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Abstract

In this thesis, we examine the performance of Vision Transformers concerning the cur-

rent state of Advanced Driving Assistance Systems (ADAS). We explore the Vision Trans-

former model and its variants on the problems of vehicle computer vision. Vision trans-

formers show performance competitive to convolutional neural networks but require much

more training data. Vision transformers are also more robust to image permutations than

CNNs. Additionally, Vision Transformers have a lower pre-training compute cost but can

overfit on smaller datasets more easily than CNNs. Thus we apply this knowledge to tune

Vision transformers on ADAS image datasets, including general traffic objects, vehicles,

traffic lights, and traffic signs. We compare the performance of Vision Transformers on this

problem to existing convolutional neural network approaches to determine the viability of

Vision Transformer usage.

Keywords: Vision transformers, image recognition, ADAS
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Summary for Lay Audience

One component of Autonomous Driving, Advanced Driving System Assistance Systems

(ADAS), are vehicle systems designed to improve driving ability and road safety. These

technologies can include Anti-Lock Braking Systems and lane departure warning systems.

These systems often have to collect information about the traffic environment, including

the presence of traffic objects such as vehicles, pedestrians, traffic lights, and traffic signs.

The collection is often done through computer vision, collecting visual information through

cameras attached to the vehicle. A common way of parsing this visual information to detect

and classify these traffic objects is through machine learning models. Machine learning

models differ from traditional computer algorithms as they do not need to be explicitly

programmed. Instead, they learn from the data given to them at training time and make

decisions based on the information. In this case, machine learning models can learn from

traffic image data to make predictions presence and class of traffic objects.

In this thesis, we evaluate a set of pre-trained Vision Transformer models made by

Google. Vision Transformers are a new, popular type of machine learning model applying

a mechanism called self-attention. Self-attention mechanisms can learn from and form re-

lations between any pair of points in a data sequence. Vision transformers do not compare

every pixel but split images into patches for more realistic computer power and mem-

ory cost. These patches are arranged into a linear sequence of vectors, and the Vision

transformer trains by finding relations in these patches of pixels.

Our research shows that Vision Transformers are competitive with existing Convolu-

tional Neural network models when first pretrained on a large dataset of images and then

adjusted to train on a smaller, domain-specific dataset. We apply this concept to an image

dataset of vehicles, pedestrians, traffic lights, and traffic signs. We find that classification

accuracy when predicting the traffic object in unseen images is higher than classification

accuracy from prior research applying Convolutional Neural Networks to the same datasets.
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Chapter 1

Introduction

1.1 An Overview

Every year there are 20-50 million people injured in traffic accidents, of which over 1 million

are fatal [1], with this number increasing yearly. These injuries are now the global killer of

individuals between 5 and 29 years of age, despite there being technology proven to reduce

such accidents [2]. This technology is called Advanced Driver Assistant Systems (ADAS),

a set of systems designed to enhance driver safety and reduce human error.

Human error accounts for the majority of road accidents [3]; typically because of a loss

of alertness due to impaired driving and/or fatigue. Besides impairment, other underlying

issues like fatigue are hard to determine in the case of fatalities. Increased smartphone

usage has also presented another distraction for drivers. The majority of accidents happen

in low-income countries [2], where safety information is often less accessible or laws are

not adequately enforced. The global increase in accidents and human error coupled with

the effectiveness of ADAS shows a need for the advancement and propagation of such

technology.

Autonomous vehicles, vehicles intended to drive without human assistance, are gen-
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erally separated into six levels of automation. Level 0 represents no automation, relying

wholly on human drivers, and level 5 represents full automation, requiring no driver input

[4]. The first three levels, up to level 2, partial driving automation, can be considered the

limit of ADAS, with ADAS such as cruise control in level 1 and lane keeping and adaptive

cruise control in level 2. Traffic object recognition, the focus of this thesis, is essential for

ADAS and could reduce error significantly.

1.2 Problem

Traffic accidents are common, and the issues are generally attributed to human error.

Safety is a significant focus of many automobile manufacturers, and ADASs are a common

selling point for autonomous vehicle manufacturers [5]. Several tools exist, such as Anti-

lock Braking System, backup cameras and state-of-the-art automatic vehicle maneuvering.

External sensory networks such as cameras, radar, and LiDAR are enabling many inno-

vations [6]. Examples include Lane Departure Warnings, Rear Cross-Traffic Alerts, and

Emergency Brake Assist when approaching obstacles in front.

Artificial Intelligence (AI), specifically Machine Learning (ML), also plays a vital role

in ADAS, namely for Computer Vision (CV) ADAS. Traffic object recognition, specifically

Traffic Sign recognition, Vehicle recognition and Pedestrian recognition [5], are important

CV-based ADAS tasks, generally done via object detection and then classification. In this

thesis we will use the words classification and recognition interchangeably. Traffic Sign

recognition can process information before the driver can see it, enabling more informed

driving. This technology can also be extended to identifying other vehicles, pedestrians,

traffic lights and other traffic objects in every direction, allowing for a safer and simplified

driving experience. While notable developments exist in this field, there is still room for

improvement. Modern techniques reach 96% classification accuracy on their respective

datasets [7], though there is still work to be done in production vehicles. In [8], we can see
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that in perfect conditions, about 5% of signs are misread, but when signs were artificially

altered to test the robustness of these systems, accuracy could drop to as low as 62% from

99%. There is work to be done on the resistance of Traffic Sign recognition to possible

real-world image corruption.

1.3 Contribution

This thesis assesses the effectiveness of Google’s Vision Transformers (ViT) [9], for the

problem of traffic image classification. The ViT is a modification of the Transformer [10]

deep-learning architecture for images, originally introduced for Natural Language Process-

ing tasks based on a network mechanism called Self-Attention.

ViTs have quickly become popular in the Computer Vision space [11], and have also

been shown to be significantly more robust to image permutations than Convolutional

Neural Networks [12]. This thesis examines the potential use of ViTs in the ADAS space

through exploration and experimental assessment of the performance of ViTs on classes

of images arising in driving scenarios and compares their performance to previous work

utilizing the same data [7]. Specifically, when fine-tuned on a pre-cropped traffic image

dataset from RoadLAB, ViTs show significant image classification accuracy improvements

compared to existing Convolutional Neural Network (CNN) methods used by RoadLAB

in [7]. The CNN results were good, but can still be improved upon; a comparison of

the original ViT model to these CNN methods will show the possible potential for image

transformers for ADAS systems. The results show considerable potential for the application

of ViTs to the problem of ADAS traffic detection.

1.4 Thesis Organization

This thesis is organized as follows:
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In chapter 2, we examine preliminary and recent work in the field of ADAS TSA and

related image classification topics. Chapter 3 explains the related work and the proposed

ViT architecture. Chapter 4 presents the image database used, the methods used to

choose the ViT models and hyperparameters, the performance evaluation criteria, and the

experiment results. Chapter 5 discusses the conclusion, shortcomings, and possible future

work.
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Chapter 2

Related Work

Advanced Driver Assistance Systems (ADAS) have been a subject of interest for researchers

[13] and automobile manufacturers [8] alike. The highest form of ADAS would be a level

5 in autonomy or a fully self-driving vehicle. A level 5 rating requires a multi-faceted

perception of the traffic environment, including vision. Computer vision (CV) can be

separated into traditional and machine learning algorithms, the latter of which are prevalent

in the automotive industry [6]. In visual image recognition, elements of the visual driving

environment must be classified to make high-level decisions after the detection stage. To

this end, image classification is a pertinent problem.

