammation, and immune cells 

Epidemiologic data suggest a link between genital anaerobes and HIV risk. 

Bacterial vaginosis (BV), which is characterized by the overgrowth of facultative and 

anaerobic bacteria in the vagina, has consistently been linked to increased HIV 

susceptibility in women and also to increased risk of transmission of HIV from HIV-

positive females to their male partners (66–68). Bacterial vaginosis is a highly prevalent 

condition which affects almost one-third of women in the United States and even more 

women in sub-Saharan African countries (69,70). In most women, a healthy vaginal 

microbiome consists of predominantly of lactobacilli. Previous studies have shown that in 

sub-Saharan African women, whose vaginal microbiome were not dominated by 

lactobacilli, were 2-3 times more likely to acquire HIV after accounting for other HIV 

risk factors (66,71,72). The dysbiosis of the vaginal microbiome in BV is thought to 

contribute to HIV susceptibility by inducing the production of pro-inflammatory 

cytokines in the vaginal mucosa and disrupting normal mucosal barrier function. While 

information about the association between penile microbiome and HIV risk is limited,  

recent studies by our group show the anaerobes associated with BV and HIV risk in 

women can be found on the penis and suggest transmission between heterosexual couples 

(73,74). In men, absolute abundance of BV-associated anaerobes (e.g., Prevotella, 
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Prophyromonas, Dialister) on the penis has been associated with IL-8 levels in the sub-

preputial space and density of HIV susceptible CD4+ T cell subsets, such as Th17 cells, 

in the foreskin (64). In a case-control study of uncircumcised men who acquired HIV 

during a randomized-controlled trial of male circumcision in Uganda, the absolute 

abundances of penile anaerobes at enrollment were associated with risk of acquiring HIV 

during the 2-year follow-up period of the trial. Every 10-fold increase in anaerobes, such 

as Prevotella, Dialister, Finegoldia, and Peptoniphilus, was associated with an increased 

odds of HIV acquisition of 54 to 63%, after controlling for other known HIV risk factors. 

Many of the anaerobes found to be associated with HIV seroconversion in the 

uncircumcised men were also associated with BV and HIV risk in women (73,74). 

However, anaerobes are highly co-occurrent in the penile microbiome, and therefore it is 

difficult to infer which species are causal of HIV risk. To address this, our group also 

assessed which species were associated with an increased density of HIV target cells, and 

identified six species, which we named “bacteria associated with HIV seroconversion, 

inflammation, and immune cells” (BASIC) (75). The reduction of these six species 

(Peptostreptococcus anaerobius, Prevotella bivia, Prevotella disiens, Dialister 

propionicifaciens, Dialister micraerophilus, and a genetic near neighbour of Dialister 

succinatiphilus) using a microbiome-based non-surgical intervention could be a potential 

HIV prevention strategy for men in endemic areas who choose to remain uncircumcised.  

1.6 Proving the role of the foreskin microbiome in HIV 
susceptibility  

Voluntary male circumcision has been shown to be able to significantly alter the 

composition of the penile microbiome, including substantially reducing the abundance of 

BASIC species, suggesting that PC may reduce susceptibility to HIV by reducing penile 

anaerobes, which in turn reduces local inflammation and the abundance of HIV target 

cells in the foreskin (38,73,75,76). As an alternative to PC, elimination BASIC anaerobes 

using topical or oral antimicrobial therapies may reduce local foreskin tissue 

inflammation and the recruitment of HIV target cells. Thus, modification of the penile 

microbiome could constitute a new, non-surgical method for HIV prevention for men at 
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risk of HIV (31,75). However, it is not known which antimicrobial agents can eliminate 

BASIC species and whether this change will result in a reduction of foreskin 

inflammation and HIV susceptibility. We hypothesize that oral and/or topical 

antimicrobials will reduce the abundance of BASIC species and the density of HIV- 

susceptible CCR5+CD4+ cells in the foreskin. To test this hypothesis, we used samples 

collected during a randomized clinical trial (RCT) of licensed antibacterial agents, where 

the intervention was administered for three weeks preceding PC (77). HIV-negative 

Ugandan men (n=125) requesting voluntary PC were randomized to receive either no 

intervention (controls) or a treatment course with one of four commonly available 

antibacterial agents prior to elective PC. The density of HIV susceptible CCR5+CD4+ 

cells in excised foreskin collected from the RCT was then quantified, using 

immunofluorescent (IF) microscopy and a novel automated deep-learning IF image 

analysis algorithm, to determine the effect of antimicrobial treatments on foreskin 

abundance of HIV-susceptible CCR5+ CD4+ cells. In this thesis project, I have three 

objectives.  

1.7 Objectives 

1. Objective 1: Develop, validate, and apply automated deep-learning IF 

microscopy image analysis algorithms to measure HIV target cell density in 

whole foreskin tissue sections. 

o Hypothesis: The automated deep-learning algorithm will be able to 

segment HIV target cells with accuracy comparable to manual 

identification and better than the automated pixel-based cell segmentation 

workflow in the image processing software, ImageJ.  

2. Objective 2: Determine the effect of antimicrobial treatments on HIV target cell 

density. 
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o Hypothesis: HIV target cell density will be lower in the inner foreskin of 

men in the treatment groups when compared to the men in the control 

group.  

3. Objective 3: Determine if the relationship between antimicrobial treatments and 

HIV target cell density is mediated by changes in the penile microbiome.  

o Hypothesis: HIV target cell density in the inner foreskin will be 

associated with the abundance of BASIC species at the time of PC (i.e.,  

post-treatment, in participants randomized to the treatment arms).  
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Chapter 2 

2 Randomized Clinical Trial Methods 

*NB* None of the methods described in Chapter 2 were performed by the candidate (Z 

Shao). They are provided here for background on RCT design and sample collection. 

2.1 Study Overview 

This study is based on a randomized, open-label clinical trial examining the effect 

of antimicrobials on HIV susceptibility in Ugandan men (77). HIV-uninfected men 

(n=125) seeking voluntary PC were randomly assigned to one of five treatment arms 

(n=25). Men in the control group were circumcised without delay while men in the other 

4 intervention groups were asked to use either oral tinidazole, penile topical 

metronidazole, penile topical clindamycin, or penile topical hydrogen peroxide for one 

month prior to circumcision. These antimicrobial agents were selected as they are 

licensed and commonly used for the treatment of BV in women or management of 

conditions associated with microbial imbalance such as gingivitis/periodontitis (78–

82,82). The impact of these interventions on the availability of HIV target cells in the 

foreskin was determined via immunofluorescent microscopy. The impact of the 

interventions on HIV target cell availability in the foreskin was further correlated with 

impact of interventions on the composition of the penile microbiome and the abundance 

of penile inflammatory cytokines assessed by 16S rRNA sequencing and multiplex 

enzyme-linked immunosorbent assay, respectively.  

2.2 Study Design 

2.2.1 Study sites: 

Participant enrollment and sample collection was completed at the Entebbe 

General Hospital in Uganda. Biological samples were first processed at the Uganda Virus 

Research Institute – International Aids Vaccine Initiative (UVRI-IAVI) laboratory prior 

to being shipped to the University of Western Ontario (London, Canada), the University 
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of Toronto (Toronto, Canada), George Washington University (Washington, D.C, USA), 

and Johns Hopkins University (Baltimore, USA) for further analysis.  

2.2.2 Study population: 

A total of 125 HIV-negative Ugandan men (aged ≥ 18 years) seeking voluntary 

PC at Entebbe General Hospital were enrolled in the study (77). Men were invited to 

participate in the study during the health education and HIV counseling/testing session 

routinely held at the clinic. Potential participants were screened for eligibility (Table 1), 

confirmed to be general healthy and without symptomatic genital infections, and willing 

to undergo HIV testing. Only men who agreed to provide written informed consent and 

demonstrated an understanding of the study (in the opinion of the study team clinical 

staff) were invited to participate.  

2.2.3 Randomization and blinding 

Eligible men (Table 1), who have provided written consent to participate in the 

trial were assigned to any of the treatment arms in an open-label fashion using computer 

generated randomized numbers. At enrollment, each participant chooses a single 

envelope from a pile of sealed-opaque envelopes that have been shuffled by the clinical 

staff in the presence of the participant.  Each envelope contained a randomly generated 

number which determined the participant’s treatment arm assignment. 
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Table 1: Inclusion and exclusion criteria 

Inclusion Criteria  

Aged ≥ 18 years 

Male 

Uncircumcised 

HIV-negative 

Willing to give written informed consent 

Willing and able to answer a short social-behavior questionnaire 

Wiling to comply with study protocol requirements including randomization and 

study drug usage 

Available for planned duration of randomization group 

Exclusion criteria  

HIV-infected 

Already circumcised 

Self-reported or physician noted genital itching/burning, penile discharge, genital 

ulceration or other possible sexually transmitted infection symptoms  

Participating in other research studies that might compromise the outcomes of 

this study 
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2.2.4 Treatment group assignment 

At enrollment, study participants were randomly assigned to one of five study groups 

(n=25 participants per group), as follows: 

1. Control group: Participants received no antimicrobial treatment and immediately 

underwent circumcision, as per the normal Entebbe General Hospital protocol.  

2. Oral tinidazole group: Participants were asked to defer circumcision by 4 weeks 

and were provided with oral tinidazole 2g once daily for 2 days. Tinidazole is 

commonly used for the treatment of several conditions including amebiasis, 

giardiasis, trichomoniasis, and BV. Tinidazole belongs to the imidazole family of 

antibiotics, which prevent the growth of Gram-positive and Gram-negative 

anaerobic bacteria via disruption of bacterial DNA synthesis (83–85).  

3. Topical metronidazole group: Participants were asked to defer circumcision by 

4 weeks and were asked to apply 0.75% metronidazole cream topically 

underneath the foreskin twice daily for 1 week and then twice weekly for 3 

weeks. This formulation of metronidazole is commonly used for the treatment of 

BV in women. Metronidazole also belongs to the imidazole family (80,81).  

4. Topical clindamycin group: Participants were asked to defer circumcision by 4 

weeks and were asked to apply 2% clindamycin cream topically underneath the 

foreskin twice daily for 1 week and twice weekly for 3 weeks. Topical 

clindamycin is commonly used for the treatment of acne vulgaris and BV. 

Clindamycin prevents the growth of many aerobic Gram-positive cocci and 

several anaerobic Gram-positive and Gram-negative bacteria by impairing 

bacterial protein synthesis (81,86).  

5. Topical hydrogen peroxide group: Participants were asked to defer 

circumcision by 4 weeks and were asked to apply 1% hydrogen peroxide gel 

topically underneath the foreskin twice daily for 1 week and then twice weekly 
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for 3 weeks. Hydrogen peroxide gel is a common oral/skin disinfectant typically 

used for the treatment of gingivitis/periodontitis. It primarily affects anaerobic 

bacteria and kills both Gram-positive and Gram-negative bacteria through the 

release of reactive oxygen species that results in the damage of bacterial DNA 

(82,87).  

2.2.5 Study procedures, visits, and sampling 

Potential participants who had clinically apparent symptoms for STIs (genital 

ulcerations, urethral discharge, dysuria) were deferred from enrolment and offered 

treatment as specified by the Uganda Ministry of Health guidelines. Symptomatic STIs 

are also a contraindication for PC, so these individuals were asked to return upon 

resolution of symptoms, when they would be eligible for both study participation and PC. 

Treatment was also offered for study participants who were found to have asymptomatic 

gonorrhea or chlamydia later by polymerase chain reaction (PCR) urine screening. Prior 

to randomization, all participants received HIV counseling and testing via rapid 

diagnostic tests. A brief social behavioral questionnaire, including sexual history, was 

administered and condoms were also provided to all participants. Peripheral venous 

blood, urine, and genital swabs from the coronal sulcus, inner foreskin, and urethral 

meatus were collected as baseline biological samples. All men in intervention groups 

(tinidazole, metronidazole, clindamycin, hydrogen peroxide) had a visit after the 

intensive phase of their treatment, on day 3 for men in the tinidazole group (administered 

orally) and day 8 for men in the metronidazole, clindamycin, and hydrogen peroxide 

groups (administered topically). Men in the metronidazole, clindamycin and hydrogen 

peroxide groups received phone call reminders about product use twice a week. A follow-

up visit was scheduled for the men in the intervention groups at 4 weeks after enrollment. 

The men were interviewed about product use, tolerability, and sexual practices. During 

the visit, repeat blood, urine, and penile swab samples were taken, and the men were 

circumcised. The excised foreskin tissues were used for the immunofluorescent 

microscopy analysis described in this thesis and were also used by study collaborators in 

flow cytometry-based assays.  
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2.2.6 Lost to follow-up status and reimbursement  

Participants in enrolled in the study were “lost to follow-up” if they did not present to the 

clinic within three days of a scheduled date/visit. Participants were reimbursed for their 

time of study participation at the end of each clinic visit. Time compensation worth 

20,000 UGX (~$7 CND) were provided to each study participant per study visit.  

2.2.7 Study outcomes 

The overarching objective of the RCT is to determine the impact of antimicrobials 

on foreskin HIV susceptibility, penile immunology, and penile microbiota (77). The main 

objective of this thesis, which represents one endpoint of the RCT, is to assess the effect 

of antimicrobial intervention on foreskin tissue density of HIV susceptible cells (cells 

bearing the two receptors used for HIV entry: CD4 and CCR5) based on 

immunofluorescence microscopy. Other endpoints of the RCT, which will be investigated 

by study collaborators, include determining the effect of the antimicrobial interventions 

on (1) viral entry into foreskin-derived CD4+ T cells using a validated primary clad A, 

R5 tropic pseudovirus entry assay; (2) proportional abundance of CD4+ T cell subsets 

(including Th17 cells) based on flow cytometry of digest foreskin tissue; (3) levels of 

soluble immune mediators on the penis, assayed by enzyme-linked immunosorbent assay 

(ELISA); and (4) composition of the foreskin microbiome using 16S rRNA sequencing 

(52,64,73,74,88–90). Foreskin tissue density of HIV target cells will be correlated with 

(1) the abundance of BASIC species and (2) levels of soluble immune mediators as a part 

of this thesis project.  

2.2.8 Trial status and summary 

Study participant enrollment began in December 2017 and was completed in 

January 2019. Out of the 125 participants enrolled, 9/125 participants were lost to follow-

up; therefore, the analysis population includes 116/125 participants. 
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2.3 Biological sample processing 

2.3.1 Blood collection and processing 

For each blood draw, clinical staff collected peripheral venous blood from 

participants into two 8.5ml BD Vacutainer acid citrate dextrose tubes (Becton, Dickson & 

Company, NJ, USA), and blood samples were centrifuged at 2000 x g at 4ºC for 20 

minutes to isolate plasma. The plasma samples collected were first stored at -80ºC then 

later used for testing of HIV and STIs including herpes simplex virus type 2 (HSV-2) and 

syphilis at the UVRI-IAVI laboratory.  

2.3.2 Genital swab collection and handling 

Genital swab samples were collected in the Entebbe General Hospital 

circumcision clinic by rotating pre-moistened Dacron swabs (COPAN Diagnostics Inc., 

CA, USA) on the coronal sulcus (2 swabs), the inner foreskin (2 swabs), and urethral 

meatus (1 swab). Immediately after collection, all swabs were placed in clean microtubes 

and transported to the UVRI-IAVI laboratory on ice. One swab from the inner foreskin 

and one swab from the coronal sulcus was frozen at -80ºC without processing. Each of 

the other swabs (1x urethral meatus, 1x inner foreskin, 1x coronal sulcus) were 

resuspended in two aliquots 250µl phosphate-buffered saline (PBS) mixed with a 

protease inhibitor and buffer before being stored at -80ºC. Swab samples were later 

shipped to George Washington University, USA for microbiome analysis and the 

University of Toronto, Canada for soluble inflammatory molecule analysis 

(52,64,73,88,90).  

2.3.3 Urine collection and handling 

During the first visit and at the 4-week follow-up, study participants were asked to 

self-collect urine in a urine container. Urine samples were transported on ice to the 

UVRI-IAVI laboratory and aliquoted into PCR urine tubes (Cobas, Roche Molecular 

Systems, Inc) for PCR testing for Neisseria gonorrhoeae and Chlamydia trachomatis. 
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2.3.4 Foreskin collection and processing 

As previously described, the inner aspect of the foreskin is marked with a suture 

during surgery to assist with tissue orientation during processing (91). The inner foreskin 

is defined as the portion of the foreskin tissue that covers the glans and coronal sulcus on 

the nonerect penis and the outer foreskin is the portion of the foreskin tissue that is 

exposed to air on the non-erect penis. After circumcision, foreskin samples were 

immediately transported to the UVRI-IAVI laboratory at ambient temperature for 

processing. Excess connective tissue and obvious blood clots were first trimmed off from 

the tissue before the tissue was cut into 0.25cm2 sections. One 0.25cm2 section from each 

of the inner and outer foreskin was separately snap frozen into cryomolds in optimal 

cutting temperature compound (OCT) media (Thermo Fisher Scientific Inc., MA, USA). 

These samples were shipped to the University of Western Ontario, Canada for the 

immunofluorescent microscopy analysis described in this thesis project. One section from 

each of the inner and outer foreskin was cryopreserved in 10% dimethyl sulfoxide in FBS 

freezing media at -150ºC.  

