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Abstract

Knowledge of common events is central to many aspects of cognition. Intuitively, it seems as

though events are linear chains of the activities of which they are comprised. In line with this

intuition, a number of theories of the temporal structure of event knowledge have posited mental

representations (data structures) consisting of linear chains of activities. Competing theories focus

on the hierarchical nature of event knowledge, with representations comprising ordered scenes,

and chains of activities within those scenes. We present evidence that the temporal structure of

events typically is not well-defined, but it is much richer and more variable both within and across

events than has usually been assumed. We also present evidence that prediction-based neural net-

work models can learn these rich and variable event structures and produce behaviors that reflect

human performance. We conclude that knowledge of the temporal structure of events in the

human mind emerges as a consequence of prediction-based learning.
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1. Introduction

Theories of cognition have long sought to account for the ways in which human

knowledge is organized. Psychological constructs such as concept seem well suited for

many domains of knowledge. For example, the notion of concept is central to most

theories of people’s knowledge of entities such as cows, objects such as shoes, abstract

concepts such as attitude, and ad hoc categories such as things to take on a camping
trip (Barsalou, 1983; Murphy, 2002). For these domains, taxonomic, similarity, and

thematic relations have been central to theories of knowledge organization and class

inclusion.

However, humans also develop knowledge about regularities involving behavior and

events in the world. How do we go about doing things in our everyday lives? How

do we interpret the behavior of others? How do we anticipate what is likely to happen

next? When something happens, how do we interpret whether it is coincidental or it

reflects cause–effect relationships? Being able to answer such questions allows us to

anticipate the consequences of our own actions and those of others, and thus allows

us to make inferences about the possible goals or intentions that underlie those

actions.

The question of how the temporal dimension of events is represented in human mem-

ory has been an important subject of study for quite some time. Perhaps the first detailed

computational model of event knowledge was Minsky’s (1974) proposal of frames. Min-

sky defined a frame as.

a data-structure for representing a stereotyped situation . . . attached to each frame are

several kinds of information. Some of this information is about how to use the frame.

Some is about what one can expect to happen next. Some is about what to do if these

expectations are not confirmed. (p. 1)

The very explicitness of frame-based models that made them attractive also exposed

their Achilles’ heel. It became apparent that frames suffered from significant limita-

tions. Most troubling was their brittleness and inflexibility. The restaurant script

described a canonical event, but this canonical event rarely if ever occurs because

there are a huge number of context-dependent variations. This challenge was recog-

nized from the start (Schank & Abelson, 1977), but the mechanisms that were devel-

oped to deal with the variation (e.g., Memory Organization Packets; Schank, 1980)

seemed not only post hoc, but also suffered from the same brittleness that created

their need in the first place.

Furthermore, none of these proposals addressed the question of how event knowledge

might be learned in the first place, or how and when event knowledge should be modified

as a result of experience (the Piagetian puzzle of when to accommodate and when to as-
similate). In our view, these and related problems reflect important intrinsic limitations of

the symbolic, digital architectures that had been used to implement frames and scripts.
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Although efforts to develop mechanistic accounts of event models did not entirely cease,

work in this area and appeals to schemas and event knowledge declined over time.

However, in the past number of years, event cognition has had a major resurgence.

Part of this effort has involved designing and implementing models that learn and use

knowledge about events in the service of segmenting the perceptual stream into events

(Reynolds, Zacks, & Braver, 2007), learning and processing information about the com-

ponents of events and their temporal structure (Elman & McRae, 2019), and understand-

ing language (Frank, Koppen, Noordman, & Vonk, 2003; Mayberry, Crocker, &

Knoeferle, 2009; Modi, 2016; Venhuizen et al., 2019). A central unifying aspect is that

many of these models are based on computational systems that feature prediction as piv-

otal to both learning and processing. This event-predictive cognition approach demon-

strates promise for overcoming important limitations that were inherent to models based

on symbolic data structures, and this approach has provided new and nuanced insights

into how event knowledge may be learned and used (Butz, Bilkey, Humaidan, Knott, &

Otte, 2019).

