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Abstract 

Active learning of novel objects can facilitate subsequent object recognition and 

discrimination, but the reasons for its beneficial effects remain unclear. One potential 

explanation is that active learning enables the formation of a more detailed, realistic, or 

useful neural object representation than does passive learning. The current study addressed 

the question of whether active vs. passive learning of objects affects viewpoint 

discrimination. Participants learned novel wire-like objects either actively or passively and 

then completed a psychophysical task which they discriminated object orientation. This study 

did not find a significant difference in viewpoint discrimination between actively and 

passively learned object representations, which stands in contrast to earlier studies that found 

an effect of active learning on object recognition across different viewpoints. This suggests 

that viewpoint discrimination and viewpoint generalization rely on different mechanisms. 
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Summary for Lay Audience 

People recognize new objects more quickly after moving and turning them around with their 

hands. However, scientists do not know exactly why handling objects is so helpful. Maybe 

looking at an object while controlling its movements is the best way to learn what the object 

looks like from every angle. This study explored whether people were better or worse at 

telling the difference between views of objects when they actively moved the objects than 

when they watched videos of objects being moved by someone else. Volunteers viewed four 

simple, wire-like objects on a computer screen. Each person learned two objects by moving 

them with a trackball (active learning) and two objects by watching a video (passive 

learning). After learning, the volunteers took tests that measured how good they were at 

telling whether the objects were facing left or right. This study found that volunteers’ test 

performance was the same for all of the objects no matter how they were learned. These 

results suggest that handling a new object and watching someone else handling it are equally 

good ways of learning what the object looks like from different angles. There must be a 

reason why actively learning objects helps people recognize them more quickly, but does not 

help people tell the difference between views of the objects. Scientists will have to perform 

new experiments to discover that reason. 
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Chapter 1  

1 Introduction 

1.1 Active Learning 

Throughout their lives, people encounter thousands of physical objects varying in their 

appearance, function, and relevance. Babies and very young children must dedicate 

considerable time and effort to comprehending the multitude of novel objects 

surrounding them. Even adults, with their years of experience and vastly greater 

knowledge of the world, frequently encounter objects with which they are unfamiliar. In 

such situations, children and adults alike will often immediately reach out to grasp the 

strange object in their hands, simultaneously viewing and manipulating the item that has 

caught their interest. This behavior, second nature as it is to so many, may seem wholly 

unremarkable. However, self-produced movement appears to play a critical role in 

successfully understanding and interacting with our environment. 

Past research suggests that active exploration promotes proper brain development early in 

life. In one classic experiment, Held and Hein (1963) placed pairs of kittens in an 

enclosure arranged so that each individual in the pair viewed the same stimuli at the same 

time with only a single difference in their experiences: the first kitten (active) had the 

freedom to move under its own power, while the second kitten (passive) sat in a gondola 

yoked to the movements of the first kitten. When the kittens were later given tests of 

visually guided behavior, the active kittens performed normally while the passive kittens 

showed impairments. Subsequent studies in other species yielded similar results. For 

example, active engagement with environmental enrichment such as plastic tubes, grids, 

and colorful cartons increased the survival of newborn mouse neurons and improved 

performance in a Morris water maze. However, passive viewing of other mice interacting 

with environmental enrichment failed to have the same effect (Iggena et al., 2015). 

Human babies also seem to benefit from active learning: three-month-olds who were 

allowed to independently pick up objects later showed more reaching behavior and more 

visual exploration of people and objects in their environment than infants who passively 
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observed their parents’ actions (Libertus et al., 2016; Libertus & Needham, 2010; Wiesen 

et al., 2016). In addition, other studies have found that “hands-on” experience with 

objects facilitates mental rotation in babies as young as six months old (Frick & Wang, 

2014; Möhring & Frick, 2013). 

Active learning is not only relevant in infancy, however; it continues to be an important 

component in perception and cognition well into adulthood. For example, evidence 

indicates that active exploration of a new environment aids spatial learning to a greater 

degree than does passive exposure, possibly due to the decision making involved in 

navigation or the motor and proprioceptive information acquired during locomotion 

(Chrastil & Warren, 2013, 2015; Peruch et al., 1995). Active learning seems to facilitate 

object recognition as well. Harman et al. (1999) conducted an experiment in which 

participants learned novel virtual objects either by using a trackball to rotate the object on 

a computer screen or by watching a video recording of a previous participant’s 

exploration of the object. Object recognition was then assessed via an old/new 

discrimination task. While there was no effect of learning condition on the accuracy of 

subsequent object recognition, the actively learned objects were recognized significantly 

faster than the passively learned objects. These results were replicated within a virtual 

reality environment, and a follow-up study found that active learning resulted in faster 

performance on a mental rotation task (James et al., 2001, 2002). Indeed, other 

researchers later observed that active exploration of objects provided an advantage in a 

variety of different tasks involving view-matching, similarity judgement, and aperture-

viewing (Craddock et al., 2011; Lee & Wallraven, 2013; Sasaoka et al., 2010). Moreover, 

active exploration was found to facilitate facial recognition, and it even resulted in faster 

access to conscious awareness during a continuous flash suppression paradigm (Liu et al., 

2007; Suzuki et al., 2019). Although these behavioral effects have been well documented, 

a comprehensive explanation for the “active learning advantage” in object recognition is 

still being pursued.  

