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Title 

Motor Vehicle Collisions in London, Ontario: Estimating the influence of the built 

environment and children’s potential exposure 

Abstract 

Motor vehicle collisions are the leading cause of death for children and youth worldwide. To 

effectively target interventions to improve child safety, it is necessary to identify where 

motor vehicle collisions occur most often and what factors make these areas more hazardous.  

Study #1 maps collisions in London, Ontario (2010-2019) and identifies hotspots using a 

network kernel density estimation method within a GIS.  Logistic regression analysis 

revealed that bike lanes were negatively associated with hotspots, while sidewalks were 

positively associated. Study #2 estimated children’s risk of being exposed to a motor vehicle 

collision while commuting to and from school, by combining collision risk data from study 

#1 with modelled student pedestrian volumes. Results suggest current crossing guard 

locations in London are not optimally deployed and should be relocated to the riskiest areas 

for student pedestrians. The findings of this thesis suggest that certain built environment 

characteristics have a significant influence on collision hotspots and should be considered in 

future road safety policy.  
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Summary for Lay Audience 

Motor vehicle collisions are the leading cause of death for young people worldwide. To 

address this issue, we need to understand the factors causing severe motor vehicle collisions. 

We also need to identify the environments where young people face the greatest risk. First, 

motor vehicle collisions that occurred in London, Ontario were mapped. The concentration of 

these collisions were calculated to locate the areas with the most motor vehicle collision 

occurrence. When looking at areas around these high risk locations, we identified several 

factors that could be influencing the motor vehicle collisions. In particular, we found that 

bike lanes can lower collision occurrence and that sidewalks have increase motor vehicle 

collisions. Second, we estimated which roads and intersections children in London used to 

walk to school using home and school locations. The high risk locations that we identified 

previously were compared to areas with many students walking to school. We found that 

there were several areas that had many motor vehicle collisions and a higher number of 

students. Additionally, a majority of these areas were unsupervised. The current safety 

measures in London may need to be changed to ensure roads are safe for everyone. We have 

identified factors that may be causing and reducing motor vehicle collisions in London. The 

areas where children face the greatest collision risk were also identified. These findings 

provide a better understanding of motor vehicle collisions in London and should inform 

future methods to make roads safer. 
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Chapter 1  

1 Introduction 

Globally, motor vehicle collisions (MVCs) have been a major cause of serious injury and 

death, totaling almost 1.35 million fatalities and around 50 million injuries in 2016 

(World Health Organization, 2018). They are now the leading cause of death for children 

and young adults (5-29 years) worldwide (World Health Organization, 2018). The 

vehicle-centric culture in the North American context suggests that mobility and 

individual convenience is valued over the health and safety of the population. Cities have 

been designed for the automobile which presents accessibility and safety problems for all 

other road users. Public transit networks are difficult to implement due to demand and 

coverage issues while active transport users are tasked with the challenge of navigating a 

road network not designed for them. With increasing populations and subsequent 

increases in traffic volumes, there is a growing need to address issues surrounding road 

safety. While the advocacy for safe streets for the most vulnerable road users has been 

increasing in recent years, significant change to policy and road design is yet to be seen.  

1.1 Background 

1.1.1 Traffic Speed and Volume 

The most significant predictors of MVCs are vehicle speed and traffic volume (Wang et 

al., 2013). There is a consensus in MVC literature that increased vehicle speed is not only 

associated with higher crash severity, but also with higher MVC occurrence (Dumbaugh 

& King, 2018; Wang et al., 2013, Aarts & van Schagen, 2006). This is due to higher 

impact velocities, shorter time to react and larger stopping distance requirements 

resulting in smaller margins for driver error. However, there are many other contributing 

factors to MVCs like road and traffic characteristics that make determining the exact 

relationship between speed and MVC occurrence difficult (Aarts & van Schagen, 2006). 

Traffic volume is another key predictor for MVC incidence. Overall, roads with higher 

traffic volumes tend to have higher occurrences of MVCs due to more vehicles and more 

opportunities for conflict between road users (Wang et al., 2013; Ewing & Dumbaugh, 
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2009). These results can be mixed as periods of extremely high traffic volume 

(congestion) decrease the vehicle speeds along a road and can have a reductive effect on 

MVC occurrence, particularly more severe collisions (Wang et al., 2013). Similarly, low 

traffic volumes may encourage increased vehicle speeds and may lead to higher 

incidences of severe MVCs. Existing studies typically use annual average daily traffic 

(AADT) for traffic volume data; however, it does not consider the temporal aspect of 

traffic volume. Traffic volume can vary from season to season as well as fluctuate 

throughout the day. As it becomes easier to collect and store massive amounts of data, it 

will be possible to study the patterns of traffic volume at a more granular level. 

1.1.2 Demographic Characteristics 

The populations most vulnerable to MVCs are children and elderly people, both when in 

vehicles and as pedestrians or cyclists. Elderly drivers have been shown to have a higher 

risk of MVC due to their slower reaction times and difficulty in perceiving other road 

users and hazards (Kim, 2019). Children are at higher risk for serious injury or fatality 

resulting from an MVC as occupants of a vehicle due to their smaller statures (Brolin et 

al., 2015). As pedestrians or cyclists, both children and elderly people are also more 

vulnerable to serious injury or fatality due to their weaker physical builds that are 

susceptible to severe impacts (Kim, 2019; Cloutier et al., 2021; Schwebel et al., 2012). 

Additionally, their typically slower walking speeds and unreliable perceptions of distance 

and vehicle speeds can lead to a propensity for poorer decisions and an inability to avoid 

traffic (Kim, 2019; Connelly et al., 1998). Children may be at even greater risk due to the 

promotion of active travel for school commutes, thereby exposing greater volumes of 

student pedestrians and cyclists to vehicular traffic (Cloutier et al., 2021). 

1.1.3 Human Behavior 

Much of the existing MVC literature focuses on three aspects of road safety: human 

behavior, vehicle design and built environment characteristics (Wang et al., 2013). 

Distracted driving behavior like cell phone usage and other secondary actions like eating 

or passenger conversation can avert eyes from the road and has been shown to increase 

the risk of MVC occurrence (Klauer et al., 2014), while impaired driving due to alcohol 
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or drug use has also been shown extensively to increase MVC risk (Lefio et al., 2018; 

Morrison et al., 2003). Cell phone usage overall has risen in recent years, this extends to 

usage within vehicles by drivers which has led to an increase in MVC occurrence due to 

distracted driving (Wilson & Stimpson, 2010). The policy interventions implemented to 

address these undesirable behaviors, such as graduated driver licensing, law enforcement 

programs and road safety education programs have had varied and mixed results (Lefio et 

al., 2018; Dumbaugh et al., 2020, International Transport Forum, 2016; Morrison et al., 

2003). Recent literature has suggested that current road design and practice affords 

drivers too much room for error, thereby promoting lackadaisical and careless driving 

behavior (Dumbaugh & King, 2018). Interventions regarding human behavior, 

educational programs in particular, typically target pedestrian and cyclist behavior rather 

than driver behavior. Policies and road design should be implemented in a way that 

places the responsibility for road safety on all road users and encourage drivers to be 

more attentive and exercise more caution. The vulnerability of children to MVCs is 

partially attributed to their relative lack of experience in navigating roadways, which is 

usually addressed through educational programming. However, this perpetuates a victim-

blaming narrative, drivers should also be cognizant of the vulnerability of other road 

users and act accordingly. 

1.1.4 Vehicle Design 

Vehicle design is also a major part of safety research in the overall MVC literature, 

particularly among engineers. Longstanding practice in vehicle safety focuses on the 

crashworthiness or the level of occupant protection of a vehicle (International Transport 

Forum, 2016). However, this has not reduced the incidence of MVCs and has only 

reduced the risk of injury for the occupants of a vehicle, disregarding other road users. A 

shift in road safety responsibility to encompass automobile manufacturers has led to 

research in vehicle safety that emphasizes the need to reduce vehicle speeds and enhance 

the attentiveness and awareness of drivers (International Transport Forum, 2016; Cloutier 

et al., 2021; Dumbaugh & King, 2018). This has led to developments in crash avoidance 

technology like autonomous emergency braking and intelligent speed assistance 

technologies (International Transport Forum, 2016). However, these technologies are not 



4 

 

yet widely implemented and so their impact on MVCs is yet to be seen. In recent years, 

touch screens are being implemented in vehicles for navigational and entertainment 

purposes, in addition to existing radio equipment. However, this has been shown to have 

a potentially adverse effect on road safety as it may present a distraction for drivers and 

avert eyes from the road (Perez, 2012).  

1.1.5 Environmental Conditions 

MVC literature surrounding environmental characteristics analyze how changes in 

season, weather and time of day influence MVCs. The impact of winter and winter 

precipitation on MVC incidence is well documented, showing increases in MVCs during 

winter storms (Mills et al., 2019). However, the impact on crash severity is mixed. At the 

most extreme winter conditions, the risk of injury from an MVC decreases compared to 

more moderate winter conditions (Mills et al., 2019). Although more research needs to be 

done to determine the reasons behind the decrease in crash severity, it is theorized that it 

is a combination of more cautious driving, the broadcasting of weather warnings and the 

commencement of road maintenance (Mills et al., 2019). During summer months, it is 

more likely that severe MVCs occur at higher rates because higher pedestrian volumes 

create more opportunity for conflict between vulnerable road users (Sebert Kuhlmann et 

al., 2009; Cloutier et al., 2021). Additionally, MVC occurrence and severity has been 

seen to increase during periods of heavy precipitation, a result of slippery road surfaces 

and reduced visibility (Eisenberg, 2004; Andrey et al., 2003). The increase in traffic 

volume during rush hours typically lead to an increase in MVC incidence due to more 

opportunities for conflict between vehicles (Martin, 2002). After sunlight hours, the lack 

of light and less traffic on roads lead to greater MVC severity due to a lack of visibility 

and greater vehicle speeds (Martin, 2002).  

1.1.6 Built Environment 

The built environment has been touted to have the greatest potential impact on road 

safety due to its direct and constant influence on road users. Traditionally, much of the 

literature regarding built environment influences on MVCs has been written by engineers 

(Dumbaugh & King, 2018). However, planners are increasingly being involved in 
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contemporary road design, shifting the focus from vehicle-centric considerations to 

encompassing all road users (Dumbaugh & King, 2018). Existing literature focuses on 

reducing vehicle speed, reducing conflict points between road users and increasing 

visibility. 

1.1.6.1 Traffic Calming Features 

Attempts to reduce vehicle speed typically come in the form of various traffic calming 

features. Several studies have found that wider road widths have negative effects on road 

safety (Ewing & Dumbaugh, 2009; Stoker et al., 2015; Retting et al., 2003). Although 

this may increase traffic congestion in certain areas, narrower streets and lanes may 

influence drivers to drive slower, more passively and with more care (Ewing & 

Dumbaugh, 2009). Street side elements like street trees, planters, benches and bike lanes 

also have a narrowing effect on the street, reducing the perception of free and open road 

that drivers might otherwise have (Dumbaugh & King, 2018). Features on the road itself 

like traffic islands and medians also create a narrowing effect in addition to physically 

separating traffic (Dumbaugh & King, 2018). More active traffic calming measures like 

speed humps and roundabouts have also been shown to be effective in reducing vehicle 

speed and MVC incidence (Ewing & Dumbaugh, 2009; Retting et al., 2003; Stoker et al., 

2015; Rothman et al., 2015; International Transport Forum, 2016). These may be more 

cost-effective approaches than road/lane narrowing, but also only have a calming effect at 

targeted areas. 

1.1.6.2 Exposure Reduction 

The risk of MVC occurrence often increases in areas where high volumes of pedestrians 

or cyclists are exposed to high volumes of vehicles (Retting et al., 2003; Stoker et al., 

2015). The reduction of conflict points and exposure between road users where possible 

typically falls within the domain of the built environment. Four-way intersections are 

typically more hazardous than three-way intersections due to more conflict points 

between vehicles and with other road users (Dumbaugh & Li, 2010; Miranda-Moreno et 

al., 2011). Traffic signals at intersections, however, are an example of a temporal 

separation between pedestrians and vehicles. Vehicle-centric intersections that prioritize 
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vehicle movement mean pedestrians often have little time to cross wide roads and have to 

navigate turning vehicles (Dumbaugh & King, 2018). While signalized intersections are 

effective in controlling vehicular traffic, they affect traffic flows and are not realistic to 

be implemented city-wide. Intersections that implement pedestrian exclusive phases 

(split-phasing), which stop all vehicular traffic to allow pedestrians to cross, or leading 

pedestrian intervals have been shown to be effective in reducing MVCs (Dumbaugh & 

King, 2018; Retting et al., 2003). Built environment measures that eliminate pedestrian-

vehicle exposure at intersections entirely, like overpasses and underpasses are highly 

effective but are resource intensive and can be aesthetically intrusive (Retting et al., 

2003; Stoker et al., 2015). Medians in the middle of roads act as exposure reduction 

between vehicles while traffic islands provide refuge spaces for crossing pedestrians 

which have also been shown to reduce pedestrian-vehicle exposure (Ewing & Dumbaugh, 

2009; Retting et al., 2003; Stoker et al., 2015; Dumbaugh & King, 2018; International 

Transport Forum, 2016). Modern roundabouts and traffic circles are able to reduce 

conflict points between vehicles when entering an intersection and allow for efficient 

vehicle movement (Ewing & Dumbaugh, 2009; Retting et al., 2003). Single-lane 

roundabouts in particular have been shown to have lower pedestrian MVC incidence than 

comparable intersections with traffic signals (Ewing & Dumbaugh, 2009; Retting et al., 

2003). While larger multi-lane roundabouts are effective in reducing MVC rates between 

vehicles, they may present accessibility issues for elderly and disabled pedestrians and 

force pedestrians to cross multiple lanes of traffic without signal. (Ewing & Dumbaugh, 

2009; Retting et al., 2003). Street side elements that separate vehicles from pedestrians 

like street trees and planters on sidewalks act as barriers between vehicles and 

pedestrians, reducing the exposure of pedestrians to vehicles (Ewing & Dumbaugh, 2009; 

Dumbaugh & King, 2018; Naderi, 2003). However, this does not affect fixed-object 

collisions, when vehicles collide with a roadside object like a street tree, telephone pole 

or parked car (Ewing & Dumbaugh, 2009; Dumbaugh & King, 2018). Bike lanes are not 

only effective in separating cyclists from vehicular traffic, but also act as a buffer for 

pedestrians, reducing exposure and potential conflict points (Reynolds et al., 2009). 
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1.1.6.3 Improving Visibility 

Literature on visibility has mainly focused on improving street lighting, but sightlines are 

an important element to consider as well. A few studies considered on-street parking as a 

feature that could potentially block the sightlines of drivers, rendering them slow to react 

if a pedestrian steps out quickly into traffic (Ewing & Dumbaugh, 2009; Retting et al., 

2003). Retting et al. suggest the implementation of diagonal on-street parking, this could 

help improve pedestrian visibility and reduce car door-bicycle collisions (2003). 