In Cognitive Science, a number of terms have been used to describe knowledge of

common events such as going to a restaurant. These include schema (Anderson, 1978;

Norman & Rumelhart, 1981; Rumelhart, 1980), frame (Minsky, 1974), script (Abelson,

1981; Schank & Abelson, 1977), story (Mandler, 1984), and the related notion of situa-

tion model (Zwaan & Radvansky, 1998), among others. All of these models of human

knowledge are based on symbolic data structures that provide efficient abstractions over

many instances, or facilitate construction of new instances on the fly. In this article, we

use the term event knowledge to denote people’s knowledge of events and situations, rec-

ognizing that there is both considerable overlap in the types of knowledge captured by

these many terms, and multiple ways in which the various models associated with these

terms focus on different aspects of event knowledge.

It is important to clarify our terminology up front. Terminology in research on events

is somewhat confusing because the notion of “event” plays an important role in numerous

areas of Cognitive Science (event memory in cognitive psychology, linguistics, psycholin-

guistics, action and motor planning, and robotics, to name some of them). That is, the

goals of the research and researchers that feature “events” differ greatly across, for exam-

ple, linguistics, cognitive psychology, and computational models of action planning. This

creates a situation in which the “levels” of events, actions, and motor plans, as well as

how those levels are labeled, differ across areas and researchers. A researcher’s focus on

specific levels depends to a great extent on precisely what phenomena she is trying to

explain. Various researchers have used terms like event, activity, and action in different

ways. In this article, we use activity to refer to somewhat abstracted knowledge of what

roughly corresponds to an action, such as mix the ingredients with a spoon, and we use

event to refer to a series of activities, such as baking an apple pie. We recognize that

events, activities, and actions are grounded in sensorimotor experiences, and that under-

standing this grounding is an important aspect of research on events in Cognitive Science.

However, our article focuses on knowledge that resides at a somewhat more abstract

level.
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There are at least two major dimensions of activities and events. The first is the set of

components that make up an activity. Important components include agents, patients,

recipients, instruments, and contexts (which often correspond to locations). The second is

the temporal order in which a set of activities within an event unfolds. In this article, we

focus mainly on people’s knowledge of the temporal order of activities; that is, we

emphasize time.

There has been a great deal of research into how events are represented in the mind,

and this work goes back many years in the history of cognitive psychology (Bower,

Black, & Turner, 1979; Minsky, 1974; Schank & Abelson, 1977). As such, a number

of theories have been advanced regarding how event knowledge, including the time-

course of events, is represented in the mind. As pointed out by Elman (1995), all of

our behaviors unfold over time and time is the context within which we understand the

world. For example, a primary source of information that allows people to recognize

causality concerns the fact that causes typically precede effects. In fact, it is difficult to

think about phenomena such as language, action, goal-directed behavior, social behav-

ior, or planning without some way of representing time. A number of highly influential

and important theories of event knowledge dealt with time by creating prespecified tem-

plate-like data structures that were used to represent a sequence of activities (Abelson,

1981). That is, time was encoded representationally. Models such as those based on

scripts were relatively brittle and inflexible, and they did not address how event knowl-

edge is learned, although these limitations were acknowledged at the time. On the other

hand, Elman (1990) argued for a different approach in which time is represented

implicitly. He suggested that time should be represented by the effect that it has on

processing, rather than being encoded as links in memory, or as part of the input to a

model (e.g., a spatial representation of time, as in a shift register). This entails using a

model that has temporally dynamic properties that are responsive to temporal

sequences. In Elman’s simple recurrent network (SRN), the computational units (hid-

den) at time t serve as part of the input state at time t + 1. In addition, his model was

trained to predict what might come next given the current input. Thus, processing is

influenced both by the current input and the state of the system that resulted from the

previous string of inputs. In other words, the system instantiates a temporally sensitive

memory that allows it to encode the temporal properties of sequential input because the

internal representations are influenced by temporal context, with the effect of time

being implicit in the model’s internal states.