One possible explanation is that actively learning an object provides more valuable visual 

information than does passively learning the object. This theory is supported by the 

finding that actions seemed to aid mental rotation in infants only when the actions 
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provided useful visual cues (Antrilli & Wang, 2016). Furthermore, when given complete 

control over the movements made during object exploration, people tend to allocate their 

attention strategically, focusing heavily on certain aspects of the stimulus while showing 

comparative disregard for others (Craddock et al., 2011; Ernst et al., 2007; Harman et al., 

1999; James et al., 2001, 2002, 2014). Nevertheless, this does not offer a sufficient 

explanation for the beneficial effects of active learning, which have still been observed 

even when the same visual information is provided in both active and passive learning 

conditions (Harman et al., 1999; James et al., 2001, 2002). The implication of such 

findings is that active learning, rather than simply supplying more useful visual 

information than passive learning, impacts the fundamental processes through which 

objects are perceived and remembered. Indeed, there is evidence that active exploration 

increases perceptual sensitivity, thereby improving the quality of visual memories of 

three-dimensional objects. This effect, which could not be explained solely by differences 

in attentional allocation, was observed for both simple and complex objects and was so 

robust that it compensated for perceptual degradation due to masking (Meijer & van der 

Lubbe, 2011). Perhaps this increased perceptual sensitivity enables people to form more 

comprehensive neural representations of objects. If so, that could at least partially explain 

the advantage that active learning provides. However, the majority of past studies 

examining active learning of objects focused only on the ways in which it impacts 

discrimination between multiple different objects. Very little research has explored the 

unique characteristics of actively learned representations of individual objects 

themselves. Thus, the current study aimed to begin investigating the effect of active 

learning on neural representations of objects by focusing specifically on one aspect of 

such representations: viewpoint dependence. 

1.2 Viewpoint Dependence 

One of the most remarkable aspects of the brain is the ease and speed with which it can 

recognize the thousands of individual objects that fill our environment despite their 

constant transformations in size, shape, and location on the retina. In a three-dimensional 

world, it is particularly important to be able to quickly and accurately identify a single 
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object in any orientation. Viewpoint dependence refers to the extent to which changes in 

viewpoint or orientation affect object recognition. 

Whether object recognition is viewpoint-dependent or viewpoint-independent has long 

been a subject of debate, and early studies on the subject yielded conflicting results. 

Findings from behavioral and electrophysiological experiments in both humans and 

monkeys provided support for viewpoint-dependent object representations (Lawson & 

Humphreys, 1996; Logothetis et al., 1994; Logothetis & Pauls, 1995). The presence of 

object-selective neurons tuned to specific views in the human brain was later confirmed 

by Fang and He (2005). In contrast, Biederman and Gerhardstein (1993) as well as 

Biederman and Bar (1999) found that participants were able to immediately form 

viewpoint-independent representations of objects rotated in depth, though only if the 

following three conditions were satisfied: (1) The objects must be capable of activating 

geon structural descriptions (GSDs), (2) the GSDs must be different for each object, and 

(3) the same GSD must be activated in both original and tested views. The authors 

theorized that the viewpoint dependence observed in other studies could be explained by 

the usage of study stimuli that did not meet these requirements. More recent evidence 

suggests, though, that complete viewpoint independence does not exist in the human 

visual system. Rather, object recognition seems to be viewpoint-dependent to a degree 

that is contingent on the nature of the stimuli, the demands of the current task, and the 

stage of visual processing (Andresen et al., 2009; Tarr & Hayward, 2017).   

Another factor which may have an impact on the viewpoint dependence of object 

representations is the act of learning itself. For example, functional magnetic resonance 

imaging (fMRI) studies have found decreased sensitivity to changes in viewpoint for 

familiar faces versus unfamiliar faces (Eger et al., 2005; Ewbank & Andrews, 2008). In 

addition, researchers have observed that unsupervised learning improved participants’ 

ability to recognize objects across rotation, suggesting that the learning resulted in 

broader viewpoint tuning (Tian & Grill-Spector, 2015). While the current study also 

examined the effect of learning on the viewpoint dependence of neural object 

representations, it was unique in addressing the potential difference between active and 

passive learning.  
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1.3 Current Study 

Although previous studies have shown that active learning facilitates discrimination 

between different objects more than does passive learning, the precise reason for this 

phenomenon is still unknown. A logical first step in answering the question of why active 

learning expedites object recognition is to investigate how certain aspects of actively 

learned and passively learned object representations differ from one another. Viewpoint 

dependence is one such aspect which may be affected by active learning. Seeing the 

spatially and temporally correlated views of an object in motion seems to be critical for 

the formation of an accurate, three-dimensional representation enabling recognition 

across, or discrimination between, different views (Orlov & Zohary, 2018; Wallis, 2002; 

Wallis & Bülthoff, 2001). However, predictions about the relationship between the 

motion of the object and changes in viewpoint can be more easily tested during active 

learning than during passive learning, which could result in a richer representation of the 

various object views. 