Other tissue sections are digested for flow cytometry analysis. First, 0.25cm2 

inner and outer foreskin sections were separately soaked in RPMI 1640 media with 

500U/ml collagenase type 1 (Gibco #17100) and 42.5U/ml deoxyribonuclease 

(Invitrogen, MA, USA). The soaked tissues were mechanically disrupted using scissors 

and then enzymatically digested at 37ºC for 30 minutes at 900rpm on a shaker 

(Eppendorf Thermo mixer, Hamburg, Germany). The resulting cell suspensions were 

then added to 3ml cold fetal bovine serum (FBS) and filtered through a 100µm cell 

strainer (BD Biosciences, NJ, USA). Deoxyribonuclease (30U/ml) was added to the 

filtrate and then the cells are washed and resuspended in R10 media (RPMI 1640 media 

with 10% heat-inactivated FBS, 10U/ml penicillin, 10µg/ml streptomycin, 250 ng/ml 

amphotericin B, and 2mM L-glutamine; Gibco, Invitrogen, Carlsbad, CA, USA) before 

being rest overnight at 37ºC under 5% CO2. The rested cells were counted using trypan 

blue exclusion and ~10 x 106 cells were plated in 500µl R10 media. Plated cells were 



16 

 

 

 

stained for 30 minutes at 4ºC with labelled monoclonal antibodies for flow cytometry 

analysis on-site at the UVRI-IAVI laboratory (49,89).  

2.4 Laboratory assays completed by collaborators 

2.4.1 Penile microbiome characterization 

Penile microbiome characterization was completed using penile swab samples 

collected at study enrollment, at one-week post-treatment, and at the time of 

circumcision. This analysis was completed by study collaborators at George Washington 

University, USA and exact details of the methods used for this analysis are outside of the 

scope of this thesis project. Briefly, the penile microbiome was characterized by using 

amplicon sequencing and broad-range real-time PCR of the V3V4 hypervariable region 

of the 16S rRNA gene as previously described (73,88,90). Barcoded universal primers 

specific for the V3V4 hypervariable region were used for sequencing. Amplicons were 

purified, quantified, and pooled prior to sequencing on the Illumina MiSeq platform using 

the 300bp paired-end protocol. Sequence read quality was assessed using a standardized 

bioinformatics pipeline implemented in accordance with standard operating procedures 

from the National Institutes of Health Human Microbiome Project. The -utax function in 

the USEARCH sequence analysis tool in QIIME (open source microbiome 

bioinformatics platform) was used to assign taxonomy and cluster operational taxonomic 

units against the Greengenes reference database (92). For each sample, vectors of 

phylotype proportions were clustered into community state types, by calculating Jensen-

Shannon distances between all pairs of community states and generating a hierarchical 

clustering using the Jensen-Shannon distance data and Ward linkage (73,74,88). Through 

combining sequencing and qPCR data, the absolute abundance of penile bacterial genus 

and species of interest was calculated as follow: absolute abundance of a taxon per swab 

= total penile bacterial load per swab (measure as total copied of 16S rRNA gene per 

swab by qPCR) x proportional abundance of the given taxon (measure as the number of 

16S rRNA gene sequences assigned to a taxon in a given sample, divided by the total 

number of 16S rRNA sequences obtained for the sample.  
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For the purposes of this thesis, we decided to focus on 1) total bacterial 

abundance, 2) BASIC species abundance, and 3) the abundance of bacteria belonging to 

two non-inflammatory “control” taxa (Corynebacterium and Staphylococcus), previously 

found to be unchanged/increased after circumcision and not previously associated with 

HIV seroconversion or inflammation (75). Only five of the six BASIC species were 

include in analyses (Peptostreptococcus anaerobius, Prevotella bivia, Prevotella disiens, 

Dialister propionicifaciens and Dilaister micraerophilus) as the genetic near neighbour 

of Dialister succinatuphilus was excluded due to incomplete data processing. (73,75).  

 

2.4.2 Multiplex ELISA for soluble inflammatory molecule 
quantification 

Measurement of penile levels of soluble inflammatory molecules was completed 

using penile swab samples collected at study enrollment, at one-week post-treatment, and 

at the time of circumcision. This analysis was completed by study collaborators at the 

University of Toronto, Canada and exact details of the methods used for this analysis are 

outside of the scope of this thesis project. Briefly, inflammatory molecule levels will be 

measured using a chemiluminescent multiplex ELISA assay (MesoScale Discovery). This 

assay was selected due to the ability of providing optimal sensitivity and reproducibility 

for low abundance mucosal sample. It has previously been validated for use with foreskin 

swab samples (52,73,76).  

2.4.3 Pseudovirus cell entry assay 

A HIV pseudovirus assay is used to determine the effect of the interventions on 

HIV entry into inner foreskin T cells. The assay was completed by study collaborators on 

site at the UVRI-IAVI laboratory in Uganda using CD4+ T cells isolated from inner 

foreskin samples obtained from circumcision. The exact details on the methods for this 

assay are outside of the scope of this project but have been well characterized in previous 

studies (49,89). The virus used for this assay contains a β-lactamase-viral protein R 
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(BlaM-Vpr) and is pseudotyped with an envelope from an early transmitted, CCR5-

tropic, subtype A virus. When the pseudovirus enters target cells, BLaM-Vpu is delivered 

into the cytosol. After target cells have been incubated with the pseudovirus, the substrate 

CCF2-AM is added. CCF2 is a membrane-permeant form of the fluorescent molecule 

CCF which contains 2 fluorophores (7-hydroxy-coumarin and fluorescein) linked by a β-

lactam bond. Cells that were not infected by the pseudovirus will not have β-lactamase in 

the cytosol. In these cells, excitation of 7-hydroxy-coumarin at 409nm leads to 

fluorescent resonance energy transfer (FRET) to fluorescein and green light emission at 

520nm. Infected cells will have β-lactamase in the cytosol (via delivery from BLaM-

Vpu) that will cleave the β-lactam bond in CCF2-AM and prevent FRET. This results in 

blue emission at 447nm by 7-hydroxy-coumarin when 7-hydroxy-coumarin is excited. 

The ratio of blue to green emission can thus be used as a measure of viral fusion and 

cytosolic entry of HIV. 

2.5 Statistical and ethics considerations 

2.5.1 Sample size 

The sample size of 25 participants per treatment group for the RCT was based on 

the primary endpoint, which was the HIV pseudovirus assay. Previously defined 

pseudovirus entry parameters into inner foreskin-derived CD4+ T cells suggested that a 

sample size of 25 participants per group would provide statistical power of 80% to 

identify clinical approaches that reduce virus entry by ≥33%. This was the efficacy 

threshold that was deemed as sufficient to inform future intervention strategies. All 

available samples (n=116) were used for the IF analysis presented in this thesis. 

2.5.2 Ethics and Patient involvement 

The RCT protocol was reviewed and approved by the Ugandan Virus Research 

Institute’s Research and Ethics Committee (UVRI SEC), the Ugandan National Council 

for Science and Technology (UNCST), and the University of Toronto HIV Research 

Ethics Board. The data and biological samples collected from study participants were 
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labelled with a unique study identification number. All clinical events that were directly 

related to the study were referred to and managed by the UVRI-IAVI clinical team 

according to the Ugandan Ministry of Health guidelines. Participants in the study were 

not directly involved in the design of this study and did not directly assess the effect of 

the interventions. Participants did play a role in contributing to peer referral of potential 

participants. The Community Advisory Board for UVRI-IAVI meets quarterly and 

provided advice to the study team on study design and recruitment. The protocol for 

analysis of frozen tissue sections by IF (and correlation with data generated by 

collaborators) was approved by the Research Ethics Board at The University of Western 

Ontario. 
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Chapter 3 

3 Comparison between a deep-learning and a pixel-
based approach for the automated quantification of HIV 
target cells in foreskin tissue.  

 

3.1 Introduction 

3.1.1 Understanding HIV infection at the site of exposure  

Sexual transmission of HIV, which occurs at the anogenital mucosa, accounts for 

the vast majority of new HIV infections worldwide (93,94). After HIV virions penetrate 

the genital epithelium, the availability of target cells bearing the HIV co-receptors CD4 

and CCR5 becomes the critical determinant of productive infection in mucosal tissue 

(Figure 1) (30,38,95,96). The inner foreskin is enriched in T cell populations that are 

highly susceptible to HIV, such as activated T cells and Th17 cells, compared to the 

bloodstream (28,30,32). Non-T cell types that are abundant in the foreskin, such as 

macrophages, dermal dendritic cells, Langerhans cells and fibroblasts, are also thought to 

facilitates the spread of viral infection, either by direct infection or by transferring viral 

particles to susceptible T cells through trans-infection (Figure 1) (97,98). The genital 

mucosa is also inhabited by diverse polymicrobial communities of bacteria that shape the 

local immune environment. The composition of the genital microbiome has been shown 

to be associated with both the availability and activation status of HIV target cells, and 

with an individual’s risk of acquiring HIV during sex with an infected partner 

(73,75,95,99). Achieving an optimal balance between the diverse immune cell subsets of 

the genital mucosa promotes tolerance to commensal bacteria while maintaining the 

ability to rapidly respond to pathogens. An inflammatory environment in the genital 

mucosa promotes productive infection with HIV, while a tolerogenic environment is 

associated with relative protection (100,101). The genital mucosa is in constant contact 

with antigens, antimicrobial factors, hormones, and commensal bacteria that can 
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modulate the local environment of genital mucosa to a pro-inflammatory state and in turn 

modulate and individual’s risk to HIV infection (24,37,64,73–75). When testing new 

prevention modalities or determining best practices to prevent HIV transmission, it is 

essential to develop ways to quantify immune cells in mucosal tissue, to better understand 

how behaviours, medications, etc. influence the abundance of HIV target cells in the 

mucosa.    

3.1.2 Using immunofluorescent microscopy to quantify immune 
cells in the genital mucosa 

High-parameter flow cytometry has been actively used in studies focused on HIV 

detection, susceptibility, prevention, and pathogenesis. Advancements in CD4 T cell 

laboratory testing and the detection of HIV-infected mononuclear cells in the 

bloodstream were critical developments for the care and management of HIV infected 

individuals (102,103). Flow cytometry is highly useful for understanding immune cell 

populations and HIV infection in peripheral blood as it allows quantification of multiple 

target cell types of interest and the simultaneous detection of a large variety of different 

cell markers on single cells. While flow cytometry is advantageous for the study of 

immune cells in blood, it is less suitable for mucosal tissues (104–107). Due to the nature 

of flow cytometry, tissues must be mechanically or enzymatically disrupted into single 

cell suspensions so information on the spatial location of cells within tissue is lost. This is 

a disadvantage in the context of susceptibility to viral infection, as the closer target cells 

are to the apical surface of the epithelium the less distance a virion needs traverse to 

access susceptible cells (42,52).  Information on the proximity of immune cell subsets to 

one another is also lost, which is important for understanding immunological events such 

as immune cell activation, antigen presentation, and trans infection of HIV 

(64,75,108,109). In addition to losing spatial information, the viability of delicate 

sprawling cells that are abundant in the foreskin mucosa, such as dendritic cells and 

Langerhans cells, is reduced due to the disruption process. Tissue disruption may also 

alter expression of cell surface markers relevant to activation and viral entry. Lastly, flow 
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cytometry provides information on the relative abundance of immune cell subsets but is 

ill suited for measuring the density of immune cells in tissue.  

Immunofluorescent (IF) imaging overcomes the limitations imposed by tissue 

disruption but introduces new challenges in quantification. Structural proteins and 

collagen fibers, which are abundant in genital mucosal tissue, exhibit high levels of 

autofluorescence that can obscure positive staining and make cell identification difficult 

(Figure 2). Autofluorescence is highly variable in different tissue regions in the same 

sample and among samples from different individuals (28,30,110). Due to the difficulty 

of cell quantification and the high level of variability in IF images, manual counting is 

still a common practice despite its lack of efficiency and issues with bias. A single 8µm 

thick section of a 5mm x 5mm piece of genital tissue contains thousands of immune cells. 

In many cases, instead of quantifying whole tissue section images, randomly selected 

field-of-views (FOV) that are a fraction of the size of each whole image are quantified 

instead. However, by reducing the “sample size” of tissue analyzed precision is lost and 

random noise introduced into the data, reducing statistical power. Furthermore, manual 

counting also suffers from reproducibility issues, investigator bias, and inter-investigator 

variability which becomes highly problematic in clinical studies where large numbers of 

samples are involved. To overcome these issues, significant effort has been made to 

automate image processing and cell segmentation in recent years.  
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Figure 1: Visualization of the epidermis and dermis in foreskin tissue. The epidermis 

is characterized by a very high density of nuclei staining which represents tightly packed 

epithelial cells while cells are more dispersed in the dermis. HIV susceptible immune 

cells can be found in both the epidermis and dermis. However, they are usually more 

abundant in the dermis, particularly in areas of the dermis that are close to the basal edge 

of the epidermis. 
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Figure 2: Representative images of inner and outer foreskin tissue sections stained 

for the identification of HIV target cells. Images were obtained from foreskin tissue 

sections from HIV-negative men in a randomized controlled trial assessing the effect of 

antimicrobials on the penile microbiome, penile inflammation, and foreskin HIV 

susceptibility. Foreskin tissue sections were stained for CD3, CD4, CCR5, and nuclei to 

identify HIV susceptible cell populations. Whole (A) inner and (B) outer foreskin tissue 

imaged at 200x total magnification. Individual staining for CD3, CD4, CCR5, and nuclei 

is shown on the left while merged composite of positive staining from all channels is 

shown on the right. White letters mark areas containing cell clusters that are likely to 

contain (T) HIV-susceptible CD4+CCR5+ T cells and areas with (F) significant 

autofluorescence.  
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3.1.3 Existing strategies for automated cell segmentation in 
immunofluorescent microscopy images of mucosal tissue 

Several medical image analysis companies offer software products that can 

perform automated cell counting in IF images. However, these products are limited by 

poor flexibility for modification by the user and high cost  (111,112). Custom cell 

counting workflows based on free open-source image analysis software programs such 

ImageJ/Fiji, CellProfiler and QuPath are commonly used for cell segmentation in a large 

variety of tissue types (Figure 3) (113–115). Workflows based on these programs are 

highly flexible as these programs contain many image processing functions with 

adjustable input parameters. Furthermore, only basic programming knowledge is required 

to automate workflows built on these programs to achieve high-throughput processing of 

images.  

Traditional cell segmentation workflows typically use a “bottom-up” pixel-based 

strategy. In these pixel-based approaches, a threshold is applied so that every pixel is 

classified as positive staining or background (i.e., converted to a binary, or black-and-

while image). Images may also undergo additional processing before or after thresholding 

to improve pixel classification. Separate clusters of positive pixels are then identified as 

individual cells (Figure 3B) (116–118). While this basic approach is very easy to 

implement and generates good results in cases where cells are very clearly isolated from 

one another, it struggles with images that have variable brightness (e.g., variable 

expression of the target protein between cells/regions), densely packed or irregularly 

shaped cells, or high levels of autofluorescence (119). All these features are common in 

IF images of genital mucosal tissue. In many cases, it is very difficult or impossible to 

find a combination of parameters that will accurately detect cells across all areas of the 

tissue and all tissues in the study (120). When image processing is not aggressive enough, 

closely packed cells may be merged and large amounts of autofluorescence could be 

incorrectly identified as positive staining. Aggressive image processing is effective in 

eliminating autofluorescence but can also result in elimination of true cell staining and 

result in splitting of whole cells into several fragments.  
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Advances in deep learning have enabled “top-down” object-based approaches for 

cell segmentation. In these approaches, a prediction is made to identify individual cells 

(objects) with rough shape representations that are progressively refined to fit cells more 

closely. These approaches use training input to develop segmentation parameters which 

correspond to features. Initial attempts at using machine learning for cell segmentation 

used bounding boxes to create cell selections. (121–123). In the prediction phase of these 

approaches, a cell is identified with several overlapping instances of bounding boxes 

representing all possible ways the cell could be identified (Figure 3C). The best fitting 

box out of all the bounding boxes is then selected using a technique called non maximum 

suppression (NMS) (124). This approach is good at distinguishing between 

autofluorescence and positive cell staining, however, it is inaccurate in areas with densely 

packed cells. In these areas, bounding boxes can be incorrectly eliminated by NMS when 

there is overlap between bounding box selections for different cells (Figure 3C).  

Recent studies have proposed better shape representations to replace bounding 

boxes. For instance, the deep learning segmentation method StarDist uses star-convex 

polygons to identify cells (125). Star-convex polygons are well suitable for 

approximating the shape of important HIV target cells. It can match the blob-like shape 

of CD4+ T cells and also maintain enough flexibility to outline sprawling cells like 

macrophages and dendritic cells. The sophisticated prediction process used by StarDist 

enables more accurate prediction of cell boundaries and better performance in areas with 

high cell density (Figure 3D). Implementation of StarDist deep learning models into 

existing IF image analysis workflows is also user-friendly. While training new StarDist 

models requires knowledge of python, no programming experience is required to use 

existing StarDist models. Software plugins allow existing StarDist models to be used in 

image processing programs such as ImageJ/Fiji and QuPath (113,115,125).  