For the problem of sensing other objects and vehicles, there are four modes of sensing for

vehicle detection based on sensing electromagnetic radiation or sound waves. As explained

in [14], there exists vehicle hardware to detect millimetre-wave (MM wave) radio signals,

LiDAR, a 600-1000 nanometer-wave laser, and vision based on the visible light spectrum.

Radar and LiDAR work by propagating signals of their respective frequency and analyzing

the subsequently reflected energy. Radar tracks object based on motion, and usage is

common in other ADAS applications, but it has a narrow field of view and struggles with

wide-open traffic. LiDAR has become increasingly popular and common in detecting traffic

in ADAS, segmenting regions of interest and classifying based on size or motion. The fourth
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type, ultrasonic sensors, uses high-frequency sound waves to measure nearby, slow-moving

or stationary objects, though they are easily susceptible to the environment [15].

Before images can be classified, they must be detected by the hardware. Generally, the

visual detection stage is split into non-machine learning and machine learning approaches.

Of the ML approaches, Viola and Jones proposed a sliding-window framework with Ad-

aboost classifiers [16] and the use of stochastic Support Vector Machines (SVM). These

SVMs use Histograms of Oriented Gradients [17] and Scale-Invariant Feature Transform

[18] as features. As CNNs progressed in the 2010s, they became common in the field

[19, 20]. The family of Region-based CNNs, R-CNNs, quickly became popular, as well as

the regression-based families of the CNNs: You Only Look Once (YOLO) [21] and Single

Shot Multibox Detector (SSD) [22].

In this section, we discuss related works in general image classification. Each subdomain

of ADAS researched for this thesis, and we discuss the background of Vision Transformers.

2.1 General Image Classification

Machine Learning “is the scientific study of algorithms and statistical models that computer

systems use to perform a specific task without being explicitly programmed” [23]. Image

classification is a complex topic, and the usage of machine learning techniques has been

studied extensively. The “learning” part of Machine Learning can be divided into three

categories: supervised learning, where labelled data is used to evaluate model training and

prediction; unsupervised learning, where the model finds relations and patterns in data;

and reinforcement learning, where the model is an agent trying to solve a problem and

is reinforced by its progress toward that reward [23]. Here we will focus on unsupervised

learning algorithms, the method most commonly used in CV. Some surveys can be found

in [24], [25].

Before advancements in machine learning, image recognition did not always yield good
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performance. Systems had to be manually programmed based on prior knowledge [26].

From 2010 to 2017, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

began as an annual visual recognition competition on the ImageNet benchmark and ex-

tensive visual object database. It was a notable representation of the image recognition

state-of-the-art [27]. Lin et al. won in 2010 using an SVM with two non-linear coding

representations via Scale-Invariant Feature Transform and Local Binary Patterns (LBP)

[28]. An SVM won in 2011 again [29], but in 2012, a CNN, AlexNet, won [30], kicking off

the deep-learning-based popularity. A deep-learning-based model has won each year since

then, leading to the domination of deep learning we see to this day (where depth refers to

NNs with one or more hidden layers) [25] [31].

CNNs have existed since the 1980s but experienced explosive growth in the 2010s be-

cause of more efficient algorithm implementations and Graphics Processing Unit (GPU)

hardware advancements. A notable advancement in NN technology is the Visual Geometry

Group’s VGG model, which implemented a network twice as large as AlexNet and ReLU

non-linearity for the nodes [32]. Another notable advancement is Microsoft’s ResNet im-

plementing residual learning via skip connection (identity mapping around weight layers),

allowing gradients to flow through a network unmitigated [33]. CNNs remain dominant in

the scene, but ViTs have recently made strides, [31, 11].

2.2 ADAS Image Classification

In the ADAS spaces, much of the focus of image recognition falls into three domains:

traffic light recognition, traffic sign recognition, and vehicle recognition. This work focuses

only on classifying traffic lights, traffic signs, and vehicles, so the research dealing with the

recognition of these objects will be the focus of this review.
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2.2.1 Traffic Light Recognition

Several methods have been studied for Traffic light recognition; a survey can be found

in [34]. Lindner et al. notably used CNNs in 2004 [35], achieving 90% accuracy albeit

predicted offline at 10Hz; this technique was used in the 2014 Mercedes-Benz S-Class [36].

Shen et al. similar or better results by modelling hue and saturation according to Gaussian

distributions [37]. SVMs with Histograms of Oriented Gradients were used by [38], [39].

Notably, CNNs have become the most widely used deep learning architecture [40]; [41]

applied YOLO-v1, and Jensen et al. [42] applied the YOLO-9000 to the LISA traffic light

dataset. Liu, Yan and Qi [43] applied the recent capsule CNNs [44] on the traffic light

dataset, TL Dataset. Work done in the same lab as this thesis achieved an average of

96.2% accuracy, with up to 99% accuracy on some classes, on a dataset generated in-house

[7].

2.2.2 Traffic Sign Recognition

Prior approaches for traffic sign recognition included template matching, which achieved

good performance on guiding signs (depicting routes and roads) and 46.5% on speed limit

sign recognition in 2000 [45]. Similar to traffic light recognition, traffic sign recognition

studies have employed SVMs, such as [46], [47] and [48] with the latter two achieving around

95% accuracy. SVMs were compared with Nearest Neighbor Classifiers, Iterative Nearest

Neighbor Classifiers, and Sparse Representation-based Classifiers [49], achieving over 95%

average accuracy on the German Traffic Sign Recognition Benchmark (GTSRB) [50] and

the Belgium Traffic Sign Dataset for Classification (BTSC) [51]. Similar to traffic light

recognition, CNNs have been used for traffic sign recognition before the CNN renaissance;

in 1997, a CNN was used for the classification of low resolution (30 x 30) photos in [52],

with high accuracy (some over 90%) for the time, on simple street signs. Notably, in 2004,

a spatiotemporal attention network (although a different implementation to the focus of
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this thesis) achieved 85% accuracy on simple signs as well [53]. Neural networks have since

grown dramatically in popularity, like with traffic lights. Multiple NNs were used in [54]

(one for each sign shape and colour), multi-scale CNNs were used in [55], a CNN trained

with Hinge Loss Stochastic Gradient Descent was used in [56], and notably, Generative

Adversarial Network in tandem with a CNN in [57]. A CNN achieved 99.7% on the

Swedish Traffic Signs Dataset (STSD) [58].

Haque et al. recently proposed DeepThin, a lightweight CNN due to being deep but

thin (many layers but few nodes), making the act of training without a GPU feasible

due to the small number of operations per layer and image size. DeepThin achieved over

99% accuracy on the GTSRB and 98% accuracy on the BTSC. When pre-training on

GTSRB and fine-tuning on BTSC or vice versa, accuracy increased to 98%. Dewi et al.

[59] trained Yolov3 [60] and Yolov4 [61] on images synthesized by various modern GANs

that were trained on a self-made Taiwan prohibitory sign dataset. Classification accuracy

was over 99% depending on the GAN, with the best being YOLOv4 on the Least Squares

Generative Adversarial Networks (LSGAN) [62], achieving 100% accuracy on the 3 of the

four classes. In 2022, Zheng and Jiang trained and applied five vision transformers on the

German Traffic Sign Recognition Benchmark, the Indian Cautionary Traffic sign dataset,

and the CSUST Chinese Traffic Sign Detection Benchmark [63] to compare with CNNs.

