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Abstract 

Transportation research has highlighted many factors that affect human mobility patterns, but 

these effects have changed during the COVID-19 pandemic in accordance with changing 

mobility needs adapting to pandemic restrictions. We investigate COVID-19 mobility research 

gaps related to geographically varying associations between socio-demographic factors and 

mobility and the alignment of travel regions with regional pandemic restriction boundaries. 

Mobility indicators were modeled with socio-demographic data using a geographically 

weighted regression model, and flow-based travel regions were identified using the Cluster 

Leading Eigenvector community detection algorithm for Ontario, Canada. We find that certain 

associations between socio-demographics and mobility have changed due to the pandemic, and 

that associations vary across space. Travel regions show that travel patterns changed when 

pandemic restrictions were in place, and did not align with regional pandemic restriction 

boundaries. These findings will improve our understanding of changing mobility patterns due 

to the COVID-19 pandemic. 
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Summary for Lay Audience 

Mobility has a major effect on people’s day-to-day lives. People need to travel to get to work, 

get to school, go shopping, attend appointments, and participate in leisure activities. Previous 

research has shown that travel patterns are different for different people. In the past, we have 

seen that demographic factors, such as income, age, gender, race, and job status, affects how 

long, how far, and what method people use to travel. When the COVID-19 pandemic started, 

various different restrictions on social gatherings, in-person work, and business operations 

were put in place across the world, changing the need for people to travel to destinations that 

they would normally need to travel to. Knowing that people’s mobility patterns are affected by 

demographic factors, we look to see if changes in mobility patterns due to the COVID-19 

pandemic were also dependent on demographic factors in Ontario, Canada. We found that the 

change in the length of time and distance people travelled after pandemic restrictions were put 

in place is affected by certain demographic factors, but that these effects are different 

depending on where in Ontario you look. The results show that patterns observed at the local 

level differ from patterns observed for the study area as a whole. We also identified travel 

regions in Ontario, which are geographic areas where a large amount of travel tends to take 

place within the region, and a smaller amount of travel tends to take place from one region to 

another. We found that these travel regions shifted over the course of the pandemic, indicating 

that people’s travel destinations were changing along with changing pandemic restrictions. We 

also found that these travel regions did not align with Ontario’s administrative boundaries for 

applying regionally targeted pandemic restrictions, which could limit the effectiveness of these 

regional restrictions. This research helps us to understand more about how social geography 

plays a role in human mobility in the context of the COVID-19 pandemic, as well as how 

pandemic restrictions affect overall regional travel patterns. 
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Chapter 1  

1 Introduction 

1.1 Mobility and COVID-19 

Mobility plays an important role in almost everyone’s daily lives, whether it is commuting 

to work or school, receiving healthcare, getting groceries, going shopping, or attending 

entertainment or leisure activities. We also know that different people can have very 

different experiences with mobility due to a number of factors, most commonly the location 

of a person’s home (Khattak et al., 2000), as well as socio-demographic factors (Axisa et 

al., 2012; Bai et al., 2020; Buehler, 2011; Hanson & Hanson, 1981; Larsen et al., 2009; 

Lenormand et al., 2015a; Manaugh et al., 2010; Pappalardo et al., 2015; Xu et al., 2018). 

The fact that there are so many different social factors influencing the mobility choices that 

people make (Buehler, 2011; X. Zhao et al., 2020), as well as the fact that certain aspects 

of mobility are not a choice for certain people (Khattak et al., 2000), is what makes 

geographers particularly interested in studying human mobility. 

The COVID-19 pandemic gave transportation geographers a new perspective with which 

to study mobility. Many of the patterns and associations that we have long known about 

the interaction between people and transportation networks changed significantly due to 

the worldwide imposition of restrictions on non-essential in-person gatherings, making 

many trips that were made no longer necessary, and completely changes the way we think 

about mobility. From a transportation researcher’s perspective, these large-scale changes 

were particularly interesting because they uncovered not just which trips were no longer 

needed, but who’s. We have known for a long time that socio-economics play a large role 

in people’s mobility needs, and the COVID-19 pandemic restrictions reinforced this, 

though in a different way from before. One study of mobility changes during the pandemic 

was particularly striking, showing that everything we had known about the amount of time 

and distance people in different socio-economic classes travel had completely reversed 

when restrictions began (Xu et al., 2018). There was a lot of discussion about so-called 

essential workers who were the remaining people forced to continue working in-person 
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throughout the pandemic due to the importance of their jobs, and that the people in these 

positions tended to have lower socio-economic statuses (Kar et al., 2022). 

In Ontario, Canada, we began to see large-scale shifts in mobility patterns in March 2020 

as a result of restrictions on in-person gatherings and the closure of non-essential 

businesses due to the spreading of COVID-19. Over the course of the pandemic in 2020, 

the levels of restrictions in Ontario varied, generally in accordance with the level of risk 

that COVID-19 spread presented at any given time. The specific restrictions put in place 

also varied across regional health units at certain times (Long et al., 2021). 

We have already seen an extensive amount of research in the area of human mobility during 

COVID-19 with various goals and approached used, but generally all coming to similar 

conclusions. Research has been conclusive that overall mobility decreased at the start of 

the pandemic (Gibbs et al., 2020; Kang et al., 2020; Santana et al., 2020; Xiong et al., 2020; 

You, 2022), long-distance mobility decreased the most (Dueñas et al., 2021; Kang et al., 

2020; Pullano et al., 2020b; Zhang et al., 2020), and mobility changes were different for 

different people dependent on socio-demographic factors (Dueñas et al., 2021; Kar et al., 

2022; W. D. Lee et al., 2021; Long & Ren, 2021; Pullano et al., 2020b). There were a 

number of limitations with these studies, such as the lack of consideration for spatially 

varying relationships in regression models, or data sources not being as expansive or fine-

grained as they could be. This was largely due to the speed at which analysis was being 

performed during the early stages of the pandemic in order to quickly determine the effects 

of non-pharmaceutical interventions. By using a longer time range of mobility data, as well 

as more spatially and temporally granular data and more in-depth statistical methods, we 

are able to address the shortcomings of these early analyses. 

1.2 Background 

1.2.1 Mobility and Big Data 

Historically, human mobility research has been carried out using travel surveys, where 

study participants are asked to report the locations and purposes of trips that they make 

during a specified time period. This gave researchers detailed information about what types 

of trips they were making, the purpose of the trips, the travel mode, the time and duration, 
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and any other variable that the researcher felt was important for their specific study. It also 

allowed these mobility attributes to be tied to other information such as socio-demographic 

factors. However, this can only be done on a limited number of people. A successor to 

travel surveys was GPS-based surveys, where participants would carry GPS trackers during 

any trips they make during the study period. This gives the benefits of the travel surveys, 

but with higher spatial and temporal resolution. 

More recently, the prevalence of mobile devices has allowed for the collection of big data, 

which is generated as a by-product of location tracking equipped mobile devices that 

people carry regularly with them. While not specifically intended for mobility research 

purposes, these big datasets have become a common way to perform mobility research. 

This allows for a large sample size of location data, and a high spatial and temporal 

resolution, but has a trade-off of not having information about socio-demographic 

variables. There are two main types of passively collected mobile phone data: call detail 

records (CDR) and sightings data. CDR data contains data points for when an event took 

place on the device that requires a connection to a cell tower, such as a call or text. Sightings 

data contains points for every time a phone is positioned. Sightings typically occur at a 

much higher frequency than CDRs, therefore offering a much higher spatial and temporal 

resolution (C. Chen et al., 2016a). 

Because of the importance of large-scale data sources to analyze mass mobility across a 

large study area, researchers have to look to sources of automated large-scale data 

collection. Using location data from cell towers offers a relatively large and random sample 

and is temporally dense, but trajectories are not always perfect due to the nature of cell 

tower layouts (C. Chen et al., 2016a). Other methods include app-based data sources from 

Google (Huang et al., 2021; Stevens et al., 2022), Facebook (Shepherd et al., 2021; 

Spyratos et al., 2019), and Apple Maps (Huang et al., 2021). These app-based data sources 

may have more spatial and temporal gaps if location is only measured when the app is 

being used, but might have more potential to connect the data to socio-demographic 

information. There are also data aggregation and location intelligence companies like 

SafeGraph and Descartes Labs (Gao et al., 2020; Liang et al., 2021). These companies have 
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may datasets that mobility data can be compared with to gain a deeper understanding into 

the social factors behind mobility patterns. 

The three historic methods of collecting mobility data – travel surveys, GPS, and mobile 

phone – each have their own benefits and limitations that must be considered to determine 

which data source to use for a study. The oldest method, travel surveys, have a number of 

limitations as they were mainly used at a time of limited technological options. Collecting 

these datasets are costly and time-consuming, with a limited sample depending on the 

resources available as it requires a limited number of individuals to manually fill out a 

questionnaire indicating details of the trips they made (Xu et al., 2015). However, due to 

the limited number of participants and the manual process, non-spatial attributes about 

individuals being surveyed can also be collected, which can help for studying how mobility 

relates to socio-demographic factors (Xu et al., 2015). It also guarantees an accurate 

representation of the data since there is no need to infer when a trip was taken from 

passively collected data. As an example of the data that a travel survey can provide, Hanson 

and Hanson (1981) use a dataset that samples 97 random households in Sweden for a five-

week period. Each member of the household details the trips they made for each time they 

left their home, including each stop they made on their trip, the time of arrival and 

departure, the means of transportation, the street address, the type of location visited, 

activities pursued, and the expenditure at the location.  

When GPS technology became widely available for use by the public in the late 1990s, it 

became a tool for tracking movement patterns more accurately and without the need for 

individuals to fill out a survey (Xu et al., 2015). This had the benefit of giving more 

accurate trajectories and trip timings through an automated process, but still required 

individual participants to be used for the study who must carry the GPS device with them 

as they travel, therefore limiting the sample size to the resources available. GPS could be 

used in combination with travel surveys, allowing for participants to give any additional 

information that the researchers are looking for not captured by GPS (C. Chen et al., 

2016a). In many instances, GPS devices were used on their own, introducing the new 

problem where details such as trip destinations or stop points must be derived from the 
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GPS trajectories (Shen et al., 2013). GPS devices also have the limitations of signal loss 

and battery life.  

With mobile devices, location information can be generated passively as the mobile device 

communicates with the cellular network. The temporal resolution of cellular location data 

can vary based on which events that determine when a location is tracked are used. Call 

Detail Records (CDR) data tracks the mobile phone’s position each time a call or text is 

sent by or delivered to the device. Sightings data tracks the location of the mobile device 

more frequently, offering a more fine-grained trajectory. App-based location tracking 

tracks the device’s location only when the app is being used.  Figure 1-1 outlines the 

difference in trajectories among the technology-based location tracking methods. 

 

Figure 1-1: Hypothetical trajectory demonstrating the difference between GPS, 

Mobile Phone CDR, Mobile Phone Network, and POI Check-In trajectories 

1.2.2 Quantifying Mobility 

Mobility is a very broad topic, and therefore has many different ways of being measured. 

In transportation research, human mobility is often measured or described using activity 

locations, origin-destination matrices, individual trip making, and commuting patterns (Xu 

et al., 2018). Studies often focus on identifying and modelling travel to and from common 

activity locations such as home and work. The specific methods used to measure human 
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mobility vary across disciplines (i.e. geography, planning, transportation engineering, and 

network science), and there are common overlapping approaches that exist, such as 

quantifying the spatial extent of individual activity space (González et al., 2008), 

understanding travel between ‘anchor’ points, and understanding regularities in human 

mobility. 

Different measures of mobility are meant to capture different characteristics, such as space, 

time, movement, and location/travel attributes (Fillekes et al., 2019). These different 

aspects of mobility are particularly important in the context of the COVID-19 pandemic, 

where restrictions may have influenced different aspects of mobility in different ways. For 

example, just because someone spends less time moving does not necessarily mean that 

their activity space has decreased, or that they spend less time outside of the home. 

Similarly, just because someone is at home more often does not necessarily mean that they 

visit less destinations. To capture different elements of mobility, different measures must 

be used. Within this thesis, three different measures of mobility are used: movement time, 

radius of gyration, and flows. Movement time captures the temporal aspect of mobility, 

measuring time in motion. Radius of gyration captures the distance aspect of mobility, 

measuring the approximate distance travelled to each destination. Flows capture the 

geographic context of mobility patterns with the number of trips made and their destination 

location, which can be used to create an Origin-Destination (O-D) Matrix (C. Chen et al., 

2016). 

Measures of space include the number of visited locations, the extent of the space covered 

(also referred to as ‘activity-space’ (González et al., 2008)), and the shape or distribution 

of location data. Counts of places visited is useful for giving an indication of how many 

activities a person participates in, irrespective of the geographic context of the activity 

location and its proximity to a person. This is useful in some cases where we may be 

interested in the social factors that affect a person’s ability to participate in activities 

(Fransen et al., 2018; Hanson & Hanson, 1981), but it does not consider the geographic 

context of long versus short trips. The extent of space can cover several different 

meaningful aspects of a person’s life. Life-space refers to the geographic area that a person 

travels within over a specified period of time, which could be calculated with the convex 
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hull or the standard deviational ellipse (Hirsch et al., 2014), indicating the size of the space 

that a person covers. A combination of count and extent can be calculated using radius of 

gyration, which is a measure of the distance from the geographic midpoint of all of a 

person’s destinations to each of these destinations (Pepe et al., 2020; Xu et al., 2018). The 

shape and distribution of a person’s mobility patterns indicates whether their life-spaces 

are mono- or poly-centric, which shows whether someone has one main place they travel 

to regularly (typically a home), or if there are several common destination points 

(Hasanzadeh, 2019). In Chapter 2 of this thesis, a measure of extent is used, specifically 

radius of gyration, in order to capture the geographic differences in the distance travelled 

across Ontario due to variation of densities. 

Measures of time include the duration, the timing, and temporal distribution of time spent 

at different locations. The duration of time actively completing one’s journey can often 

indicate something about a person’s social disadvantage in a city, as areas with more 

socially-disadvantaged groups often have lower-quality transportation infrastructure, or 

rely on slower modes of transportation (Khattak et al., 2000). The timing of a trip does not 

have much of a social equity implication, but it is useful for understanding overall travel 

patterns and how to build transportation infrastructure or provide public transit service in 

a way that best meets demand. Temporal distribution can be expressed by an indicator such 

as entropy, where a low entropy indicates spending more time in few locations, and high 

entropy indicates spending less time in a greater variety of places (Fillekes et al., 2019). 

Chapter 2 of this thesis uses duration of time spent moving as an indicator for time, as it is 

likely to best reflect changing travel patterns during the pandemic and is easy to calculate 

using our dataset. 

The movement scope categorizes different components of a trajectory into ‘stops’ and 

‘moves’ and is the prerequisite for being able to compute mobility metrics from GPS or 

cell tower data. Stops are usually defined as a minimum time duration that the movement 

track was detected in a certain radius, often between 5 and 15 minutes to avoid short stops 

along someone’s movement trajectory as being detected as a stop at a destination. For our 

calculation in Chapter 2, we use 10 minutes as the cutoff for a stop versus a movement, but 

this also compensates for the fact that mobile phone devices locations are not fluid in our 
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data and jump between cell tower receivers. To be detected as being in motion, a cellular 

device much travel from one cell tower receiver’s reception zone to another’s, and cell 

tower receivers are not uniform distances apart across our study area. The attributes of a 

movement trajectory indicate other characteristics of the movement trajectory, such as the 

mode that a person used to complete a trip. This may only be available in data gained from 

travel surveys where a participant indicates their travel mode, but the use of machine 

learning could be used to predict the mode of a trip based on various attributes of the trip 

(X. Zhao et al., 2020). 

Mobility measures can be either individual or aggregate. Individual measures include some 

of the person-specific measures discussed, such as duration and distance travelled. 

Individual measures allow for analysis of specific people’s travel patterns, which can be 

easily compared with characteristics of the person, such as socio-demographic data. These 

individual measures of mobility can be aggregated together based on common 

characteristics of individuals. Often, it is useful to aggregate measures based on a 

representation of the person’s home location, such as a postal code or an estimated home 

location based on their trajectory. This geographic aggregation of individual mobility 

measures is useful for being able to predict characteristics of individuals using census data. 

Aggregate measures of mobility are used to represent sample-wide travel patterns. For 

example, an origin-destination flows matrix tells us how many trips are made by a sample 

between each pair of geographic units. This helps to not only understand how far people 

are travelling, but where they are travelling and how common certain types of trips are. 

With this information, we can tell how many trips are made between specific 

neighbourhoods, or where trips to urban or suburban employment centres are originating. 