Conventional practice recommends that drivers have an unobstructed view of the entire 

intersection, resulting in the removal of street side elements like traffic control cabinets, 

hedges or on-street parking around an intersection (Dumbaugh & King, 2018). However, 

more recent recommendations suggest that narrower roads and more compact 

intersections, instead of street side element removal, can increase visibility for drivers as 

well as their awareness and attentiveness (Dumbaugh & King, 2018). This is because 

slower vehicle speeds reduce the recommended sightline distance that drivers need to 

make a safe and informed decision (Transport Association of Canada, 2011). Driveways 

can also be quite hazardous areas as there is often a lack of visibility in these areas due to 

hedges and other similar street side elements (Dumbaugh & King, 2018). Several studies 

have shown the effectiveness of street lighting on increasing visibility and reducing 

MVCs, but there is a lack of research regarding driver sightlines (Retting et al., 2003; 

Stoker et al., 2015).  

1.1.7 Vision Zero 

The recent epidemic of MVCs has led to the adoption of Vision Zero, a road safety policy 

originating from Sweden, by many governments around the world (Kim et al., 2017). 

Vision Zero is a policy that reframes MVCs as a public health problem, suggesting that 

MVCs are a preventable health hazard rather than a random unpreventable occurrence 

(Kim et al., 2017). Vision Zero also postulates that road users (drivers, pedestrians, 

cyclists) are not the only ones to be held accountable for a MVC but that automobile 

manufacturers, transport engineers, planners and many more actors should also be held 

responsible for road safety (Kim et al., 2017). The core tenet of the policy is that no 

deaths or serious injuries should result from MVCs, challenging the notion that 
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convenience and mobility are worth the health and safety risks (Kim et al., 2017). The 

City of London is one of a few cities in Ontario which have adopted Vision Zero in their 

road safety strategy, presenting an opportunity to examine the impact of the policy 

framework on road safety in London since its adoption in 2017 (City of London, 2018). 

A Complete Streets Design Manual for the City of London has been created with the 

Vision Zero framework as a policy priority, solidifying the City’s intent to address road 

safety (City of London, 2018). A Vision Zero approach would mean a shift from 

educational programs and law enforcement policies to the implementation of built 

environment interventions, vehicle technology advancements and a prioritization of 

vulnerable road users. 

1.1.8 Active Transportation to School 

MVCs are the leading cause of death for school-age children worldwide, which is 

indicative of the burden of this acute public health issue (World Health Organization, 

2018). Studies have found that children are at more risk of pedestrian MVCs, due to their 

physical vulnerabilities (Stevenson et al., 2015) and limited experience in navigating 

roadways (Schwebel et al. 2012). The lack of visibility of children due to their small 

stature has been an issue for drivers and increases the risk of MVC occurrence (Barton & 

Schwebel, 2007; Stoker et al., 2015). Existing literature has found that most child 

pedestrian MVCs occur in areas near their home (Stevenson et al., 1996; Braddock et al., 

1994; Rothman et al., 2014) and near their school (Warsh et al., 2009; LaScala et al., 

2004). While there has been recent promotion of active travel to school as a method to 

increase the physical activity and overall health of children (Sallis et al., 2006; Faulkner 

et al., 2009; Larsen et al., 2009; Buttazzoni et al., 2019), more child pedestrians walking 

to school may increase the risk of MVC occurrence (Stoker et al., 2015; Clark et al., 

2016; Larsen et al., 2012). The safety and walkability of the pedestrian environment is 

not only important for child safety, but also influences the rates of active travel to school 

due to parental and student perceptions (Timperio et al., 2006). Active school travel 

programs like Active & Safe Routes to School (http://www.activesaferoutes.ca/) have 

been shown to have positive effects on active travel to school and in reducing children’s 

and parents’ perceived barriers to active travel (Buttazzoni et al., 2019). 

http://www.activesaferoutes.ca/
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1.2 Research Objectives and Questions 

The prevalence and burden of MVCs has been shown to be a significant danger to 

today’s populations, particularly to younger populations that will take over from the 

current generations. This highlights the need to further improve knowledge of road safety 

and inform decisions that can ensure the health of future populations. This thesis seeks to 

understand MVCs and road safety issues within London, Ontario. The first objective of 

this work is to use recent MVC data to map and study the prevalence of MVCs across 

London, Ontario and over time. The second objective of this thesis is then to assess how 

the spatial distribution of riskier areas within the street network, relate to potential active 

travel by students pedestrians on route to school. To address these research objectives this 

thesis seeks to answer the following Research Questions.  

RQ1. Where are MVC hotspots located within London, Ontario and what are their trends 

over time? 

RQ2. How do the built environment characteristics of London’s street network relate to 

MVC hotspots? 

RQ3. Where are school-age children walking to school in London exposed to high MVC 

risk? 

RQ4. How well do crossing guards align with the location of high-risk areas for student 

pedestrians on route to school? 

The findings of this study should further inform local research on the characteristics and 

factors influencing MVC hotspots. The findings of this thesis should also promote the 

future analysis of the temporality of MVC hotspots and the understanding of how and 

why hotspots are changing. Importantly, the findings of this study should inform the 

policy and road design decisions in London in order to ensure the safety of all road users 

in accordance with Vision Zero principles, specifically associated with active 

transportation to school by student pedestrians. 
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1.3 Study Area 

This study was conducted in the city of London, located in the southwestern part of 

Ontario (Figure 1-2). As of 2021, the city had a population of 422,324, a 10% growth 

since the 2016 census (383,822) which was a 4.8% growth from the 2011 census 

(366,151) (Statistics Canada, 2011; Statistics Canada, 2016; Statistics Canada 2021). The 

long-standing auto-centric culture and the recent adoption of Vision Zero, a road safety 

policy framework, in 2017 presents an opportunity to assess the MVC issues in the 

context of London, Ontario. 

London has around 1,900 km of road, generally arranged in a grid pattern in areas around 

the city center (Figure 1-1a) and in a block grid with loops and cul-de-sacs pattern in the 

more suburban neighborhoods (Figure 1-1b). London has 5,301 intersections, around 

7.78 % of which being signalized. For the period January 2010 to December 2019 

inclusive, the City of London had an average of 7,728 motor vehicle collisions (MVCs) 

per year. 

Figure 1-1: a) Grid street network pattern in downtown London and b) block-grid with 

loop and cul-de-sac street network pattern in suburban northwest London. 
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Figure 1-2: Study area map showing London, Ontario within southwestern Ontario, Canada. The grey polygons in the inset map are 

lower and single-tier municipalities in Ontario, while the study area is shown as a purple outline. 
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Chapter 2  

2 Assessing the Influence of the Built Environment on 
Spatio-temporal Motor Vehicle Collision Hotspots in 
London, Ontario 

2.1 Introduction 

The identification of motor vehicle collision (MVC) hotspots has played a crucial role in 

the efficient distribution and implementation of road safety measures. Various methods 

have been employed in MVC hotspot identification. Planar kernel density estimation 

(KDE) (Anderson, 2009) and more recently network-based KDE (Xie & Yan, 2008) have 

been popular methods in the literature. KDE was deemed advantageous for MVC hotspot 

analysis because it can determine the spread of risk around a cluster of MVCs, 

identifying dangerous areas rather than points. This is useful in MVC analysis as the 

areas surrounding the location of an MVC are typically just as hazardous as the point of 

incidence. Further, network-based KDE is agreed to be more appropriate for network-

constrained phenomena like MVCs than conventional KDE; rather than the MVC risk 

being spread across a circular area, the risk is spread along the road network (Xie & Yan, 

2008).  

Conventional KDE also has a tendency to overestimate hotspots on network-constrained 

phenomena due to its inherent assumption of Euclidean distance (Yamada & Thill, 2007). 

Multiple studies have attempted to address this issue by modifying conventional KDE 

into tools like KDE+ (Bil et al., 2016), which applies a KDE method with cluster ranking 

to a line network, or extending K-function methods to a network using Spatial Analysis 

on a NETwork (SANET) (Okabe et al., 2005). Xie and Yan have developed a network-

based KDE (2008) for MVC analysis which was implemented in R by Branion-Calles 

(2020) and was utilized in this study. The KDE+ tool is promising, but is unable to 

analyze smaller road segments, aggregating MVCs onto longer road segments which may 

dilute local hotspot patterns. In terms of hotspot definition and categorization, there is no 

consensus, particularly in MVC literature (Anderson, 2009; Bil et al., 2019; Thakali et 

al., 2015). ESRI’s Emerging Hotspot Analysis tool has been widely used across many 
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fields, including road safety, to assess temporal trends and categorize hotspots (Cheng et 

al., 2019; Betty et al., 2020; Harris et al., 2017). However, ESRI’s utilization of a space-

time cube means it is difficult to apply to point events constrained to a network, like 

MVCs.  

Previous studies in MVC literature have assessed the built environment’s influence on 

MVCs (Ewing & Dumbaugh, 2009; Dumbaugh & King, 2018) and identified 

demographic and crash-related risk factors affecting MVC severity (Al-Ghamdi, 2002; 

Chen et al., 2012). In order to identify MVC hotspots and determine the spread of MVC 

risk, a variety of methods have been developed (Bil et al., 2016; Xie & Yan, 2008; 

Anderson, 2009). Several studies have assessed MVC hotspot trends using ESRI’s 

Emerging Hotspot Analysis tool but lack road network level analysis (Cheng et al., 

2019), while a study has developed a novel method of assessing temporal hotspot trends 

using moving time windows (Bil et al., 2019). However, few studies have identified how 

MVC hotspots are changing over time and assessed how built environment characteristics 

influence those MVC hotspots.  

2.1.1 Research Objective 

To understand how MVCs in London, Ontario are changing over time, MVC hotspots 

will be identified for every year in the study period (2010-2019) using the network-based 

KDE analysis developed by Xie and Yan (2008). The temporal trend of these hotspots 

will be assessed and used as the typology on which to analyze built environment 

influence. By examining how built environment characteristics influence these MVC 

hotspots, this analysis will lead to a better understanding of what may be associated with 

MVCs and how they can be addressed. It is expected that considerations to road safety 

policy and road design can be made through the interpretation of this study’s results. 
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2.2 Methods 

2.2.1 Data 

2.2.1.1 Motor Vehicle Collision Data 

MVC data from January 2010 to February 2020 was obtained from the City of London, 

Ontario, Canada. The data include the time and date of each MVC, collision type 

(automobile vs automobile, automobile vs cyclist, automobile vs pedestrian), severity of 

collision (property damage only, injury, fatality), demographic information of the 

participants involved (age, sex), participant condition (normal, impaired, etc.), participant 

action (proper action, erratic/incorrect action), vehicle condition (normal, in need of 

repair), environmental characteristics (lighting condition, weather) and reason(s) for 

collision. Any missing coordinates were manually inputted using the street names 

provided in the data. MVC data that did not have coordinates or street names and thus 

were unable to be identified were excluded (< 0.5% of the data were excluded this way). 

We selected MVC data from January 2010 to December 2019, inclusive. We chose to 

exclude data from 2020, as trends in MVCs were likely to be significantly impacted by 

COVID-19 and stay at home policies (Rapoport et al., 2021; Stiles et al., 2021).  

The MVC data were further cleaned, removing a small number of records where the data 

were missing or erroneous. In some cases, vehicle information was missing, coordinates 

were missing or were outside of the city of London. This study focused on MVCs 

classified as an injury or fatality, therefore the 65,486 of 78,276 (84.12%) MVCs 

classified as property damage only (PDO) were excluded from the analysis. This is in-

line with Vision Zero’s goal of no serious injuries and fatalities resulting from MVCs 

(Kim et al., 2017). This analysis, therefore, includes all collision types, automobile- 

automobile, automobile-cyclist and automobile-pedestrian that resulted in a serious injury 

or fatality (n = 12,283 MVCs) (Figure 2-1).  
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Figure 2-1: Motor vehicle collisions (n = 12,283) that resulted in injury or fatality during 

the years 2010-2019 in London, Ontario are shown in purple along with the road network 

in grey. 
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2.2.1.2 Road Network and Traffic Volume Data 

The road network segments and intersections data, and traffic volume for most major 

arterials, collectors and roads were available through the City of London’s Open Data site 

(https://opendata.london.ca/). However, the traffic volume of many of the smaller local 

roads and secondary collectors was not available. The missing traffic volumes were 

assigned to the roads according to their street classification to estimate traffic volume for 

all streets in the analysis (Table 2-1; Figure 2-2). In certain cases, the traffic volumes 

were estimated based on surrounding traffic volumes and manually inputted due to the 

unique characteristics of the roads in specific areas (i.e. Western University, Fanshawe 

College and Victoria Hospital). The traffic volume at intersections was calculated by 

summing the total traffic volume for all segments in the intersection and dividing that 

number by two. This is based on the rationale that when a vehicle enters and exits an 

intersection, it touches exactly two segments.  

Table 2-1: Values used to estimate annual average daily traffic for street segments where 

no official data was recorded. 

 

 

 

Street Classification Assigned Estimated  

Annual Average Daily Traffic (AADT) 

Local 250 

Secondary Collector 1000 

Primary Collector 5000 

Arterial 10000 

Freeway 15000 

Ramp 2500 

https://opendata.london.ca/
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Figure 2-2: The traffic volume in London, Ontario shown in annual average daily traffic 

by road segment. 
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2.2.1.3 Separation of Intersections and Mid-Block Road Segments 

This study will assess MVCs occurring at both intersections and mid-block road segments. 

It is important to differentiate the two types of locations of collisions as previous studies 

have shown the characteristics of MVCs occurring in these areas differ (Al-Ghamdi, 2003; 

Lightstone et al., 2001). Subsequent analyses were performed separately on the two sets 

(mid-block segments and intersections) of data. 

2.2.1.4 Lixelization 

This analysis framework uses lixels, a term coined by Xie and Yan (2008) which 

essentially is a linear pixel, as the unit of analysis for mid-block segments. For analysis 

along a linear network like a road network, this was deemed the most appropriate 

approach as it allows for a more straightforward method of creating units of similar size 

for network analysis (Xie & Yan, 2008). First, London’s single line road network was 

split into segments bound by intersections or end points (dead ends), resulting in 9,546 

road segments. Each segment was then divided into equal length lixels with a maximum 

length of 25m. For example, a road segment that was 247.5m in length would be split 

into ten lixels that are 24.75m in length (Figure 2-3). In total, 80,671 lixels were created 

from the road network with an average length of 23.6m overall. The maximum lixel 

length of 25m was determined as the most appropriate balance between detail in local 

variation in hotspot patterns and computational efficiency (Xie & Yan, 2008; Branion-

Calles, 2020). 

