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Sex differences in the intestinal
microbiome: interactions with risk factors
for atherosclerosis and cardiovascular
disease
Shamon Ahmed1 and J. David Spence2*

Abstract

Background: There are clearly sex differences in cardiovascular disease. On average, women experience cardiovascular
events at an older age, and at any age, women, on average, have less atherosclerotic plaque than men. The role of the
human intestinal microbiome in health and disease has garnered significant interest in recent years, and there have
been indications of sex differences in the intestinal microbiome. The purpose of this narrative review was to evaluate
evidence of sex differences in the interaction between the intestinal microbiome and risk factors for cardiovascular
disease. Several studies have demonstrated changes in microbiota composition and metabolic profile as a function of
diet, sex hormones, and host metabolism, among other factors. This dysbiosis has consequently been associated with
several disease states, including atherosclerosis and cardiovascular disease. In this respect, there is a growing
appreciation for the microbiota and its secreted metabolites, including trimethylamine N-oxide (TMAO), derived from
intestinal bacterial metabolic pathways involving dietary choline and L-carnitine, as novel risk factors for atherosclerosis
and cardiovascular outcomes. Although traditional risk factors for vascular disease have been studied broadly over the
years, there exists little research to evaluate interactions of cardiovascular risk factors with a potentially sexually
dimorphic intestinal microbiome. This review evaluates the role of sex differences in the composition of the intestinal
microbiome, including effects of sex hormones on the microbiome, and the effects of these sex differences on
cardiovascular risk factors. Diabetes and obesity exhibit sexual dimorphism, while the data concerning hypertension
and dyslipidemia remain inconclusive based on the available literature. In addition, an increased proportion of gram-
negative species capable of driving metabolic endotoxemia and a low-grade inflammatory response, as well as
decreased numbers of butyrate-producing species, have been observed in relation to traditional vascular risk factors. In
this context, circulating SCFAs and TMAO are recognized as key metabolites of the intestinal microbiome that can be
readily measured in the blood for the evaluation of metabolic profile.

Conclusion: Novel strategies focused on resolving intestinal dysbiosis as a means to slow progression of
atherosclerosis and reduce the risk of cardiovascular disease should be evaluated through a lens of sex differences.
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Introduction
There are clear sex difference in atherosclerosis and car-
diovascular disease [1]. On average, women experience
events such as myocardial infarction at a later age, and
on average, have less atherosclerotic plaque than men at
any age [2] (Fig. 1). Some recent examples of biological
sex differences in atherosclerosis include a report by
Ward et al., who in 2018 reported sex differences in the
proteomics of atherosclerosis, related to proteins in-
volved in inflammatory responses, response to reactive
oxygen species, complement activation, transport and
blood coagulation. In 2018, Li et al. [3] reported sex
differences in the relationship of fibrinogen to non-
calcified and mixed atherosclerotic plaques.
It has recently become apparent that the intestinal

microbiome plays a key role in atherosclerosis and car-
diovascular risk. Evidence is emerging that the micro-
biome affects a number of cardiovascular risk factors,
and that there are sex differences in the intestinal micro-
biome. The purpose of this narrative review is to evalu-
ate the evidence of interactions between sex differences
in the intestinal microbiome and cardiovascular risk fac-
tors. We focus on sex differences in the composition
and metabolic function of the intestinal microbiome,
and interactions with traditional risk factors. The follow-
ing will be addressed: (1) sex differences in the gut
microbiome; (2) sex differences with respect to trad-
itional risk factors for atherosclerosis; and (3) the rela-
tionship between the human gut microbiome and
traditional risk factors for atherosclerosis. Figure 2 illus-
trates some of the interactions of interest.

The search strategy for the review included a compre-
hensive search of the English literature using PubMed
and Google Scholar. The following search terms were
used: “sex AND (intestinal OR gut) AND microbiome”;
“sex AND hypertension”; “(intestinal OR gut) AND
microbiome AND hypertension”; “(intestinal OR gut)
AND microbiome AND hypertension AND sex”; “sex
AND diabetes”; “(intestinal OR gut) AND microbiome
AND diabetes”; “(intestinal OR gut) AND microbiome
AND diabetes AND sex”; “sex AND dyslipidemia”; “(in-
testinal OR gut) AND microbiome AND dyslipidemia”;
“(intestinal OR gut) AND microbiome AND dyslipid-
emia AND sex”; “sex AND obesity”; “(intestinal OR gut)
AND microbiome AND obesity”; “(intestinal OR gut)
AND microbiome AND obesity AND sex”; “sex AND
cardiovascular AND disease”; “(intestinal OR gut) AND
microbiome AND cardiovascular AND disease”; “(intes-
tinal OR gut) AND microbiome AND cardiovascular
AND disease AND sex”.

