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Abstract
The theory and practice of optimizing compilers gather techniques that, from input com-

puter programs, aim at generating code making best use of modern computer hardware. On
the theory side, this thesis contributes new results and algorithms in polyhedral geometry. On
the practical side, this thesis contributes techniques for the tuning of parameters of programs
targeting GPUs. We detailed these two fronts of our work below.

Consider a convex polyhedral set P given by a system of linear inequalities A~x ≤ ~b, where
A is an integer matrix and ~b is an integer vector. We are interested in the integer hull PI of P
which is the smallest convex polyhedral set that contains all the integer points in P. In Chap-
ter 3 we discuss our findings on the pseudo-periodicity of the vertices of PI when the input
vector ~b is parametric, that is, the coordinates b1, . . . , bm of ~b are treated as parameters while
the coefficients of A have fixed values. We observe that the number of vertices of PI has a
pseudo-period Ti w.r.t each bi. This result and its proof lead us to propose a new algorithm
for computing the integer hull of a rational convex polyhedral set, see Chapter 4. We have
implemented in the C programming language our algorithm for the case of polyhedral sets in
dimensions 2 and 3. We have also realized a Maple implementation of our algorithm for poly-
hedral sets of arbitrary dimension. Our experimental results show that our algorithm computes
integer hulls efficiently and can deal with polyhedral sets with large numbers of integer points.

On another front, we present KLARAPTOR (Kernel LAunch parameters RAtional Program
estimaTOR), a freely available tool built on top of the LLVM Pass Framework and NVIDIA
CUPTI API to dynamically determine the optimal values of launch parameters of a CUDA
kernel. We describe a technique that, for a CUDA kernel, builds at compile-time, a so-called
rational program. This rational program, based on some performance prediction model, and
knowing particular data and hardware parameters at runtime, can be executed to automatically
and dynamically determine the values of launch parameters, for the CUDA kernel, that will
yield nearly optimal performance.

Keywords: Integer hull, polyhedral set, parametric polyhedron, pseudo-periodic functions,
performance estimation, performance portability, CUDA, manycore accelerators, LLVM Pass
Framework
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Summary for Lay Audience
The theory and practice of optimizing compilers gather techniques that, when given input in
the form of computer programs, aim at generating code that makes the best use of modern
computer hardware to run those computer programs. On the theory side, this thesis contributes
new results and algorithms in polyhedral geometry. On the practical side, this thesis con-
tributes techniques for the tuning of parameters of programs targeting Graphic Processing Units
(GPUs). We give a high-level introduction of these two fronts of our work below.

The many constraints of real-world problems, such as finding the number of construction
workers required to complete a given task within a budget and before a deadline, can be trans-
lated into systems of multiple linear expressions. A solution to the system of expressions
represents a solution to the real-world problem that satisfies all the constraints. Solving a lin-
ear system on real numbers can be simple but impractical, such as assigning 9 3

4 construction
workers to the project, while practical solutions are often integer and require a long time to
compute. Linear systems can often be represented as convex polyhedral sets, such as a trian-
gle in 2 dimensional space or a cube in 3 dimensional space. If the integer points within a
polyhedral set can be computed, these points can be used to solve the integer linear system.
Therefore, we present the theory and an algorithm to find the integer points in a polyhedral set,
and we show that our method is significantly faster than existing ones.

Software can often be launched with different parameters. Sometimes, parameters are re-
quirements of the users (data parameters) and affect the correctness of the results. In other
cases, the parameters are fixed with regard to the hardware (hardware parameters). We focus
on parameters that have no impact on the results, but instead are related to the efficiency of the
software (program parameters). Optimizing the program parameters can save resources such
as time and memory but can be difficult without being an expert on the specific program. We
present KLARAPTOR (Kernel LAunch parameters RAtional Program estimaTOR), a tool that
dynamically computes program parameters that result in a good performance of the program.
KLARAPTOR works on CUDA; the fine control of the hardware resources afforded by GPUs
are preferable to CPUs and CUDA is the most popular programming language for GPUs. The
underlying technique of KLARAPTOR can be applied to parallel programs in general, given a
performance prediction model which accounts for data, program and hardware parameters.
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Chapter 1

Introduction

The theory and practice of optimizing compilers gather techniques that, from input computer
programs, aim at generating code making best use of modern computer hardware. Several
core areas of computer science and mathematics contribute such techniques: automata theory,
computer architecture, distributed and parallel programming to name a few.

One important set of techniques for optimizing compilers are used for the problem of an-
alyzing, scheduling and transforming for-loop nests in computer programs. Because the itera-
tions of a for-loop nest can be seen as the integer points of a rational polyhedral set, the area
of polyhedral geometry plays a central role. In many instances of that problem, the polyhedral
set is clearly given while its integer points need to be described in a synthetic way from which
useful information can be extracted. Describing the integer points of a rational polyhedral set
is a hard problem which is still actively researched today; we introduce it in Section 1.1.

Another important set of techniques for optimizing compilers are used to solve the follow-
ing problem: given an executable program, the performance of which is dependent on tunable
parameters, how to effectively determine optimal values for those parameters. By effectively,
we imply that the cost of this determination should be largely amortized against the obtained
benefits. A well-known special case of that problem is the tuning of parameters related to
the characteristics of the memory hierarchy (e.g. thresholds between base-cases and recursive
calls) towards minimizing cache misses. Another special case is the determination of the kernel
launch parameters of a program written for Graphics Processing Units (GPUs). This is another
hard problem which is also actively researched today; we introduce it in Section 1.2.

1.1 Integer hulls

The integer points of rational polyhedral sets are of great interest in various areas of scientific
computing. Two such areas are combinatorial optimization (in particular integer linear pro-
gramming) and compiler optimization (in particular, the analysis, transformation and schedul-
ing of for-loop nests in computer programs), where a variety of algorithms have been designed
to solve questions related to the points with integer coordinates belonging to a given polyhe-
dron. Another area is at the crossroads of computer algebra and polyhedral geometry, with
topics like toric ideals and Hilbert bases, see for instance [62] by Thomas.

One can ask different questions about the integer points of a polyhedral set, ranging from

1



2 Chapter 1. Introduction

“whether or not a given rational polyhedron has integer points” to “describing all such points”.
Answers to the latter question can take various forms, depending on the targeted application.
For plotting purposes, one may want to enumerate all the integer points of a 2D or 3D poly-
tope. Meanwhile, in the context of combinatorial optimization or compiler optimization, more
concise descriptions are sufficient and effective.

For a rational convex polyhedron P ⊆ Qd, defined either by the set of its facets or that of its
vertices, one such description is the integer hull PI of P, that is, the convex hull of P ∩Zd. The
set PI is itself polyhedral and can be described either by its facets, or its vertices. In addition
to finding the description of the whole integer hull PI another problem that is well studied is
that of counting the integer points in a rational polyhedron. The region enclosed by the blue
segments in Figure 1.1 shows an example of a convex polyhedral set P. All the green points
are the integer points within P. The red segments are the facets of the integer hull PI of P.

x

y

Figure 1.1: A convex polyhedral set and its integer hull

In practice, polyhedral sets are often parametric. Consider, for instance, the for-loop nest,
written in a programming language (say C) of a dense matrix multiplication algorithm (see
Listing 1). At compile time, the upper bound of the value range of each loop counter is a
symbol. To be more precise, the iterations of that for-loop nest are the integer points of a
polyhedral set P given by a system of linear inequalities A~x ≤ ~b where A is a matrix with
integer coefficients, ~b is a vector of symbols (actually the parameters of the polyhedral set)
and ~x is the vector of the loop counters. For Listing 1, the iteration space is a cube shaped
polyhedral set with the following constrains

i, j, k ∈ Z
0 ≤ i ≤ n
0 ≤ j ≤ m
0 ≤ k ≤ p

(1.1)

At execution time, different values of ~b yield different shapes and numbers of vertices for
PI . Figure 1.2 shows the integer hulls of a parametric polyhedral set given by

−x ≤ 0
−2x + y ≤ 0
2x + y ≤ b



1.1. Integer hulls 3

when b = 10 and b = 13. We can see that the shapes and the numbers of the vertices of the
integer hulls vary while b is taking different values. So what can be done at compile time when
analyzing a parametric polyhedral set? This is another question motivating our work.

for (int i = 0; i < n; i ++)
for (int j = 0; j < m; j ++)

for (int k = 0; k < p; k ++)
C[i][j] += A[i][k] * B[k][j];

Listing 1: Loop-nest of a dense matrix multiplication

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

2x
+

y
=

10
2x

+
y

=
13

x

y

Figure 1.2: The integer hulls of a parametric polyhedral set with different values of ~b

For a parametric polyhedral set, it is challenging to give a description of all the integer
points since the number and positions of the integer points depend on the values of the param-
eters. It is natural to ask whether we can describe the vertices of the integer hull and a first step
would be asking for the number of vertices in an integer hull of a polyhedral set. Note that this
latter problem only considers the vertices not all the lattice points.

With all these observations in mind, we propose to study the following two problems.
1. For a non-parametric polyhedral set in arbitrary dimension, can we design an effective

algorithm to compute its integer hull? By effective, we mean an algorithm which can
support problems arising in practice, in particular in the analysis of for-loop nests. As
the literature review will show, existing algorithms make little use of geometric con-
siderations. In loose terms, the key geometric observation that we have in mind is the
following: if P is “almost identical” to PI then the cost of computing the vertices of PI
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from the vertices of P should be “cheap” and “nearly independent” of the size (or vol-
ume) of P. In other words, computing PI should be achieved by “deforming” P in an
economical way until P becomes PI .

2. For a parametric polyhedral set P(~b), which information on the map ~b 7−→ P(~b)I can
be computed? Our key observation is that, when the values of the coordinates of ~b are
large enough, this map is pseudo-periodic. As the literature review will show, existing
results have studied this phenomenon. Our preliminary results for the two-dimensional
case enhance what was known. Meanwhile, generalizing our results to higher dimension
is left for future work. Knowing that the map ~b 7−→ P(~b)I is pseudo-periodic can help
computing information about P(~b)I before the value of ~b is known, that is, at compile-
time, to speak in the language of compiler theory.

1.2 Kernel launch parameters of CUDA kernels
CUDA is the most popular computation model and programming language for GPUs, see [50]
where CUDA was originally proposed. A CUDA program interleaves C code, meant to be
executed on the CPU, and multithreaded code meant to be executed on the GPU. This multi-
threaded code takes the form of calls to functions, called kernels.

A CUDA kernel is typically launched by specifying launch parameters that dictate the
number of device threads executing the kernel in parallel, and the grouping of thread processors
on the GPU. For instance, a kernel for adding two vectors would be specified as:

sum<<<G,B,S>>>(d_a, d_b, d_c);

where:
1. G specifies the dimension and size of the grid,
2. B specifies the dimension and size of each block,
3. S specifies the number of bytes in shared memory that is dynamically allocated per block,
4. d a, d b, and d c are arrays allocated in the GPU memory.

Because they define the execution configuration of the kernels, B, T, and G are called Program
Parameters. Because they represent the data upon which a kernel operates, d a, d b, and d c
are called Data Parameters.

Data parameters are independent from program parameters, and are determined by users’
needs and available hardware resources. Program parameters, however, are intimately related
to data and hardware resources. Meanwhile, the choice of program parameters can largely
affect the performance of the program. Therefore, determining optimal values of program
parameters that yield the best program performance for a given confluence of hardware and
data parameter values is critical. Further, determining such values automatically is important
to enable users to execute the same parallel program efficiently on different hardware platforms.
This is the third problem studied in this thesis.

To understand the challenge, we observe that trying at execution-time all the possible values
of the program parameters would take an amount of time that would not be acceptable in
practice. Determining the best values of those program parameters at compile-time is also
challenging since at compile-time the values of the data parameters may not be known!
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1.3 Contributions
The contributions of this thesis address the two problems proposed in Section 1.1 as well as
the problem proposed in Section 1.2. Our solutions are presented respectively in Chapters 3,
4 and 5. Chapter 2 gathers background material and literature review for Chapters 3 and 4.
Meanwhile, background material and literature review for Chapter 5 can be found in that same
chapter.

On the pseudo-periodicity of the integer hull of parametric convex polygons

Consider a rational convex polygon given by a system of linear inequalities A~x ≤ ~b, where
A is a matrix over Z, with m rows and 2 columns, and ~b is an integer vector. The coor-
dinates b1, . . . , bm of ~b are treated as parameters while the coefficients of A have fixed val-
ues. We observe that for every 1 ≤ i ≤ m, there exists a positive integer Ti so that, when
each b1, . . . , bm is large enough, the vertex sets V and V ′ of the respective integer hulls of
P := P(b1, . . . , bi−1, bi, bi+1, . . . , bm) and P′ := P(b1, . . . , bi−1, bi +Ti, bi+1, . . . , bm), are in a “sim-
ple” one-to-one correspondence. We state and prove explicit formulas for the pseudo-period Ti

and that correspondence between V and V ′. This result and the ingredients of its proof lead us
to propose a new algorithm for computing the integer hull of a rational convex polygon.

Computing the Integer Hull of Convex Polyhedral Sets

We discuss a new algorithm for computing the integer hull PI of a rational polyhedral set P, to-
gether with its implementation in Maple and in the C programming language. Our presentation
focuses on the two-dimensional and three-dimensional cases. However, we state our algorithm
in arbitrary dimension. Moreover, the Maple implementation works in arbitrary dimension
too. Our experimental results show that our algorithm computes integer hulls efficiently and
can deal with polyhedral sets with large numbers of integer points.

KLARAPTOR: A Tool for Dynamically Finding Optimal Kernel Launch Parameters
Targeting CUDA Programs

We present KLARAPTOR (Kernel LAunch parameters RAtional Program estimaTOR), a freely
available tool built on top of the LLVM Pass Framework and NVIDIA CUPTI API to dynami-
cally determine the optimal values of kernel launch parameters of a CUDA kernel. We describe
a technique that, for a CUDA kernel, builds at compile-time, a so-called rational program. This
rational program, based on some performance prediction model, and knowing particular data
and hardware parameters at runtime, can be executed to automatically and dynamically de-
termine the values of launch parameters, for the CUDA kernel, that will yield nearly optimal
performance. Our underlying technique could be applied to parallel programs in general, given
a performance prediction model which accounts for program and hardware parameters. We
have implemented and successfully tested our technique in the context of GPU kernels written
in CUDA.



Chapter 2

Background on integer hull

This chapter gathers background material and literature review for the integer hull problem
which we study in Chapter 3 and Chapter 4.

2.1 Preliminaries

In this review of polyhedral geometry, we follow the concepts and notations of Schrijver’s
book [56], As usual, we denote by Z, Q and R the ring of integers, the field of rational numbers
and the field of real numbers. Unless specified otherwise, all matrices and vectors have their
coefficients in Z. A subset P ⊆ Qd is called a convex polyhedron (or simply a polyhedron) if
P = {x ∈ Qd | Ax ≤ ~b} holds, for a matrix A ∈ Qm×d and a vector ~b ∈ Qm, where m and d
are positive integers; we call the linear system {Ax ≤ ~b} an H-representation of P. Hence, a
polyhedron is the intersection of finitely many affine half-spaces. Here an affine half-space is
a set of the form {x ∈ Qd | ~wtx ≤ δ} for some nonzero vector ~w ∈ Zd and an integer number δ.
When d = 2, as in the rest of this thesis, the term convex polygon is used for convex polyhedron.

A non-empty subset F ⊆ P is a face of P if F = {x ∈ P|A′x = ~b′} for some subsystem
A′x ≤ ~b′ of Ax ≤ b. A face distinct from P and with maximum dimension is a facet of P.
The lineality space of P is {x ∈ Qd | Ax = ~0} and P is said pointed if its lineality space has
dimension zero. Note that, in this thesis, we only consider pointed polyhedra. For a pointed
polyhedron P, the inclusion-minimal faces are the vertices of P.

We are interested in computing PI the integer hull of P, that is, the smallest convex poly-
hedron containing the integer points of P. In other words, PI is the intersection of all convex
polyhedra containing P ∩ Zd. If P is pointed, then P = PI if and only if every vertex of P is
integral [56]. Therefore, the convex hull of all the vertices of PI is PI itself.

In this thesis, we also talk about parametric polyhedra. In particular, we use the notation
P(~b) = {x | Ax ≤ ~b} where ~b is unknown and P(bi) = {x | Ax ≤ ~b} where bi is an unknown
coordinate of the vector ~b.

6
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2.2 Literature review

2.2.1 Integer hull

One important family of algorithms for computing PI relies on the cutting plane method, orig-
inally introduced by Gomory in [28] to solve integer linear programming (ILP) and mixed-
integer programming (MILP) problems. This method is based on finding a sequence of linear
inequalities (cuts) to reduce the feasible region to the original ILP problem. Figure 2.1 and 2.2
show an example of using the cutting-plane method to solve the ILP problem given by (2.1).

maximize y
subject to x, y ∈ Z

x ≥ 0
−3x + 2y≤ 0
3x + 2y ≤ 6

(2.1)

The first step is to solve the problem as a LP problem and find the general optimum solution
which is not necessarily an integer solution. Solving the above problem gives a fractional
optimum (1, 3

2 ). If the current optimum is integer, then it is the final result. If it is a fractional
solution, the next step is to add a new constraint to reduce the feasible region. The current
fractional optimum must not satisfy the new constraint while all the integer feasible solutions
of the original LP should remain feasible. The first cut added is y ≤ 1 and we have our second
optimum ( 2

3 , 1) which is still a fractional solution. So the second cut, y ≤ x, is added and we
obtain a integer optimum (1, 1) which is the final solution to our ILP.