Accuracy was noticeably worse, from around 2% worse up to 12.81% worse. They suggest

two possible methods for improvement: pre-training the transformer on a larger dataset,

fine-tuning or more effective internal structures, such as convolution. Lastly, from the same

lab as this thesis, [7] achieved up to 96.1% accuracy on a dataset generated by the lab.

2.2.3 Vehicle Recognition

Vehicle classification as a field of study was not separate from detection initially. As seen

in this survey [64], it was not until the late 1990s to early 2000s that some machine learning
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techniques, including neural networks, began to differentiate vehicles. Kalinke et al. fed

Hausdorff distances of the vehicles’ Local Orientation Coding (LOC) against archetypal

models of cars and trucks into a NN [65]. Handmann et al. used a similar method, with a

histogram of LOC fed into a NN [66].

As shown in [67], some other techniques included Automatic Traffic Surveillance Sys-

tems, which checked for size and linearity of objects; Gupte et al. checked vehicle length

and height width to identify trucks and non-trucks, with 90% classification accuracy [68].

Hsieh et al. used size based on lane width and the linearity of vehicles from fixed per-

spectives to identify cars, minivans, van trucks (including buses), and trucks to around

82-84% accuracy [69]. Avery et al. used lengths based on a fixed perspective for 97.5%

accuracy on shorter vehicles and 91.9% accuracy on trucks and longer vehicles [70]. An-

other technique is using a partial Gabor filter bank, with a recognition rate up to 95% for

sedans, vans, hatchbacks, buses and trucks on a database of 1196 images [71]. Lastly, Kafai

and Bhanu applied a hybrid dynamic Bayesian network to classify sedans, pickup trucks,

SUVs/minivans, and unknown vehicles with a classification rate of 97.63% on a database

of 169 videos [72].

Recently, more machine learning methods have become common. Won [73] shows some

relatively recent methods. Chen et al. used an SVM for classifying motorcycles, cars,

vans, buses and unknown, with a classification accuracy of 94.6% [74]. Karaimer et al.

employ an SVM with HOG features for gradient-based classification, combined with the

kNN (k Nearest Neighbors) algorithm for classification on a dataset of 124 cars, 104 vans

and 48 motorcycles with an accuracy of 96.5% [75]. Mithun et al. used virtual detection

lines (MVDLs)-based to make time spatial images fed into a kNN algorithm to classify

motorbikes, rickshaws, autorickshaws, cars, jeeps, covered vans, and busses in Dhaka,

Bangladesh, and Suwon, South Korea, for an accuracy up to 91% [76]. Deep learning

techniques are also prevalent. Dong et al. applied a semisupervised CNN - unsupervised

for detection and supervised for classification - on the BIT-Vehicle dataset [77] and one in
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[78]. The CNN gave classification accuracies of 88.1%, and 89.4%, respectively. Huttunen

et al. fed 6555 vehicle images from Finland into a CNN, classifying cars, buses, trucks, and

vans for 97% classification accuracy [79]. Adu-Gyamfi et al. designed a CNN for speed

and accuracy, pre-trained on ImageNet [27], and fine-tuned and tested it on the Iowa and

Virginia Department of Transportation CCTV data for accuracy of over 89% [80]. Liu

et al. trained an ensemble of ResNet models [33] on the MIO-TCD dataset [81] for a

classification accuracy of 97.7% [82].

In the state-of-the-art, Ma et al. [83] applied Channel Max Pooling (CMP) to pre-

trained CNNs and compared them to non-CMP CNNs on the Cars-196 [84] and Comp-

Cars [85], achieving about a 91-95% accuracy on Cars-196 and 97-97% on CompCars -

comparable with the existing CNNs. Hedaya et al. applied a super-learner [86] - a data-

adaptive ensemble - on the MIO-TCD [81] and BIT-Vehicle datasets [77], with accuracies

up to 97.94% and 97.62% respectively [87]. Neupane et al. [88] fine-tuned pre-trained

YOLO models, [21], specifically 2 of the YOLOv3 family [60] and YOLOv5 family [89] on

a self-proposed dataset of nearly 30,000 images of cars, buses, taxis, bikes, pickup trucks,

commercial trucks, and trailers, achieving an accuracy of 95% with the YOLOv5l model.

Zhao et al. [90] also apply a YOLO model, by optimizing the YOLOv4 family [61] with an

attention mechanism [91] and Feature Pyramid Network (FPN) [92], beating out Faster R-

CNN [93] and EfficientDet [94] in several metrics on the BIT-Vehicle [77] and UA-DETRAC

[95] datasets. Lastly, [7] achieved 94.8% accuracy with a class minimum of 83.3% for the

background null class and less than 3% mislabeling error.

2.2.4 Overall Traffic Object Recognition

The state-of-the-art for multi-class object recognition covers many different technologies,

not just computer vision. Ćorović et al. applied YOLOv3 [60] to detect cars, trucks,

pedestrians, traffic signs, and traffic lights on the Berkley Deep Drive dataset [96]. Results
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were below expectation, with precision and recall scores not reaching above 63% and 55%

respectively [97]. Leng et al. applied a Faster-RCNN [98] to U-V disparity maps [99]

generated from a stereo vision system. When trained on the KITTI dataset [100], the per-

formance achieved surpasses that of purely using a Faster-RCNN, achieving 70.2% accuracy

for detecting cars, 82.1% for pedestrians and 77.9% for cyclists [101]. Li et al. used arrays

of ultrasonic sensors along with a conditional likelihood maximization method to detect

pedestrians, cyclists and vehicles with class detection rates of 85.7%, 76.7% and 93.1%,

respectively, with an overall detection accuracy of 86% [102]. Prakash et al. proposed

TransFuser, a novel Multi-Modal Fusion self-attention Transformer integrating image and

LiDAR data for an end-to-end autonomous driving model [103]. The transformer can de-

tect other vehicles and traffic lights to navigate, achieving state-of-the-art performance on

the CARLA driving simulator [104]. Lin et al. applied a novel CNN technique, Bear-Angle

CNN (BA-CNN), to bearing angle images generated from LiDAR point cloud data, to the

KITTI dataset, classifying pedestrians, cars and street clutter. Achieved accuracy was

competitive with state-of-the-art, achieving 94.7% classification accuracy for pedestrians,

99.3% accuracy for cars, and 94.0% accuracy for street clutter, with an overall accuracy of

96% [105].

2.3 Vision Transformers

Vision transformers [9] are an adaptation of the transformer Natural Language Processing

(NLP) deep learning model [10] to image tasks. Transformers quickly become the state-of-

the-art [106], surpassing Recurrent Neural Networks (RNN) like Long Short-Term Memory

networks with attention, with not just better performance but also using 1/4 of the training

time [10]. Transformers rely on attention, similar to mental attention, which allows the

model to focus on some parts of the language input. The language input is consumed all at

once rather than sequentially. Simultaneous input allows for a more global representation
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of the text, thus semantic relations between words, and parallelizability, saving training

time compared to the sequential RNNs.

