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Abstract

I develop an assignment model of occupations with multidimensional heterogeneity
in production tasks and worker skills. Tasks are distributed continuously in the skill
space, whereas workers have a discrete distribution with a finite number of types.
Occupations arise endogenously as bundles of tasks optimally assigned to a type of
worker. The model allows us to study how occupations respond to changes in the
economic environment, making it useful for analyzing the implications of automation,
skill-biased technical change, offshoring, and worker training. Using the model, I
characterize how wages, the marginal product of workers, the substitutability between
worker types, and the labor share depend on the assignment of tasks to workers. I
introduce automation as the choice of the optimal size and location of a mass of
identical robots in the task space. Automation displaces workers by replacing them in
the performance of tasks, generating a cascading effect on other workers as the
boundaries of occupations are redrawn.
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Occupations undergo constant change, as evidenced by long-run changes in their skill

content (e.g., Spitz-Oener, 2006; Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2020;

Cavounidis, Dicandia, Lang, and Malhotra, 2021). These changes are felt by workers across

the earnings distribution, from plant operators facing industrial robots and the secular decline

in routine-based occupations to engineers facing the introduction of new software.1 However,

our understanding of how these changes affect the skill premia and workers’ productivity

and skill requirements is hampered by the lack of an endogenous theory of occupations,

where the task composition of occupations evolves in response to changes in the economic

environment—like the introduction of information technologies and automation.

In this paper, I develop a multidimensional assignment model of tasks to workers that

explicitly allows for changes in the set of tasks that compose an occupation. In doing so, I

endogenize the bundling of tasks into occupations, which determines the skill premia and

workers’ productivity and compensation. The endogenous response of occupations in a

multidimensional setup allows me to study the implications of automation, skill-biased

technical change, workers’ skill upgrading, and other economic changes. By levering on

results from optimal transport theory (Villani, 2009; Galichon, 2016), I keep the analysis

tractable despite the challenges posed by incorporating multidimensional attributes of

workers and tasks into the assignment model.2

In the model, production requires performing a collection of tasks, each generating a task-

specific output. The problem of a production unit (i.e., a plant) is to maximize production

by assigning tasks to workers. Both workers and tasks are heterogeneous along multiple

dimensions as in Lindenlaub (2017). Workers differ in the skills they possess (e.g., manual,

cognitive, social), and tasks differ in the skills that are involved in performing them. In

particular, workers’ productivity depends on the degree of mismatch between their skills and
1See Acemoglu and Restrepo (2020) on the effects of industrial robots, Autor, Levy, and Murnane (2003)

and Caunedo, Keller, and Shin (2021) on routine-based occupations, and Martinez and Moen-Vorum (2021)
on the automation potential of abstract occupations.

2The relevance of multiple types of skills in determining labor market outcomes of individuals has been
long recognized. See Willis and Rosen (1979); Heckman and Sedlacek (1985); Autor, Katz, and Kearney
(2006); Black and Spitz-Oener (2010); Deming (2017); Caunedo, Keller, and Shin (2021).
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Figure 1: Assignment Example
Note: The figure shows an example for an assignment in a two-dimensional skill space (cognitive and manual skills). There are
three types of workers {x1, x2, x3}, and tasks are continuously distributed over the unit square. The assignment partitions the
space into three regions {Y1,Y2,Y3} each of which is an occupation. xn performs the tasks in occupation Yn. The assignment
in this figure is not necessarily optimal.

the skills involved in the tasks they perform.3 The plant can also count with robots (or

software) capable of performing tasks. Tasks assigned to them are automated.

To fix ideas, Figure 1 describes the setup faced by the manager of a plant with three

types of workers who perform a set of tasks to produce a good. The workers and tasks differ

in cognitive and manual skills. Each point in the plane characterizes a task with a different

combination of skills. While some tasks are complex in terms of their cognitive skills and

involve no manual skills, others use both types of skills, and so on. The distribution of

tasks in the skill space describes the combination of tasks required for production. The

main assumption I impose on the model is the discreteness of the distribution of workers.4

Workers are represented by points scattered in the skill space, defining given combinations

of skills (e.g., x1, x2, x3).
3Multidimensional skill mismatch plays an important role for workers’ occupational choices and earnings

dynamics. See Poletaev and Robinson (2008), Kambourov and Manovskii (2009), Gathmann and Schönberg
(2010), Yamaguchi (2012), Guvenen, Kuruscu, Tanaka, and Wiczer (2020), and Lise and Postel-Vinay (2020).