Figure 2-3: a) Example of a 247.5m segment (Farrah Road) highlighted in light blue and 

b) One of ten 24.75m lixels along a Farrah Road segment highlighted in light blue. 
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2.2.1.5 Built Environment Variables 

The environmental variables chosen for the models have been established in MVC 

literature as factors that influence MVC incidence and/or severity (see Table 2-2). Street 

lights are important for the visibility of pedestrians in low light, having a reductive effect 

on night-time pedestrian MVCs (Retting et al., 2003; Stoker et al., 2015). Bike lanes have 

been shown to be effective in reducing vehicle exposure by separating traffic from 

cyclists and pedestrians (Reynolds et al., 2009). Hedges have the potential to block 

sightlines of drivers, which can create hazardous and risky situations (Dumbaugh & 

King, 2018). Driveways create conflict points similar to intersections, and can increase 

MVC incidence (Dumbaugh & King, 2018). Streets with sidewalks alongside them have 

been found to have less MVCs involving pedestrians than streets without sidewalks 

(Ewing & Dumbaugh, 2009). Street trees have been shown to have negative effects on 

MVCs, having a traffic calming effect and acting as a barrier between vehicles and the 

sidewalk (Dumbaugh & King, 2018). On-street parking is also thought to have a traffic 

calming effect, by temporarily narrowing the road, but also has been shown to decrease 

pedestrian visibility (Ewing & Dumbaugh, 2009; Retting et al., 2003). Road width has 

been discussed widely as a significant factor in influencing vehicle speeds, which in turn 

influences MVC severity (Ewing & Dumbaugh, 2009; Dumbaugh & King, 2018; Stoker 

et al., 2015; Retting et al., 2003). Traffic signals are effective in temporally separating 

road users, which reduces the opportunities for conflict (Dumbaugh & King, 2018). 

Simpler intersections, intersections that have fewer converging roads than a normal, four-

way intersection, has less conflict points which should result in fewer MVCs (Dumbaugh 

& Li, 2010; Miranda-Moreno et al., 2011). 

All environmental data was sourced from the City of London’s Open Data site. Road 

width categorizations were estimated based on a recommended lane width according to 

the Complete Streets Design Manual (City of London, 2018).  
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Table 2-2: Built environment variables and their corresponding code descriptions. 

Variable Code/Value Model Type 

Hotspot* 1 = Hotspot 

0 = Baseline (Not a Hotspot) 

Both Binary 

Street 

Lights 

1 = Street light presence 

0 = No street light presence  

It is assumed that all street lights are 

functional as data on functionality was not 

available 

Both Binary 

Bike Lanes 1 = Bike lane presence 

0 = No bike lane presence 

Both Binary 

Hedges 1 = Hedge presence 

0 = No hedge presence 

Both Binary 

Driveways The number of driveways in the vicinity of 

a given lixel. 

Mid-block Continuous 

Sidewalks 1 = Sidewalk presence 

0 = No sidewalk presence 

Both Binary 

Trees The number of trees in the vicinity of a 

given lixel or intersection. 

Both Continuous 

Parking 1 = On-street parking presence 

0 = No on-street parking presence 

Mid-block Binary 

Road 

Width 

Narrow = <7m 

Medium = between 7m and 14m 

Wide = >14m 

Mid-Block Categorical 

Average 

Road 

Width 

Narrow = <7m 

Medium = between 7m and 14m 

Wide = >14m 

Intersection Categorical 

Signalized 

Intersection 

1 = Intersection is signalized 

0 = Intersection is not signalized 

Intersection Binary 

Converging 

Roads 

Simple = <3 roads 

Medium = 4 roads 

Complex = >5 roads 

Intersection Categorical 
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The decision to use lixels as the unit on which to conduct analysis for mid-block 

segments meant that the road characteristic data was also attached to each lixel.  To do 

this, GIS analysis was used to detect whether built environment variables were within a 

23.5m buffer of a given lixel (Figure 2-4a). A buffer distance of 23.5m was established 

by sampling several main roads and determining the distance that most accurately 

covered the necessary environmental variables (Figure 2-4b). The road width for lixels 

were calculated by taking the distance of the centerline of a road to the road edge and 

multiplying it by two. Although this does not account for medians and traffic islands, the 

difference in road width these features make are minimal.  

Built environment variables were attributed to an intersection if they were within a 25m 

buffer distance (Figure 2-5). This distance was used to account for the lengths of the 

lixels converging at an intersection that were deemed as part of that intersection. The 

average road width of roads converging at an intersection was used as a proxy for 

intersection size. The variables were assumed to be functional and of consistent quality or 

size. For example, street lights were assumed to be working and hedges were assumed to 

be of the same size. 

Figure 2-4: a) A lixel on Farrah Road with a 23.5m buffer then b) displayed with built 

environment variables. A buffered lixel on Farrah Road displayed with built environment 

variables. Street trees are in green, streetlights in yellow, sidewalks in grey and 

driveways in teal. This lixel would be attributed as having street light presence, sidewalk 

presence, driveway presence and as having 16 street trees. 



28 

 

 

2.2.2 Data Analysis 

2.2.2.1 Network Kernel Density Estimation 

To identify MVC hotspots in London, Ontario, a network-based KDE method was used. 

Existing studies have used a planar-based KDE approach when identifying MVC 

densities and hotspots (Anderson, 2009; Erdogan et al., 2008). However, conventional 

planar-based KDE uses Euclidean space, which when used to analyze a phenomenon 

restricted to a network space, tends to overestimate and over identify clusters (Yamada & 

Thill, 2007; Xie & Yan, 2008). Network-based KDE was therefore chosen because 

network-based KDE considers that MVCs are constrained to the road network and thus is 

able to provide a more accurate identification of hotspots. This study uses the form 

proposed by Xie and Yan (2008) as the kernel density estimator for the density estimation 

of network-constrained point events, in this case MVCs, in a network space: 

 λ(z) = ∑
1

𝜏

𝑛
𝑖=1 𝑘(

𝑑𝑖𝑧

𝜏
)    (1) 

Figure 2-5: An intersection with a buffer of 25m shown with built environment 

variables. This intersection would be assigned as having streetlight presence, 

sidewalk presence, bike lane presence (brown line) and two street trees. 
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where λ(z) is the density at location z, τ is the linear network search radius (bandwidth), 

k(diz/τ)  is the weight of point i at distance diz to location z. The kernel function, k, is 

formed as a function of the ratio between diz and τ so that a distance decay effect can be 

taken into account in density estimation. This means that the further the distance between 

point i to location z, the less weight point i has in calculating density. Although there are 

several different kernel functions available to measure the distance decay effect, the 

impact of the choice of kernel is not significant whereas the choice of the search radius τ 

is important (Xie & Yan, 2008). This study uses the Quartic kernel, which when used in 

the network KDE function takes the form:  

𝜆(𝑧) =  ∑
1

𝜏

𝑛
𝑖=1 (

3

𝜋
(1 − 

𝑑𝑖𝑧
2

𝜏2 ))     (2) 

Both the search radius (bandwidth) and kernel function are based on network distance 

instead of Euclidean distance and the density calculated is measured in linear units (Xie 

& Yan, 2008).  

To implement network-based KDE, this study utilizes the R code written by Branion-

Calles (2020) which was based on the method proposed by Xie and Yan (2008). In total, 

80,671 lixels were created from 9,546 road segments as outlined in a prior section as the 

basis for the network KDE analysis. The center point for each lixel was found and the 

MVC point data was snapped to the nearest lixel center point, the total number of MVCs 

nearest to a lixel was counted and attributed to that lixel. Lixels that had one or more 

MVCs were defined as a source lixel, this was done to increase computational efficiency 

of subsequent processes.  

A search radius (bandwidth) of 150m was used for the analysis, the distance value of 

150m was deemed the most appropriate for identifying hotspots at a more local scale as 

larger search radii may mask some hotspot patterns (Xie & Yan, 2008). The shortest-path 

network distances from each source lixel’s center point to its neighboring lixels’ center 

points, within the search radius, were then calculated. From each source lixel’s and its 

neighboring lixels’ center points, a density value was calculated based on the Quartic 
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kernel function, previously calculated network distance, and the number of MVCs that 

were attributed to the source lixel.  

Xie and Yan (2008) also observed that the differences in kernel functions seem to be the 

least influential in the structure of density patterns in network KDE. If a lixel’s center 

point is within the search radius of multiple source lixels, the density values from these 

source lixels were summed and assigned to that lixel. A density value of 0 was assigned 

to all other lixels. The network KDE values were calculated annually for MVCs that 

occurred in London, resulting in ten different KDE values for a given lixel, 

corresponding to each of the ten years in the study (2010-2019). The traffic volumes were 

used to normalize the network KDE values that were calculated, this is to control for the 

relationship that traffic volume has with MVC incidence as traffic volume is one of the 

most influential predictors when modeling MVCs (Lovegrove & Sayed, 2006; Levine et 

al., 1995; Gladhill & Monsere, 2012). After normalization, density values were 

multiplied by 1000 units of AADT. 1 unit of AADT means that on average, one vehicle 

traveled along a segment or through an intersection per day for the year the traffic 

volume data was collected. Therefore, this new value represents the density value per 

1000 vehicles per day at that location. After the KDE values for all n = 80,671 lixels were 

computed, the lixels that were directly adjacent to an intersection were separated from 

lixels part of a mid-block road segment in order to perform separate analyses. This 

resulted in n = 63,976 lixels identified as being part of mid-block road segments and n = 

16,695 lixels that were labelled as being part of the n = 5,301 intersections. The KDE 

values for lixels converging at an intersection were averaged and assigned to that 

intersection to further simplify analyses. 

2.2.2.2 Trend Analysis & Hotspot Categorization 

We performed a temporal trend analysis on the yearly KDE values for each lixel and 

intersection using linear regression. Multiple existing studies in MVC literature have used 

various forms of regression analysis to assess temporal trends of MVC data (Orsi et al., 

2012; Ehsani et al., 2014; Schepers et al., 2017). The slope of the regression line of KDE 

against time (year) was analyzed to determine the relative trend of the KDE values for a 

given lixel or intersection. The direction of the slope indicates whether a lixel or 
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intersection is experiencing increasing or decreasing rates of MVCs, while comparing the 

KDE values to the mean indicates the relative overall level of MVC occurrence at the 

lixel or intersection.  

Assessing the trend of each lixel and intersection allows for the analysis of different types 

of hotspots. Hotspots that are increasing in relative MVC prevalence over time may have 

different built environment characteristics than a hotspot that is decreasing in MVC 

prevalence over time. Similarly, a hotspot that has been consistent and relatively high 

throughout the study period may also exhibit different characteristics. 

Most studies analyzing hotspot trends have used ESRI’s Emerging Hotspots Analysis 

tool in ArcGIS, which utilizes z-scores to assess the statistical significance of clusters and 

the Mann-Kendall statistic to assess the temporal trend of z-scores (Harris et al., 2017; 

Betty et al., 2020). While a popular tool for detecting hotspot trends, ESRI’s tool uses 

Space-Time cubes as its medium for analysis making it difficult to apply to a network 

environment due to its lack of flexibility. However, there is no consensus definition or 

method of determining what constitutes a hotspot, with previous studies using various 

threshold values as benchmarks to select the relatively higher risk areas (Thakali et al., 

2015; Bil et al., 2019). To distinguish each type of hotspot, this study uses the slope of 

the regression line and the mean KDE value of each lixel or intersection compared to 

their respective overall means and based on these two values, lixels and intersections 

were assigned to a category. This study looks at three main types of MVC hotspot trends: 

emerging, persistent, and diminishing, which are similar categories used in previous 

studies (Bil et al., 2019). Emerging hotspots, shown in orange in Figure 2-6, are hotspots 

that have relatively large positive coefficients, meaning they have higher network KDE 

values in recent years and moderate to high means, meaning they have relatively high 

network KDE values overall. Persistent hotspots, shown in red in Figure 2-6, are hotspots 

that have the greatest means, the highest network KDE values, and also have relatively 

stable slopes which indicate minimal fluctuation in yearly network KDE values. 

Diminishing hotspots, shown in yellow in Figure 2-6, are hotspots that have relatively 

large negative regression coefficients, meaning they had higher network KDE values in 

the earliest years of the study period and have lower network KDE values in recent years. 
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They also have moderate to high means which indicate a relatively high network KDE 

value overall. Baseline areas, shown as blue in Figure 2-6, are areas that have relatively 

stables slopes and relatively low means, indicating they have little fluctuation in network 

KDE values and have low network KDE values overall. The criteria for each category is 

shown in Table 2-3 and visualized in Figure 2-6. Emerging, persistent and diminishing 

hotspots were grouped together to determine the total amount of overall hotspots, 

whatever was not categorized as any of the three hotspot trend categories was deemed not 

a hotspot, or baseline. Examples of how lixel trends (Figure 2-7) and intersection trends 

(Figure 2-8) are assessed and categorized were mapped and compared.  

 

Figure 2-6: Hotspot categorization visualized, although not proportional this illustrates 

which areas of the distribution will be assigned to which category. The left side of the 

graph is greyed out as there were no lixels or intersections with a mean lower than one 

standard deviation less than the overall mean. The white dot represents the mean for both 

slope and mean overall. 
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Table 2-3: Hotspot categorization criteria used to determine the type of hotspot based on 

relative distribution. The criteria was applied to both lixels and intersections. The 

meaning of the abbreviations are as follows, s: Slope of a given lixel; S: Average slope of 

all lixels; m: Mean KDE of a given lixel; M: Mean KDE of all lixels; SD: Standard 

deviation. 

Hotspot 

Type 

Overall  

Type 

Relation to Overall  

Average Slope 

Relation to Overall  

Mean 

Emerging Hotspot  s > +1 SD  m > +1 SD  

 s > +1 SD  M < m < +1 SD 

 s > +1 SD  m < M 

Persistent Hotspot -1 SD < s <S m > +1 SD  

S < s < +1 SD m > +1 SD  

Diminishing Hotspot s < -1 SD m < M 

s < -1 SD M < m < +1 SD 

s < -1 SD m > +1 SD 

Baseline Not a 

Hotspot 

-1 SD < s <S M < m < +1 SD 

-1 SD < s <S m < M 

S < s < +1 SD m < M 

S < s < +1 SD M < m < +1 SD 
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Figure 2-7: Examples of lixel hotspot trend lines and how they were subsequently categorized based on their slope and mean. 
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Figure 2-8: Examples of intersection hotspot trend lines and how they were subsequently categorized based on their slope and mean. 
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2.2.3 Statistical Analysis 

Several studies have analyzed MVCs using logistic regression (Al-Ghamdi, 2002; Chen 

et al., 2012). Most studies test whether a collision resulted in a serious injury or fatality as 

the response variable for their model. This study uses whether a mid-block segment or 

intersection is classified as an MVC hotspot as the response variable for the first model. 