1 2

1

2

−
3x

+
2y

=
0

3x
+

2y
=

6

1st optimum

x

y

(a) An integer linear programming problem

1 2

1

2

−
3x

+
2y

=
0

3x
+

2y
=

6

1st cut y = 1

1st optimum

2nd op

x

y

(b) Adding the first cut

Figure 2.1: Solving ILP with cutting-plane method

Chvátal [17] and Schrijver [55] gave a geometrical description of the cutting plane method
and developed a procedure to compute PI based on it. Schrijver gave a full proof and a com-
plexity study of this method in [56].
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1 2
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=
0

3x
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2y
=

6

2st cu
t x −

y =
0

1st optimum

2nd op

3rd op

x

y

(a) Adding the second cut

1 2

1

2

−
3x

+
2y

=
0

3x
+

2y
=

6
Integer optimum

x

y

(b) Optimum integer solution

Figure 2.2: Solving ILP with cutting-plane method II

Another approach for optimizing over PI uses the branch-and-bound method, introduced
by Land and Doig in the early 1960s in [41]. This method recursively divides P into sub-
polyhedra, then the vertices of the integer hull of each part of the partition are computed. The
branch-and-bound algorithm is also first introduced to solve the integer optimization problem.
It consists of a systematic enumeration of candidate solutions by means of state space search:
the set of candidate solutions is thought of as forming a rooted tree with the full set at the
root. The algorithm explores branches of this tree, which represents subsets of the solution set.
Before enumerating the candidate solutions of a branch, the branch is checked against upper
and lower estimated bounds on the optimal solution, and the branch is discarded if it cannot
produce a better solution than the best one found so far by the algorithm.

For example, see Figure 2.3 shows the first steps of using the branch and bound algorithm
to solve the following ILP.

maximize 4x + 5y
subject to x, y ∈ Z

x, y ≥ 0
x + 4y ≤ 10
3x − 4y≤ 6

It first found a fractional optimum of (4, 3
2 ). Since y = 3/2 < Z, the algorithm divides the

original problem into two regions with y ≥ 2 and y ≤ 1. Then it keeps searching and branching
in the two regions until the integer optimum is found.
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1 2 3 4 5

1

2

3

3x −
4y

=
6

x + 4y = 10

1st optimum

x

y

(a) Adding the second cut

1 2 3 4 5

1

2

3

3x −
4y

=
6

x + 4y = 10y = 2

y = 1

x

y

(b) Optimum integer solution

Figure 2.3: Solving ILP with brand-and-bound method

Since an integer hull is the convex hull of all the integer points within a polyhedral set,
a straightforward way of computing the integer hull is an enumeration of its integer points,
followed by a convex hull computation. There is a family of studies focusing on enumerating
or counting the lattice points of a given polyhedral set. A well-known theory on that latter
subject was proposed by Pick [51]. In particular, the celebrated Pick’s theorem provides a
formula for the area of a simple polygon P with integer vertex coordinates, in terms of the
number of integer points within P and on its boundary. In the 1990s, Barvinok [11] created an
algorithm for counting the integer points inside a polyhedron, which runs in polynomial time,
for a fixed dimension of the ambient space. Later studies such as [72] gave a simpler approach
for lattice point counting, which divides a polygon into right-angle triangles and calculates the
number of lattice points within each such triangle.

Verdoolaege, Seghir, Beyls, Loechner and Bruynooghe present in [64] a novel method for
lattice point counting, based on Barvinok’s decomposition for counting the number of integer
points in a non-parametric polytope. In [57], Seghir, Loechner and Meister deal with the
more general problem of counting the number of images by an affine integer transformation
of the lattice points contained in a parametric polytope. In 2004, the software package LattE
presented in [44] for lattice point enumeration offers the first implementation of Barvinok’s
algorithm. Other algorithms, such as [35] by Jing and Moreno Maza, compute an irredundant
representation of the integer points of P in terms of “simpler” polyhedral sets, each of them
given by a triangular-by-block system of linear inequalities.
Normaliz [15] is a program for the computation of Hilbert bases of rational cones and the

normalizations of affine monoids. The Hilbert basis of a convex cone C is a minimal set of
integer vectors such that every integer vector in C is a conical combination of the vectors in
the Hilbert basis with integer coefficients. For example, let C ∈ Rd be a pointed (if x,−x ∈ C
then x = 0) convex cone and L ∈ Zd be a lattice. There exists a unique minimal generating set,
H = x1, . . . , xn, of C ∩ L, such that every point x ∈ C ∩ L has an integer conical combination:

x = λ1x1 + · · · + λnxn, λ1, . . . , λn ∈ Z, λ1, . . . , λn ≥ 0
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H is called the Hilbert basis of C. Computation of a Hilbert basis of a simplicial cone can be
done by enumerating all lattice points in the fundamental paralleltopes.
Polymake [8] is a software system that includes several algorithms for convex hull compu-

tation and lattice points enumeration (e.g. LattE and Normaliz), then it uses these algorithms
to compute the integer hulls of various kinds of input polyhedral sets.

There are also authors studying the relations between the vertices of PI and the vertices of
P. The authors of [33] provided an algorithm for finding the vertices of a polytope associated
to the Knapsack integer programming problem. This algorithm computes boxes covering the
input polyhedron and such that each box contains at most one vertex of PI . Following that
same approach, the authors [13] could give an upper bound on the number of those boxes, as
well as a running estimate for enumerating the integer vertices of a polytope.

Another important work for computing the integer hull of polytopes is by Warwick Har-
vey [32]. There are some similarities between our works. For what we called a ”sector” (see
Section 3.1) we both use the idea of finding the ”closest integer point” to the vertex as the
bound for our computing. (This paper used a transformation of the original sector such that the
closest integer point is on the origin.) While we didn’t give a novice way of computing the in-
teger hull of the corner regions, this paper gives a method based on continued fractions to find
cuts and eventually find the integer hull. For a general 2D polyhedral set, this paper suggests
adding the inequalities one by one to a sector, and use the same ”continued fractions” method
at each step, where we focus on finding a corner for each sector such that our algorithm can
be done parallelly. And eventually, we generalized this partition and merge method to higher
dimensions.

Since the integer hull PI of P is completely determined by its vertices, it is natural to ask
for the number of vertices in an integer hull of a polyhedron. The earliest study by Cook,
Hartmann, Kannan and McDiarmid, in [19], shows that the number of vertices of PI is related
to the size (as defined in [56]) of the coefficients of the inequalities that describe P. Let x = p/q
be a rational number, p and q are coprime integers, the size of x is defined as

size(x) = 1 + d(log(|p| + 1))e + d(log(|q| + 1))e

For a linear inequality anxn + · · · + a1x1 + a0 ≤ 0, its size is
∑

size(ai) for i = 0, . . . , n. For a
polyhedron P = {x | Ax ≤ ~b} where matrix A ∈ Qm×n and vector ~b ∈ Qm, Cook, Hartmann,
Kannan and McDiarmid showed that the number of vertices of the integer hull of P is bounded
over by 2mn(6n2ϕ)n−1 where ϕ is the maximum size of any of the m inequalities. More recent
studies such as [65] and [13] use different approaches to reach similar or slightly improved
estimates. We also discussed this question in our previous paper [49].

2.2.2 Parametric integer hull and periodicity
During our research, we found that the integer hulls of the parametric polyhedral sets have
some kind of periodical property. Let’s look at some studies that focus on “periodicity”.

We recall the work of Eugème Ehrhart from his articles [21] and [22]. For each integer
n ≥ 1, Ehrhart defined the dilation of the polyhedron P by n as the polyhedron nP = {nq ∈
Qd | q ∈ P}. Ehrhart studied the number of lattice points in nP, that is:

i(P, n) = #(nP ∩ Zd) = #{q ∈ P | nq ∈ Zd}.
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He proved that there exists an integer N > 0 and polynomials f0, f1, . . . , fN−1 such that i(P, n) =

fi(n) if n ≡ i mod N. The quantity i(P, n) is called the Ehrhart quasi-polynomial of P, in the
dilation variable n. Ehrhart’s study on quasi-polynomials is focused on counting the lattice
points and can be seen as a higher-dimensional generalization of Pick’s theorem.

In [48] Meister presents a new method for computing the integer hull of a parameterized
rational polyhedron. The author introduces a concept of periodic polyhedron (with facets given
by equalities depending on periodic numbers). Hence, the word “periodic” means that the
polyhedron can be defined in a periodic manner.

In our paper [49] we showed that the number and coordinates of the vertices of a parametric
integer hull follows a pseudo-periodic pattern. The details are introduced in Chapter 3.



Chapter 3

On the pseudo-periodicity of the integer
hull of parametric convex polygons

In this chapter, we show our observation that the number of vertices of the integer hull PI of a
convex polyhedral set P has a pseudo-periodicity behavior w.r.t vector ~b in the system A x ≤ ~b
that defines P. We state and prove explicitly the formulas for the pseudo-period.

While the arguments yielding to our main result are elementary, the proof is relatively long
and technical. The first and main step is a study of the pseudo-periodicity of a parametric angu-
lar section, see Section 3.1. Since a convex polygon is an intersection of finitely many angular
sectors, angular sectors are the building blocks of our main result, see Section 3.2, where the
partitions of V1, . . . ,Vc of V , V ′1, . . . ,V ′c of V ′, and the vectors ~u1, . . . , ~uc are explicitly given.
This result and the ingredients of its proof lead us to propose a new algorithm for computing
the integer hull of a rational convex polygon, see Section 3.4.

We consider a rational convex polygon (that is, a rational polyhedral set of dimension 2)
given by a system of linear inequalities A~x ≤ ~b, where A is a matrix over Z, with m rows
and d = 2 columns, and ~b is an integer vector. The coordinates b1, . . . , bm of ~b are treated as
parameters, while the coefficients of A have fixed values. We observe that for every 1 ≤ i ≤ m,
there exists a positive integer Ti so that, when each b1, . . . , bm is large enough, the vertex sets
V and V ′ of the respectively integer hulls of

P := P(b1, . . . , bi−1, bi, bi+1, . . . , bm) and P′ := P(b1, . . . , bi−1, bi + Ti, bi+1, . . . , bm),

respectively, are in “simple” one-to-one correspondence. Here, simple, means that one can
construct a partition V1, . . . ,Vc of V and a partition V ′1, . . . ,V ′c of V ′, together with vectors
~u1, . . . , ~uc of Z2 so that every vertex of V ′i is the image of a vertex of Vi by the translation of
~ui, for all 1 ≤ i ≤ c. Section 3.3 offers various examples, including animated images, which
illustrate our result. Watching those animations requires to use a modern document viewer like
Okular. The animations are also available at https://github.com/lxwangruc/parametric integer hull.

3.1 The integer hull of an angular sector
Lemma 1 is an elementary result which gives a necessary and sufficient condition for a line in
the affine plane to have integer points. With Lemma 2, we show that every angular sector S

12
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without integer points on its facets can be replaced by a angular sector S ′ with integer points on
both of its facets and so that S and S ′ have the same integer hull. With Lemma 3, we perform
another reduction step: we show how the computation of the integer hull of an angular sector
with integer points on its facets can be reduced to that of the integer hull of a triangle with at
least two integer vertices.

Theorem 1 is our main result specialized to the case of a parametric angular sector. In
other words, Theorem 1 describes the pseudo-periodical phenomenon observed when varying
one of the “right-hand side” parameters over a sufficiently large range of consecutive integer
values. In fact, Theorem 1 precisely gives a formula for the period as well as a formula for
transforming the integer hull of the parametric angular sector over a period.

Definition 1 An angular sector in an affine plane is defined by the intersection of two half-
planes whose boundaries intersect in a single point, called the vertex of that angular sector.

Lemma 1 In the affine plane, with Cartesian coordinates (x, y), consider a line with equation
ax + cy = b where a, b and c are all integers so that there is no common divisor among them,
that is, gcd(a, b, c) = 1. Then, three cases arise:

Case 1. If a , 0 and c , 0 then there are integer points along the line if and only if a and c are
coprime. Moreover, if gcd(a, c) = 1 holds, then a point (x, y) on the line is integral if and
only if we have:

x ≡
b
a

mod c.

Case 2. If a = 0, then c must equal to 1 for the line to have integer points. Moreover, if c = 1,
then a point (x, y) on the line is integral if and only if x is an integer.

Case 3. If c = 0, then a must equal to 1 for the line to have integer points. Moreover, if a = 1
holds, then a point (x, y) on the line is integral if and only if y is an integer.

Proof � For Case 1, the y coordinate of a point (x, y) on the line must satisfy:

y =
b − ax

c
For each integer x, the above y is an integer if and only if we have:

b − ax ≡ 0 mod c.

Therefore, every point (x, y) on the line is an integer point if and only if x is an integer satisfying

b ≡ ax mod c.

If gcd(a, c) = 1 holds, then a is invertible modulo c and every integer x congruent to b
a mod c

is a solution. If a and c are not coprime and if the above equation has a solution in x then
gcd(a, b, c) = 1 cannot hold, which is a contradiction. Therefore, the line admits integer points
if and only if gcd(a, c) = 1 holds. Moreover, when this holds, those points (x, y) satisfy:

x ≡
b
a

mod c,

For Case 2, with a = 0, the condition becomes gcd(b, c) = 1 and the line now writes cy = b.
Therefore, b

c must be integer in order to have integer points on the line, which means c must
equal to 1. Case 3 is similar to Case 2. �
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Lemma 2 In the affine plane, with Cartesian coordinates (x, y), let S be a angular sector
defined by {

a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b2.

Then, one can find another angular sector S ′, given by{
a1 x + c1 y ≤ b′1
a2 x + c2 y ≤ b2

such that a1
g and c1

g are coprime where g = gcd(a1, c1, b′1) ≥ 1 and so that the integer hull of S ′

is the same as that of S .

5 10 15

−5

5

C

B

A

A′

B′
x

y

Figure 3.1: The integer hull of sector BAC is the same as that of sector B′AC′

Proof � Let A be the vertex of S . Let B (resp. C) be a point on the facet of S with equation
a1 x + c1 y = b1 (resp. a2 x + c2 y = b2). The general idea is to construct S ′ by sliding A to the
vertex A′ of S ′ along the line (AC), with the facets of S ′ being given by (A′C) and (A′B′) so
that

1. (A′B′) and (AB) are parallel lines with no integer points between them, meanwhile
2. (A′B′) has integer points.

Details follow, including corner cases. Three cases arise:
Case 1. If a1 and c1 are non-zero integers and coprime, then, by Lemma 1, one can choose

S ′ = S , thus A′ = A and b′1 = b1.
Case 2. If a1 and c1 are non-zero but a1 is not coprime to c1, then we have g := gcd(a1, c1) > 1.

Let C have coordinate (xC, yC). Two cases arise.
Case 2.1. If yC > −

a1
c1

xC + b1
c1

(as in Figure 3.1), then we can choose b′1 = d b1
g eg. Since b′1 > b1

and C is above (AB), the line (A′B′) is closer to C than (AB). We want to prove that
there’s no integer point between (A′B′) and (AB). Assume, by contradiction, there
is an integer point X between (A′B′) and (AB). Then, a line a1 x + c1 y = b′′1 must
pass through X such that b1 < b′′1 < b′1 and b′′1 mod g ≡ 0 both hold. Since we
chose b′1 = d b1

g eg, the integer b′′1 cannot exist. Therefore, there is no integer point
between (A′B′) and (AB). Since all the integer points in S are also in S ′, the integer
hull of S ′ must be the same as that of S .
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Case 2.2. If yC < −a1
c1

xC + b1
c1

holds, then we can choose b′1 = b b1
g cg. And the proof is similar

to that of the previous case.
Case 3. Now we consider the case where either a1 or c1 is zero. Three cases arise:

Case 3.1. Assume a1 = 0, if b1
c1

is an integer, then we can choose b′1 = b1, that is S ′ = S .
Case 3.2. If a1 = 0 and b1

c1
is not an integer, then we can choose b1 to be b b1

c1
c × c1 or db1

c1
e × c1

depending on the relationship between C and (AB). Similarly to the discussion
above, there is no integer point between (AB) and (A′B′).

Case 3.3. Finally, If c1 = 0, we can use the same proof as when a1 = 0, except we need to see
if b1

a1
is an integer or not.

�

Lemma 3 In the affine plane, with Cartesian coordinates (x, y), let S be an angular sector
defined by {

a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b2

where gcd(ai, bi, ci) = 1 for i ∈ {1, 2} and ai, bi, ci are all integers (see Figure 3.2). We assume
that both facets of S admit integer points. Let S I be the integer hull of S and let A be the vertex
of S . Let B and C be integer points on each facet of S , with A , B and A , C, chosen so that
there is no integer point between A and B (on the facet given by A and B) and no integer point
between A and C (on the facet given by A and C). Then, one of the following properties hold:

1. A is an integer point and S = S I ,
2. A is not an integer point and the vertex set V of S I is equal to the vertex set V ′ of the

integer hull 4I of the triangle 4ABC.

Proof � We write S = 4ABC ∪ T , where T is the convex hull of {B,C} ∪ (S \ 4ABC).
Therefore, we have:

S I = 4I ∪ TI . (3.1)

where TI is the integer hull of T . The convex polygon T has 2 vertices (namely B and C,
which are integer points) and 3 facets (the segment [B,C] and two unbounded facets). From
Lemma 1, the two unbounded facets of T have infinitely many integer points. It follows that
TI = T holds. Therefore, with Equation (3.1) we deduce:

S I = 4I ∪ T. (3.2)

We consider two cases for the vertex A.
1. Assume that A is an integer point. Then, all points A, B,C are integer points, and since
4ABC is pointed, we deduce 4I = 4ABC. Thus, with Equation (3.2) we deduce S = S I ,
as desired.

2. If A is not an integer point, if suffices to observe from Equation (3.2) that all vertices of
T are vertices of 4I which yield the conclusion.
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y

Figure 3.2: The vertices of the integer hull of 4ABC are the same as that of section S

�

Theorem 1 Let us consider a parametric angular sector S (bi) defined by{
a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b2

where gcd(ai, bi, ci) = 1 for i ∈ {1, 2} and ai, bi, ci are all integers, bi ∈ {b1, b2}. Let S I(bi) be
the integer hull of S (bi). Then, there exists an integer T and a vector ~u such that S I(bi + T ) is
the translation of S I(bi) by ~u.

The integer T is given by 1
g2
|a2 c1 − a1 c2| or 1

g1
|a2 c1 − a1 c2| and ~u = ( c2 T

a2 c1−a1 c2
, a2 T

a2 c1−a1 c2
)

or ~u = ( c1 T
a1 c2−a2 c1

, a1 T
a1 c2−a2 c1

) for bi = b1 or bi = b2 respectively, where gi = gcd(ai, ci). Note that
a2 c1 − a1 c2 , 0 holds.