The main goal of this article is to argue that knowledge of the temporal structure of

events in the human mind emerges as a consequence of prediction-based learning and

processing. In fact, a number of recent theories that focus on event segmentation, event

knowledge, and event-based language comprehension have been implemented using mod-

els that process through time and/or have temporally sensitive memory (Botvinick &

Plaut, 2004; Elman & McRae, 2019; Modi, 2016; Reynolds, Zacks, & Braver, 2007;

Takac & Knott, 2016a, 2016b; Venhuizen, Crocker, & Brouwer, 2019). We discuss these

models, with a particular focus on Elman and McRae’s connectionist attractor model of

event knowledge.
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1.1. The temporal nature of events

Intuitively, it feels as though activities that comprise events follow a coherent, regular,

and consistent temporal order. For example, for the event taking money out of an ATM,

you go to the ATM, open your purse or wallet, take out your bank card, insert your bank

card into the machine, type in your personal identification number, and so on until you

put away your bank card and cash. Because of the strength of this intuition about order-

ing, the theoretical idea that event representations are composed of a consistent linear

sequence of activities has a strong appeal. In fact, it has led to theories in which event

representations correspond to linked linear chains of activity nodes in the mind (Barsalou

& Sewell, 1985; Drummer, van der Meer, & Schaadt, 2016).

However, there are difficult challenges in understanding the ways in which an event’s

temporal organization plays a role in its representation and access. The event cognition

literature has not been free of empirical controversy, in the sense that divergent findings

have been reported regarding both the form and use of event knowledge. One major con-

troversy hinges on the extent to which the temporal structure of events is encoded in

long-term memory. This might seem like an odd thing to question, given the recurring

theme of events as sequentially structured activity sequences. Indeed, there is evidence

for linear chain-like temporal representations of events in memory (Barsalou & Sewell,

1985; Bower, Black, & Turner, 1979; Coll-Florit & Gennari, 2011; Drummer, van der

Meer, & Schaadt, 2016; Lancaster & Barsalou, 1997; Raisig, Welke, Hagendorf, & van

der Meer, 2007; van der Meer, Beyer, Heinze, & Badel, 2002; Zwaan, 1996). Further-

more, the literature on linguistic aspect reveals a fine-grained sensitivity to the temporal

contour of events (Becker, Ferretti, & Madden-Lombardi, 2013; Brennan & Pylkk€anen,
2008; Paczynski, Jackendoff, & Kuperberg, 2014; Pi~nango, Zurif, & Jackendoff, 1999;

Todorova, Straub, Badecker, & Frank, 2000).

The notion that an event’s temporal organization is directly mirrored in its representa-

tion and access has been challenged by studies that failed to find evidence that the tempo-

ral structure of events is encoded in a strict chain-like manner in long-term memory

(Galambos & Rips, 1982). These data come from experiments in which participants make

judgments about an event’s activities. They test the hypothesis that if sequential order is

the dominant (sole) organizing principle in the representation of event structure, perfor-

mance should be facilitated in specific ways. For example, Galambos and Rips (1982)

compared predictions of a model in which events are represented as linear chains of

activities versus a hierarchical model. They found no reliable evidence for linear chains

of activities, and concluded that events are not represented solely as linear sequences.

Galambos and Rips did, however, find that centrality (a measure of the importance of an

activity) facilitated access to activities within an event. This is consistent with evidence

of hierarchical encoding of event knowledge that has been found in other studies (Black

& Bower, 1980; Bower et al., 1979).

In hindsight, these contradictory findings concerning people’s sensitivity to the tempo-

ral structure of events may not be that surprising. Although a strong intuition exists that

events are comprised of consistent linear sequences, it may be the case that with respect
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to temporal order, there are multiple sources of variability. For example, there may be a

great deal of variability in the regularity of the temporal order of activities across events

(this was recognized some time ago when a distinction was made between strong and

weak scripts; Abelson, 1981). Some events, like taking money out of an ATM or changing
a flat tire, may be quite consistent and linear. This is related to the fact that one must,

for example, take your card out of your wallet prior to inserting it into the ATM, and

you must perform both of these actions prior to typing your PIN. On the other hand, for

an event like cleaning the house, there are many activities that frequently are part of the

event such as vacuuming and cleaning the toilets, but in general, the activities that com-

prise cleaning the house can be completed in many orders, and in the end, the house will

be clean.