The use of hotspots as a response variable in a logistic regression has been used before in 

various applications of hotspot analysis, for example, in the comparison of spatial 

statistical methods for malaria hotspot detection (Mosha et al., 2014). This study also 

modeled the three types of MVC hotspots to see if relationships with variables differed 

with hotspot trends. 

We fit logistic regression models with a number of environmental covariates to capture 

the nature of the surrounding built environment. The environmental variables used in the 

logistic regression models differed based on the relevancy of the variable to a mid-block 

or intersection collision (Table 2-2). The mid-block models included street lights, bike 

lanes, driveways, sidewalks, street trees, on-street parking, hedges and road width as its 

independent variables. The intersection models included street lights, bike lanes, 

sidewalks, street trees, hedges, average road width, signalized intersections and number 

of converging roads as its independent variables.  

The goodness of fit of regression models was determined by computing McFadden’s 

pseudo r-squared statistic for each model (Menard, 2000). All analyses were conducted 

using the R statistical computing environment, with some data processing and most 

mapping conducted in ArcGIS Pro. The script authored by Branion-Calles (2020) was 

used for the network KDE analysis, which utilizes the package stplanr for spatial network 

creation (Lovelace & Ellison, 2017) and DescTools for calculating McFadden’s pseudo r-

squared (Signorell, 2021). 
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2.3 Results 

2.3.1 Network Kernel Density Estimation 

Among 63,976 lixels, the mean network KDE value for a given year ranged from 0.016 

to 0.031 and seems to be declining in recent years (Figure 2-9). This trend is similar to 

the downwards trend of fatal or injurious MVCs occurring annually in London. The 

annual mean network KDE values for the 5,301 intersections ranges from 0.0068 to 0.014 

and also has a downward trend, albeit at a comparatively stable rate. The number of lixels 

with at least one MVC occurring on it seems to be relatively stable in comparison to the 

decline in MVC occurrence. This suggests there are less collisions happening overall, but 

MVCs may be persisting at the same locations, which would result in lower network 

KDE values, potentially explaining the decline in mean network KDE values. 
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Figure 2-9: Mean network KDE values per 1000 AADT are shown for lixels (solid blue) 

and intersections (solid orange). The overall number of fatal or injurious MVCs are 

shown in dashed black and lixels that have at least one MVC are shown in dashed grey. 

The y-axis for the dashed lines is on the left, while the y-axis for the solid lines is on the 

right. 
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2.3.2 Trend Analysis 

The average slope for lixels without true zero lixels (n = 36,333), lixels with a density 

value of zero, was -0.0033 (SD: 0.046). This indicates that overall, network KDE values 

for road segments in London are slightly decreasing. The average mean for all MVC 

containing lixels for the entire study period was 0.055 (SD: 0.258). The distribution of 

these two metrics are shown in (Figure 2-10). The histogram for the slope of lixels shows 

most lixels have a slope close to 0 and they tend to be slightly negative. The negative 

mean for lixel slopes, considering the distribution, indicates there are several lixels that 

have significantly negative slopes. The histogram for the mean of all lixels is shown with 

a log10 scale transformation, showing many lixels have a mean KDE between 0.001 and 

0.01.  

The average slope for intersections without true zero intersections (n = 2,152), 

was -0.0009 (SD: 0.013), which indicates intersections are also demonstrating decreasing 

KDE values over time, but at a slower rate than lixels. The average mean for intersections 

without true zero intersections was 0.0177 (SD: 0.069). The distribution of these two 

metrics without true zero intersections are shown in (Figure 2-11). The histogram for the 

average slope of intersections shows most intersections have a slope close to 0 and they 

tend to be negative. The mean for intersection slopes seems to be much more in line with 

the distribution, indicating less outliers than lixels. The histogram for the mean of all 

intersections is shown with a log10 scale transformation, and also show most intersections 

fall between a mean KDE of 0.001 and 0.01. 

 

 



39 

 

  

Figure 2-10: Histograms showing the distribution of (a) slope excluding lixels exceeding 

plot limits (n = 6,577) and (b) KDE mean for all MVC lixels (n = 63,976). A log10 scale 

transformation is used for the x-axis. The mean of both distributions is shown as a 

vertical, dashed red line. 

Figure 2-11: Histograms showing the distribution of (a) slope excluding intersections 

exceeding plot limits (n = 341) and (b) KDE mean for all MVC intersections (n = 5,301). 

A log10 scale transformation is used for the x-axis. The mean of both distributions is 

shown as a vertical, dashed red line. 
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2.3.3 Hotspot Categorization 

Of the 63,976 lixels, 2,328 (3.64%) were classified as hotspots and 61,648 were classified 

as baseline lixels. Of the 2,328 hotspots, 548 (23.5%) were classified as emerging 

hotspots, 628 (27%) were classified as persistent hotspots and 1,152 (49.5%) were 

classified as diminishing hotspots (Figure 2-12a).  After mapping these lixel hotspots, 

they are observed to be generally distributed along road segments adjacent to major roads 

(Figure 2-13). 

Of the 5,301 intersections, 308 (5.81%) were classified as hotspots and 4,993 were 

classified as baseline intersections. Of the 308 hotspots, 110 (35.7%) were classified as 

emerging hotspots, 57 (18.5%) were classified as persistent hotspots and 141 (45.8%) 

were classified as diminishing hotspots (Figure 2-12b). After mapping these intersection 

hotspots, they seem to be concentrated in the eastern part of central London (Figure 2-

14). 

Figure 2-12: a) All lixels (n = 63,976) plotted according to their slope and mean values, 

colored according to their hotspot category. Lixels that exceeded the limits of the plot are 

not shown (n = 399). b) All intersections (n = 5,301) plotted according to their slope and 

mean values, colored according to their hotspot category. Intersections that exceeded the 

limits of the plot are not shown (n = 43). 
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Figure 2-13: A map showing the distribution of hotspot types throughout lixels in London, Ontario. 
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Figure 2-14: A map showing the distribution of hotspot types throughout intersections in London, Ontario. 
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2.3.4 Statistical Analysis 

All mid-block (i.e. lixel) models showed a statistically significant positive relationship 

between street lights and MVC hotspots with mid-block segments that have street light 

presence being approximately twice as likely to be a hotspot as those without.  However, 

in all intersection models, street lights showed no significant relationship with hotspots. 

Bike lanes have a statistically significant negative relationship with MVC hotspots at 

mid-block locations where segments with bike lanes were found to be on average 35% 

lower chance of being an MVC hotspot, with a greater effect on emerging hotspots (64% 

lower chance). Bike lanes also show a significant negative association with overall 

hotspots (56% lower chance) and similarly has a much greater effect on emerging 

hotspots (92% lower chance). Persistent hotspots and diminishing hotspots were not 

found to have a statistically significant relationship with bike lanes at intersections. 

Hedges were found to have a statistically significant association with all models except 

for emerging and persistent hotspots at intersections. Mid-block segments with hedges 

had an average 34% higher likelihood of being an MVC hotspot, while intersections 

experienced a similar effect (54% higher chance). Diminishing hotspots at intersections 

experienced a particularly great additive effect from hedges (96% higher chance).  

All mid-block models showed no statistically significant relationship between driveways 

and MVC hotspots except with emerging hotspots. On average, every driveway on a mid-

block segment contributed a 1% lower likelihood of being an emerging hotspot. 

Sidewalks have a statistically significant positive relationship with all hotspots at mid-

block locations, having the greatest effect on persistent hotspots. Segments with a 

sidewalk were four times as likely to be a MVC hotspot and six times as likely to be a 

persistent hotspot. All intersection models did not have a significant association with 

sidewalks.  

All hotspots at mid-block segments have been found to have a statistically significant 

association with street trees, with every street tree on a segment decreasing the chance of 
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a MVC hotspot by 3%. Hotspots at intersections were not found to have a significant 

association with street trees. 

On-street parking was found to have a significant positive effect on all hotspots at mid-

block locations, with segments being four times as probable of being a MVC hotspot.  

Compared to medium roads, narrow roads were found to have a significant, slight 

positive association (26% higher chance) with persistent hotspots at mid-block segments. 

Narrower roads did not have any significant effect on other hotspot types at mid-block 

locations or intersections. Wider roads were found to have a significant negative effect 

(over 80% lower likelihoods) on all hotspot types at mid-block segments and 

intersections except on emerging and persistent hotspots at intersections. 

Traffic signals were found to have no statistically significant effect on hotspots overall at 

intersections. 

Simpler intersections, intersections with three or fewer roads converging at an 

intersection, had a significant reductive effect (40% lower chance) on all hotspot types 

except emerging hotspots in comparison to normal intersections, intersections with four 

converging roads. Complex intersections with five or more converging roads did not have 

any significant association with MVC hotspots. 

2.3.4.1 Model Fit 

Overall, the mid-block models had slightly higher McFadden’s R2 coefficients, which 

indicates slightly better model fits than the intersection models. The McFadden R2 values 

ranged from 0.041 to 0.089. The model with the highest R2 coefficient was the persistent 

mid-block hotspot model. The emerging mid-block hotspot model had the lowest R2 

value. It should also be noted that few coefficients in the intersection models were 

statistically significant.
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Table 2-4: Results from logistic regression of hotspots against baseline for n = 63,976 lixels in London, Ontario, Canada. Estimated 

coefficients (β), estimated coefficient exponents (exp(β)), estimated standard error (S.E.) and p-value (p) for each model are reported 

along with McFadden’s R2 value. A “*” denotes a p-value lower than 0.05, a “.” denotes a p-value greater than 0.05. 

 Overall Hotspot 

Regression 

Emerging Hotspot 

Regression 

Persistent Hotspot 

Regression 

Diminishing Hotspot 

Regression 

Variable β exp(β) S.E. p β exp(β) S.E. p β exp(β) S.E. p β exp(β) S.E. p 

Street Lights 0.786 2.195 0.092 * 0.529 1.697 0.157 * 1.106 3.023 0.205 * 0.822 2.276 0.137 * 

Bike Lanes -0.430 0.650 0.079 * -1.021 0.360 0.208 * -0.426 0.653 0.145 * -0.264 0.768 0.103 * 

Hedges 0.295 1.343 0.047 * 0.350 1.419 0.096 * 0.267 1.306 0.087 * 0.288 1.334 0.065 * 

Driveways -0.001 0.999 0.002 . -0.012 0.988 0.004 * 0.003 1.003 0.003 . 0.002 1.002 0.003 . 

Sidewalks 1.417 4.125 0.075 * 1.044 2.841 0.133 * 1.820 6.171 0.161 * 1.456 4.287 0.110 * 

Trees -0.032 0.969 0.003 * -0.021 0.979 0.006 * -0.049 0.952 0.006 * -0.028 0.973 0.004 * 

Parking 1.405 4.076 0.125 * 0.941 2.563 0.318 * 1.445 4.243 0.211 * 1.541 4.670 0.159 * 

Medium 

Road 

(REF)                

Narrow Road 0.008 1.008 0.062 . -0.069 0.933 0.121 . 0.234 1.264 0.111 * -0.080 0.923 0.091 . 

Wide Road -1.953 0.142 0.147 * -1.766 0.171 0.301 * -2.209 0.110 0.300 * -1.903 0.149 0.202 * 

McFadden’s 

R2 

0.082    0.041    0.089    0.078    
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Table 2-5: Results from logistic regression of hotspots against baseline for n = 5,301 intersections in London, Ontario, Canada. 

Estimated coefficients (β), estimated coefficient exponents (exp(β)), estimated standard error (S.E.) and p-value (p) for each model are 

reported along with McFadden’s R2 value. A “*” denotes a p-value lower than 0.05, a “.” denotes a p-value greater than 0.05. 

 Overall Hotspot 

Regression 

Emerging Hotspot 

Regression 

Persistent Hotspot 

Regression 

Diminishing Hotspot 

Regression 

Variable β exp(β) S.E. p β exp(β) S.E. p β exp(β) S.E. p β exp(β) S.E. p 

Street Lights 0.439 1.551 0.239 . 0.723 2.061 0.423 . 0.527 1.695 0.565 . 0.220 1.246 0.329 . 

Bike Lanes -0.812 0.444 0.251 * -2.637 0.072 1.008 * -0.531 0.588 0.480 . -0.406 0.666 0.312 . 

Hedges 0.433 1.542 0.123 * 0.190 1.209 0.198 . 0.372 1.451 0.278 . 0.670 1.955 0.181 * 

Sidewalks 0.227 1.255 0.181 . 0.221 1.247 0.294 . 0.223 1.250 0.412 . 0.235 1.265 0.266 . 

Trees 0.004 1.004 0.018 . 0.029 1.029 0.018 . -0.028 0.972 0.028 . -0.006 0.994 0.017 . 

Signalized -14.72 0.000 332.0 . -14.497 0.000 784.6 . -15.94 0.000 937.2 . -14.06 0.000 331.2 . 

Medium Road 

Avg 

(REF)                

Narrow Road 

Avg 

-0.323 0.724 0.335 . -0.239 0.788 0.522 . -16.03 0.000 1124 . -0.002 0.998 0.433 . 

Wide Road Avg -1.915 0.147 0.461 * -15.951 0.000 577.4 . -1.007 0.365 0.619 . -2.138 0.118 0.723 * 

Normal 

Intersection 

(REF)                

Simple 

Intersection 

-0.508 0.602 0.150 * -0.539 0.583 0.271 . -0.727 0.483 0.308 * -0.631 0.532 0.21 * 

Complex 

Intersection 

-13.23 0.000 259.4 . -0.194 0.824 7331 . -14.96 0.000 7081 . -12.24 0.000 2596 . 

McFadden’s R2 0.058    0.069    0.044    0.053    
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2.4 Discussion 

2.4.1 Built Environment Influences 

2.4.1.1 Bike Lanes 

The mid-block segment models suggest that there is a negative relationship between 

MVC hotspots and the presence of bike lanes, which is consistent with existing MVC 

literature. The quality of bike lanes, that is the degree to which the bike lane is separated 

and cyclist is protected from traffic, has been shown to have an influence on MVCs 

involving cyclists (Reynolds et al., 2009). Bike lanes that are merely painted lines on the 

road surface have a lesser negative influence on MVCs than a bike lane that has a 

physical barrier between motor vehicle traffic and the cyclist (Reynolds et al., 2009). 