Background
The study of the human microbiome may have begun
some 300 years ago, with the emergence of the micro-
scope, and examination of scrapings from teeth [4].
However, the central role of the intestinal and dental
microbiome in health and disease [5] has only been
widely appreciated relatively recently [6]. For example,
periodontal disease and the dental microbiome have
been implicated in atherosclerosis not only through the
production of pro-atherogenic metabolites but also

Fig. 1 Sex differences in burden of atherosclerosis by age groups.
Carotid total plaque area was measured by ultrasound in patients
attending vascular prevention clinics at the Stroke Prevention and
Atherosclerosis Research Centre (SPARC), Robarts Research Institute,
Western University, London, Ontario, Canada. At any age, women on
average had less carotid plaque burden than men

Fig. 2 Sex differences in the interaction between the microbiome
and risk factors for atherosclerosis and cardiovascular disease. Sex-
specific microbiome dysbiosis affects the secretion of metabolites
produced by the intestinal microbiome, such as trimethylamine N-
oxide (TMAO) derived from dietary intake of phosphatidylcholine
and L-carnitine. Such metabolites affect atherosclerosis and
cardiovascular risk, through complex interactions with traditional risk
factors for atherosclerosis and cardiovascular disease, including
diabetes, hypertension, dyslipidemia, and obesity. Flavin mono-
oxidase (FMO); hypertension (HTN); type 2 diabetes mellitus (T2DM);
trimethylamine N-oxide (TMAO); trimethylamine (TMA)
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directly via systemic inflammation [7]. While there are a
number of microbiota (dental, lingual, cutaneous, vagi-
nal, etc.) [8], a key microbiome with regard to metabolic
and vascular disease is the intestinal microbiome.
The human gut microbiome consists of trillions of

commensal organisms that serve as a barrier and have
metabolic functions within the gastrointestinal system
[6]. It consists primarily of obligate anaerobes, outnum-
bering facultative anaerobes and aerobes by up to 100-
fold. The two major phyla of bacteria present within the
flora are Bacteroidetes and Firmicutes [6, 9]. The pri-
mary functions of the intestinal microbiome include
digestion, absorption, and production of metabolites
from ingested nutrients [10].
Owing to the vastly greater number of microbial

organisms and corresponding genes that exist within
the gastrointestinal tract as compared to host cells, the
human intestinal microbiome has a central role in nu-
trition, metabolism, and immune function [6, 11, 12].
Among these metabolic functions are the production
of vitamins, essential and non-essential amino acids,
metabolism of non-digestible carbohydrates such as
starches, and biotransformation of bile. The micro-
biome serves an immuno-protective role by competing
with pathogenic organisms for attachment sites in the
gut lining, as well as by producing antimicrobial sub-
stances. It has also been implicated in signaling to in-
nate immune cells when pathogenic antigens bind to
receptors on commensal bacteria, leading to the pro-
duction of cytokines, peptides, and chemokines that
elicit the host immune response [6, 11].
A number of disease states have been explored in rela-

tion to the intestinal microbiome, including obesity, in-
flammatory bowel disease, diabetes, cancer, fatty liver,
allergic disease, and CVD. Dysbiosis, which refers to al-
terations in the normal composition and function of the
intestinal microbiome, likely mediates these disease
states. Therefore, normalization of the composition and
metabolic function of the intestinal microbiome may
pose an avenue for therapy [9, 13]. A now widely applied
example of this approach is replacement of the intestinal
microbiome by fecal microbial transplantation [9], and
more recently, with capsules of ecosystems of cultured
bacteria [14].
Therefore, the composition of the microbiome and

several gut-derived metabolites serve an important role
in the development and progression of atherosclerosis
[11, 15–19]. This relationship is likely mediated in part
by traditional risk factors for atherosclerosis such as
obesity, diabetes mellitus, dyslipidemia, and hyperten-
sion that have been shown to be associated with dysbio-
sis [6, 11, 13, 20, 21].
With regard to gut-derived metabolites, several studies

have elucidated the importance of the dietary intake of

PC (largely from egg yolk) and L-carnitine (largely from
red meat) as nutrient precursors of pro-atherogenic mol-
ecules such as TMAO. Toxic metabolites of the intes-
tinal microbiome represent novel risk factors for
vascular disease. For example, patients with severe ath-
erosclerosis not explained by traditional risk factors have
higher plasma levels of toxic metabolites produced by
the intestinal microbiome, including TMAO, p-cresyl
sulfate, p-cresyl glucuronide, and phenylacetylglutamine,
despite no significant differences in dietary intake of nu-
trient precursors, and no significant differences in renal
function [10]. In linear regression, both TMAO and p-
cresylsulfate were stronger predictors of carotid plaque
burden than several traditional risk factors, including
sex, diabetes mellitus, total cholesterol, and diastolic
blood pressure.