The StarDist method has previously been validated for nuclei segmentation and 

cell detection in different tissues. However, StarDist has not previously been used to 

identify immune cells in IF microscopy images of genital mucosal tissue. In this chapter, 
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we describe the training and validation of a StarDist model to identify HIV target cells in 

foreskin tissue. Specifically, we introduce a reusable workflow that can be used to train 

custom StarDist models. This workflow uses multi-channel IF microscopy images as 

input and is not limited by the tissue type or markers used for staining. We describe the 

training of a custom StarDist model used to identify HIV target cells in foreskin tissue 

stained for CD3, CD4, CCR5, and nuclei. The accuracy of this StarDist model was 

compared to manual counting and automated counting using a previously established 

pixel-based algorithm. The training workflow, training dataset and StarDist model used 

in this thesis have been made available in the public domain 

(https://github.com/prodgerlab/stardist).  

 

 

https://github.com/prodgerlab/stardist
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Figure 3: Common methods used for automated cell segmentation in 

immunofluorescent microscopy images of mucosal tissue. (A) Sample 

immunofluorescent microscopy image of nuclei staining in a tissue area with high cell 

density. Early methods of automated cell segmentation utilize (B) pixel-based bottom-up 

approach where cells are defined by pixels that are above a certain intensity threshold. 

These methods tend to be very crude and can results in cell merging or splitting. (C) The 

first deep learning approaches utilizes bounding boxes to first localize cells. This 

approach does not rely on a bottom-up approach. However, bounding boxes can overlap 

in areas where cells are closely packed and result in the suppression of valid cell 

instances during the process of non-maximum suppression. Boxes in yellow represent 

correctly placed bounding boxes, boxes in purple represent valid cell instances that were 

suppressed. (D) Deep learning cell segmentation with StarDist utilizes star-convex 

polygons instead of boxes to create predictions.  
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3.2 Materials and Methods 

3.2.1 Tissue Source 

Foreskin samples were collected as a part of a randomized clinical trial (RCT) 

examining the effect of antimicrobials on the penile microbiome, foreskin inflammation, 

and foreskin HIV target cell density (77). Detailed information on the RCT methodology 

can be found in Chapter 2 in sections 2.2.1 to 2.2.8. In brief, a total of 125 HIV-negative 

men (≥18 years) seeking voluntary male circumcision were enrolled and randomly 

assigned to 1 of 5 treatments (topical clindamycin, topical hydrogen peroxide, topical 

metronidazole, oral tinidazole) or no treatment, prior to circumcision. 

3.2.2 Immunofluorescence microscopy 

Tissue samples from the study were separately stained using two different 

antibody panels to investigate the effect of the interventions on: 1) foreskin tissue 

integrity and 2) foreskin HIV target cell density, respectively. Staining, imaging, and 

analysis for the assessment of tissue integrity was completed as a part of another study 

and is outside the scope of this project. Staining and imaging of tissue samples to 

quantify target cell populations was completed according to previously published 

methods and are described below (126).  

Cell markers of interest captured by the antibody panel used to quantify HIV 

target cell populations include CD3, CD4, and CCR5. Foreskin samples from 116/125 

participants enrolled in the RCT were available for immunofluorescent microscopy 

analysis. One inner foreskin sample and one outer foreskin sample was analyzed for each 

participant meaning a total of 232 foreskin tissue samples were analyzed as a part of this 

project. Frozen tissue blocks were prepared in the UVRI-IAVI laboratory in Uganda 

immediately after circumcision and then shipped to the University of Western Ontario in 

Canada for immunofluorescent microscopy analysis. Frozen tissue blocks were sectioned 

at a thickness of 8µm using a CM1850 cryostat (Leica, Wetzlar, Germany) and two 

sections from each tissue block were adhered to a microscopy slide for staining. Slides 
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were stored at -80 ºC for up to 1 month in an air-tight box. Prior to staining, slides were 

thawed and air-dried for 30 minutes. Each tissue section was fixed by applying 100µl of 

3.7% formaldehyde in PIPES (100mM PIPES, 2mM MgCl2, 1mM EGTA in PBS, pH 

6.8) buffer and incubation for 5 minutes at room temperature. Slides were washed 3 times 

in 1x PBS between all subsequent blocking and staining steps. Each tissue section was 

blocked by applying 100µl of a solution consisting of 10% normal donkey serum, 0.1% 

Triton X-100, and 0.01% sodium azide diluted in 1x PBS (henceforth referred to as 

blocking solution) for 30 minutes at room temperature. Each section was incubated with 

100µl of undiluted anti-human primary CD3 antibody (Abcam, Cambridge, United 

Kingdom) for 1 hour at 37 ºC, followed by incubation with 100 µl of donkey anti-rabbit 

Alexa Fluor 488-conjugated secondary antibody (diluted to 0.25% in blocking solution) 

(Abcam, Cambridge, United Kingdom) in the dark for 30 minutes at room temperature. 

Next, sections were each incubated with 100µl of mouse anti-human CCR5 primary 

antibody (diluted to 5% in blocking buffer) (a gift from Dr. Matthias Mack, University of 

Regensburg, Germany) for 1 hour at 37 ºC, followed by incubation with 100 µl of donkey 

anti-mouse Alexa Fluor 647-conjugated secondary antibody (diluted to 0.25% in 

blocking solution) (Abcam, Cambridge, United Kingdom) in the dark for 30 minutes at 

room temperature. Finally, sections were each incubated with 100 µl goat anti-human 

CD4 primary antibody (diluted to 5% in blocking buffer) (Abcam, Cambridge, United 

Kingdom) overnight at room temperature then incubated with 100 µl of donkey anti-goat 

Alexa Fluor 568-conjugated secondary antibody (diluted to 0.25% in blocking buffer) 

(Abcam, Cambridge, United Kingdom) in the dark for 30 minutes at room temperature. 

Coverslips were mounted onto stained slides by applying 100 µl Fluoromount G 

mounting media with DAPI (Thermo Fisher Scientific, MA, USA) per slide. Slides were 

stored at 4 ºC for up to one week prior to imaging. Tiled images for whole tissue sections 

were scanned with a DM5500B fluorescence microscope (Leica, Wetzlar, Germany) 

using the 20x objective lens for CCR5 (Y5 filter set, referred to as far-red channel), CD4 

(DSR filter set, referred to as red channel), CD3 (GFP filter set, referred to as green 

channel), and cell nuclei (CFP filter set, referred to as blue channel). Excitation and 

emission filters are listed in Table 2.  
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Table 2: List of microscope filters and their designations  

Fluorophore 
Leica Filter 

Designation 

Absorbance 

λ 

Excitation 

Filter* 

Emission 

λ 

Emission 

Filter* 

Emission 

Colour 

DAPI CFP 358 436/20 461 480/40 Blue 

Alexa Fluor 488 GFP 494 425/60 517 480/LP Green 

Alexa Fluor 546 DSR 556 545/30 573 620/60 Red 

Alexa Fluor 647 Y5 650 620/60 665 700/75 Far-Red 

Note: LP (long pass filter), λ (wavelength in nanometers)  

*peak wavelength of light that passes through the filter and filter bandwidth  
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3.2.3 Manual counting of HIV Target Cells 

All possible cell type combinations from the foreskin tissue sections stained for 

CD3, CD4, CCR5, and nuclei were counted individually (all cells, CD3+ cells, CD4+ 

cells, CCR5+ cells, CD3+CD4+ cells, CD3+CCR5+ cells, CD4+CCR5+ cells, and 

CD3+CD4+CCR5+ Cells). Total cell count was determined by counting all positive 

stained nuclei. Counting of specific cell types was completed using composite images 

containing staining for nuclei and the marker(s) of interest. First, composite images 

containing the staining for the markers of interest were generated from raw 4-channel 

(channels: CD3, CD4, CCR5, Nuclei) images. For each 4-channel sample image, 7 

different composites corresponding each of the cell types of interest were generate (CD3+ 

cells, CD4+ cells, CCR5+ cells, CD3+CD4+ cells, CD3+CCR5+ cells, CD4+CCR5+ 

cells, CD3+CD4+CCR5+ cells). As mentioned, each composite image is created from 

merging the channel image(s) for the marker(s) of interest with the channel image for 

nuclei staining. For example, the composite image for CD3+ cells was created by 

merging the CD3 channel with the nuclei channel. Counting was completed by a single 

trained lab member using the Cell Counter plugin for Fiji. A cell is positive for a marker 

of interest when positive marker staining directly overlaps/surrounds positive nuclei 

staining. Positive marker staining that are unassociated with nuclei were ignored. 

 

3.2.4 Pixel-based cell counting using Fiji and CellProfiler 

 A pixel-based cell counting algorithm used to quantify HIV target cells in 

immunofluorescent microscopy images of foreskin tissue stained for CD3, CD4, CCR5, 

and nuclei was previously validated by our group (126). This algorithm was is based on 

the open-source image analysis programs Fiji and CellProfiler (113,114). Image 

processing functions in Fiji were used to pre-process images. Both Fiji and CellProfiler 

were used for thresholding and cell segmentation after pre-processing (113,114). The 

epidermis and dermis of foreskin tissue are very different in terms of cell density and 

level of autofluorescence. To improve the accuracy cell segmentation using the pixel-
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based workflow, the epidermis and dermis underwent pre-processing, thresholding and 

segmentation using different parameters.  

Prior to pre-processing, full tissue section scans were split into the dermis and 

epidermis sections via manual tracing in Fiji and saved as separate files. The epidermis 

and dermis images were then split into individual channel images (CD3, CD4, CCR5, 

nuclei) by applying the “Stack to Images” function in Fiji. All individual channel images 

were pre-processed by applying the “Subtract Background”, “Brightness/Contrast”, and 

“Minimum Filter” functions successively. The “Subtract Background” function and 

“Minimum Filer” functions were applied using the corresponding pre-optimized 

parameters as listed in Table 3, the “Auto” setting was used for used for all 

“Brightness/Contrast” adjustments.  

Image processing functions in Fiji and CellProfiler were used successively in 

order to automatically quantify HIV target cells in the pre-processed images (113,114). 

Fiji was used to threshold pre-processed images and select positive staining. CellProfiler 

was used to quantify cells of interest by determining the number of instances where each 

combination of positive marker staining for CD3, CD4, and CCR5 overlapped with 

positive staining of nuclei. In Fiji, pre-processed images were converted to 8-bit format 

and the “Adaptive Thresholding” plugin for ImageJ was used in Fiji to threshold images 

(113,127). The “Fill Holes”, “Despeckle”, “Erode”, and “Watershed functions were then 

applied successively in Fiji to further process the images. Positive marker staining 

selection was completed by applying the “Analyze Particles” function with the options 

for “Display Results”, “Clear Results” and “Add to Manager” checked and the 

“Circularity” setting set from 0.00 to 1.00 to detect all objects. The regions-of-interest 

(ROIs) generated after applying the “Analyze Particles” function were saved and 

overlayed with a black 8-bit image with the same dimensions as the image being 

analyzed to create a binary image representing positive marker signal. The number of 

regions-of-interest for nuclei staining represents the total cell count of the image. The 

steps described above were applied to all pre-processed images with pre-optimized 
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parameters listed in Table 4. Specifically, predetermined values were used for the “Block 

Size” and “Subtraction Value” parameters for “Adaptive Thresholding” and 

predetermined values were used for the “Particle Size” parameters for “Analyze 

Particles”. The binary black and white images of positive marker staining were imported 

into CellProfiler using the “ConvertImageToObjects” function. The “RelateObjects” 

function was then applied to determine positive marker staining for CD3 and/or CD4 

and/or CCR5 that overlaps with positive nuclei staining (113,114). Through this process, 

the number of each type of cell of interest (CD3+ cells, CD4+ cells, CCR5+ cells, 

CD3+CD4+ cells, CD3+CCR5+ cells, CD4+CCR5+ cells, CD3+CD4+CCR5+ cells) was 

quantified. Scripts for high-throughput pre-processing and automated counting of images 

has been made available in the public domain (https://github.com/prodgerlab/pixel-based-

quantification).  

 

 

 

 

 

 

 

 

 

https://github.com/prodgerlab/pixel-based-quantification
https://github.com/prodgerlab/pixel-based-quantification
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Table 3: Input parameters for pre-processing workflow used to improve accuracy of 

automated HIV target cell segmentation in foreskin tissue scans 

  
Image Type 

  EPIDERMIS Dermis 

Function 
Input 

Parameter 
Nuclei CD3 CD4 CCR5 Nuclei CD3 CD4 CCR5 

Subtract 

Background 

Rolling 

Ball 

Radius 

10 14 12 10 25 15 15 15 

Minimum 

Filter 
Radius 0 2 1 0.5 2 2.5 1.5 1.5 

 

Table 4: Input parameters for thresholding and segmentation for pixel-based 

quantification of HIV target cells in foreskin tissue scans 

  
Image Type 

  EPIDERMIS Dermis 

Function 
Input 

Parameter 
Nuclei CD3 CD4 CCR5 Nuclei CD3 CD4 CCR5 

Adaptive 

Thresholding 

Block Size 100 100 100 100 100 100 100 100 

Subtraction 

Value 
-5 -45 -10 -25 -30 -40 -35 -20 

Analyze 

Particles 
Particle Size 

5  

to ∞ 

7  

to ∞ 

10 

to ∞ 

7  

to ∞ 

5  

to ∞ 

10  

to ∞ 

5  

to ∞ 

10  

to ∞ 
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3.2.5 Annotation of images for StarDist model training in Labkit 

 Manual annotation of field-of-view (FOV) images for StarDist model training was 

completed using the Labkit plugin (version 0.3.7) for Fiji (113,128). Manual annotation 

was completed by 2 different trained lab members following the instructions listed in the 

StarDist GitHub repository (https://github.com/stardist/stardist).  

 A total of 40 FOVs were randomly generated from the whole tissue section scans 

from the randomized controlled trial for training. We randomly selected 40 out of the 232 

whole tissue section scans for FOV generation and created a random crop (600x600µm, 

1500x1500 pixels) from each selected image. Prior to annotation, all FOVs were visually 

assessed to ensure that none of the FOVs included any areas with tissue folding from 

improper adherence of tissue sections to microscopy slides during cryosectioning. The 40 

FOVs included inner and outer foreskin images from all 5 groups in the randomized 

controlled trial. The full thickness of the epidermis is included in each FOV image (both 

the apical and basal edge of the epidermis is clearly identifiable) while at least half of the 

full thickness of the dermis is included. All FOVs underwent manual counting prior to 

annotation. This counting process was completed to ensure the accuracy of annotation. 

All possible cell type combinations were annotated individually in each FOV. From each 

4-channel raw FOV image, 7 composite images were generated and annotated separately. 

The 7 different composite images corresponded to the 7 different cell types that are 

identified by our StarDist model (CD3+ cells, CD4+ cells, CD3+CD4+ cells, 

CD3+CCR5+ cells, CD4+CCR5+ cells, CD3+CD4+CCR5+ cells). The channel image 

for nuclei staining was annotated to train the model to determine total cell count. This 

means that a total of 320 (280 composite images, 40 raw nuclei staining images) were 

annotated with 40 images corresponding to each of the cell types of interest.  

 FOVs were opened in the Labkit plugin (version 0.3.7) for Fiji for annotation 

(113,128). All cells, which included cells on the image border, were manually traced and 

assigned an individual label with the override option selected to prevent overlapping 

cells. Completed annotation images were saved as separate tiff files. Each annotated set 

https://github.com/stardist/stardist
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used for training included 1 raw 4-channel FOV image and 8 annotated images 

(considered as ground truth for training).  

3.2.6 StarDist model training 

 Training of the custom StarDist model was completed using a CUDA enabled 

Windows 10 workstation computer running a Window Subsystem for Linux with the 

Ubuntu (version 22.04) distribution of Linux installed. This workstation computer was 

equipped with an NVIDIA GeForce RTX 3090 graphics card to accelerate model 

training. The training environment, all scripts, and all additional software packages used 

for model training were operated in the Ubuntu distribution of Linux (version 22.04). The 

training environment was set up using the Mambaforge (version 0.24.0) distribution of 

Python (version 3.10.5) for Linux and TensorFlow (version 2.10.0) through a custom 

workflow created using Snakemake (version 7.12.0). Snakemake is a popular workflow 

management system commonly used for data analysis (129). It uses a simple 

specification language on top of Python to organize data analysis. Configuration of the 

necessary software packages, initialization of the training environment, running the 

training/validation scripts, and export of the trained StarDist model was streamlined with 

Snakemake through a Snakefile. The Snakemake workflow used to set up the training 

environment was adapted from instructions from the StarDist GitHub repository 

(https://github.com/stardist/stardist) which originally described set-up of a Python 

training environment using the Anaconda distribution of Python. Our full Snakemake 

workflow, which includes all scripts used for model training and export, has been make 

available in the public domain (https://github.com/prodgerlab/stardist).  