This gives us a much more detailed understanding of how people use the travel network 

across a region. It can also be used to create functional travel regions using community 

detection algorithms, as we do in Chapter 3. 

It is useful to look at three of the most common mobility measures – travel time, travel 

distance, and number of trips – to understand what each measure is useful for. Travel time 

is a more important factor in understanding the social costs of mobility, since the time spent 

travelling is the measure that best reflects the time that is taken away from engaging in 
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activities. We may expect overall travel times to be longer or shorter based on geographic 

context, for example denser versus less dense areas, but a given travel time has the same 

impact on a person’s life no matter the geographic context. Travel distance is important for 

understanding the proximity of important destinations, for example, how far away the 

nearest grocery store is. Distance is particularly useful if a study is focusing on active 

transportation, where someone travels the same speed no matter what road they are using. 

However, there is a large discrepancy among the distance between activity locations in 

urban areas, suburban areas and rural areas. In urban areas, you may be able to cross the 

street to reach a grocery store, while in rural areas it could be a 30-minute drive on a 

highway. This discrepancy is especially apparent for trips that take the same amount of 

time but area very different distances. A 15-minute drive on a 100 km/h highway is 25 

kilometres, whereas a 25 minute trip in an urban area during a peak travelling period could 

only take you 5 to 10 kilometres. Therefore, it is important to be careful and acknowledge 

the context for which you are using distance-based metrics. Total number of trips is useful 

for understanding the social determinants of how many activities a person has to (or is able 

to) participate in during a specified period of time, irrespective of the time or distance to 

reach the activities. This could distinguish between someone who works from home, 

someone who simply commutes to work and back, and someone who performs several 

chores throughout the day. Each of these measures are useful for particular circumstances, 

and it must be understood what each measure is responding to. 

Table 1-1: Characteristics of travel time, travel distance, and number of trips mobility 

measures 

 Variability 

based on 

geographic 

context 

Captures 

participation 

in activities 

Captures 

social cost of 

travel 

Varies based 

on travel 

mode 

Travel Time No No Yes Yes 

Travel Distance Yes No No No 

Number of Trips No Yes No No 
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1.2.3 Rapid Analysis of Mobility Patterns during COVID-19 

Early on in the pandemic, there was a rush to provide data on the impacts of non-

pharmaceutical interventions (M. Lee et al., 2020; Warren & Skillman, 2020; Xiong et al., 

2020). Due to the rapidly changing nature of pandemic responses, there was an urgency to 

get data to the public as soon as possible to assess the impacts of these interventions and 

decide the best way to move forward. Due to the nature of these fast-paced responses, the 

findings were somewhat limited in the depth of their analysis and their scientific rigor. The 

early call for the publishing of data on the effectiveness of non-pharmaceutical 

interventions led to papers like Oliver et al. (2020), which looked to provide real-time up-

to-date datasets outlining the current state of the pandemic, and how to move forward with 

different intervention options. Many of these early papers rely on some form of passively 

collected data, such as mobile phone tracking data, as this data is rapidly available. 

However, many of these studies were not necessarily scientifically rigorous in their 

analysis and were mainly meant to provide mobility data to the public as quickly as 

possible. While this information was useful at the time, it is now even more useful for us 

to go back and perform more in-depth analysis of mobility data for a longer range of time 

to better understand the different aspects of mobility during the pandemic. 

Lee et al. (2020) provide national mobility trends across the Unites States during the early 

stages of the pandemic, and their relation to confirmed COVID-19 cases in each state. This 

study performed analysis on the differing effects on different socio-economic groups. 

However, the study had the limitations of being early in the pandemic offering a limited 

range of results of how mobility was affected, and it did not use a rigorous model approach 

to determine associations between mobility and socio-economic factors. Similarly, Warren 

and Skillman (2020) used mobility from Descartes Labs to show mobility changes during 

the first month of pandemic restrictions in the United States, but there were no geographic 

models, no connection to COVID-19 cases or socio-economic factors, and only includes a 

very small range of time. Xiong et al. (2020) were able to go a bit farther and use a model 

that captures the time-varying relationship between COVID-19 infections and inflow for a 

relatively large range of time, but is still limited in its consideration of geographic 

variability and social factors. By analyzing data further into the pandemic, by using 
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rigorous spatial modeling techniques, and by connecting mobility data with socio-

economic data, we were able to address the shortcomings of these early studies to provide 

a more comprehensive analysis on the effects of COVID-19 on mobility. 

1.3 Research Objectives and Questions 

The study of human mobility is useful for understanding what factors cause people to move 

the way they do as individuals, and to understand the geographic contexts that influence 

trip patterns of the population from a regional and inter-regional perspective. The overall 

research question for this thesis is: How did human mobility patterns in Ontario change 

during the COVID-19 pandemic relative to pre-pandemic, and do mobility patterns we 

have observed in previous transportation research still apply during the pandemic? The two 

following research chapters in this thesis are guided by these general objectives of the study 

of mobility, and are applied to the context of Ontario, Canada during the COVID-19 

pandemic. 

The overall objective of Chapter 2 is to study how changes in mobility during COVID-19 

relate to socio-demographic factors. Specifically, Chapter 2 seeks to answer the following 

questions: 

1. Do relationships between socio-demographic variables and mobility vary across 

Ontario? 

2. Did people with lower socio-economic status have higher relative mobility during 

COVID-19? 

The objective of Chapter 3 is to identify and analyze functional regions from flow patterns 

at different times of the pandemic. Chapter 3 demonstrates how functional regions are 

representations of flow patterns, and seeks to answer the following questions: 

3. Do functional regions in Southern Ontario change over the course of the COVID-

19 pandemic? 

4. Do functional regions in Southern Ontario align with Ontario’s Public Health Unit 

boundaries, to which regionally targeted pandemic restrictions were applied? 



12 

 

1.4 References 

Axisa, J. J., Scott, D. M., & Bruce Newbold, K. (2012). Factors influencing commute 

distance: A case study of Toronto’s commuter shed. Journal of Transport 

Geography, 24, 123–129. https://doi.org/10.1016/j.jtrangeo.2011.10.005 

Bai, X., Zhai, W., Steiner, R. L., & He, Z. (2020). Exploring extreme commuting and its 

relationship to land use and socioeconomics in the central Puget Sound. 

Transportation Research Part D: Transport and Environment, 88, 102574. 

https://doi.org/10.1016/j.trd.2020.102574 

Buehler, R. (2011). Determinants of transport mode choice: A comparison of Germany 

and the USA. Journal of Transport Geography, 19(4), 644–657. 

https://doi.org/10.1016/j.jtrangeo.2010.07.005 

Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016a). The promises of big data and 

small data for travel behavior (aka human mobility) analysis. Transportation 

Research Part C: Emerging Technologies, 68, 285–299. 

https://doi.org/10.1016/j.trc.2016.04.005 

Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016b). The promises of big data and 

small data for travel behavior (aka human mobility) analysis. Transportation 

Research Part C: Emerging Technologies, 68, 285–299. 

https://doi.org/10.1016/j.trc.2016.04.005 

Dueñas, M., Campi, M., & Olmos, L. E. (2021). Changes in mobility and socioeconomic 

conditions during the COVID-19 outbreak. Humanities and Social Sciences 

Communications, 8(1), 1–10. https://doi.org/10.1057/s41599-021-00775-0 

Fillekes, M. P., Giannouli, E., Kim, E.-K., Zijlstra, W., & Weibel, R. (2019). Towards a 

comprehensive set of GPS-based indicators reflecting the multidimensional nature 

of daily mobility for applications in health and aging research. International 

Journal of Health Geographics, 18(1), 17. https://doi.org/10.1186/s12942-019-

0181-0 

Fransen, K., Farber, S., Deruyter, G., & De Maeyer, P. (2018). A spatio-temporal 

accessibility measure for modelling activity participation in discretionary 

activities. Travel Behaviour and Society, 10, 10–20. 

https://doi.org/10.1016/j.tbs.2017.09.002 

Gao, S., Rao, J., Kang, Y., Liang, Y., & Kruse, J. (2020). Mapping county-level mobility 

pattern changes in the United States in response to COVID-19. SIGSPATIAL 

Special, 12(1), 16–26. https://doi.org/10.1145/3404820.3404824 

Gibbs, H., Liu, Y., Pearson, C. A. B., Jarvis, C. I., Grundy, C., Quilty, B. J., Diamond, C., 

& Eggo, R. M. (2020). Changing travel patterns in China during the early stages 



13 

 

of the COVID-19 pandemic. Nature Communications, 11(1), 5012. 

https://doi.org/10.1038/s41467-020-18783-0 

González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual 

human mobility patterns. Nature, 453(7196), 779–782. 

https://doi.org/10.1038/nature06958 

Hanson, S., & Hanson, P. (1981). The Travel-Activity Patterns of Urban Residents: 

Dimensions and Relationships to Sociodemographic Characteristics. Economic 

Geography, 57(4), 332–347. https://doi.org/10.2307/144213 

Hasanzadeh, K. (2019). Exploring centricity of activity spaces: From measurement to the 

identification of personal and environmental factors. Travel Behaviour and 

Society, 14, 57–65. https://doi.org/10.1016/j.tbs.2018.10.001 

Hirsch, J. A., Winters, M., Clarke, P., & McKay, H. (2014). Generating GPS activity 

spaces that shed light upon the mobility habits of older adults: A descriptive 

analysis. International Journal of Health Geographics, 13(1), 51. 

https://doi.org/10.1186/1476-072X-13-51 

Huang, X., Li, Z., Jiang, Y., Ye, X., Deng, C., Zhang, J., & Li, X. (2021). The 

characteristics of multi-source mobility datasets and how they reveal the luxury 

nature of social distancing in the U.S. during the COVID-19 pandemic. 

International Journal of Digital Earth, 14(4), 424–442. 

https://doi.org/10.1080/17538947.2021.1886358 

Kang, Y., Gao, S., Liang, Y., Li, M., Rao, J., & Kruse, J. (2020). Multiscale dynamic 

human mobility flow dataset in the U.S. during the COVID-19 epidemic. 

Scientific Data, 7(1), 390. https://doi.org/10.1038/s41597-020-00734-5 

Kar, A., Le, H. T. K., & Miller, H. J. (2022). What Is Essential Travel? Socioeconomic 

Differences in Travel Demand in Columbus, Ohio, during the COVID-19 

Lockdown. Annals of the American Association of Geographers, 112(4), 1023–

1046. https://doi.org/10.1080/24694452.2021.1956876 

Khattak, A. J., Amerlynck, V. J., & Quercia, R. G. (2000). Are Travel Times and 

Distances to Work Greater for Residents of Poor Urban Neighborhoods? 

Transportation Research Record, 1718(1), 73–82. https://doi.org/10.3141/1718-10 

Larsen, K., Gilliland, J., Hess, P., Tucker, P., Irwin, J., & He, M. (2009). The Influence of 

the Physical Environment and Sociodemographic Characteristics on Children’s 

Mode of Travel to and From School. American Journal of Public Health, 99(3), 

520–526. https://doi.org/10.2105/AJPH.2008.135319 

Lee, M., Zhao, J., Sun, Q., Pan, Y., Zhou, W., Xiong, C., & Zhang, L. (2020). Human 

mobility trends during the early stage of the COVID-19 pandemic in the United 

States. PLOS ONE, 15(11), e0241468. 

https://doi.org/10.1371/journal.pone.0241468 



14 

 

Lee, W. D., Qian, M., & Schwanen, T. (2021). The association between socioeconomic 

status and mobility reductions in the early stage of England’s COVID-19 

epidemic. Health & Place, 69, 102563. 

https://doi.org/10.1016/j.healthplace.2021.102563 

Lenormand, M., Louail, T., Cantú-Ros, O. G., Picornell, M., Herranz, R., Arias, J. M., 

Barthelemy, M., Miguel, M. S., & Ramasco, J. J. (2015). Influence of 

sociodemographic characteristics on human mobility. Scientific Reports, 5(1), 

10075. https://doi.org/10.1038/srep10075 

Liang, Y., Yin, J., Pan, B., Lin, M., & Chi, G. (2021). Assessing the validity of 

SafeGraph data for visitor monitoring in  Yellowstone National Park. Travel and 

Tourism Research Association: Advancing Tourism Research Globally. 

https://scholarworks.umass.edu/ttra/2021/research_papers/1 

Long, J. A., Malekzadeh, M., Klar, B., & Martin, G. (2021). Do regionally targeted 

lockdowns alter movement to non-lockdown regions? Evidence from Ontario, 

Canada. Health & Place, 102668. 

https://doi.org/10.1016/j.healthplace.2021.102668 

Long, J., & Ren, C. (2021). Associations between mobility and socio-economic 

indicators vary across the timeline of the Covid-19 pandemic. SocArXiv. 

https://doi.org/10.31235/osf.io/tca34 

Manaugh, K., Miranda-Moreno, L. F., & El-Geneidy, A. M. (2010). The effect of 

neighbourhood characteristics, accessibility, home–work location, and 

demographics on commuting distances. Transportation, 37(4), 627–646. 

https://doi.org/10.1007/s11116-010-9275-z 

Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouzé, E., 

Salah, A. A., Benjamins, R., Cattuto, C., Colizza, V., de Cordes, N., Fraiberger, S. 

P., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P. N., Pivetta, F., … 

Vinck, P. (2020). Mobile phone data for informing public health actions across 

the COVID-19 pandemic life cycle. Science Advances, 6(23), eabc0764. 

https://doi.org/10.1126/sciadv.abc0764 

Pappalardo, L., Pedreschi, D., Smoreda, Z., & Giannotti, F. (2015). Using big data to 

study the link between human mobility and socio-economic development. 2015 

IEEE International Conference on Big Data (Big Data), 871–878. 

https://doi.org/10.1109/BigData.2015.7363835 

Pepe, E., Bajardi, P., Gauvin, L., Privitera, F., Lake, B., Cattuto, C., & Tizzoni, M. 

(2020). COVID-19 outbreak response, a dataset to assess mobility changes in 

Italy following national lockdown. Scientific Data, 7(1), 230. 

https://doi.org/10.1038/s41597-020-00575-2 

Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S., & Colizza, V. (2020). Evaluating the 

effect of demographic factors, socioeconomic factors, and risk aversion on 



15 

 

mobility during the COVID-19 epidemic in France under lockdown: A 

population-based study. The Lancet Digital Health, 2(12), e638–e649. 

https://doi.org/10.1016/S2589-7500(20)30243-0 

Santana, C., Botta, F., Barbosa, H., Privitera, F., Menezes, R., & Di Clemente, R. (2020). 

Analysis of human mobility in the UK during the COVID-19 pandemic. 

https://doi.org/10.13140/RG.2.2.33207.14240 

Shen, Y., Kwan, M.-P., & Chai, Y. (2013). Investigating commuting flexibility with GPS 

data and 3D geovisualization: A case study of Beijing, China. Journal of 

Transport Geography, 32, 1–11. https://doi.org/10.1016/j.jtrangeo.2013.07.007 

Shepherd, H. E. R., Atherden, F. S., Chan, H. M. T., Loveridge, A., & Tatem, A. J. 

(2021). Domestic and international mobility trends in the United Kingdom during 

the COVID-19 pandemic: An analysis of facebook data. International Journal of 

Health Geographics, 20(1), 46. https://doi.org/10.1186/s12942-021-00299-5 

Spyratos, S., Vespe, M., Natale, F., Weber, I., Zagheni, E., & Rango, M. (2019). 

Quantifying international human mobility patterns using Facebook Network data. 

PLOS ONE, 14(10), e0224134. https://doi.org/10.1371/journal.pone.0224134 

Stevens, N. T., Sen, A., Kiwon, F., Morita, P. P., Steiner, S. H., & Zhang, Q. (2022). 

Estimating the Effects of Non-Pharmaceutical Interventions and Population 

Mobility on Daily COVID-19 Cases: Evidence from Ontario. Canadian Public 

Policy, 48(1), 144–161. https://doi.org/10.3138/cpp.2021-022 

Warren, M. S., & Skillman, S. W. (2020). Mobility Changes in Response to COVID-19 

(arXiv:2003.14228). arXiv. https://doi.org/10.48550/arXiv.2003.14228 

Xiong, C., Hu, S., Yang, M., Luo, W., & Zhang, L. (2020). Mobile device data reveal the 

dynamics in a positive relationship between human mobility and COVID-19 

infections. Proceedings of the National Academy of Sciences, 117(44), 27087–

27089. https://doi.org/10.1073/pnas.2010836117 

Xu, Y., Belyi, A., Bojic, I., & Ratti, C. (2018). Human mobility and socioeconomic 

status: Analysis of Singapore and Boston. Computers, Environment and Urban 

Systems, 72, 51–67. https://doi.org/10.1016/j.compenvurbsys.2018.04.001 

Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Fang, Z., & Li, Q. (2015). Understanding 

aggregate human mobility patterns using passive mobile phone location data: A 

home-based approach. Transportation, 42(4), 625–646. 

https://doi.org/10.1007/s11116-015-9597-y 

You, G. (2022). The disturbance of urban mobility in the context of COVID-19 

pandemic. Cities, 128, 103821. https://doi.org/10.1016/j.cities.2022.103821 



16 

 

Zhang, W., Chong, Z., Li, X., & Nie, G. (2020). Spatial patterns and determinant factors 

of population flow networks in China: Analysis on Tencent Location Big Data. 