Bike lanes not only protect cyclists but also protect pedestrians by providing a buffer 

between the sidewalk (or curb in the case where there is no sidewalk) and traffic. 

Similarly, better quality bikes lanes will likely have a greater influence on reducing 

pedestrian MVCs. Bike lanes have also been shown to have an effect on drivers as well. 

The presence of bike lanes is thought to create a narrowing effect on roads that can 

influence drivers to exercise more caution (Reynolds et al., 2009). The results of the mid-

block models seem to corroborate the findings of previous studies, showing that in the 

London context bike lanes have a negative effect on MVC hotspots especially along mid-

block segments. 

The intersection models exhibit similar effects, but are not statistically significant. This 

may be a result of the intersection models as a whole, however bike lanes at intersections 

have also been shown to have potentially increasing effects on MVCs (Reynolds et al., 

2009). The presence of bike lanes encourages more cyclists to use the available facilities 

on those roads, which can create opportunities for conflicts between motor vehicles and 

cyclists. 

The results show that bike lanes seem to have an especially negative effect on emerging 

hotspots at both intersections and mid-block segments. This may be a result of the 

construction of bike lanes following London’s 2016 Cycling Master Plan which proposed 
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68km (41.7% increase) of on-street bike lanes to be constructed over the course of the 

next five years (City of London, 2016). This suggests that the areas these bike lanes are 

being built are not emerging hotspots. These areas potentially could have been emerging 

hotspots may have been dampened by the installation of bike lanes in recent years and 

have either declined or plateaued in terms of their network KDE value. The availability 

of the geographic data of bike lane types in London could allow for the evaluation of the 

relationship between bike lane quality and MVCs in the London context. 

2.4.1.2 Street Lights 

The consensus in MVC literature is that road visibility has a significant influence on 

MVC incidence (Retting et al., 2003; Stoker et al., 2015; Ewing & Dumbaugh, 2009). In 

particular, street lighting plays an important role in reducing MVCs occurring in the 

evening or at night, especially those involving pedestrians and cyclists. It is harder to see 

pedestrians and cyclists at night compared to vehicles which usually have head/tail lights. 

The results of this study seem to contradict these existing findings with all mid-block 

models showing street lights have a significant positive effect on MVC hotspots. The 

intersection models also show positive effects, but are not significant. However, there 

may be potential explanations for this contradiction. First, most of London’s roads and 

intersections are well-lit (68%) and all main roads and intersections have several street 

lights. The vast majority of MVCs resulting in injury or fatality are found in areas around 

main roads and intersections, areas that tend to have more vehicles, pedestrians and 

cyclists, so it makes sense that the models are showing an association between street 

lights and MVCs. Another potential explanation is that areas without street lights also 

may be a deterrent to pedestrians and cyclists, choosing not to travel along those roads. 

This study also does not differentiate between MVCs occurring during the day and 

MVCs occurring at night, so it is difficult to ascertain the effect that street lights actually 

have on MVCs in London. 

2.4.1.3 Hedges 

Another aspect of road visibility that has an influence on MVC incidence is sightlines, 

particularly at intersections (Dumbaugh & King, 2018). If road users are unable to see 
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each other in time due to objects obstructing their view it reduces the time that they have 

to react, creating dangerous situations. For example, a driver may not see another vehicle 

trying to cross the intersection at speed or a pedestrian that is about to run across the road. 

This study looks at hedges near roads as an object that has an impact on sightlines. The 

results of this study are consistent with existing literature and show that hedges do have a 

significant positive effect on MVC hotspots at mid-block segments and intersections. 

While it is clearer to see the impact poorly placed hedges can have at intersections, it is 

less obvious why hedges are associated with MVCs at mid-block segments. However, 

hedges along mid-block segments can obstruct the vision around driveways creating 

hazardous situations similar to that of intersections with poor sightlines. This may be a 

partial explanation as to why hedges are associated with MVCs at mid-block segments. 

The issue with sightlines at intersections has been recognized by the City of London and 

mentioned briefly in their Complete Streets Design Manual (2018). However, they only 

mention a loose guideline for future streets, lacking specification in terms of 

recommended distances from intersections, types of sightline obstruction and do not 

mention a plan for existing streets (City of London, 2018). The focus also remains on the 

removal of sightline obstructions, however, according to the Transport Association of 

Canada (2011), the speed of the vehicle greatly influences the sight distance needed. That 

is, the faster a vehicle is moving the greater distance from an intersection a driver needs 

to be able to have an unobstructed view of incoming traffic. In addition to the removal of 

sightline obstructions, there should be consideration on decreasing vehicle speeds in 

order to make the approach to intersections safer. There is no mention of addressing 

sightlines along mid-block segments, particularly driveways. While it is positive that 

London is addressing the issue with sightlines at intersections, this study shows it is 

important to consider mid-block segments as well. 

2.4.1.4 On-Street Parking 

All mid-block models show that on-street parking has a significant positive effect on 

MVC hotspots at mid-block segments. The literature on on-street parking does not seem 

to agree on its definitive effect on MVCs, while they have been shown to have potential 

as having a traffic calming effect, other studies suggest on-street parking may obstruct 
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sightlines (Ewing & Dumbaugh, 2009; Retting et al., 2003). In the London context, on-

street parking seems to corroborate the latter. This is concerning as London’s Complete 

Streets Design Manual mentions on-street parking as a positive feature citing its many 

benefits including its traffic calming and street revitalization potentials (2018). If not 

executed correctly and with care, on-street parking may have dangerous effects on 

London streets. Studies have mentioned positioning on-street parking at an angle instead 

of parallel to streets, thereby improving sightlines (Retting et al., 2003). Regardless of the 

approach that London chooses to use, on-street parking should be implemented with care 

and intention. 

The particularly positive relationship with on-street parking and diminishing hotspots 

could be explained by recent decreases in activity in and around downtown London. 

Similar to sidewalks, a majority of on-street parking facilities are located in downtown 

London. With more people favoring the suburban malls closest to them, due to the 

convenience of their private vehicles and the massive swathes of surface parking, there 

has been a decrease in traffic in downtown London. 

2.4.1.5 Sidewalks 

The presence of sidewalks in London seem to be significantly associated with MVC 

hotspots, particularly at mid-block segments. This may seem to contradict literature that 

indicate sidewalks tend to be safer for pedestrians than roads without a sidewalk (Ewing 

& Dumbaugh, 2009). However, the presence of sidewalks can also increase the 

pedestrian volume for that road, thereby increasing the exposure of pedestrians to 

vehicles. This likely explains the positive association between sidewalks and MVC 

hotspots in London. Persistent hotspots in particular experience an especially strong 

positive association with sidewalk presence. This is a concerning outcome, especially 

with the recent advocacy of active travel and physical exercise. These results show that 

there has been a lack of safety measures in place for the most vulnerable of road users in 

London. This is addressed in the 2018 Complete Streets Design Manual, recommending 

adequate sidewalk widths, street side elements and buffers depending on the street 

classification. While the construction of sidewalks is positive in terms of pedestrian 

accessibility and connectivity, it does not necessarily directly translate the walkability of 
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an area. It is just as important to create a safe and walkable environment around the 

sidewalk as it is to construct a sidewalk. On-street parking and bike lanes can act as 

buffers between pedestrians and vehicular traffic, reducing exposure. Street side elements 

like street trees, planters and benches can act as both traffic calming objects and physical 

barriers to protect pedestrians. While the feasibility of installing these safety measures 

will depend on the street classification and expected pedestrian volume, it is an important 

consideration in the revitalization and regeneration efforts of the City. 

It is difficult to discern why sidewalks seem to have a strong positive effect on 

diminishing hotspots, however it could be explained by lower pedestrian volumes in 

recent years. Downtown London has been experiencing difficulties with attracting 

shoppers, restaurant goers and the general population, losing patrons to suburban malls 

like Masonville Mall or White Oaks Mall, and neighborhood strip malls. A large portion 

of London’s sidewalks are located in the downtown, and with less pedestrian exposure, 

this could explain why some hotspots are diminishing. 

2.4.1.6 Street Trees 

London’s Complete Streets Design Manual considers street trees quite carefully, 

outlining characteristics for an ideal street tree and where they should be located in road 

design (2018). Street trees are not only a valuable environmental resource, but can 

influence the walkability or commercial viability of an area (Naderi, 2003). Additionally, 

in a road safety context, street trees are a common example of a street side object. If 

placed appropriately, street trees, along with the grassy medians they are often planted 

on, can act as a buffer and barrier between pedestrians and vehicular traffic (Naderi, 

2003). Street trees also have a traffic calming effect, creating a narrowing perception for 

drivers by establishing a hard edge. The mid-block models in this study show a 

significant negative association between street trees and MVC hotspots. This is consistent 

with existing literature and shows that the City of London should continue in its efforts in 

planting and maintaining well-designed treescapes. 
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2.4.1.7 Road Width 

Narrow roads have been associated with lower MVC incidence in much of the existing 

planning literature (Ewing & Dumbaugh, 2009; Stoker et al., 2015; Retting et al., 2003). 

The rationale is that a narrow road creates a constrictive effect on drivers, influencing 

them to drive with more care and caution, thereby reducing MVCs (Ewing & Dumbaugh, 

2009). The results of the persistent hotspot model at mid-block segments seem to 

contradict this existing theory, with narrow roads being positively associated with 

persistent MVC hotspots in London. It is difficult to discern why this is the case, however 

the association could be explained by the potential lack of traffic calming or street side 

protection at these locations. Narrow roads alone may not have enough of a traffic 

calming effect and may also require elements like speed humps, street trees and bike 

lanes to ensure a safe street. These narrow segments could also be a persistent problem 

due to inappropriate design speeds. The way a road is designed will influence actual 

operating speed rather than the posted speed limit (Dumbaugh & King, 2018). As such, if 

road segments are not designed appropriately, they could lead to operating speeds not 

safe for the road environment. For example, the approach to a sharp bend in a road should 

be designed to slow vehicles down, especially with narrow road segments as there is less 

room for error. Narrow road widths should be used in addition with further traffic 

calming and street side protection measures to reduce MVCs. Conventional engineering 

practice, however, has sought to give drivers as much room for error as possible with 

wider lanes and roads (Ewing & Dumbaugh, 2009; Dumbaugh & King, 2018). However, 

this may cause drivers to drive with less care and often at greater speeds, resulting in 

more severe accidents. The results of this study seem to contradict this theory as wider 

roads are significantly negatively associated with MVC hotspots in London at both 

intersections and mid-block segments. The method used to calculate road width likely 

includes bike lanes as a majority of the bike lanes in London are adjacent to and on the 

same surface as the road (City of London, 2016). This may explain some of the negative 

association between wide roads and MVCs, however the wide road coefficient has a 

greater magnitude than the bike lane coefficient, suggesting that bike lanes are not the 

sole reason for this negative association. The negative association with wider roads could 

also be a result of the normalization process, as the wider roads likely have significantly 
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greater traffic volumes than normal roads. This would mean wider roads have smaller 

network KDE values, resulting in their likely classification as a baseline area. 

2.4.1.8 Intersection Complexity 

This study found that simple intersections, intersections with three converging roads, are 

less likely to be an MVC hotspot than normal intersections, intersections with four 

converging roads. This is consistent with existing literature which suggests that three 

road intersections are safer than four road intersections as the number of conflict points 

decrease dramatically at three road intersections (Dumbaugh & Li, 2010; Miranda-

Moreno et al., 2011). With less opportunities for conflicts, road users need to process less 

information in order to make a correct decision. This study did not consider roundabouts 

as an intersection type, however the potential they have in reducing conflict points has 

been well documented in the literature, particularly at small to medium sizes (Ewing & 

Dumbaugh, 2009; Retting et al., 2003). The Complete Streets Design Manual does briefly 

mention guidelines for a roundabout, but a complex, large roundabout. These large 

roundabouts present some accessibility challenges, especially for pedestrians or cyclists 

which may make for riskier areas (Ewing & Dumbaugh, 2009). It would be beneficial for 

the City to consider small or medium sized roundabouts at primary or secondary 

collectors as the accessibility challenges are not as substantial at smaller scales.  

2.4.1.9 Signalized Intersections 

Although not statistically significant, signalized intersections are negatively associated 

with MVC hotspots overall in London, this corroborates existing literature (Dumbaugh & 

King, 2018). Typically, signalized intersections are located at intersections that require 

intersection control because of the volume and complexity of road users. In these cases, 

signalized intersections are especially effective in temporally separating vehicles, 

pedestrians and cyclists. It is important to prioritize which intersections traffic signals 

should be installed at, as it is not feasible to install traffic signals at every intersection. 

The Complete Streets Design Manual emphasizes the need for traffic signals at four road 

intersections that have cycling facilities (2018). The construction of small to medium 
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sized roundabouts could potentially reduce the installation and maintenance costs of a 

signalized intersection while still making the intersection safer. 

2.4.2 Limitations 

One of the main limitations of this study is its reliance on police records for MVC data. 

Issues with unreliability and under-reporting have been well documented in previous 

MVC literature (Amoros et al., 2006; Janstrup et al., 2016; Watson et al., 2015). 

Typically, these unreported MVCs do not involve injuries or fatalities and therefore 

likely would have been excluded from this study. Future MVC research would benefit 

from improvements in MVC data collection and links to hospital emergency room data.  

Another limitation is the lack of temporal data for built environment variables. It is 

difficult to determine the cause of some MVC hotspot trends as the available built 

environment data is static. The ability to track how the built environment is changing 

along with how MVC locations are changing could lead to even more robust 

interpretations and conclusions.  

The nature of network KDE means it smooths MVC data over adjacent lixels, converting 

MVCs from a point event to lixels with a distribution of risk (Xie & Yan, 2013). This 

means lixels next to areas with high MVC occurrence, major intersections for example, 

will have relatively high network KDE values despite MVCs not necessarily occurring 

directly on the lixel. While this may seem like an overestimation, it is important to 

consider areas surrounding intersections with high MVC occurrence as typically 

characteristics of the surrounding areas also have a role in influencing MVCs. These 

areas may not necessarily have MVCs occurring on them, but are still risky areas.  

Another issue with KDE is the lack of statistical significance in the estimation process 

and designated hotspot density threshold (Xie & Yan, 2008). Previous studies have 

indicated the overall lack of consensus in hotspot definition, usually resorting to an 

arbitrary selection method to determine the hottest areas or highest values (Thakali et al., 

2015; Bil et al., 2019). The method this study uses for hotspot categorization is based on 

previous studies’ utilization of linear regression trend analysis (Orsi et al., 2012; Ehsani 
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et al., 2014; Schepers et al., 2017) and relative distribution to define the hotspot 

categories. The calculated network KDE values were used as the basis for hotspot 

identification and subsequent logistic regression, thereby adding a layer of statistical 

significance to the results and mitigating the lack of statistical rigor associated with 

network KDE. 