Proof � Let A be the vertex of S (b). Let B(xB, yB) be a point such that{
a1 xB + c1 yB = b1

a2 xB + c2 yB ≤ b2

and C(xC, yC) be a point such that {
a1 xC + c1 yC ≤ b1

a2 xC + c2 yC = b2

with A , B and A , C. Without loss of generality, assume bi = b2 and T = 1
g1
|a2 c1 − a1 c2|.

Consider the angular sector S ′ is given by{
a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b′2 = b2 + T (3.3)

where A′ is the vertex of S ′ and B′ is on the facet of S ′ contained in the line (AB). We
distinguish three cases.

Case 1. Assume that for each i ∈ {1, 2}, the integers ai and ci are non-zero coprime. With this
assumption, the integer T becomes |a2 c1 − a1 c2|. Let D and E be two integer points
where

−−→
AD = t

−−→
AC and

−−→
AE = k

−−→
AB where t and k are positive real numbers. Such points

exist since ai and ci are coprime integers for i ∈ {1, 2}. We choose D and E so that there
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is no other integer point on the segments [A,D] and [A, E]. The points D′ and E′ are
defined in a similar way on the angular sector S ′(see Figure 3.3).

5 10 15

−5

5

B

C

A

A′

C′

E

E′

D

D′
x

y

Figure 3.3: We want to prove that
−−→
AE =

−−−→
A′E′ and

−−→
AD =

−−−→
A′D′

We shall prove that the integer hull of 4ADE is a translation of the integer hull of
4A′D′E′. This fact will follow from the following two vector equalities:

−−→
AE =

−−−→
A′E′ and

−−→
AD =

−−−→
A′D′, (3.4)

which we shall prove now. Let (xA, yA) be the coordinates of A. Since A is the vertex of
S , we have:

xA =
b2c1 − b1c2

a2c1 − a1c2
= x1 + x0

where x1 = bxAc and x0 = xA − x1. The coordinate of A′, (xA′ , yA′), would become

xA′ =
b′2c1 − b1c2

a2c1 − a1c2
=

b2c1 − b1c2

a2c1 − a1c2
+

T c1

T
= xA + c1 = x1 + c1 + x0

Proof of
−−→
AE =

−−−→
A′E′. By definition of the point E, its x-coordinate has the form

xE = xA − x0 + ∆x1 = x1 + ∆x1, (3.5)

where ∆x1 is a integer number. Since a1 and c1 are non-zero and coprime, from
Lemma 1, we have:

xE ≡
b1

a1
mod c1

∆x1 + x1 ≡
b1

a1
mod c1

∆x1 ≡
b1

a1
− x1 mod c1
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Similarly, the x-coordinate xE′ of E′ satisfies xE′ = xA′ − x0 + ∆x′1 = x1 + c1 + ∆x′1,
where ∆x′1 is a integer number. From Lemma 1 we have:

xE′ ≡
b1

a1
mod c1

∆x′1 + x1 + c1 ≡
b1

a1
mod c1

∆x′1 ≡
b1

a1
− x1 − c1 mod c1

∆x′1 ≡
b1

a1
− x1 ≡ ∆x1 mod c1

Since we choose E (resp. E′) as close as possible to A (resp. A′) we can assume
that ∆x′1 − ∆x1 is less than c1. Thus we have

∆x′1 = ∆x1. (3.6)

Therefore, we have

xE − xA = ∆x1 − x0 = xE′ − xA′ (3.7)

Since A, A′, E, E′ are all on the line a1x + c1y = b1, we easily deduce:

yE − yA =
−a1 (∆x1 − x0)

c1
= yE′ − yA′ (3.8)

With Equations 3.7 and 3.8 we have proved:

−−→
AE =

−−−→
A′E′ (3.9)

Proof of
−−→
AD =

−−−→
A′D′. Let xD = xA − x0 + ∆x2 = x1 + ∆x2, where ∆x2 is a integer

number. From Lemma 1 we know that

xD ≡
b2

a2
mod c2

∆x2 + x1 ≡
b2

a2
mod c2

∆x2 ≡
b2

a2
− x1 mod c2

Similarly, let xD′ = xA′ − x0 + ∆x′2 = x1 + c1 + ∆x′2, where ∆x′2 is a integer number.
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From Lemma 1 we know that

xD′ ≡
b′2
a2

mod c2

∆x′2 + x1 + c1 ≡
b′2
a2

mod c2

∆x′2 ≡
b′2
a2
− x1 − c1 mod c2

∆x′2 ≡
b2 + (a2c1 − a1c2)

a2
− x1 − c1 mod c2

∆x′2 ≡
b2

a2
+

(a2c1 − a1c2)
a2

− x1 − c1 mod c2

∆x′2 ≡
b2

a2
+ c1 −

na1c2

a2
− x1 − c1 mod c2

∆x′2 ≡
b2

a2
−

a1c2

a2
− x1 mod c2

∆x′2 ≡
b2

a2
− x1 ≡ ∆x2 mod c2

Therefore, we have
xD − xA = ∆x2 − x0 = xD′ − xA′ (3.10)

Since A,D are all on the line a2x + c2y = b2, we have

yD − yA =
−a2 (∆x2 − x0)

c2
(3.11)

And A′,D′ are all on the line a2x + c2y = b2 + (a2c1 − a1c2), we have

y′D − y′A =
−a2 (∆x2 − x0)

c2
= yD − yA (3.12)

From Equation 3.10 and 3.12 we know that

−−→
AD =

−−−→
A′D′

So far we have proved that
−−→
AE =

−−−→
A′E′ and

−−→
AD =

−−−→
A′D′ both hold, which imply:

−−→
AA′ =

−−−→
DD′ =

−−→
EE′. (3.13)

With the assumption that D, E,D′, E′ are all integer points, we deduce that for any integer
point F in 4ADE, there is an integer point F′ in 4A′D′E′ such that

−−−→
FF′ =

−−→
AA′. (3.14)

Therefore, the integer hulls of 4ADE is a translation of that of 4A′D′E′. Finally, with
Lemma 3, we conclude that (in this Case 1) there exists a vector ~u = ~AA′ = ( c1 T

a1 c2−a2 c1
, a1 T

a1 c2−a2 c1
)

and an integer T = |a2 c1 − a1 c2| such that S I(b2 + T ) is a translation of S I(b2) by ~u.



20Chapter 3. On the pseudo-periodicity of the integer hull of parametric convex polygons

Case 2. Consider the case where a2 and c2 are coprime integers while a1 and c1 are not coprime.
From Lemma 2 we know that we can find another line a1x + c1y = b′1 such that a1

g and c1
g

are coprime, where g = g1 = gcd(a1, c1, b′1) ≥ 1. Then, we can claim that if we re-define
(AB) as a1

g1
x + c1

g1
y =

b′1
g1

, we will not lose any integer point in the new sector comparing to
our original sector. Therefore, we have reduced this second case to the previous one.

Case 3. Consider the case where a1 and c1 are coprime integers while a2 and c2 are not coprime.
Similar to Case 2, we can find another line

a2x + c2y = b′2 (3.15)

such that a2
g and c2

g are coprime where g = g2 = gcd(a2, c2, b′2) ≥ 1, also the new line is not

further to C than line (AC). Then we can say that if we re-define (AC) as a2
g2

x + c2
g2

y =
b′2
g2

,
we will not lose any integer point in the new sector comparing to our original sector.
Using Case 1 we can prove that T = | a2c1

g2
−

a1c2
g2
| = 1

g2
|a2 c1 − a1 c2| w.r.t b′2

g2
. Therefore,

returning to the original b2 (which is b′2 as in Equation (3.15) plus some integer constant),
we have T = g2 |

a2c1
g2
−

a1c2
g2
| = |a2c1 − a1c2|.

�

3.2 The integer hull of a convex polygon

3.2.1 Case of a triangle
We start by a fundamental case, that of a triangle P, say defined by

a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b2

a3 x + c3 y ≤ b3

with gcd(ai, bi, ci) = 1 for i ∈ {1, 2, 3}. We further assume gcd(ai, ci) = 1 for i ∈ {1, 2, 3}, case to
which one can reduce using Lemma 2. Note that P is the intersection of three angular sectors
S 1, S 2, S 3 that are defined by {

a1 x + c1 y ≤ b1

a2 x + c2 y ≤ b2,{
a2 x + c2 y ≤ b2

a3 x + c3 y ≤ b3,{
a1 x + c1 y ≤ b1

a3 x + c3 y ≤ b3.

respectively. Hence, we have P =
3⋂

i=1
S i.

Lemma 4 Let PI and S iI be the integer hulls of P and S i, respectively. Then, we have PI =
3⋂

i=1
S iI .
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Proof � Any integer point A ∈ PI must be in P, that is A ∈ S i for i ∈ {1, 2, 3}. Since A is an
integer point, the fact A ∈ S i holds implies that A ∈ S iI holds as well. Therefore, the point A

must be in the intersection of S iI for i ∈ {1, 2, 3}. Similarly, any integer point B ∈
3⋂

i=1
S iI must

satisfy B ∈ S i for i ∈ {1, 2, 3}. Thus we have B ∈
3⋂

i=1
S i = P. Since B is an integer point in P,

we deduce B ∈ PI . �

Lemma 5 For a line defined by ax + cy = b, with a, b, c non-zero integers, and gcd(a, c) = 1,
and for two points A(xA, yA) and B(xB, yB) on that line, there are at least two integer points on
the segment [A, B] if and only if we have: |xA − xB| ≥ |c|.

Proof� By Lemma 1, and under the hypotheses of this lemma, a point on the line ax + cy = b
is an integer point if and only its x-coordinate satisfies

x ≡
b
a

mod c.

Therefore, the distance between the x-values of any two consecutive integer points should be
c. The conclusion follows. �

Lemma 6 Let V,V1,V2,V3 be the vertex sets of PI , S 1I , S 2I , S 3I , respectively. Then, we have
V = V1 ∪ V2 ∪ V3 and the pairwise intersections of the Vi’s are all empty, if the following three
inequalities all hold: 

|
b2c1−b1c2
a2c1−a1c2

−
b1c3−b3c1
a1c3−a3c1

| ≥ |c1|

|
b2c1−b1c2
a2c1−a1c2

−
b2c3−b3c2
a2c3−a3c2

| ≥ |c2|

|
b3c1−b1c3
a3c1−a1c3

−
b2c3−b3c2
a2c3−a3c2

| ≥ |c3|.

(3.16)

Proof � From Lemma 5, there are at least two integer points on each facet of the triangle,
whenever the three inequalities of (3.16) all hold. To find the vertex sets Vi, i ∈ {1, 2, 3}, we
need to find the closest integer points to each of the three vertices of P, see Lemma 3. Since
there are at least two integer points on each facet, then the triangles we find for S i according
to Lemma 3 do not overlap with each other. Therefore, V = V1 ∪ V2 ∪ V3 and the pairwise
intersections of the Vi’s are all empty. �

Theorem 2 Let P(bi) be a parametric triangle where bi ∈ {b1, b2, b3}, and PI(bi) be the integer
hull of P(bi). We say that |bi| is large enough whenever the following three inequalities all hold:

|
b2c1−b1c2
a2c1−a1c2

−
b1c3−b3c1
a1c3−a3c1

| ≥ |c1|.

|
b2c1−b1c2
a2c1−a1c2

−
b2c3−b3c2
a2c3−a3c2

| ≥ |c2|.

|
b3c1−b1c3
a3c1−a1c3

−
b2c3−b3c2
a2c3−a3c2

| ≥ |c3|.

There exists an integer T and 3 vectors ~u,~v and ~w, such that for |b| large enough, the integer
hull PI(b + T ) can be obtained from PI(b) as follows.

As defined above, denoting S 1, S 2, S 3 the angular sectors of P(b) and by S 1I , S 2I , S 3I their
respective integer hulls, the integer hull of P(T +b) is the intersection of fu(S 1I), fv(S 2I), fw(S 3I)
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where fu, fv, fw are the translations of vectors ~u,~v and ~w respectively. Specifically, when b = b1

we have
T = lcm(

1
g2
|a2 c1 − a1 c2|,

1
g3
|a3 c1 − a1 c3|)

Similar results apply to other bi as well.

Proof � Without loss of generality, assume bi = b1. For S 1, defined by a1 x + c1 y ≥ b1, a2 x +

c2 y ≥ b2, we know from Theorem 1 that there exists an integer

T1 =
1
g2
|a2 c1 − a1 c2|

and a vector
~h1 = (

c2 T1

a2 c1 − a1 c2
,

a2 T1

a2 c1 − a1 c2
)

such that S 1I(b1 + T1) is the translation of S 1I(b1) by ~h1.
Similarly, for S 3, defined by a1 x + c1 y ≥ b1, a3 x + c3 y ≥ b3, there exists an integer

T3 =
1
g3
|a3 c1 − a1 c3|

and a vector
~h3 = (

c3 T3

a3 c1 − a1 c3
,

a3 T3

a3 c1 − a1 c3
)

such that S 3I(b1 + T3) is the translation of S 3I(b1) by ~h3.
As for S 2, it is not affected by the change in b1, which means for any integer k, S 2I(b1 + k)

is the same as S 2I(b1), in other words, S 2I(b1 +k) is the translation of S 2I(b1) by the zero vector.
Combining the three sectors, we have proved that for T = lcm(T1,T3), and the three vectors

~u = T
T1
~h1,~v = T

T2
~h3, ~w = (0, 0), the sets fu(S 1I(b1)), fv(S 2I(b1)), fw(S 3I(b1)) are the same as the

sets S 1I(b1 + T ), S 2I(b1 + T ),S 3I(b1 + T ) respectively. Also as we have proved in Lemma 4

that PI =
3⋂

i=1
S iI . Therefore, PI(T + b1) is the intersection of fu(S 1I(b1)), fv(S 2I(b1)), fw(S 3I(b1))

where fu, fv, fw are the translations of vectors ~u,~v, ~w respectively.
The proofs for bi = b2 or bi = b3 are similar. �

3.2.2 Convex polygon of arbitrary shape
With Theorem 2 proved, we can extend it to a convex polygon of any shape.

Theorem 3 Let P(b) be a parametric polygon given by

ai x + ci y ≤ bi

where i ∈ {1, . . . , n} and the parameter b ∈ {b1, . . . , bn} and PI(b) be the integer hull of P(b).
Specifically, ai x + ci y ≤ bi and ai+1 x + ci+1 y ≤ bi+1 define an angular sector S i of P, for all
1 ≤ i ≤ n, with the convention i + 1 = 1 if i = n. Then, there exist an integer T and n vectors
~v1, . . . , ~vn, such that, for |b| large enough, PI(b + T ) can be obtained from PI(b) as follows.
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Denoting by S iI the integer hull of the angular sector S i, for all 1 ≤ i ≤ n, the integer hull
PI(b + T ) of P(T + b) is the intersection of fvi(S iI), where fvi are the translations of vectors ~vi.
Specifically, for 1 ≤ m ≤ n, when b = bm we have

T = lcm(
1

gm−1
|am−1 cm − am cm−1|,

1
gm+1

|am+1 cm − am cm+1|)

here we have m − 1 = n when m = 1, and m + 1 = 1 when m = n.
The condition |bm| large enough means that all of the following inequalities hold:

|
bm+1cm−bmcm+1
am+1cm−amcm+1

−
bmcm−1−bm−1cm
amcm−1−am−1cm

| ≥ |cm|.

|
bm+1cm−bmcm+1
am+1cm−amcm+1

−
bm+1cm+2−bm+2cm+1
am+1cm+2−am+2cm+1

| ≥ |cm+1|.

|
bmcm−1−bm−1cm
amcm−1−am−1cm

−
bm−2cm−1−bm−1cm−2
am−2cm−1−am−1cm−2

| ≥ |cm−1|.

(3.17)

Proof � Without loss of generality, let’s assume b = b1. For S 1, defined by a1 x + c1 y ≥
b1, a2 x + c2 y ≥ b2, we know from Theorem 1 that we choose the integer

T1 =
1
g2
|a2 c1 − a1 c2|

and the vector
~h1 = (

c2 T1

a2 c1 − a1 c2
,

a2 T1

a2 c1 − a1 c2
)

such that S 1I(b1+T1) is the translation of S 1I(b1) by ~h1. Similarly, for S n, defined by a1 x+c1 y ≥
b1, an x + cn y ≥ bn, we choose the integer

Tn =
1
gn
|an c1 − a1 cn|

and the vector
~hn = (

cn Tn

an c1 − a1 cn
,

an Tn

an c1 − a1 cn
)

such that S nI(b1 + Tn) is the translation of S nI(b1) by ~hn.
As for each j ∈ {2, . . . , n − 1}, the angular sector S j is not effected by the change in b1,

which means for any integer k, the sets S jI(b1 + k) and S jI(b1) are the same, in other words,
S jI(b1 + k) is the translation of S jI(b1) by the zero vector.

Combining all n sectors, we have proved that for T = lcm(T1,Tn), and the n vectors ~v1 =
T
T1
~h1, ~vn = T

Tn
~hn, ~v j = (0, 0) for j ∈ {2, . . . , n − 1}, the set fvi(S iI(b1)), for i ∈ {1, . . . , n}, is the

same as the set S iI(b1 + T ).

Also as we have proved in Lemma 4, we have PI =
n⋂

i=1
S iI . Therefore, PI(T + b1) is the

intersection of fvi(S iI(b1)) where fvi is the translation of vector ~v1. �

3.3 Examples
In this section, we give some examples to show the periodic phenomenon that we proved in the
previous sections.
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Consider a simple parametric polytope. Figure 3.4 shows a triangle P(b) defined by


x − 4 y ≤ −4
−2 x + y ≤ 0

x + y ≤ b

First, we look at the angular sector S (b) given by x−4 y ≤ −4 and x+y ≤ b (see Figure 3.4a, also
available at https://github.com/lxwangruc/parametric integer hull.). According to Theorem 1,
the integer hull of S (b − 5 n) is a transformation of that of S (b − 5 (n − 1)) by ~(4, 1) for any
n ≥ 1.

We can extend this observation to the triangle P(b). Using Theorem 2 when |b| ≥ 11, the
integer hull of P(b− 15n) is a translation of P(b− 15(n− 1)) by ~(0, 0), ~(12, 3), ~(5, 10) for n ≥ 1.