 The scripts used for model training and export were also adapted from example 

Jupyter notebooks from the StarDist repository, which provided instruction for 2D (U-

Net-based) StarDist model training. Adjustments were made so that immunofluorescent 

microscopy images with 4 channels can be used as input. We also adapted the image 

augmentation functions included in the example Jupyter notebook and included these 

functions in our training script. Data augmentation includes random flipping and intensity 

https://github.com/stardist/stardist
https://github.com/prodgerlab/stardist
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modification to training images, this process improves the accuracy of the StarDist model 

without the need for additional training images and annotation. Training was completed 

with the n_rays parameter for Config2D set to 32 and all other parameters were left to 

their default value in accordance with the Jupyter notebook in the StarDist GitHub 

repository (https://github.com/stardist/stardist). The full dataset used for training has been 

made available in the public domain (https://zenodo.org/record/7030912#).  

 Model training was performed for 400 epochs with steps per epoch set to 100. 

The model was exported after the probability and overlap parameters for non-maximum 

suppression post-processing were optimized. These optimized NMS parameters were 

used when using the model in the StarDist plugin (version 0.6.0) for Fiji (113,125). When 

using the model for prediction, images fed into the model were first normalized with the 

percentile range for image normalization was set from 1.7 to 99.8. The model was then 

run with the probability/score threshold set to 0.50, the overlap threshold set to 0.70. 

number of tiles was set to 16 and boundary exclusion was set to 2. Our trained StarDist 

model with optimized parameter pre-loaded has be made available in the public domain 

(https://zenodo.org/record/7030912#). 

3.2.7 StarDist model validation 

 We compared the performance of our StarDist model against manual counting 

and pixel-based automated cell counting using 10 FOV images. The FOV images used 

for validation were randomly generated from the randomized controlled trial sample 

images in the same fashion as the FOVs used for StarDist model training. Both inner 

foreskin images and outer foreskin images were used to make validation FOVs and each 

of the validation images were derived from RCT sample images that were not used to 

make model training FOVs. Like the model training FOV images, validation FOVs were 

600x600µm (1500x1500 pixels) in size, excluded areas with tissue section folding, 

included the full thickness of the epidermis (apical and basal edge could both be clearly 

identified), and included at least half of the thickness of the dermis. Manual counting of 

https://github.com/stardist/stardist
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the validation images was completed by one trained lab member following the 

instructions described in section 3.2.3.  

The percent difference between 1) manual counting and pixel-based automated 

counting, and the percent different between 2) manual counting and StarDist deep-

learning automated counting was determined. The total number of true positive, true 

negative, false positive, and false negative counts were determined from the pixel-based 

and StarDist counts through comparison with manual counts. Key metrics such as 

sensitivity, precision, false negative rate, and false discovery rate was determined for the 

pixel-based counting algorithm and StarDist deep-learning counting algorithm.  

3.2.8 StarDist model performance in high autofluorescence or high 
cell density areas 

 Four image crops containing an area with high autofluorescence (70x70µm, 

175x175 pixels) and Four image crops containing an area with high cell density 

(70x70µm, 175x175 pixels) was created from each of the 10 validation FOV images (600 

µm, 1500x1500 pixels). Image crops were created such that there was no overlap 

between the image crops generated from the same validation FOV. This means that none 

of the high autofluorescence image crops overlapped with each other and none of the 

high cell density image crops overlapped with each other. A total of 40 high 

autofluorescence image crops were analyzed and a total of 40 high cell density image 

crops were analyzed. High autofluorescence image crops and high cell density image 

crops were analyzed using both the StarDist algorithm and pixel-based algorithm. 

Performance of the StarDist counting method and pixel-based counting method in areas 

of high autofluorescence was visually assess by determining the number of image crops 

where autofluorescence was inaccurately counted as a cell (113,125,126). Performance of 

the StarDist counting method and pixel-based counting method in areas of high cell 

density was visually assessed by determining the number of instances of where cells were 

falsely merged in all 40 high cell density image crops. 
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3.2.9 Statistical Analysis 

 Results are presented as mean ± SDs. Difference between number of counts 

between pixel-based automated counting and manual counting and difference between 

number of counts between StarDist automated counting and manual counting was assess 

using paired T tests. Statistical analysis was performed using Prism 9 (GraphPad 

software, La Jolla, CA, USA). All figures were also generated using Prism 9. Results 

were statistically significant if the p-value was less than 0.05.  
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3.3 Results 

3.3.1 Automated HIV target cell segmentation using StarDist is 
comparable to manual counting and more accurate than 
pixel-based cell segmentation 

To determine if the performance of our custom StarDist model is comparable to 

manual counting and exceeds the performance of a previously validated pixel-based 

workflow, we completed manual counting, automated segmentation using StarDist, and 

automated segmentation using a pixel-based method for 10 FOV images (600x600µm 

each) of foreskin tissue stained for HIV target cells (staining for CD3, CD4, CCR5, and 

nuclei) (Figure 4). Pairwise comparison of manual counts with counts generated with our 

StarDist model showed that total cell count and counts for all cell types of interest (CD3+ 

cells, CD4+ cells, CCR5+ cells, CD3+CD4+ cells, CD3+CCR5+ cells, CD4+CCR5+ 

cells, CD3+CD4+CCR5+ cells) were not significantly different between the 2 methods 

(p>0.05) (Figure 5). Automated counts generated with the pixel-based workflow were 

not significantly different (p>0.05) from manual counts for total cell count, CD3+ cells, 

and CD4+ cells. However, automated counts generated using the pixel-based method for 

all other cell types were significantly different from manual counts. Specifically, 

automated counts for CCR5+ cells (p=0.0043), CD3+CD4+ cells (p=0.0058), 

CD3+CCR5+ cells (p=0.0004), CD3+CD4+CCR5+ cells (p=0.0005) were significantly 

lower than manual counts while automated counts for CD4+CCR5+ cells (p=0.0245) 

were significantly highly than manual counts (Figure 5).  

Overall, based on pooled counts from all 10 validation FOVs, the percent 

difference of StarDist counts from manual counts was less than 5% for all cell types 

except for CD4+CCR5+ cells (11.32%) and CD3+CD4+CCR5+ cells (13.59%). 

Meanwhile, percent difference of counts generated using the pixel-based approach from 

manual counts was less than 5% only for total cell count and CD3+ cell count. The 

percent difference of CCR5+ cell count, CD3+CD4+ cell count, CD3+CCR5+ cell count, 

CD4+CCR5+ cell count, and CD3+CD4+CCR5+ cell count from manual counts for were 

all over 12%. In particular, the percent difference of CD3+CD4+CCR5+ cell counts from 
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manual counts was 24.9%. Generally, the percent difference from manual counts of 

automated counts generated with the pixel-based approach ranged between 1.25 

(CD4+CCR5+ cells) to 8.4 times (CCR5+ cells) greater than automated counts generated 

with StarDist (Table 5). Automated cell segmentation of HIV target cells in foreskin 

tissue using our custom StarDist model had higher sensitivity and precision than 

automated cell segmentation using a pixel-based approach for all cell types. The 

sensitivity of our custom StarDist model was over 94% for counts of all cell types and 

over 97.5% for CD3+CCR5+ cell counts, CD4+CCR5+ cell counts, and 

CD3+CD4+CCR5+ cell counts. Meanwhile the sensitivity of the pixel-based workflow 

was less than 85% for all cell types except for counts for total cell count (93.58%) and 

CD3+ cells (91.10%). In particular, the sensitivity of the pixel-based approach for 

CD3+CD4+CCR5+ cells was only 60.70%. Precision wise, both StarDist and the pixel-

based method had over 90% precision for all cell types except for CD4+CCR5+ cells and 

CD3+CD4+CCR5+ cells (87.94% and 85.19% respectively for StarDist, 69.77% and 

77.96% respectively for the pixel-based workflow) (Table 6).  

StarDist also had a lower false negative rate and lower false discovery rate than 

the pixel-based approach for counts all cell types. The false negative rate of automated 

cell segmentation using the StarDist model was under 5.2% for all cell types while the 

false negative rate for the pixel-based workflow was between 6.42% (total cell count) and 

39.30% (CD3+CD4+CCR5+ cells). Overall, the false discovery rate for the pixel-based 

workflow was 1.7 (CD3+ cells) to 16.4 (CD3+CD4+CCR5+ cells) times higher than 

automated cell segmentation using our custom StarDist model. The false discover rate of 

both methods of automated cell segmentation was under 10% for all cell types except for 

CD4+CCR5+ cells and CD3+CD4+CCR5+ cells (12.06% and 14.81% respectively for 

StarDist, 30.23% and 22.04% respectively for the pixel-based approach) (Table 5).  

Quantification of HIV target cells using StarDist appeared to be comparable to 

manual counting and the performance of the StarDist model exceeded the performance of 

pixel-based cell segmentation by all metrics we examined.  
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Figure 4: Automated segmentation of HIV target cells in foreskin tissue images 

stained for CD3, CD4, CCR5 and nuclei using a pixel-based workflow and StarDist. 

(A, E) Representative image of (A) nuclei staining and (E) composite image of staining 

for CD3, CD4, CCR5, and nuclei were generated from a cropped image of a full tissue 

section scan of foreskin tissue imaged at 200x total magnification. Visual representation 

of (B-D) counting of all positively stained nuclei and (F-H) counting of all 

CD3+CD4+CCR5+ cells in the representative image. Methods of cell segmentation 

presented include (B, F) Manual counting of cells, (C, G) automated counting using a 

pixel-based approach, and (D, H) automated segmentation using a custom StarDist deep-

learning model.  
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Figure 5: Comparison of automated counts generated using StarDist with manual 

counting and automated counts generated using a pixel-based workflow. Cell 

counting was completed on 10 validation field-of-view images (600x600µm) randomly 

generated from a set of 232 full foreskin tissue section scans stain for CD3, CD4, CCR5, 

and nuclei to identify HIV susceptible cells in the tissue. Full tissue section scan images 

were originally imaged at 200x total magnification. The 10 validation images include 

both inner foreskin and outer foreskin images. Manual counting of images was completed 

by 1 observer. Manual counts are represented by black dots while automated counts 

produced using a pixel-based workflow and StarDist are represented by pink and cyan 

dots respectively. Gray lines connect counts from the same validation image. Black 

center line and box represents mean ± SD. Difference between manual counts and 

automated counts produced by the pixel-based workflow of StarDist was assess using 

two-tailed paired T-tests. Significant differences are indicated by asterisks (*p≤0.05, 

**p≤0.01, ***p≤0.001).  
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Table 5: Performance of StarDist deep-learning model surpasses the performance of 

a previous validated pixel-based method for HIV target cell segmentation  

 

Cell Types 

All 

Cells 

CD3+ 

Cells 

CD4+ 

Cells 

CCR5+ 

Cells 

CD3+ 

CD4+ 

Cells 

CD3+ 

CCR5+ 

Cells 

CD4+ 

CCR5+ 

Cells 

CD3+ 

CD4+ 

CCR5+ 

Cells 

Total Counts* 

Manual 20037 1697 1843 1231 939 800 792 542 

Pixel-

Based 
19736 1651 1726 1019 796 704 1013 422 

StarDist 19956 1673 1866 1259 978 825 887 621 

% Difference 

from Manual 

Counts 

Pixel-

Based 
1.51% 2.75% 6.56% 18.84% 16.48% 12.77% 14.19% 24.90% 

StarDist 0.41% 1.42% 1.24% 2.25% 4.07% 3.08% 11.32% 13.59% 

% Change 

from Manual 

Counts 

Pixel-

Based 
-1.50% -2.71% -6.35% -17.22% -15.23% -12.00% 15.28% -22.14% 

StarDist -0.40% -1.41% 1.25% 2.27% 4.15% 3.13% 11.99% 14.58% 

True Positives 

(TP) 

Pixel-

Based 
18750 1546 1554 918 754 639 637 329 

StarDist 19720 1609 1780 1185 903 788 780 529 

False Positive 

(FP) 

Pixel-

Based 
986 105 172 101 42 65 276 93 

StarDist 236 64 86 74 75 37 107 92 

False Negative 

(FN) 

Pixel-

Based 
1287 151 289 313 185 161 155 213 

StarDist 317 88 63 46 36 12 12 13 

Sensitivity/ 

True Positive 

Rate 

 (TPR) 

Pixel-

Based 
93.58% 91.10% 84.32% 74.57% 80.30% 79.88% 80.43% 60.70% 

StarDist 98.42% 94.81% 96.58% 96.26% 96.17% 98.50% 98.48% 97.60% 

Precision/ 

Positive 

predictive 

value (PPV) 

Pixel-

Based 
95.00% 93.64% 90.03% 90.09% 94.72% 90.77% 69.77% 77.96% 

StarDist 98.82% 96.17% 95.39% 94.12% 92.33% 95.52% 87.94% 85.19% 

False negative 

rate  

(FNR) 

Pixel-

Based 
6.42% 8.90% 15.68% 25.43% 19.70% 20.13% 19.57% 39.30% 

StarDist 1.58% 5.19% 3.42% 3.74% 3.83% 1.50% 1.52% 2.40% 

False 

discovery rate  

(FDR) 

Pixel-

Based 
5.00% 6.36% 9.97% 9.91% 5.28% 9.23% 30.23% 22.04% 

StarDist 1.18% 3.83% 4.61% 5.88% 7.67% 4.48% 12.06% 14.81% 

*Generated from 10 FOV images (600x600 µm) of foreskin tissue stained for CD3, CD4, CCR5, and nuclei. 
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3.3.2 StarDist does not have issue with systematic overcounting or 
undercounting in different tissue regions 

The epidermis and dermis regions of the foreskin are very different in terms of 

cell density and level of autofluorescence (Figure 1&2). To improve the accuracy of 

automated cell segmentation, many pixel-based workflows process the epidermis and 

dermis region of tissues using different image analysis parameters. However, even with 

specialized image processing for different tissue regions, systematic undercounting and 

overcounting can still occur. To determine if our StarDist model is also affected by 

systematic counting errors in different tissue regions, we manually split the 10 validation 

images described in section 3.3.1 into epidermis and dermis regions and determined the 

total number of manual counts, automated counts from the pixel-based method, and 

automated counts from StarDist for each of the regions. We compared the percent change 

of automated counts generated using the pixel-based method and automated counts 

generated using StarDist from manual counts in the epidermis or dermis to determine if 

systematic overcounting or undercounting was occurring. Percent change was selected as 

the metric used for assessment as it provided information on the directionality of 

differences between automated counts and manual counts (Figure 6).  

 For full tissue sections (before splitting into separate tissue regions) the percent 

change of StarDist counts from manual counts was within ± 5% for all cell types except 

for CD4+CCR5+ cells (12.0%) and CD3+CD4+CCR5+ cells (14.6%). Automated 

segmentation with the pixel-based workflow was less accurate when looking at full tissue 

section counts as the percent change from manual counts was only with ±10% for total 

cell count, CD3+ cell counts, and CD4+ cell counts. The percent change for all other cell 

counts were outside of ±12% and specifically for CD3+CD4+CCR5+ cells at -22.1%. 

Overall, the percent change of automated counts from manual counts in the epidermis 

showed that both the pixel-based method and StarDist method were overcounting. This 

was much more dramatic for the pixel-based method. There was a positive percent 

change from manual counts for all cell types. In particular, the percent change from 

manual counts was over +25% for CD4+ cells, CCR5+ cells, CD3+CD4+ cells, 
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CD4+CCR5+ cells, and CD3+CD4+CCR5+ cells (Figure 6). Overcounting by the 

StarDist model in the epidermis was very minimal. There was a positive percent change 

for counts for all cell types except for CD3+ cells (-3.2%), however, all percent change 

values were within ±10%. In the dermis, the pixel-based method displayed systematic 

undercounting as counts for all cell types had a negative percent change from manual 

counts. In particular, the percent change from manual counts for CD4+ cells, CCR5+ 

cells, CD3+CCR5+ cells, and CD3+CD4+CCR5+ cells were below -20%. The StarDist 

model had a negative percent change from manual counts for cell counts for total cell 

count, CD4+ cells, CCR5+ cells, CD3+CD4+ cells and CD3+CCR5+ cells but the 

percent change values for all cell types except for CD4+CCR5+ cells (12.2%) and 

CD3+CD4+CCR5+ cells (11.6%) were within ±10% (Figure 6). Overall, these results 

show that our StarDist model does not have issue with systematic overcounting or 

undercounting in different tissue regions.  
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Figure 6: Automated cell segmentation using StarDist does not result in major 

overcounting or undercounting in different tissue regions. Cell counting was 

completed on 10 validation field-of-view images (600x600µm) randomly generated from 

a set of 232 full foreskin tissue section scans stain for CD3, CD4, CCR5, and nuclei to 

identify HIV susceptible cells in the tissue. The 10 validation images include both inner 

foreskin and outer foreskin images. Cell segmentation was completed on the full field-of-

view images before images were manually divided into the epidermis and dermis 

sections. (A-C) Difference between automated counts and manual counts in (A) full 

tissue, (B) epidermis, and (C) dermis is shown as percent change of automated counts 

from manual counts. Percent difference of counts generated using a pixel-based approach 

is represented by purple bars while percent difference of counts generated using StarDist 

is represented by blue bars. Red dotted lines mark ±10% change of automated counts 

from manual counts.  
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3.3.3 Automated cell segmentation with StarDist is robust in areas 
with high cell density or high autofluorescence. 