Cities, 99, 102640. https://doi.org/10.1016/j.cities.2020.102640 

Zhao, X., Yan, X., Yu, A., & Van Hentenryck, P. (2020). Prediction and behavioral 

analysis of travel mode choice: A comparison of machine learning and logit 

models. Travel Behaviour and Society, 20, 22–35. 

https://doi.org/10.1016/j.tbs.2020.02.003 

 



17 

 

Chapter 2  

2 Associations between socio-demographic factors and 
change in mobility due to COVID-19 restrictions in 
Ontario, Canada using Geographically Weighted 
Regression 

2.1 Introduction 

Starting in March 2020, we began to see large-scale shifts in mobility patterns across 

Ontario, Canada as a result of restrictions on in-person gatherings and the closure of non-

essential businesses due to the spreading of COVID-19. Over the course of the pandemic 

in 2020, the levels of restrictions in Ontario varied, generally in accordance with the level 

of risk that COVID-19 spread presented at any given time. The specific restrictions put in 

place also varied across regional health units at certain times (Long & Ren, 2021). 

We know from previous transportation and human mobility research that people’s mobility 

patterns are often dictated by socio-demographic factors. For example, previous research 

has shown that socio-economic status tends to have an influence on mobility, and we 

usually find that higher socio-economic status associated with higher rates of mobility 

(Fransen et al., 2018; Khattak et al., 2000; Manaugh et al., 2010; Morency et al., 2011; 

Pappalardo et al., 2015; Xu et al., 2018), with a few exceptions showing the inverse 

relationship (Xu et al., 2018). We know that urban form tends to influence the distance 

factor of mobility, where people in denser, urban areas tend to travel shorter distances and 

have a smaller activity spaces (Manaugh et al., 2010; Morency et al., 2011; Xu et al., 2018). 

However, with widespread changes in mobility during the COVID-19 pandemic, we seek 

to understand how changes in these base-mobility levels were associated with a variety of 

socio-economic factors, and whether these relationships vary across space. 

The major shift in mobility patterns that we saw in Ontario over the course of 2020 gives 

us the opportunity to investigate to what extent these associations still exist the same way 

during the pandemic as they did pre-pandemic. Additionally, building on analysis that 

shows how the interaction between socio-demographics and mobility exhibited temporal 

variation over the course of 2020 in our study area of Ontario, Canada (Long & Ren, 2021) 
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and how higher socio-economic status was generally associated with a greater ability to 

reduce one’s mobility (Bonaccorsi et al., 2020a; Jay et al., 2020; W. D. Lee et al., 2021; 

Pullano et al., 2020b; Weill et al., 2020), this analysis reveals spatial variation in these 

interactions in Ontario, revealing that different socio-economic indicators affect mobility 

differently in different parts of Ontario. 

Our analysis uses two key mobility metrics, Movement Time and a modified Radius of 

Gyration, and compares these to five socio-demographic variables at three time periods in 

2020 using a linear regression model and a geographically weighted regression (GWR) 

model. Movement time and radius of gyration are measured using mobile phone 

positioning data and aggregated by home neighbourhood Aggregate Dissemination Area 

(ADA). The ADAs are then linked to socio-demographic attributes based on the 2016 

Canadian Census to be used as covariates in our model. Associations between the socio-

demographic covariates and the mobility metrics are fitted both globally using the linear 

regression model, and locally with the GWR model, to identify how socio-demographic 

variables are associated with mobility, and how these associations vary across space. 

We hypothesize that non-uniform changes in mobility patterns during the pandemic in 

Ontario can be explained by social inequities, as we have seen elsewhere in the world 

during the pandemic (Bonaccorsi et al., 2020a; Chang et al., 2021; Dorn et al., 2020; Gibbs 

et al., 2020; W. D. Lee et al., 2021; Pepe et al., 2020; Pullano et al., 2020b), and similar in 

nature to mobility inequities we have observed pre-pandemic (Fransen et al., 2018; Kwan, 

1999; Lenormand et al., 2015b; Manaugh et al., 2010; Morency et al., 2011; Páez et al., 

2009; Xu et al., 2018). Further, we predict that in addition to the temporal variability of 

association that we have seen (Long & Ren, 2021), we will also see spatial variation in 

these associations. These results will give us a more in-depth understanding of how social 

factors affect mobility, guiding us on how social inequities in transportation can be 

addressed, both during and after the pandemic. For example, understanding how much time 

(or distance) people in different communities spend travelling to important destinations 

such as work, grocery, school and healthcare will highlight the need for investment of 

better transportation access to these destinations, or investment of more of these 

destinations in communities where they are needed most. 
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2.2 Background 

2.2.1 Social Factors and mobility 

The social factors associated with mobility have been examined pre-pandemic, with focus 

on higher and lower socio-economic status neighbourhoods (Khattak et al., 2000; Xu et al., 

2018), race and visible minority communities (Khattak et al., 2000), employment type 

(Long & Reuschke, 2021), and gender (Kwan, 1999). One of the main themes we see in 

this research pre-pandemic is that in general, a higher socio-economic status allows for a 

greater degree of mobility, often translating to a higher ability to participate in activities 

(Fransen et al., 2018) or a greater level of diversification of mobility (Pappalardo et al., 

2015). From this perspective, we often view these aspects of mobility as a privilege that 

those with a higher socio-economic status are able to enjoy. There are also cases where this 

was reversed – where higher income earners tend to have lower overall mobility. This is 

usually the case in large metropolitan areas (Khattak et al., 2000; Manaugh et al., 2010; 

Morency et al., 2011), such as Singapore (Xu et al., 2018), where people with a higher 

socio-economic status tend to live in more urban areas and require less time and distance 

to reach important destinations. There are several other factors that have been shown in 

transportation literature to have an effect on people’s mobility, including age (Fransen et 

al., 2018; Manaugh et al., 2010; Morency et al., 2011) and belonging to visible minority 

groups (Fransen et al., 2018; Khattak et al., 2000). 

2.2.2 Mobility during COVID-19 

During COVID, we have seen several shifts in the way we have previously understood how 

social factors affect mobility patterns, most notably the swapping of higher-income earners 

and lower-income earners and their relative amounts of mobility. Specifically, we have 

seen that wealthier people are more likely to be able to stay home, and therefore travel for 

shorter amounts of time and distance than those with lower incomes, who are more likely 

to have to continue working at places of employment; revealing the so-called ‘luxury of 

social distancing’ (Huang et al., 2021). This pattern was observed in many places across 

the world including the United States (Jay et al., 2020; Weill et al., 2020), France (Pullano 

et al., 2020), Italy (Bonaccorsi et al., 2020), England (W. D. Lee et al., 2021), and Canada 
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(Long & Ren, 2021). Interestingly, prior to the pandemic there have been different findings 

on the effect that working from home would have on reducing mobility, with the earlier 

consensus being that homeworking decreases overall travel (Mokhtarian, 1991), but more 

recent studies indicating that there may be a null or even opposite effect (Kim, 2016; 

Lachapelle et al., 2018; J. Long & Reuschke, 2021; Rietveld, 2011). This could be because 

home-based workers tend to offset their shorter commutes with a greater level of non-work 

travel (Shin, 2019). However, this is under the assumption that a wide range of social and 

recreational activities are available, which was not always the case during the COVID-19 

pandemic. 

We have seen that relationships between mobility and socio-economic factors have varied 

throughout the timeline of the pandemic. In particular, previous work has shown that the 

relationship between changes in mobility and socio-demographic factors was temporally-

varying in Ontario, Canada (Long & Ren, 2021). For example, this research found that 

areas with higher population density were associated with lower radius of gyration during 

the first and second waves, but a higher geographical range of mobility in the summer of 

2020. Conversely, economic dependency – a composite measure of elements related to age, 

workforce participation, and dependency on social assistance programs – was positively 

related to geographical range of mobility throughout most of the timeline, but the 

magnitude of the coefficient changed over time with its highest value in the summer. 

Varying associations were also seen in the US (Jay et al., 2020), with a growing gap in 

mobility between low- and high-income households in the first 20 days after emergency 

declarations. Results from England looking at how socio-economic factors impacted 

mobility reduction (W. D. Lee et al., 2021), while over a shorter time range, suggest that 

there was some variation of these associations at different time points with slightly different 

model coefficients for the four weeks after the beginning of restrictions being put in place. 

In addition to observed temporal variability, relationships between mobility and socio-

demographic factors may vary across geographic space as well. Such, spatially varying 

relationships are indicative of processes that may be functionally different in different 

regions, and therefore exhibit different statistical relationships at different locations in 

space (Fotheringham et al., 2003).  Previous work has shown, at broad scales, a spatially 
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varying relationship between COVID-19 related changes in mobility and socio-

demographic factors in England (W. D. Lee et al., 2021). In this work, the authors find that 

relationships between mobility changes during COVID-19 and socio-economic indicators 

vary greatly across England, and that a simple linear regression is not appropriate for 

capturing the inherent spatial heterogeneity of these relationships (W. D. Lee et al., 2021). 

Therefore, here we propose to extend this work in three key ways. First, our analysis looks 

at multiple time periods throughout the pandemic to study spatially varying relationships 

over time. Second, we employ a finer level of aggregation than this previous study, 

exploring mobility levels at the neighbourhood-level, which allows us to better capture the 

relationship between mobility levels and socio-demographic factors. Third, we also 

examine two different measures of mobility, as numerous studies have suggested that the 

way in which mobility is measured can result in different inferences about the relationships 

with socio-demographic factors (Long & Ren, 2021; Long & Reuschke, 2021). 

2.3 Methods 

2.3.1 Data and Variables 

2.3.1.1 Network Mobility Data 

The de-identified data used for this research was obtained from TELUS Communications 

Inc. as part of their Data for Good program. These data are accessed via the TELUS Insights 

platform, which is a privacy-protecting system for analysing aggregated and mass mobility 

patterns in Canada. The data comprise connections between mobile devices and cell tower 

receivers over time. As a device moves through space, it changes connections from receiver 

to receiver, generally connecting to the closest receiver. Cell tower receivers are distributed 

across space with a higher concentration in areas with higher population density and a 

lower concentration in areas with lower population density. For each connection, the data 

contain the start and end time of the connection, as well as geographic coordinates 

associated with the receiver. The data consists of an aggregate of approximately 3.5 million 

cellular devices in Ontario during the year 2020. 
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2.3.1.1.1 Estimating Home Neighbourhood Aggregate 
Dissemination Area 

To estimate the home neighbourhood of each mobile device, clusters of receivers were 

identified based on a focal receiver and the surrounding receivers that the focal receiver 

directly connects to, termed handovers. The cluster of receivers with the greatest total dwell 

time of the device was labelled as the home cluster. A weighted average (by dwell time at 

each receiver) of the receivers that make up the home cluster was used to estimate the home 

neighbourhood of the device. We then identified the Aggregate Dissemination Area (ADA) 

census unit associated with the home neighbourhood estimate for each device using a 

spatial intersection. An ADA is an aggregated form of smaller census units, roughly 

representing 5000 to 15,000 people. The home neighbourhood estimate for each device is 

recomputed for each calendar month. There are a total of 1685 ADAs in Ontario, however 

only ADAs that included a minimum of 20 devices were used in subsequent analysis. In 

total, a subset of 1540 ADAs were included in the analysis here. 

2.3.1.2 Mobility Measures 

Two different mobility measures were used as response variables to analyze the temporal 

and geographical components of local mobility. Movement Time measures the total 

amount of time per day that a mobile device was deemed to be ‘in motion’ and is used to 

represent the temporal component of mobility. Previous studies have used similar measures 

of travel time, such as commute time, to capture the cumulative travel demand experienced 

by an individual in a given day (Khattak et al., 2000). To calculate the Movement Time 

metric, we separated the network mobility data into two subsets: stops and motion. Stops 

were identified as any instance where a device was at the same network tower receiver for 

a period of 10 minutes or longer. Motion was then identified as any instance that was not 

deemed a stop. We calculated the sum of the motion time for every day as a measure of the 

movement time of a device. An example of how movement time was calculated for a 

particular mobile device is shown in Table 2-1. 

𝑀𝑇 =  ∑ ∑ 𝐷𝑖,𝑡𝑡𝑖       where       𝐷𝑖,𝑡 < 10 (2-1) 
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𝐷𝑖,𝑡 = dwell time at tower 𝑖 and time 𝑡  

Table 2-1: Example of the movement time calculation for a hypothetical scenario 

Radius of Gyration is a common measure of the geographical range of mobility that is used 

on cell-phone based studies of mobility and is used to represent the geographical distance 

component of mobility, particularly when working with big data (González et al., 2008; 

Lee et al., 2021; Long & Ren, 2021; Lu et al., 2013; Pepe et al., 2020; Xu et al., 2018; Zhao 

et al., 2019). Here, we used a modified version of the classical Radius of Gyration statistic, 

to measure a device’s geographical range of movement. The classical Radius of Gyration 

calculation (González et al., 2008) is the square root of the sum of the squared distances, 

𝑑, between each of the 𝑛 different observed locations, 𝑖, and the mean centre of all the 

observed locations, 𝜇.  

𝑅𝑂𝐺𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = √
∑ (𝑑𝑖,𝜇)2𝑛

𝑖

𝑛
 (2-2) 

Our modified version replaces the mean centre value with the home neighbourhood 

location estimate, ℎ. We also only included those locations that were identified as Stops in 

the movement time measure (having a dwell time of greater than 10 minutes) as the 

geographical locations used in the radius of gyration measure. Further, we excluded all 

stops that occurred within the devices home neighbourhood cluster from the calculation. 

𝑅𝑂𝐺 = √
∑ (𝑑𝑖,ℎ)2𝑛

𝑖

𝑛
 (2-3) 

Device 

ID 

Cell 

Tower 

Start Time End Time Duration 

(min) 

In Motion? Movement 

Time (min) 

XYZ123 A 9:00:00 9:15:00 15 No 0 

XYZ123 B 9:15:00 9:19:00 4 Yes 4 

XYZ123 C 9:19:00 9:26:00 7 Yes 7 

XYZ123 D 9:26:00 9:38:00 12 No 0 

TOTAL    38  11 
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2.3.1.2.1 Comparing to Baseline Levels 

The Movement Time (MT) and Radius of Gyration (ROG) measures for each mobile 

device were aggregated by taking the mean daily values for each Aggregate Dissemination 

Area (ADA) containing the home neighbourhood of each device. The mean daily values 

for each ADA region were then adjusted relative to the baseline (pre-pandemic) values. 

The baseline values were the average daily values for the month of February, 2020, 

accounting for day of the week. Aggregated values were divided by the baseline values to 

create the relative to baseline values with a value of 100 representing baseline mobility 

levels and below 100 relatively lower mobility and above 100 relatively higher mobility. 

All analysis will be performed on these relative measures of the mobility metrics. 

𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑥

𝑏
× 100 (2-4) 

𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = mobility metric (Movement Time or Radius of Gyration) relative to 

baseline 

𝑥 = actual mobility metric (Movement Time or Radius of Gyration) 

𝑏 = baseline value for mobility metric 

Pearson’s r correlation is calculated in our results to show the difference between these two 

measures, and to confirm that modelling each metric separately provides sufficiently 

different information. 

In Section 2.4.1 we calculate the correlation between our movement time and radius of 

gyration values for each of the three time periods to ensure that using each of the two 

metrics capture a different aspect of mobility and provide us with different information. 

2.3.1.3 Covariates 

Covariates for the statistical analysis were selected from the 2016 Canadian Census that 

reflect a range of socio-demographic indicators, including age, economic, race, education, 

and urban form (Table 2-2). Average Age indicates the general age of the area, Median 

Income indicates the general economic status of people in an area, Percent Visible Minority 

indicates the amount to which racialized groups make up an area, Percent Post-Secondary 
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Educated represents the level of education generally received in the area, and Percent 

Detached Home is an indicator of the degree of ‘urbanness’ of the area. 