Single instances of real-world events do indeed live in time, and therefore follow a lin-

ear temporal order. However, an event is often interrupted, being intertwined with other

activities and events. For example, consider the set of activities that might comprise mak-
ing pasta for dinner. You get the pasta from the cupboard, get a pot from a kitchen

drawer, put water on the stove to boil, read and answer a text, get the pasta sauce from

the fridge, change the music on your wireless home stereo system, put the pasta in a pot,

break up an argument between your 3- and 5-year-old children, set the table, quickly feed

the dog, and so on. In other words, as people learn about events that are directly experi-

enced, the input often is noisy, fragmented, and variable.

In addition, much of people’s knowledge about events comes from linguistic descrip-

tions of them. Indeed, for learning about many types of events, hearing or reading about

them is the primary source of input because we rarely if ever directly experience them.

Furthermore, linguistic descriptions often play with time. It is well known that spoken

and written descriptions of events do not tend to mirror or respect real time, and language

contains a number of vehicles to signal and warp time. Thus, linguistic descriptions of

events often provide partial, fragmented, and temporally disjointed information about

events. Overall, people’s event knowledge is learned from a huge number of highly vari-

able directly experienced and linguistically described examples.

2. Analyzing event knowledge using graph theory

K. S. Brown, N. Christidis, J. L. Elman, and K. McRae (in preparation) investigated

event structure by representing events as graphs. They conducted a norming study in

which participants produced an ordered set of up to 12 activities for 81 events such as

taking money out of an ATM and cleaning the house (for similar event norms, see Raisig,

Welke, Hagendorf, & van der Meer, 2009; Rosen et al., 2003) Participants typed their

responses, and the study was conducted using Qualtrics with Master’s participants from

Amazon Mechanical Turk. K. S. Brown et al. (in preparation) purposely chose events that

intuitively differed in their temporal extent and the consistency of their temporal struc-

ture. Approximately 25 participants generated activities for each event. The data were

collated to standardize the written descriptions of activities that referred to the same
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activity but were worded slightly differently (e.g., get bank card from wallet and take out

bank card). For some events, there was a high degree of consensus regarding the individ-

ual activities produced and the ordering of sets of activities.

For other events, however, participants’ responses showed a great deal of variability

both in the activities they provided, and the order in which they provided them. No two

participants generated identical sets of activities for any of the events. This variability

most likely results from three sources: (a) variability in the ways in which events unfold;

(b) variability in what people attend to, and find important, in an event (event construal);

and (c) variability in what participants believe should be reported in any given situation,

which can be influenced by what they believe to be mundane or default (and perhaps not

reported), or the perspective that they take when listing activities in terms of providing

detail or the lack of it. We can see evidence for all of these in our data. As to (a), it is

clear that some events can be conducted or construed in multiple ways; participants do

not generally agree (nor should we expect them to) on whether you need to eat before

versus after you play frisbee at a picnic. An extreme example of (b) comes from chang-
ing a flat tire, in which one participant’s activity sequence consisted solely of “call

AAA”. This same event, along with writing an email, shows signs of variability due to

(c) as well, in which some participants listed activities such as “acquire computer,”

whereas most others assumed the presence of one. Despite the presence of language-

based sources of variability, our conclusions that events may be naturally completed in

various ways, and that events exist in the mind as construals, are grounded by the data

and supported by the modeling.

From participants’ generated lists of activities, K. S. Brown et al. (in preparation) cre-

ated a directed, weighted graph for each event. The graphs were constructed by inputting

all sequential pairs of activities in the order in which each individual participant produced

them. Therefore, each graph is an amalgamation of the approximately 25 participants’

activity lists. The resulting graphs clearly demonstrate that the temporal structure of

events is much richer than has typically been assumed. That is, in addition to there being

a great deal of variability across the 81 events, there is substantial variability in temporal

structure within each event.