2.3.1 Transformers

The transformer uses an encoder-decoder architecture, as in Figure 2.1. Each transformer

layer contains a multi-head self-attention mechanism sub-layer and feed-forward network

sub-layer (including the residual normalization layers) for the encoder. The decoder trans-

former layer includes a second multi-head attention sub-layer, including the output of the

encoder. The decoder is not included in ViTs. Vaswani et al. describe their attention

mechanism as “mapping a query and a set of key-value pairs to an output, where the

query, keys, values, and output are all vectors” [10]. This query, key and value trio is

analogous to an information retrieval system, where the attention unit takes the query

and keys to get the values. In this case, the queries (matrix Q) and keys (matrix K) are

multiplied with the values (matrix V ) to create contextualized embeddings or attention.

2.3.2 Attention

Input embeddings are created by tokenizing the input string X, and for each token i,

converting each to a word embedding xi ∈ X and a positional encoding; that is to say,

there is a vector to represent each word in a given corpus. Q, K and V are formed such that

for each word embedding vector xi, we calculate qi = xiWQ, ki = xiWK and vi = xiWV ,

where qi ∈ Q, ki ∈ K and vi ∈ V . WQ, WK , andW V are weight matrices learned as needed

by the transformer [107], of the form WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , W V ∈ Rdmodel×dv

[108]. Attention is thus calculated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
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Figure 2.1: Transformer model architecture. Adapted from [10, Fig. 1]
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This can be seen in Figure 2.2, on the left. Scaling down is done by dividing by
√
dk, for numerical stability; the dimension of K is

√
dk. The square root is applied

so that the softmax values do not grow too large as the size of K increases [10] (the

implementation chooses the value of K). The authors call this form of attention scaled

dot-product attention.

Figure 2.2: Scaled Dot-Product Attention (left). Multiple attention layers in parallel for
Multi-head Attention (right). Adapted from [10, Fig. 2]

Multi-Head attention applies the same process h times in parallel, as in Figure 2.2

on the right. Each scaled-dot product attention ’head’ has its own set of weights and

embeddings, allowing each head to capture different information about the data. Each

scaled dot-product attention head is concatenated and projected again:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where headi = Attention(QW i
Q, KWK

i , vW V
i )

Where WO ∈ Rhdv×dmodel , and h varies by implementation.
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2.3.3 Vision Transformer

Motivated by the successes in NLP scaling the size of transformers up, Dosovitskiy et al.

experimented with images, seeking to apply transformers to vision as directly as possible [9].

ViTs are structured with only the transformer encoder, connected to an MLP classification

head. Each transformer layer is slightly different, with normalization prior to the multi-

head self-attention and feed-forward layers. To scale realistically to the size of image

data, they reshape each “image x ∈ RH×W×C into a sequence of flattened 2D patches x ∈

RN×(P 2·C), where (H,W ) is the resolution of the original image, C is the number of channels,

(P, P ) is the resolution of each image patch, and N = HW/P 2 is the resulting number

of patches, which also serves as the effective input sequence length for the Transformer”.

Figure 2.3 shows the image reshaping process.

Figure 2.3: Overview of the Vision Transformer model, illustrating the splitting and linear
embedding of images(left). Single transformer layer (right). Adapted from [9, Fig. 1].

Each patch is coupled with a learnable 1D position embedding for positional awareness.

Like BERT, the popular NLP transformer [109], another embedding is added to each

sequence of embedded patches to represent the class at the output, leading into the MLP

classification head. The patches are flattened and mapped toD dimensions with a trainable

linear projection for the patch embeddings, as D is the latent vector used throughout
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the transformer. The authors also experimented with Hybrid models formed by CNNs

providing the input sequences. Model size variants are based on BERT, with the model

sizes ViT-Base, ViT-Large and ViT-Huge as seen in Table 2.1 (although Steiner et al. have

since proposed ViT-Tiny and ViT-Small, as well as ResNet hybrid variants [110]). Model

variants allow two possible sizes for P , 16 or 32, written as ViT-L/16 or ViT-L/32. This

thesis will only look at the ViT-Base and ViT-Large variants.

Model Layers Hidden size D MLP size Heads Params

Vit-Base 12 768 3072 12 86M
Vit-Large 24 1024 4096 16 307M
Vit-Huge 32 1280 5120 16 632M

Table 2.1: Vision Transformer model variant information. Adapted from [9, Table 1].

Compared with state-of-the-art pre-trained ResNet and EfficientNet models, ViTs pre-

trained on the same dataset outperform or match classification accuracy in comparisons

while requiring much fewer computational resources, when trained on sufficiently large

datasets. ViTs train significantly faster than CNNs: the largest ViT model, ViT-H, took

about one-third of the time to pre-train on JFT-300M as their ResNet152 model, and

about one-fifth of the time as their EfficientNet-L2 model. When pre-trained on smaller

datasets, ViTs are slightly worse or comparable to CNN performance. More can be seen in

Table 2 and Figures 2-5 in [9]. ViTs generalize better on these large datasets, on the scale

of 14M to 300M images, with datasets such as ImageNet-21k and JFT-300M. When CNNs

and ViTs are pre-trained on the same, smaller datasets, ViTs underperform partly due

to their lack of image-specific inductive biases. This is because, unlike CNNs and RNNs,

ViTs do not have an inherent notion of neighbourhoods of pixels from convolutions or a

memory/latent belief held over time. This lack of biases makes ViTs (and transformers in

general), much more general NN structures than CNNs or RNNs. While they can quickly

compute large amounts of data, they lack specific inductive biases to make sense of data

without external help. ViTs require large amounts of augmentation and regularization

in addition to the large amounts of data to learn useful biases that are inherent in other
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models. These ViTs form very unbiased estimators, so while they do not have many biases

to guide their understanding, with enough data they can avoid being held back by biases

present in other NN architectures. Thus ViTs can be considered much more general than

CNNs and RNNs.

Newer image transformers have been proposed since the original ViT paper in 2020.

Data-Efficient image Transformers, or DEiT, introduced by Touvron et al. of Facebook

AI and Sorbonne University in December 2020 proposed a transformer-specific teacher-

student distillation strategy [111]. They propose DeiT-B based on ViT-B, as well as two

smaller models denoted as DeiT-Ti and DeiT-S (for tiny and small, respectively), whose

sizes are used for ViT-Ti and ViT-S in the future. Notably, the DeiT transformers learned

better from CNN teachers rather than transformer teachers. DeiT-B results with standard

distillation are competitive with ViT-B results and when trained along with the proposed

distillation strategy, even DeiT-Ti results outperform the much larger ViT-B and ViT-L

models, with all results competitive with the state-of-the-art. DeiT-B models when fined-

tuned at the larger image size of 384px x 384px outperform ResNet, RegNet [112] and

EfficientNet [113] models on ImageNet.

The Shifted Windows (Swin) transformer proposed by Liu et al. of Microsoft Re-

search Asia in March of 2021 is an image transformer for classification, detection and

segmentation [114]. They propose sizes Swin-T, Swin-S, Swin-B, and Swin-L based on

the above-mentioned ViT and DeiT models. Swins compute self-attention across larger

windows of patches, and then self-attention across a set of shifted windows, accounting for

the boundaries of the windows in the first self-attention block. There are four stages in

each Swin, with the window size growing each stage and at least a pair of self-attention

blocks. Swin outperforms ViTs, similarly sized DEiTs, EffNets and RegNets on ImageNet

with better throughput than all compared models except DEiTs. Swins achieve state-of-

the-art performance on the COCO object detection and segmentation dataset [115] and

the ADE20K image dataset [116].
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In April of 2021, Caron et al. of Facebook AI, Grenoble Alpes University Inria Re-

search Center and Sorbonne University introduced the DINO method for self-supervision

(self-distillation with no labels, thus DINO) [117]. Applying DINO to ViTs, they find

two properties of self-supervised ViTs not present with supervised ViTs or CNNs; self-

supervised ViTs contain features encoding the scene layout and object boundaries, as well

as performing well with just a k-NN classifier (without fine-tuning, linear classifier or data

augmentation). DINO performs well on several tasks, including image classification and

video segmentation, among others. It outperforms state-of-the-art CNN and ViT methods

when all are using a linear classifier, achieving 80.1% accuracy on ImageNet.