The current study assessed viewpoint dependence for four novel virtual objects, two of 

which were learned actively and two of which were learned passively. Immediately after 

learning each object, participants completed a psychophysical task requiring them to view 

images of the object from various viewpoints and indicate whether the object in each 

image was facing/rotated left or right. The participants’ responses were recorded and 

used to calculate the just-noticeable difference (JND). The JND, which is the smallest 

difference between two stimuli that can be detected, reflected participants’ sensitivity to 

changes in viewpoint. As such, it served as a quantifiable measure of the viewpoint 

dependence of object representations.  

This study tested two opposing hypotheses. First, active learning improves our ability to 

discriminate one view of an object from another, leading to narrower viewpoint tuning 

for representations of actively learned objects than for representations of passively 

learned objects. This narrower viewpoint tuning would manifest as a decreased JND. 

Second, active learning improves our ability to recognize the same object across multiple 

views, leading to broader viewpoint tuning for representations of actively learned objects 
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than for representations of passively learned objects. This broader viewpoint tuning 

would manifest as an increased JND.  
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Chapter 2  

2 Materials and Methods 

2.1 Participants 

Data were analyzed from 22 right-handed participants (8 males and 14 females, ages 18-

50), who were recruited using OurBrainsCAN: University of Western Ontario’s 

Cognitive Neuroscience Research Registry as well as recruitment posters placed on 

campus. Data from four additional participants were collected, but discarded as outliers 

during the quality assurance process. 

All participants had normal or corrected-to-normal vision. If a participant’s handedness 

was not already recorded in the OurBrainsCAN registry, the Edinburgh Handedness 

Inventory was used prior to testing to ensure that the participant had a right-hand 

preference for at least 90% of the activities listed. Informed consent was obtained from 

all individual participants, who received financial compensation ($15) for their time. The 

study was approved by Western University’s Non-Medical Research Ethics Board in 

accordance with the standards of the 1964 Declaration of Helsinki. 

2.2 Stimuli and Apparatus 

Five three-dimensional novel wire-like objects, including one practice object, were 

created using Blender (v. 2.83) 3-D rendering software (Figure 1a). Due to the nature of 

the psychophysical task that participants would perform, the objects were designed to be 

bilaterally symmetrical (the left and right halves of the object are mirrored) and non-

bistable (the object is unambiguous, having only one possible perceptual interpretation). 

Eleven test images of each object (0° front views and 3°, 6°, 9°, 12° and 15° side views) 

were then generated by rotating the object in depth both clockwise and counterclockwise 

with the frontal view (as defined by Fang and He (2005)) as the initial position (Figure 

1b). 

Participants viewed all experimental stimuli on an Asus VE247H 24-inch computer 

monitor with a spatial resolution of 1920 x 1080 pixels at a viewing distance of 57 cm. 
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The stimuli, which consisted of both static images and dynamic renderings of three-

dimensional models, were presented against a black background using the software 

programs Unity (v. 2019.4.18f1), MATLAB 2021a, and Psychtoolbox-3 (Brainard, 1997; 

Pelli, 1997). The test images, sized so that the objects they depicted extended no more 

than 3.2° of visual angle in width or height, were presented in randomly selected 

locations within the boundaries of a 5.7° x 5.7° area centered within the computer 

monitor. This random variation in image location prevented retinal adaptation to edges 

from becoming a confounding factor. 

2.3 Procedure 

Prior to beginning the experiment, all participants underwent a five-minute practice 

session designed to familiarize them with the procedure and tasks. The object featured in 

the practice session was never used in the experiment itself. 

The experimental procedure lasted approximately 45 minutes and consisted of alternating 

learning and test phases. Each participant learned four objects, two of them actively and 

two of them passively. During the active learning condition, the participant explored an 

object for 60 seconds using a trackball to freely rotate it around the vertical axis. During 

the passive learning condition, the participant watched a 60-second recording of an object 

being actively learned by a previous participant (Figure 1a). In both conditions, the 

participant was instructed to focus on the object’s three-dimensional shape. 