Human gut microbiome and atherosclerosis
Sex differences in intestinal microbiome
As the intestinal microbiome is hypothesized to have a
central role in metabolic pathways that drive athero-
sclerosis, there is growing interest in the presence of sex-
ual dimorphism in the composition of the microbiome.
This has important implications for both primary and
secondary prevention of vascular disease.
Sex differences in the human intestinal microbiome

have been postulated as an explanation for observed epi-
demiological and phenotypic discrepancies in traditional
risk factors for atherosclerosis, including diabetes, hyper-
tension, dyslipidemia, and obesity. For example, in ovari-
ectomized rats with low aerobic capacity, the diversity of
the microbiota and specifically the number of Bacteroi-
detes phylum significantly increased [22]. This reflects
the role of sex hormones, including estradiol in modu-
lating the composition of the microbiome. Thus, the in-
creased CVD risk conferred by menopause is likely
mediated in part through the intestinal microbiota [23].
Additionally, Haro et al. demonstrated that the propor-

tion of Bacteroides genus was lower in men than women,
decreased as BMI increased for men, and remained rela-
tively the same across ranges of BMI for women (P<0.001)
[24]. Veillonella and Methanobrevibacter genera were
more abundant in male fecal samples than in females,
while Bilophila was greater in women irrespective of BMI.
Furthermore, the microbiota accounted for a statistically
significant proportion of the variation in HDL-C, LDL-C,
total cholesterol, BMI, and triglycerides.
Markle et al. evaluated sex-hormone driven patterns in

autoimmune disease, which display female preponder-
ance [25]. Non-obese diabetic male and female mice ex-
perienced elevated testosterone levels when colonized
with commensal bacteria relative to germ-free mice. The
elevation in testosterone was greater in female mice in-
oculated with diluted cecal contents from male mice, as
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compared to un-manipulated female mice. This resulted
in a distinct metabolic profile in female gavage recipients
that was dissimilar to both un-manipulated male and
female mice, suggesting the presence of a sexually
dimorphic microbiome that regulated sex hormone
production and use. Male to female gavage-recipients
were also strongly protected from type 1 diabetes as
evidenced by the degree of insulitis, a precursor to
overt disease. This effect largely dissipated when the
female recipients were treated with the androgen
receptor antagonist, flutamide, demonstrating the
importance of testosterone signaling in mitigating
islet cell inflammation [25].
In a study evaluating the effect of sex hormone pertur-

bations via neonatal androgenization or ovariectomy on
the intestinal microbiota of female rats, a lower degree
of microbiome diversity was observed in both ovariec-
tomy and androgenized groups. There was however a
notable increase in the Firmicutes to Bacteroidetes ratio
in the androgenized group [26]. This demonstrated that
sex steroid manipulations have a durable impact on the
intestinal microbiota, further reflecting the importance
of sex differences on its composition. Wang et al. also
reported decreased microbiota diversity in male recipi-
ents inoculated with fecal bacteria from a donor with a
short-term vegetarian and inulin-supplemented diet [27].
This reflects a clear sex-related difference in the com-

position of the microbiome, and demonstrates that dys-
biosis may drive sex differences in disease processes
such as atherosclerosis.

Sex differences in risk factors for atherosclerosis and
cardiovascular disease
Diabetes mellitus
Diabetes is an established risk factor for atherosclerosis,
CAD, and acute MI [28]. A case-control study within
the INTERHEART trial by Yusuf et al. demonstrated
that diabetes (OR 2.37, PAR 9.9%) accounts for a signifi-
cant proportion of the risk of MI, irrespective of sex,
age, or region of the world [29].
However, there has been much debate regarding sex

differences in the risk of atherosclerosis conferred by
diabetes [30]. Using the data from the INTERHEART
global case-control study, Anand et al. reported that the
RR of MI in women who had diabetes was higher than
in men (RR 4.26, 95% CI 3.68-4.94 vs. RR 2.67, 95% CI
2.43-2.94) [31]. Women also experienced their first MI
at a median age of 65 years, compared to 56 years in
men (P < 0.0001). This age difference was attributed to
higher levels of vascular risk factor levels at younger ages
in men.
Several meta-analyses have reported sex differences in

the vascular mortality risk conferred by diabetes. The
Emerging Risk Factors Collaboration performed a meta-

analysis including 698,782 subjects from 102 prospective
studies. During 9.8 million years of follow-up, it was
found that diabetes was associated with a twofold in-
creased risk of vascular mortality (secondary to occlusive
causes), with a greater RR in women than in men [32].
Likewise, the Prospective Studies Collaboration and Asia
Pacific Cohort Studies Collaboration reported a meta-
analysis that analyzed participant-level data from 980,
793 adults. After controlling for major vascular risk fac-
tors, including total cholesterol, blood pressure, BMI,
and smoking status, diabetes doubled mortality risk
among men and tripled risk among women. The RR of
occlusive vascular death from diabetes was higher in
younger people (aged 35-59) than in older people (70-
89), and higher among women across all age groups.
However, notably, the absolute excess risk conferred by
diabetes was estimated to be similar for men and women
despite higher death RRs among women [33]. This dem-
onstrates that lowering of risk factor levels represents an
important strategy to reduce occlusive vascular mortality
risk in both men and women. However, the excess RR
observed among women with diabetes is not accounted
for by traditional risk factors and necessitates consider-
ation of other novel risk factors, such as differences in
the composition and metabolic function of the intestinal
microbiota.
A population-based study in Italy conducted by Ballo-