The last image transformer we will cover, BEiT, was introduced in June of 2021, by

Bao et al. of the Harbin Institute of Technology and Microsoft Research [118]. Inspired by

BERT [118], BEiT stands for Bidirectional Encoder and uses a masked image modelling

task to pre-train. They tokenize an image and it into patches, and then randomly mask

some proportion of the image patches. Using a ViT backbone, BEiT attempts to predict

the original image tokens based on the encoding of the corrupted image patches. BEiT

achieves competitive results for semantic segmentation on ADE20K among ViTs and state-

of-the-art image classification results on ImageNet when compared with other ViT-B and

ViT-L sized models, with a classification accuracy of 86.3%.

Notably, image transformers are being used in industry, with Generative Pre-trained

Transformers (GPTs) [119], possibly iGPT [120], being used by American electric and

autonomous vehicle manufacturer Tesla in their AutoPilot program. In June of 2022,

Tesla CEO Elon Musk, confirmed they are using multiple GPT models on the social media

platform Twitter [121], stating they “are replacing C heuristics for post-processing of the

vision NN’s ‘giant bag of points”’. GPT would be apt for taking vision data and predicting

possible paths of traffic objects, given its generative role. CNN architectures also are/were

being used at Tesla. On Tesla AI Day in 2021, Andrej Karpathy, a past Director of

Artificial Intelligence at Tesla, explained they used RegNet CNNs for object detection
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for the architecture’s latency-accuracy trade-off. In their ”HydraNet” multi-task learning

system for tasks downstream of object detection, they use RegNet models for Object

Detection, Traffic Lights and Lane Prediction. Some or all of these RegNets may have

been replaced with GPT.
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Chapter 3

Dataset and Methods

We discuss the dataset used, how it was collected, and its organization. We then discuss the

hardware and software used for the testing environment. Then, we discuss the ViT model

variants used. We then present the hyperparameters used in experimentation. After that,

we discuss the performance metrics we monitored and the results of trained ViT models

on the datasets.

3.1 Data Collection and Organization

Dosovitskiy et al. found that ViTs have a much lower pre-training cost than CNNs.

However, they may require a much larger amount of data to be competitive with CNNs, at

least when pre-training, as they are more prone to overfitting [9]. Thus, the performance

on a limited training set compared to CNNs is of interest in both model performance

and training time compared to CNNs. In this paper, we will compare model performance

but can only present model training time as it is not provided. To facilitate this, we

use the RoadLAB [122] image dataset from [7]. The RoadLAB project designed a sensory

vehicle system for on-road vehicle experimentation, enabling field study of intelligent ADAS

systems. RoadLAB outfitted a vehicle with calibrated stereo cameras on the roof, fine-
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grained internal vehicle metric collection, and driver behavioural data collection. The

vehicle is shown in Figure 3.1.

The data was collected from sixteen driving sequences over a fixed 28.5-kilometre driv-

ing route in London, ON, Canada. In particular, video taken from the stereoscopic cameras

during these driving sequences was used to form the RoadLAB image dataset. Video frames

were separated and used to make an offline dataset, with which Shirpour [7] developed four

independent multi-scale HOG-SVM models to detect traffic objects and create bounding

boxes for the image dataset to identify five classes of images: background, pedestrians,

signs, traffic lights, and vehicles. A Faster R-CNN model was also used to detect vehicles

in parallel with the HOG-SVM. The images were integrated, and redundant detections were

eliminated. These detected images were used as the dataset for classification by Shirpour

and in this thesis. Due to the nature of front-facing cameras, most images of vehicles were

from the front or back, rather than the sides. Traffic lights were also detected from multiple

angles.

Figure 3.1: RoadLAB instrumented vehicle (left). Forward stereoscopic vision system
(right).

Shirpour trained the ResNet-101 models independently on five classes of traffic objects

mentioned, as well as three more specific models to identify three classes of vehicles, five

classes of traffic lights, and 20 classes of traffic signs. The five classes of traffic objects

include the null background class, vehicles, traffic lights, traffic signs, and pedestrians.

The three classes of vehicles include the null background class, cars, buses, and semi-

trucks. The five classes of traffic lights are images of the null background class, obscured
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traffic lights, and green, red and yellow traffic lights. The traffic sign dataset includes

typical Canadian signs, such as arrow signs, construction signs, bicycle lane signs, parking

signs, and yield signs, in addition to the null background class. Some examples are shown

in Figures 3.2, 3.3, 3.4 and 3.5. The classification results of these four ResNet-101 models

will form the comparison for evaluating the ViTs.

Figure 3.2: Examples of some pedestrian images.

3.2 Testing Environment

Classification experimentation and testing were performed upon the general purpose clus-

ter, Cedar, of the Digital Research Alliance of Canada. Cedar is located at Simon Fraser

University. Hardware available included six cores of Intel Silver 4216 Cascade Lake @

2.1GHz CPUs, up to 187GB of memory, and an NVIDIA V100 Volta GPU unit, with
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Figure 3.3: Examples from the vehicle class. Shown are two car class examples (left), a
background example (top right), and a truck example (bottom right).

Figure 3.4: Examples from the traffic light class. Shown are two obscured traffic light
examples (top left), two red traffic light examples (top right), two yellow traffic light
examples (bottom left), and two green light examples (bottom right).

32GB of HBM2 memory, with an SSD allocated at each compute node. More information

can be found at [123].

The Python programming language was used for the implementation, and the Vision

Transformer was programmed using the Tensorflow machine learning framework [124]. Ad-

ditional tools included the Project Jupyter notebook format and editor for experimenting

and reproducing work and generating Python scripts.
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Figure 3.5: Examples from the vehicle class. The signs presented clockwise from the top left
are “Yield,” “Maximum Speed Limit,” “No Entry,” traffic arrows, “Pedestrian Crossing,”
“No trucks,” “Not a Through Street”, and “Exit Only.”

3.3 Model Evaluation

We considered two Python packages for supplying the Vision Transformer models. The

official ViT repository by Google does not offer the model in the Tensorflow framework,

so two alternatives were assessed. The first is the Github repository in [125], available as

the Python package vit-keras, and the popular machine learning repository HuggingFace.

The latter was cumbersome to integrate and slower to train, so experimentation proceeded

with the first package.

Of the ViT model variants mentioned in [9], vit-keras offers the ViT-Base (ViT-B) and

ViT-Large (ViT-L) sizes, with patch sizes 16 and 32. Initial testing showed higher classifi-

cation accuracies with the ViT-L models while applying the higher resolutions mentioned

in [110] (384px x 384px as opposed to the pre-training resolution of 224px x 224px) did not

yield significant performance improvements while using around 3x the memory. Large-size

ViTs take at least 2x the training time of Base size ViTs, which follows as ViT-L models

have 24 transformer layers and 16 self-attention heads per layer as opposed to the 12 layers

and 12 self-attention heads of ViT-B models. We can also see that the larger image size

took around 2x the training time at a minimum, with smaller patch sizes taking longer

than larger patch sizes. Note that for ViTs, smaller patch sizes are computationally more

costly, as sequence length is inversely proportional to the square of the patch size. Larger
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ViTs are also more accurate than smaller ones given a sufficiently sized dataset. Here, our

dataset seems to be large enough for larger-sized ViTs to outperform smaller ones, even

without augmentation or regularization. So these performance metrics are expected [9]. A

comparison is shown in Table 3.1.