Pixel-based approaches for automated cell segmentation often struggle in areas 

with high cell density or high autofluorescence. Thresholding in areas with high cell 

density can often result in cell merging or splitting. Collagen fibers found in the dermis of 

foreskin tissue are highly autofluorescent and are often misidentified as cells with pixel-

based cell segmentation methods. Due to the high prevalence of areas with densely 

packed cells and autofluorescence in foreskin tissue, it is critical that automated cell 

segmentation methods used to quantify HIV target cells are robust in these areas. While 

deep-learning methods for automated cell segmentation are designed to be less affected 

by noise, it was unclear if automated segmentation of HIV target cells using our custom 

StarDist model would be more effective than a pixel-based approach in difficult tissue 

regions with high cell density or high autofluorescence.  

To compare the performance of our StarDist model with the performance of pixel-

based approach in tissue regions with high cell density or high autofluorescence, we 

created 4 image crops (70x70µm) containing areas with high cell density and 4 image 

crops (70x70µm) containing areas with high levels of autofluorescence from each of the 

10 validation images mentioned in section 3.3.1. This resulted in a total of 40 images 

crop containing areas with high cell density and 40 image crops containing areas with 

high levels of autofluorescence (Figure 7). High autofluorescence areas were 

characterized by the abundance of autofluorescent collagen fibers (Figure 7A2). Each of 

these image crops contained less than 30 cells and were meant to represent problematic 

areas that would challenge conventional pixel-based automated cell segmentation. We 

applied the StarDist model and pixel-based workflow on the image crops. Based on the 

image crops with high cell density, we determined the total number of images where cell 

merging or splitting occurred during the cell segmentation process for StarDist or the 

pixel-based approach (Figure 7A3, B3, C3, D3). Based on the image crops with high 

autofluorescence, we determined the total number of images where autofluorescent 
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collagen fibers were misidentified as cells by StarDist or the pixel-based approach 

(Figure 7A2, B2, C2, D2).  

Cell merging and cell splitting occurred in ≥2 out of the 40 high cell density 

images when processed by the pixel-based approach for any cell type. There were over 

10/40 images where cell splitting or merging occurred for nuclei, CD3+ cells, CD4+ 

cells, and CCR5+ cells for the pixel-based approach. In general, the number of image 

crops where cell merging occurred was 2 (CD4+CCR5+ cells) to 7 times (CD4+ cells) 

more for the pixel-based approach compared to processing with StarDist. In fact, cell 

merging and splitting only occurred in ≤6 images tested out of 40 for all cell types when 

processed using StarDist. No cases of cell merging occurred for CD3+CD4+ cells or 

CD3+CD4+CCR5+ cells and cell splitting was only seen for the segmentation of nuclei 

when using StarDist to process the 40 high cell density image crops (Table 6). Cell 

merging and cell splitting was most common for the segmentation of nuclei, likely due to 

the high number of nuclei compared to the number for the other individual cell types. 

Misidentification of autofluorescence as cells occurred ≥10 out of 40 high 

autofluorescence image crops tested for all cell types except for CD4+CCR5+ cells and 

CD3+CD4+CCR5+ cells when using the pixel-based approach for analysis. Conversely, 

misidentification of autofluorescence as cells occurred in ≤5 out of 40 high 

autofluorescence image crops when using StarDist for analysis. For both the pixel-based 

approach and StarDist, misidentification of autofluorescence as cells was most prevalent 

for CD3+ cell segmentation (35/40 image crops for pixel-based, 5/40 image crops for 

StarDist) (Table 7). Overall, these results suggest that StarDist is less likely to have 

problems with cell merging/splitting and misidentification of autofluorescence as cells.  

Automated cell segmentation with StarDist appears to robust in areas that would 

normally challenge pixel-based automated cell segmentation workflows (Figure 7).  
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Figure 7: Comparison of automated cell segmentation using StarDist and a pixel-

based workflow in tissue regions with high cell density or high autofluorescence. 

Four image crops (70x70µm) representing areas of high cell density and four image crops 

representing areas with autofluorescence was generated from each of the 10 “validation” 

field-of-view images (600x600µm) generated from full foreskin tissue scans stained for 

CD3, CD4, CCR5 and nuclei (imaged at 200x total magnification). Cell segmentation 

was completed on the full field-of-view images before cropping. Less cell 

merging/splitting and misidentification of autofluorescence as cells was seen with the 

StarDist approach. Images shown in figure represent: (A1-A3) Unprocessed image of 

nuclei staining, (B1-B3) manual tracing of nuclei representing the ground truth, (C1-C3) 

automated segmentation using a pixel-based approach, (D1-D3) automated segmentation 

using StarDist. (A1, B1, C1, D1) Processing of validation field-of-view without cropping. 

(A2, B2, C2, D2) Processing of a tissue region with high autofluorescence. (A3, B3, C3, 

D3) Processing of a tissue region with high cell density. Yellow arrows point to 

autofluorescent collagen fibers while cyan arrows point to tightly packed cells.  
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Table 6: StarDist is less likely to have issues with cell merging, cell splitting, or 

misidentification of autofluorescence as cells in tissue regions with high cell density 

or high autofluorescence when compared to automated pixel-based cell 

segmentation 

 Cell Types 

 

All 

Cells  

CD3+  

Cells 

CD4+ 

Cells 

CCR5+  

Cells 

CD3+ 

CD4+ 

Cells 

CD3+ 

CCR5+ 

Cells 

CD4+ 

CCR5+ 

Cells 

CD3+ 

CD4+ 

CCR5+ 

Cells 

Cell Merging*         

Pixel-Based 32 13 14 17 5 8 8 2 

StarDist 6 6 2 4 0 1 2 0 

Cell Splitting* 
        

Pixel-Based 22 12 10 11 2 2 3 2 

StarDist 5 0 0 0 0 0 0 0 

Misidentification  

of Autofluorescence as 

Cells ** 

        

Pixel-Based 27 35 16 15 11 14 7 2 

StarDist 2 5 3 3 3 2 3 0 

*Number of images (out of 40 images of tissue regions with high cell density) where cells were 

inaccurately merged or split during automated cell segmentation. 

**Number of images (out of 40 images of tissue regions with high abundance of autofluorescent 

collagen fibers) where autofluorescence was misidentified as cells. 
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3.3.4 Accuracy of custom StarDist model rapidly improves with 
additional training images 

Manual annotation of training images is by far the most time-consuming step of 

the training process of deep-learning models, and it can be hard to determine the optimal 

balance between improvements in model accuracy and time-investment for training. In 

this section, we show the improvement of our StarDist model in segmentation of nuclei 

(all cells), CD3+ cells, CD4+CCR5+ cells and CD3+CD4+CCR5+ cells after training 

with 10, 20, 30, and 40 images (Figure 8). The cell types that were chosen as points of 

focus for this analysis were selected based on their relevance to HIV susceptibility. Cells 

that are CD3 positive represent T cells, cells that are positive for CD4/CCR5 represent 

cells that HIV can attach to for entry, and cells that are positive for CD3/CD4/CCR5 

represent CD4+CCR5+ T cells, which are the main reservoir for productive HIV 

infection in sexual transmission. Furthermore, the cell types selected are also relevant in 

terms of the number of image channels that are used as input. The segmentation of CD3+ 

cells, CD4+CCR5+ cells, and CD3+CD4+CCR5+ cells require 2, 3, and 4 image 

channels respectively as input for detection. Pooled cell counts were generated using the 

10 validation images described in section 3.3.1 as input and percent difference from 

manual counts was used as a metric to measure accuracy. Overall, these results can serve 

as a guide for the training of new custom models to quantify other types of immune cells 

in genital mucosal tissue.  

As expected, the percent difference of automated counts generated by StarDist 

from manual counts for all cell, CD3+ cells, CD4+CCR5+ cells and CD3+CD4+CCR5+ 

cells decreased with each of addition of 10 annotated images for training. The percent 

difference from manual counts for CD3+ cell counts, CD4+CCR5+ cell counts, and 

CD3+CD4+CCR5+ cell counts was reduced by 65-75%, 30-55%, 30-45% respectively 

with every additional 10 images used for training (Figure 8D). All versions of the 

StarDist model, except for the model trained with only 10 images, was the most accurate 

in segmentation nuclei (all cells), followed by segmentation of CD3+ cell, CD4+CCR5+ 

cells, and CD3+CD4+CCR5+ cells (ordered by lowest percent difference from manual 
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counts to highest percent difference from manual counts). The percent difference of 

automated StarDist counts from manual counts was below 10% for all cells (all nuclei) 

after training with 10 images and below 10% for CD3+ cells after training with 20 

images. While automated segmentation of CD4+CCR5+ cells and CD3+CD4+CCR5+ 

cells did not manage to achieve a percent difference less than 10% after training with 40 

images, the percent difference was very close to 10% at 11.32% and 13.59% respectively 

(Figure 8D).  
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Figure 8: Training images rapidly improve the accuracy of a custom StarDist model 

used for the quantification of HIV target cells in foreskin tissue. (A-C) Workflow of 

annotating foreskin tissue stained for CD3, CD4, CCR5, and nuclei for StarDist model 

training. (A) Raw image of nuclei staining. (B1-B2) Manual cell counting using the Cell 

Counter plugin for Fiji. (C) Tracing of cells in the LabKit plugin for Fiji to produce 

annotated images for training. (D) Percent difference of automated counts generated by 

StarDist from manual counts for nuclei (all cells), CD3+ cells, CD4+CCR5+ cells, and 

CD3+CD4+CCR5+ cells after training with 10 images, 20 images, 30 images, and 40 

images. Counting was completed on 10 validation field-of-view images (600x600µm) 

randomly generated from a set of 232 full foreskin tissue section scans stain for CD3, 

CD4, CCR5, and nuclei to identify HIV susceptible cells in the tissue.  
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3.4 Discussion 

In this chapter we described the development and validation of a deep-learning 

approach to quantify HIV target cells in foreskin tissues. Using the Snakemake workflow 

management system and the StarDist plugin for Fiji, we trained a custom StarDist deep-

learning model that can be used to identify HIV target cells in multi-channel 

immunofluorescent microscopy images of foreskin tissue (113,125,129). The accuracy of 

this deep-learning model was compared to manual counting and a conventional 

automated cell segmentation algorithm which utilizes a pixel-based approach (126). The 

reliability of the deep-learning model was also further tested in tissue regions with high 

cell density or high autofluorescence.  

Most new HIV infections worldwide are still acquired via sexual transmission. In 

men, the availability of target cells in the foreskin is a critical determinant of HIV 

susceptibility in men during sex (38,41,54,91). Immunofluorescent microscopy is an 

excellent tool for understanding the spatial distribution of immune cells in genital 

mucosal tissues, however, cell segmentation in IF microscopy images can be difficult. 

Previous studies have relied on manual counting to quantify cells of interest; however, 

this approach is very time consuming and is vulnerable to bias due to the subjective 

nature of manual counting. Overall, manual counting is not feasible especially when full 

tissue section scans from large study cohorts need to be analyzed. Studies that use an 

automated approach for cell segmentation in immunofluorescent microscopy images 

often use a pixel-based workflow that relies on thresholding to identify positively stained 

cells (120,130). However, the reliability of this method is poor in regions with high cell 

density and high autofluorescence. 

To address the issues related to automated immune cell segmentation in IF 

microscopy images of genital mucosal tissue, we developed and validated a deep-learning 

approach to quantify HIV target cells in the foreskin (113,125). This approach can 

replace conventional pixel-based methods for immune cell quantification and can be 

easily adapted to accommodate the detection of a wide variety of immune cell subsets in 
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different types of genital mucosal tissue. Our approach utilizes multi-channel IF 

microscopy images as input and enable the detection of multiple cell types (based on 

combination of marker staining) simultaneously. We decided to use StarDist and its 

plugin for Fiji as the backbone for the development of our deep-learning model because 

of its accessibility (113,125). StarDist is open source and use of StarDist models can 

easily be incorporated into existing image analysis workflows. Plugins that allow StarDist 

models to be run without any programming knowledge requirements are available for 

popular open-source software such as ImageJ/Fiji, Napari, QuPath, Icy, and KNIME 

(113,115,131,132). Results from utilizing StarDist models are also highly reproducible 

since trained StarDist models and training datasets can be easily shared.  

The performance of our StarDist model against manual counting and automated 

segmentation using a conventional pixel-based approach using 10 validation images. 

Based on our validation, our custom StarDist model exceeded conventional pixel-based 

cell segmentation in performance metrics including percent difference from manual 

counts, sensitivity, precision, false negative rate, and false discovery rate (Table 5). Most 

notably, our custom StarDist model achieved over 94% sensitivity and over 85% 

precision for all cell types we examined. Automated counts with StarDist were also 

highly comparable to manual counts. There was no significant difference between 

StarDist counts and manual counts for all cell types examined for the 10 validation 

images (Figure 5). The percent difference of StarDist counts from manual counts was 

also less than 5% for all cell types except for CD4+CCR5+ cells (11.32%) and 

CD3+CD4+CCR5+ cells (13.59%). However, the percent difference of counts for these 

cell types are likely to decrease with more training. These cell types were the rarest 

among all cell types we examined, thus fewer instances were available for training 

compared to other cell types (Table 5). Detection of these cell types is also more 

complex as image information from 3 channels are used to detect CD4+CCR5+ cells and 

image information from 4 channels are used to detect CD3+CD4+CCR5+ cells. Cell 

detection using our StarDist model also appears to be robust in challenging tissue areas 

with high cell density or high levels of autofluorescence (Figure 7). Performance of 
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conventional automated cell segmentation can struggle in both the epidermis and dermis 

region of foreskin tissue for different reasons. In the epidermis, thresholding can be 

difficult due to high cell density. In the dermis, thresholding can be difficult due to high 

abundance of autofluorescent collagen fibers. In contrast to conventional automated cell 

segmentation that relies on thresholding, StarDist did not systematically overcount or 

undercount in the epidermis or dermis (Figure 6). StarDist also managed to detect cells 

with high accuracy in isolated cases of high cell density or high autofluorescence (Table 

6). Based on these results, we conclude that the performance of our StarDist model is 

comparable to manual counting and StarDist is a suitable replacement for conventional 

pixel-based approaches for HIV target cell quantification. 

A limitation of our custom StarDist model is that the images used for the training 

and validation were all acquired using the same microscope with the same imaging 

settings. The differences resulting from acquiring images with different microscopes may 

impact the accuracy of our model. While it might be possible to rescale images and to 

normalize the properties of images acquire from different microscopes, it is possible that 

our StarDist model will not perform reliably using images from other microscopes. 

Furthermore, our StarDist model is trained using foreskin tissue stained for CD3, CD4, 

CCR5, and nuclei. It cannot be reliably used to analyze foreskin tissues stained for 

different markers. The use of this algorithm with other tissue types such as cervical tissue 

has also not been validated. However, an easy solution for all these limitations is training 

with new images. New StarDist models can quickly be trained using our Snakemake 

framework (113,125,129).  

An advantage of the StarDist approach for cell segmentation is that star-convex 

polygons are very good at identifying blob-like objects like nuclei or T cells. However, 

star-convex polygons are also bad at fully approximate the irregular shape of sprawling 

cells such as Langerhans cells. Deep-learning methods based on other shape 

approximation strategies might be needed to accurately segment irregularly shaped 

immune cells (133). Recent work by Mandal et al. described using planar parametric 
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spline curves for cell segmentation in a method called SplineDist (134). This method was 

shown to be capable of being incorporated into the StarDist architecture to accurately 

capture non-star-convex objects. Discrete cell segmentation methods, including StarDist, 

are also limited in the sense that positive cell surface marker staining that is unassociated 

with nuclei is unaccounted for in the segmentation process. The appendages of sprawling 

HIV target cells such as Langerhans cells and dendritic cells can often span through 

multiple tissue sections, resulting in cell membrane area that is positively stained for CD4 

and CCR5 but unassociated with nuclei. Not accounting for these areas ignores a large 

amount of tissue area that HIV virions can use for cell entry. While pixel-based methods 

for image analysis are problematic for discrete cell segmentation, they are good for 

measuring the total amount of tissue area that is positively stained for a particular marker. 

Thus, pairing StarDist HIV target cell counting results with results from pixel-based 

quantification of CD4+CCR5+ tissue area could be beneficial in terms of gaining a more 

holistic understanding of HIV susceptibility in foreskin tissue.  

To our knowledge, this study is the first to describe deep-learning methods for the 

identification of HIV target cells in multi-channel IF microscopy images of genital 

mucosal tissue. Previous studies have extensively described deep-learning methods for 

segmentation of CD3+ cells but these methods are mostly on histology images (135–

138). Among the existing studies that use deep learning to segment cells in IF 

microscopy images, the vast majority are exclusively focused on nuclei segmentation. 

Existing methods for deep-learning cell segmentation in IF microscopy images are not 

designed to enable simultaneous quantification of multiple cell types. This limits 

understanding of both the distribution and composition of immune cells. Implementation 

and reproducibility of these models compared to StarDist are also more limited as they 

require a higher-level understanding of convolutional neural networks and software 

packages related to neural network construction (139,140).  