Figure 3.4b shows the integer hulls of P(b) where −26 ≤ b ≤ −11, the points in the figure
are the vertices of the integer hull. We can see that the integer hull of P(−26) is a translation of
that of P(−11).

(a) Integer hull of an angular sector (b) Integer hull of a triangle

Figure 3.4: The periodic phenomenon in a simple example. The dots are the vertices of the
integer hull.

Consider a more complicated example. In order to have a clear view, we only look at one
angular sector S (b) given by {

−103 x + 43 y ≤ 172
59 x + 83 y ≤ b

By Theorem 1, we have T = 11086 and the integer hull of S (b + n T ) is a transformation of
that of S (b). We pick b = 90×83 and n = 83 so that the integer hull of S (83× (90 + 11086 + i))
is a transformation of that of S (83 × (90 + i)). Figure 3.5 shows the first 15 iterations of the
vertices of the integer hull of each sector.

https://github.com/lxwangruc/parametric_integer_hull
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(a) (b)

Figure 3.5: A more complicated example. The red dots are the vertices of the integer hull of
the sector.

3.4 A new integer hull algorithm

The most natural application of our conclusions from the previous sections is to use the peri-
odic phenomenon to study the integer hull of a parametric polyhedron. Before discussing that
application, we propose an algorithm, based on the results of Section 3.1, for computing the
integer hull of a rational convex polygon P.

We assume that P has at least one integer point and write P = {x | Ax ≤ ~b}, for a matrix
A ∈ Zm×2 and a vector ~b ∈ Zm, where m is a positive integer. It is easy to determine:

1. the equations of the facets F1, . . . , F f of P, each of them having a form ai x + ci y ≥ bi.
Note that if a facet has no integer point, we use Lemma 2 to replace it with a new facet
that has integer points, without modifying the integer hull of P.

2. the coordinates of the vertices V1, . . . ,V f of P, so that [Vi,Vi+1] = Fi, with the conven-
tions V f +1 = V1 and F0 = F f .

To compute the integer hull PI of P, we compute its vertices. We transform V = {V1, . . . ,V f }

so that it becomes the vertex set of PI . We visit each vertex Vi of V and do the following:
1. if the coordinates of Vi are integers, we keep Vi in V ,
2. otherwise:

(a) we compute the vertex set U of the integer hull of the angular sector defined by
Fi−1 and Fi with Vi as its vertex. In the current implementation of the algorithm, we
first find the integer points A, B on Fi and Fi−1 that are closest to Vi. If no such A
or B exists, we pick A = Vi−1 and B = Vi+1. Then we use the triangle rasterisation
algorithm [70] on 4ViAB to find the integer points that are likely to be the vertices
of the integer hull of the angular sector. That is, we find all the integer points that
are closest to the edges [ViA] and [ViB]. Then, we compute the convex hull [69] of
all the possible integer points plus A, B to find the vertex set U.

(b) we replace Vi with U.
If the given P is a parametric convex polygon, where bi is unknown, we propose the fol-

lowing steps to compute the vertices of PI:
1. determine the smallest |bi| so that the constraints in Theorem 3 hold (See inequali-
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ties 3.17).
2. compute the period T and the transformation vectors in Theorem 3
3. compute the integer hull of every non-parametric polyhedron in this period.
4. when the values of the parameters are available, using the corresponding solution from

the previous step and the vectors from step 2 to compute the integer hull of the P with
the given parameters.

Note that we can finish the first three steps “off-line”. Once the parameters are given the
only computation that needs to be done is the translations which could be done in linear time.
This method is both time and space efficient if the period T is short.



Chapter 4

Computing the integer hull of polyhedral
sets

In this chapter, we discuss a new algorithm for computing the integer hull PI of a rational poly-
hedral set P, together with its implementation as a new command of Maple’s PolyhedralSets
library [52] as well as in the C programming language.

Our presentation of this new algorithm focuses on the two-dimensional and three-dimensional
cases, see Sections 4.2 and 4.3, respectively. However, Section 4.1 highlights the core proce-
dures of algorithm without restricting to the 2D or 3D cases. Moreover, the concluding section,
namely Section 4.5 states our algorithm in arbitrary dimension.

We present benchmarks for the implementation of our algorithm in Section 4.4. Our results
show that our algorithm is very efficient comparing to the well known library Normaliz [15]
especially when the input polyhedral set is large in volume.

Our algorithm has three main steps:

Normalization: during this step, we construct a new polyhedral set Q from P as follows.
Consider in turn each facet F of P:

1. if the hyperplane H supporting F contains an integer point, then H is a hyperplane
supporting a facet of Q,

2. otherwise one slides H towards the center of P along the normal vector of F, stop-
ping as soon as one hits a hyperplane H′ containing an integer point, then making
H′ a hyperplane supporting a facet of Q.

The resulting polyhedral set Q clearly has the same integer hull as P; computing Q is a
preparation phase for the following step.

Partitioning: during this step, we search for integer points inside Q so as to partition P into
smaller polyhedral sets, the integer hulls of which can easily be computed. We observe
that every vertex of Q which is an integer point is also a vertex of QI . Now, for every
vertex v of Q which is not an integer point we look, on each facet F to which v belongs,
for an integer point Cv,F that is “close” to v (ideally as close as possible to v). All the
points Cv,F together with the vertices of Q are used to build that partition of Q. Each part
of the partition is a polyhedron R which:

27
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1. either has integer points as vertices (making the computation of the integer hull RI

trivial),
2. or has a small volume so that any algorithm (including exhaustive search) can be

applied to compute RI .

Merging: Once the integer hull of each part of the partition is computed and given by the
list of its vertices, an algorithm for computing the convex hull of a set points, such as
QuickHull [10], can be applied to deduce PI .

4.1 Two core constructions of our algorithm
In this section, we emphasize two constructions supporting respectively the normalization and
partitioning steps of our algorithm. Both constructions deal with “algebraic aspects”, that is,
with the fact that we are solving for the integer solutions of a system of linear inequalities.
These two constructions are inspired respectively by [49] and [35].

4.1.1 Normalization
Considering the rational polyhedron P = {x ∈ Qd | Ax ≤ ~b}, with the notations of Section 2.1,
we observe that one can compute a vector ~e ∈ Zm so that the rational polyhedron Q = {x ∈
Qd | Ax ≤ ~e} satisfies:

1. PI = QI , and
2. the supporting hyperplane of every facet of Q has at least one integer point. Notice that

this does not necessarily means that the new facet has an integer point.
In the introduction, the construction of Q is referred as the normalization step. We construct Q
from P as follows:

1. consider each facet F of P in turn; if the hyperplane H supporting F does not contain
an integer point, then one “slides” H towards the center of P along the normal vector of
F, stopping as soon as a hyperplane H′ containing an integer point is reached, otherwise
keep H unchanged;

2. the resulting polyhedron is Q, for which rational consistency must be checked, which
can be done efficiently using a method based on linear programming.

The “sliding process” described above informally is performed as follows. Let the equation
below define the hyperplane H supporting F:

a1x1 + · · · + ad xd = b, (4.1)

where a1, . . . , ad, b can be assumed to be integers. The fact that Z is an Euclidean domain (and
thus a principal ideal domain) implies that H has integer points if and only if we have:

gcd(a1, . . . , ad) | b. (4.2)

If the hyperplane H supporting F does not have integer points and P is included in the half-
space a1x1 + · · · + ad xd ≤ b, then H′ is given by:

a1x1 + · · · + ad xd = g b
b
g
c, (4.3)
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with g := gcd(a1, . . . , ad).
Summing things up, we denote by Normalization(P) a function call returning the poly-

hedron Q.

4.1.2 Partitioning
The other algebraic construction in our algorithm supports the partition step briefly explained
in the introduction. The underlying question is the following: given a vertex v of P which is
not an integer point and given a facet F of P to which v belongs, find on F an integer point
Cv,F , if any, which is “close” to v (ideally as close to v as possible).

If P is two-dimensional, thus, if F is one-dimensional, then the question is easily answered
by elementary arguments, see our previous paper [49]. If P has dimension d ≥ 3, thus, if F
has dimension d − 1, then we take advantage of the Hermite normal form of a matrix. In the
sequel of this section, we review this concept. and use it to compute the integer hull of a facet
of a polyhedron. Finally, we solve the question of finding an integer point Cv,F on F (if any) as
close as possible to v.

Hermite normal form.

Consider a positive integer p ≤ d and a linear system Cx = s where C ∈ Zp×d is a full row-rank
matrix and s ∈ Zp is a vector. There exists a uni-modular matrix U ∈ Zd×d so that CU = [0H]
where 0 ∈ Zp×(d−p) is the null matrix and H is the column-style Hermite normal form of C. We
write U = [ULUR] where UL ∈ Zd×(d−p) and UR ∈ Zd×p. Therefore, the matrix H ∈ Zp×p is
non-singular and the following properties hold:

1. Cx = s has integer solutions if and only if H−1s is an integer vector,
2. every integer solution of Cx = s has the form URH−1s + ULz, where z ∈ Zd−p is arbitrary.

Determining the integer hull of a facet.

Let ~ctx = s be the equation of the hyper-plane supporting F, thus with ~ct ∈ Zd and s ∈ Z.
Let U ∈ Zd×d be a uni-modular matrix so that ~ctU = [0H] where 0 ∈ Z1×(d−1) is the null
matrix and H is the column-style Hermite normal form of ~ct regarded as a matrix of Z1×d. We
write U = [ULUR] where UL ∈ Zd×(d−1) and UR ∈ Zd×1. Let v := URH−1s. Then, from the
above paragraph on Hermite Normal Form, we know that the integer points of the hyper-plane
supporting F are of the form x = v + ULz where z ∈ Zd−1 is arbitrary. The facet F is described
by a system of linear inequalities in Qd with x as unknown vector. Substituting v + ULz for x
yields a system of linear inequalities in Qd−1 (with z as unknown vector) representing a rational
polyhedron G ⊆ Qd−1. With these notations and hypotheses, we have the following.

Theorem 4 The vertices of the integer hull GI of G are in one-to-one correspondence with the
vertices of the integer hull FI of F via the map

RF :
{
Qd−1 → Qd

z 7−→ x = v + ULz. (4.4)

In particular, we have RF(GI) = FI .

https://en.wikipedia.org/wiki/Hermite_normal_form


30 Chapter 4. Computing the integer hull of polyhedral sets

Proof � The proof follows from seven claims.
Claim 1: RF is injective. Indeed, the matrix U is uni-modular, thus the columns of U are
linearly independent, and the map z 7−→ ULz is injective.

Claim 2: The image of RF is F. Since RF is an injective affine map from Qd−1 to Qd, it follows
that the image of RF is an affine space of dimension d − 1. Therefore, in order to prove the
claim, it suffices to prove that for every z ∈ Zd−1 we have RF(z) ∈ F. Since F ∩ Zd , ∅
(as a consequence of the normalization step of our algorithm) there exists z0 ∈ Zd−1 so that
x0 := v + ULz0 ∈ F ∩ Zd holds. Let z ∈ Zd−1. Define x := RF(z). We have:

x = v + ULz0 + UL(z − z0) = x0 + UL(z − z0).

We deduce:
~ctx = ~ctx0 + ~ctUL(z − z0) = s + 0 = s,

which proves that RF(z) ∈ F holds.

Claim 3: R−1
F (H) is a half-space of Qd−1 for any half-space H of Qd. Indeed, for any x ∈ Qd of

the form v + ULz, with z ∈ Qd−1, we have

~atx ≥ b ⇐⇒ ~atULz ≥ b − ~atv,

where H : ~atx ≥ b is an arbitrary half-space of Qd.

Claim 4: The integer points of the hyper-plane supporting F are in one-to-one correspondence
with the integer points of Zd−1. This claim follows directly from the properties of the Hermite
Normal Form.

Claim 5: R−1
F (S ) is a polyhedron of Qd−1 for any polyhedron S of Qd. Indeed, let S := ∩i Hi be

a polyhedron of Qd−1 given as the intersection of finitely many half-spaces of Qd−1. We have

R−1
F (S ) = R−1

F (∩i Hi) = ∩i R−1
F (Hi).

The conclusion follows with Claim 3.

Claim 6: RF(T ) is a polyhedron of Qd for any polyhedron T of Qd−1. The proof is similar to
that of Claim 5.

Claim 7: We have: RF(GI) = FI . Let S be the set of all polyhedra of Qd containing F ∩ Zd.
Let T be the set of all polyhedra of Qd−1 containing G ∩ Zd, where G = R−1

F (F). Then, by
definition of FI and GI , we have:

FI =
⋂
S∈S

S and GI =
⋂
T∈T

T.

From Claim 5, we have:

R−1
F (FI) =

⋂
S∈S

R−1
F (S ) ⊇

⋂
T∈T

T = GI .

From Claim 6, and since RF is injective,we have:

RF(GI) =
⋂
T∈T

RF(T ) ⊇
⋂
S∈S

S = FI .
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Therefore, we have RF(GI) = FI . Now we can prove the theorem. Since RF is a bijective
affine map from Qd−1 to F, it maps affine subspaces of dimension 0 ≤ d′ < d of Qd−1 to affine
subspaces of dimension d′ of F. Combined with Claims 5 and 6, this latter observation implies
that faces of dimension 0 ≤ d′ < d of GI are mapped to faces of dimension d′ of FI . Therefore,
the vertices of GI are in one-to-one correspondence with the vertices of FI . �

Theorem 4 shows that one can reduce the computation of the vertices of FI to computing
the vertices of GI . Based on that observation, we denote by HNFProjection(F, d) a function
call returning the ordered pair (G,RF).

Finding an integer point Cv,F on F (if any) close to v.

Let us return now to the question of finding an integer point Cv,F on F (if any) as close as
possible to v. A second consequence of Theorem 4 is that we can compute an integer point
Cv,F simply by choosing a point RF(W) at minimum Euclidean distance to v, where W ranges
in the set of the vertices of GI . As mentioned, such a point may not be an integer point of F at
minimum Euclidean distance to v, but if F is large enough (that is, if its area is large enough)
then Cv,F is a good approximate solution to this optimization problem.

4.2 Integer hull of a 2D polyhedral set
In this section, we present our algorithm for computing the integer hull of a 2D polyhedral set.
We first give a high-level overview of the algorithm, then we present its sub-routines, followed
by a more precise presentation of the general algorithm together with the implementation de-
tails.

As mentioned in the introduction of this chapter, our main idea is to partition the input
2D-polyhedral set into several smaller polyhedral sets, compute the integer hulls of those and
return the convex hull of the union of all these integer hulls. Recall from Section 2.1, that the
integer hull of a polyhedron P is another polyhedron PI whose vertices are all integer points.
Therefore, given a polyhedral set P which is not an integer hull, we aim at replacing each
fractional (i.e. non-integer) vertex v with some integer points in the neighborhood of v so that
this replacement process allows us to deduce PI .

To replace such a fractional vertex v, we inspect the region of P forming a “corner” around
v. Such a corner region is actually given by a “small” polyhedron (often a triangle), for which
the integer hull is computed by a straightforward method. Other than these corners, there is
the “central” region of P. By construction, this central region is a polyhedral set with integer
vertices, for which no computation is required. Our goal is, of course, to maximize the area of
that central region in order to minimize the work needed in computing the integer hulls of the
corner regions.

To implement the above strategy, we propose the following method to partition the input.
First, we normalize the input using the procedure call Normalization(P) described in Sec-
tion 4.1.1. Next, for each fractional vertex v, we find the closest integer point to v on each of its
adjacent facets. For a 2D polyhedral set, each vertex has exactly two adjacent facets, therefore,
two “closest integer points”. We partition the input polyhedron by means of its integer vertices
and the “closest integer points” of its non-integer vertices.
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In most cases a corner region would be a triangle given by a fractional vertex v and its two
closest integer points. In some special cases, when a facet contains no integer point, we com-
bine adjacent vertices and their closest integer points to form a corner region of quadrilateral
shape (or, in rare cases, of more complex shape) instead of a triangle. Finally, the central region
is formed by the integer vertices of the input polyhedron P and the closest integer points of the
non-integer vertices of P. The details of the sub-routines, as well as the general algorithm, are
given in the following sections.

4.2.1 Algorithm

In this section, we consider an input polyhedral set P defined by a system of linear inequalities


a11x1 + a21x2 ≤ b1

a12x1 + a22x2 ≤ b2

· · ·

a1nx1 + a2nx2 ≤ bn,

where gcd(a1i, a2i, bi) = 1 for i ∈ {1, . . . , n}. We assume that this representation of P is irre-
dudant, that is, the defining linear inequalities of P are in one-to-one correspondence with the
facets of P. In this chapter, we follow the convention of Maple’s PolyhedralSets library and
refer to these inequalities as the relations of P.

Following the informal description of the algorithm above, for each fractional vertex, we
need to find the closest integer points on the facets adjacent to this vertex. But we first notice
that it is possible that the supporting hyperplane of a facet, and therefore the facet itself, does
not have any integer points. Therefore, the first step of our algorithm is to normalize the
relations of the input using the “sliding process” described in Section 4.1.1.

In the next step, using the procedure closestIntegerPoints (Algorithm 1), we find the
closest integer point to each fractional vertex on its adjacent facets. From the proof of Lemma
1 in [49] we know that, on a line a1x+a2y = b, a point (x, y) has integer coordinates if and only
if its x is integer and satisfies x ≡ b

a1
mod a2. We can use this observation to find the closest

integer point to a given point on a given line. We also deal with the case where a facet does not
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contain any integer points.

Algorithm 1: Compute the closest integer points to each fractional vertex on its ad-
jacent facets
1 Function closestIntegerPoints(V)

Input: V , a list of the vertices of P
Output: VC, a list of pairs where VC[i][1] and VC[i][2] store the closest integer

points of vertex V[i] on its two adjacent facets.
2 n← |V |
3 for i = 1, . . . , n do
4 Let V[i1] and V[i2] be the vertices adjacent to V[i]
5 for j = 1, 2 do
6 if there are integer points between [V[i],V[i j]] then
7 VC[i][ j]← closest integer point to V[i] on [V[i],V[i j]]

8 else
9 VC[i][ j]← NULL

10 return VC

Next, we need to (1) construct the polyhedral sets the corner regions described informally
above, and compute their integer hulls. Then, we find the convex hull of the union of all these
integer hulls (see Algorithm 2). Lemma 4 in [49] shows that the vertices of this final convex
hull are the vertices of PI .