tari et al. demonstrated that diabetes conferred greater
risk of MI in women than in men (IRR 2.58, 95% CI
2.22-3.00 and IRR 1.78, 95% CI 1.60-2.00, P < 0.0001)
[34]. In a retrospective cohort study by Roche and Wang
of 73,783 diabetic individuals in Canada, women with
diabetes had a greater risk of all-cause mortality (HR
1.85, 95% CI 1.74-1.96) and CVD hospitalizations (HR
2.57, 95% CI 2.24-2.94) than diabetic men. Among
women, those with diabetes demonstrated greater risk
(HR 6.54, 95% CI 4.80-8.91 and HR 5.22, 95% CI 4.31-
6.33, respectively) than their non-diabetic counterparts,
and women in general displayed greater risk than men
in any category (HR 3.44, 95% CI 2.47-4.79) and (HR
3.33, 95% CI 2.80-3.95) [35]. Peters et al. performed a
systematic review and meta-analysis of 64 cohort studies
that included 858,507 individuals with a total of 28,203
coronary events, which revealed that the incident coron-
ary heart disease RR in women with diabetes was 2.82
(95% CI 2.35, 3.38) and 2.16 (95% CI 1.82, 2.56) in men
with diabetes [36]. Although it has been asserted that
these disparities may be attributed to differences in the
use of and compliance with pharmacotherapy between
men and women, this is unlikely to explain a 40%
greater risk of incident coronary heart disease in women
with diabetes.
In the Multi-Ethnic Study of Atherosclerosis (MESA),

women with diabetes were less likely to have an LDL-C
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<130 mg/dl and SBP <130 mmHg than diabetic men
[37]. Venegas-Pino et al. reported that male Apo-E-
deficient mice developed chronic hyperglycemia, further
accelerating atherosclerosis, compared to female mice
whose hyperglycemia resolved by 15 weeks of age [38].
This was further explored by castrating male mice, with
attenuation of atherosclerotic plaque development. In
contrast, atherosclerosis became more advanced in
ovariectomized females. This supports the notion that
male and female sex hormones are likely central to sex
differences in the development of atherosclerosis in the
context of diabetes.

Hypertension and dyslipidemia
Hypertension and dyslipidemia predispose to athero-
sclerotic plaque development, particularly at dependent
areas at arterial bends, where variations in shear force
cause endothelial damage and the accumulation of
pro-thrombotic milieu in the local microenvironment
[39]. Dyslipidemia provides the substrate for the for-
mation of cholesterol-containing foam cells, while
hypertension elicits the necessary endothelial damage
for the thrombotic cascade. Despite mechanistic evi-
dence, the relationship between sex, hypertension, and
dyslipidemia as it relates to atherosclerosis is not well
established.
The INTERHEART global case-control study assessed

people in 52 countries; there were 27,098 participants, of
whom 6787 were women [31]. Hypertension was more
strongly associated with MI among women than in men
(OR 2.95, 95% CI 2.66-3.28 vs. OR 2.32, 95% CI 2.16-
2.48). Lipids, however, demonstrated similar associations
irrespective of sex [31]. In contrast, a systematic review
and meta-analysis by Peters et al. [40] compared sex-
specific associations between SBP and cardiovascular
risk. From 123 prospective cohort studies, including in-
formation from 1,197,472 individuals, there was no sex
difference in the risk conferred by SBP for stroke or is-
chemic heart disease. Kren et al. demonstrated increased
SBP and levels of serum triglycerides, as well as de-
creased levels of serum HDL cholesterol in Y consomic
rats, suggesting that the Y chromosome may confer in-
creased risk of developing hypertension and dyslipidemia
and thus mediate the risk for CVD [41]. Link et al. dem-
onstrated that having 2 X chromosomes versus an X and
Y chromosome complement drives sex differences in
HDL-C, and not the absence of a Y chromosome [42]. It
is conceivable that increased expression of genes escap-
ing X-inactivation in XX mice regulates downstream
processes to establish sexual dimorphism in plasma lipid
levels. Finally, Wu et al. reported sex differences in
cIMT with increased contribution from BMI and LDL to
HDL-C ratio in men [43].

Thus, there is no clear consensus on sex-specific asso-
ciations of atherosclerotic disease with hypertension and
dyslipidemia.