Manual annotation of training images is one of the most time-consuming steps for 

the development of any supervised deep-learning models of cell segmentation. To work 
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around the problem of generating training images, recent studies have focused on 

developing generalist methods for cell segmentation that does not require new training 

data. These models were designed for nuclei segmentation; however, it is possible that 

these approaches can be adapted to work with T cells and other rounded cells have 

defined cell borders (139,141–143). Other previous attempts at improving the ease of 

adopting custom deep learning methods includes the creation of shared repositories of 

training sets with various tissue types and trained models. However, these repositories 

mainly contain IF images of nuclei or histology images. Improving the diversity of 

training images in these repositories would greatly improve the adoptability of deep-

learning methods for cell segmentation (144–147).  

In conclusion, in this chapter we showed that deep learning is an accurate and 

time saving approach that can be used to analyze immune cell composition in full 

mucosal tissue section scans. We trained and validated a custom StarDist model that 

produces highly accurate counts of HIV target cells in foreskin tissue. This model is 

robust in regions of high cell density and autofluorescence. Overall, this model can be 

easily applied and incorporated into existing ImageJ workflows which makes it an 

appropriate replacement for conventional pixel-based methods for automated HIV target 

cell segmentation.  
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Chapter 4 

4 Effect of antimicrobial treatments on the penile 
microbiome, inflammation, and HIV target cells  

4.1 Introduction 

While many effective strategies are now available for HIV prevention, the 

reduction in the annual number of new HIV infections among adults has stalled since 

2016 (1,13). Between 2010 and 2020, the total of new infection globally has only 

declined by 31%, which is far short of the 2020 UNAIDS target of 75%. Implementation 

of existing HIV prevention strategies has proven to be inefficient, and many countries 

have yet to sufficiently implement effective prevention measures for individuals who are 

most at risk of infection (18,148–150). Thus, a rework of current HIV prevention 

strategies and new tools for HIV prevention could be needed to increase the current pace 

of reducing new HIV infections globally.  

Circumcision can reduce a heterosexual man’s risk of acquiring HIV by up to 

60% (14–16). However, many men at high risk of HIV acquisition still choose to remain 

uncircumcised and the biological mechanisms behind how circumcision modifies HIV 

risk is not completely understood. The abundance of certain species of anaerobic bacteria 

which are reduced by circumcision, was previously associated with HIV seroconversion, 

penile inflammation, and the abundance of HIV target cells in the foreskin in 

uncircumcised men (64,73,75,76). It is possible that these penile bacteria may be causing 

local inflammation which results in the recruitment of HIV target cells in the foreskin 

(31). If this is the case, modification of the penile microbiome in uncircumcised men 

using antimicrobial agents may represent a novel method of reducing the HIV 

susceptibility of men who choose to remain uncircumcised. However, it is not known if 

or which antimicrobial agents can optimally reduce penile anaerobes associated with HIV 

risk and if the reduction in the anaerobes will reduce foreskin inflammation and HIV 

susceptibility. In this chapter, we present select results from an open-label randomized 

controlled trial which examined the effect of commonly available antibacterial agents on 
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the foreskin microbiome, inflammation, and HIV susceptibility in Ugandan men (77). 

Specifically, men were either circumcised immediately without delay (control group) or 

asked to use topical clindamycin, topical metronidazole, topical hydrogen peroxide, or 

oral tinidazole for 4 weeks prior to circumcision. Using foreskin tissue collected at time 

of circumcision we compared the foreskin HIV target cell abundance between treatment 

group and control group men. We also correlated the abundance of HIV target cells in the 

foreskin with the abundance of BASIC species bacteria and soluble inflammatory 

markers in the coronal sulcus at time of circumcision. Detailed description of the 

randomized controlled trial can be found in chapter 2.  

4.2 Methods 

4.2.1 Quantification of HIV target cell availability using 
immunofluorescence microscopy 

HIV target cells were quantified in IF microscopy images of foreskin tissue using 

(1) the automated deep-learning cell segmentation algorithm described in Chapter 3; (2) 

an automated pixel-based algorithm, that measures the total tissue area positive for both 

CD4 and CCR5 (as opposed to the pixel-based cell segmentation algorithm described in 

Chapter 3). The deep-learning cell segmentation algorithm was used to measure the 

number of HIV target cells per unit area of foreskin tissue. The pixel-based algorithm 

was used to quantify the total tissue area that is positive for both CD4 and CCR5. While 

the pixel-based algorithm is a simplified method for HIV target cell quantification, it 

complements the deep-learning algorithm since irregularly shaped target cells that are 

not captured effectively by discrete cell segmentation methods can be accounted for 

using this method (125).  

We focused our image analysis only on the tissue area that was within 300µm of 

the apical surface of the epithelium (Figure 9). This was done as the total amount of 

dermis tissue in tissue sections varied greatly between study participants. The threshold 

of 300µm from the apical surface of the epithelium was selected as this area contained 
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the vast majority of HIV target cells in the tissue sections and would be most relevant for 

comparing HIV susceptibility between treatment groups (Figure 9).  

 

Figure 9: Tissue area used for HIV target cell quantification in immunofluorescent 

microscopy images of foreskin tissue. Full tissue section scans of foreskin tissue stained 

for CD3, CD4, CCR5, and nuclei were captured at 200x total magnification. The area 

within 300µm of the apical edge of the epidermis in each image was manually cropped 

out and saved for automated image analysis. HIV target cells in the 300µm region were 

quantified using a deep-learning cell segmentation algorithm and a pixel-based algorithm 
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was applied to determine the percent coverage of tissue area susceptible for HIV entry 

(CD4+CCR5+ tissue area) in the 300µm region.  

 

4.2.2 Pixel-based quantification of HIV target cells by determine 
the percent coverage of tissue area  

The workflow for this algorithm is built on image processing functions in the Fiji 

distribution of ImageJ2 (version 2.6.0) and the Adaptive Thresholding plugin (version 

2019.06.24) for ImageJ (113,127). This approach for quantifying HIV target cells has 

been published by our group (126). 

(1) The total size of the tissue section was measured by applying the “Analyze Particles” 

function in Fiji with the parameters for “Circularity” set from 0.00 to 1.00, “Size” set 

from 0 to infinity, and options for “Display Results” and “Summarize” checked. 

Tissue section size measurement was completed on composite images of the tissue 

section scans with contains all channels merged (Figure 10A).  

(2) CD4 and CCR5 channel images undergo thresholding to eliminate background noise 

and isolate positive staining signal (Figure 10B1, 10B2). The CD4 and CCR5 

channel images were first converted to 8-bit format and then the “Adaptive 

Thresholding” plugin is used with the parameters for “Block Size” and “Subtraction 

Value” set at 100 and -5 respectively for CD4 and 100 and -40 respectively for 

CCR5 (Figure 10C1, 10C2).  

(3) Positive staining for CCR5 is outlined and saved as “Regions of Interest” files using 

the “Analyze Particles” function in ImageJ with the parameters for “Circularity” set 

from 0.00 to 1.00, “Size” set from 0 to infinity, and options for “Overlay” and “Add 

to Manager” checked.  

(4) To determine the tissue area that is positive for both CD4 and CCR5, the CCR5 

“Region of Interest” files were overlayed on top of a corresponding CD4 channel 
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image and then the “Clear Outside” function in Fiji is applied to eliminate any CD4 

positive staining that is not within a CCR5 “Region of Interest” outline (Figure 

10D1, 10D2). The remaining CD4 positive staining represents tissue area that is 

positive for both CD4 and CCR5 (Figure 10E).  

(5) The total area of this CD4 and CCR5 positive staining was measured by applying the 

“Analyze Particles” function in ImageJ with the parameters for “Circularity” set 

from 0.00 to 1.00, “Size” set from 0 to infinity, and options for “Display Results” 

and “Summarize” checked.  

(6) This area was divided by the total tissue section area to determine the percent signal 

coverage for CD4 and CCR5 for each tissue section.  

The validity of this algorithm was assessed by comparison to manual assessment of 

CD4/CCR5 expression levels. Five randomly selected images (600µm by 600µm) were 

ranked by visual inspection from lowest to highest percent signal coverage for CD4 and 

CCR5. The percent signal coverage for CD4 and CCR5 were calculated by the pixel-

based algorithm, and these numbers were used to generate rankings, which were 

compared to manual ranking. 

Pre-written script for batch processing for the pixel-based quantification algorithm 

described above has been made available in the public domain 

(https://github.com/prodgerlab/pixel-based-quantification).  

 

 

 

 

 

https://github.com/prodgerlab/pixel-based-quantification
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Figure 10: Overview of pixel-based approach for the quantification of tissue area 

available for HIV entry (CD4+CCR5+ area) in foreskin tissue section scans. 

Analysis was completed using only the tissue area that was within 300µm of the apical 

surface of the epidermis of adult foreskin tissue (both inner and outer foreskin) stained 

for CD3, CD4, CCR5, and nuclei and imaged at 200x total magnification. (A) 

Representative image of foreskin tissue stained for the identification of HIV target cells. 

Image is a composite representing positive staining from all channels merged together. 

Raw, unprocessed staining for (B1) CCR5 and (B2) CD4 in the representative image. 

Binary image of (C1) CCR5+ staining and (C2) CD4+ staining after adaptive 

thresholding. (D1) Isolation and selection of CCR5+ staining and (D2) overlay of CCR5+ 

staining on CD4+ staining. (E) Elimination of CD4+ positive staining that does not 

overlap with CCR5+ positive staining to determine area that is positively stained for both 

CD4 and CCR5. Tissue area available for HIV entry is quantified by determine the 

percent coverage of CD4+CCR5+ staining over the tissue section.  
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4.2.3 Statistical analysis 

Statistical analysis was completed using Prism v9 (GraphPad Software). The 

impact of antimicrobial agents on the density of HIV target cells in the foreskin based on 

immunofluorescent microscopy was assessed by comparing each antimicrobial 

intervention group with the untreated control group using a two-tailed Mann-Whitney 

tests. The difference in HIV target cell density between the inner foreskin and outer 

foreskin in all participants will be compared using a Wilcoxon matched pairs signed rank 

tests. The relationship between the penile absolute abundance of bacterial species of 

interest (i.e. bacterial species previously associated with HIV seroconversion, 

inflammation, and HIV target cell recruitment to the inner foreskin) and the density of 

HIV target cells in the inner foreskin will be determined as follows. First, participants 

will be organized from lowest to highest penile abundance of BASIC species and control 

taxa at the time of circumcision. Next the HIV target cell density of participants with no 

detectable amounts of BASIC species will be compared with the HIV target cell density 

of participants in the top quartile in terms of absolute abundance of BASIC species and 

control taxa using a Kruskal-Wallis test followed by a Dunn’s multiple comparisons test. 

Correlation between penile levels of inflammatory cytokines/chemokines and the density 

of HIV target cells in the inner foreskin at the time of circumcision will be assessed with 

a simple linear regression.  
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4.3 Results 

4.3.1 Effect of antimicrobial treatments on the abundance of penile 
bacteria 

Penile microbiome data collection and bacteria swab sample processing was 

completed by study collaborators at George Washington University. Analysis was 

completed only for men who had available swab samples at all timepoints and were not 

lost to follow-up: clindamycin group (n=22), hydrogen peroxide group (n=25), 

metronidazole group (n=22), tinidazole group (n=23) (Figure 11). 

Although not a part of this thesis, the effect of treatment on penile bacteria is 

presented here for context.  

 Both the total bacteria absolute abundance and pooled BASIC species absolute 

abundance was significantly reduced (p<0.05) by topical antimicrobial treatments (topical 

clindamycin, topical hydrogen peroxide, topical metronidazole) after 1-week and 4-

weeks of treatment while the pooled absolute abundance of control taxa bacteria was 

either not significant changed (p>0.05) or was significantly increased (p<0.05) after 1- or 

4- weeks of treatment (Figure 11). For all treatments, the median total bacteria absolute 

abundance and median of pooled BASIC species absolute abundance was lower at the 1-

week timepoint when compared to the 4-week timepoint. The most reduction in total 

bacteria absolute abundance and pooled BASIC species absolute abundance after 1 week 

of treatment was seen in the topical clindamycin group and then followed by the topical 

metronidazole group (Figure 11).  
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Figure 11: Topical antimicrobial treatments reduce total bacteria absolute 

abundance and BASIC species absolute abundance but not control taxa absolute 

abundance. The penile microbiome of study participants was characterized via amplicon 

sequencing and qPCR of the V3V4 hypervariable regions of the 16S rRNA gene using 

coronal sulcus swabs collected at baseline, 1-week of treatment and at the time of 

circumcision (4-weeks of treatment). Analysis was completed only for men who had 

available swab samples at all timepoints: clindamycin group (n=22), hydrogen peroxide 

group (n=25), metronidazole group (n=22), tinidazole group (n=23). Total bacteria 

absolute abundance and BASIC species absolute abundance were significantly lower 

(p≤0.05) at 1- and 4-weeks of treatment when compared to baseline for all topical 

antimicrobial treatment groups. Control taxa absolute abundance was not significantly 

different (p>0.05) or was significantly increased (p≤0.05) after any treatment for 1-week 

or 4-weeks. Data shown is log10 change of absolute bacteria abundance after 1-week 

(black triangle) or 4-weeks (pink triangle) of treatment. Solid black line and box 

represents median and interquartile range respectively. Difference in absolute bacterial 

abundance between 1-week of treatment and baseline and 4-weeks of treatment and 

baseline was assessed using Wilcoxon matched-pairs signed rank tests. Significant 

differences (p≤0.05) are represented by asterisks (*p≤0.05, **p≤0.01, ***p≤0.001, 

****p≤0.0001).  
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4.3.2 Effect of antimicrobial treatments on the density of HIV target 
cells in the foreskin 

 We focused our analysis on CD3+ cells (representing all T cells), 

CD3+CD4+CCR5+ cells (representing CD4+CCR5+ T cells), and CD3-CD4+CCR5+ 

cells (representing HIV target cells that are not T cells, this includes cells such as 

Langerhans cells, dendritic cells, and macrophages). The pixel-based algorithm was used 

to complement the cell segmentation algorithm. Using the pixel-based algorithm, we 

determined the percent coverage of total tissue area that was susceptible to HIV entry.  

Based on this analysis strategy, we found that antimicrobial treatments reduced 

the abundance of HIV target cells in the foreskin, and this effect was limited to the inner 

foreskin (consistent with being caused by bacteria in the sub-preputial space) (Figure 

12). The inner foreskin samples of participants in the topical clindamycin group and the 

topical metronidazole group had significantly lower density of CD3+ cells (T cells), 

CD3+CD4+CCR5+ cells (CD4+CCR5+ T cells), and CD3-CD4+CCR5+ cells (non-T 

cell HIV target cells) when compared to inner foreskin samples from men in the control 

group (p<0.05). The percent coverage of CD4+CCR5+ area was also significantly lower 

in the inner foreskin samples from men in the clindamycin and metronidazole group 

when compared to control. The only topical antimicrobial treatments that had a 

significant effect on HIV target cells in the foreskin were clindamycin and metronidazole. 

The CD3+ cell density, CD3+CD4+CCR5+ cell density, CD3-CD4+CCR5+ cell density, 

and percent coverage of CD4+CCR5+ tissue area in the inner foreskin samples from the 

topical hydrogen peroxide group were not significantly different from those in the control 

group (Figure 12A1, B1, C1, D1).  Interesting, inner foreskin samples from men in the 

oral tinidazole were lower (p<0.05) in the density of T cells and T cell subsets (CD3+ 

cells, CD3+CD4+CCR5+ cells) when compared to control. However, CD3- HIV target 

cell density (CD3-CD4+CCR5+ cells) and percent coverage of CD4+CCR5+ tissue area 

were not significantly different when compared to control (p>0.05) (Figure 12A1, B1, 

C1, D1).  
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There was no significant difference in CD3+ cell density (T cells), 

CD3+CD4+CCR5+ cell density (CD4+CCR5+ T cells), CD3-CD4+CCR5+ cell density 

(CD3- HIV target cells) and the percent coverage of CD4+CCR5+ tissue area between 

any of the treatment groups and the control group in the outer foreskin (Figure 12A2, B2, 

C2, D2). 

We did not find a significant difference in the proportion of CD3+CD4+ cells, 

CD3+CCR5+ cells, and CD3+CD4+CCR5+ cells in the inner foreskin tissue of the 

various treatment groups. Among all participants, CD3+CD4+ cell accounted for an 

average of 58.4% of all CD3+ cells, CD3+CCR5+ cells accounted for an average of 

41.3% of all CD3+ cells, and CD3+CD4+CCR5+ cells accounted for an average of 

33.1% of all CD3+ cells (Table 7).  
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Figure 12: Effect of antimicrobial treatments on the abundance of HIV target cells 

in the foreskin. Foreskin tissue collected at time of circumcision from the randomized 

controlled trial were snap-frozen, cryosectioned at 8µm, and stained for CD3, CD4, 

CCR5, and nuclei for the identification of HIV target cells by immunofluorescent 

microscopy. Stained foreskin tissue sections were imaged at 200x total magnification and 

the tissue area within 300µm of the apical surface of the epidermis was analyzed using a 

deep-learning cell segmentation algorithm to determine the density of HIV target cells 

and an automated pixel-based algorithm to determine the percent coverage of HIV 

susceptible tissue area (CD4+CCR5+ area). Inner foreskin from men in the topical 

clindamycin and topical metronidazole groups had lower CD3+ cell density, 

CD3+CD4+CCR5+ cell density, CD3-CD4+CCR5+ cell density, and percent coverage of 

CD4+CCR5+ area when compared to those from control group men. Inner foreskin from 

men in the oral tinidazole group also had lower CD3+ cell density and 

CD3+CD4+CCR5+ cell density when compared to those from control group men. 