These covariates are similar to ones that have been used in previous transportation research 

exploring effects of socio-demographic factors on mobility patterns. For example, Lee et 

al. (2021) use the share of households in the top income quintile as their variable 

representing income. They also use share of non-English speakers and share of lower 

middle class to represent education and occupation type, similar to our post-secondary 

educated variable. Similarly, Morency et al. (2011) use specific age categories, an average 

income variable, family size, availability of public transit nearby or a driver’s license, and 

employment or student status. Pullano et al also used age and standard of living indicators 

– measured as a ratio of income to household size. In another example, Xu et al. (2018) use 

housing price and monthly income. In a previous study in Ontario, Canada, Long and Ren 

(2021) use three indicators from the Canadian index of Multiple Deprivation, representing 

economic dependency, ethno-cultural composition, and residential instability. 

Based on this past research, we can demonstrate other examples of studies that use common 

socio-demographic indicators such as age, income. Visible Minority, while less commonly 

included in transportation research, has been analyzed in previously with its relation to 

social class in urban areas (Khattak et al., 2000). Importantly for our research, we know 

race and ethnicity played a role in COVID-19 outcomes (Dorn et al., 2020; Pareek et al., 

2020), and we believe that this may have been associated with people’s mobility patterns 

during the pandemic. Post-secondary education, while a bit different from other variables 

that have been used in previous research, is a well-defined variable in the Canadian Census 

that generally represents education and skill level. Proportion of detached homes is also 

different from other indicators of urban form and density, but here we use it as an indicator 

of urban form since it presents a proxy measure of density and housing structure. 

Table 2-2: Summary statistics and definitions of the five covariates from the 2016 

Canadian Census 

Covariate Paraphrased Census Canada definition Mean Median St. Dev. 
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Average Age 

(years) 

The average age of residents living in the 

ADA 

40.91 41.20 4.34 

Median 

Income ($) 

The median pre-tax income among 

households living in the ADA 

34077.61 33711.00 8570.97 

Percentage 

Visible 

Minority (%) 

The percentage of people living in the 

ADA who belong to a visible minority 

group defined by the Employment Equity 

Act 

26.62 16.70 27.05 

Percentage 

Post-

Secondary 

Educated (%) 

The percentage of people living in the 

ADA who have earned a ‘Postsecondary 

certificate, diploma or degree’, including 

an apprenticeship or trades certificate or 

diploma, college, CEGEP, or other non-

university certificate or diploma, and 

university certificates, diplomas and 

degrees 

63.25 63.00 12.33 

Percentage 

Detached 

Home (%) 

Number of private dwellings that fall in 

the structural type category of ‘single-

detached’ 

59.01 62.99 26.05 

2.3.2 Spatial-Statistical Analysis 

To determine the effect of independent variables on a continuous variable, we first use a 

multivariate linear regression model. This initial analysis provides us with a global-level 

model to examine the relationship of each predictor variable in the model. Subsequently, 

the residuals of the prediction for each observation give an idea of how well the model 

predicts the response variable. When we are working with geographic data and our 

observations are geographic units, we can map the residuals and use a Moran’s I test for 

global spatial autocorrelation to test whether the residuals are spatially autocorrelated 

(Brunsdon et al., 1996). If they exhibit positive spatial autocorrelation, a simple linear 

regression model may yield biased parameter estimates, warranting a model that can 

incorporate spatial effects. 
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In cases where the nature of a relationship between variables is not fixed over space, a 

Geographically Weighted Regression (GWR) model can be used to account for such spatial 

heterogeneity (Brunsdon et al., 1996). GWR estimates regression coefficients of the model 

for each location through the use of a spatially local kernel function (Fotheringham et al., 

2017). The GWR regression model can be expressed as: 

𝑦𝑖 = ∑ 𝛽𝑗(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑗 + 𝜀𝑖

𝑚

𝑗=0

 (2-5) 

where 𝑦𝑖 is the estimated response variable for location 𝑖, 𝑥𝑖𝑗 is the 𝑗th predictor 

variable out of 𝑚 variables for location 𝑖, 𝛽𝑗(𝑢𝑖, 𝑣𝑖) is the 𝑗th coefficient for location 𝑖, 

the set of locations are (𝑢𝑖, 𝑣𝑖), and 𝜀𝑖 is the error term for location 𝑖 (Fotheringham et 

al., 2017). 

A spatial weight matrix quantifies the spatial relationship between each pair of 

observations. The weight between two observations is calculated based on their distance 

and a distance kernel function, which generally decreases the weight between two 

observations as their distance from each other increases, usually with either a Gaussian or 

negative exponential curve. The spatial weight matrix is used to calculate localized 

parameter estimates 𝛽𝑘(𝑢𝑗 , 𝑣𝑗) for each regressor, 𝑥𝑗𝑘, and the matrix is constructed from 

the weights to define the spatial neighbourhood that provides the best model fit. The GWR 

function requires a kernel function and bandwidth for 𝑊 as input which controls the 

definition of a spatially local neighbourhood (Brunsdon et al., 1996).  Here we used an 

adaptive kernel based on a nearest neighbour conceptualization of spatial relationships 

(Gollini et al., 2014). The kernel shape (distance decay effect) was modelled using a bi-

square function, and the bandwidth is computed adaptively based on the number of nearest 

neighbours to optimize the model fit following the optimization routine outlined in Gollini 

et al. (2014). This process interactively selects different bandwidth sizes until the model is 

optimized in terms of the Akaike Information Criterion (AIC) (Akaike, 1998). Through 

this process, we identify the optimal bandwidth for a given model representing the 

localness of the spatial relationship being explored – that is smaller bandwidths are 

associated with a stronger local relationship while larger bandwidths are indication of a 
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broader, more global relationship. As the bandwidth approaches the size of the study area 

(n) the GWR model becomes equivalent to the classical regression model. All analysis was 

performed in R and GWR models were fit using the ‘GWmodel’ package (Gollini et al., 

2014). 

2.3.3 Time Periods 

Movement time and radius of gyration measures were calculated for each day in 2020. 

However, the focus of this analysis was on the geographical variation in the relationship 

between mobility and socioeconomic variables. Therefore, to implement the spatial 

statistical modelling approach, we selected three five-day (weekdays) periods in 2020 

representing three different levels of restrictions during the pandemic in Ontario, Canada. 

The week of April 6th to April 10th (the April time period) represents the beginning of the 

pandemic when there were severe restrictions in place and overall mobility levels were 

very low. The week of August 10th to August 14th (the August time period) represents an 

inter-wave period during the summer of 2020 when restrictions were relatively low and 

mobility had begun to increase (Long & Ren, 2021). The week of September 21 to 

September 25 (the September time period) was after most elementary and high school 

students had returned to in-person learning, but before the next wave of restrictions were 

put in place. Each of these three time periods represent different time periods during the 

pandemic with varying mobility patterns among different types of people. 

The goal of this analysis is to determine the impacts of five key socio-demographic 

variables on two mobility metrics at three different times during the COVID-19 pandemic 

in Ontario. Six different models are tested, one for each combination of response variable 

(movement time and radius of gyration) and time period, and each having the same five 

covariates (Table 2-2). 

2.4 Results 

2.4.1 Data / Descriptive Statistics 

In general, Average Daily Movement Time (Figure 2-1) had a very large decrease at the 

time of the first lockdown in Ontario in March, and then gradually started increasing again 
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over the course of the summer, reaching a local peak in September, and then gradually 

started decreasing again after this point. These changes generally relate to the times at 

which government restrictions were applied or removed. Radius of Gyration (Figure 2-2) 

had a similar pattern, but the peak took place around August rather than September, and 

was noticeably higher than the rest of the year. Figure 2-1 and Figure 2-2 show the raw 

movement time and radius of gyration values, rather than the values relative to the baseline 

levels which is used for the analysis. 

 

Figure 2-1: Time series plot of average daily movement time over the course of 2020 

with the study periods highlighted in blue 
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Figure 2-2: Time series plot of average daily radius of gyration over the course of 

2020 with the study periods highlighted in blue 

Changes in mobility were greatest in April where the mean movement time was 61.2% of 

the baseline, and Radius of Gyration was at 38% of the baseline. The average movement 

time remained below the baseline in the August and September time periods, but radius of 

gyration increased to 140.4% of the baseline in August. The spread of both metrics were 

lowest in April based on standard deviation, were the greatest in August, and then 

decreased again in September but remaining above April. 

Table 2-3: Summary statistics for the two mobility metrics during each time period 

Movement Time Mean Min 25% Median 75% Max St. Dev. 

April 61.2 34.7 54.0 60.7 67.5 98.9 9.06 

August 88.5 42.1 79.1 86.5 96.5 193.2 12.58 

September 98.9 67.0 89.5 97.7 107.1 178.0 12.39 

Radius of 

Gyration 

Mean Min 25% Median 75% Max  St. 

Dev. 

April 38.0 8.5 28.0 36.9 45.8 159.6 15.46 

August 140.4 37.9 108.1 132.4 163.8 500.4 49.31 

September 90.9 18.0 70.3 88.2 106.5 254.4 30.54 

We tested the correlation between our two dependent variables (Figure 2-3) – Movement 

Time and Radius of Gyration – and found that the Pearson’s correlation ranged from 0.37 
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to 0.53 among the time periods we are looking at. While these correlations are moderate, 

we find that they each capture a different aspect of mobility and are worth investigating 

separately. 

 

Figure 2-3: Scatterplots comparing the movement time and radius of gyration metrics 

across aggregate dissemination areas (ADAs; n = 1540) in Ontario, Canada during 

study periods in (a) April, (b) August, and (c) September. We also report the 

Pearson’s r correlation value. 

Similarly, we tested for multicollinearity among the independent variables. We found that 

none of the covariates have a correlation above an absolute value of 0.60, and in all cases 

the variance inflation factor was less than 3, suggesting that there were no collinearity 

issues. 

Table 2-4: Correlation values between each of the covariates used in the spatial 

statistical analysis along with the Variance Inflation Factors 

 AGE INC VIS SEC DET VIF 

Average Age (AGE) 1.00 -0.02 -0.45 -0.12 0.15 1.35 
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Median Income (INC) -0.02 1.00 -0.39 0.60 0.31 2.88 

Percentage Visible Minority (VIS) -0.45 -0.39 1.00 0.15 -0.47 2.25 

Percentage Postsecondary Educated (SEC) -0.12 0.60 0.15 1.00 -0.12 2.33 

Percentage Detached House (DET) 0.15 0.31 -0.47 -0.12 1.00 1.40 

From the multivariate linear models, we found that almost all covariates have a significant 

relationship with movement time for all three time periods (Table 2-5). Specifically, we 

found that in all cases the Pct. Detached home variables was positively associated with 

relative mobility levels (for both movement time and larger radius of gyration), suggesting 

that areas with more detached homes did not change mobility as much as those with less 

detached homes. Similarly, post-secondary education levels were negatively associated 

with relative mobility levels in all cases except for the August model for Radius of gyration. 

We see varying relationships over time, and across two mobility measures, for the other 

covariates. We also found that in general the covariates explained a much greater level of 

the variance in the movement time measure (Adj. R2 0.50-0.62; Table 2-5) relative to the 

radius of gyration measure (Adj. R2 0.13-0.29; Table 2-5). However, the fact that all six 

of these linear models contain residuals with a significant and positive Moran’s I (Table 

2-5) indicates that there may be spatial effects that were not captured by the linear models. 

Therefore, we used Geographically Weighted Regression (GWR) to explore spatial non-

stationarity that may be present in these relationships (Brunsdon et al., 1996). 

Table 2-5: Results of the linear regression models run for each of the two mobility 

metrics and at each of the three time periods – April, August and September 2020 

Covariate Movement Time Radius of Gyration 

April Estimate P-Value Estimate P-Value 

(Intercept) 86.4 < 0.001 65.8 < 0.001 

Average Age 0.205 < 0.001 0.185 0.063 

Median Income -0.0000494 < 0.001 -0.0000997 0.143 

Pct. Visible Minority -0.135 < 0.001 0.0271 0.139 

Pct. Post Secondary Educated -0.370 < 0.001 -0.499 < 0.001 

Pct. Detached Home 0.0387 < 0.001 0.131 < 0.001 

Adjusted  R2 0.62  0.29  
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Moran’s I of Residuals 0.25 < 0.001 0.07 < 0.001 

August Estimate P-Value Estimate P-Value 

(Intercept) 121.5 < 0.001 201.7 < 0.001 

Average Age 0.00903 0.890 0.254 0.455 

Median Income -0.000341 < 0.001 -0.00139 < 0.001 

Pct. Visible Minority -0.242 < 0.001 -0.666 < 0.001 

Pct. Post Secondary Educated -0.312 < 0.001 -0.261 0.100 

Pct. Detached Home 0.0926 < 0.001 0.206 < 0.001 

Adjusted R2 0.52  0.13  

Moran’s I of Residuals 0.32 < 0.001 0.36 < 0.001 

September Estimate P-Value Estimate P-Value 

(Intercept) 121.4 < 0.001 105.8 < 0.001 

Average Age 0.332 < 0.001 1.07 < 0.001 

Median Income -0.000345 < 0.001 -0.000139 0.339 

Pct. Visible Minority -0.222 < 0.001 -0.028 0.473 

Pct. Post Secondary Educated -0.315 < 0.001 -0.922 < 0.001 

Pct. Detached Home 0.0401 < 0.001 0.108 < 0.001 

Adjusted  R2 0.50  0.18  

Moran’s I of Residuals 0.29 < 0.001 0.11 < 0.001 

2.4.2 GWR Results 

After building the GWR models using the optimization procedure, we found that the 

optimal nearest neighbour bandwidth sizes for the Movement Time model for April, 

August and September respectively are 116, 133 and 116 representing highly local patterns 

(given a study area of 1540 units). For the Radius of Gyration GWR models we found that 

the optimal bandwidths for April, August and September time periods are 358, 268 and 

570 respectively, suggesting a less local relationship. In all cases, the GWR models resulted 

in improved global measures of goodness of fit over the global regression (Table 2-6), 

however there is a wide range of local R-squared values in the GWR models (Table 2-7), 

ranging anywhere from 0.18 to 0.97 for the most extreme case in the April movement time 

model. The global and local R-squared values suggest that the movement time models have 

a better fit than the ROG models. 
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Table 2-6: GWR global adjusted R-squared values, and bandwidths for each GWR 

model 

 Movement Time Radius of Gyration 

 Global Adj. R-

squared 

Bandwidth Global Adj. R-

squared 

Bandwidth 

April 0.73 116 0.32 358 

August 0.71 133 0.39 268 

September 0.66 116 0.23 570 

Table 2-7: GWR local R-squared values, shown as percentiles 

 Movement Time Radius of Gyration 

 Min 25% 50% 75% Max Min 25% 50% 75% Max 

April 0.18 0.66 0.76 0.83 0.97 0.09 0.28 0.38 0.48 0.67 

August 0.16 0.65 0.76 0.81 0.93 0.11 0.22 0.35 0.49 0.72 

September 0.20 0.54 0.70 0.80 0.93 0.08 0.18 0.25 0.34 0.63 

2.4.2.1 Number of Significant ADAs 

In general, we see that most ADAs are non-significant in almost every case, except for 

post-secondary educated in April and September, average age with radius of gyration in 

September, and detached house with Radius of gyration in April (Table 2-8). This tells us 

that locally, the relationships between the covariates and the mobility metrics did not exist 

for most of Ontario. Interestingly, the number of negative post-secondary educated ADAs 

decreases by a lot in August before increasing again in September. However, maps of the 

significant parameter estimates (Appendix A) show the local areas where significant 

relationships were found, and that these varied by movement metric and covariate. 

Table 2-8: Number of significantly positive (p < 0.1), significantly negative, and non-

significant ADAs for each of the six GWR models that were run 

 Movement Time Radius of Gyration 

Average Age Negative Non-Sig Positive Negative Non-Sig Positive 

April 16 1313 211 0 1480 60 

August 83 1306 149 25 1322 191 
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September 56 1285 195 0 818 718 

Median Income Negative Non-Sig Positive Negative Non-Sig Positive 

April 264 1271 5 251 1267 22 

August 376 1157 5 480 1048 10 

September 308 1219 9 40 1496 0 

Pct. Visible Minority Negative Non-Sig Positive Negative Non-Sig Positive 

April 326 1113 101 83 1077 380 

August 455 1029 54 552 963 23 

September 569 967 0 4 1334 198 

Pct. Post-Sec. Educ. Negative Non-Sig Positive Negative Non-Sig Positive 

April 1065 475 0 1474 66 0 

August 563 930 45 360 1050 128 

September 685 850 1 1458 78 0 

Pct. Detached House Negative Non-Sig Positive Negative Non-Sig Positive 

April 98 1096 346 30 668 842 

August 25 1067 446 70 1241 227 

September 84 1131 321 434 572 530 

Despite our global linear regression model suggesting that higher income was associated 

with greater decreases in movement time at all three time periods; our GWR doesn’t appear 

to show median income as having a significant effect for most of Ontario. In April, we see 

some areas with a negative relationship with Radius of Gyration (which we would expect), 

but only in a small part of the York Region and some low-populated areas of Eastern 

Ontario. Similarly, looking at Movement time, we only see this negative relationship in 

specific parts of Toronto, and scattered around other specific parts of Ontario. The number 

of ADAs with a significant negative relationship increases in August, but they remain 

scattered around less dense population areas. 