Model Variant Image Size Average Validation
Accuracy

Average Training
Time

ViT-B/16
224px x 224px 92.98% 26.4 mins
384px x 384px 91.57% 78 mins

ViT-B/32
224px x 224px 91.33% 12.17 mins
384px x 384px 92.23% 22.14 mins

ViT-L/16
224px x 224px 93.83% 84 mins
384px x 384px 93.4% 246 mins

ViT-L/32
224px x 224px 93.26% 33.97 mins
384px x 384px 92.93% 65.33 mins

Table 3.1: Testing the effects of higher resolution input images on each model variant.
Validation accuracy is given for each as an average of three runs.

Before training, each dataset (overall, signs, traffic lights, and vehicles) was split into

a training and test set with a 90%-10% split. During the search, a random 20% of the

remaining training data would be used for validation, giving training during search 72%

of the dataset and validation 18%. Overall dataset and split sizes are shown in Table

3.2. The same ViT model and hyperparameters were trained for each dataset, resulting in

four models. The latter three datasets are somewhat limited in size and present a decent

comparison for ViTs and CNNS, given that ViTs depend on large dataset sizes.

Dataset Total Training Validation Test

Traffic Objects 13,245 9,535 2,383 1,327
Vehicles 3,037 2180 543 304

Traffic Lights 2,636 1,898 472 266
Traffic Signs 2,581 1,859 457 265

Table 3.2: Number of total dataset images and numbers of images in splits. Training,
validation and test sets are random subsets of 72%, 18% and 10% of each dataset.
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3.4 Hyperparameter Tuning

Fine-tuning was assisted by the KerasTuner hyperparameter optimization framework [126],

and model and parameter tracking were facilitated by MLflow [127]. KerasTuner was run

mainly with the RandomSearch tuner, shown in [128] to be more efficient than grid search.

KerasTuner facilitated a hyperparameter sweep over parameters such as model variants,

image size, learning rates, optimizers and data augmentation. These were not run all at

once. Instead, model variants, optimizers, and data augmentation had separate searches

to keep the final search size realistic. Some of the parameters we tuned and their values are

presented in Table 3.3. Chosen values are in bold. Note that the model for traffic object

classification was an outlier, achieving the best results with a ViT-B/16 and learning rate

3e-05.

Model Image Size Optimizers Learning Rate Data Augmentation

- ViT-B/16 - 224px x 224px - SGD - 1e-3 - RandAugment
- ViT-B/32 - 384px x 384px - SGDW - 1e-4 - mixup [129]
- ViT-L/16 - Adam - 3e-5 - CutMix [130]
- ViT-L/32 - AdamW - 1e-5 - Manually

- AdaMax - 3e-6
- 1e-6

Table 3.3: Some of the hyperparameter search space.

Among optimizers, we began with the commonly used Stochastic Gradient Descent

(SGDW) [131] and Adam optimizers [132]. SGD calculates the gradient of the loss function

for each training sample and multiplies it by a given learning rate to determine the amount

to adjust parameters in a machine learning model. This adjustment allows the network to

learn parameter weights and perform predictions. The formula for SGD is generally given

as w := w− η∇Qi(w), where w is a weight in a model, η is the learning rate, and Qi is the

value of the loss function for any i-th training example. Adam is a variant that adaptively

estimates first and second-order moments. It continuously updates the gradient’s averages

and the gradient’s squares and uses these to calculate how much to change a weight. Adam
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also reduces the impact of these averages with each update via a shrinking hyperparameter.

Adamax is another variant suggested in [132] to use the infinity norm LP , a norm inversely

proportional to a value approaching infinity. It is sometimes superior to Adam for models

with embeddings. SGDW and AdamW are modifications by Loschilov and Hutter in [133]

to allow L2 weight decay to regularize variables with larger gradients better, and proposes

this leads to better generalization error.

Learning rate refers to the amount that the gradient of a loss function can affect a

parameter’s weight. It is typically in the range (0,1] and affects the speed and possibility

of convergence of an optimization function. In practical terms, a high learning rate allows

faster training and an increase in accuracy but can cause the function to move past mini-

mum values for the function by moving too quickly. Conversely, a low learning rate slows

the down training but can allow the optimization function to move into minimal values

and converge to an optimal accuracy. Thus it is common practice to start with a larger

learning rate and lower it over time, such as multiplying by 0.1, to allow the function to

learn quickly and adapt to the gradient and converge. Some optimizers like Adam handle

this automatically.

As shown in 3.1, results were impressive even without augmentation. This is interesting

as the nature of ViTs should lead them to be worse than CNNs given the same amount of

data, especially without significant augmentation or regularization. This shows that dur-

ing pre-training, a significant understanding of images and the ViT’s own inductive biases

were formed, leading to decent fine-tuning results out-of-the-box. Image augmentation was

tested manually, as well as with some modern techniques. RandAugment, is an automatic

augmentation policy which randomly applies augmentations based on two parameters, N

and M , controlling the number and intensity of augmentation procedures to use, respec-

tively [134]. The mixup policy combines data features and labels so that the network does

not get too overconfident about the relationship between features and labels using a pa-

rameter λ that controls the degree of interpolation. Here, λ ∼ Beta(α, α), for α ∈ (0,∞),
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such that x̂ = λxi + (1− λ)xj and ŷ = λyi + (1− λ)yj, for a given training example. As α

approaches 0, the images become fully converged. CutMix is similar to mixup but replaces

mixing features with cutting regions of images and replacing them with a region of another

image. The value α for CutMix - based on the same notion as mixup - is typically only set

to 1 [130]. Parameters for RandAugment and the values examined are shown in Table 3.4.

RandAugment mixup CutMix
N M α α

- 0 - 0 - 0.0001 - 1
- 2 - 2 - 0.1
- 5 - 7 - 0.2
- 10 - 5 - 0.5

- 15 - 0.8
- 30 - 1.0

Table 3.4: Parameters for RandAugment, mixup and CutMix.

The manual augmentation parameter search space is presented in Table 3.5. Each

value v given for shear, zoom, or translation represents a range (−v, v) randomly sampled

to pick a value to shift in terms of rotational degrees, the fraction of image size, or the

fraction of image width and height, respectively. Brightness values represent a range from

[lower, upper] to pick a brightness value to offset image brightness. Some parameters,

such as brightness, zoom and flip were tested in isolation prior to performing broader

hyperparameter searches. The motivation was to narrow the search space to more feasible

sizes given limited time and compute resources. Augmentations were chosen based on real-

world intuition. Slight shearing and zooming based on the angle of cameras seem plausible,

as were translations to simulate signs or vehicles not fully captured. Horizontal flips were

considered as vehicles were typically symmetrical, however, vertical flips were not as none

of the including traffic objects are likely to be seen vertically flipped. Brightness range can

be seen as similar to real-world light conditions; random contrast shifting is also applicable

but was not thoroughly tested. The augmentation was ultimately chosen from this search

space and is marked in bold. Some additional tests for brightness and colour channel
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shifting are presented in 3.6. Shown in 3.7, the inclusion of shearing showed inconsistent

effects on performance and did not improve overall validation accuracy, so it was omitted.