Figs. 1 and 2 present the graphs for writing an email and shopping for clothes. Activi-
ties (nodes) are depicted as labeled ovals, and an arrow (directed edge) connects each

ordered pair of activities. The darkness and thickness of an arrow from activity A to

activity B is proportional to the number of participants that produced an activity list in

which A directly preceded B. Writing an email (Fig. 1) is a nice example because it con-

tains the least number of unique activities of the 81 normed events (39, making it the

easiest to visualize) and it is an event that intuitively seems that it should be well-defined

in terms of sequential order. The sequence of dark thick arrows shows the generalized

trajectory through this event. On the other hand, even that path is not deterministic. Over-

all, the variability in how writing an email is conducted in the world and/or construed in

the mind is readily apparent in that it does not correspond to a linear chain of activities.

Graph theoretical analyses also may provide empirically based insights into hierarchi-

cal theories in which events are divided into scenes (Ghosh & Gilboa, 2014; Zacks &
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Tversky, 2001). For example, one might imagine that the event changing a flat tire may

be subdivided into four major hierarchically structured scenes (preparation, removing the

flat tire, installing the new tire, finishing up, and driving away). In Figs. 1 and 2, we have

labeled the nodes using an algorithm that maximizes graph modularity. Highly modular

graphs are “clumpy” and consist of groups of nodes more highly connected to each other

than to other groups (Newman & Girvan, 2004). Decomposing a graph into modules or

communities is analogous to clustering high dimensional data. In directed weighted

graphs, communities consist of sets of nodes that are more strongly directionally con-

nected than is expected by chance (Leicht & Newman, 2008). Fig. 1 (writing an email)
shows four primary communities/scenes. Green ovals designate activities that correspond

to the preparatory phase of writing an email. Light blue and purple ovals specify addi-

tional initial phases. The activities in red are the guts of writing an email. Amusingly,

there are the activities in darker blue ovals; one participant apparently thought that writ-

ing an email requires celebrating the small victories in life by drinking a beer and going

into the kitchen (in that order).

Fig. 1. Graph constructed from participants’ produced activities for the event of writing an email.
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These analyses of event structure suggest a reason why studies such as Galambos and

Rips (1982) failed to find evidence for the encoding of temporal structure in event knowl-

edge. For example, one event that they used was changing a flat tire. Galambos and Rips

chose early temporally close activity pairs such as set the brake and take out spare, and
later pairs such as remove bad tire followed by put on spare. They tested the prediction

that if temporal order is encoded in long-term memory for event knowledge, then both

the early and late pairs would be facilitatory as compared to activity pairs that are more

distant in the sequence, such as set the brake and put on spare. However, they found no

such difference.

This null effect may have occurred because of large but uncontrolled differences in the

strength of ordering constraints between nearby activity pairs. In some parts of the

sequence, K. S. Brown et al. (in preparation) graphs show relatively weak links between

activity pairs, and many potential avenues emanating from an activity node. In other

cases, there is a strong edge coming out of a node, and very few nodes to which it links.

In other words, an event’s temporal structure can vary over its time course, and this is

probably the rule rather than the exception. Some componential sequences may be con-

strained strongly, whereas others are constrained weakly (note that this has been explored

to some extent in the AI action planning and recognition literature; Botea, M€uller, &
Schaeffer, 2005; Yi & Ballard, 2009). Therefore, it is possible that finding evidence for

Fig. 2. Graph constructed from participants’ produced activities for the event of shopping for clothes.
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the temporal structure in event knowledge depends crucially on the specific activity pairs

that are used in an experiment. Important factors appear to include the degree to which

the probabilistic strength of their ordering is taken into account when the experiment is

designed and analyzed, and the degree to which the experimental probe is sensitive to

these probabilistic differences among stimuli.

In summary, perhaps the biggest challenge for models of event knowledge is event

variability. The intuition behind frames and scripts was that there are generalizations that

cut across events, and it was the goal of frames and scripts to capture these generaliza-

tions. However, the inconvenient reality is that one may go to a restaurant ten times, or a

thousand times, and that script will never unfold in exactly the same way. Without dis-

puting that there are types of events and generalizations that hold true across them, there

is in reality tremendous variation in how those events are instantiated. Furthermore, the

variation is not random. Some variations are correlated. For example, when you pay for

your meal will depend on whether you are in a fancy restaurant versus a fast food restau-

rant. Whether you eat your salad before or after the main course may depend on the

country in which you are dining. Some elements of events are entirely optional, whereas

other elements may be quite probable. This variation also occurs at the level of temporal

structure. A central conclusion from the graph theoretic analyses is that the temporal

structure of events is rich and variable. One possible interpretation is that it is highly

unlikely that events are represented in the human mind as a sequential linear temporal

order of activities. It therefore appears to be quite challenging to construct a type of rep-

resentation that could explicitly encode the temporal structure inherent in events. A

slightly more radical way to state this is that explicit "event representations" do not exist.