The percentage of visible minority population was mostly non-significant, but where it was 

significant it was more often negative than positive in its relation with Movement Time. 

This was also the case with Radius of Gyration in August, but the reverse in April and 

September. The ADAs with a positive relationship with both movement time and radius of 
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gyration tend to show up in Toronto and its suburbs, particularly in April (Figure 2-4 and 

Figure 2-5), indicating that this positive relationship between visible minority and higher 

relative mobility tends to occur in urban and suburban areas, and does not exist in most 

other areas. 

 

Figure 2-4: GWR Results for the Percentage Visible Minority covariate and 

Movement Time response variable in the April time period 
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Figure 2-5: GWR Results for the Percentage Visible Minority covariate and Radius 

of Gyration response variable in the April time period 

The relationship between post-secondary educated and both mobility metrics were negative 

across almost all of Southern Ontario in April (Figure 2-6), and was still mainly negative 

in August and September. This covariate has a significant relationship for the most ADAs 

in Ontario (Table 2-8). This supports the notion that areas with greater education levels 

were associated with lower relative mobility during all periods of the pandemic, with a few 

regional exceptions where no significant relationship was found (e.g., northern Ontario and 

the communities east of Toronto). 
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Figure 2-6: GWR Results for the Percentage Post-Secondary Educated covariate and 

Movement Time response variable in the April time period 

We see a clear pattern between the Radius of Gyration and detached home, particularly in 

September (Figure 2-7). In Toronto and York Region, this relationship is almost all 

significantly negative in September, after being generally non-significant in April and 

August. We would expect this clear pattern, where there were greater mobility distances in 

neighbourhoods with less detached homes, or our representation of density. In contrast, 

many rural areas had a positive relationship.  
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Figure 2-7: GWR Results for the Percentage Detached House covariate and Radius 

of Gyration response variable in the September time period 

Median Income has a significantly negative relationship with both Movement Time and 

Radius of gyration in April, when looking at the global model for all of Ontario. However, 

our GWR accounting for spatial variation in this relationship shows that most parts of 

Ontario did not actually have a significant relationship with Movement Time, and there 

were no individual ADAs that had a significant relationship with Radius of Gyration in 

April. 
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Figure 2-8: GWR Results for the Median Income covariate and Movement Time 

response variable in the April time period 

Similarly, Average Age is generally mostly non-significant, and the significant ADAs do 

not have any clear pattern. The ROG model in September is an exception to this, with a 

large number of significantly positive ADAs in Northern and Western Ontario suggesting 

that in September areas with older populations in these regions had higher levels of relative 

mobility at this point in time. 
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Figure 2-9: GWR Results for the Average Age covariate and Radius of Gyration 

response variable in the September time period 

2.5 Discussion 

The COVID-19 pandemic has brought about widespread shifts in mobility patterns as 

demonstrated by previous research, which requires us to rethink the way we understand 

mobility and it’s the relationships with social factors (Bonaccorsi et al., 2020; Dasgupta et 

al., 2020; Huang et al., 2021; Jay et al., 2020; Lee et al., 2021; Long & Ren, 2021; Weill 

et al., 2020). Most notably, people living in suburban regions who we might have 

considered to be suburb to downtown office commuters, who previously had a relatively 

high level of mobility both in terms of time and distance (Axisa et al., 2012; Bai et al., 

2020; Mercado & Páez, 2009; Newbold & Scott, 2013), had some of the largest decreases 

in mobility during the pandemic. This was particularly noticeable in the suburbs 

surrounding the City of Toronto, where we can see a sharp decrease in mobility after long 
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daily commutes were no longer needed. This finding aligns with previous research (W. D. 

Lee et al., 2021) which shows that mobility reduction in England was greatest near London.  

Our results are similar to those found in England, where a GWR was used to study spatial 

varying relationships between socio-demographic factors finding a similar level of 

variation in these relationships (Lee et al 2021). Our analysis improves upon that of Lee et 

al (2021) in that we use much finer spatial granularity (spatial unit size) which allows us 

to study finer-scale spatial relationships. Specifically, we use aggregated dissemination 

areas, which have a population of ~10k, whereas Lee et al. use Clinical Commissioning 

Groups (CCGs) of which there are 191 across all of England. This difference allows us to 

study these mobility-socio-demographic associations within a city (e.g., in the Greater 

Toronto Area) at the neighbourhood-level which would not be captured in larger spatial 

units. The use of a spatially varying model is important in the context of Ontario due to its 

urban-rural divide (Statistics Canada, 2004). The relatively small bandwidths of some of 

our models prove the importance of analysing these relationships at a local level, and 

suggest that a global model is not representative of all of Ontario. 

Many of our results, compared to those of Long and Ren (2021), show different 

associations between similar mobility metrics and socio-demographic factors. Similarly, 

we do not see the same amount of significant associations using a local GWR model 

compared previous work using global models (Khattak et al., 2000; Manaugh et al., 2010; 

Mercado & Páez, 2009). This can be explained by the Modifiable Arial Unit Problem and 

Simpson’s Paradox (Fotheringham & Sachdeva, 2022), which explain how local 

associations may differ from associations found at a global level. Our work demonstrates 

the importance of performing analysis at a local level where associations are likely to vary 

greatly across space, as local spatial analysis can lead to different inferences compared to 

a global model. 

Numerous studies have explored how mobility changes during COVID-19 have been 

associated with socio-demographic factors. For example, Huang et al. (2021) found that 

mobility decrease among bottom 20% income counties in the US was generally lower than 

among top 20% income counties, and that this was consistent among most states. Other 
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studies showed that the amount of time spent at home was higher among lower income 

quintile groups compared to higher income quintile groups – the reverse of the pre-COVID 

trend (Jay et al., 2020; Weill et al., 2020), and that places in the US with less movement 

had a 17% higher annual household income (Dasgupta et al., 2020). Similarly, a study in 

Italy found that pandemic affected people differently based on their incomes, and based on 

the fiscal capacities of different municipalities (Bonaccorsi et al., 2020). However, it is 

clear from the results of our GWR model that there are very few instances of one covariate 

having a uniform association with mobility levels across the province Ontario, so it is 

misleading to make such general conclusions about the association between specific 

covariates and mobility, as these associations vary across space.  

Post-secondary educated showed a significant effect for the most parts of Ontario, 

particularly in the April period. We would hypothesize that people in higher educated and 

more skill-based professions were more likely to be able to transition to working from 

home (Bartik et al., 2020; Jay et al., 2020). The GWR supports the fact that this is true 

across most of Ontario with almost all ADAs being significantly negatively associated with 

Radius of Gyration in April and September. We know that post-secondary students often 

have long commutes that can hinder their ability to participate in activities on campus 

(Allen & Farber, 2018). If the commutes of post-secondary students are also representative 

of the commutes of post-secondary educated individuals, then we would expect a large 

decrease in mobility in areas where these people tend to live – in urban and suburban areas 

around cities with major post-secondary institutions (Allen & Farber, 2018). 

Previous research has shown that mobility for the elderly decreases in suburban areas 

(Roorda et al., 2010), so we may expect that the decrease in mobility among the elderly 

was smaller in suburban areas than in urban areas. However, our GWR model does not 

show any noticeable pattern that would align with this hypothesis. This is likely because 

we used the average age statistic, which can disguise the concentrations of older people 

due to the aggregation of ages by ADA. If we had used a percentage of people aged 65+ 

statistic, we might expect this to be negatively associated with mobility in urban areas and 

non-significant in suburban areas. 
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Visible Minority has a positive association with movement time and radius of gyration in 

urban areas in April, and negative in some suburban and rural municipalities. Positive 

associations can likely be explained by the fact that visible minorities in cities are less 

likely to have jobs that can be done from home, as visible minorities have historically been 

over-represented in jobs such as sales and service, clerical and other manual workers, 

processing, manufacturing and utilities (Samuel & Basavarajappa, 2006). Negative 

associations in suburban and rural areas can likely be explained by the fact that there are 

relatively few visible minorities living in these parts of Ontario according to census data, 

that the types of jobs found in these areas are different from the ones in more urban areas 

(Zarifa et al., 2019), and that the pandemic is less likely to have affected travel patterns for 

these people. The spatial concentration of certain ethnic groups in Canadian cities (Bauder 

& Sharpe, 2002) could also exaggerate the variability of the visible minority coefficient 

across space as the GWR bandwidth captures different concentrations of visible minorities 

across Ontario. Not captured in this analysis is the fact that different visible minority groups 

tend to have different levels of participation in different labour markets (Hou & Picot, 

2003). For this analysis, we look at all visible minority groups as one group, however if 

further analysis was performed on separate visible minority groups, we would likely see 

differing levels of mobility among these different groups. 

Detached homes has a positive association with movement time and radius of gyration in 

many parts of Ontario, most prominently in April and August. This could be explained by 

how people in less dense areas still have to travel similar distances for essential purposes 

during COVID-19, such as getting groceries (Widener et al., 2015). People in more dense 

areas are more likely to be able to access these necessary destinations while still greatly 

reducing their mobility. 

While here we focus on spatially varying relationships across the province, previous 

studies, particularly Long and Ren (2021) in Ontario, demonstrate that the associations that 

we see are not always consistent over time. Temporal variability in these relationships can 

be observed in our work as we explored three different time points. While not implicit to 

our model, our results provide further evidence that the associations between mobility 

changes during the pandemic exhibit complex spatial temporal relationships with socio-



45 

 

demographic factors. This may be related to a variety of factors, including differences in 

infection rates across space and time (Bourdin et al., 2021), changes in pandemic 

restrictions that vary over time (Gatalo et al., 2021; Lee et al., 2021; Long & Ren, 2021), 

but also space (Bonaccorsi et al., 2020; W. D. Lee et al., 2021; Scala et al., 2020). In 

particular, previous research in Ontario, Canada, found that regionally targeted 

interventions did not result in substantial changes in inter-regional movement patterns 

(Long et al., 2021). But that does not mean that the mobility metrics we used here were not 

impacted by these restrictions. 

In our analysis the month of February 2020 was used as the pre-pandemic baseline for the 

relative mobility metrics due to the data we were using only being available from January 

2020 to December 2020. Ideally, mobility metrics would be compared to the same time in 

the previous year to account for seasonal variability in transportation patterns that occurs 

in Ontario (Clark et al., 2014; Stevens et al., 2022). For example, a relative mobility metric 

value of 100 during the summer months likely means that the actual mobility value was 

lower than the previous year in terms of distance and time, reflecting the seasonal nature 

of travel patterns in Ontario, Canada. 

There are several potential sources of lack of representativeness in our data, as it relates to 

the measured trajectories and how the subset in our data reflects the real world (C. Chen et 

al., 2016). First, the trajectories captured by de-identified cell phone data is not a perfect 

trajectory of people’s movement as spatial and temporal gaps can exist (Wang & Chen, 

2018). This is particularly the case when comparing urban and rural areas, where the 

distribution of cell phone towers throughout space is inconsistent (C. Chen et al., 2014). 

Second, the fact that our data represents TELUS mobile phones could mean that our 

sample, although large, is not representative of the whole population of Ontario. There is 

likely a small bias towards younger to middle-aged mobile phone plan holders in our 

dataset since about 97% of people aged 18 to 34 subscribe to a mobile phone plan, and 

about 70% of people aged 65+ subscribe to a mobile phone plan (CRTC, 2019). Another 

study using the same dataset (Long & Ren, 2021) found that the number of cell phones in 

each ADA was proportional to the ADA populations, but that the sample proportion was 

slightly larger in areas with a lower ethno-cultural index value, and areas with higher 
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population densities. In addition to the mobility data, the 2016 Census data that was used 

for socio-demographic data could lack representativeness due to the temporal mismatch 

between population characteristics from 2016, when the data is from, to 2020, the time 

period that way studied. Not only is this a long temporal gap, but the disturbance caused 

by the COVID-19 pandemic may have had an impact on people changing residences. 

However, this was the most up-to-date dataset for the time, and it is unlikely that the 

aggregated statistics that we used changed so significantly in a way that makes the 2016 

Census data problematically unrepresentative. 

2.6 Conclusions 

We used two key measures of mobility capturing two aspects of human mobility patterns, 

Movement Time and Radius of Gyration, over the course of the COVID-19 pandemic in 

Ontario, measured from a large, representative sample of mobile devices. We then studied 

spatial variation in associations between patterns of mobility measured and socio-

demographic using a geographically weighted regression model at three time periods in the 

year 2020. We found that these five socio-demographic factors exhibited spatially varying 

associations with mobility levels, in most cases differing from the associations in the global 

model. More specifically, for all the models we ran, most of the coefficients were 

significant in the global model, but were non-significant for most ADAs in their respective 

GWR models. In some cases, opposite associations were seen in different parts of Ontario.   

Our results highlight the limitations of interpretations stemming from classical non-spatial 

regression models, which fail to capture the complete picture of how socio-demographic 

factors are associated with mobility changes during COVID-19 in Ontario, Canada. More 

specifically our results provide new inferences about how mobility levels changed during 

the pandemic. 
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Chapter 3  

3 Change in functional travel regions of Ontario, Canada 
during the COVID-19 pandemic and their alignment 
with public health boundaries 

3.1 Introduction 

Starting on March 17, 2020, governmental restrictions on in-person gatherings and non-

essential businesses were put in place in Ontario, Canada due to the spreading of COVID-

19, causing many people’s travel patterns to change. Throughout 2020, Ontario’s specific 

restrictions at any given time varied in severity, and in some cases varied in their 

geographic scope (Long & Ren, 2021). This caused a major disruption in the urban and 

regional travel patterns that are typical to the province of Ontario and has given us reason 

to re-investigate patterns of travel flows within Ontario. 

We know from previous transportation research that urban form tends to influence the 

distance factor of mobility, where people in denser, urban areas tend to travel shorter 

distances and have smaller activity spaces (Manaugh et al., 2010; Morency et al., 2011; Xu 

et al., 2018). We also know that major Ontario cities have large catchment areas in their 

surrounding regions where travel and economic activity tends to take place (Green & 

Meyer, 1997). There is well documented variation in terms of how far and long people tend 

to travel for various activities, which vary by a variety of socio-economic factors (Long & 

Reuschke, 2021b; Morency et al., 2011; Newbold & Scott, 2013; Roorda et al., 2010). 

Recently, we have connected changes in mobility patterns resulting from various 

restrictions caused by the COVID-19 pandemic across the world (Abdullah et al., 2020; 

Bartik et al., 2020; Chang et al., 2021; Fan et al., 2012; Gibbs et al., 2020; Huang et al., 

2021; Jay et al., 2020; Pawar et al., 2021; Pullano et al., 2020a; Reuschke & Felstead, 2020; 

Scala et al., 2020; Stevens et al., 2022; Zhang et al., 2022).  

The major shift in mobility patterns in Ontario gives us the opportunity to understand how 

regions were inter-connected by individual travel patterns during the COVID-19 pandemic 

and how this connectivity changed over the course of the pandemic. In doing so, one of the 

major focus of this research is to study whether regionally targeted restrictions effectively 
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captured movement patterns. This is an important topic to address for two reasons: 1) 

government restrictions were regionally targeted causing specific economic harm in an 

effort to reduce transmission of COVID-19, and 2) at the time it was very unclear how best 

to implement such local or regionally targeted interventions. Previous research has shown 

that these regionally targeted interventions had little impact on inter-regional travel patterns 

of those targeted regions (Long et al., 2021). However, to date no work has proposed 

alternative and superior methods for implementing such regionalized interventions. 

Therefore, this chapter will explore how community detection methods for spatial flow 

networks can be used to generate regions that reflect mass mobility patterns. 

We hypothesize that all computed community partitions based on the mobility data will 

better reflect patterns of movement of people than those based on Public Health Region 

(HR) boundaries which were used during the COVID-19 pandemic by the Ontario 

government. We also expect that the community partitions will change over time, 

indicating the change in travel patterns in Ontario throughout the pandemic. These results 

will give us a better understanding of how flow patterns changed in Ontario due to COVID-

19 restrictions, and how regionally targeted restrictions could have been more optimally 

applied to reflect actual travel regions rather than somewhat arbitrary HR administrative 

boundaries. 