For a fractional (i.e. non-integer) vertex V[i], if neither VC[i][1] nor VC[i][2] is NULL, then
the corner is a triangle with vertices [V[i],VC[i][1],VC[i][2]]. If one or both of VC[i][1] and
VC[i][2] are NULL, which means there is no integer point on one or both adjacent facets of
V[i], then we construct the corner region as follow.

1. let S P be a stack initialized to the empty stack and let VP be a list initialized to the empty
list

2. Push V[i] to S P and add V[i] to VP

3. while S P is not empty
(a) pop out a vertex v from VP,
(b) if an adjacent facet f to v does not contain integer point then add to VP the vertices

of f and push to S P the vertices of f .
4. for every vertex v in VP add to VP the “closest integer points” of v, if any.

At the end of the execution of the above procedure, the list VP contains at least one non-
integer vertex and two integer points. The convex hull of the points in VP is the corner region
associated with the input vertex V[i].

To compute the integer hull of a corner, we use a brute-force method that searches for all
the integer points within the corner polyhedral set and then compute the convex hull of all these
points. In the article [19] Cook, Hartmann, Kannan and Mc Diarmid have shown that the size
and shape of the integer hull (given by its vertices) of a polyhedron depends on the coefficients,
ai j, of the relations of the input but not on the constant terms bi. This suggests that the area
of the corner regions where we need to do exhaustive search on is not related to the area of the
input polyhedral set P. Since the computation of the integer hull of the central region is free of
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cost, this suggests that the time complexity of our algorithm is not related to the volume of the
input polyhedral set.

Algorithm 2: Construct and compute the integer hulls of the corner polyhedral sets
1 Function cornerIntegerHulls(V)

Input:
• V , the list of the vertices of the input polyhedral set
• VC, the output from Algorithm 1

Output: A set of all the vertices of the integer hulls of the corners
2 VI ← {}

3 n← |V |
4 for i = 1, . . . , n do
5 if V[i] is an integer point then
6 VI ← VI ∪ {V[i]}

7 else
8 T ← ConstructCorner(V[i],VC)

/* create a corner polyhedral set as we described above

*/

9 A← AllIntegerPoints(T ) /* find all the integer points in
T */

10 Vtmp ← ConvexHull(A)
/* compute the vertices of the convex hull of A */

11 VI ← VI ∪ {Vtmp}

12 return VI

With all the sub-routines introduced above, we present our integer hull algorithm (Algo-
rithm 3) for 2D polyhedral sets. We discuss some of the implementation details in Section
4.4.

Algorithm 3: Compute the integer hull of a given 2D polyhedral set
1 Function IntegerHull2D(P)

Input: P, a 2D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner cases
3 Q← Normalization(P)
4 V ← Vertices(Q)
5 VC ← closestIntegerPoints(V)
6 VI ← cornerIntegerHulls(V,VC)
7 I ← ConvexHull(VI)
8 return I
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4.2.2 An example

In this section, we use the following example to show how our 2D algorithm works. The input
is a polyhedral set defined by


2x + 5y ≤ 64
−7x − 5y ≤ −20
3x − 6y ≤ −7

The first step we need to do is to normalize the facets. In this example, there is only one facet
which is given by the relation 3x−6y ≤ −7. We replace it with 3x−6y ≤ −9 (See Figure 4.1).

x

y

(a) Input is a polyhedral set

x

y

3x −
6y =
−73x −

6y =
−9

(b) Normalize the input

Figure 4.1: Input and replaceNonIntegerFacets

Next we need to find the closest integer points to each fractional vertex on its adjacent
facets. In our case, all three vertices are fractional, so we need to find two integer points for
each (See Figure 4.2a). And as we discussed in Section 4.2, the center part of the input is
already an integer hull, so no action needed for this area. As we can see in Figure 4.2b, the
center part takes most of the volume of the input, by doing so we cut down the size of the
problem.
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x

y

(a) For a fractional vertex, find the integer
point on each adjacent facet that is closest to
it and construct a triangle with the three points

x

y

(b) The center part is already an integer hull so
we don’t need to do anything

Figure 4.2: Partition the input

Then we just need to compute the integer hulls of the small corner triangles and use the
results to compute the final output (See Figure 4.3).

x

y

(a) Apply the previous two steps to each frac-
tional vertex

x

y

(b) Find the convex hull of all the result ver-
tices from the previous steps

Figure 4.3: Compute the integer hulls of the parts and the final result

This is a general example such that each facet has integer points after normalization. As
we mentioned in the previous section, there are corner cases where one or more facets don’t
have integer points although the supporting plane of them contain integer points. Here we use
Figure 4.4 to indicate how we solve this problem and Figure 4.5 to show that it won’t affect the
efficiency of the general algorithm.

Assume (ABCDEF) is the polyhedral set after Normalization and there’s no integer point
on facets (AB), (EF) and (ED). For facet (AB) instead of constructing a corner for each vertex
A and B we construct one “corner” (ABB′A′) with both A and B as well as the closest integer
point B′ on (BC) and A′ on (AF). In the scenario where several adjacent facets don’t have
integer points like (EF) and (DE), again we collect all the related vertices and their existing
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closest integer points to form a “corner”, such as (DEFF′D′). Therefore, the Figure 4.4b shows
all the corner polyhedral sets that we need to compute the integer hull explicitly of Figure 4.4a.
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(a) Assume there’s no integer point on (AB),
(EF) and (ED)
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F’

C’

(b) Corner polyhedral sets of this input

Figure 4.4: No integer point on some facets

Let’s look at facet (AB) for the efficiency consideration. In Figure 4.5a, let Q be the closest
integer points on the supporting plane of (AB) to B. From Section 3.1 we know the maximum
length of BQ and BB′, therefore, we know the maximum size of the corner polyhedral set of
vertex B. Thus, we can see from Figure 4.5b, for facets (AB) we compute the integer hull of
polyhedral set ABB′A′ instead of both 4BB′Q and 4AA′P. In the case where some facets don’t
contain integer points, while we do need to consider some extra area (like the shaded area in
Figure 4.5b), the actual area for integer hull computing is comparable with the general case.
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Figure 4.5
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4.3 Integer hull of a 3D polyhedral set
With the 2D algorithm in place, we can move on to a higher dimension. In this section, we
present our integer hull algorithm for 3D polyhedral sets. The general idea behind the algorithm
is the same as that of the 2D algorithm. We want to partition the input into smaller polyhedral
sets and separate the parts into two categories: the ones with fractional vertices for which we
need to compute the integer hulls as sub-problems and the other ones that are already integer
hulls themselves. After processing all the sub-problems, we combine the results of all the parts
together and compute the final result.

4.3.1 Algorithm
The first step of the 3D algorithm is the same as that in Section 4.2.1, that is, we normalize the
input polyhedron as described in Section 4.1.1. Next, we find the “closest integer points” to
the fractional (i.e. non-integer) vertices on their adjacent facets. This second step is done as
described in Section 4.1.2. We note three important facts about the “closest integer point”, w,
w.r.t a given vertex v on a given facet f adjacent to v:

1. the integer point w is v itself, if v is an integer point,
2. if v is not an integer point and f contains no integer points then w is undefined and set to
NULL in our pseudo-code below,

3. if v is not an integer point and f contains integer points, then the integer point w may
not be the actual closest integer point to v on f , but it is always an integer point which is
cheap to compute and expectedly close to v.

As a result, every vertex and its “closest integer points” form a “small” polyhedral set. For
example, Figure 4.6a displays an input polyhedron P, actually a tetrahedron, the vertices of
which are all assumed to be non-integer. Figure 4.6b displays in green the corner region of
each vertex of P.

(a) Input is a polyhedral set (b) Every fractional vertex and its closest inte-
ger points form a small polyhedral set

Figure 4.6: Input and fractional vertices

Figure 4.7a shows what we call the center region of the input polyhedron P, that is, the
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convex hull of all closest integer points of all vertices of P. On our figures, we shall always
color center regions in red. Since every closest integer point of every vertex is an integer point,
it follows easily that center region is a polyhedron which is its own integer hull.

In the 2D case, the corner regions and the center region form a partition of the input polyhe-
dron. But in the 3D case, there are regions that are not covered by these green and red regions,
to be more precise, those missing regions are near the edges (See Figure 4.7b). It should also
be noted that, in the 3D case, there could be one (or more) green regions with a non-empty
intersection with the red region.

(a) The center part is already an integer hull so
we don’t need to do anything

(b) There are areas that are not covered by any
part

Figure 4.7: The center part and the corners

In order to cover the entire input polyhedron P, we need another set of sub-polyhedral sets
of P. As shown on Figure 4.8a, for an edge e that has at least one non-integer vertex, the
two vertices of that edge and their “closest integer points” on the facets adjacent to that edge
form a polyhedral set that we call the edge region of e. We note that an edge region is either a
tetrahedron or a 2D triangle. On our figures, we shall always color edge regions in blue. For
convenience, we define the edge region of an edge e whose vertices are both integer points to
be e itself. If we construct the edge region of each edge of P, we can cover all the missing
regions, as illustrated on Figure 4.7b.

We are now ready to compute the integer hull PI of P. Of course, we want to deduce PI

from the convex hulls of the green, red and blue regions. Recall that the red region is its own
integer hull. For every green or blue region R which is not its own integer hull, we use a brute-
force method to compute its integer hull, that is, we use an exhaustive search to find all the
integer points within R and compute the convex hull of those points.

To cut down the cost of the exhaustive search in such a region R, we use some optimizations.
For instance, if R is the edge region (blue region) of an edge e containing integer points, we
use those integer points to further partition R: we we find the closest integer point of e to each
non-integer vertex of e so as to split R into three parts, see Figure 4.8b for an example.
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(a) The area around an edge (b) When there are integer points on the edge

Figure 4.8: Polyhedral sets that cover the edge areas

Finding, on a given segment S , the integer point closest to a given vertex of S is relatively
simple in the 2D problem, but in the 3D case, we need to address the following, more com-
plicated, question: finding, on a given bounded 3D polyhedron F, an integer point closest to a
given vertex of F. A natural step towards answering this question is to represent all the integer
points of F, which, itself, is an integer hull problem. Since the 3D polyhedron F is “flat”, we
can project it to a 2D ambient space and use our algorithm from Section 4.2.

Here we use the procedure HNFProjection(F, d) which is introduced in detail in Sec-
tion 4.1.2. Recall that this procedure will return an ordered pair (G,RF) where RF mapping
“flat” 3D objects to their 2D counterparts.

Having a 2D polyhedral set FP, we use our Algorithm 3 to compute the vertices of the
integer hull of FP. Although the HNF method keeps the integer points in the projection, it can
not keep the distance among the points in general, so we must find the original image of the
vertices of the integer hull of FP.

Now that we have the integer hull of a facet, we can search for the closest integer points to
each of its vertices. Here we decide to use the closest vertex of the integer hull instead of the
actual closest integer point. Using the closest integer vertex might slow down the later steps
but only by a very small amount. Searching for the actual point would be another optimization
problem and this would be less efficient looking at the whole picture.
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Algorithm 4: Compute the closest integer points on a facet F to the vertices on it in
a 3D polyhedral set
1 Function closestIntegerPoints3D(F,V)

Input:
• F, a facet of P in the form of a PolyhedralSet object
• V , a list of the vertices of P

Output: VC, a list where VC[i] is the integer point on F which is the “closest” to
V[i], if V[i] is in F, and [] otherwise

2 FP,RF ← HNFProjection(F, 3)
/* Make a projection FP of the facet F onto 2D space using

Hermite Normal Form */

3 Vtmp ← IntegerHull2D(FP)
/* Find the vertices of the integer hull of FP */

4 VF ← RF(Vtmp)
/* VF is the set of vertices of the integer hull of F, see

Theorem 4 for more details. */

5 n← |V |
6 if VF = ∅ then
7 return []

8 for i from 1 to n do
9 if V[i] in F then

10 VC[i]← closest point to V[i] in VF

11 else
12 VC[i]← NULL

13 return VC

As mentioned above, in order to form a complete “partition” (actually coverage) of the input
polyhedral set, we need to carefully consider every edge that has at least one fractional vertex.
To this end, we use Algorithm 1 to find the closest integer points to a fractional vertex on its
adjacent edges. Now that we have all the “closest integer points” we need, we can construct
the parts that are the “blue”, “red” and “green” regions in Figure 4.6, 4.7 and 4.8. Algorithm 5
shows the procedure for the partition. Since all the vertices of the “red” polyhedral set are
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integer points, work remains to be done only in the “green” and “blue” polyhedral sets.

Algorithm 5: Partition of a 3D polyhedral set
1 Function Partition3D()

Input: V , A list of all the vertices of P
E, a list of all the edges of P
F, a list of all the facets of P
VC, a list of lists where VC[i][ j] is the “closest” integer point to V[ j] on F[i]
VE, , a list of lists where VE[i][ j] is the “closest” integer point to V[ j] on E[i]
Output: Vset, a set where each element contains the vertices of one part of the

partation
2 Vset ← ∅

3 for each VC[i] in VC do
4 if VC[i] = [] then
5 Vtmp ← {Vertices(F[i])}

/* F[i] does not contain integer point */
6 Vtmp ← Vtmp ∪ {VC[ j][k] |VC[ j][k] , NULL,V[k] ∈ F[i]}
7 Vset ← Vset ∪ {Vtmp}

8 for each V[ j] in V do
9 Vtmp ← {V[j]}

10 Vtmp ← Vtmp ∪ {VC[i][ j] |V[ j] ∈ F[i]}
11 Vset ← Vset ∪ {Vtmp}

12 for each E[i] in E do
13 if VE[i] = [] then
14 Vtmp ← {Vertices(E[i])}

/* E[i] does not contain integer point */
15 Vtmp ← Vtmp ∪ {VC[ j][k] | E[i] ∈ F[ j], V[k] ∈ E[i]}
16 Vset ← Vset ∪ {Vtmp}

17 else
18 for each vertex v of E[i] do
19 Vtmp ← {v}

20 Vtmp ← Vtmp ∪ {VC[ j][k] | E[i] ∈ F[ j], V[k] = v}
21 Vtmp ← Vtmp ∪ {VE[i][k] |V[k] = v}
22 Vset ← Vset ∪ {Vtmp}

23 return Vset

Before we present the complete algorithm, there are some corner cases that need to be
considered. Similar to our 2D problem, the input polyhedral set could be not fully dimensional.
Again we use Hermite Normal Form (HNF) to project the input to 2D space, and deal with it as
a 2D problem. Another corner case would be after applying Normalization: no facets have
integer points, in this case we use the brute-force approach for the whole input.

With all the sub-routines in order, here is our algorithm, Algorithm 6, for computing the
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integer hull of a bounded 3D polyhedral set.

Algorithm 6: Compute the integer hull of a given 3D polyhedral set
1 Function IntegerHull3D(P)

Input: P, a 3D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner case: P is not fully dimensional
3 P← Normalization(P)
4 V ← Vertices(P)
5 F ← Facets(P)
6 for each F[i] in F do
7 VC[i]← closestIntegerPoints3D(F[i], V)

/* VC is a 2D list where VC[i][ j] contains the closest integer
point to V[ j] on F[i] */

8 E ← Edges(P)
9 for each E[i] in E do

10 VE ← closestIntegerPointsOnEdge(E[i],V)
/* VE is a 2D list where VE[i][ j] contains the closest integer
point to V[ j] on E[i] */

11 Vset ← Partition3D(V, E, F,VC,VE)
/* Vset = {V1, . . . ,Vn} where Vi contains the vertices of one part */

12 I ← {ElementsOf(VC), ElementsOf(VE)}
13 for each Vi in Vset do
14 Plist ← PolyhedralSet(Vi)
15 AI ← AllIntegerPoints(Plist)
16 I ← I

⋃
ConvexHull(AI)

17 return ConvexHull(I)

4.3.2 An example

In this section we use a concrete 3D example to demonstrate how Algorithm 5 and Algo-
rithm 6 work. Consider the polyhedral set P given by the Equations 4.5 and Figure 4.9a. In the
Normalization step, only one facet is updated as is shown in Figure 4.9b and the normalized
input is given by Equations 4.6. This new P has vertices:

V =[[7,−
22
3
,−4], [−

855412
3319

,
2489899

19914
,

7854701
13276

], [−
23351687

53104
,

11786923147
52732272

,
11209969

53104
],

[−
4021497

53104
,

27434329
53104

,
18239129

53104
], [−

4300293
13276

,
6638921
13276

,
719333
39828

]]


−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

(4.5)



44 Chapter 4. Computing the integer hull of polyhedral sets


−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−1081x1 + 993x2 + 774x3 ≤ 860700

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

(4.6)

(a) Input polyhedral set P (b) After Normalization

Figure 4.9: Normalized input

Next, we compute lists VC and VE. We use the facet F that defined by the vertices V[1],V[2],V[3],V[4]
as an example to show this process. We first call procedure HNFProjection on F. It returns a
projection FP of F and a map RF as follow:

FP =PolyhedralSet([[
901093936819

13183068
,

11209969
53104

], [
681694796

9957
,

719333
39828

], [
2713599509

39828
,

7854701
13276

],

[
1812873801

26552
,

18239129
53104

]], [x′1, x
′
2])

RF :


x1 = 993x′1 + 573x′2 − 67995300
x2 = 1081x′1 + 623x′2 − 74020200
x3 = x′2

We call Algorithm 3 to compute the integer hull of FP, then we use RF to find the integer hull
of F. Then for each vertex v of F, we will pick the closest vertices of the integer hull to v as
the “closest” integer point. Figure 4.10a shows the projection FP and its integer hull (although
it may look like a line, all the points are not on a line) and Figure 4.10b shows the integer hull
of the facet F.
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(a) The projection FP and its integer hull (b) Integer hull of facet F

Figure 4.10: “Closest” integer points on facets

Now we have the full list of VC and VE we can proceed to Algorithm 5 to find the “corners”.