Augmentation Value

Shear 20, 45, 60, 75, 90, 120
Zoom 0.0, 0.1, 0.25, 0.5, 0.75, 0.9

Translation (x) 0.1, 0.25, 0.5, 0.75, 0.9
Translation (y) 0.1, 0.25, 0.5, 0.75, 0.9
Horizontal Flip False, True

Brightness Range (lower) 0.0, 0.1, 0.25, 0.5, 0.75, 0.9
Brightness Range (upper) 0.0, 0.1, 0.25, 0.5, 0.75, 0.9

Channel Shift 0.0, 0.1, 0.25, 0.5, 0.75, 0.9

Table 3.5: Search space of the manual data augmentation parameters.

Validation
Accuracy

Brightness Range
(lower)

Brightness Range
(upper)

Channel Shift

79.1% 0.25 0.75 0.0
77.4% 0.25 0.25 0.75
77.2% 0.5 0.25 .75
77.0% 0.9 0.75 0.5

Table 3.6: Best four results for search over brightness ranges and channel shift ranges.

Validation Accuracy Shear Setting

93.7% 60
93.4% 120
92.4% 90
90.9% 75

Table 3.7: Examples of minimal effect of shear settings on performance

To perform a more analogous comparison, we searched over some of the same parameters

as our baseline CNN method in [7]. Manual augmentation settings used for the CNNs are

shown in 3.8. Their method used cross-validation and explored various ranges for the

tuning parameters, then retrained on the complete training set after choosing parameters.

Additional details were not given. It should be noted that cross-validation was not used

for this thesis. Otherwise, we attempted to make training as similar as possible, with both

studies using the same datasets for training and testing.
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Method Description Range

Translate Each image is translated in the horizontal and
vertical direction by a distance, in pixels

(-10, 10)

Rotate Each image is rotated by an amount, in de-
grees

(-15, 15)

Scale Each image is scaled in the horizontal and
vertical direction by a factor

(0.5, 1.5)

Shear Each image is sheared along the horizontal or
vertical axis by a factor

(-30, 30)

Table 3.8: Data augmentation parameters and descriptions used in [7]. Scale is analogous
to Zooming in the horizontal and vertical directions independently.

During each trial for the model search facilitated by KerasTuner RandomSearch, train-

ing was performed over ten epochs, with a reduced learning rate policy with a patience

setting of 2 epochs and an early stopping policy with a patience setting of 4 epochs. Both

policies evaluated validation accuracy with a delta of 1e-4, applying the policy when vali-

dation accuracy had not increased by the delta in the number of specified patience epochs.

Model search reported training loss and accuracy and validation loss and accuracy, with

validation accuracy being the guiding metric. For manual augmentation, we used a batch

size of 16 for ViT-L model variants and a batch size of 32 for ViT-B model variants. For

ViT-B/16 models, training time per epoch was typically 150-160 seconds, or 250-270 mil-

liseconds per step, while for ViT-B/32 models, training time per epoch was typically 60-90

seconds, or 100-110 ms/step. For ViT-L/16 models, training time per epoch was typically

450-470 seconds or 770-790 ms/step, while for ViT-L/32 variants, training time per epoch

was around 150-170 seconds or 250-270 ms/step. Models usually used all ten epochs during

the search. This is summarized in Table 3.9.

For RandAugment, we used a batch size of 16 for both model variants. Training time

per epoch was around 200 seconds per epoch or 650-675 ms/step for ViT-B/16 models

and around 100-110 seconds per epoch or 330-350 ms/step for ViT-B/32 models. For ViT-

L/16 models, training time per epoch was typically 450-470 seconds or 770-790 ms/step,

while for ViT-L/32 variants, training time per epoch was around 150-160 seconds or 250-
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270 ms/step. It seems as though, as the model size increases, the disparities between

augmentation schemes minimize. RandAugment-trained models usually converged in 6-8

epochs before early stopping. This is summarized in Table 3.10.

Model Variant Batch Size s/Epoch ms/step

ViT-B/16 32 150-160 250-270
ViT-B/32 32 60-90 100-110
ViT-L/16 16 450-470 770-790
ViT-L/32 16 150-170 250-270

Table 3.9: Batch size and approximate time taken for training models with manual aug-
mentation during a search.

Model Variant Batch Size s/Epoch ms/step

ViT-B/16 16 200 650-675
ViT-B/32 16 100-110 330-350
ViT-L/16 16 450-470 770-790
ViT-L/32 16 150-160 250-270

Table 3.10: Batch size and approximate time taken for training models with random aug-
mentation during a search. Tune given in seconds per epoch and milliseconds per step.

Recall that smaller patch sizes are more computationally costly than larger patch sizes.
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Chapter 4

Experimental Results

4.1 Performance Evaluation

At test time, models were automatically selected using the best results of the search stage

with manual augmentations, as detailed above. The model variant selected was Vit-L/16

with the Adam optimizer and a learning rate of 1e-5 for each model except the traffic

object classification model, for which the model variant ViT-B/16 was used with a slightly

larger learning rate of 3e-5. The training parameters were adjusted to have a batch size

of 32 and 50 training epochs, except for the traffic object classification model, for which

we allocated 100 training epochs to allow its larger dataset size to converge. We set the

reduced learning rate policy with a patience setting of 5 epochs and the early stopping

policy with a patience setting of 10. After training was complete, we evaluated the model

on the test set, and now we report performance.

We used four criteria to assess the value of the ViTs’ performance. These are test

accuracy, precision, recall, and F1 score. They are defined as:

Accuracy =
Correct Predictions

Total Predictions
(4.1)

33



Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1 = 2× Precision× Recall

Precision + Recall
(4.4)

where TP is the number of True Positive predictions, and FN is the number of False

Positive predictions.

4.2 Results

The final training run for the traffic objects model ran for 34 epochs, converging at a

validation accuracy of 94.16%, where each epoch took about 150-160 seconds per epoch

or 255-270 ms/step. The vehicle classification model ran for 14 epochs, converging at

a validation accuracy of 96.13%, and each epoch took about 30-35 seconds, or 440-460

seconds/step. The traffic light model ran for 15 epochs, converging at a validation accuracy

of 98.52%, and each epoch took about 85-90 seconds or 785-800 ms/step. Lastly, the traffic

sign model ran for 36 epochs, converging at a validation accuracy of 96.50%, with each

epoch taking about 90-95 seconds, or 785-795 ms/step. This is shown summarized in Table

4.1. The time taken for the traffic objects model seems much larger, though this may be

because the dataset is much larger than the others.

Dataset Validation Accuracy Epochs Taken s/Epoch ms/step

Traffic Objects 94.16% 34/100 150-160 255-270
Vehicles 96.13% 14/50 30-35 440-460

Traffic Lights 98.52% 15/50 80-95 785-800
Traffic Signs 96.50% 36/50 90-95 785-795

Table 4.1: Approximate time to train the final model for each dataset. Time is measured
in seconds per epoch and milliseconds per step. The batch size was 32, and each training
step took 1 second.

After training and testing the models for general traffic objects, vehicles, traffic lights
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and traffic signs, we compare the performance metrics to those of the ResNet-101 CNN

models used in [7] in Table 4.2. Additionally, we compute confusion matrices for each

model to show the accuracy per class, shown in Figures 4.1, 4.2, 4.3, and 4.4.