3.2 Background 

3.2.1 Functional Regions 

A functional region can be defined as an area within which activities tend to take place, 

and between which travel is less likely to take place. Data-driven functional regions can be 

computed by observing actual travel patterns, represented by a flow matrix. A number of 

functional regionalization procedures have been established in geographical literature in 

three general classes: hierarchical clustering, multistage aggregation, and central place 

aggregation (Farmer & Fotheringham, 2011). 

Community detection has several different applications in transportation research. 

Commuting regions, or Travel to Work Areas, can be determined using flow data that 

specifically describes people’s trips to work, giving an indication of where people travel to 
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work from and how they use the transportation network to make their commutes (Hamilton 

& Rae, 2020; Rae, 2017). Import and export data can be used to create functional regions 

that represent countries with interconnected economies (Grassi et al., 2021). Migration data 

can be used to identify migration networks, which can help to study international migration 

patterns and how they change over time (Abel et al., 2021). 

There are a number of methods for detecting communities from a graph, and several of 

them have been applied to mobility network data. The Louvain algorithm has been 

commonly applied to mobility flows data to detect functional regions and commuting zones 

(De Montis et al., 2013; Sekulić et al., 2019; Wu et al., 2019), though there are limitations 

of this method with the Leiden algorithm recently proposed as an alternative to Louvain 

(Traag et al., 2019) but has not yet had extensive use in transportation research. Other 

methods include the Fast Unfolding method (Blondel et al., 2008; Yu et al., 2020), Infomap 

(Rosvall & Bergstrom, 2008; Yang et al., 2018), Walktrap (Huang et al., 2021; Pons & 

Latapy, 2005; Zhang et al., 2022), and Leading Eigenvector (Melamed, 2015; Newman, 

2006). 

3.2.2 Community Structure during COVID-19 

In general, three overall changes to mobility patterns due to COVID-19 restrictions have 

been observed in previous research: (1) lower overall mobility (Gibbs et al., 2020; Kang et 

al., 2020; M. Lee et al., 2020; Pepe et al., 2020; Santana et al., 2020; Shepherd et al., 2021; 

You, 2022) (2) shorter-distance trips being made and mobility becoming more localized 

(Abdullah et al., 2020; Dueñas et al., 2021; Kang et al., 2020; Pawar et al., 2021; Pullano 

et al., 2020a; Zhang et al., 2022), and (3) lower importance of regional hubs, such as 

business centres becoming less relevant in the mobility network (Bartik et al., 2020, 2020; 

Dueñas et al., 2021; Pawar et al., 2021; Pullano et al., 2020a; Reuschke & Felstead, 2020). 

Generally, the only difference between mobility changes due to the pandemic in different 

regions across the world were the speed with which restrictions were imposed, and the lag 

at which people reacted to these restrictions, in some cases causing variation in the timing 

of the initial mobility drop by several weeks (You, 2022). The general pattern of mobility 

flow changes, was a decrease in flows from March to April, and an increase again in May, 
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though not back to the pre-pandemic levels (Kang et al., 2020), with some slight local 

variations due to specific local restrictions in place (Gibbs et al., 2020; Long et al., 2021; 

Long & Ren, 2021). We have also seen that mobility changes due to pandemic restrictions 

varied based on socio-economic status (Dueñas et al., 2021; Kar et al., 2022; Long & Ren, 

2021; Pullano et al., 2020b; Xu et al., 2018).  

Different mobility studies use different definitions for inter-regional flows (aka outflows, 

or external mobility) (Long et al., 2021), but we have seen similar patterns of these longer 

distance flows decreasing during the pandemic throughout the world. Long-range spatial 

interactions decreased the most in the United States, with most movements becoming short-

range movement to adjacent counties (Kang et al., 2020). Bogota, Columbia saw a decrease 

in the share of long-lasting trips (Dueñas et al., 2021), China saw the structure of mobility 

become more local (Zhang et al., 2022), and long-distance trips were disrupted in France 

more than short-distance ones (Pullano et al., 2020a). This is likely because people were 

more likely to make local trips for essential purposes such as grocery or healthcare 

(Abdullah et al., 2020; Pawar et al., 2021). 

Mobility becoming more localized has a large effect on regional hubs, or places with 

important regional destinations such as businesses, retail, or services. Cities or regions with 

a core central business district saw a particularly large drop in inflows due to many of the 

people who would previously travel there regularly for work shifting to working from home 

(Bartik et al., 2020; Pawar et al., 2021; Reuschke & Felstead, 2020). There was a larger 

decrease in inter-regional trips in France than within-region trips (Pullano et al., 2020a). 

Some localities in Bogota lost ‘relative relevance’ during the pandemic, particularly central 

areas with services and workplaces (Dueñas et al., 2021). This also varies greatly across 

employment sector, and therefore by socio-economic status, as jobs in financial, 

professional and technical sectors are more likely to be able to be performed from home, 

while lower-skilled and higher-service work is less likely to be done from home (Felstead 

& Henseke, 2017), and the locations of these higher-service jobs tend to be less 

concentrated in major employment centres (Bartik et al., 2020). Areas that tend to gain 

‘relative relevance’ are ones that are less centralized, but have high urbanization with 

heterogeneous socio-economic conditions (Dueñas et al., 2021). 
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3.2.3 Region-Level COVID-19 Restrictions in Ontario 

Large-scale changes to mobility patterns first started in Ontario when a state-of-emergency 

was announced, with restrictions on businesses and social gatherings beginning March 17, 

2020. In June and July, restrictions began being phased out due to lower COVID-19 case 

counts, with lower levels of restrictions throughout the summer. By October, there was an 

increase of cases again, and restrictions were re-applied to specific health regions starting 

in November, with the whole province returning to these restrictions on December 26, 

2020. 

There were several cases where restrictions were imposed at the Health Region level. In 

the first of these cases in July 2020, 10 of Ontario’s 35 HRs were maintained under stricter 

restrictions, while the rest of the HRs had some restrictions removed. In the second of these 

cases in November 2020, two of the HRs, Toronto and Peel Region, had restrictions re-

imposed ahead of the rest of the province. 

3.3 Methods 

3.3.1 Study Area 

Our study area is made up of the 27 southernmost Public Health Units in Ontario, which 

we define in this study as Southern Ontario. This subset of Ontario was chosen as it is the 

part of Ontario where the largest amount of people live, and therefore where the largest 

amount of mobility takes place. The City of Toronto Health Unit is the largest health unit 

in the study area with over 2.7 million people (~22% of the study area), followed by Peel 

Regional Health Unit (~11%), York Regional Health Unit (~9%) and the City of Ottawa 

Health Unit (~7.5%). Many of the most populated health units tend to be relatively small 

in area, and likewise many of the least populated health units are very large in area. 

Table 3-1: Southern Ontario public health units and their populations and areas 

Public Health Unit Population 

(2016) 

Area 

(km) 

Brant County Health Unit  134,943   1,204,750  

Durham Regional Health Unit  645,862   2,760,862  

Grey Bruce Health Unit  154,952  13,217,528  
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Haldimand-Norfolk Health Unit  109,652   4,562,550  

Haliburton, Kawartha, Pine Ridge District Health Unit  179,083  10,493,210  

Halton Regional Health Unit  548,435   1,039,066  

City of Hamilton Health Unit  536,917   1,212,619  

Hastings and Prince Edward Counties Health Unit  161,180   9,131,935  

Huron County Health Unit  59,297   3,696,168  

Chatham-Kent Health Unit  102,042   3,078,456  

Kingston, Frontenac and Lennox and Addington Health 

Unit 

 193,363   8,174,790  

Lambton Health Unit  126,638   4,172,674  

Leeds, Grenville and Lanark District Health Unit  169,244   7,207,685  

Middlesex-London Health Unit  455,526   3,523,025  

Niagara Regional Area Health Unit  447,888   2,514,088  

City of Ottawa Health Unit  934,243   2,985,534  

Peel Regional Health Unit  1,381,739   1,346,784  

Perth District Health Unit  76,796   2,337,001  

Peterborough County-City Health Unit  138,236   4,380,546  

The Eastern Ontario Health Unit  202,762   5,719,533  

Simcoe Muskoka District Health Unit  547,274  12,863,692  

Waterloo Health Unit  535,154   1,455,995  

Wellington-Dufferin-Guelph Health Unit  284,461   4,393,925  

Windsor-Essex County Health Unit  398,953   3,877,215  

York Regional Health Unit  1,109,909   2,191,032  

Oxford Elgin St. Thomas Health Unit  199,840   5,329,013  

City of Toronto Health Unit  2,731,571   697,992  

TOTAL 12,565,960  123,567,667  
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Figure 3-1: Study area with public health region boundaries 

3.3.2 Data 

3.3.2.1 Network Mobility Data 

The data used for this research was obtained from TELUS Communications Inc. as part of 

their Data for Good program. These data are accessed via the TELUS Insights platform, 

which is a privacy-preserving system for analysing mass mobility patterns in Canada. The 

data comprise connections between mobile devices and cell tower receivers over time. As 

a device moves through space, it changes connections from receiver to receiver, generally 

connecting to the closest receiver. Cell tower receivers are distributed across space with a 

higher concentration in areas with higher population density and a lower concentration in 

areas with lower population density. For each connection, the data contain the start and end 

time of the connection, as well as geographic coordinates associated with the receiver. The 

data consists of approximately 3.5 million cellular devices in Ontario during the year 2020. 
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3.3.2.1.1 Estimating Home Neighbourhood Aggregate 
Dissemination Area 

To estimate the home neighbourhood of each mobile device, clusters of receivers were 

identified based on a focal receiver and the surrounding receivers that the focal receiver 

directly connects to, termed handovers. The cluster of receivers with the greatest total dwell 

time of the device was labelled as the home cluster. A weighted average (by dwell time at 

each receiver) of the receivers that make up the home cluster was used to estimate the home 

neighbourhood of the device. We then identified the Aggregate Dissemination Area (ADA) 

census unit associated with the home neighbourhood estimate for each device using a 

spatial intersection. An ADA is an aggregated form of smaller census units, roughly 

representing 5000 to 15,000 people. The home neighbourhood estimate for each device is 

recomputed for each calendar month. There are a total of 1685 ADAs in Ontario, however 

only ADAs that included a minimum of 20 devices were used in subsequent analysis. In 

total, a subset of 1455 ADAs were included in the analysis here. 

3.3.2.2 Flows 

The dataset contains the number of flows between each pair of ADAs in Southern Ontario. 

To compute flows, we first identified what we term “stops” which were defined as a cell 

phone being detected at a single cell tower for a consecutive duration of 10 minutes or 

longer. A flow, was then defined  every instance of a stop, with the cell phone’s home ADA 

as the origin ADA and the location of the cell tower at which the cell phone was stopped 

as the destination ADA. 

We then aggregated individual flows to develop a provincial flow matrix, which contains 

the sum of all flows from each origin ADA to each destination ADA.  To account for 

varying levels of mobile devices across different ADA regions, we normalize the flow 

matrix by dividing the outgoing flows by the number of mobile devices whose home 

location was the origin ADA, and multiplied by the 2016-based census population of the 

origin ADA. This normalized flow matrix is then representative of a data and populations 

scaled flow rate for each origin and destination ADA pair. Flows were calculated as the 

weekly sum of flows for each week in 2020. This weekly flow value   was then divided by 
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seven to give an average daily number of flows from each origin ADA to each destination 

ADA. The flows were then divided by the number of cell towers in the destination ADA 

to account for the fact that a flow is more likely to be detected in areas with a higher density 

of cell towers. The final normalized flow value (F) was input into a symmetric flow matrix 

by taking the average of the flows to and from each pair of ADAs j and j. 

𝐹𝑖,𝑗,𝑤 = (
1

7
)

𝑥𝑖,𝑗,𝑤𝑝𝑖

ℎ𝑖𝑡𝑗
+

𝑥𝑗,𝑖,𝑤𝑝𝑗

ℎ𝑗𝑡𝑖

2
 

(3-1) 

𝐹𝑖.𝑗,𝑤 is the normalized flows from ADA 𝑖 to ADA 𝑗 for week 𝑤 

𝑥𝑖.𝑗,𝑤 is the measured flows from ADA 𝑖 to ADA 𝑗 for week 𝑤, and flows in the 

opposite direction for 𝑥𝑗.𝑖,𝑤 

𝑝𝑖 is the 2016 census-based population of ADA 𝑖 

ℎ𝑖 is the number of mobile devices whose home locations is in in ADA 𝑖 

𝑡𝑖 is the number of cell towers located within ADA 𝑖 

3.3.3 Community Detection 

3.3.3.1 Cluster Leading Eigen 

To detect functional regions from flow data, we used the Cluster Leading Eigen (CLE) 

method (Newman, 2006). This method uses the modularity matrix of the network, 𝑴, 

formed from the equation 𝑴 = 𝑨 − 𝑷, where 𝑨 is the adjacency matrix of the network 

(containing the strengths of the edges between each pair of nodes according to the flows 

matrix), and where 𝑷 is a matrix containing the probability that there is an edge between 

two nodes in a random network with the same degrees of nodes as the actual network (or 

in the case of a weighted graph such as ours, the expected weight between two nodes in a 

random network). The eigenvector of 𝑴 is calculated for its most positive eigenvalues, and 

the network is divided into two communities based on the signs of the elements of this 

vector, corresponding to nodes in the network. Each of these two communities can be 

further subdivided into two new communities using this process, and this process can 

continue until there is no case where further subdividing any communities will result in an 

increase to the overall modularity (Newman, 2006). This method is similar to many other 

methods in its attempt to minimize the modularity of the network, which is a measure of 
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the number of edges observed within communities minus the number of edges expected 

within communities, as described further in Section 3.3.3.3. Having a number of within-

group edges that is significantly larger than expected by random chance, or a number of 

between-group edges that is significantly higher than expected by random chance, indicates 

a significant community structure (M. Chen et al., 2014). 

3.3.3.2 Community Detection Parameters 

Four community detection scenarios were run for four different periods of time in 2020. 

Representing different levels of restrictions throughout the pandemic. Table 3-2 outlines 

these four time periods. 

Table 3-2: Periods of time used for community detection and their importance 

Partition Dates Importance 

A Feb 03 to Mar 02 Pre-Pandemic 

B Mar 16 to Apr 12 Start of Pandemic 

C Aug 10 to Sep 6 Higher summer mobility 

D Sep 21 to Oct 18 Higher mobility due to school returning 

These date ranges were chosen to get an indication of flow patterns for times with different 

levels of mobility restrictions (Long et al., 2021). Time period A is a baseline indication of 

flows before restrictions started, B represents a time when almost all businesses were 

forced to close and mobility was at its lowest point, C represents a time when there were 

higher levels of mobility during the summer, and D represents a time when in-person 

school resumed but many jobs had not yet returned in person. 

3.3.3.3 Modularity 

In order to quantify the strength of community structure, Newman and Girvan (2004) 

defined the measure modularity as the sum of the number of flows between each pair of 

regions in the same community minus the expected number of flows between those two 

communities, normalized by the total number of flows in the entire matrix. 
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𝑄 =
1

2𝑓𝑡𝑜𝑡𝑎𝑙
∑ (𝐹𝑖𝑗 −

𝑓𝑖𝑓𝑗

2𝑓𝑡𝑜𝑡𝑎𝑙
) 𝛿𝑐𝑖𝑐𝑗

𝑖𝑗

 (3-2) 

𝐹𝑖𝑗 is the element of the flows matrix between regions i and j 

𝛿 is the Kroneker delta function, which equals 1 when regions i and j are in the same 

community (𝑐𝑖 = 𝑐𝑗) and 0 otherwise 

𝑓𝑖 is the total number of flows associated with region i  

𝑓𝑡𝑜𝑡𝑎𝑙 is the total number of flows in the network 

In equation (2), 𝐹𝑖𝑗 represents the actual number of flows between two regions, and 
𝑓𝑖𝑓𝑗

2𝑓𝑡𝑜𝑡𝑎𝑙
 

represents the expected number of flows between those two regions. The difference 

between the actual and expected number of flows between two regions only contributes 

towards increasing the modularity if they are in the same community, indicated by the 

Kroneker delta function. To think about this intuitively, the modularity score will be higher 

when more region pairs have a higher number of flows between them than expected ( 𝐹𝑖𝑗 >

𝑓𝑖𝑓𝑗

2𝑓𝑡𝑜𝑡𝑎𝑙
) and they are in the same region (Kroneker delta function equals 1). Similarly, when 

region pairs have a lower number of flows between them than expected (𝐹𝑖𝑗 <
𝑓𝑖𝑓𝑗

2𝑓𝑡𝑜𝑡𝑎𝑙
), the 

total modularity will not be impacted so long as they are not in the same region (Kroneker 

delta function equals 0). Modularity can range from -1 to 1, with closer to 1 meaning that 

flows tend to occur largely within communities, closer to -1 meaning that flows tend to 

occur between communities, and closer to 0 meaning that flows tend to occur randomly 

relative to the communities. 