After learning each object, the participant completed a psychophysical task to assess 

viewpoint dependence for that object. Each of 11 test images was presented ten times in 

random order for a total of 110 trials; this technique of rapid and repetitive stimulus 

presentation is known as the method of constant stimuli. For the entire duration of the 

task, the participant was instructed to continuously fixate on a red cross presented in the 

center of the screen. Every trial began with a 2-second blank period followed by the 0.2-

second presentation of a test image. After the test image presentation, the participant 

made a two-alternative forced-choice response, pressing one of two keyboard keys to 

indicate whether the object in the image had been facing to the left or to the right (Figure 

1b). Participants had been encouraged in the training session to respond based on their 
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initial visual impressions and to avoid using cognitive strategies to determine the 

direction in which objects were facing.  

 

Figure 1: Experimental Stimuli and Design. a) Four wire-like novel objects were created for 

use in this study. A fifth object (not shown) was used as part of a practice session. Participants 

learned each novel object either by rotating it with a trackball (active learning condition) or by 

watching a recording of a previous participant’s active learning session (passive learning 

condition). b) Immediately following learning, participants viewed test images of the object and 

indicated whether the object in each image appeared to be facing left (< 0°) or right (> 0°). Test 

images had been generated by rotating each object clockwise or counterclockwise from a frontal 

view. c) The fraction of trials in which participants indicated that the object was facing right was 

plotted as a function of test view. A psychometric function was then fitted to the data and used to 

estimate the just-noticeable difference (JND), which is the smallest difference between two stimuli 

that can be detected. The JND served as a measure of participants’ sensitivity to changes in 

viewpoint. Participants who were better able to discriminate between orientations had a smaller 

JND (i.e., steeper slope in the middle of the S-shaped function) than participants with poorer 

discrimination ability. 
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2.4 Data Analysis 

Data analysis was performed using scripts written in MATLAB 2021a. The fraction of 

trials in which participants indicated that the object in a test image was facing right was 

calculated and plotted as a function of test view. An S-shaped psychometric function was 

then fitted to the data points and used to estimate the JND (mathematically defined as the 

mean of the difference between the value of x at y = 75% and the value of x at y = 50% 

and the difference between the value of x at y = 50% and the value of x at y = 25%) 

(Figure 1c). 

Quality assurance was performed by first plotting each participant’s data and examining 

the psychometric functions. With only a few exceptions, the functions were S-shaped, 

and responses spanned from 0% to 100% “right” responses (Figure 2). Then the JND 

distributions for each of the four wire objects were plotted separately. Participants with 

data lesser than Q1 – (1.5 x IQR) or greater than Q3 + (1.5 x IQR) for any of the objects 

were flagged as outliers and removed from subsequent analyses (Figure 3). After outlier 

removal, the JND distributions were approximately normal. 

        

Figure 2: Sample Psychometric Functions. As part of data quality assurance, the psychometric 

functions for each object and participant were examined. The majority were visibly S-shaped and 

spanned from 0% to 100% “right” responses.  
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Figure 3: Outlier Identification. Data quality assurance also included the identification and 

removal of outliers. The JND distributions (n = 26) for the four wire objects were plotted and 

examined. Inside the outlines formed by violin plots are gray boxplots depicting the median as 

well as quartiles Q1 and Q3. The mean of each distribution is represented by a small black 

square. Outliers (defined as values lesser than Q1 – (1.5 x IQR) or greater than Q3 + (1.5 x IQR)) 

have been automatically marked and labeled with their participant IDs. The four participants with 

outliers were excluded from all further analyses. 

Statistical tests were performed using jamovi (The jamovi project, 2021), an open-source 

statistical platform. A conventional (Frequentist) paired-samples t test was conducted to 

determine whether a significant difference in JND existed between actively and passively 

learned objects. A Frequentist linear mixed model was also utilized to this end because a 

simple t test was unable to take into account variation between participants and between 

objects.  

An important limitation of Frequentist statistics is that they can only reject (or fail to 

reject) the null hypothesis. This limitation was overcome by performing a Bayesian 
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paired-samples t test capable of estimating the extent to which the null hypothesis was 

more or less likely than the experimental hypothesis to be true. 
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Chapter 3  

3 Results 

3.1 JND 

JND was the primary dependent variable of interest in this study. Descriptively, the mean 

JND for actively learned objects was minimally greater than the mean JND for passively 

learned objects (Figure 4), but the majority of participants displayed little to no 

difference in JND between actively learned and passively learned objects (Figure 5). 

Statistically, a Frequentist paired-samples t test found no significant difference in JND 

between the two learning conditions (t(21) = 4.8,  p = .35). A Frequentist linear mixed 

model that took into account variation between participants and objects also found no 

significant difference in JND between the active learning condition and the passive 

learning condition (F(1, 62.2) = 1.1,  p = .30).  
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Figure 4: The Effect of Learning Condition on JND. No significant difference in mean JND 

between actively learned and passively learned objects was found (see text for details on 

statistical inference). Gray bars represent means, while values for individual participants (n = 22) 

are represented by black open circles. The error bar represents the 95% confidence interval for 

the “active – passive” difference. This error bar encompasses zero, indicating no significant 

difference between learning conditions. 
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Figure 5: Active Learning vs. Passive Learning JND for Individual Participants (n = 22). 