Results are presented as median with interquartile range (black line and box 

respectively). (A1-A2) CD3+ cell density, (B1-B2) CD3+CD4+CCR5+ cell density, (C1-

C2) CD3-CD4+CCR5+ cell density, and (D1-D2) % coverage of CD4+CCR5+ tissue 

area in (A1, B1, C1, D1) inner foreskin and (A2, B2, C2, D2) outer foreskin samples. 

Difference in cell density or percent coverage of CD4+CCR5+ area between treatment 

groups and control group was assessed using two-tailed Mann-Whitney tests. Significant 

differences (p≤0.05) are represented by asterisks (*p≤0.05, **p≤0.01, ***p≤0.001).  
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Table 7: Proportion of CD3+ cell subsets in the inner foreskin of study participants  

 Proportion of CD3+ Cell Subsets* 

 CD3+CD4+ 

 Cells 

CD3+CCR5+  

Cells 

CD3+CD4+CCR5+ 

Cells 

Control 49.9% 40.8% 29.3% 

Topical 

Clindamycin 

51.1% 41.2% 35.4% 

Topical Hydrogen 

Peroxide 

60.8% 42.5% 30.2% 

Topical 

Metronidazole 

63.9% 41.0% 36.2% 

Oral Tinidazole 63.5% 40.8% 34.8% 

All Participants 58.4% 41.3% 33.1% 

Note: CD3+ cell subset proportions are displayed as mean percentages. Differences in 

CD3+ cell subset proportions between groups were evaluated using a Kruskal-Wallis 

test followed by a Dunn’s multiple comparisons test. No significant differences were 

found (p>0.05). 

*Proportion of CD3+ cell subset out of all CD3+ cells. 
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4.3.3 HIV target cell density is higher in the inner foreskin.  

Evidence from previous studies have shown that the foreskin is enriched in HIV 

susceptible CD4 T cell subsets such as Th17 cells cell compared to peripheral blood and 

evidence suggests that the inner foreskin is more susceptible to HIV acquisition when 

compared to the outer foreskin (28,30,32). Several studies have also compared the 

composition of immune cells between the inner and outer foreskin and found that the 

inner foreskin had both an increased density of CD4+ T cells and increased levels of 

inflammatory cytokines (28–30). This evidence supports the idea that the anaerobic 

conditions of the sub-preputial space (space between inner foreskin and glans in non-

erect penis) is conducive to the generation of pro-inflammatory environment that 

contributed to increased susceptibility to HIV infection. 

 We sought to examine if the difference in HIV target cell density in inner and 

outer foreskin samples from participants in our randomized controlled trial would align 

with these previous findings. To do this we compared the percent coverage of HIV 

susceptible tissue area and the density of HIV target cells (determined from automated 

analysis of immunofluorescent microscopy images) between the inner foreskin and outer 

foreskin samples from all participants in the trial. From our analysis we found that CD3+ 

cell density (T cells), CD3+CD4+CCR5+ cell density (CD4+CCR5+ T cells), CD3-

CD4+CCR5+ cell density (CD3- HIV target cells), and the percent coverage of 

CD4+CCR5+ tissue area were all significantly higher in the inner foreskin (p<0.01) 

(Figure 13).  



76 

 

 

 

 

Figure 13: Higher abundance of HIV target cells in found in the inner foreskin. 

Foreskin tissue collected at time of circumcision from the randomized controlled trial 

were snap-frozen, cryosectioned at 8µm, and stained for CD3, CD4, CCR5, and nuclei 

for the identification of HIV target cells by immunofluorescent microscopy. Stained 

foreskin tissue sections were imaged at 200x total magnification and the tissue area 

within 300µm of the apical surface of the epidermis was analyzed using a deep-learning 

cell segmentation algorithm to determine the density of HIV target cells and an 

automated pixel-based algorithm to determine the percent coverage of HIV susceptible 

tissue area (CD4+CCR5+ area). Comparisons revealed that (A) CD3+ cells density, (B) 

CD3+CD4+CCR5+ cell density, (C) CD3-CD4+CCR5+ cell density, and (D) percent 

coverage of CD4+CCR5+ tissue area were all higher in the inner foreskin. Results are 

presented as median with interquartile range (black line and box respectively). Difference 

in cell density or percent coverage of CD4+CCR5+ area between inner foreskin and outer 

foreskin samples were assessed using Wilcoxon match-pairs signed rank tests. Significant 

differences (p≤0.05) are represented by asterisks (**p≤0.01, ***p≤0.001).  
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4.3.4 Soluble inflammatory molecules correlate with HIV target 
cells density  

One way that anaerobic bacteria could modulate HIV susceptibility is by causing 

local inflammation in the inner foreskin which subsequently result in increased 

abundance of immune cells including HIV susceptible CD4+ T cells. Based on this idea, 

anaerobic bacteria previously associated with HIV risk would interact with the epithelial 

cells and innate immune system of the foreskin mucosa and promote the release of 

soluble mediators of inflammation in the foreskin.  

Unpublished analysis performed by our collaborators have shown that the 

abundance of soluble inflammatory molecules including soluble E-Cadherin, IL-1β, IL-8, 

and Resistin were reduced by topical clindamycin and metronidazole treatment. The 

results in section 4.3.2 of this thesis have also shown that the availability of HIV target 

cells in the inner foreskin is significantly lower in men in the topical clindamycin, topical 

metronidazole, and oral tinidazole groups (Figures 12). However, it is unclear if these 

observations are related. To answer this question, we correlated the levels of soluble 

inflammatory molecules in coronal sulcus swabs collected at the time of circumcision 

with CD3+ cell density, CD3+CD4+CCR5+ cell density, CD3-CD4+CCR5+ cell density, 

and the percent coverage of CD4+CCR5+ tissue area in the inner foreskin (Figures 14-

17). Based on our analysis, we found that the levels of 4 out of 9 inflammatory molecules 

that we examined were positively correlated with the density of CD3+ cells, 

CD3+CD4+CCR5+ cells and CD3-CD4+CCR5+ cells in the inner foreskin (p<0.01). 

These 4 molecules include soluble E-cadherin, IL-1β, IL-8, and Resistin (Figures 14-16).  

Of note, unpublished results from our collaborators have also shown that the 

reduction in the levels of only these 4 molecules from baseline to time of circumcision 

were associated with the reduction in total bacterial abundance and BASIC bacteria 

abundance. Interestingly, we did not find the percent coverage of CD4+CCR5+ tissue 

area in the inner foreskin to be significantly correlated with levels of any of the 9 

inflammatory molecules we measured despite seeing a correlation between 
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CD3+CD4+CCR5+ cell density and CD3-CD4+CCR5+ cell density with inflammatory 

molecule levels (Figures 15-17). The levels of IL-1α, MIP-1, MMP-9, TIMP1 and VEGF 

did not appear to be directly correlated to the abundance of HIV target cells in the inner 

foreskin (p>0.05).  
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Figure 14: Inner foreskin CD3+ cell density is correlated with soluble inflammatory 

mediator levels in the coronal sulcus. Foreskin tissue collected from the randomized 

controlled trial were cryosectioned at 8µm and stained for CD3, CD4, CCR5, and nuclei 

for immunofluorescent microscopy analysis. Tiled full tissue sections scans were 

captured at 200x total magnification and an deep-learning cell segmentation algorithm 

was used to quantify CD3+ cells within 300µm of the apical surface of the epidermis in 

each image. Soluble inflammatory mediator levels in coronal sulcus swabs collected 

immediately before circumcision were measured using a chemiluminescent multiplex 

ELISA assay. Levels of soluble E-Cadherin, IL-1β, IL-8 and Resistin were positively 

correlated with CD3+ cell density (p<0.01). Trend lines represent simple linear 

regressions. Significant correlations are indicated by red trendlines and red p-values 

(p<0.05).  
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Figure 15: Inner foreskin CD3+CD4+CCR5+ cell density is correlated with soluble 

inflammatory mediator levels in the coronal sulcus. Foreskin tissue collected from the 

randomized controlled trial were cryosectioned at 8µm and stained for CD3, CD4, CCR5, 

and nuclei for immunofluorescent microscopy analysis. Tiled full tissue sections scans 

were captured at 200x total magnification and a deep-learning cell segmentation 

algorithm was used to quantify CD3+CD4+CCR5+ cells within 300µm of the apical 

surface of the epidermis in each image. Soluble inflammatory mediator levels in coronal 

sulcus swabs collected immediately before circumcision were measured using a 

chemiluminescent multiplex ELISA assay. Levels of soluble E-Cadherin, IL-1β, IL-8 and 

Resistin were positively correlated with CD3+CD4+CCR5+ cell density (p<0.05). Trend 

lines represent simple linear regressions. Significant correlations are indicated by red 

trendlines and red p-values (p<0.05).  
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Figure 16: Inner foreskin CD3-CD4+CCR5+ cell density is correlated with soluble 

inflammatory mediator levels in the coronal sulcus. Foreskin tissue collected from the 

randomized controlled trial were cryosectioned at 8µm and stained for CD3, CD4, CCR5, 

and nuclei for immunofluorescent microscopy analysis. Tiled full tissue sections scans 

were captured at 200x total magnification and a deep-learning cell segmentation 

algorithm was used to quantify CD3-CD4+CCR5+ cells within 300µm of the apical 

surface of the epidermis in each image. Soluble inflammatory mediator levels in coronal 

sulcus swabs collected immediately before circumcision were measured using a 

chemiluminescent multiplex ELISA assay. Levels of soluble E-Cadherin, IL-1β, IL-8 and 

Resistin were positively correlated with CD3-CD4+CCR5+ cell density (p<0.05). Trend 

lines represent simple linear regressions. Significant correlations are indicated by red 

trendlines and red p-values (p<0.05).  
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Figure 17: Percent coverage of inner foreskin CD4+CCR5+ tissue area is not 

correlated with soluble inflammatory mediator levels in the coronal sulcus. Foreskin 

tissue collected from the randomized controlled trial were cryosectioned at 8µm and 

stained for CD3, CD4, CCR5, and nuclei for immunofluorescent microscopy analysis. 

Tiled full tissue sections scans were captured at 200x total magnification and an 

automated pixel-based algorithm was used to quantify the CD4+CCR5+ tissue area 

within 300µm of the apical surface of the epidermis in each image. Soluble inflammatory 

mediator levels in coronal sulcus swabs collected immediately before circumcision were 

measured using a chemiluminescent multiplex ELISA assay. Abundance of all soluble 

inflammatory molecules measured were not correlated with CD4+CCR5+ tissue area 

(p>0.05). Trend lines represent simple linear regressions. The p-value and R2 value for 

the simple linear regressions are provided with each scatter plot.  
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4.3.5 High absolute abundance of BASIC species, but not overall 
bacterial load, is associated with HIV target cell density  

Previous studies by our group have found BASIC species, but not overall 

bacterial load, to be associated with HIV seroconversion, increased penile abundance of 

inflammatory cytokines/chemokines, and increased abundance of CD4+ T cells in the 

foreskin (75). In unpublished analysis of the coronal sulcus swab samples from the RCT 

by our collaborators, it was found that the penile abundance of BASIC species was 

associated with penile soluble inflammatory marker abundance. Our analysis in section 

4.3.4 of this thesis has also found that the abundance of penile soluble inflammatory 

markers was also associated with HIV target cell availability in the inner foreskin 

(Figures 14-17). Given these observations and results supporting that penile bacterial 

abundance, penile inflammatory marker abundance, and foreskin HIV target cell 

abundance are all reduced by antimicrobial treatments, we sought to determine if the 

difference in foreskin HIV target cell density between study participants could be 

explained by the difference in abundance of BASIC species (Figure 18-19).  

We classified men from the randomized controlled trial into 4 groups: High 

BASIC (group 1, n = 28), Medium BASIC (group 2, n = 52), No BASIC (group 3, n = 

35), and High Control (group 4, n = 28). Groups 1 to 3 were determined by sorting all 

participants based on the pooled absolute abundance (log10 16S RNA gene copies per 

swab) of BASIC species (median: 4.16438, IQR: 0, 5.14056) in coronal sulcus swabs 

collected at time of circumcision. Men in the top quartile for BASIC species absolute 

abundance were placed in the High BASIC species group (BASIC absolute abundance ≥ 

5.14056, n = 28). Men with no detectable BASIC bacteria were placed in the No BASIC 

group (BASIC absolute abundance = 0, n = 35). Remaining men were placed in the 

Medium BASIC group (0 < BASIC absolute abundance < 5.14056, n = 52). Group 4 

(High Control) was determined by sorting all participants based on pooled absolute 

abundance (log10 16S RNA gene copies per swab) of control taxa bacteria (median: 

4.75902, IQR: 4.05717, 5.39375) and then selecting the men in the top quartile for 

control taxa absolute abundance (control taxa absolute abundance > 5.39375, n = 28).  
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Total bacterial density of the High BASIC group and High Control group were 

not significantly different from each other; however, the absolute abundance of BASIC 

species was significantly higher in the High BASIC group when compared to the High 

Control group (Figure 18). Overall, we found that the abundance of BASIC bacteria was 

associated with the abundance of HIV target cell density (Figure 18). However, this 

relationship was only seen in the inner foreskin. The density of HIV target cells and the 

percent coverage of CD4+CCR5+ tissue area were similarly low in all 4 groups in the 

outer foreskin and matched the inner foreskin HIV target cell density and percent 

coverage of CD4+CCR5+ tissue area for the No BASIC group. Men in the High BASIC 

group had significantly higher CD3+ cell density, CD3+CD4+CCR5+ cell density, CD3-

CD4+CCR5+ cell density, and percent coverage of CD4+CCR5+ tissue area compared to 

the No BASIC group (p<0.05) (Figure 19A-D). Furthermore, similar to previous 

findings we also found that the relative proportions of specific T cell subsets were similar 

across all 4 groups in the inner foreskin. This suggests that BASIC bacteria were not 

inducing the recruitment of specific T cell subsets more than others. Rather, it seems that 

all T cells were recruited to the inner foreskin by BASIC bacteria in a generalized manner 

(Figure 19E).  

Interestingly, inner foreskin CD3+ cell density (No BASIC median: 1.14 x 10-4 

cells/µm2, High Control median: 1.19 x 10-4 cells/µm2), CD3+CD4+CCR5+ cell density 

(No BASIC median: 3.83 x 10-5 cells/µm2, High Control median: 3.72 x 10-5 cells/µm2), 

CD3-CD4+CCR5+ cell density (No BASIC median: 1.37 x 10-4 cells/µm2, High Control 

median: 1.33 x 10-4 cells/µm2), and the percent coverage of CD4+CCR5+ tissue area (No 

BASIC median: 0.2493%, High Control median: 0.2925%) were very similar between the 

No BASIC group and High Control group. In fact, inner foreskin CD3+CD4+CCR5+ cell 

density, CD3-CD4+CCR5+ cell density, and percent coverage of CD4+CCR5+ tissue 

area were all significantly higher in the High BASIC group when compared to the High 

Control group (Figure 19A-D). Taken together, these results further support the idea that 

the abundance of BASIC bacteria rather than total bacteria density is associated with HIV 

target cell recruitment in the inner foreskin  
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Figure 18: Men in the top quartile for abundance of BASIC species and men in the 

top quartile for abundance of control taxa have similar total bacterial abundance 

but differ in abundance for BASIC species. Men from the randomized controlled trial 

were sorted based on pooled absolute abundance of BASIC species then sorted based on 

pooled control taxa absolute abundance in coronal sulcus swabs collected at time of 

circumcision. Men in the top quartile for BASIC abundance were placed in the High 

BASIC group (n = 28), men with no detectable BASIC bacteria were place in the No 

BASIC group (n = 35), and men with detectable BASIC bacteria but were not in the top 

quartile for BASIC abundance were placed in the medium BASIC group (n = 52). Men in 

the top quartile for control taxa abundance were placed in the High BASIC group. The 

total bacterial abundance (A) of High BASIC group men and High Control group men 

were not significantly different. However, BASIC species absolute abundance (B) was 

significantly higher in the High BASIC group men compared to the High Control group 

men. Differences in bacterial abundance was assessed using a Kruskal-Wallis test with a 

Dunn’s multiple comparisons test. Significant differences (p≤0.05) are represented by 

asterisks (***p≤0.001, ****p≤0.0001).  
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Figure 19: High abundance of BASIC species is associated with recruitment of HIV 

target cells to the inner foreskin without alterations in T cell subset distribution. 

Participants in the randomized controlled trial were sorted into 4 groups based on BASIC 

species abundance and control taxa abundance: High BASIC group (n = 28), Medium 

BASIC group (n = 52), No BASIC group (n = 35), and High Control group (n=28). The  

(A) CD3+ cell density, (B) CD3+CD4+CCR5+ cell density, (C) CD3-CD4+CCR5+ cell 

density, and (D) percent coverage of CD4+CCR5+ tissue area in the inner and outer 

foreskin of men in each of the groups was determined through immunofluorescent 

microscopy and automated image analysis. Measurement of cell density and 

CD4+CCR5+ tissue was restricted to the area within 300µm of the apical surface of the 

epithelium. Lines and boxes in scatter plots (A-D) represent median and interquartile 

range respectively. (E) Proportions of T cell subsets in each of the groups in the inner 

foreskin. Differences in cell density or percent coverage of CD4+CCR5+ tissue area was 

determine using a Kruskal-Wallis test followed by a Dunn’s multiple comparisons test. 