Dataset CNN Accuracy ViT Accuracy Precision Recall F1

Traffic Objects 94.1% 97.7% 97.7% 97.9% 97.8%
Vehicles 94.8% 96.7% 96.8% 96.6% 96.7%

Traffic Lights 96.2% 99.2% 99.3% 99.4% 99.4%
Traffic Signs 96.1% 97.2% 97.6% 96.9% 97.2%

Table 4.2: Performance metrics comparison of ViT models and Res-Net101 from [7]. Pre-
cision, recall and F1 metrics are from the ViT models.

Figure 4.1: Confusion matrix for traffic object classification results.

The performance metrics show promising results, with the accuracy increasing at least

1.1% up to 3% from the Res-Net-101 models. The most significant improvement was for
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Figure 4.2: Confusion matrix for vehicle classification results.

the traffic light dataset. The results are otherwise impressive, as the accuracy improves

for every class, with traffic light classification accuracy over 99%. Precision, recall and F1

results are also promising, showing little deviance from the classification accuracy and high

relevance of results.

Traffic object classification results are presented in Figure 4.1 show an accuracy of

97.9%, an increase of 3.8%, with the pedestrian and sign classes achieving the highest

accuracies, at 99.16% and 99.23% each. Comparing traffic object classification shows an

increase in accuracy for every class compared to [7, Fig. 3.10]. The most significant increase

was for the vehicle class, at 11.82%.
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Figure 4.3: Confusion matrix for traffic light classification results.

Vehicle classification results are presented in Figure 4.2 show an accuracy of 96.7%,

an increase of 1.9%, showing mixed results, as the bus and truck classes did not improve,

dropping 0.75% and 1.07% respectively. However, every other per class accuracy improved,

the most for the null background class, going from 87.3% to 97.76% [7, Fig. 3.13], the most

significant increase for the class.

Traffic light classification results are presented in Figure 4.3 show an accuracy of 99.2%,

up 3%, the most significant improvement in the comparison. Notably, there were three

perfect accuracy scores for the background, green traffic light and yellow traffic light classes,

with the lowest accuracy still being an impressive 98.28%. The greatest increase was for

the green traffic light class, up 10% from the ResNet-101 model [7, Fig. 3.12], and notably,
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Figure 4.4: Confusion matrix for traffic sign classification results.
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the obscured traffic light, and red traffic light classes performed worse, down from 98.8%

and 99.2% respectively, marking a decrease of almost 1% for the latter.

As shown in Figure 4.4, the traffic sign classification accuracy showed a modest im-

provement, with accuracy increasing 1.1% from 96.1% to 97.1%. For this class, however,

15 of the 20 classes achieved perfect accuracy, up from 11 for the Res-Net101 model [7, Fig.

3.11]. The remaining five, arrow signs, construction signs, no truck signs, parking signs,

and yield signs, showed mixed results, with only the arrow class increasing by 0.05%. The

minimum accuracy, however, did increase, going from 84.4% for the ”No Turn” sign class,

to 86.67% for the ”Yield” class, an improvement of 2.27%.

4.3 Discussion

We see that the ViT improves upon the CNN results in nearly every situation for accuracy.

As mentioned prior, the lack of inductive biases for transformers means they need much

more data as well as augmentation and regularization than CNN models. Transformers

however seem to not saturate with data as soon as CNNs do, so these results may improve

in the future with more training data or more advanced augmentation. Larger ViT models

generalize better than smaller models but require more data to realize their potential. This

held in our situation, as well as smaller patch sizes being more computationally expensive,

with 16 x 16 patches being at least 2x slower to train than 32 x 32 patch sizes. One caveat

is inference speed, which is where the ResNet-101 model significantly outperforms ViTs,

as the inference throughput (images/s) on ImageNet is significantly faster among ResNet

models. On an NVIDIA V100 Volta GPU with 16GB of memory, ResNet-101 model is

almost 9x faster than a ViT-B/16 model and 27x faster than a ViT-L/16 model [111, Table

5]. The DEiT model in the mentioned paper could also be the solution, as all compared

DEiT models have better performance than the ViT models, and all have much higher

throughput. The DeiT-Ti notably is almost 3x faster than the ResNet-101 model, and the
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DeiT-S model is slightly faster but with better results on ImageNet.

In this chapter, we presented the final model variants, optimizers and learning rates

used for the ViT models. We trained them one final time and training times, and report

the test metrics. When comparing to the models [7], we can see a net increase in perfor-

mance accuracy, improving by at least 1% per dataset. There were, however, still some

mixed results. Among the vehicle classification dataset, the bus class classification accu-

racy decreased slightly, and five classes decreased in accuracy for the traffic sign dataset.

However, this is a promising increase in classification accuracy, given the somewhat limited

dataset sizes and the ViT models’ need for large datasets.
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Chapter 5

Conclusion

In this thesis, we have explored the promising Vision Transformer architecture and assessed

performance in vision-related ADAS scenarios. we have examined four ViT models on the

problems of general traffic object classification, vehicle classification, traffic light classifi-

cation and traffic sign classification. We discussed related work, including general image

classification, ADAS-specific classification, and Vision Transformers. We fine-tuned four

variants of Google’s ViT model to the pre-detected image datasets provided by Shirpour

[7] and RoadLAB [122]. We experimented with ViTs, explored different hyperparameter

options and evaluated the performance of ViTs on these datasets, and found impressive

results, improving from 1% to 3% per dataset. We also demonstrate results when ap-

proaching the model size variants ViT-B\16, ViT-B\32, ViT-L\16, and ViT-L\32 as well

as results when fine-tuning at higher resolutions.

The first objective of this study is to determine the utility of ViTs in ADAS applications,

especially compared to existing CNN methods, such as the prior method used by RoadLAB

in [7]. The prior CNN method worked well to classify traffic objects, so we have met our

objective and can see that the use of ViTs is viable for further ADAS research. We

presented an assessment showing competitive ViT performance, achieving a classification

accuracy of 94.1% when classifying vehicles, traffic lights, traffic signs and pedestrians on
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a dataset, and testing accuracies of 94.8%, 96.2%, and 96.1% on vehicles, traffic light and

traffic signs datasets. While working on the same datasets, the ViT outperformed prior

CNN methods in [7]. The second objective of this study

5.1 Future Work

As stated earlier, ViTs are significantly more robust to image permutations than CNNs.

This robustness was not assessed and stands as potential future work in preparing a test

dataset of corrupted images, perhaps in different driving weather conditions, or identifying

a set of synthetic image augmentations to serve as a simulation for corrupted images.

After choosing a method of image permutation/corruption, the robustness of CNNs and

image transformers could be compared by augmenting data at test time. Testing the

performance of these models on the augmented dataset could serve as a comparison for

assessing robustness. Other work would include testing the ViT architecture’s performance

on different dataset sizes and assessing the impact of dataset size on ViT classification

accuracy. We are also interested in applying ViT to other driving datasets and examining

the performance of driving conditions in different parts of the world, perhaps on traffic signs

in other countries. Lastly, several different transformer models for image classification have

been released since Google’s ViT [135]. Comparing the state-of-the-art image classification

transformers could be helpful in applications in ADAS in terms of efficiency or performance.

Performance or efficiency could be compared by training on a selection of driving datasets

and comparing performance metrics, as well as inference speed, and the size of models

relative to their performance.
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