Participants for whom the active learning JND exceeded the passive learning JND fall to the left 

of the dashed line; participants for whom the passive learning JND exceeded the active learning 

JND fall to the right of the dashed line. Note that most participants’ data fall along the dashed line, 

indicating a tight correlation (r(20) = .60, p = .003) between the two measures with no clear 

differences between actively learned and passively learned objects. 

In accordance with the results of the Frequentist paired-samples t test, a Bayesian paired-

samples t test found that the null hypothesis (of no difference between active and passive 

learning) was nearly three times more likely (Bayes Factor, BF01 = 2.96) than the 

experimental hypothesis (which postulated a difference between active and passive 

learning). This is considered “anecdotal” evidence in favor of the null hypothesis. 

Furthermore, a plot of the strength of evidence as a function of the number of participants 

tested (Figure 6) shows that the level of evidence remained stable beyond 16+ 

participants, suggesting that the absence of a difference was not likely to be due to the 

limited sample size. 
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Figure 6: Bayesian T Test Inferential Plot. A Bayesian paired-samples t test was conducted to 

estimate the extent to which the null hypothesis (there is no difference between active learning 

and passive learning) is more or less likely than the experimental hypothesis (there is a difference 

between active learning and passive learning). The test revealed that the null hypothesis was 

almost three times more probable than the experimental hypothesis and that the evidence 

remained relatively stable once data from 16 participants had been collected. 

Overall, both Frequentist and Bayesian statistics indicated that there was no significant 

difference in JND between actively learned and passively learned objects. 

3.2 Viewing Time During Active Learning 

Although the main focus of this study was to investigate the effect of active learning on 

viewpoint dependence, the strategies participants used during active learning were also 

examined and compared to the results of a past study that used different objects (Harman 

et al., 1999). 

During the active learning condition, the software used to present the three-dimensional 

models continuously recorded the orientation of the object. The 360° rotation range was 
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divided into 10° increments, and the percentage of total viewing time that participants 

spent studying the object at each orientation was calculated. Those values were then 

averaged across participants and objects.  

As shown in Figure 7, participants focused on front views (350° - 10°), studying them 

for 16% of the learning phase. In comparison, they studied the right side (80° - 100°), 

back (170° - 190°), and left side (260° - 280°) views for, respectively, 4.6%, 4.8%, and 

4% of the learning phase. This general pattern of exploration was relatively consistent 

across objects and participants. 

Viewing patterns between the current study and Harman et al.’s (1999) study were 

compared. In Harman et al.’s (1999) study, participants could rotate the objects around 

two axes to see any possible view of the objects; thus, the exploration data were plotted 

as a two-dimensional heat map (viewing time for viewpoints along two axes). 

Qualitatively, their data showed that participants spent the most time looking at views 

rotated around the vertical axis, particularly from four cardinal directions (front, back, 

and two sides). In the current study, participants could only rotate objects around one axis 

(the vertical axis, corresponding to left-right rotation). To facilitate qualitative 

comparisons between data from the two studies, Harman et al.’s (1999) data (only the 

values for rotation around the vertical axis, where participants spent the most time) were 

replotted. This was accomplished by estimating relative viewing time percentages based 

on the intensity values of the lookup table for the heat map depicted in Figure 4 of the 

article. Although these inferred data were not perfectly accurate replications of the 

original data, they sufficiently depicted the trends found in the original data to enable 

qualitative (but not quantitative) comparisons. While the current study’s participants 

focused primarily on front views of objects, Harman et al.’s (1999) participants 

concentrated on side views as much as they did front views (Figure 8).  
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Figure 7: Viewing Patterns During Active Learning. Participants (n = 22) spent more time 

studying front views than they did studying any other views. Object orientation (°) was 

continuously recorded during every active learning session, and the percentage of total viewing 

time that participants spent observing the object at each orientation was calculated. Percentages 

were then averaged across all participants and objects before being plotted. This polar plot 

depicts the mean percentage of total viewing time (along the radius) as a function of object 

orientation (around the polar angle) with the initial orientation shown at 0° (12 o’clock position). 

The spatial resolution (bin size) of the viewing time calculation was 10°.  
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Figure 8: Viewing Patterns During Active Learning Estimated from Harman et al. (1999). 