2.4.3 Future Considerations 

While the network-based KDE seems to be the most appropriate approach in the 

identification of MVC hotspots, it would be interesting to see how the results would 

change if certain parameters were changed, specifically lixel length and search 

bandwidth. If the maximum lixel length was shortened from 25m to around 15-20m, the 

spatial pattern of the resulting density values would likely be more pronounced and more 

accurately display local variation. Decreasing the search bandwidth from 150m to 100m 

would have a similar effect, emphasizing hotspot patterns and locations with more detail. 

Using these smaller and more detailed hotspots in this analysis will in turn increase the 

detail in terms of built environment lixelization and subsequent modeling. While it is 

unknown how results may change, it is known that an increase in granularity will 

increase the computational load.  

The buffer distances used to attribute built environment variables to lixels and 

intersections could have also been improved. The buffer distance should be large enough 

to encompass all relevant built environment features but should also not encroach into the 

area of another lixel or intersection. The size of an intersection or road segment will 

influence how large a buffer should be, which means the buffer size will vary. This study 

attempts to find a buffer distance that suits lixels and intersections overall, but it would be 

interesting to see how results might change if the buffer distance was dynamic. 

2.5 Conclusion 

This study has resulted in several key findings that have implications on road safety in 

London, ON and its Vision Zero goal. Firstly, bike lanes have emerged as a significant 

negative influence on fatal and injurious MVCs. The City’s recent investment in bike 

lanes is a positive sign, however the construction of better quality, more separated bike 
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lanes is encouraged not only for the safety of cyclists, but pedestrians as well. The 

finding that sidewalks have a significant positive association with MVC hotspots is a 

worrying revelation. The promotion of walking necessitates a safe environment for 

pedestrians, not just the construction of a platform on which to walk. There is a need for 

the City to invest in its pedestrian infrastructure, particularly on safety measures like 

street side buffers and crossing aids like street islands and signalized intersections. 

Obstructions to sightlines like on-street parking and hedges have also been found to have 

a significant positive influence on MVC hotspots. However, this does not indicate a need 

for the removal of these features, rather a more nuanced approach in the implementation 

of these features. Future policy and road design practice should exercise caution in the 

implementation of these features and should consider a holistic approach for the safety of 

all road users. 
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Chapter 3  

3 Estimating the Pedestrian Volume of Students 
Commuting to School and Evaluating Safety Measures 
in London, Ontario. 

3.1 Introduction 

Motor vehicle collisions (MVCs) are the eighth leading cause of death for people of all 

ages, and the leading cause of death for children and young adults (5-29 years) (World 

Health Organization, 2018). Much of the current child MVC research has focused on 

child passengers involved in MVCs (Brolin et al., 2014; Durbin et al., 2005) and child 

pedestrian MVCs (Cloutier et al., 2021; Rothman et al., 2014; Connelly et al., 1998; 

Schwebel et al., 2012; Stevenson et al., 2015). Children are especially vulnerable to 

pedestrian MVC occurrence because of their limited experience and developmental 

capacity to perceive and understand traffic hazards (Schwebel et al., 2012; Cloutier et al., 

2021). Studies have shown that children, especially younger children, are typically unable 

to judge vehicle speeds and make safe decisions when crossing roads (Connelly et al., 

1998). They are also more vulnerable to severe injuries and fatalities resulting from 

MVCs because of their smaller frame and build (Stevenson et al., 2015; Cloutier et al., 

2021). Multiple studies have found that a large proportion of child pedestrian MVCs 

occurs within school travel hours and in close proximity to schools (LaScala et al., 2004; 

Warsh et al., 2009). Additionally, there has been a movement toward using active 

transportation modes for school travel as a way to increase the physical activity of 

children (Sallis et al., 2006; Faulkner et al., 2009; Larsen et al., 2009; Buttazzoni et al., 

2019). While this may be beneficial for the cardiovascular fitness and health of children, 

it also exposes children to vehicular traffic (Cloutier et al., 2021; Clark et al., 2016; 

Larsen et al., 2012). The promotion of active transportation, the vulnerability of children 

to MVCs and increased rates of child pedestrian MVCs around schools indicate a need to 

identify hazardous areas and implement road safety interventions. 

Common interventions targeting student safety are education programs and the 

implementation of crossing guards at busy intersections. While education programs have 
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been shown to change student pedestrian behaviors (Duperrex et al., 2002; Schwebel et 

al., 2014), there is no evidence that education programs decrease rates of pedestrian 

MVCs (Cloutier et al., 2021). Additionally, this places much of the burden and blame for 

student safety on students and schools, disproportionately (Cloutier et al., 2021). Traffic 

calming measures have been found to be effective in reducing pedestrian MVCs and 

creating a safer, more walkable environment (Rothman et al., 2014). However, these built 

environment interventions pose a significant investment for municipalities who often opt 

for a more cost-effective approach like crossing guard implementation. While crossing 

guards are generally accepted to have a positive influence on student safety (Schwebel et 

al., 2012), existing studies have found conflicting evidence. A quasi-experimental study 

(Rothman et al., 2015) found that the implementation of new crossing guards had no 

significant impact on rates of pedestrian MVCs while an observational study (Rothman et 

al., 2017a) found an association with higher MVC incidence.  

There has largely been a lack of accurate and reliable pedestrian volume data used in 

MVC studies, especially at the level of individual intersections and street segments 

(Cloutier et al., 2021; Fridman et al., 2021). This makes estimating current pedestrian 

MVC exposure risk difficult as many studies use area-wide pedestrian volume proxy 

measures (population density) which may not accurately represent actual pedestrian 

volumes and flows (Wier et al., 2009; Cottrill & Thakuriah, 2010; Warsh et al., 2009). 

This may be further exacerbated when focusing on child and adolescent pedestrian 

volumes, which are more likely to be clustered in and around schools and at specific 

times of the day. Using street level student pedestrian volumes will allow for more 

detailed analysis and identification of hazardous areas for children during school 

commutes. 

3.1.1 Research Objective 

The objective of this research is to identify which areas in London, Ontario pose the 

highest MVC risk to student pedestrians during their school commutes. To address this 

objective, the pedestrian volume of primary and secondary school students will be 

estimated for all road segments in the City of London during their school commutes. The 

student pedestrian volumes will be overlaid with a measure of MVC risk derived from the 
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previous chapter, creating a risk score and revealing the areas that pose the highest risk to 

the largest number of students. Current crossing guard locations will also be analyzed 

against these high-risk locations to assess the current suitability of student safety 

measures implemented by the City of London. It is expected that the findings of this 

study will be valuable for informing policy regarding student safety interventions, 

particularly for the location of crossing guards. 

3.2 Methods 

3.2.1 Data 

Data on school locations and student home postal codes from 2019 were obtained for 108 

schools in London, Ontario from Southwestern Ontario Student Transportation Services 

through an agreement with the Human Environments Analysis Laboratory at Western 

University. The data include the school the student attended, bus eligibility, the postal 

code of that student and their grade level. From this dataset, we selected students who 

attended school within London, lived within 1.6km of their school, were not eligible for 

bus service and assumed to be walking school (n = 31,258 students). Some postal codes 

were outside of the City of London and these students were excluded (<0.3% of the data 

met this criteria). The centroids of postal codes (n = 13,328) in London were sourced 

from DMTI Spatial. School building location and property boundary data were sourced 

from the Ontario Ministry of Education. The location of crossing guards was accessed 

through the City of London’s Open Data site (https://opendata.london.ca/) and cross-

referenced with updated crossing guard location data from the City; there were 12 

crossing guards located at mid-block road segments while 95 crossing guards were 

located at intersections (Figure 3-1). 

Closest facility analysis requires the creation of a network dataset that represents the 

pathways available for travel (i.e. a road network). To model student pedestrian travel, 

we generated a circulation network comprising the road network, as well as all trails, 

walkways and multi-use paths. These datasets were available through the City of 

London’s Open Data site. These individual networks were combined to create a 

circulation network, a network that also includes shortcuts or cut-throughs that more 

https://opendata.london.ca/
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accurately represents pedestrian accessibility (Figure 3-1). The consideration of shortcuts 

in pedestrian network analysis is important because it can increase the connectivity of a 

network and decrease travel distances due to the use of informal paths (Giles-Corti et al., 

2011; Clark et al., 2016; Larsen et al., 2012). We further cleaned and improved the 

pedestrian circulation network derived from the municipal data source in three ways, as 

demonstrated in Figure 3-2: 

1. Duplicate linear features were found and removed.  

2. Using GIS software, we digitized additional links/paths/cut-throughs using 

satellite imagery as a reference. 

3. Using GIS software, we digitized entrances to each schools’ boundary polygon as 

identified through satellite imagery overlaid with the circulation network and 

boundary polygons.  

We digitized a total of n = 413 entrances for the n = 108 schools in London, Ontario. The 

entrances identified in step 3 above were used as the destination locations for the 

subsequent closest facility analysis. All spatial manipulation and analyses were 

conducted in ArcGIS Pro. 
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Figure 3-1: The distribution of crossing guards (n = 107) and schools (n = 108) 

displayed on the circulation network, within the city limits of London, Ontario. 
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Figure 3-2: a) An example of duplicate linear features that were removed. b) An additional link (shown as yellow line) that was 

digitized. c) Digitizing the entrances (shown as green points) to a school’s boundary (shown as purple polygon). 
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3.2.1.1 MVC Risk Measure 

The measurement of MVC risk is derived using the outputs of the analyses in Chapter 2. 

The mean density value will be used as the measure of MVC risk for student pedestrians 

in London (Figure 3-3). The mean density values were calculated using MVC data from 

2010 to 2019, a network-based KDE method, normalized using traffic volume and 

averaged by year (see Chapter 2 for more details). The higher the density value, the more 

collisions occurred at that location or in close proximity to that location. The mean 

density value from 2010 to 2019 was used to determine which areas were consistently at 

risk of MVCs. While the density values are based on all collision types (automobile-

automobile, automobile-cyclist, automobile-pedestrian), we use it here as a proxy 

representative of the overall MVC risk level of a mid-block road segment or intersection. 
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Figure 3-3: Mean KDE value for intersections and mid-block segments across London, Ontario. 
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3.2.2 Data Analysis 

3.2.2.1 Closest Facility Analysis 

To generate a student pedestrian volume, a closest facility analysis method was 

employed. This analysis was conducted using ESRI’s Network Analyst Toolbox within 

ArcGIS Pro. Several studies have used a shortest network path analysis to determine the 

most likely routes for pedestrians and subsequent exposure estimation (e.g., Li et al., 

2020), and in particular child pedestrians commuting to school (Schlossberg et al., 2006; 

Larsen et al., 2012; Bennet & Yiannikoulias, 2015). Previous research has often chosen 

to use the main school entrance as the destination for students to reach; however, school 

grounds often have multiple entrances that students use to access the school property 

and/or building. To account for this variability, instead of determining the shortest 

network path between a student’s home and the main entrance of the school, we use the 

shortest network path to the nearest school entrance (Giles-Corti et al., 2011) where 

school entrances were defined manually by digitizing where the circulation network 

connected to school property boundaries. 

The closest facility analysis was run for each school with student data available (n = 108 

schools) where the postal code centroids of students attending that school were used as 

the origin locations (incidents) and each school’s entrances were used as destination 

locations (facilities). For each student, the nearest school entrance was found and the 

shortest network path along the circulation network was calculated. The public school 

board policy in this study area dictates that students that live greater than 1.6km from 

their school are provided bus service, therefore we further excluded students that had a 

shortest network distance > 1.6km network distance to their nearest school entrance as 

they were eligible for bus services (5,065 students were removed from this analysis based 

on this criteria). Several previous studies have used bus eligibility as exclusion criteria in 

estimating which children are walking to school and the routes that they take 

(Schlossberg et al., 2006; Larsen et al., 2012; Clark et al. 2016). After the closest facility 

analysis was conducted for each of the n = 26,103 students who lived within 1.6km of a 
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school entrance, the paths for all students were summed along each road segment and 

intersection to create a student pedestrian volume map for London, Ontario. 

3.2.2.2 Risk Exposure Analysis 

Our analysis looks to identify the areas that pose the greatest risk to student pedestrians 

based on a combination of calculated MVC density values and student pedestrian 

volumes. To do so, we created a risk score that represents the risk of MVC occurrence 

involving a student pedestrian. This was calculated by multiplying the mean KDE value 

of a location by that location’s student pedestrian volume. The risk score for all 

intersections and mid-block locations in London, Ontario was mapped. 

To identify the riskiest areas for student pedestrians, the mid-block segments and 

intersections with a student pedestrian volume of 40 students or greater were selected. 

These mid-block segments and intersections were then ranked according to their risk 

scores and the top 15% of each road type were selected. The threshold values of 40 

students and 85th percentile of exposure risk were used by the Ontario Traffic Council in 

their guide for the assessment of areas in need of crossing guard supervision (2017). 

These areas were deemed the highest risk for student pedestrians in London, Ontario. 

3.2.2.3 Crossing Guard Location Assessment 

Crossing guard locations were compared with the areas identified as posing the greatest 

risk to student pedestrians. While crossing guards should have a positive effect on child 

pedestrian safety, studies have found conflicting evidence. A quasi-experimental study by 

Rothman et al. (2015) found no significant change in MVC rates after the implementation 

of new crossing guards, while an observational study by Rothman et al. (2017a) found 

that crossing guards were associated with higher MVC rates. Crossing guards are often 

situated at areas with a higher volume of student pedestrians, however it can be argued 

that they should be located at areas with high MVC risk and relatively high student 

pedestrian volumes (Ontario Traffic Council, 2017). Assessing where crossing guards are 

currently located in relation to risky areas can lead to the identification of gaps in the 

crossing guard network. This was done by overlaying crossing guard locations with the 
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mid-block segments and intersections found to pose the highest risk to student 

pedestrians in London, Ontario. 

3.3 Results 

3.3.1 Student Pedestrian Volume 

The shortest network path from postal code centroid to closest school entrance was 

calculated for n = 26,103 students and merged to create a student pedestrian volume map 

(Figure 4). The maximum pedestrian volume along a mid-block segment was 495 

students and the mean volume of mid-block segments with at least one student pedestrian 

was 21 students. At intersections, the maximum and mean student pedestrian volumes 

were 383 and 32 students respectively. 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 
Figure 3-4: Student pedestrian volume in London, Ontario based on n = 26,103 students attending n = 108 schools. 
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3.3.2 Pedestrian Risk Exposure 

There were n = 12,497 mid-block segments and n = 2,096 intersections with a risk score 

greater than 0. The mean risk score at these intersections was 0.42 with a maximum of 

28.5 while the mean risk score at the mid-block segments was 0.98 with a maximum of 

510.4. Many of these segments and intersections have very small risk scores as evidenced 

by very low median values (Table 1). The risk scores are visualized in Figure 5. 