Significant differences (p≤0.05) are represented by asterisks (*p≤0.05, **p≤0.01, 

****p≤0.0001).  
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4.4 Discussion 

Safe penile circumcision can reduce HIV susceptibility by up to 60% in men, 

however, many at risk men still choose to undergo this procedure and the mechanism 

behind how circumcision is protective against HIV infection is not fully understood (14–

16,18). Previous studies have shown that specific species of penile anaerobic bacteria 

may be associated with local inflammation that leads to the recruitment of HIV 

susceptible immune cells in the penis (64,73,75). Thus, one way that circumcision could 

reduce HIV susceptibility in men is by increasing air exposure on the penis which 

eliminates these high-risk bacteria. If the abundance of penile anaerobes is indeed a 

determinant of HIV susceptibility, then targeted reduction of these bacteria using 

antimicrobials could potentially be a novel low-cost method for reducing HIV risk for 

men who choose to remain uncircumcised. However, it is still unclear if it would be 

possible to modify the penile microbiome using antimicrobials and how this would 

influence the availability of HIV target cells in the penis.  

In this chapter we described the results of a randomized controlled trial looking at 

effect of antimicrobials on penile bacteria, inflammation, and HIV susceptibility in the 

foreskin (77). We provide evidence that antimicrobials can decrease the abundance of 

HIV target cells in the inner foreskin and provide evidence that supports the hypothesis 

that there is a causal effect between abundance of anaerobic species and HIV 

susceptibility (Figures 12, 18, 19). We found that the abundance of BASIC species rather 

than total bacterial density was correlated to abundance of HIV target cells in the inner 

foreskin (Figures 18-19). Additionally, the abundance of soluble inflammatory mediators 

at time of circumcision was also correlated with HIV target cell density in the inner 

foreskin (Figures 14-17). 

Among the treatments examined in the randomized controlled trial, clindamycin 

and metronidazole appears to have the most potential as a microbiome-targeted 

intervention that can be used to reduce HIV susceptibility. Unpublished analysis by our 

collaborators have shown that these 2 treatments were able to reduce the abundance of 
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BASIC bacteria and soluble inflammatory molecules in the coronal sulcus. We have also 

showed in this thesis that HIV target cell availability is lower in the foreskin of men in 

the topical clindamycin and topical metronidazole groups (Figure 12). It is unsurprising 

that these treatments would have such a dramatic effect on the abundance of BASIC 

bacteria since these treatments are commonly used for the treatment of BV (76,77). 

BASIC species such as Prevotella bivia are commonly found in microbiome of women 

with BV. However, it is interesting that the penile abundance of BASIC bacteria was only 

significantly reduced by topical antimicrobials and that lower HIV target cell availability 

was seen in the topical clindamycin and metronidazole group men within the short 

duration of treatment application (4 weeks) (Figures 11-12). While we’ve seen that 

proportions of T cells expressing CD4 and CCR5 were similar between different 

treatment groups and BASIC bacteria recruited T cells in a generalized manner, future 

work should be done to further characterize the phenotype of CD3+ cell subsets that were 

reduced because of clearance of BASIC bacteria (Table 7 & Figure 19). It is possible 

that the lower availability of CD3+ cell subsets in the topical clindamycin and 

metronidazole group men can be explained by the reduction in the abundance resident 

memory T cells (TRM). Resident memory T cells are a subset of memory T cells that 

persist long term in peripheral tissues including skin and genital mucosal tissue and 

respond rapidly to challenge by antigens (151–153). These cells are specific for 

pathogens and commensals commonly encountered (Staphylococcus epidermidis, HSV-

1) at the site they reside in and accumulate in response to repeated antigen exposure. For 

instance, in mouse models it was seen that dendritic cells in the skin were capable of 

presenting antigen to local populations of HSV-specific TRM to generate a recall immune 

response entirely contained within the skin (154–156). It is possible that topical 

antimicrobials, which were the most effective at reducing the penile abundance of BASIC 

bacteria in the trial, lowered the abundance of TRM by reducing the availability of 

antigens that contributed to TRM proliferation. Previous studies have also shown that TRM 

progenitor cells generated by recent skin infection migrated in the greatest number into 

inflamed skin in an antigen independent manner (157). This supports the idea that the 

abundance of BASIC bacteria in the sub-preputial space may cause the recruitment of 
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HIV susceptible cells to the inner foreskin by inducing local inflammation. Consistent 

with previous findings, based on the results from the RCT we also found that CD3+ cell 

density, CD3+CD4+CCR5+ cell density, CD3-CD4+CCR5+ cell density, and percent 

coverage of CD4+CCR5+ tissue area was higher in the inner foreskin when compared to 

the outer foreskin (Figure 13).  

 In addition to CD3+ HIV target cells, the abundance CD3-CD4+CCR5+ cells in 

the inner foreskin were also reduced by antimicrobial treatments and were correlated with 

the penile abundance of BASIC species (Figures 12 & 19). Previous studies examining 

the relationship between bacteria associated with high HIV-risk with immune cell density 

in the foreskin have mostly focused on T lymphocytes (73,75). However, non CD3+ cells 

that express CD4+ and CCR5+ such as Langerhans cells are the first cells to encounter 

HIV virions that penetrate the foreskin in sexual transmission. While CD4+ T cells are 

the main reservoirs for productive HIV infection, the abundance of non CD3+ cells also 

play an important role in the spread the virus (29,39,97). Grouping of all CD3- HIV 

target cells into the category of CD3-CD4+CCR5+ cells enabled us to gain a holistic 

understanding of the total abundance of non CD3+ cells that HIV virions can bind to. 

However, this grouping strategy also limits our understanding of the relationship between 

penile bacteria and the availability of specific CD3- cell populations such as Langerhans 

cells and dendritic cells in the context of HIV infection. Future work should elaborate on 

the findings between CD3- HIV target cell density in the inner foreskin and the 

abundance of BASIC bacteria in this thesis. This includes, but is not limited to, 

characterization of the composition of specific CD3-CD4+CCR5+ cell subsets, as well 

as, other innate immune cells that contribute to local inflammation in individuals with 

high or low penile abundance of BASIC species. More downstream work could also 

compare gene expression by HIV target cells between individuals with high or low 

abundance of BASIC species. This information will provide a better understanding of the 

immune profile and the mechanism by which HIV susceptible CD4+ T cells are recruited 

in the foreskin of individuals who have a high penile abundance of BASIC species.  
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In this thesis we have shown that men in the topical clindamycin, topical 

metronidazole and oral tinidazole groups all had significantly lower CD3+CD4+CCR5+ 

cell density in the inner foreskin compared to men in the control group (Figure 12).  

However, unpublished analysis completed by our collaborators have shown that only oral 

tinidazole reduced the infection of inner foreskin derived CD4+ T cells with a HIV 

pseudovirus in vitro. It appears that while reduction in the abundance of BASIC bacteria 

on the penis influenced the generalized recruitment of HIV target cells into the inner 

foreskin, the effect of oral tinidazole on in vitro viral entry could be mediated through a 

mechanism unrelated to the abundance of BASIC bacteria. Oral tinidazole could be 

modifying HIV susceptibility by directly affecting the cellular properties of HIV target 

cells. While men in the oral tinidazole group had lower abundance of CD3+ cells and 

CD3+CD4+CCR5+ cells in the inner foreskin when compared to control, oral tinidazole 

treatment did not significantly reduce the abundance of BASIC species after 1 or 4 weeks 

of treatment (Figures 11-12). Interestingly, in accordance with the in vitro viral entry 

results seen with oral tinidazole completed by our collaborators, a previous study has 

shown that oral metronidazole use significantly reduced ex-vivo HIV entry into cervical 

CD4+ T cells (158). Nitroimidazole compounds, which includes both tinidazole and 

metronidazole, function as antimicrobials through the disruption of nucleic acid synthesis 

in microbial cells (159,160). Several studies have investigated the potential cytotoxic or 

genotoxic properties that may affect human immune cells; however, these studies were 

often contradictory and had mixed conclusions (161–165). It is possible that oral 

metronidazole or tinidazole could be having a direct effect on proliferation or gene 

expression in CD4+ T cells which influences its susceptibility to HIV infection, however, 

more downstream studies are necessary to investigate if this is really the case. An 

immediate next step to follow-up on the results of the current study and to assess if oral 

tinidazole/metronidazole has a direct effect on CD4+ T cells could be to perform an 

infection assay to directly assess how various concentrations of oral 

metronidazole/tinidazole affects viral propagation of HIV in cultured CD4+ T cells.  
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As one of the outcomes of the RCT, our collaborators measured the abundance of 

9 soluble molecules to broadly determine if antimicrobials can decrease the abundance of 

inflammatory markers and if the abundance of inflammatory markers are associated with 

both the abundance of BASIC bacteria and HIV target cells in the foreskin. These 9 

soluble markers were selected based on their high abundance in the sub preputial space in 

healthy volunteers and because of their role in inflammation. Unpublished preliminary 

results from our collaborators have shown that soluble inflammatory can be reduced by 

antimicrobials and this reduction is associated with the reduction of penile bacteria. We 

have also shown that soluble inflammatory molecule levels in coronal sulcus swabs 

collected at time of circumcision is associated with HIV target cell density in the inner 

foreskin. However, we recognize that far more soluble inflammatory molecules are likely 

to be involved in facilitating the recruitment of HIV target cells into the inner foreskin. 

Future work could expand on the current panel of soluble inflammatory markers to gain a 

better understanding of the local inflammation associated with penile bacteria and how 

this inflammation is related to immune cell composition in the penis. Furthermore, at the 

time of writing this thesis, more penile microbiome analysis by our collaborators was still 

being completed and analysis of the effect of antimicrobials on epithelial integrity was 

still being completed by a member of our group. More sophisticated penile microbiome 

analysis could enable a better understanding of how bacterial species other than the 

BASIC species presented in this thesis and how co-association of bacteria influence HIV 

susceptibility. Results on the impact of antimicrobial treatment on epithelial integrity 

could also be paired with results from this thesis to investigate the relationship between 

epithelial integrity and HIV target cell abundance. 

As a proof-of-concept, the current results from the randomized controlled trial 

have demonstrated that the penile microbiome can be altered using antimicrobials, and 

the resulting change in the abundance of BASIC bacteria is associated with decreased 

penile abundance of soluble inflammatory molecules and HIV target cells. However, 

more work should be done to investigate how long the effect of antimicrobials on HIV 

target cells can persist. It is very possible that both the abundance of BASIC species and 
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HIV target cells would return to levels seen prior to the application of antimicrobial 

treatment if treatment is discontinued. In the case of bacteria, it is well known that while 

the dysbiosis seen in bacterial vaginosis in women can be treated using antimicrobials, 

recurrence of bacterial vaginosis is very common (166,167). Based on unpublished 

results from out collaborators, we have seen that the abundance of BASIC bacteria after 1 

week and 4 weeks of treatment with topical antimicrobials were both significantly lower 

than baseline. However, the abundance of BASIC bacteria after 1 week, which 

corresponded to a more intensive treatment regimen, was lower than the abundance of 

BASIC bacteria at time of circumcision. The abundance of BASIC bacteria on the penis 

appears to have rebounded through the less intensive treatment course from after week 1 

to time of circumcision (Figure 11). The recurrence of BASIC bacteria following 

termination of treatment could be problematic for the feasibility of using antimicrobials 

as a potential tool for HIV prevention. Specifically, if resident memory T cells are in fact 

the main T cells reduced by decreased BASIC abundance. Based on previous studies, it is 

seen that TRM tend to persist long-term in previous sites of inflammation. In the case of 

HSV, TRM have been seen to persist in HSV ulcers even after viral clearance 

(156,157,168–171). In inflammatory lesions, while the abundance of TRM can be reduced 

with anti-inflammatory therapy, TRM abundance will return to previously observed levels 

when treatment is discontinued (154). Like these observations, it is possible that the 

abundance of HIV target cells in the foreskin will return to previously levels when 

antimicrobial treatment is discontinued. Future work should examine how long the effect 

of antimicrobial treatments on the penile microbiome and HIV target cells can be 

sustained after treatment to determine if antimicrobials can feasibly be used as a tool for 

HIV prevention.  

In conclusion, the results presented in this chapter have shown that antimicrobials 

can reduce the penile abundance of HIV target cells. We have also provided evidence 

supporting the idea that there is a causal relationship between the abundance of bacteria 

previously associated with HIV risk and HIV susceptibility. We have shown that the 

abundance of bacteria associated with HIV risk and the penile levels of soluble 
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inflammatory molecules are associated with the abundance of HIV susceptible cells in the 

inner foreskin. The ability of antimicrobials to influence inflammation and HIV target 

cell density in the penis suggest that microbiome-based interventions could be a new 

possible strategy for HIV preventions. 
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Chapter 5 

5 Overall Summary and Future Directions 

In this thesis, I described select results from a randomized controlled trial looking 

at effect of antimicrobials on penile bacteria, inflammation, and HIV susceptibility in the 

Ugandan men. Specifically, this thesis focused on using IF microscopy analysis to 

measure the availability of HIV target cells in the foreskin tissue of participants enrolled 

in the RCT. To measure HIV target cell availability in the large number of foreskin 

sample images from the RCT in an automated fashion, I developed and validated a deep 

learning cell segmentation model that can quantify HIV target cells in foreskin tissue 

based on staining for CD3, CD4, CCR5, and nuclei. The performance of this model was 

comparable to manual counting and exceeded the performance of a conventional 

automated cell segmentation algorithm that uses image thresholding to quantify cells. 

Using the deep-learning model and a previously validated automated analysis algorithm 

that measured the tissue area susceptible to HIV entry (tissue area positive for CD4 and 

CCR5), we found that HIV target cell availability in the inner foreskin of men was 

significantly lower in the topical clindamycin, topical metronidazole, and oral tinidazole 

groups when compared to the control group. The effect of antimicrobials on HIV target 

cell abundance in the foreskin was limited to the inner foreskin and unpublished analysis 

of penile microbiome and soluble inflammatory molecule data from the RCT by our 

collaborators showed that topical antimicrobial treatments reduced the penile abundance 

of BASIC species bacteria and soluble inflammatory molecule levels. Furthermore, I 

found that the availability of HIV target cells in the inner foreskin was correlated to the 

penile abundance of soluble inflammatory molecules and BASIC species bacteria. These 

results support the hypothesis that antimicrobials can decrease the penile abundance of 

BASIC species, which is associated with the reduction in penile inflammation and HIV 

target cell availability in the foreskin. The results of this thesis have also shown as a 

proof-of-concept that microbiome-based interventions can be used to reduce HIV 

susceptibility in men. Overall, these results can contribute to development of new HIV 
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prevention strategies, which can be particularly useful to protect men who choose to 

remain uncircumcised.  

To my knowledge, the deep-learning model described in chapter 3 of this thesis is 

the first report of any kind to use deep learning to quantify HIV target cell availability in 

genital mucosal tissue. The development of this model opens opportunities for future 

studies in our group and this work can be easily adapted by other groups who are looking 

for methods to accurately quantify immune cells in IF images of mucosal tissue. The 

trained deep learning model, the framework to train new deep learning models, and the 

annotated training data set used in this thesis are all available on public domains.  

The trained model used in this study can be used without modification by our 

group or other investigators to quantify HIV target cells in foreskin tissues. The 

availability of this model is particularly useful for clinical studies investigating HIV 

susceptibility in men as large sample sets can be quickly analyzed in an objective 

manner. New deep learning models to identify other types of immune cells in mucosal 

tissues can be easily trained using our training framework. For example, the training 

framework described in chapter 3 is currently being used by students in our group to train 

new models to identify neutrophils, dendritic cells, and macrophages in the foreskin 

tissue of pediatric patients with phimosis. Additionally, previous studies have shown that 

the abundance of BASIC species are associated with the abundance of CD4+ T cells in 

the foreskin but results in this thesis have shown that both CD3+ HIV target cells and 

CD3- HIV target cells are associated with BASIC species abundance. In future work 

elaborating on the results of this thesis, new deep learning models can be trained to 

quantify other types of immune cells that are CD3- (for example Langerhans cells, 

macrophages etc.) to further characterized the exact subsets of CD3- immune cells that 

are associated with BASIC species abundance in the RCT samples. Manual annotation of 

training datasets is by far the most time-consuming step in the training of deep-learning 

algorithms. Open-access of the training dataset in this thesis can greatly speed up the 

development new deep-learning algorithms that utilize different techniques for HIV 
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target cell quantification since training images are very generalizable. Our deep-learning 

model currently only enables the quantification of HIV target cells, however, another 

aspect of HIV target cell availability that could be relevant for HIV susceptibility is the 

spatial distribution of target cells. Specifically, HIV target cells being closer to the 

surface of the epidermis would mean that they would be easier for virions to access. 

Improvements on the deep learning model used in this thesis could focus on measuring 

the distance of HIV target cells to the apical or basal edge of the epidermis.  
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