Participants in this previous study spent more time observing front and side views of objects than 

they did observing any other views (Harman et al., 1999). This polar plot depicts the mean 

percentage of total viewing time during rotation around the vertical axis (corresponding to left-

right rotation) as a function of object orientation (°) with the initial orientation shown at 0° (12 

o’clock position). The spatial resolution (bin size) of the viewing time calculation was 10°. 
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Chapter 4  

4 Discussion 

4.1 Interpretation of Results 

The current study tested the hypotheses that active learning of novel objects may improve 

our ability to discriminate between different views of an object or, alternatively, improve 

our ability to recognize the same object across multiple views. These effects would 

manifest as, respectively, a decreased or increased JND for actively learned objects 

relative to passively learned objects. However, this study found no significant difference 

in JND between actively learned objects and passively learned objects. Moreover, 

Bayesian statistical tests found “anecdotal” evidence in favor of the null hypothesis, 

providing additional support for the conclusion that active learning has no effect on 

viewpoint discrimination for novel objects.  

The aim of the current study was to utilize viewpoint discrimination ability as a measure 

of the viewpoint dependence of the object representations most likely to be affected by 

active learning: those involved in object recognition across viewpoints (Harman et al., 

1999; James et al., 2001, 2002; Sasaoka et al., 2010). It was assumed that discrimination 

between viewpoints and recognition across viewpoints would both involve the same 

object representations. However, this assumption did not take into account the probable 

existence of multiple object representations in the visual system which enable effective 

recognition across viewpoints without sacrificing sensitivity to changes in viewpoint 

(Andresen et al., 2009, Tarr & Hayward, 2017). Case studies of “object orientation 

agnosia” as well as experiments involving healthy participants suggest that recognition of 

an object’s identity and recognition of an object’s orientation are, to some degree, 

separate processes (Corballis et al., 2007; Fujinaga et al., 2005; Harris et al., 2001, 2020; 

Turnbull et al., 1996; Valyear et al, 2006). The current study found that active learning 

does not affect viewpoint discrimination as it does object recognition across changes in 

viewpoints. This provides further evidence that the two tasks do not rely on the same 

mechanisms. One potential explanation for the results could be that active and passive 

learning are equally sufficient for the formation of the neural object representations 
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required for accurate viewpoint discrimination. Alternatively, viewpoint discrimination 

may not require extensive learning at all. Such hypotheses may be tested in future studies. 

4.2 Methodology and Limitations 

This study was the first to attempt to assess viewpoint dependence for novel objects using 

the method of constant stimuli. Even though many other researchers have investigated the 

effects of active and passive learning, it is important to understand that because of the 

current study’s unique design, its findings cannot be directly compared to those of most 

previous studies on the subject. For instance, Sasaoka et al. (2010) observed that actively 

exploring a set of novel wire objects expanded participants’ view generalization range. 

However, because the objects presented during the observation (learning) phase were 

different from those presented during the generalization (test) phase in their study, the 

researchers were able to conclude only that active learning facilitated the view matching 

process. In contrast, the current study examined the effect of active learning by utilizing 

the same objects in both the learning and test phases. Though these two studies are 

similar in several respects, a direct comparison is, nonetheless, difficult to make.  

When interpreting the current study’s results, certain important aspects of its 

methodology should be taken into account. Past studies that found an effect of active 

versus passive learning on object recognition utilized a greater number and variety of 

object stimuli, many of which were “solid” and not necessarily symmetrical (Harman et 

al., 1999; James et al., 2001; Meijer & van der Lubbe, 2011; Suzuki et al., 2019). This 

study, however, utilized wire objects that were bilaterally symmetrical. As such, the 

potential complexity and diversity of the objects were greatly restricted, and the 

experimenter was only able to create four that were suitable. Relatively little rotation was 

required to ascertain the wire objects’ three-dimensional structures because very few, if 

any, of their components were ever occluded like those of “solid” objects are. 

Participants were also given 60 seconds to learn each object, while participants in 

previous studies were provided with only 20 - 30 seconds (Harman et al., 1999; James et 

al., 2001, 2002; Meijer & van der Lubbe, 2011; Sasaoka et al., 2010). Furthermore, the 

use of the method of constant stimuli necessitated over 100 presentations of each object: 

an additional 22 seconds for participants to view it during the test phase. The effect of 
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active learning can be modulated by various factors, one of which could potentially be 

task difficulty. One study found that only participants with low visuo-spatial ability 

(VSA) benefited from active learning whereas participants with middle or high VSA did 

not (Meijer & van den Broek, 2010). If the facilitative effect of active learning is, in fact, 

only apparent when the task at hand is sufficiently challenging or demanding, then the 

simplicity of the current study’s stimuli, the additional learning time with which 

participants were provided, and the sheer number of stimulus presentations during the 

task may have caused a ceiling effect, eliminating any “active learning advantage” that 

existed. Because the study also lacked a “no learning” control condition, it was 

unfortunately impossible to determine whether learning itself, active or passive, had any 

impact on task performance. Alternatively, active learning could have had an effect that 

just could not be detected. The range of stimuli viewpoints and the step size (+/- 15° in 

steps of 3°) may have been too large to estimate the JND with precision.  