In other words, rather than using a structured representation for each type of event in

long-term memory, it may be the case that the temporal structure of events is an emer-

gent property of a computational system that implicitly represents memory for time in its

processing (see Botvinick & Plaut, 2004).

3. A connectionist attractor model of event knowledge

Elman and McRae (2019) implemented a prediction-based model of event knowledge

to tackle the issues of learning and processing variable, dynamic, temporal event struc-

ture. In the connectionist framework, the architecture underlying cognition involves net-

works of processing units (or nodes). Encoded knowledge is determined by the

connection pattern among units and the learned strengths of weights between units. Thus,

both memory and processing are instantiated in the weights.

The architecture of Elman and McRae’s (2019) model is presented in Fig. 3. Activities

are represented in terms of their components, including actions, agents, patients, recipi-

ents, instruments, and contexts (typically locations). Local representations of these con-

cepts were used. The model was trained on sequences of activities that were not labeled

explicitly as events. Elman and McRae used backpropagation through time (Williams &

Zipser, 1989) to train their attractor network (i.e., the network settled through time). The
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left side of the network receives input from the world about the current activity. These

"current activity" units are fully connected to a set of hidden (computational) units that

feed back to them. These feedback connections allow the model to learn co-occurrences

among the components of activities that occur in the moment. The right side of the net-

work contains the same representational units as does the left side. The hidden units are

unidirectionally connected to these "next activity" units. The purpose of this part of the

network was to learn information about sequential patterns among activities by learning

to predict upcoming activities.

The model processed each activity over four cycles of activation, with each cycle con-

taining four time ticks. During cycles 1 and 2 (8 time ticks), the input was clamped on

the current activity units. Activation flowed throughout the network for all time ticks.

During cycles 3 and 4 (the final 8 time ticks), the input was removed so that the network

was free to instantiate and perhaps complete the pattern on the current activity units, and

to continue to activate the next activity units. During training, error was based on target

activations for both the current and next activity units throughout cycles 3 and 4. Elman

and McRae (2019) showed that when the trained model was given a partially specified

current activity, it probabilistically filled in the activity’s missing components based on

the activities to which it had been exposed (see their fig. 2, p. 260). Thus, the network

implemented pattern completion in the moment, and pattern completion through time

(i.e., prediction). Furthermore, Elman and McRae showed that the model’s predictions are

contextually determined in that what is predicted to occur next depends not only on the

current activity (as it would in a Markov chain), but also on the activities that precede it.

Fig. 3. Elman and McRae (2019) network architecture. Rectangles depict banks of processing units. In the

Current Activity section of the network, the Agent, Action, Patient, Instrument, Context, and Recipient

units are fully bidirectionally connected with the hidden units. In the Next Activity section of the network,

the hidden units are fully unidirectionally connected to the right-hand-side banks of units.
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Also note that Elman and McRae’s model is not a simple recurrent network (SRN, aka

Elman network). An SRN can accomplish some aspects of what Elman and McRae’s

model does, but it is not an attractor network (it is a modified feed-forward network).

Therefore, an SRN does not settle over time, which Elman and McRae wanted their net-

work to do in order to illustrate temporal dynamics during the presentation of each activ-

ity. They also wanted their model to learn the co-occurrences among the components of

the current activity, which an SRN is not designed to do.

One set of simulations conducted by Elman and McRae (2019) involved training a net-

work on the participant-generated sets of activities that were described in Section 2. They

used changing a flat tire and going to a picnic as examples because these events differ

substantially in the degree to which their temporal structure is defined. The model learned

by integrating information about the temporal order of activities and their components

across the participants’ productions. Elman and McRae conducted simulations in which

they treated the network as though it was a participant in the activity production task.