Obesity
Obesity increases cardiovascular morbidity and mortality,
particularly through its association with hypertension and
CAD [44, 45]. Within the BMI range of 25–50 kg/m2,
each 5 kg/m2 is associated with ~40% higher stroke mor-
tality [46]. Khan et al. [47] reported a population-based
study using pooled individual-level data from adults (base-
line age, 20-39, 40-59, and 60-79 years) across 10 large US
prospective cohorts, with 3.2 million person-years of
follow-up from 1964 to 2015. They studied 190,672 pa-
tients, of whom 140,835 (73.9%) were women, free of
CVD at baseline. Both being overweight (BMI 25-29) and
obesity (BMI > 30) shortened longevity and increased life-
time risk of CVD.
With the growing burden of obesity in North America,

understanding sex differences in disease distribution has
important implications for prevention and management.
Before menopause, women generally have greater vagal
than sympathetic tone, and lower levels of total choles-
terol and LDL-C than men [48]. Additionally, differences
in glucose and lipid metabolism, sex hormones and cyto-
kine production are thought to explain why men are at
an increased risk of CVD [48, 49]. This might also ex-
plain how disease states such as diabetes, which are
characterized by greater levels of inflammation, might
predispose to atherosclerosis by abrogating the protect-
ive effects of estrogen in maintaining a healthy endothe-
lium, enhancing insulin action, and promoting healthy
body fat distribution [49]. Obesity is characterized by an
increased risk of diabetes, hypertension and dyslipid-
emia, and independently associated with CVD [48]. Song
et al. reviewed data from 11 prospective cohort trials in-
cluding 23,629 men and 21,965 women with a median
follow-up of 7.9 years, and reported higher CVD mortal-
ity among men than women across all anthropometric
ranges [48]. This is likely explained by the aforemen-
tioned differences in hormone-driven patterns of fat dis-
tribution, with men more likely to deposit visceral fat,
compared to subcutaneous fat in women [50]. Visceral
fat has been associated with greater cardiometabolic risk
[51]. These sex-specific differences in CVD mortality
were attenuated in obese individuals, particularly those
with diabetes, suggesting that obesity confers unfavor-
able metabolic conditions in both men and women [48].
Furthermore, the age distribution of cardiovascular risk
suggests that as women produce less estrogen as they
age, they tend to deposit fat in a more “male distribu-
tion” intraabdominally, thus explaining the correspond-
ing increase in risk post-menopause [48, 52].
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Human intestinal microbiome and risk factors for
atherosclerosis and cardiovascular disease
An important aspect of a sex-based consideration of
vascular risk factors for atherosclerosis is whether sex
differences in the intestinal microbiome may affect risk
factors for atherosclerosis and cardiovascular disease.

Diabetes and SCFAs
Several studies have reported that type 2 diabetes melli-
tus is associated with decreased butyrate-producing spe-
cies, and an increase in Lactobacillus species [53–57].
Butyrate is a SCFA produced by intestinal microbes
from the fermentation of dietary fiber with an important
biological role in preventing atherosclerosis [58]. SCFAs
such as butyrate, acetate, and propionate have an anti-
inflammatory role through the production of Immuno-
globulin A and anti-inflammatory cytokines [59], as well
as the inhibition of gram-negative translocation across
the intestinal luminal barrier [60]. SCFAs also enhance
GLP-1 release, which is an incretin hormone involved in
decreasing post-prandial blood glucose through inhib-
ition of glucagon release, increased insulin sensitivity,
decreased hepatic gluconeogenesis and promotion of sa-
tiety [61]. Circulating SCFAs in contrast to fecal SCFAs,
have also been shown to be positively associated with
fasting GLP-1 concentrations and insulin sensitivity, and
negatively associated with whole-body lipolysis, triacyl-
glycerols, and free fatty acid levels [62]. This reflects a
direct relationship between circulating SCFAs and meta-
bolic health, and may be an important measurable par-
ameter to evaluate interventions aimed at human
metabolism.
Differences in microbiome composition have also been

demonstrated in those with diabetes. In a study evaluat-
ing fecal bacterial composition by quantitative PCR in
36 men, Firmicutes phylum and Clostridia class were
significantly decreased in the diabetic group (P=0.03)
[53]. Additionally, the ratio of Bacteroidites to Firmi-
cutes and Bacteroides-Prevotella group to C. coccoides-E.
rectale group correlated positively with plasma glucose
in an oral glucose tolerance test, and negatively with
BMI, suggesting that gram-negative Bacteroidites and
Proteobacteria may contribute to endotoxemia and
chronic low-grade inflammation in diabetes [53]. This
inflammatory cascade is initiated by lipopolysaccharide
in the outer membrane of gram-negative species that
translocate across the intestinal luminal barrier. This
translocation is promoted by decreased SCFA produc-
tion [60]. Lipopolysaccharide is a pathogen-associated
molecular pattern that serves as an important trigger for
the innate immune system [54–56]. The relationship be-
tween gram-negative organisms and diabetes is further
substantiated by the reduction in insulin sensitivity fol-
lowing vancomycin administration, which resulted in a