Participants exhibited preferences for frontal object views over others, which is consistent 

with the unequal distribution of viewing time observed in past studies while participants 

actively learned novel objects (Harman et al., 1999; James et al., 2001, 2002; Sasaoka et 

al., 2010). The specific patterns of exploration differ across studies, though: while 

participants in the current study spent more time examining frontal views of the objects, 

Harman et al. (1999) and James et al. (2002) found that participants focused on side 

views as well as frontal views of objects. Participants’ viewing patterns may have been 

influenced by the unique characteristics of the novel objects themselves. When a “solid,” 

non-wire object is observed from the front, its sides and back are almost, if not entirely, 

hidden from view. The front, sides, and back of the object must therefore be individually 

inspected to determine its appearance as a whole. Such thorough scrutiny of each side is 

not required when studying a wire object because the vast majority of its components are 

already visible from the front. As a result, the learning experience was simplified, 

potentially impacting the JND outcome of this study. Moreover, one must note that, at the 

start of every learning session in the current study, the front of the object was invariably 

oriented directly toward the participant. Thus, the apparent focus on frontal views 

exhibited by the current study’s participants may, in fact, have been nothing more than an 
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artifact. Harman et al. (1999) avoided an “artifact of starting position” by initially 

orienting each object such that it required a rotation before it was upright.  

Other limitations of this study include its relatively small, non-representative 

convenience sample. Participants were recruited through the OurBrainsCAN: University 

of Western Ontario’s Cognitive Neuroscience Research Registry and through posters 

located on campus, so it can be assumed that many (if not most) of the participants were 

university students or employees. In addition, because only right-handed adults between 

the ages of 17 and 60 were eligible to participate, the study entirely excluded children, 

older adults, and the left-handed. These limitations are not unique to the current study: 

many similar studies within the fields of visual perception and object learning have used 

samples comparable in size and composition (Fang & He, 2005; Harman et al., 1999; 

James et al., 2001, 2002; Rice et al., 2007; Valyear et al., 2006). Nonetheless, it should 

not be assumed that these results can be generalized to the broader population.  

While this study had many limitations, one strength lay in its already validated 

methodology: the tasks used in the learning and test phases were lightly modified 

versions of those employed successfully by Harman et al. (1999) and Fang and He 

(2005), respectively. 

4.3 Future Directions 

This study generated multiple new hypotheses and questions to be addressed in follow-up 

research. For example, it would be valuable to perform a direct comparison of 

discrimination between objects (as in studies conducted by Harman et al. (1999) and 

Sasaoka et al. (2010)) against discrimination between viewpoints for a single object (as in 

the current study) using the same objects and the same paradigm. This would provide a 

definitive method of determining whether active learning has genuinely different impacts 

on the two tasks or whether the different outcomes are due to methodological differences. 

Another question that warrants further investigation is whether the nature of objects 

themselves has an impact on learning and its effect on object recognition. The hypotheses 

would be that (1) solid objects (like those used by Harman et al. (1999)) in which certain 
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components are occluded by other components invoke different exploration strategies 

(particularly increased focus on side and back views from which all object components 

are visible) than do wire-like objects and (2) recognition of solid objects benefits more 

from active learning than does recognition of wire-like objects. 

To test whether both active and passive learning both facilitate discrimination between 

viewpoints to an equal degree, the current study would be repeated with the addition of a 

third, “no learning” condition. Decreased performance in the “no learning” condition 

compared to the learning conditions would provide support for this hypothesis. 

Conversely, the study may find no difference between any of the three conditions, which 

would imply that either participants can form mental representations of objects without 

prior learning or the discrimination task doesn’t require knowledge of an object’s three-

dimensional appearance at all. Those hypotheses could be tested by conducting a study in 

which participants are required, with and without learning, to discriminate between views 

of a target object as well as between the target object and distractor objects. Unimpaired 

performance on both tasks in both the learning and no-learning conditions would suggest 

that learning is not required for the creation of a three-dimensional object representation. 

This finding would be consistent with the immediate viewpoint invariance observed by 

Biederman and Gerhardstein (1993). Alternatively, impaired discrimination between 

target and distractor objects, but not between different views of target objects, in the “no 

learning” condition relative to the learning condition would suggest that learning is 

necessary to perform the former task, but not the latter.  

In addition to testing the hypotheses generated by the results of the current study, 

subsequent research could address its limitations by employing a greater number of more 

complex and diverse novel objects as stimuli and achieving larger sample sizes. 

Recruiting a sufficient number of participants for a local, face-to-face experiment is often 

difficult, but online or virtual approaches would enable faster and more effective data 

collection for multiple studies. 