The network was seeded an initial activity, pull car over to side of road. Then, the most

strongly predicted components were used as the next current activity, and so on. The

model produced a completely sensible way of fixing a flat tire (see fig. 15, p. 275, Elman

& McRae). It produced a description of the event that captures both the sequential struc-

ture of the event and also the appropriate elements of each activity. However, it was not

a description that was provided by any of the participants. Instead, the network discov-

ered what might be considered as the core consensus from the descriptions on which it

was trained.

The going to a picnic simulation produced somewhat different results (see fig. 17, p.

277, Elman & McRae). Going to a picnic includes a number of activities that occur with

reasonable frequency, although many are not necessary for having a picnic, and there is a

great deal of optionality in their order (one can eat, play volleyball, and swim in any

order). Because of this variability, the model produced a bare-bones picnic, consisting

basically of getting there, putting out the food, eating the food, sitting, packing up, and

leaving.

These simulations invite a number of conclusions regarding the form of event knowl-

edge and how it is learned. The flexibility and variability in events argue against the idea

that the human mind contains pre-specified event templates, or some type of data struc-

ture that represents events explicitly. Elman and McRae’s (2019) network demonstrates

the value of understanding event knowledge not by pre-specifying what an event is, but

by focusing on how event knowledge might be learned, especially when people are

exposed to variability. One challenge has long been how to know when and under what

circumstances variability should be accommodated, and to what degree.

Finally, prediction turns out to be a powerful mechanism for learning about temporal

structure. This has been known for a while now (Elman, 1990, 1995). However, some

new things were learned from training the connectionist model on human data. Although

any given instance of an event is necessarily linear, from the event norming data, and the

many ways that even the same event can be carried out, we see that events have a much

richer temporal structure than typically has been imagined. The model demonstrates that
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the temporal structure of events in the human mind may emerge as a consequence of pre-

diction-based learning.

4. Conclusions

In this article, we discussed how the temporal structure of real-world events might be

processed in human memory. We argued that there is substantial variability in temporal

structure that occurs across instances of the same general type of event. There also is sub-

stantial variability across types of events in that some may be quite constrained whereas

others may have few constraints on temporal structure. Event-predictive models of cogni-

tion such as those that are based on simple recurrent or attractor networks that feature

prediction-based learning are able to deal with these sources of variability naturally so

that event knowledge emerges.

Prediction is a key focus in this special issue and also has played central role in many

recent models of event knowledge (Frank, Koppen, Noordman, & Vonk, 2003; Mayberry,

Crocker, & Knoeferle, 2009; Modi, 2016; Reynolds et al., 2007; Takac & Knott, 2016a,

2016b; Venhuizen et al., 2019). For example, Reynolds et al. (2007) presented a model

of the perception of event boundaries and the updating of event representations based on

a simple recurrent network (Elman, 1990). Their work used as a starting point research

on how people segment perceptual events (see Zacks & Swallow, 2007, for a review).

Reynolds et al. (2007) showed that a simple recurrent network that was augmented with

a gating mechanism could use prediction error signals to discover event boundaries, and

they demonstrated that prediction error and event boundaries play a role in learning and

updating internal representations of event knowledge. Reynolds et al. concluded that peo-

ple’s experience with repeated patterns in the world allows them to accurately predict

upcoming stimuli within an event. Importantly, people are able to use transient increases

in prediction error to identify boundaries between events (event segmentation), and this

ability results in improved prediction about downstream activities.

Prediction (or expectancy generation) also has played a major role in theories and

empirical investigations of language comprehension for a number of years. Furthermore,

there is a great deal of evidence that people’s event knowledge is a primary source of

information for constructing on-line predictions of upcoming linguistic input (for reviews,

see Altmann & Mirkovic, 2009; Kuperberg & Jaeger, 2016). To simulate event-based pre-

dictive language comprehension, Venhuizen et al. (2019) implemented a simple recurrent

network in which they focused on the interaction between linguistic and real-world event

knowledge. They used a simple recurrent network as the basis of a model that incremen-

tally constructs rich, probabilistic situation model representations word by word. Compre-

hension was simulated by movement through a probabilistic situation (meaning) state

space (Frank et al., 2003). Their model simulated Elman’s (2009) words-as-cues approach

in that each word served as a cue for traversing semantic state space in a context-sensi-

tive manner. Venhuizen et al. showed that their prediction-based model could account for

word surprisal (Hale, 2001; Levy, 2008) by constructing rich probabilistic meaning
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representations that support inferences that are driven by the integration of linguistic and

event knowledge.