4The same assumption is used by Stokey (2018) to study the effects of task-biased technical change and
by Adenbaum (2021) to study the gains from worker specialization. Discretizing worker types is also useful
to study labor demand shocks and sorting (Fogel and Modenesi, 2021; Grigsby, 2021; Haanwinckel, 2021).
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In the figure, the problem of the manager is to assign tasks to workers for production.

The discreteness of the workers’ distribution implies that a bundle of tasks is assigned to

each worker, as is observed in plant-level data (Combemale, Whitefoot, Ales, and Fuchs,

2021a,b). The tasks in each bundle form the worker’s occupation (Rosen, 1978). The figure

shows the boundaries of occupations implied by an arbitrary assignment of tasks to workers

that divides the space into regions (occupations) Y1, Y2, and Y3. Alternative assignments

need not divide the space into connected regions or can assign no tasks to some workers.

The optimal assignment of tasks to workers seeks to maximize production by minimizing

skill mismatch, subject to the limited supply of workers of each type. Technology determines

the directions in which mismatch is more harmful. For example, cognitive mismatch may

affect productivity more than manual mismatch, or being over-qualified for a task may be

less harmful than being under-qualified. The direction of mismatch determines the shape of

the occupation boundaries, while the supply of workers’ skills determines their location.

Using the model, I show that the key outcomes are fully characterized by the

boundaries that define occupations. First, I show that marginal products depend only on

the productivity of workers in tasks along the boundaries of their occupations. Similarly,

the skill premia and wages are determined the workers’ skill mismatch in boundary tasks.

Marginal products capture how much production increases if additional tasks were

reassigned to a worker. These additional (marginal) tasks come from the displacement of

neighboring workers along the boundaries of the worker’s occupation. Because of this, only

boundary tasks are relevant for the skill premia and wages.

I then show that the productivity differences in boundary tasks induce an endogenous

ranking of workers. Because of the multidimensional nature of skills, there is not an a priori

ranking of low- or high-skilled workers; rather, the ranking reflects their marginal products.

The displacement of workers when reassigning tasks along the boundaries of occupations

reveals this ranking. It is only optimal to displace workers if they are less productive along

the boundary than their neighbors, that is, if they have a lower marginal product. This
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ranking changes in response to changes in technology, task demand, automation, etc., causing

tasks to be reassigned across workers. Rank changes across occupations are an important

feature of U.S. wage dynamics as shown in Tan (2021).

After establishing the assignment’s properties, I show how to use the model to study

worker-replacing technologies like automation and offshoring.5 These technologies are

directed toward replacing workers in specific tasks, taking away some, but not all, of the

tasks of an occupation (e.g., industrial robots taking spots in the assembly line),6 and

therefore they are more likely to transform rather than eliminate occupations. In the

model, occupations are transformed directly by losing tasks to robots or software and

indirectly through tasks being reassigned across workers.

I model automation as the introduction of a mass of identical “robots.” Automation is

directed through the choice over the robots’ location in the skill space and the tasks

assigned to them. This works in the same way as choosing which tasks to offshore.

Automation is optimally directed toward regions that exhibit high skill mismatch between

workers and tasks, regions around the occupation boundaries and not necessarily tied to

low- and high-ranked occupations. In this way, automation can affect low-ranked

occupations—like cashiers with the introduction of self-checkout machines—or high-ranked

occupations—like stockbrokers and accountants with trading and accounting software that

takes over some of their tasks.

Automation generates task displacement, triggering a reassignment of tasks across

occupations. I show that workers who previously performed the automated tasks are not

the only ones affected; less productive workers are also displaced as the boundaries of

occupations shift to preserve the employment of more productive workers. Whether or not

wages decrease overall depends on how productive robots are at the tasks they take over
5For manufacturing, Acemoglu and Restrepo (2020) estimate that industrial robots have displaced 756,000

workers between 1993 and 2007. Simultaneously, advances in software and AI have made it possible to
automate tasks of clerical occupations and of more specialized workers like accountants. Offshoring, another
worker-replacing technology, operates through the same channels (Blinder, 2009; Blinder and Krueger, 2013).