This study investigated the ability to discriminate an object from different views and 

whether this ability is influenced by active versus passive learning. Other studies of 
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object recognition have investigated viewpoint dependence, the ability to recognize an 

object regardless of changes in viewpoint. Of course, it is possible that active learning 

could have no effect on sensitivity to changes in orientation, even though it improves 

later object recognition. What is needed is measurements of sensitivity to changes in 

orientation and measurements of the viewpoint dependence of object recognition in the 

same participants in active and passive learning conditions. 

Other methods of quantifying viewpoint dependence should be investigated in the future 

as well, especially because sensitivity to changes in viewpoint may not necessarily be a 

sufficiently accurate indicator of viewpoint dependence. In fact, it is possible that active 

learning has an effect on viewpoint dependence, but not on the ability to discriminate 

between viewpoints. A later behavioral study could assess the effect of active learning on 

both viewpoint dependence and discrimination between viewpoints simultaneously. 

Visual adaptation is one potential measure of viewpoint dependence. Fang and He (2005) 

found that adaptation to a particular view decreases the sensitivity of the neuronal 

populations tuned for that view. As a result, the viewer experiences a viewpoint 

aftereffect, the magnitude of which is positively correlated with viewpoint tuning width.  

Although such psychophysical techniques are simple and fast to use, they provide only an 

indirect way of gaining insight into activity within the brain itself. Future studies could 

utilize fMRI to more directly examine neural representations of actively and passively 

learned objects. Researchers have already found evidence suggesting that sensorimotor 

experiences during active learning influence the formation of neural object 

representations. Study participants learned the functions of unfamiliar objects, actively 

manipulating one set of the objects and visually exploring (viewing without being 

allowed to touch) another set. Active manipulation elicited greater post-training activity 

in fronto-parietal areas, particularly the left inferior/middle frontal gyrus, than did visual 

exploration (Bellebaum et al., 2013). However, the effect of active learning on activity in 

object-selective visual areas such as the lateral occipital complex (LOC), has not yet been 

extensively investigated. The LOC, an area of the occipital lobe which responds 

preferentially to objects, may be a region in which the transition from low-level object 

representations to more abstract object representations takes place (Malach et al., 1995; 
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Vernon et al., 2016). Representational similarity analysis (RSA), a type of multivariate 

pattern analysis (MVPA) would be a highly effective method of examining these object 

representations, as it reveals subtle differences in patterns of activity that univariate 

analyses cannot detect. Activity patterns in the LOC seem to encode information about 

not only low-level image properties, but about object shape and category (Eger et al., 

2008; Haushofer et al., 2008; Rice et al., 2014). Therefore, an inspection of the patterns 

elicited by an object after learning could reveal important differences between actively 

and passively learned object representations.  

One more question that remains unanswered is how the learning of real, physical objects 

may differ from the learning of virtual objects on a computer screen. Human infants have 

demonstrated a preference for real objects over pictures of objects, and their knowledge 

of familiar size for real objects does not seem to generalize to pictures of the objects 

(Gerhard et al., 2021; Sensoy et al., 2021). Such a distinction between real objects and 

images of objects also exists in adults, who display better recall and recognition 

performance for real objects than for photographs or drawings of objects (Snow et al., 

2014). An fMRI study even found that repetition effects that were robust for two-

dimensional images of objects were attenuated or non-existent for real objects, suggesting 

that real objects and images of objects may in fact be processed using different neural 

mechanisms (Snow et al., 2011). Although the current study did not find any difference 

in viewpoint dependence for actively and passively learned virtual objects, its results 

cannot necessarily be generalized to real objects.  

While humans take for granted their ability to successfully identify the thousands of 

objects that fill this world, creating computer algorithms that can do the same is still a 

formidable challenge. Computer vision is a rapidly growing field with numerous practical 

applications. The development of self-driving cars, a classic staple of science fiction that 

scientists and engineers are working to make a reality, is one example (Cervera-Uribe & 

Méndez-Monroy, 2022; Lu et al., 2022; Zhou et al., 2020). Computer vision algorithms 

can also assist visually impaired people with everyday tasks (navigating city streets, 

grocery shopping, etc.) and even identify handguns in airport baggage inspection (Franco 

et al., 2017; Kumar et al., 2022; Tapu et al., 2017). Creating and then training neural 
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networks can be a difficult and time-consuming process that often requires massive 

datasets. Thus, developing more efficient methods of teaching them to recognize three-

dimensional objects is a priority. Researchers have already built robots that, like humans, 

are capable of learning to recognize objects through active manipulation (Ivaldi et al., 

2014; Schiebener et al., 2013). However, further research should be done to determine 

which aspects of object recognition are facilitated by active learning as well as how and 

why such facilitation takes place. A greater understanding of human object perception 

would expedite the development of better strategies for training neural network models to 

accurately process images.  
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