marked reduction in butyrate-producing organisms [63].
Qin et al. reported that in patients with diabetes, the
proportion of opportunistic pathogens was significantly
increased, whereas in the non-diabetic group the major
phyla were of butyrate-producing microbes [57]. In a
bariatric surgery-induced weight loss study, Faecalibac-
terium prausnitzii species were decreased in diabetic
subjects and markedly increased in subjects following
gastric bypass surgery [64]. F. prausnitzii is an anti-
inflammatory commensal that inhibits nuclear-factor
kappa B activation and the release of pro-inflammatory
cytokines such as IL-8 [65]. When live or supernatant F.
prausnitzii was administered to patients with Crohn’s
disease, a reduction in disease severity and resolution of
dysbiosis was observed [65]. The microbiome-diabetes
interaction may also be mediated through bile acid metab-
olism. Deoxycholic acid is converted to cholic acid by
Clostridium in the large bowel, where cholic acid activates
FXR. FXR knockout in mice has been shown to improve
glucose tolerance and improve insulin sensitivity [66].

Trimethylamine N-oxide (TMAO)
Historically, the proposed link between meat and egg
consumption and atherosclerotic disease has been attrib-
uted to increased consumption of saturated fat and chol-
esterol [11]. However, the notion of meta-organismal
pathways in which diet-microbe-host interactions con-
tribute to atherosclerotic disease through the production
of metabolites and systemic inflammatory response has
drawn significant interest recently [11, 67–69]. Central
to this pathway are dietary phosphatidyl choline, choline,
and L-carnitine [11]. Wang et al. reported that TMAO,
produced by hepatic oxidation of trimethylamine
(TMA), a metabolite of choline, and betaine, caused ath-
erosclerosis in a murine model, and this was prevented
by antibiotics [15]. Koeth et al. reported that mice fed an
L-carnitine supplemented diet had high levels of TMAO
and twice the aortic root atherosclerotic plaque burden
compared to normal chow fed mice, and this could be
prevented by antibiotics [19]. This was independent of
increases in pro-atherogenic changes in lipids, glucose,
lipoproteins, and insulin. When administered antibiotics,
plasma trimethylamine and TMAO were significantly re-
duced and the mice displayed a marked reduction in
atherosclerotic plaque burden [19].
Upon ingestion, choline and L-carnitine are metabo-

lized by gut microbes to produce TMA. TMA is
absorbed into the portal circulation where two Flavin
mono-oxygenase family members (FMO1 and FMO3)
within the liver then oxidize TMA to TMAO. TMA is a
metabolite of choline, which is derived from foods in the
diet such as eggs. FMO3 possesses greater specificity for
TMA than FMO1, which is substantiated by increased
plasma TMAO in mice with greater expression of
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FMO3 [10, 24]. Among >4000 patients referred for cor-
onary angiography, plasma TMAO in the top quartile
was associated with a 2.5-fold increase in the 3-year risk
of stroke, MI, or vascular death [16].
TMAO accounts for a significant proportion of the

variation in atherosclerosis [11]. TMAO alters choles-
terol and sterol metabolism, upregulating scavenger re-
ceptors, which in turn predispose to increased foam cell
formation and exacerbate plaque progression [11, 70].
Koeth et al. also demonstrated that TMAO inhibits re-
verse cholesterol transport, as mice on a TMAO-
containing diet had a 35% reduction in cholesterol re-
moval from peripheral macrophages as compared to
chow-fed mice (P<0.05) [19]. Several bacterial taxa have
also been associated with increased plasma TMAO
levels, including those belonging to Clostridiaceae and
Peptostreptococcaceae families in subjects with omniv-
orous dietary patterns following an L-carnitine challenge
test, suggesting their likely role in the conversion of L-
carnitine to TMA [19]. Repeat L-carnitine challenge fol-
lowing administration of broad-spectrum antibiotics vir-
tually suppressed plasma and urine TMAO levels [19].
Thus, microbiota-dependent production of TMA and
TMAO through the metabolism of dietary choline, PC,
and L-carnitine is associated with increased atheroscler-
otic risk [11].
Gut-derived metabolites also increase thrombotic po-

tential. The relationship between the gut microbiome
and arterial thrombosis was elucidated by Ascher et al.,
who reported the role of TLR-2 activation by gut micro-
bial ligands in eliciting primary hemostasis at sites of
vascular injury via vWF and platelet integrin [71]. Zhu
et al. demonstrated a mechanistic link between TMAO
and ADP- and thrombin-induced platelet aggregation
and adhesion to collagen [72]. This demonstrates that
higher plasma TMAO increases vascular thrombosis
through both direct and indirect mechanisms, and
thereby increases the risk of mortality from stroke or MI
in a dose-dependent fashion [72].
Lastly, given that atherosclerosis is a chronic inflamma-