Table 3-1: Summary statistics for risk score by road type. 

Road Type Mean Median Maximum Standard Deviation 

Mid-Block Segments  

(n = 12,497) 

0.98 0.09 510.4 7.1 

Intersections  

(n = 2,096) 

0.42 0.06 28.5 1.4 
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Figure 3-5: Risk score for mid-block segments and intersections displayed alongside schools in London, 

Ontario. 
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3.3.3 High Risk Analysis 

Selecting the mid-block segments and intersections with at least 40 student pedestrians 

resulted in the removal of n = 60,508 (95%) segments and n = 4,505 (85%) intersections. 

Of these segments and intersections, the top 15% according to risk score were selected, 

resulting in n = 521 segments and n = 120 intersections (Figure 3-7). The riskiest mid-

block segments had an average risk score of 10.6 (Max: 510.4) while the riskiest 

intersections had an average risk score of 3.36 (Max: 17.3). While it seems that 

intersections have much lower risk scores overall, they have the higher average student 

pedestrian volumes (Table 3-2). 

Table 3-2: Student pedestrian volume summary statistics for the riskiest mid-block road 

segments and intersections. 

Road Type Mean Median Maximum Standard Deviation 

Mid-Block Segments (n = 521) 94 67 495 65 

Intersections (n = 120) 125 93 380 86 

3.3.4 Crossing Guard Location Assessment 

Crossing guards (n = 107) were located at areas with relatively high student pedestrian 

volumes (mean = 83, max = 383). However, crossing guards are thought to be typically 

deployed at areas with the highest student pedestrian volumes. Which is not the case in 

London, for the 50 intersections with the very highest volumes only 8 had crossing 

guards posted.  

When crossing guard locations were overlaid with the 521 mid-block segments and 120 

intersections determined to be high risk, only nine (8.4%) crossing guards were located at 

a high risk area. That is, very few of the 107 crossing guard locations corresponded to 

intersections or road segments with the highest MVC risk. Only 19 crossing guards were 

located less than 50m from a high risk area, a radius deemed appropriate for crossing 

guard effectiveness (Rothman et al., 2015). This is further visualized in a scatter plot in 
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Figure 3-6. The red dots are areas that have crossing guard supervision, the intersection 

plot has more crossing guards as that is where they are usually implemented. The points 

are plotted according to their mean KDE values and student pedestrian volume, the 

highest risk areas are towards the upper right-hand corner, while the lowest risk areas 

area towards the bottom left. Ideally, the red dots should be at the upper right area of the 

plot, however they seem to be dispersed evenly throughout. 

 

 

 

 

 

Figure 3-6: a) 12 mid-block segments and b) 95 intersections with crossing guard 

presence displayed with unsupervised segments and intersections according to mean 

KDE value and student pedestrian volume. 
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Figure 3-7: The riskiest mid-block segments and intersections in London, Ontario overlaid with crossing 

guards and schools. 



79 

 

3.4 Discussion 

3.4.1 Student Pedestrian Volume and Exposure 

The focus on student pedestrians in our study allows for a more accurate calculation of 

pedestrian volume due to the availability of origin (home) and destination (school) data. 

However, it is significantly limited in scope as this study only looks at student 

pedestrians during their commute to school. Child pedestrian behaviors and routing 

outside of school commute times and overall pedestrian pathing were outside of the scope 

of this study. Outside of school commutes, children tend to be restricted to areas around 

their neighborhood, particularly parks and other recreation areas, as they typically rely on 

their parents to drive them to further locations (Rothman et al., 2014; Stevenson et al., 

1996; Braddock et al., 1994). These walking behaviors are more difficult to predict and 

estimate to create a child pedestrian volume. 

The areas in London with the highest student pedestrian volumes are mostly around 

school entrances, which is expected. While unsurprising, these areas still pose a great risk 

to student pedestrians commuting to school as there still is a large potential for conflict 

with vehicles when parents are picking up/dropping off their children (Rothman et al., 

2017b). Higher vehicle volumes and higher student pedestrian volumes during school 

commuting times are periods of exceptionally high student pedestrian exposure to MVCs. 

The risk of these segments or intersections is even greater if the school is located on a 

major road or intersection, further exposing students to higher volumes of vehicular 

traffic. There is conflicting evidence in pedestrian MVC literature concerning the 

relationship between pedestrian exposure and pedestrian safety. Studies have found that 

more pedestrians walking have been shown to have an inverse relationship with MVC 

occurrence (Elvik & Bjornskau, 2017; Jacobsen, 2015), while studies have also found 

that areas with more children commuting to school are associated with higher rates of 

pedestrian injury (Rao et al., 1997; Gropp et al., 2013). It has been suggested that drivers 

may exercise more caution when in close proximity to higher volumes of pedestrians, 

however this may be negated by the urgency drivers might feel during rush hour 

commutes which often correspond with school start times. Additionally, previous studies 
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likely used area wide approximations of pedestrian volume, which makes it impossible to 

distinguish possible street level differences which are masked by the area wide 

relationship. For example, road segments with high pedestrian volumes in downtown 

areas may have lower MVC occurrence due to lower vehicle speeds while road segments 

with high pedestrian volumes near a school may have higher MVC occurrence due to 

potentially higher vehicle speeds or more opportunities for conflicts between road users.  

The lack of accurate and reliable pedestrian volume has been an issue in MVC literature 

(Cloutier et al., 2021; Fridman et al., 2021). Without pedestrian volumes, accurate 

exposure estimation cannot be calculated. Existing pedestrian MVC literature has used 

area wide measures such as population density or proportion of zoning types by census 

tract as proxies for pedestrian exposure/activity (Wier et al., 2009; Cottrill & Thakuriah, 

2010). The use of area wide approximations of pedestrian volume can lead to 

inaccuracies and a lack of granularity when identifying areas with high pedestrian MVC 

risk (Cloutier et al., 2021). More precise methods for calculating pedestrian volume 

involve manual counts of pedestrians (Rothman et al., 2014), the use of Google Street 

View and a big data approach (Yin et al., 2015) and pedestrian counting technologies 

(Kothuri et al., 2017). Manual counts are only able to provide a brief snapshot of 

pedestrian volume at locations where counters are present, resulting in a significant 

temporal and spatial gap. The use of Google Street View and a big data approach is 

promising, but the use of a static snapshot of a street for pedestrian detection is heavily 

reliant on when the image was taken; the availability of more data will aid in the accuracy 

and reliability of this method. Counting technologies like inductive loops or thermal 

cameras were found to be unreliable for pedestrian counts and while passive infrared 

counters were accurate at intersections, like manual counts, they are limited spatially. 

While pedestrian signal actuation has been found to have potential as a cost-effective 

method for approximating pedestrian demand at intersections, they are limited to 

signalized intersections and are unable to provide exact volume counts. 
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3.4.2 Measure of MVC Risk 

While the MVC risk was based on density values calculated using fatal or serious injuries 

resulting from all collision types, not pedestrian MVCs specifically, these collisions are 

the most hazardous and are indicative of a potentially unsafe area for all road users. 

Density values were used instead of absolute MVC counts to account for the spread of 

risk that results from an MVC occurrence (Xie & Yan, 2008). The density values were 

calculated for each year from 2010 to 2019 and averaged to determine the consistency of 

MVC risk at a location.   

3.4.3 High Risk Areas 

Ideally, no student should be exposed to areas with high MVC risk. However, a 

minimization of student pedestrian exposure to high MVC risk is more realistic goal. 

Overall, the risk scores of mid-block segments and intersection in London are relatively 

low with a mean of 0.98 and 0.42 respectively. While this may seem like a positive sign 

for student pedestrian safety in London, there are still several areas that have substantial 

risk scores and may warrant attention. We identified 521 segments and 120 intersections 

as high risk areas for students in London, these areas had average risk scores of 10.6 and 

3.36 respectively. This, in addition to average student volumes of 94 students at high risk 

mid-block segments and 125 students at high risk intersections indicate that there are a 

significant number of students exposed to areas with high MVC risk. These areas pose 

the most danger to most student pedestrians and should be addressed to ensure a safe 

walking environment for students.  

A previous study by Warsh et al. (2009) examined the MVC risk for students within 

school zones, finding that areas closest to a school had the highest risk for MVCs. The 

study also found that pedestrian MVCs also were more likely to occur during school 

commute times, further highlighting the need to address the dangers surrounding student 

safety during school travel. However, this study lacks the pedestrian exposure data that 

limits many studies in existing literature. In this study we were able to more accurately 

estimate pedestrian volumes and flows, allowing for a more detailed assessment along 

road segments and at intersections of student pedestrian exposure to MVC risk. 
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3.4.4 Crossing Guard Location 

We found that of the 107 crossing guards currently deployed in London, nine (8.4%) 

were located directly on a high risk area. Considering there are 521 mid-block road 

segments and 120 intersections found to be high risk areas for students, this was a 

surprising and concerning outcome as it suggests that there are hazardous areas, with high 

MVC risk, that are not supervised and may pose significant danger to student pedestrians. 

It can be argued that crossing guards have a greater effect radius than one exact location, 

with Rothman et al. (2015) using a 50m buffer around crossing guards. Using this 

criterion, it was found that 19 (17.8%) crossing guards were located near (within 50m) of 

a high risk area. The small proportion of crossing guards positioned near a high risk area 

indicates that the placement of crossing guards in London may need to be reassessed. The 

Ontario Traffic Council recommends that crossing guards be placed at locations with 

more than 40 student pedestrians and rank above the 85th percentile in terms of exposure 

risk. While the measure of exposure risk in this study differs slightly from the measure 

used by the Ontario Traffic Council, our assessment has found that over 80% of crossing 

guards in London may need to be relocated or re-evaluated. The Ontario Traffic Council 

only considered traffic volume and pedestrian volume for its exposure measure while we 

used MVC risk in addition to pedestrian volume. 

The discordance between crossing guard location and high risk areas could be explained 

by the established use of pedestrian volume and traffic volume as the rationale for 

crossing guard placement. Typically, crossing guards are placed in areas with the highest 

student pedestrian volumes without the consideration of MVC risk (Ontario Traffic 

Council, 2017). Assessing crossing guard location in London using this criterion still 

indicated poor placement. The average student pedestrian volume at each crossing guard 

location was 83; while relatively high, there are many areas with higher student 

pedestrian volumes without crossing guard supervision. Of the 50 intersections with the 

highest student pedestrian volumes, only eight were supervised by a crossing guard. This 

is concerning as this indicates there are many intersections where large volumes of 

students are crossing with no crossing guard presence. The lack of supervision makes 

students more vulnerable to MVCs due to their relative inexperience in navigating traffic 
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situations and potential conflicts, particularly for younger students (Cloutier et al., 2021; 

Bennet & Yiannakoulias, 2015). Interestingly, we found that there were four crossing 

guards that had a student pedestrian volume of zero. This is most likely a function of 

using shortest path distance as the only factor in route choice. In reality, these crossing 

guards almost certainly do not have zero students to supervise, as students (and parents) 

likely consider the location of crossing guards when choosing where they cross a street. 

Overall, crossing guards in London are being placed in areas with relatively high student 

pedestrian volumes, however they are missing at a vast majority of the busiest 

intersections which suggest a lack of location suitability.  

School assignment data for crossing guards was unavailable and it is not clear whether 

they are in fact assigned to a school, so the distance to the nearest school was calculated. 

The average distance from a school was 174.7m which was farther than expected, 

however one crossing guard was 790.2m from the nearest school which likely skewed the 

mean. This outlier could be explained by the fact that not all data for all schools in 

London were available (n = 18 schools were excluded), it is possible that this crossing 

guard was located proximal to a school not included in this study. Taking this and a 

median distance of 110.8m into consideration, the average distance to a school is 

relatively short. This is appropriate as the areas adjacent to a school typically have the 

highest student pedestrian volumes and are the most hazardous for students (Warsh et al., 

2009; Ontario Traffic Council; 2017). However, crossing guards may not currently be 

placed in the optimal areas close to a school as evidenced by the previous finding of the 

lack of supervision at the busiest areas.  

Large and busy intersections may pose a challenge to students attempting to cross due to 

their relative lack of experience (Cloutier et al., 2021; Bennet & Yiannakoulias, 2015). 

The ability to adhere to traffic signals and conventional street crossing procedure while 

being aware of all other road users in the environment is difficult for adults, much less 

inexperienced children. This difficulty is further exacerbated at larger intersections 

(Rothman et al., 2010). Not only do students have to cross a longer distance, but there are 

also more road users to be aware of and assess. Therefore, it would be appropriate for 

crossing guards to be placed at these difficult to navigate locations. We found that 46 
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(43%) crossing guards were located on streets or intersections classified as arterial 

streets. According to London’s official plan, arterial streets are designed for high traffic 

volumes traveling at speeds of 50-80 km/h and have at least two lanes (City of London, 

2018). In terms of assisting students in crossing the largest intersections, the suitability of 

crossing guard location seems to be adequate as not all schools are proximal to arterial 

streets. 

3.4.5 Student Pedestrian Safety in London 

The promotion of active travel by public health officials necessitates the need to create a 

safe walking and cycling environment. Increasing rates of obesity and sedentary lifestyles 

among children in developed nations has led to a focus on active travel promotion for 

students commuting to school (Lubans et al., 2011). The existing vulnerability of 

children, child pedestrians in particular, to MVCs and injuries sustained as a result of an 

MVC is well documented in road safety literature (Schwebel et al., 2012; Connelly et al., 

1998). It is difficult to assess the current situation with child pedestrian MVCs in London 

due to the lack of data. However, the adoption of Vision Zero principles and our findings 

of a large number of high risk areas in London indicate a need for intervention. While it 

can be argued that a city’s budget should not be used on interventions when there is no 

hard evidence that children have been involved in MVCs, preventative measures should 

be taken in issues involving public health, especially children’s health. If the City of 

London truly subscribes to the Vision Zero principle that no serious injury or fatality 

should result from an MVC, retroactive measures should be recognized as insufficient 

and a more proactive approach should be adopted.  