VC =[[], [[−3, 20, 7], [], [], [−78, 495, 322], [−303, 480, 27]],
[[−317, 165, 150], [], [−392, 280, 155], [], [−392, 280, 155]],
[[−3, 56, 38], [−235, 172, 560], [], [−103, 456, 380], []],
[[], [−249, 167, 550], [−408, 294, 165], [−126, 502, 292], [−306, 490, 56]]]

VE = [[], [], [], [[−3, 56, 38], [], [], [−63, 436, 290], []], [], [], [], []]

For each facet that does not contain integer point we process it with line 3-7 of Algorithm 5,
and create one corner polyhedral set for each of such facet. In our example only one such facet
exists, and we create the purple polyhedral set in Figure 4.11a with its vertices V[0],V[1],V[2]
and all the VC[i][ j] that exists for j = 0, 1, 2. The list of the points to form the purple polyhedral
set is as follow:

[[7,−22/3,−4], [−855412/3319, 2489899/19914, 7854701/13276],
[−23351687/53104, 11786923147/52732272, 11209969/53104], [−3, 20, 7],
[−317, 165, 150], [−392, 280, 155], [−3, 56, 38], [−235, 172, 560],
[−249, 167, 550], [−408, 294, 165]]

Now we move on to line 8-11 of Algorithm 5. For each vertex, we form a polyhedral set of
the vertex and all the “closest” integer points on its adjacent facets. These “corners” are shown
in green in Figure 4.11b.
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(a) We make one “corner” for each facet that does
not contain any integer point

(b) Every fractional vertex and its closest integer
points form a green “corner” polyhedral set

Figure 4.11: Empty facets and vertices

In the last step of Algorithm 5 (line 12-22) we look at each edge. For each edge that does
not contain integer point, we make one “corner”. And for the edges that have integer points,
we make two “corners” for each such edge, see the blue parts in Figure 4.12a. In our example
with 8 edges, there is one that contains integer points so in total we make 9 blue polyhedral
sets. But in reality, some of them overlap with the purple one in Figure 4.11a, we discard them
in our implementation. The blue “corners” that we actually need to process are as shown in
Figure 4.12b. A similar discarding process can be applied to the green corners as well.

Other than the purple, green and blue “corners” we formed, the majority of the volume of
the input fall into the parts that are already integer hulls. They are the red ones in Figure 4.13a
all their vertices comes from VC and VE therefore guaranteed integer points.

In Figure 4.13b we show the integer hull of this example, it contains 139 vertices and as we
can see most of them are clustered around the vertices of the input. Recall the results in [19],
[65] and [13] the number of vertices of the integer hull is related to the “size” of the inequalities
that define the input. So even for input with small number of vertices (for example, 5 vertices
in our example) the integer hull can has many more vertices.
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(a) We make one or two blue “corners” for each
edge

(b) Some blue “corners” can be discarded

Figure 4.12: How we deal with edges

(a) The parts that have only integer vertices (b) Integer hull of the input

Figure 4.13
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4.4 Implementation and experimentation

We have implemented the bounded 2D and 3D algorithms in both Maple and the C/C++

programming language. The Maple version is available in 2022 release of Maple as the
IntegerHull command of the PolyhedralSets library. In addition, an implementation for
arbitrary dimensional inputs is done in Maple (not in the released version) as well. In this
section, we discuss implementation details and the experimentation with our implementations.
All the benchmarks are done on an Intel i5-8300H CPU at 2.30GHz with 16GB of memory.
As we discussed in Chapter 1, there are studies (such as [33] and [13]) developing approaches
to enumerate the vertices of PI using their relations with the vertices of P but to our knowledge
no implementation of such methods exist. So in the following sections we compare our im-
plementation with the existing implementation of the naive method (enumeration of all integer
points, followed by the computation of their convex hull) for verification and proof of concept.

4.4.1 The Maple implementation

For the Maple version, we use the functions provided by the PolyhedralSets library for
polyhedral set manipulation such as construction, getting the vertices and faces. To obtain
the adjacency information among the faces we need to compute the face lattice of the input
polyhedral set; the PolyhedralSets library provides the command Graph for that task. We
compare our Maple implementation with another Maple package. In the 2019 Maple Confer-
ence, Jing and Moreno-Maza introduced the ZPolyhedralSets package, presented in [36].
A ZPolyhedralSet is the intersection of a polyhedral set and a lattice. The integer hull of a
polyhedral set is equal to a ZPolyhedralSet when the ZPolyhedralSet is defined using the
standard integer lattice (which represents all the points with integer coordinates).

The ZPolyhedralSet package provides a command, EnumerateIntegerPoints, which
would find and output all the integer points within a ZPolyhedralSet object. Given a polyhe-
dral set, to obtain the same result that our algorithm computes, which is the list of the vertices of
the integer hull, we use the command EnumerateIntegerPoints to find all the integer points
within the input, then we the command use ConvexHull from ComputationalGeometry to
compute the vertices.

Table 4.1 shows the time spent in our algorithm (IntegerHull) and the above two-step
method (EIP+CH) to obtain the same result. The inputs are triangles with different volumes.
As we discussed in Chapter 1, the cost for finding all the integer points is related to the volume
of the input and we can see the trend in the “EIP+CH” columns. Time spent by our algorithm
does not seem to depend on the volume of the input.

From Algorithm 3, we can see that the complexity of our algorithm depends on the number
of facets and the number of fractional vertices in the input. Table 4.2 shows the running time
of both algorithms (IntegerHull and EIP+CH) when the inputs are hexagons. The running time
for IntegerHull is roughly double the time for triangle inputs.
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Volume 27.95 111.79 11179.32

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.172 0.410 0.244 0.890 0.159 58.083

Table 4.1: Integer hulls of triangles

Volume 58.21 5820.95 23283.82

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.303 0.752 0.275 31.357 0.304 123.159

Table 4.2: Integer hulls of hexagons

Tables 4.3 and 4.4 show the running times of the same algorithms when the input is a
tetrahedron and a bipyramid respectively. The result is similar to that of the 2D algorithm
where the running time increases if there are more facets and vertices. One thing that we need
to notice is that the running time of our algorithm grows as the volume increases, this is due
to the way we deal with the parts that are around the edges. As we discussed in Section 4.3.1,
if there is no integer point on an edge, the sub-polyhedral set would include the whole edge
and its volume depends on the length of the edge. Recall that we use exhaustive search for the
sub-polyhedral sets thus the running time depends on the volume of the input polyhedral set.

Volume 447.48 6991.89 55935.2

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.202 6.892 1.498 67.814 1.517 453.577

Table 4.3: Integer hulls of tetrahedrons (4 facets, 4 vertices and 6 edges)

Volume 412.58 7050.81 60417.63

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.476 5.711 1.573 60.233 1.728 512.101

Table 4.4: Integer hulls of triangular bipyramids (6 facets, 5 vertices and 9 edges)

4.4.2 The C/C++ implementation

For the C/C++ implementation, we follow the representations in the C library cddlib by
Komei Fukuda[24] for the polyhedral set computations. GMP rational arithmetic is used until
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the integer coordinates are obtained to ensure correctness. Our implementation can take poly-
hedral sets in either the V-representation or the H-representation as input; cddlib is used for
representation conversion and some redundancy removal.

As we have discussed in Section 4.1.2 we use part of the algorithm in [35] to partition the
polyhedral sets and we follow that same article for the enumeration of the integer points in the
corners. We implemented Algorithm 2.4.10 in [18] and Algorithm 3 in [35] for the procedure
HNFProjection. We also implemented the algorithm introduced by Kaibel and Pfetsch in [37]
for the computations of the face lattice.

To verify our implementation, we compare our results with that of the Normaliz library [15].
We also implemented a naive procedure based on enumeration and convex hull computation
to obtain the integer hull. Note that Algorithm 3 in [35] only enumerates the integer points
inside the given polyhedral set while for Normaliz, if the input is not homogeneous Normaliz
homogenizes it by raising the input to a higher dimension, therefore, Normaliz enumerates
more points than we do for the same input.

Tables 4.5 and 4.6 show the time spent in these three different approaches for comput-
ing the integer hulls of the same inputs. Since the I/O formats are different for Normaliz
and cddlib, we only measured the timings for the integer hull computation part but not the
I/O parts of the programs. Especially, for Normaliz we only timed the function call “My-
Cone.compute(ConeProperty::IntegerHull)”.

The examples are named as xdy z, where x is the dimension of the input (all the examples
are full dimensional). Each y represents a set of examples that are of the same shape which
means these polyhedral sets A x ≤ b share the same coefficient matrix A while the vector b
varies. xdy 0 is the smallest (volume wise) example in a set, for z = 1, 2, 3, vector b gets
multiplied by 2, 5, 10 respectively. For the 2D examples, 2d1 has 6 vertices, 2d2 has 4 vertices
and 2d3 has 3 vertices. And for the 3D examples, 3d1 has 12 facets, 8 vertices and 18 edges,
3d2 has 4 facets, 4 vertices and 6 edges and 3d3 has 6 facets, 5 vertices and 9 edges.

The result is consistent with our observation in [49]. For the same family of input, the
time spent by our algorithm is relatively stable while for both our naive implementation and
Normaliz, the larger the volume of the input is, the more time they need to do the computation
since often time larger polyhedral sets contain more integer points for enumeration.

4.5 Conclusion and future work

In this chapter, we introduced a new algorithm for computing the integer hull of a convex
polyhedral set. This algorithm is essentially driven by the following simple idea: if P is close
to be PI (that is, up to a few vertices) then the computation of PI from P should be cheap.
We implement the algorithm for two-dimensional and three-dimensional input in both Maple
and C/C++. The efficiency of this algorithm depends mainly on the shape of the input while
the size of the input has little impact. We show in Section 4.4 that our algorithm can deal with
inputs of very large volumes which are out of reach for algorithms that depend on enumeration.

The main steps of our algorithm are normalization, partition and merging. Our algorithm
can be stated for polyhedral sets of arbitrary dimension and an Maple implementation is already
in place. Our on-going development is an algebraic complexity analysis of our algorithm.
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example IntegerHull Naive Normaliz
2d1 0 0.451 0.565 2.837
2d1 1 0.478 0.657 1216.238
2d1 2 0.396 0.682 740.559
2d1 3 0.443 1.134 472.447
2d2 0 0.413 1.128 1258.422
2d2 1 0.411 2.714 1242.081
2d2 2 0.393 16.079 2622.995
2d2 3 0.449 47.145 10218.368
2d3 0 0.284 0.768 835.730
2d3 1 0.339 1.676 462.116
2d3 2 0.286 6.883 1559.401
2d3 3 0.324 25.637 5072.894

Table 4.5: Timing (ms) for computing integer hull of 2D examples.

We sketch below and in Algorithm 7 our algorithm for computing the integer hull of a
D-dimensional convex polyhedral set P:

1. The input to the algorithm can be either the H-representation or the V-representation of
P (or both). If only one is provided, the other representation will be calculated during
the process, since both the vertices and the expressions of the facets are needed during
the computation.

2. On lines 2 to 6, if the input is not full dimensional, we use HNFProjection to project
to a lower dimension where it is full dimensional, compute the integer hull in that lower
dimension and then lift the result back to the input dimension.

3. normalize the input using the procedure introduced in Section 4.1.1
4. for each vertex, find the “closest integer points” to it on each of its adjacent faces. We

do that by computing the integer hull of the each face and then find the closest integer
vertex of the integer hull to each of the faces’ fractional vertex (Lines 10 - 14). On line
11 when we compute the integer hull of the projected facets, we can either recursively
call our algorithm or we can use other approaches such as brute-force.

5. for each face of dimension from 0 to D− 2, construct a “corner polyhedral set” using the
integer points we obtained from Step 4.

6. compute the integer hull of each corner
7. compute the convex hull of all the integer hulls from Step 6
8. this convex hull is the integer hull of P
The procedures used in Algorithm 7 are explained as follow,

1. HNFProjection(P): the procedure introduced in Section 4.1.2 that returns a projection
G of P using Hermite normal form where G is full dimensional and the map RF(G) = F.

2. Normalization(P): the procedure introduced in Section 4.1.1 that returns the normal-
ized P where the supporting plane of each facet contains integer points. Note that this
procedure does change the integer hull of P.

3. FaceLattice(P): returns the lattice of all the faces of P and their containment relation-
ships.
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example IntegerHull Naive Normaliz
3d1 0 51.727 11.396 274.364
3d1 1 52.034 13.483 1018.449
3d1 2 60.821 21.106 2330.534
3d1 3 54.350 79.219 15346.996
3d2 0 4.488 0.826 851.495
3d2 1 4.615 0.923 956.666
3d2 2 4.624 1.527 793.192
3d2 3 5.522 4.394 1318.150
3d3 0 11.049 21.235 7862.109
3d3 1 16.001 145.068 N/A
3d3 2 23.822 2082.559 N/A
3d3 3 24.162 N/A N/A

Table 4.6: Timing (ms) for computing integer hull of 3D examples.

4. Faces(L,i): L is a face lattice and i is an integer number, this procedure returns the
faces in L that have dimension i.

5. CornerPolySet(P): this procedure is a generalization of Algorithm 5. For a face f , let
F be a set of all the facets that intersect at f . If there exist integer points on f (which
means the closest integer points on f to its vertices exist), for each vertex v of f , the
“corner” polyhedral set has vertices consisting of: v, all the closest integer points on F
to v, the closest integer point on f to v. If there is no integer point on f , the “corner”
polyhedral set has vertices consisting of: all the vertices V of f , all the closest integer
points on F to V .

6. Enumeration(P): enumerate all the integer points in P.
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Algorithm 7: Compute the integer hull of a polyhedralset
1 Function IntegerHull(P)

Input: P, a PolyhedralSet
Output: I, a list of the vertices of the integer hull of P

2 if P is not fully dimensional then
3 RF ,G ← HNFProjection(P)

/* make projection G of P to a dimension where G is full
dimensional */

4 VG ← IntegerHull(G)
5 VP ← RF(VG)
6 return VP

7 P← Normalization(P)
8 D← Dimension(P)
9 L← FaceLattice(P)

10 for each f in L do
11 V f ← IntegerHull(f)
12 V ← Vertices(f)
13 for each v in V do
14 find the closest point to v in V f

15 Vset ← {}

16 for i from 0 to D − 2 do
17 F ← Faces(L, i)
18 for each f in F do
19 V ← Vertices(f)
20 if there are integer points on f then
21 for each v in V do
22 C ← CornerPolySet(v)
23 PT ← Enumeration(C)
24 VT ← ConvexHull(PT)
25 Vset ← Vset ∪ VT

26 else
27 C ← CornerPolySet(f)
28 PT ← Enumeration(C)
29 VT ← ConvexHull(PT)
30 Vset ← Vset ∪ VT

31 return ConvexHull(Vset)



Chapter 5

KLARAPTOR: A Tool for Dynamically
Finding Optimal Kernel Launch
Parameters Targeting CUDA Programs

In this chapter we present KLARAPTOR (Kernel LAunch parameters RAtional Program es-
timaTOR), a freely available tool built on top of the LLVM Pass Framework and NVIDIA
CUPTI API to dynamically determine the optimal values of kernel launch parameters of a
CUDA kernel. We describe a technique to build at the compile-time of a CUDA program a so-
called rational program. The rational program, based on some performance prediction model,
and knowing particular data and hardware parameters at runtime, can be executed to automat-
ically and dynamically determine the values of launch parameters for the CUDA program that
will yield nearly optimal performance. Our underlying technique could be applied to paral-
lel programs in general, given a performance prediction model which accounts for program
and hardware parameters. We have implemented and successfully tested our technique in the
context of GPU kernels written in CUDA.

The remainder of this chapter is organized as follows. Section 5.2 formalizes and exem-
plifies the notion of rational programs and their relation to piece-wise rational functions and
performance prediction. Section 5.3 gives on overview of the KLARAPTOR tool which applies
our technique to CUDA kernels. The general algorithm underlying our tool, that is, building
and using a rational program to predict program performance, is given in Section 5.4. Our im-
plementation is detailed in Section 5.5, while our implementation is evaluated in Section 5.6.
Lastly, we draw conclusions and explore future work in Section 5.7.

5.1 Introduction

Programming for high-performance parallel computing is a notoriously difficult task. Pro-
grammers must be conscious of many factors impacting performance including scheduling,
synchronization, and data locality. Of course, program code itself impacts the program’s per-
formance, however, there are still further parameters which are independent from the code
and greatly influence performance. For parallel programs three types of parameters influence
performance:

54



5.1. Introduction 55

1. data parameters, such as input data and its size;
2. hardware parameters, such as cache capacity and number of available registers; and
3. program parameters, such as granularity of tasks and the quantities that characterize

how tasks are mapped to processors (e.g. dimension sizes of a thread block for a CUDA
kernel).

Data and hardware parameters are independent from program parameters and are deter-
mined by the needs of the user and available hardware resources. Program parameters, how-
ever, are intimately related to data and hardware parameters. The choice of program parameters
can largely influence the performance of a parallel program, resulting in orders of magnitude
difference in timings (see Section 5.6). Therefore, it is crucial to determine values of pro-
gram parameters that yield the best program performance for a given set of hardware and data
parameter values.

In the CUDA programming model the kernel launch parameters, and thus the size and
shape of thread blocks, greatly impact performance. This should be obvious considering that
the memory accesses pattern of threads in a thread block can depend on the block’s dimen-
sion sizes. The same could be said about multithreaded programs on CPU where parallel
performance depends on task granularity and number of threads. Our general technique (see
Section 5.4) is applied on top of some performance model to estimate program parameters
which optimize performance. This could be applied to parallel programs in general, where
performance models using program parameters exist. However, we dedicate this chapter to the
discussion of GPU programs written in CUDA.

An important consequence of the impact of kernel launch parameters on performance is that
an optimal thread block format (that is, dimension sizes) for one GPU architecture may not be
optimal for another, as illustrated in [63]. This emphasizes not only the impact of hardware
parameters on program parameters, but also the need for performance portability. That is to
say, enabling users to efficiently execute the same parallel program on different architectures
that belong to the same hardware platform.