To evaluate the four community detection partitions and the health regions, the modularity 

was calculated for each week, for each of these five scenarios. For the four community 

detection partitions, the results of the community detection algorithm were used to assign 

ADAs to communities, and for the Health Regions ADAs were assigned to their respective 

health region. Comparing modularity scores of the results of different community detection 

maps can help to understand patterns in the flow data. Farmer and Fotheringham (2011) 

use the modularity of functional regions, as well as the number of functional regions 

created by their algorithm, to compare commuting patterns of different demographic 
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groups in Dublin, Ireland. It has been suggested that modularity should not be used to 

compare the quality of community structure for graphs of very different sizes as the 

modularity tends to increase with larger graphs and communities (Fortunato, 2010). If HRs 

have more communities and lower modularity, then we can be confident that the HRs 

communities are a lower quality than our algorithm-based communities. 

Modularity can also be calculated for each community individually if only regions pairs 

contained in a single community are calculated. This can give an indication of which 

regions contribute more or less to the overall modularity of the study region, and gives an 

indication of the distribution of the communities’ modularity scores. This was done for our 

five region partitions to compare their modularity distributions. Since the community-level 

modularity scores don’t have a maximum of 1 and are affected by the total number of 

communities (with the total modularity being divided among more communities the more 

communities there are, resulting in smaller community-level modularity scores), 

community-level modularity scores were multiplied by the total number of communities. 

This makes the upper bound of the adjusted community-level modularity scores equal to 

the total number of communities instead of 1, but allows for comparison of distribution 

between partitions with different number of communities. 

3.3.3.4 Similarity Score 

To determine the similarity between the four partitions and the health regions, we define a 

similarity score to quantitatively measure the similarity of the communities. For a given 

ADA, 𝑖, in the set of all ADAs, 𝐴, the number of ADAs were counted in the following two 

sets: {𝐶𝑖,𝑎 ∩ 𝐶𝑖,𝑏} and {𝐶𝑖,𝑎 ∪ 𝐶𝑖,𝑏}, where 𝐶𝑖,𝑎 and 𝐶𝑖,𝑏 are the sets of ADAs in the same 

community as 𝑖 in the two partitions being compared, 𝑎 and 𝑏. The cardinality (size) of the 

first set is divided by the cardinality of the second set to give the ADA-level similarity 

score 𝑆𝑖. The ADA-level similarity scores for all ADAs are averaged to get the similarity 

score between the two partitions, 𝑆. This equation summarizes this process: 

𝑆𝑎,𝑏 =

∑
|{𝐶𝑖,𝑎 ∩ 𝐶𝑖,𝑏}|

|{𝐶𝑖,𝑎 ∪ 𝐶𝑖,𝑏}|𝑖

|𝐴|
 

(3-3) 
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𝑆𝑎,𝑏 is the similarity score between partitions 𝑎 and 𝑏 

𝐴 is the set of all ADAs 

𝑖 is an ADA in set 𝐴 

𝐶𝑖 is the set of ADAs in the same community as 𝑖 for a given partition 

This similarity measure is similar to the Jaccard Similarity Co-efficient (Yu et al., 2020) 

which is used for an overlapping hierarchical clustering algorithm, as well as other 

applications comparing the similarity of partially overlapping sets (Bag et al., 2019). Other 

studies comparing the results of a community detection procedure have used different 

quantitative measures of similarity, such as the Rand Index (De Montis et al., 2013) and 

the Adjusted Rand Index (Hubert & Arabie, 1985). While these measures of similarity 

work for our purpose, we believe that our measure of similarity is simpler to compute and 

to understand. 

3.3.4 Analysis 

This analysis has two goals: (1) to determine regions that could be used to better restrict 

movement in Ontario during COVID-19, which will be demonstrated in our results by 

higher modularity scores for the four community partitions we tested than for Ontario’s 

health regions throughout 2020; and (2) to measure the similarity between the four 

community partitions and the health regions, by calculating similarity scores. The analysis 

will start by calculating summary statistics of the flows data. It will then show the 

modularity scores of the four community detection partitions and the health regions for 

each week in 2020 to see whether or not flow patterns align with health regions, including 

maps of local ADA similarity scores between each community partition and the HRs to see 

if there are any geographic patterns where the communities line up with HRs. It will then 

explore how movement patterns changed over time, and how similar they aligned with the 

health regions by using a similarity score matrix. The igraph R package (Csardi & Nepusz, 

2006) was used to perform the Cluster Leading Eigen community detection algorithm. 
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3.4 Results 

3.4.1 Summary Statistics 

The City of Toronto Health Unit is the largest health unit in the study area, accounting for 

over 2.26 billion of the destination flows of the 9.8 billion total flows in the study area in 

all of 2020 (23%). Peel Regional Health Unit followed with 979 million flows (10%), 

followed by York Regional Health Unit with 775 million flows (7%). Our data shows a 

large drop-off of total flows around mid-March, the time when restrictions were first 

imposed. Mobility began to recover after May and through the summer months. Our data 

does not show the same level of drop-off in mobility in mid-October when restrictions 

started to be put back in place in Ontario. 

 

Figure 3-2: Weekly total province-wide flows 
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Figure 3-3: Weekly flows by health region 

3.4.2 Results of Community Detection 

The results of the community detection algorithm are shown geographically in Figure 3-4. 

Results for time period A, B, C and D were divided by the CLE algorithm into 14, 13, 11, 

and 10 communities, respectively. 

The pre-pandemic communities (Partition A) show the City of Toronto to be almost all in 

the same community, connected with much of neighbouring regions Durham Region and 

York Region, but disconnected with neighbouring Peel Region. Outside of these areas, 

other major city-regions in Southern Ontario like Kitchener-Waterloo, London, Windsor, 

Barrie, Kitchener and Ottawa tend to be in their own communities, except for Hamilton 

and St. Catherine’s being in the same community. After COVID restrictions started 

(Partition B), Toronto became split down the middle, divided into a Western Toronto and 

York Region community, and an Eastern Toronto, York Region and Durham Region 

community. These communities containing parts of Toronto do not extend as far into York 

and Durham regions as the communities in Partition A do. Peel remains distinct from the 

east, but combines with Halton in the west. The summer time period (Partition C) is similar 

to Partition A, but with some rural regions being consolidated, and with Toronto being split 
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among three different communities. Partition D looks very similar to Partition C, but with 

some consolidation of communities in the northern part of the study area. 

 

Figure 3-4: Community detections results for our four selected time periods 

3.4.3 Total Modularity Scores 

Modularity scores were computed for each of the community partitions and health regions, 

for each week of 2020. Figure 3-5 shows how the modularity changed over time. We can 

see that the modularity for the HRs remained below the modularity for each of the other 

flow-based partitions for all of 2020. This indicates that the communities created based on 

flows data are more representative of people’s travel patterns than the HRs. Partition A is 

the second lowest modularity throughout almost all of 2020, since this partition represents 

pre-pandemic travel when people were making a wide range of trips. Partition B has the 

highest modularity for all of 2020, since this partition represents the beginning of the 

pandemic when mobility was very low and people were generally staying very close to 

their homes for necessary travel. There was an increase in modularity from mid-March to 

around June, corresponding with the time when mobility decreased and people would have 

mostly been making trips within their functional region. The time period from July to 
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August represents a time when longer trips were being made due to reduced restrictions, 

which corresponds with a decrease in modularity as external flows were more likely to take 

place. In general, modularity has an inverse relationship with the amount of mobility taking 

place at any given time. 

 

Figure 3-5: Modularity scores of four community partitions and HRs by week 

3.4.4 Community-Level Modularity Scores 

Measuring modularity at the community level highlights how some communities may 

contribute to the total network modularity more than others. In Figure 3-6, we can see that 

one or two outlier communities contribute a lot more to the total modularity for the HR 

partition than the rest of the communities. The highest outlier is the City of Toronto Health 

Unit, which has the most flows out of all the Southern Ontario health units. This indicates 

that even with the slightly lower median modularity for the HR partition compared to the 
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four flow-based partitions, the HR modularity benefits greatly from one community with 

many internal flows. 

 

Figure 3-6: Weekly adjusted local modularity by community 



77 

 

3.4.5 Partition Similarity 

Partitions C and D are most similar with each other with a similarity score of 0.62. Partition 

C represents communities during the summer in August, and Partition D represents the 

communities during early fall in September and October, both of which were during times 

with relatively low COVID transmission and relatively high levels of mobility. The 

community partitions each have a similarity score with the HRs that is lower than any of 

the similarities among the community partitions. This suggests that none of the community 

partitions are similar to the HRs, and that HRs are not very representative of flow patterns. 

Partitions A and B, representing just before COVID in February and just after COVID 

restrictions started in March and April, have the second highest similarity score. This is 

despite the fact that many of the communities in the Toronto area change quite 

significantly. Partition B was most similar with the HRs, indicating that mobility patterns 

during the initial COVID restrictions were most aligned with the HRs. 

Table 3-3: Similarity score matrix for four community partitions and HRs 

 A B C D HR 

A 1.00 0.58 0.49 0.50 0.40 

B  1.00 0.49 0.49 0.41 

C   1.00 0.62 0.38 

D    1.00 0.35 

HR     1.00 

To determine whether the HRs are reflective of actual flow patterns, we look at the 

similarity scores between the HRs and the flow-based functional regions at the ADA level. 

This will show where in Southern Ontario our functional regions lined up with HRs and 

where they did not. Figure 3-7 shows that functional regions lined up well with several 

rural HRs, and even some urban-suburban HRs during some time periods, but the similarity 

between functional regions and HRs is generally low. 
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Figure 3-7: ADA similarity scores between HRs and community partitions A, B, C 

and D 

3.5 Discussion 

In our analysis, we used community detection as a way to aggregate raw flow data. Using 

community detection as an aggregation tool for flow data helps to observe overall mobility 

patterns, such as understanding commuting regions, and understanding which regions are 

more or less connected with each other. The need to simplify our flows dataset 

demonstrates the challenge of analysing big data, despite its usefulness in capturing large 
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amounts of information (C. Chen et al., 2016a). Although simplifying a dataset will 

inevitably hide potentially interesting results in specific geographic areas, it makes it 

possible to understand big picture results. In our case, we may not be able to understand 

much about high trip-generating regions or how regions compare to each other, but we are 

able to understand generalized mobility patterns such as the geographic areas that people 

are more likely to travel within. 

The results showing that flow-based partitions perform better in terms of community 

structure than Ontario’s HR boundaries is in line with the results that we would expect. 

Since the flow-based partitions were created using actual flows data, it is expected that 

these communities would have a higher modularity score when being evaluated in terms 

of the flows matrix by which they were created. We would expect that these flow-based 

partitions would more accurately represent flow patterns than HRs that are defined based 

on municipal and regional boundaries. 

The change in modularity over time confirms what we know about how mobility patterns 

changed over time due to pandemic restrictions (Gibbs et al., 2020; Kang et al., 2020; Long 

et al., 2021; Long & Ren, 2021; Xu et al., 2016). A higher modularity from March to May 

and from September onward implies more within-community flows, meaning less long 

distance trips being made. The dip in modularity during the summer months suggests more 

between-community flows, or more long distance trips. The four partitions’ relative 

modularities and number of communities also tell us about overall mobility patterns. The 

fact that Partition A had the lowest modularity scores of the four partitions from April 

onwards indicates that functional regions during the pre-pandemic time period were not 

reflective of travel patterns after pandemic restrictions were implemented and for the rest 

of 2020. The fact that Partition A has the largest number of communities likely indicates 

that flows during this time period were most difficult to represent by a fewer number of 

functional regions, indicating less structured mobility patterns.  However, the reasoning for 

Partition B also having a larger number of communities is likely due to the reverse reason, 

where people were making many short distance trips within smaller areas, making it easier 

to partition regions into smaller groups. Our prior knowledge of overall mobility patterns 

during this time period helps us in interpreting these results.  
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Ontario’s HRs were used as administrative boundaries to implement regionally-targeted 

pandemic restrictions, with more restrictions in areas with greater levels of COVID 

infections. However, our analysis shows that these HR boundaries did not line up well with 

observed flow patterns at different stages of the pandemic. This means that Ontario’s 

regionally-targeted restrictions may not have had their intended effect, as people’s natural 

flow patterns often had the tendency to cross these boundaries, reducing the usefulness of 

these restrictions. In some rural HRs, flow patterns did tend to line up with HRs, and these 

areas have lower population and therefore lower overall mobility to begin with, but several 

urban and suburban HRs show a large amount of inter-HR mobility, and these are areas 

with large populations and therefore greater overall mobility. Implementing restrictions 

with boundaries that reflect observed mobility patterns may have been more effective in 

reducing COVID spread.  The fact that functional regions did not always line up well with 

HRs aligns with the results of Long et al. (2021), who found that even during the regionally-

targeted phases of the lockdown in Ontario, flows did not decrease between HRs compared 

to non-regionally targeted lockdown phases, suggesting that flows generally did not align 

with HRs. 

When observing the change in functional regions across the four partitions, we can make 

observations about how flow patterns changed over time. We can see that the City of 

Toronto becomes less linked with parts of York and Durham Regions when restrictions are 

imposed. This likely reflects the reduction in suburban commuting into the downtown core 

of Toronto. Interestingly, we see that Peel Region remains in a separate community from 

Toronto for all four time periods, suggesting that municipalities in Peel Region like 

Mississauga and Brampton may be less linked to Toronto than other surrounding regions, 

which could be a result of demographic attributes (Morency et al., 2011; Newbold & Scott, 

2013). Other major cities across southern Ontario tend to be in their own functional regions, 

with large areas surrounding them. This could reflect the regional nature of the small to 

medium sized cities in Ontario, with large catchment areas for commuting and other 

economic activities connecting cities and their surrounding regions (Green & Meyer, 

1997). Each community outside of the Greater Toronto Area in Partition A (Figure 3-4) 

can be associated with a major city near the centre of the community: Kitchener-Waterloo 

(community 7), London (community 11), Windsor (community 6), Kingston (community 
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4), Ottawa (community 1), Barrie (community 8), plus Hamilton and St. Catherine’s in the 

same community (community 10). The communities across Southern Ontario tend to be 

divided across major highways 400, 401 and 403, with these highways connecting almost 

all communities across Southern Ontario in all four partitions. This shows that Ontario’s 

transportation patterns make it unlikely for a region to exist that is not connected to one of 

these highways. 

In our analysis, a flow is defined as a stop being made by a mobile device outside of its 

home location, with the home location as the origin and the stop location as the destination. 

In many other studies, a flow is defined to be more representative of a trip, with the starting 

point of a trip being the origin and the ending point being the destination (Kang et al., 2020; 

Pepe et al., 2020; Yang et al., 2018). The implication of this is that a trip is only counted 

in one direction in our analysis rather than one trip in each direction, and does not 

necessarily give an indication of the path being taken if multiple stops are made outside 

the home location. This can be beneficial for understanding typical commuting to work or 

school patterns, as we are more easily able to distinguish between where people live and 

where people are participating in activities. But as a consequence, we are not able to capture 

any effects of trip chaining (Primerano et al., 2008) as all stops have the home location as 

the origin point. 

Creating functional regions by maximizing modularity has two known issues. In some 

cases, it tends to split large communities into smaller communities, and in other cases, it 

tend to merge communities together that are smaller than a certain threshold, dependant on 

the total number of edges in the network and the degree of interconnectivity between 

communities (M. Chen et al., 2013; Lancichinetti & Fortunato, 2011). This second problem 

is known as the resolution limit problem (Fortunato & Barthélemy, 2007). While these 

issues relate more to the process of the community detection algorithm, it could also 

potentially point to limitations of using modularity to compare between different partitions. 

The maximum modularity of a graph tends to grow as the size of the graph and the number 

of communities increases (Fortunato, 2010). Here, we are comparing graphs of the same 

size, but we are comparing partitions of different numbers of communities, which could be 

a limitation of our modularity comparison method. 
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There is a potential lack of representativeness in our dataset due to potential biases in how 

flows are captured. First, the fact that our data represents TELUS mobile phones could 

mean that our sample, although large, is not representative of the whole population of our 

study area. There may be a bias towards younger to middle-aged mobile phone plan holders 

in our dataset since about 97% of people aged 18 to 34 subscribe to a mobile phone plan, 

and about 70% of people aged 65+ subscribe to a mobile phone plan (CRTC, 2019). 