tory state where the innate and adaptive immune system
respond to various stimuli, TMAO has been increasingly
recognized as an important mediator of systemic inflam-
mation and alterations in immunity [73–75]. Several stud-
ies have demonstrated a positive association between
plasma TMAO and inflammatory cytokines [76–78].
Chou et al. suggest a correlation between TMAO levels
and high sensitivity C-reactive protein (CRP) and IL-1β in
81 patients with stable angina [79]. In addition to this,
NF-κB pathway has been implicated in atherosclerosis via
regulation of pro-inflammatory genes [80, 81]. TMAO has
been shown to activate NF-κB to induce the production of
pro-inflammatory proteins including cyclooxygenase-2, E-
selectin, IL-6, and intracellular adhesion molecule-1 [82].

This relationship is further substantiated by the increased
expression of NF-κB-mediated inflammatory genes in aor-
tic endothelium in mice fed a choline diet with elevated
TMAO levels [82]. Thus, the association between TMAO
and atherosclerosis and cardiovascular risk is now well
established [11].

Therapeutic aim
The importance of gut microbes in nutrient metabolism
and atherosclerosis has generated interest in novel ap-
proaches that aim to reduce TMA conversion to TMAO,
the use of high-fiber diets to decrease TMA precursors,
and the maintenance of an optimal gut microbial com-
position [83]. A proposed mechanism for how high-fiber
diets decrease TMA precursors is via activation of epi-
thelial adenosine monophosphate-activated protein kin-
ase, which inhibits TMA lyase activity and increases
expression of SCFAs including acetate and butyrate [84].
Fecal microbial transplantation for this purpose is cur-
rently under study at our research center; it is hoped
that identifying bacteria associated with reduce plasma
levels of TMAO and p-cresylsulfate will permit identifi-
cation of bacteria to be included in an “ecosystem thera-
peutic” of cultured bacteria, as has previously been used
to treat infection with Helicobacter pylori [14]. Non-
lethal inhibitors of trimethylamine lyase, which catalyzes
the conversion of choline to TMA, are also being ex-
plored as therapies for atherosclerosis [85, 86].

Hypertension
Hypertension and the intestinal microbiome drew interest
following the report by Honour in 1982, which demon-
strated that rats administered antibiotics along with cortico-
steroids experienced a smaller increase in blood pressure
than those administered corticosteroids alone [87]. This
gave credence to the argument that the microbiome was in-
volved in steroidal hypertension. Yang et al. reported de-
creased microbial diversity and an increase in Firmicutes to
Bacteroidetes ratio in SPH rats compared to controls [88].
Additionally, SPH rats had increased lactate-producing
microbes such as Streptococcus and Turicibacter, and de-
creased butyrate-producing microbes. In contrast, control
rats had increased proportions of butyrate-producing
organisms such as Coprococcus and Pseudobutyrivibrio.
Following treatment with minocycline for 4 weeks, MAP
was significantly reduced in Angiotensin II-infused rats (24-
h MAP: 124 ± 2 mmHg vs 168 ± 2 mmHg). Likewise,
transfer of microbiota into germ-free mice resulted in
greater endothelial dysfunction [89]. When these germ-free
mice were infused with Angiotensin-II, a marked reduction
in reactive oxygen species production, monocyte chemo-
attractant protein-1, inducible nitric oxide synthase, and
NADPH oxidase subunit Nox2, was observed relative to
control mice. This reflects a microbiota-dependent
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response to Angiotensin-II, and implicates commensal
microbes in vascular dysfunction and hypertension
[89]. Engevik et al. reported alterations in intestinal
microbiota, with increased populations of Bacteroi-
detes compared to Firmicutes in regions of the small
colon deficient in NHE3 [90]. Additionally, Li et al.
reported that in genetically deficient NHE3 mice,
MAP and SBP increases were attenuated upon infu-
sion of angiotensin II as compared to control [91]. As
NHE3 plays an important role in salt and water ab-
sorption both in the intestinal and the kidneys, and
since excessive salt intake is associated with hyperten-
sion, it is reasonable to infer that the intestinal
microbiome may mediate hypertension through the
action of ion channels. Li et al. reported decreased
microbial diversity and richness, and increased popu-
lations of Prevotella and Klebsiella genera in pre-
hypertensive and hypertensive human subjects [92]. In
contrast, healthy controls had increased populations
of Faecalibacterium, Oscillibacter, Roseburia, Bifido-
bacterium, Coprococcus, and Butyrivibrio. Roseburia
and Faecalibacterium are two butyrate producing or-
ganisms that have been negatively associated with in-
flammatory bowel disease, suggesting their role in
health and disease [65, 93]. When germ-free mice
were inoculated with fecal samples from hypertensive
human subjects, the mice exhibited greater systolic,
diastolic, and mean blood pressures as compared to
controls (P<0.05). This is in line with previous work
demonstrating blood pressure attenuation through the
use of antibiotics and probiotics [88, 89, 94–96]. An-
other mechanism by which intestinal bacteria may be
implicated in hypertension is through the production
of microbial SCFAs that act on G-coupled protein re-
ceptors to activate sympathetic activity and induce
renin secretion [97].