In this chapter, we describe the development of KLARAPTOR (Kernel LAunch parame-
ters RAtional Program estimaTOR), a tool for automatically and dynamically determining the
values of CUDA kernel launch parameters which optimize the kernel’s performance, for each
kernel invocation independently. That is to say, based on the actual data and target device of
a kernel invocation. The accuracy of KLARAPTOR’s prediction is illustrated in Figure 5.1
where execution times are given for each kernel in the the PolyBench/GPU benchmark suite
[29] on two different architectures. For each kernel, execution times are shown for three differ-
ent thread block configurations: one chosen by KLARAPTOR, one resulting in the minimum
time, and one resulting in the maximum time. The latter two are decided by an exhaustive
search. In most cases, KLARAPTOR’s prediction is very close to optimal; notice that the
y-axis is log scaled. Further experimental results are reported in Section 5.6.

KLARAPTOR applies to CUDA a generic technique, also described herein in Section 5.4,
to statically build a so-called rational program which is then used dynamically at runtime
to determine optimal program parameters for a given multithreaded program on specific data
and hardware parameters. The key principle is based on an observation of most performance
metrics. In most performance prediction models, high-level performance metrics, such as ex-
ecution time, memory consumption, and hardware occupancy, can be seen as decision trees
or flowcharts based on low-level performance metrics, such as memory bandwidth and cache
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Figure 5.1: Comparing kernel execution time (log-scaled) for the thread block configuration
chosen by KLARAPTOR versus the minimum and maximum times as determined by an ex-
haustive search over all possible configurations. Kernels are part of the PolyBench/GPU
benchmark suite and executed on (1) a GTX 1080Ti with a data size of N = 8192 (except
convolution3d with N = 1024), and (2) a GTX 760M with a data size of N = 2048 (except
convolution3d with N = 512 and gemm with N = 1024).

miss rate. These low-level metrics are themselves piece-wise rational functions (PRFs) of pro-
gram, data, and hardware parameters. This construction could be applied recursively to obtain
a PRF for the high-level metric. We regard a computer program that computes such a PRF as a
rational program, a technical notion defined in Section 5.2.

If one could determine these PRFs, then it would be possible to estimate, for example, the
running time of a program based on its program, data, and hardware parameters. Unfortunately,
exact formulas for low-level metrics are often not known, instead estimated through empirical
measures or assumptions, or collected by profiling. This is a key challenge our technique
addresses.

In most cases the values of the data parameters are only given at runtime, making it difficult
to determine optimal values of the program parameters at an earlier stage. On another hand,
a bad choice of program parameters can have drastic consequences. Hence, it is crucial to be
able to determine the optimal program parameters at runtime without much overhead added to
the program execution. This is precisely the intention of the approach proposed here.
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5.1.1 Contributions

The goal of this work is to determine values of program parameters which optimize a mul-
tithreaded program’s performance. Towards that goal, the method by which such values are
found must be receptive to changing data and changing hardware parameters. Our contribu-
tions encapsulate this requirement through the dynamic use of a rational program. Our specific
contributions include:

1. a technique for devising a mathematical expression in the form of a rational program to
evaluate a performance metric from a set of program and data parameters;

2. KLARAPTOR, a tool implementing the rational program technique to dynamically op-
timize CUDA kernels by choosing optimal launch parameters; and

3. an empirical and comprehensive evaluation of our tool on kernels from the
Polybench/GPU benchmark suite.

5.1.2 Related Works

The Parallel Random Access Machine (PRAM) model [60, 27], including PRAM models tai-
lored to GPU code analysis such as TMM [45] and MCM [31] analyze the performance of
parallel programs at an abstract level. More detailed GPU performance models are proposed
such as MWP-CWP [34, 58], which estimates the execution time of GPU kernels based on the
profiling information of the kernels.

In the context of improving CUDA program performance, other research groups have used
techniques such as loop transformation [12], auto-tuning [30, 38, 54, 40], dynamic instrumen-
tation [39], or a combination of the latter two [59]. Auto-tuning techniques have achieved great
results in projects such as ATLAS [68], FFTW [23], and SPIRAL [53] in which multiple kernel
versions are generated off-line and then applied and refined on-line once the runtime parame-
ters are known. In contrast, our technique does not optimize the parallel code itself, only the
program parameters controlling it.

Although much research has been devoted to compiler optimizations for kernel source code
or PTX code, previous works such as [16] and [63] suggest that kernel launch parameters (i.e.
thread block configurations) have a large impact on performance and must be considered as a
target for optimization. In [43], the authors present an input-adaptive GPU code optimization
framework G-ADAPT, which uses statistical learning to find a relation between the input sizes
and the thread block sizes. At linking time, the framework predicts the best block size for
a given input size using the linear model obtained from compile time. This approach only
considers the total size of the thread blocks and not their configuration. Meanwhile, the authors
of [54] use a linear regression model to predict optimal thread block configurations (that is,
dimension sizes and not just the total size). However, they assume kernel execution time scales
linearly with data size. The authors in [42] have also developed a method determining the
best thread block configuration, but similarly, they assume execution time scales linearly with
data size. In [25], machine learning techniques are used in combination with auto-tuning to
search for optimal configurations of OpenCL kernels, but their examples are limited to stencil
computations.
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5.2 Theoretical Foundations
Let P be a multithreaded program to be executed on a targeted multiprocessor. Parameters
influencing its performance include

1. data parameters, describing size and structure of the data;
2. hardware parameters, describing hardware resources and their capabilities; and
3. program parameters, characterizing parallel aspects of the program (e.g. how tasks are

mapped to hardware resources).
By fixing the target architecture, the hardware parameters, say, H = (H1, . . . ,Hh) become

fixed and we can assume that the performance of P depends only on data parameters D =

(D1, . . . ,Dd) and program parameters P =
(
P1, . . . , Pp

)
. Moreover, an optimal choice of P

naturally depends on a specific choice of D. For example, in programs targeting GPUs the
parameters D are typically dimension sizes of data structures, like arrays, while P typically
specifies the formats of thread blocks.

Let E be a high-level performance metric for P that we want to optimize. More precisely,
given the values of the data parameters D, the goal is to find values of the program parameters
P such that the execution of P optimizes E. Performance prediction models attempt to estimate
E from a combination of P, D, H, and some model- or platform-specific low-level metrics L =

(L1, . . . , L`). It is natural to assume that these low-level performance metrics are themselves
combinations of P, D, H. This is an obvious observation from models based on PRAM such
as TMM [45] and MCM [31].

Therefore, we look to obtain values for these low- and high-level metrics given values for
program, and data parameters. To address our goal, we compute a mathematical expression
for each metric, parameterized by data and program parameters, in the format of a rational
program at the compile-time of P. At the runtime of P, given the specific values of D and
a choice of P, we can evaluate the rational programs to obtain a value for each metric and
thus E. These values can be used to determine which choice of P optimizes overall program
performance. This method is detailed in Section 5.4. We take this section to define the rational
program itself.

One could view a rational program as simply a computer program evaluating some
performance-predicting model. However, as we will see in the following sections, it is more
than that. Specifically, the encoding of some model as a flow chart whose nodes can then be
approximated as a rational function is a powerful idea which can be used to simplify models
and extrapolate results.

5.2.1 Rational Programs

Let X1, . . . , Xn,Y be pairwise different variables1. Let S be a sequence of three-address code
(TAC [5]) instructions such that the set of the variables that occur in S and are never assigned
a value by an instruction of S is exactly {X1, . . . , Xn}.

Definition 2 We say that the sequence S is rational if every arithmetic operation used in S is
either an addition, a subtraction, a multiplication, or a comparison of integer numbers in either

1Variables refer to both its mathematical meaning and programming language concept.
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fixed or arbitrary precision. We say that the sequence S is a rational program in X1, . . . , Xn

evaluating Y if the following two conditions hold:
1. S is rational, and
2. after specializing each of X1, . . . , Xn to some integer value in S, the execution of the spe-

cialized sequence always terminates and the last executed instruction assigns an integer
value to Y.

It is worth noting that the above definition can easily be extended to include Euclidean
division, the integer part operations floor and ceiling, and arithmetic over rational numbers.
For Euclidean division one can write a rational program evaluating the quotient q of integer
a by b, leaving the remainder r to be simply calculated as a − qb. Then, floor and ceiling
can be computed via Euclidean division. Rational numbers and their associated arithmetic are
easily implemented using only integer arithmetic. Therefore, by adding these operations to
Definition 2, the class of rational programs does not change. We regard rational programs as
such henceforth.

5.2.2 Rational Programs as Flowcharts
For any sequence S of computer program instructions, one can associate S with a control flow
graph (CFG). In the CFG of S, the nodes are the basic blocks of S. Recall that a flowchart is
another graphic representation of a sequence of computer program instructions. In fact, CFGs
can be seen as particular flowcharts.

If, in a given flowchart C, every arithmetic operation occurring in every (process or deci-
sion) node is either an addition, subtraction, multiplication, or comparison of integers in either
fixed or arbitrary precision then C is the flowchart of a rational sequence of computer program
instructions. Therefore, it is meaningful to depict rational programs using flowcharts, and vice
versa, flowcharts as rational programs. For example, one could consider the metric of theoret-
ical hardware occupancy as defined by NVIDIA. The following example details its definition,
its depiction as a flowchart, and its dependency on program, data, and hardware parameters.

Example 1 Hardware occupancy, as defined in the CUDA programming model, is a measure
of a program’s effectiveness in using the Streaming Multiprocessors (SMs) of a GPU. Theoret-
ical occupancy is calculated from a number of hardware parameters, namely:

- the maximum number Rmax of registers per thread block,
- the maximum number Zmax of shared memory words per thread block,
- the maximum number Tmax of threads per thread block,
- the maximum number Bmax of thread blocks per SM and
- the maximum number Wmax of warps per SM,

as well as low-level kernel-dependent performance metrics, namely:
- the number R of registers used per thread and
- the number Z of shared memory words used per thread block,

and a program parameter, namely the number T of threads per thread block. The occupancy
of a CUDA kernel is defined as the ratio between the number of active warps per SM and the
maximum number of warps per SM, namely Wactive/Wmax, where

Wactive ≤ min (bBactiveT/32c,Wmax) (5.1)
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T Bmax ≤ 32 Wmax and
R T Bmax ≤ Rmax and

Z Bmax ≤ Zmax?

32 Wmax ≤ T Bmax, and
32 Wmax R ≤ Rmax and
32 Wmax Z ≤ Zmax T?

Rmax ≤ R T Bmax and
Rmax ≤ R 32 Wmax and

Rmax Z ≤ R T Zmax?

Zmax ≤ Bmax Z and
Zmax T ≤ 32 Wmax Z and

Zmax R T ≤ Z Rmax?

Bactive = Bmax

Bactive = b(32 Wmax)/T c

Bactive = b(Rmax/(R T )c

Bactive = bZmax/Zc

Bactive = 0 (Failure to Launch)

No

No

No

No

Yes

Yes

Yes

Yes

Figure 5.2: Rational program (presented as a flow chart) for the calculation of active blocks in
CUDA.

and Bactive is given by the flowchart in Figure 5.2. This flowchart shows how one can derive a
rational program computing Bactive from Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T . It follows from
formula (5.1) that Wactive can also be computed by a rational program from Rmax, Zmax, Tmax,
Bmax, Wmax, R, Z, T . Finally, the same is true for theoretical occupancy of a CUDA kernel using
Wactive and Wmax.

5.2.3 Piece-Wise Rational Functions in Rational Programs
We begin with an observation describing the fact that a rational program can be viewed as a
piece-wise rational function 2 .

2Here, rational function is in the sense of algebra, see Section 5.5.4.
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Observation 1 Let S be a rational program in X1, . . . , Xn evaluating Y . Let s be any instruction
of S other than a branch or an integer part instruction. Hence, this instruction can be of the
form C = −A, C = A + B, C = A − B, C = A × B, where A and B can be any rational
number. Let V1, . . . ,Vv be the variables that are defined at the entry point of the basic block
of the instruction s. An elementary proof by induction yields the following fact. There exists
a rational function in V1, . . . ,Vv that we denote by fs(V1, . . . ,Vv) such that C = fs(V1, . . . ,Vv)
for all possible values of V1, . . . ,Vv. From there, one derives the following observation. There
exists a partition T = {T1,T2, . . .} of Qn (where Q denotes the field of rational numbers) and
rational functions f1(X1, . . . , Xn), f2(X1, . . . , Xn), . . . such that, if X1, . . . , Xn receive respectively
the values x1, . . . , xn, then the value of Y returned by S is one of fi(x1, . . . , xn) where i is such
that (x1, . . . , xn) ∈ Ti holds. In other words, S computes Y as a piece-wise rational function
(PRF). Notice that, trivially, if S contains only one basic block, then S can be given by a single
rational function.

Example 1 shows that the hardware occupancy of a CUDA kernel is given as a piece-wise
rational function in the variables Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T . Hence, in this example,
we have n = 8, and, as shown by Figure 5.2, its partition of Qn contains 5 parts as there are 5
terminating nodes in the flowchart.

Suppose that a flowchart C representing the rational program R is partially known; to be
precise, suppose that the decision nodes are known (that is, mathematical expressions defining
them are known) while the process nodes are not. Then, from Observation 1, each process
node can be given by a series of one or more rational functions. Trivially, a single formula
can also be seen as a flowchart with a single process node. Determining each of those rational
functions can be achieved by solving an interpolation or curve fitting problem. More generally,
if the sequence of instructions in a process node involves non-rational functions (e.g. log) we
can apply Stone-Weierstrass Theorem [61] to approximate each of those by a PRF.

It then follows that any performance metric, which can be depicted as a flow chart or a
formula, can also be represented as a piece-wise rational function, and thus a rational program.
For high-level performance metrics, which rely on low-level metrics, one could work recur-
sively, first determining rational programs for the low-level metrics which depend on P, D,
and H, and then constructing a rational program for the high-level metric from those rational
programs. Hence, by this recursive construction, we can fully determine a rational program for
a high-level metric depending only on P, D, and H. Of course, hardware parameters could be
fixed given a target architecture to yield a rational program which depends only on P and D.
Again, notice that even where formulas for low-level metrics are not known, it is still possible
to estimate them as PRFs, and thus rational programs, via a curve fitting.

As an example, consider occupancy (Example 1). One could first determine PRFs for
the number of registers user per thread and the amount of shared memory used per thread
block. Then, a PRF is determined for the number of active blocks (Figure 5.2) from these
two low-level metrics, and a few more hardware and program parameters. Thus, by recursive
construction, we have a PRF depending only on program and hardware parameters.

Lastly, we make one final remark. We assumed that the decision nodes in the flowchart
of the rational program were known, however, we could relax this assumption. Indeed, each
decision node is given by a series of rational functions. Hence, those could also be determined
by solving curve fitting problems. However, we do not discuss this further since it is not needed
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in our proposed technique or implementation presented in the remainder of this chapter.

5.3 KLARAPTOR: A Dynamic Optimization tool for CUDA
The theory of rational programs is put into practice for the CUDA programming model by our
tool KLARAPTOR. KLARAPTOR is a compile-time tool implemented using the LLVM Pass
Framework and the MWP-CWP performance model to dynamically choose a CUDA kernel’s
launch parameters (thread block configuration) which optimize its performance. Most high-
performance computing applications require computations be as fast as possible and so kernel
performance is simply measured as its execution time.

As mentioned in Section 5.1, thread block configurations drastically affect the running time
of a kernel. Determining optimal thread block configurations typically follows some heuristics,
for example, constraining block size to be a multiple of 32 [2]. However, it is known that the
dimension sizes of a thread block, not only its total size, affect performance [63, 16]. Moreover,
since thread block configurations are intimately tied to the size of data being operated on, it
is very unlikely that a static thread block configuration optimizes the performance of all data
sizes. Our tool effectively uses rational programs to dynamically determine the thread block
configuration which minimizes the execution time of a particular kernel invocation, considering
the invocation’s particular data size and target architecture. This is achieved in two main steps.

1. At the compile-time of a CUDA program, its kernels are analyzed in order to build
rational programs estimating the performance metrics for each individual kernel under
the MWP-CWP model. Each rational program, written as code in the C language, is
inserted into the code of the CUDA program so that it is called before the execution of
the corresponding kernel.

2. At runtime, immediately preceding the launch of a kernel, where data parameters have
specific values, the rational program is evaluated to determine the thread block configu-
ration which optimizes the performance of the kernel. The kernel is then launched using
this thread block configuration.

Not only are we concerned with kernel performance, but also programmer performance. By
that, we mean the efficiency of a programmer to produce optimal code. When a programmer is
attempting to optimize a kernel, choosing optimal launch parameters can either be completely
ignored, performed heuristically, determined by trial and error, or determined by an exhaustive
search. The latter two options quickly become infeasible as data sizes grow large. Regardless,
any choice of optimal thread block configuration is likely to optimize only a single data size.

For KLARAPTOR to be practical, not only does the choice of optimal kernel launch pa-
rameters need to be correct, but its two main steps must also be performed in an manner more
efficient than trial and error or exhaustive search. Namely, the compile-time analysis cannot
add too much overhead to the the compilation time and the runtime decision of the kernel
launch parameters cannot overwhelm the program execution time. For the former, our analy-
sis is performed quickly by analyzing kernel performance on only small data sizes, and then
results are extrapolated. The time for this process typically ranges between 30 seconds and 2
minutes (see Section 5.6). For the later, the rational program evaluation is quick and simple,
being only the evaluation of a few rational functions. Moreover, we maintain a runtime invo-
cation history to instantly provide results for future kernel launches. Our implementation is



5.4. AnAlgorithm toBuild andDeployRational Programs to Select Program Parameters 63

detailed in Section 5.5.
We have made use of the Polybench/GPU benchmark suite as an empirical evaluation of

the correctness of our tool on a range of CUDA programs. In Figure 5.1 we have already seen
that KLARAPTOR accurately predicts the optimal or near-optimal thread block configuration.
Before presenting more detailed results and experimentation in Section 5.6, we describe the
steps followed by our tool to build and use rational programs for determining a thread block
configuration which optimizes performance.

5.4 An Algorithm to Build and Deploy Rational Programs to
Select Program Parameters

In this section the notations and hypotheses are the same as in Section 5.2. Namely, E is a
high-level performance metric for the multithreaded program P, L is a set of low-level metrics
of size `, and P, D, H are sets of program, data, and hardware parameters, respectively. Recall
P has size p. Let us assume that the values of H are known at the compile-time of P while
the values of D are known at runtime. Further, let us assume that P and D take integer values.
Hence the values of P belong to a finite set F ⊂ Zp. That is to say, the possible values of P
are tuples of the form (π1, . . . , πp) ∈ F, with each πi being an integer. Let us call such a tuple a
configuration of the program parameters. Due to the nature of program parameters, those are
not necessarily all independent variables For example, in CUDA, the product of the dimension
sizes of a thread block is usually a multiple of the warp size (32).