The adoption of Vision Zero in 2017 and the creation of the Complete Streets Design 

Manual in 2018 are positive steps for London’s road safety commitment. However, there 

is no clear plan for any kind of implementation of the road safety improvements like 

protected intersections, bike lanes or transit islands that have been briefly outlined on the 

City’s road safety site (https://london.ca/roadsafety). This is in stark contrast to the 

multiple detailed reports on the high level of road construction and renewal projects 

available on the City’s road construction site (https://london.ca/roadconstruction) with 

vague information on improvements to active transportation infrastructure. Education 

https://london.ca/roadsafety
https://london.ca/roadconstruction
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programs play an important part role in road safety, however in the context of student 

safety, they are typically targeted at students rather than drivers. Additionally, for 

programs like Active & Safe Routes to School (ASRTS) 

(http://www.activesaferoutes.ca/), the onus for adoption falls to the school themselves. 

Only 30 schools in London are currently listed as participants in the ASRTS program. 

This shifts much of the burden for student safety, disproportionately, to students and 

schools. Interventions for school safety by municipalities usually take the form of 

crossing guard implementation, with built environment interventions often cited as too 

expensive. However, in the case of London, many of the crossing guards seem to be 

located at less than ideal areas and the number of crossing guards may be insufficient for 

the number of schools and students. According to recommendations by the Ontario 

Traffic Council, traffic volume and pedestrian volume are the main criteria when 

warranting the placement of a crossing guard (2017). It was found that using these 

criteria, there were many areas with large volumes of students crossing unsupervised. 

Further, assessing crossing guard location considering MVC risk yielded more 

concerning results as the areas posing the highest MVC risk to the most students had little 

crossing guard presence.  

Due to resource limitations, it is critical to identify the most appropriate locations for 

crossing guards. Based on our findings, we recommend that existing crossing guards be 

relocated to areas with the greatest risk scores, which are the areas with the highest 

student pedestrian volumes as well as the highest MVC risk. It is likely the current 

number of crossing guards are insufficient to cover these areas, and despite the 

conflicting evidence surrounding crossing guards, more crossing guards should be hired 

to ensure a comprehensive coverage of high risk or high volume areas. In recent years, 

nine crossing guard locations have been cut citing a standard for crossing guard 

placement as the rationale for the removals (CTV London, 2014). While two crossing 

guard locations were added there was still a net loss in crossing guards, which suggests 

there was little attempt to identify more suitable areas for crossing guards. Finally, we 

recommend not only that more active transportation facilities be constructed, but the 

walkability and cyclability of these areas be prioritized. That is, paint on road surfaces 

and rudimentary sidewalks are insufficient and potentially hazardous, encouraging active 

http://www.activesaferoutes.ca/
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transportation when it is not safe for users. High quality, protected bike lanes in addition 

to sidewalks with sufficient built environment barriers like street trees or planters are 

needed to effectively ensure road safety for all users. While the lack of budget will likely 

be cited, there is evidence of numerous road construction and road expansion projects 

that are taking place in London (https://london.ca/roadconstruction). This shows a clear 

prioritization of drivers and vehicles rather than active transportation road users, which is 

in contrast to Vision Zero principles. 

3.4.6 Limitations 

From 2010 to 2019, there were a total of 1,656 MVCs (2.14% of all MVCs) involving 

pedestrians in London, 96% of which resulted in a serious injury or fatality. However, it 

is not possible using our data source (collected by the London Police Service) to 

distinguish which collisions involved children as only the age of the drivers involved was 

available. The lack of pedestrian MVC data, much less child pedestrian data limited our 

study in the ability to assess the actual MVC risk posed to child pedestrians. However, 

using mean density values calculated using the most dangerous collisions provides a 

sufficient proxy measure for MVC risk.  

Student data for n = 108 schools in London were included in this study, according to the 

City of London Open Data site there are a total of n = 126 elementary plus secondary 

schools. The data for 18 schools were unavailable, these include several private schools, 

provincial schools, special education schools and four French first language public 

schools. This means the student pedestrian volume and flows that were estimated in this 

study may not be wholly representative of London’s student pedestrian volume; however, 

it is likely sufficient for representing the overall spatial pattern of student pedestrian 

volumes and flows. Additionally, these missing specialized schools typically have a 

larger catchment area and have students attending from across the city. It is reasonable to 

assume that a small number of students would be walking to these schools and would not 

affect the spatial pattern and volume of student pedestrian flows that was calculated. 

https://london.ca/roadconstruction
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3.4.7 Future Considerations 

Previous studies have contested the use of shortest travel distance in pedestrian route 

prediction (Sevtsuk & Kalvo, 2022; Lam et al., 2014), with route discordance also found 

for children walking to school (Buliung et al., 2013). However, a study by Guo and Loo 

(2013) found that pedestrians in New York City consider travel distance as the primary 

factor in route choice and Cooper et al. (2010) found that children tend to follow the most 

direct routes between home and school. While the spatial pattern of student pedestrian 

flows would likely be quite similar, future use of other factors like elevation change or 

signalized crossings in route choice estimation could lead to a more accurate 

representation of actual student pedestrian paths.  

The availability of accurate and detailed pedestrian volume data has been a well-

documented issue in pedestrian MVC analysis. While we were able to more accurately 

estimate pedestrian volume than previous studies, our sample was limited to students. 

Additionally, the use of postal code centroids has been found to have distance 

discrepancies of 68-82m when determining accessibility to schools in London (Healy & 

Gilliland, 2012); however, it should not greatly influence the spatial pattern of student 

pedestrian flows and also provides a modicum of anonymity versus using exact student 

home address data. The identification of shortest network paths for each student leads to 

privacy concerns which is mitigated by the aggregation of these paths. However, the 

scalability of this method for wider pedestrian volume estimation is difficult as pedestrian 

paths usually involve multiple stops and may be interspersed with other modes of travel. 

The consideration of data privacy and tracking is another issue entirely and will likely 

pose the greatest challenge for the applicability of this method for general pedestrian 

volume estimation. 

While our study was able to estimate student pedestrian volume and exposure at street 

level, future research should increase the level of granularity. The ability to accurately 

identify which side of the street a pedestrian was walking or where they chose to cross 

the street would allow for more targeted interventions or analysis. 
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3.5 Conclusion 

The findings of this study suggest the inadequacy and unsuitability of current student 

pedestrian safety measures during school commutes in London, Ontario. We have 

identified several high risk areas, areas with high MVC risk and a large volume of student 

pedestrians that are currently unsupervised by crossing guards. Additionally, the 

placement of crossing guards is largely incongruent with the areas with the highest 

student pedestrian volumes, further emphasizing a need to evaluate and reconfigure 

crossing guard location in London. The promotion of active travel to school and the 

inherent vulnerability of children to MVCs necessitates the creation of a safe and 

walkable environment. This goes beyond the implementation of crossing guards and 

should include the promotion of educational programs like ASRTS and built environment 

improvements that protect active transportation users like protected bike lanes and the 

addition of street side buffers. A clear action plan on how substantial, high quality road 

safety improvements are going to be made, supported by significant investment in these 

built environment interventions, is required should the City seek to uphold its Vision 

Zero principles.  
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Chapter 4  

4 Conclusion 

4.1 Chapter 2 Findings 

In Chapter 2, MVC hotspots in London were identified and their temporal trends from 

2010-2019 were measured to assess the prevalence of MVCs across space and over time. 

Additionally, the influence of the street network’s built environment characteristics on 

the identified MVC hotspots were measured. Using the 12,283 MVCs that occurred in 

London from 2010-2019 that resulted in a fatality or serious injury, a network-based 

KDE method was employed in conjunction with a hotspot categorization method. This 

resulted in the identification of 2,328 mid-block hotspots and 308 intersection hotspots. 

The analysis of built environment influences on these MVC hotspots produced several 

key findings. It was found that bike lanes have a statistically significant reductive effect 

on MVC hotspots at both mid-block and intersection locations, particularly in emerging 

hotspots. Alternatively hedges and sidewalks were found to have a statistically significant 

positive association with MVC hotspot presence at mid-block segments and intersections, 

while on-street parking was found to be significantly associated with an increase in MVC 

hotspots at mid-block locations. The results of the study reported in Chapter 2 have 

implications for road safety policy in London and its Vision Zero goals. The reductive 

influence of bike lanes on MVC hotspots is an encouraging revelation given London’s 

recent investment in cycling infrastructure across the city. The construction of high-

quality separated bike lanes should be prioritized given its protective qualities for both 

cyclists and pedestrians, the most vulnerable road users. A more concerning finding, 

however, is the statistically significant positive association that sidewalks have with 

MVCs in London. The promotion of walking and active travel requires a safe 

environment for pedestrians to use. The positive association that sidewalks have with 

MVC hotspots indicate that the current pedestrian environment in London may not be 

safe or walkable. MVCs resulting in fatalities or serious injuries often are a result of high 

traffic speeds, which when located on streets with sidewalks and little to no street side 

buffer, pose a significant hazard to pedestrians. Additionally, most collisions involving 

pedestrians are likely to result in a fatality or serious injury. This suggests that current 
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sidewalk infrastructure may be inadequate regarding pedestrian safety and further 

investment into traffic calming or exposure reduction measures should be considered, 

such as increasing the distance between sidewalk and road via street side buffers such as 

grassy medians or bike lanes. Built environment features like hedges and on-street 

parking have been shown to have a statistically significant additive effect on MVC 

hotspots, with sightline obstruction likely playing a large role. While these features may 

decrease visibility, they also have traffic calming qualities. This means that the 

implementation of these features should be more calculated and deliberate. Overall, the 

road design of London’s street network should encompass the needs of all road users and 

emphasize the construction of built environment features that make the overall road 

environment safer.  

4.2 Chapter 3 Findings 

The exposure of school-age children in London to high MVC risk areas and the 

suitability of current crossing guard locations were assessed in Chapter 3. Using student 

home postal code data and school entrances, shortest network paths for each student (n = 

26,103) in the study were calculated. This was then aggregated to create a student 

pedestrian volume, allowing for an estimate of exposure to MVC risk for students in 

London, Ontario. Overlaying mean density values measured in Chapter 2 onto the student 

pedestrian volume, several high risk areas were identified. These areas were found to 

pose the greatest risk to the most student pedestrians commuting to school. These areas 

were overlaid with crossing guard locations, resulting in little overlap. Additionally, 

assessment based solely on student pedestrian volume also indicates a potential 

unsuitability of current crossing guard placement. With the recent promotion of active 

travel for school commutes and the vulnerability of children to MVCs, there may be a 

need to reassess current school safety protocols and measures in London, beyond 

crossing guard placement. Programs like ASRTS should be promoted and built 

environment interventions like street side buffers or traffic islands should be 

implemented to ensure pedestrian safety should the City endorse Vision Zero ideals. 
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4.3 Limitations and Future Considerations 

A major limitation of this study is the use of MVC data obtained from police records. The 

data reliability and under-reporting issues of police data has been well documented in 

MVC literature (Amoros et al., 2006; Janstrup et al., 2016; Watson et al., 2015). While 

future work in the field would only benefit from an increase in quality and quantity of 

MVC data, current data derived from police records still hold value for MVCs involving 

injuries or fatalities as unreported MVCs typically result in property damage only. The 

use of MVCs overall to estimate risk for student pedestrians is a result of a relative lack 

of pedestrian MVC occurrence in London, which may be indicative of the overall lack of 

pedestrians. Further, from the available pedestrian MVC data it was not possible to 

distinguish which MVCs involved school-age children. Future research should integrate 

hospital emergency room data with police data on MVCs to gain a deeper picture of child 

pedestrian injury due to MVCs. Nevertheless, while the use of student pedestrian MVCs 

would allow for a more accurate representation of MVC risk for students, an area deemed 

hazardous overall still poses a danger to students walking to school. 

Another major limitation is the lack of temporal data for built environment variables. 

This study would have benefitted from temporal built environment data of certain 

features as it would have been possible to determine the potential causes of MVC hotspot 

trends in London. Being able to track additions and removals of features like bike lanes, 

sidewalks, street trees, street lighting and hedges or the widening of roads are examples 

of dynamic built environment data that would benefit future MVC analysis, could lead to 

a better understanding of MVCs and therefore more informed policy decisions. 

Analyzing the changes in cycling infrastructure quality, road widths or crossing guards 

over time in London could have allowed for more vigorous analysis and potentially more 

robust conclusions.  

Assigning built environment features to mid-block road segments and intersections may 

seem a trivial task, but is crucial for the accurate representation in spatially explicit 

models looking at MVC rates associated with built environment features. Future work 

should consider the varying characteristics of particular road types or intersection types 

which may necessitate the use of dynamic buffer distances when attributing built 
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environment variables to a certain mid-block segment or intersection. For example, 

arterial roads and intersections are inherently larger than local roads and intersections, 

indicating a need for larger buffer distances. Ideally, buffer distances should have a 

radius large enough to cover all relevant features, but small enough so that it does not 

attribute features unrelated to that segment or intersection.  

Several studies have challenged the use of shortest travel distance in pedestrian route 

prediction (Sevtsuk & Kalvo, 2022; Lam et al., 2014), with route incongruence found for 

children walking to school (Buliung et al., 2013). However, a study by Guo and Loo 

(2013) found that pedestrians in New York City consider travel distance as a major 

influence on route choice. Additionally, Cooper et al. (2010) found that children tend to 

use the most direct routes when commuting from home to school. While the overall 

spatial pattern of student pedestrian flows would likely be quite similar, future work 

should consider other factors like change in elevation or crossing type in route choice 

estimation, which could lead to a more accurate representation of actual student 

pedestrian paths.  

The availability of accurate and detailed pedestrian volume data has been a well-

documented issue in pedestrian MVC analysis. The focus on student pedestrians allowed 

for an accurate estimation of student pedestrian volume, however this may be difficult to 

scale to pedestrians overall. Pedestrian trips often have multiple stops and may be used as 

transitions between other modes of travel, making it much more complex than a simple 

home-to-school commute. This poses a significant challenge for future work regarding 

pedestrian safety and the estimation of overall pedestrian volumes and flows. Greater 

availability and granularity of data will not only allow for the potential estimation of 

overall pedestrian volume, but more detailed and nuanced analysis that could lead to 

more focused interventions and policy decisions. 

4.4 Summary 

The areas in London with the highest MVC concentrations, posing the greatest risk to all 

road users, have been identified. Several built environment characteristics of the street 

network have been shown to have significant effects on the location of these MVC 
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hotspots, namely bike lanes, sidewalks, hedges and on-street parking. Changes to current 

road design practice and implementation may be necessary to ensure the safety of all road 

users in London, in accordance with Vision Zero principles. The availability of temporal 

built environment data would aid future work regarding the trends MVC hotspots are 

exhibiting. Several areas with high MVC risk in London have been found to also carry 

large amounts of student pedestrians on their commutes to school. The apparent 

incongruence of these areas and current crossing guard locations suggests a need for the 

reassessment of school safety protocols and measures in London. Understanding of the 

current road safety situation in the City in relation to the most problematic areas and the 

most vulnerable of road users should inform decisions made on how to address the issue 

of MVCs.  
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