Obesity
With regard to obesity, a prospective trial conducted by
Collado et al. demonstrated distinct human intestinal
microbiota composition among women as a function of
weight and BMI during pregnancy [98]. Higher weight
correlated with higher concentrations of Bacteroides,
Clostridium, and Staphylococcus. Similarly, due to the
apparent sexual dimorphism between obesity and
chronic disease, Nickelson et al. compared weight-
matched obese male and female mice to determine if the
sex-dependent health benefits remain when body weight
is similar [99]. In comparing weight-matched obese male
and female mice receiving a high-fat diet, it was found
that female mice exhibited greater adiposity. Despite
this, female mice were more glucose tolerant, likely due
to increased adiponectin and decreased oxidative stress
in the presence of estrogen. Turnbaugh et al. reported

that obese mice have significant differences in the popu-
lations of two bacterial species: Firmicutes and Bacteroi-
detes [100]. Compared to lean mice, the obese
microbiome was able to extract more energy from the
diet, and upon colonization of germ-free mice with the
obese microbiome, the mice had an increase in total
body fat. Vrieze et al. similarly reported that colonization
of recipients with microbiota from lean donors increased
insulin sensitivity (median rate of glucose disappearance
changed from 26.2 to 45.3 mumol/kg/min; P < .05) [56].
Mongraw-Chaffin et al. reported that sex hormones are
significantly associated with adiposity, and the associa-
tions of androgens differ qualitatively by sex. This het-
erogeneity may help explain the complexity of the
contribution of sex hormones to sex differences in CVD
[101, 102]. In a mouse model of gastric bypass, increased
populations of Gammaproteobacteria (Escherichia) and
Verrucomicrobia (Akkermansia) were observed, inde-
pendent of changes in weight and calorie intake [103].
Inoculation of germ-free mice with microbiota from gas-
tric bypass-treated mice resulted in decreased adiposity
and weight loss [103]. These compositional changes are
similar to those exhibited by human subjects following
gastric bypass. For example, Furet et al. reported lower
Bacteroides/Prevotella group in obese subjects, and a
corresponding increase following bariatric surgery. Like-
wise, at 3 months post-bypass, Escherichia coli exhibited
a significant increase as compared to control [64]. In
contrast, levels of Bifidobacterium and Lactobacillus/
Leuconostoc/Pediococcus groups decreased at 3 and 6
months following surgery. These data collectively dem-
onstrate that obesity is associated with characteristic
changes in the microbiome.

Conclusion
Enhanced insight into meta-organismal pathways that
drive atherosclerosis has drawn interest toward patient
characteristics such as sex, as it has important implica-
tions for the management of vascular diseases. In this
context, diabetes and obesity appear to demonstrate sex-
ual dimorphism, while the data concerning hypertension
and dyslipidemia are less conclusive. A greater propor-
tion of gram-negative species with a decreased capacity
for butyrate-production have also been observed in rela-
tion to traditional vascular risk factors [58]. In addition
to this, circulating SCFAs and TMAO are important
novel risk factors for atherosclerosis that can be mea-
sured in the blood, and present an important opportun-
ity for the assessment and management of dysbiosis,
particularly through the use of high fiber diets which
have been shown to increase circulating SCFAs and de-
crease TMAO [62, 84]. Male and female sex hormones
also play an important role in the composition and
metabolic function of the microbiome, and thus have
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differential effects on disease incidence and phenotype.
Finally, sex differences clearly exist in established risk
factors for atherosclerosis, and further investigation is
necessary to assess whether differential responses in the
context of similar microbiome composition may impli-
cate other host factors in the risk for atherosclerosis.
Nevertheless, novel treatment strategies for atheroscler-
osis focused on dysbiosis require sex-specific consider-
ation, as sex differences have important effects on
several established vascular risk factors.

Perspectives and significance
This study highlights the role of a sexually dimorphic
microbiome in mediating the risk for atherosclerotic dis-
ease, both through traditional risk factors, novel metabo-
lites such as SCFAs and TMAO, and via chronic
systemic inflammation. Pre-biotic and probiotic inter-
ventions such as dietary fiber, TMA lyase inhibitors, and
fecal transplantation aimed at treating dysbiosis in the
context of atherosclerosis should therefore be viewed
through a sex-specific lens. Further study is required to
elucidate the role of other host factors in mediating sex-
specific differences in disease incidence and phenotype,
when such differences cannot be explained by micro-
biome composition and function.
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