Given a performance-prediction model for E, one could work recursively to determine a
single rational program R, depending on only D and P, evaluating E, from a combination of
rational programs constructed for each low-level metric in L and values of D and P. Following
Section 5.2.3, each of these rational programs are constructed by computing rational functions.
Without loss of generality, let us assume each low-level metric is given by a single formula
and thus a single rational function. Hence, we look to determine g1(D, P), . . ., g`(D, P) for
the ` low-level metrics. Finally, at runtime, given particular values of D, the rational program
for E can be evaluated for various values of P to determine the optimal. In the context of
CUDA where we look to optimize execution time, the selection of program parameters leading
to optimal performance is a complex task, currently we relies on the MWP-CWP model to do
the selection. In the remainder of this section we describe the general process to build and use
rational programs to determine optimal configurations. The entire process is decomposed into
six steps: the first three occur at compile-time and the next three at runtime.

1. Data collection: To perform a curve fitting of the rational functions g1(D, P), . . ., g`(D, P)
we require data points to fit. These are collected by

(a) selecting a subset of K points from the space of possible values of (D, P); and
(b) executing the programP, recording the values of the low-level performance metrics

L as V = (V1, . . . ,V`), at each point in K.
Data used for executing the programs is generated randomly, but could follow some
scheme provided by the user.

2. Rational function approximation: For each low-level metric Li we use the set of points
K and the corresponding value Vi measured for each point to approximate the rational
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function gi(D, P). We observe that if these values were known exactly the rational func-
tion gi(D, P) could be determined exactly. In practice, however, these empirical values
are likely to be noisy from profiling, and/or numerical approximations. Consequently,
we actually determine a rational function ĝi(D, P) which approximates gi(D, P).

3. Code generation: In order to generate the rational program R, we proceed as follows:
(i) we convert the rational program representing E into code, essentially encoding the

CFG for computing E;
(ii) we convert each ĝi(D, P) into code, specifically sub-routines, estimating Li; and

(iii) we include those sub-routines into the code computing E, which yields the desired
rational program R, fully constructed, and depending only on D and P.

4. Rational program evaluation: At the runtime of P, the data parameters D are given
particular values. For those specified values of D and for all practically meaningful
values of P from the set F,3 we compute an estimate of E using R. The evaluation of E
over so many different possible program parameters is feasible for three reasons:

(i) the number of program parameters is small, typically p ≤ 3, see Section 5.5;
(ii) the set of meaningful values for P is small (consider that in CUDA the product of

thread block dimension sizes should be a multiple of 32 less than 1024); and
(iii) the program R simply evaluates a few polynomial formulae and thus runs almost

instantaneously.
5. Selection of optimal values of program parameters:

When the search space of values of program parameters P is large, a numerical opti-
mization technique is required for this step. But, as just explained, the total number of
evaluations is quite small and thus an exhaustive search is feasible to determine an op-
timal configuration. However, it is possible that due to inaccuracies in the performance
prediction model being used, and in the approximation of the rational functions gi(D, P)
several configurations, up to some margin, optimize E. Then, a secondary performance
metric or some heuristic specific to the platform of P may be used to refine the choice of
optimal configuration.

6. Program execution: Once an optimal configuration is selected, the program P can fi-
nally be executed using this configuration along with the values of D.

5.5 The Implementation of KLARAPTOR
In this section we give an overview of the implementation of our previously presented tech-
nique (Sections 5.4) specialized to CUDA using the MWP-CWP model in the KLARAPTOR
tool. Our tool is built in the C language, making use of the LLVM Pass Framework (see Sec-
tion 5.5.2) and the NVIDIA CUPTI API (see Section 5.5.3). KLARAPTOR is freely available
in source at https://github.com/orcca-uwo/KLARAPTOR.

In the case of a CUDA kernel, the data parameters specify the input data size. In many
examples this is a single parameter, say N, describing the size of an array (or the order of a
multi-dimensional array), the values of which are usually powers of 2. Program parameters

3The values for P are likely to be constrained by the values D. For example, if P1, P2 are the two dimension
sizes of a two-dimensional thread block of a CUDA kernel operating on a square matrix of order D1, then P1P2 ≤

D2
1 is meaningful.

https://github.com/orcca-uwo/KLARAPTOR
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describe the kernel launch parameters, i.e. grid and thread block dimension sizes, and are also
typically powers of 2. For example, a possible thread block configuration may be 1024 × 1 × 1
(a one-dimensional thread block), or 16×16×2 (a three-dimensional thread block). Lastly, the
hardware parameters are values specific to the target GPU, for example, memory bandwidth,
the number of SMs available, and their clock frequency.

We organize this section as follows. Sections 5.5.1 and 5.5.2 are specific to our implemen-
tation and do not correspond to any step of Section 5.4. The compile time steps 1 (data collec-
tion) and 2 (rational function estimation) are reflected in Sections 5.5.3 and 5.5.4, respectively,
while step 3 requires no explanation. The runtime steps 4 (rational program evaluation), 5 (se-
lection of optimal configuration) and 6 (program execution) are trivial to perform, Throughout
this section we refer to the notion of a driver program as the code, for each individual kernel,
using a rational program to select a configuration.

5.5.1 Annotating and Preprocessing Source Code

Beginning with a CUDA program written in C/C++, we minimally annotate the host code to
make it compatible with our pre-processor. We take into account the following points:

(i) the code targets at least CUDA Compute Capability (CC) 3.x;
(ii) there should be no CUDA runtime API calls as such calls will interfere with later CUDA

driver API calls used by our tool, for example, cudaSetDevice;
(iii) the block dimensions and grid dimensions must be declared as the typical CUDA dim3

structs.
For each kernel in the CUDA code, we add two pragmas, one specifying the dimension of

the kernel (1, 2, or 3), and one defining the index of the kernel input arguments corresponding
to the data size N. As an example, consider the code segment below of a CUDA kernel and the
associated pragmas. This kernel operates of a two-dimensional array of order N, making it a
two-dimensional kernel.

#pragma kernel_info_size_param_idx_Sample = 1;

#pragma kernel_info_dim_sample_kernel = 2;

__global__ void Sample (int *A, int N) {

int tid_x = threadIdx.x + blockIdx.x*blockDim.x;

int tid_y = threadIdx.y + blockIdx.y*blockDim.y;

...

}

Lastly, for each kernel, the user must fill two formatted configuration files which follow
Python syntax. One specifies the constraints on the thread block configuration while the other
specifies the grid dimensions. For example, for the 2D kernel Sample above, one could specify
that its thread block configuration (bx, by, bz) must satisfy bx < by2, bx < N and by < N.
Since the kernel dimension is given as 2, we assume bz = 1. Similarly, the grid dimensions
(gx, gy, gz), could be specified as gx = d N

bxe, gy = d N
bye, gz = 1.

Now, a preprocessor processes the annotated source code, replacing CUDA runtime API
calls with driver API kernel launches. This step includes source code analysis in order to extract
a list of kernels, a list of kernel calls in the host code, and finally, the body of each kernel to be
used for further analysis. A so-called “PTX lookup table” is built to store kernel information
and static parameters. This table will be inserted into the “instrumented binary”, the compiled
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CUDA program augmented by the driver programs.

5.5.2 Input/Output Builder

The Input/Output builder Pass, or IO-builder, is a compiler pass written in the LLVM Pass
Framework to build the previously mentioned “instrumented binary”. This pass embeds an
IO mechanism (i.e. a function call) to communicate with the driver program of a kernel for
each of its invocations. Thus, at the runtime of the CUDA program being analyzed (step 6
of Section 5.4), an IO function is called before each kernel invocation to return six integers,
(gx, gy, gz, bx, by, bz), the optimal kernel launch parameters.

The IO-builder pass goes through the following steps:
1. obtain the LLVM intermediate representation of the instrumented source code and find

all CUDA driver API kernel calls;
2. relying on the annotated information for each kernel, determine which variables in the

IR contain the value of N for a corresponding kernel call; and
3. insert a call to an IO function immediately before each kernel call in order to pass the

runtime value of N to the corresponding driver program and retrieve the optimal kernel
launch parameters.

5.5.3 Building a Driver Program: Data Collection

For the MWP-CWP model as well as our eventual rational function estimation, we must collect
data and statistics regarding certain performance counters and runtime metrics (these metrics
are thoroughly defined in [34] and [1]). These metrics can be partitioned into three categories.

Firstly, architecture-specific performance counters of a kernel, characteristics influenced
by the CC of the target device. These can be obtained at compile-time, since the target CC is
specified at this time. These characteristics include the number of registers used per thread, the
amount of static shared memory per thread block, and the number of (arithmetic and memory)
instructions per thread.

Secondly, runtime-specific performance counters that depend on the behavior of the kernel
at runtime. This includes values impacted by memory access patterns, namely, the number of
memory accesses per warp, the number of memory instructions of each thread, and the total
number of warps that are being executed. We have developed a customized profiler using
NVIDIA’s EVENT API within the CUPTI API to collect the required runtime performance
counters. The profiler is customized to collect only the required information, allowing it to be
very lightweight and avoid the huge overheads of a typical profiler (e.g. NVIDIA’s nvprof [4]).

Thirdly, device-specific parameters, which describe an actual GPU card, allow us to com-
pute a more precise performance estimate. A subset of such parameters can be determined by
microbenchmarking the device (see [47] and [71]), this includes the memory bandwidth, and
the departure delay for memory accesses. The remaining parameters can easily obtained by
consulting the vendor’s guide [3], or by querying the device itself via the CUDA driver API.
Such parameters include the number of SMs on the card, the clock frequency of SM cores, and
the instruction delay.
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5.5.4 Building a Driver Program: Rational Function Approximation
Using the runtime data collected in the previous step, we look to determine the rational func-
tions ĝi(D, P) (see Section 5.4) which estimate the low-level metrics or other intermediate
values in the rational program. For ease of discussion, we replace the parameters D and P with
the generic variables X1, . . . , Xn.

A rational function is simply a fraction of two polynomials:

f (X1, . . . , Xn) =
α1 · (X0

1 · · · X
0
n) + . . . + αi · (X

u1
1 · · · X

un
n )

β1 · (X0
1 · · · X

0
n) + . . . + β j · (X

v1
1 · · · X

vn
n )

(5.2)

With a degree bound (an upper limit on the exponent) on each variable Xk in the numerator
and the denominator, uk and vk, respectively, these polynomials can be defined up to some
parameters (using the language of parameter estimation), namely the coefficients of the poly-
nomials, α1, . . . , αi and β1, . . . , β j. Through algebraic analysis of performance models like the
MWP-CWP model, and empirical evidence, these degree bounds are relatively small.

We perform a parameter estimation (for each rational function) on the coefficients α1, . . . , αi,
β1, . . . , β j to determine the rational function precisely. This is a simple linear regression which
can be solved by an over-determined system of linear equations, say by the method of linear
least squares. However, the system suffers from multicollinearity (see [26, Chapter 23]) and
can become rank-deficient. Solving using the typical QR-factorization is impossible; hence we
use the computationally more intensive yet more numerically stable method of singular value
decomposition (SVD; for details see [20, Chapter 4]).

Our implementation uses LAPACK [6] for SVD and the Basic Polynomial Algebra Sub-
programs (BPAS) library [7] for efficient rational function and polynomial implementations.

5.6 Experimentation
In this section we examine the performance of KLARAPTOR by applying it to the CUDA
programs of the Polybench/GPU benchmark suite [30]. We note here that many of the kernels
in this suite perform relatively low amounts of work; they are best suited to being executed
many times from a loop in the host code. Data in this section was collected using a GTX
1080Ti.

Table 5.1 provides experimental data for the main kernels in the benchmark suite
Polybench/GPU. Namely, this table compares the execution times of the thread block config-
uration chosen by KLARAPTOR against the optimal thread block configuration found though
exhaustive search. The table shows a couple of data sizes in order to highlight that the best
configuration can change for different input sizes. While it may appear for some examples
that there are large variations between timings of the KLARAPTOR-chosen configuration and
the optimal, these should be considered within the full range of possible configurations. Re-
call from Figure 5.1 that compared to the worst possible timings, the KLARAPTOR-chosen
configuration and the optimal result in very similar in timings.

In Figure 5.3 we compare the time it takes KLARAPTOR to perform its compile-time
analysis and build the rational programs for each example in the PolyBench/GPU suite. This is
compared against determining the optimal thread block configuration by an exhaustive search.
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Table 5.1: KLARAPTOR vs. exhaustive search for thread block configuration choice for ker-
nels in Polybench/GPU.

Kernel N
KLARAPTOR Chosen Optimal Optimal

Time (ms) Config. Time (ms) Config.

atax K1 4096 2.35 32, 4 0.85 32, 1
8192 27.83 1, 64 4.33 16, 2

atax K2 4096 1.09 16, 2 1.04 32, 1
8192 2.20 32, 1 2.19 64, 1

bicg K1 4096 1.05 256, 1 1.05 32, 1
8192 2.23 256, 1 2.21 64, 1

bicg K2 4096 1.15 8, 4 0.85 32, 1
8192 12.58 256, 4 4.35 512, 1

convolution2d 4096 0.79 256, 1 0.77 32, 4
8192 2.54 256, 4 2.35 32, 4

corr 4096 5700.65 256, 1 5075.77 32, 1
8192 27846.91 256, 1 26024.94 32, 1

covar 4096 5682.96 256, 1 5076.77 32, 1
8192 27865.89 256, 1 26182.65 32, 1

fdtd step1 4096 0.56 256, 1 0.56 32, 2
8192 2.22 256, 4 2.22 32, 4

fdtd step2 4096 0.58 256, 1 0.58 512, 1
8192 2.33 32, 16 2.30 512, 1

fdtd step3 4096 0.77 256, 1 0.77 512, 2
8192 3.06 256, 4 3.05 1024, 1

gemm 4096 723.29 256, 1 386.76 32, 32
8192 7481.13 256, 1 3069.66 32, 16

gesummv 4096 8.19 2, 16 1.62 32, 1
8192 82.21 32, 16 11.58 64, 1

gramschmidt K1 4096 0.09 4, 32 0.09 256, 1
8192 0.20 8, 32 0.17 64, 1

gramschmidt K2 4096 0.01 32, 2 0.01 256, 1
8192 0.01 512, 2 0.01 256, 1

gramschmidt K3 4096 2.15 256, 1 2.11 32, 1
8192 4.68 256, 1 4.61 32, 1

mm2 K1 4096 695.23 256, 1 384.93 32, 32
8192 7531.13 256, 1 3062.26 32, 16

mm2 K2 4096 761.49 256, 1 386.61 32, 32
8192 7533.08 256, 1 3077.75 32, 16

mm3 K1 4096 749.27 256, 1 388.40 32, 32
8192 7531.56 256, 1 3065.34 32, 16

mm3 K2 4096 816.08 256, 1 389.13 32, 16
8192 7532.66 256, 1 3067.87 32, 16

mm3 K3 4096 737.21 256, 1 392.81 32, 16
8192 7530.24 256, 1 3085.43 32, 16

mvt K1 4096 1.15 8, 4 0.86 32, 1
8192 12.90 256, 4 4.35 16, 2

mvt K2 4096 1.05 256, 1 1.05 32, 1
8192 2.23 256, 1 2.21 128, 1

syr2k 4096 7050.62 1, 64 2097.15 4, 32
8192 18013.51 16, 64 17398.88 4, 8

syrk 4096 2973.88 2, 16 1165.24 16, 16
8192 15936.21 32, 16 9368.56 16, 16
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Since KLARAPTOR’s compile-time analysis is a one-time occurrence which optimizes for all
data sizes, exhaustive search times are given as a sum for data sizes up to N = 8192. The best
and worst execution times for the main kernel in each example (for N = 8192) is also given
to highlight the fact that our optimization step is sometimes faster than even a single execution
of a kernel with a poor choice of thread block configuration. We note that for some kernels,
with very quick running times, exhaustive search is not a bad option. However, some examples
such as GRAMSCHMIDT, take an exorbitant amount of time for exhaustive search. This figure
also shows that the one-time compile-time cost of optimization can often be amortized by only
a few executions of the kernel.

Figure 5.3: Comparing times (log-scaled) for (1) compile-time optimization steps of KLARA-
PTOR, (2) exhaustive search over all thread block configurations, the execution time for a
kernel given (3) the best thread block configuration, and (4) the worst thread block configura-
tion. Exhaustive search is given as a sum for values up to N = 8192 (except convolution3d
with N = 1024).

5.7 Conclusions and Future Work
The performance of a single CUDA program can vary wildly depending on the target GPU
device, the input data size, and the kernel launch parameters. Moreover, a thread block config-
uration yielding optimal performance for a particular data size or a particular target device will
not necessarily be optimal for a different data size or different target device. In this chapter we
have presented the KLARAPTOR tool for determining optimal CUDA thread block configu-
rations for a target architecture, in a way which is adaptive to each kernel invocation and input
data, allowing for dynamic data-dependent performance and portable performance. This tool is
based upon our technique of encoding a performance prediction model as a rational program.
The process of constructing such a rational program is a fast and automatic compile-time pro-
cess which occurs simultaneously to compiling the CUDA program by use of the LLVM Pass
framework. Our tool was tested using the kernels of the Polybench/GPU benchmark suite with
great results.

That same experimentation has lead us to consider the limitations our chosen performance
prediction model, MWP-CWP. Recently, the author of [67] and [66] has suggested a GPU
performance model relying on Little’s law; it measures concurrency as a product of latency
and throughput. This model considers both warp and instruction concurrency while previous
models [3, 34, 58, 9] consider only warp concurrency. The author’s analysis of those models
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suggests their limitation is the significant underestimation of occupancy when arithmetic inten-
sity (the number of arithmetic instructions per memory access) is intermediate. This is exactly
the type of kernels on which KLARAPTOR underperforms. In future work we look to apply
an improved performance prediction model in order to achieve even better results.
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