Second, the distribution of cell phone towers in urban areas is more dense than in rural 

areas, and therefore may be more likely to detect a flow in an urban area from traveling a 

short distance compared to a rural area (C. Chen et al., 2016a). We accounted for this by 

normalizing flows by the number of cell towers in the destination ADA, but it is difficult 

to determine whether this adjustment accurately corrects for the bias. 

3.6 Conclusions 

We used community detection to study patterns of travel flows for Southern Ontario during 

the COVID-19 pandemic measured from a large sample of mobile devices. We used 

community detection to determine how flow patterns changed throughout the year 2020, 

and to determine whether Ontario’s Public Health Unit boundaries were representative of 

flow patterns, by computing metrics describing and comparing community detection 

partitions such as modularity and a similarity score. In general, we found HR boundaries 

were not reflective of mobility patterns overall, and that the similarity between regions 

derived based on mobility flows and HR boundaries was lowest at the peak of the 

pandemic. We found that mobility decreased and became more localized during the first 

and second wave of COVID infections and their resulting government-imposed 

restrictions, due to the higher modularity scores of the partition representing the beginning 

of the pandemic, and due to the higher modularity scores of all partitions during the peak 

lockdown weeks. We also found that Ontario’s Public Health Unit boundaries were not 

reflective of flow patterns in urban and suburban areas, but were more reflective of flow 

patterns in rural areas. This suggests the potential that regionally targeted COVID 

restrictions may have been better applied to regions representative of actual travel flow 

patterns, such as our functional regions, rather than Ontario’s HR boundaries. From a 

methods perspective, our approach demonstrates another example of how community 
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detection can be used to aggregate flow data to   understand mobility patterns in large 

network mobility datasets. This research offers more new insight into how mobility was 

affected by the COVID-19 pandemic. 
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Chapter 4  

4 Conclusion 

This thesis explored several details of changes in mobility patterns during the COVID-19 

pandemic in Ontario, Canada. This issue was worth investigating due to the long history 

of knowledge we have about human mobility patterns, and how everything we had known 

about human mobility was uprooted as soon as COVID-19 restrictions were imposed. As 

was the case previously, human mobility is strongly tied to a range of other subjects, 

including social geography, infrastructure, and statistical analysis (Allen & Farber, 2018b; 

C. Chen et al., 2016b; Fillekes et al., 2019; González et al., 2008; Hasanzadeh, 2019; Hirsch 

et al., 2014; Lachapelle et al., 2018; Lenormand et al., 2015a; Long & Reuschke, 2021b; 

Lu et al., 2013; Morency et al., 2011; Páez et al., 2009; Roorda et al., 2010; Spyratos et al., 

2019; Vanhoof et al., 2018; Xu et al., 2018; X. Zhao et al., 2020). The COVID-19 pandemic 

changed the perspective we needed to take to understand the interplay between human 

mobility and these other topics. 

At the start of the pandemic, there was a rush for many geographers to understand the 

details of how mobility patterns had changed since the start of the pandemic, and there was 

plenty of information and observations made just within the first few months (M. Lee et 

al., 2020; Warren & Skillman, 2020; Xiong et al., 2020). While this rapid approach to 

understand shifting mobility patterns using big data has been beneficial, our research has 

been able to review this early work and build on its shortcomings. 

4.1 General Summary 

This thesis explored the changes in human mobility patterns in Ontario throughout the year 

2020, during which the COVID-19 pandemic occurred and created a large disturbance to 

typical mobility patterns. There were two analytical chapters, each focusing on a specific 

aspect of mobility. Chapter 2 focused on how mobility indicators were associated with 

socio-demographic variables using a Geographically Weighted Regression model, and 

Chapter 3 focused on shifting travel regions determined by a community detection 

algorithm based on flows data.  
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4.2 Chapter 2 Results 

In Chapter 2, we saw how movement time and radius of gyration were associated with five 

socio-demographic indicators at three different time periods during the pandemic, and we 

observed how these associations vary spatially by using a geographically weighted model. 

There was a challenge coming to a clear consensus on how each socio-demographic 

indicator impacts mobility, as the maps of the model coefficients were very complex with 

values varying across most of Ontario. It was expected that we would see a clear pattern 

for each association, possibly with either a positive or negative association covering most 

of Ontario. Instead, we saw a large amount of variability in associations across the 

province, with relatively small geographic pockets of common results. Due to the difficulty 

of determining specific associations from the model, we focused heavily on the fact that 

results do in fact vary greatly by geography, and the effect of the Simpson’s Paradox on 

these results.  

4.2.1 Do associations between socio-demographic variables and 
mobility metrics vary across Ontario? 

To see if associations between socio-demographic variables and mobility metrics vary 

across space in Ontario, we used a Geographically Weighted Regression (GWR) model, 

which computes a separate model for each geographic unit in the dataset using only the 

data from itself and nearby geographic units. By only taking into account data in local 

areas, you are able to see how associations differ in different parts of Ontario, without these 

local variations being drowned out by the many potentially conflicting local associations 

that go into a global model. 

The results of our GWR are clear that associations vary quite dramatically across the 

province. Most maps showing positive, negative, or non-significant associations between 

each mobility metric and each socio-demographic variable have no clear pattern across the 

whole province. We are only able to come to conclusions about associations for specific 

geographic regions, such as the City of Toronto or Northeastern Ontario. These complex 

results make it difficult to form any generalized conclusions, but it is useful for 

understanding patterns in specific geographic contexts due to the spatially granular results. 
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4.2.2 Did people with lower socio-economic status have higher 
relative mobility during COVID-19? 

It is difficult to come to generalized conclusions about how mobility was affected by 

specific socio-demographic indicators due to the spatially varying nature of these 

associations mentioned above. However, certain results show us associations that we might 

expect in specific parts of Toronto. For example, lower median income, an indicator of 

lower socio-economic status, is associated with higher relative movement time during the 

April time period in a number of specific parts of Ontario, including some of the inner 

suburbs of Toronto. We see this negative association more often than a positive association, 

but most of Ontario has a non-significant association, so we cannot make this conclusion 

for all of Ontario. Similarly, we see a positive association between visible minority and 

movement time in specific portions of Toronto, but we also see the reverse association in 

suburban areas surrounding Toronto as well as some rural areas. It is safe to conclude that 

lower socio-economic status was generally associated with higher relative mobility during 

the early stages of the pandemic, keeping in mind that these associations vary across the 

province. 

4.3 Chapter 3 Results 

In chapter 3, we saw how travel regions generated from flows data changed over the course 

of the pandemic, as well as how well the travel regions lined up with Ontario’s health 

regions (HRs). There were a number of challenges in arriving at these results, mostly 

related to the choice of community detection algorithm and results not necessarily showing 

what we would expect. First, the choice of community detection algorithm took some time, 

with a number of different options being tested. Initially, it was a priority to use a 

hierarchical algorithm to allow flexibility in the number of communities created. We ended 

up finding that cutting communities at different points along the dendogram often led to 

questionable region splits. Second, we found that the data we were using led to suboptimal 

partitions, likely due to the unusual distribution of flows by ADA, with some ADAs having 

an unusually high number of flows. Normalizing raw flows by the number of cell towers 

in the destination ADA seemed to give more sensible partitions and modularity results. The 
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modularity calculation also led to some complications as this was done manually to ensure 

consistency between the algorithm-generated partitions and the HRs. 

4.3.1 Do functional regions in Southern Ontario change over the 
course of the COVID-19 pandemic? 

Although we do not have data to compare with how much functional regions typically 

change before of the pandemic, our results do show that functional travel regions changed 

over the course of 2020, particularly in urban and suburban areas. Communities in the 

Greater Toronto Area were quite dynamic, with some communities growing, shrinking, 

and covering different parts of the region. On the other hand, rural communities tend to be 

relatively stable, coving large but consistent areas of the province, with two communities 

occasionally consolidating into one. 

4.3.2 Do functional regions in Southern Ontario align with 
Ontario’s Public Health Unit boundaries, to which regionally 
targeted pandemic restrictions were applied? 

As there were times during the pandemic where regionally targeted restrictions were 

imposed by the provincial government based on HR boundaries, we thought it would be 

useful to determine whether the HR boundaries accurately reflected travel patterns. If the 

regionally targeted restrictions were intended to prevent COVID transmission in higher 

case regions while allowing certain activities in lower risk areas, then it is important to 

ensure that the regions to which restrictions are applied reflect the regions within which 

people generally travel. We found that in urban and suburban areas, the functional regions 

generally did not line up with HR boundaries, whereas certain rural functional regions 

generally did line up with HR boundaries. We observed this qualitatively by overlaying the 

functional regions on the HR boundaries on a map and seeing that there are often several 

functional regions within individual urban and suburban HRs, and that there is often only 

one functional region covering several rural HRs. We also observed this quantitatively by 

calculating a similarity score similar to the Jaccard Similarity Co-efficient, where many 

ADAs have a low similarity score across the study area, and the only high similarity scores 

are found in rural areas. 
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4.4 Limitations 

As is always going to be the case for passively collected mobile phone data, we run into 

the challenge in this thesis with the fact that mobile phone location data is not perfect, and 

a number of assumptions need to be made. The 10-minute stop time cut-off is a major 

assumption that was made for in our data, as it affects how both our mobility metrics from 

Chapter 2 and the flows data from Chapter 3 are calculated. There are a number of 

considerations that must go into the choice of the length of time a mobile device is 

stationary for it to be considered a stop (Wang & Chen, 2018). First, you must make sure 

the timeframe is long enough so that short stops as part of someone’s trip is not counted as 

a stopover. On certain modes such as public transit, where longer stopovers at transit 

terminals are made waiting for a connection, some degree of inaccuracy may be inevitable. 

However, making the cut-off too short, such as below 5 minutes, there would be too many 

stops that occur as part of one’s journey counted as a stopover. The density of cell towers 

must also be taken into account, as a mobile device must traverse between cell tower ranges 

in order to be detected as moving. In areas where cell towers are farther apart it takes a 

longer distance travelled, and therefore more time, to be detected as in motion. On the other 

hand, you must also make sure the timeframe for being identified as a stopover is short 

enough. If it is too long, it is possible that quick stops, at a grocery store for example, may 

not be detected. This could particularly affect urban areas where destinations are close in 

proximity and people may be more likely to make shorter stops, and where there is a higher 

density of cell towers. We have seen previous studies use 5 minutes, but we believe with 

the cell tower density issue, and the fact that it is probably safer to err on the side of missing 

short stopovers than adding stopovers that never happened, we chose a longer timeframe 

of 10 minutes. 

Using any non-random sample always has the possibility of sampling bias affecting the 

results. In our case, it is possible that certain people are over-represented in our sample, 

especially if certain people are more likely to have or carry a cell phone than others, and if 

mobility patterns vary among these people. Since our sample is so large, it is easier to say 

that it is representative of the population, however it is still possible that certain groups of 

people are missed due to our non-random sample. Additionally, due to the fact that the 
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quality of our data is dependent on cell tower density which differ substantially between 

urban and rural settings, there are potential geographic biases in our data. This was 

accounted for in the calculation of mobility measures in Chapter 2 by ensuring that a 

sufficiently long time threshold was used to consider a mobile device to be in motion versus 

being stopped. A longer threshold was required to ensure that a mobile device travelling 

through an area with a lower density of cell towers has sufficient time to traverse cell tower 

radii within the time threshold. In Chapter 3, this geographic bias was accounted for by 

dividing flow counts by the cell tower density in the destination ADA, since a flow may be 

more likely to be detected in areas with higher density of cell towers, as a mobile device 

does not need to travel as far to traverse a cell tower radius. 

The choice of covariates to use in a model is always an important decision and can have a 

large effect on the results. In our analysis in Chapter 2, we made our best effort to choose 

covariates that cover a wide range of socio-demographic factors that have been shown to 

impact mobility in the past, and we ensured that none of the covariates exhibit 

multicolliniearity, however it is always possible that there are factors at play that have been 

missed. 

We believe our choice of community detection algorithm in Chapter 3 provides results that 

are reflective of travel regions in Ontario, however our preliminary work for this chapter 

seemed to show that results can vary by algorithm and by parameters used. For example, 

the Leiden algorithm is another method of community detection (Traag et al., 2019), and 

it includes a resolution parameter that affects the size of the resulting communities. We 

also could have used a hierarchical clustering method, in which case we would have to 

decide where we cut the dendogram. Our analysis and choice of algorithm is certainly a 

statistically sound choice, but we recognize that other choices could have resulted in 

different results. 

4.5 Future Directions 

The COVID-19 pandemic caused a great disturbance in many people’s lives; however, 

disturbances of this magnitude are rare. It was important to study the impact of the 

pandemic on people’s mobility patterns, despite the fact that we may never see anything 
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that affects mobility in this manner again. So why did we even bother to study mobility 

during the COVID-19 pandemic? Do we have anywhere to take this research in the future? 

While we may never see mobility impacted in this specific way again, the useful takeaway 

from this research is magnifying the importance of mobility in people’s daily lives, what 

happens when non-essential trips no longer take place, and how different people experience 

mobility differently. 

We know that the ability to move between important locations is essential to people’s lives. 

Although different travel purposes have different levels of importance for different people, 

we know that people need to travel to work, school, shop for groceries or other essential 

items, attend healthcare appointments, as well as other non-essential but still important 

trips such as entertainment or recreation related activities. The study of mobility pre-

COVID has always taken for granted that these destinations will always be available and 

that trip patterns to specific destinations are unlikely to change dramatically. Studying 

mobility during the pandemic has shown us what travel patterns look like when people are 

only making the most necessary trips. It is interesting to note how much of our 

transportation network, particularly the public transit network, has been designed around 

historic travel patterns, primarily facilitating commuting trips from the suburbs into the 

downtown core. We have seen how this is the type of trip that decreased the most when 

working in person is no longer necessary. This indicates that less emphasis will need to be 

placed on these trips in future transportation research, especially if working from home 

continues. We also saw that trips became more localized, showing that in an emergency, 

people are able to access essentials within or near their own neighbourhood. This indicates 

that we should be putting more emphasis on urban development that encourages local travel 

so that longer distance trips are less necessary in the future. 

We do not know for sure if we will face another situation in the future where we are only 

able to perform essential trips, so what is the benefit of studying a time when only essential 

trips were allowed? A future direction that this work could lead to is providing a baseline 

if what the minimum level of mobility in our society is. This could be useful for any future 

work looking at how mobility could be reduced in the future to reduce energy consumption, 

congestion, and greenhouse gas emissions. We know that some amount of mobility will 
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always be required, and the early stages of the pandemic show what the minimum amount 

of mobility would be under certain conditions. This may not be a realistic target to aim for, 

but it does tell us how much of a change can be made by some very doable interventions, 

such as working from home. 

Social geographers are always interested in how different people experiences parts of their 

lives differently, and mobility during the COVID-19 pandemic is a perfect example of this. 

Previous mobility research has shown that people with lower socio-economic status often 

spend more time and travel longer distances making their daily trips. During COVID-19, 

we were able to see this play out differently, where people of lower socio-economic status 

were often forced to continue making their trips for essential purposes, whereas people of 

higher socio-economic status were able to remain at home when necessary. This 

understanding can be carried forward to future research by understanding that people of 

lower socio-economic status are more limited in their travel flexibility, and that policies 

aiming to reduce or change people’s travel are likely to have less of an effect on certain 

people compared to others with more flexibility. 

4.6 Summary 

In summary, this thesis looks at how mobility patterns changed due to restrictions imposed 

to reduce the spread of COVID-19 over the course of 2020. Transportation geographers 

have produced extensive research looking at general human mobility patterns as it relates 

to commuting to work, participation in activities, and transportation infrastructure. Due to 

the large disturbance to typical mobility patterns that the COVID-19 pandemic caused, we 

thought it was important to investigate how these previous mobility patterns changed, 

especially since we know that different people have different experiences with mobility. 

This work was also particularly interesting because we were able to use a big dataset 

containing mobile phone location data, giving us a very large and temporally dense sample 

that we expect to be very representative of the population. Chapter 2 showed how people’s 

mobility changes during the pandemic were often related to socio-demographic factors, but 

that these associations varied greatly across space. Chapter 3 showed us how functional 

travel regions shifted over time timeline of the pandemic, and that these observed travel 

regions differed from Ontario’s HR boundaries that were used at certain times to impose 
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regionally targeted COVID restrictions. While we may not see another major disturbance 

to human mobility in the future the way we did with the COVID-19 pandemic, this research 

still offers transportation geography researchers useful information related to the 

importance of mobility in people’s lives how people experience mobility differently, and 

how we can adapt to shifting mobility needs in the future. 
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Appendices 

Appendix A: Chapter 2 GWR model results for each combination of mobility 

measure (2), covariate (5), and time period (3) for a total of 30 maps. 
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