Elman and McRae (2019) also presented simulations in which the model displayed

behaviors that have been characterized in human empirical work as demonstrating infer-

encing of unmentioned event components (Graesser, Singer, & Trabasso, 1994), the pre-

diction of upcoming activities and their components (which may or may not ever occur

or be mentioned; Metusalem et al., 2012), reconstructive memory (Bransford, Barclay, &

Franks, 1972), and the ability to adapt to deviations from previously encountered

sequences of activities. All of these behaviors emerged from the model’s prediction-based

learning mechanism. Note that although Elman and McRae view their network to be a

model of event knowledge rather than of language processing, in these cases, they used it

also to simulate language comprehension experiments because the influence of event

knowledge often has been studied using psycholinguistic experiments. Their model did

not, however, contain any mechanisms for processing, for example, passive sentences, or

sentences such as “Before doing X, they did Y.”

Finally, Takac and Knott (2016a, 2016b; this volume) describe models of the construction

of event representations in working and long-term memory. An intriguing and important

aspect of their modeling, and another way in which these models are tied to language pro-

cessing, is that they tackled the problem of how elements of activities are assigned to roles

such as agent and patient that play key parts in the event cognition literature, the language

comprehension literature, and the event knowledge/language comprehension interface.

4.1. Events as graphs

Finally, we introduced an approach for studying event structure based on graph theory.

We claim that by constructing an event network as an “ensemble” object using activity

sequences from many participants, we arrive at an event description that is abstracted

away from how any particular individual represents that event, while still being able to

accurately capture event variability. This is a theoretical claim and a strong one. How-

ever, as only mentioned here but detailed elsewhere (K. S. Brown et al., in preparation),

this is a falsifiable theory—the graphs make clear, empirically testable predictions, partic-

ularly with regard to activity centrality and the degree to which it is equally or unequally

distributed across the activities in a given event. Moreover, the event graphs do reproduce

a kind of dynamic flexibility. The natural way to generate activity sequences (e.g., predict

the next activity) from the graph is to place a Markov process on the graph that moves

from activity to activity, following directed edges, with probability proportional to edge

strength. This can be done from any starting activity, so it is straightforward to complete

an event after being “dropped into the middle” of it.

4.2. Causality

We end with some comments regarding causality. Humans care deeply about what will

occur next, both in the short and long term. Being able to anticipate what will happen
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provides us with a guide to our own behavior and allows us to predict what others may

do. Sometimes temporal structure is governed by causal structure. Other times, it is the

result of cultural convention or habit. A model such as that of Elman and McRae (2019)

definitely learns key statistical regularities, but it does not learn any explicit notion of

causality (as in knowing that pulling the handle on a toilet causes water to rush through

the bowl). Strong constraints on activity order do of course correlate to some extent with

causal necessity. For example, when taking money out of an ATM, it is necessary to

insert your bank card prior to typing in your personal identification number. (On the other

hand, it may or may not be valid to think that inserting your bank card causes you to

type in your personal identification number.) Furthermore, strong ordering constraints

may reflect strong conventions, rather than causal necessity. Therefore, we view the

model as a mechanism that learns statistical structure concerning the temporal nature of

events, and that those statistics would be useful for humans to discover causality. That is,

we do not suggest that Elman and McRae’s model knows anything about causality per se,

but the ability to learn varying strengths of statistical relationships provides important evi-

dence for people to support an hypothesis that there may be a causal relationship between

two activities. That said, if people learn about event structure using principles similar to

those embodied in this model, then the temporal structure that is learned, including cases

of near-invariant ordering constraints, could provide valuable clues for building theories

of causality.
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