6McKinsey Global Institute (2017) reports that while 50% of tasks are automatable using currently
available technology, less than 5% of occupations are fully automatable.
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(Acemoglu and Restrepo, 2018a). The model predicts that workers with higher task

displacement have larger reductions in wages, as documented by Acemoglu and Restrepo

(2021), and that the worker rank only changes in response to large task displacement.

In addition to automation, I consider two forms of directed worker-enhancing changes in

the form of worker training and skill-biased technical change, and I establish their effect on

workers. First, I show that worker training increases the worker’s marginal product and wage

by reducing the mismatch in the tasks they perform. Unlike automation, training does not

displace workers, although occupations do change in response to the new skill distribution of

workers. Second, I find that skill-biased technical change is optimally directed toward skills

at which the workforce is most adept. Productivity increases by complementing the skills

with the lowest mismatch. This contrasts with automation, where productivity increases by

replacing workers in tasks they are not well suited for, those with the highest mismatch.

Finally, I extend the model by allowing tasks to be left unassigned. In this scenario,

tasks are only performed if workers are productive enough relative to their wages. I show

how skill accumulation by workers changes, and potentially expands, the set of tasks

performed in the economy. One important consequence of allowing tasks to be left

unassigned is that automation ceases to be a pure worker-replacing technology.

Automation can now complement workers by taking over tasks that are either not

worthwhile for workers to perform or are too specialized given their current skills.

Related literature I adopt a task approach to production as in the single-dimensional

models of Rosen (1978), Autor, Levy, and Murnane (2003), and Acemoglu and Autor (2011).

I complement this literature by incorporating multidimensional heterogeneity in tasks and

workers as in Lindenlaub (2017), but I depart from her model in making the distribution of

workers discrete. Because of this, the assignment generates many-to-one rather than one-

to-one-matches, which allows me to study the bundling of tasks into occupations. Relative

to single-dimensional models, the complexity level of a task is endogenously determined and
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worker specific within my multidimensional framework. This complexity level serves a single-

dimensional index for tasks. Underlying skill differences across workers mean that the same

task may have a high rank for some workers and a low rank for others. Moreover, this rank

responds to changes in technology that affect workers’ productivity across tasks.

My work also relates to applications of assignment models building on the classic work

of Roy (1951) and Sattinger (1975, 1993), most recently to the work of Gola (2021), who

studies the assignment of workers to firms across different sectors. I model occupations as

the outcome of an assignment from a continuum of tasks to a discrete number of workers.

This setup has been used by Feenstra and Levinsohn (1995) in the context of a continuum

of buyers choosing from a discrete set of products. I generalize their results using tools from

optimal transport theory (Villani, 2009; Galichon, 2016) and extend the model to consider

applications to technical change, unemployment, automation, and worker training.7

Finally, I provide a theoretical framework for analyzing the direction and consequences

of automation. This contributes to the literature on automation and other worker-replacing

technologies (e.g., Acemoglu and Restrepo, 2018b, 2020, 2021; Aghion, Jones, and Jones,

2019; Hemous and Olsen, 2021). I explicitly model the multidimensional nature of skill

heterogeneity, which is important for determining the automatability of tasks, as shown

recently by Frey and Osborne (2017), Webb (2020), and Martinez and Moen-Vorum (2021).

1 Task assignment model

I present a model where occupations arise endogenously as bundles of tasks assigned to

workers. In this model, the bundling of tasks into occupations reacts to changes in technology

(e.g., automation, skill-biased technical change) and demographics (e.g., the distribution of

workers’ skills), implying changes in the productivity, substitutability, and compensation of

workers. I characterize workers with the vector of skills they possess and tasks with the
7In the setup of Feenstra and Levinsohn (1995), the techniques I develop can be applied to the problem

of designing a new product (defined by a vector of characteristics) given a distribution of consumers.
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vector of the skills involved in performing them. These skills can be general traits, such as

cognitive, manual, and social ability, or more specific, such as typing, programming, lifting,

and analytical writing.

The model describes the problem of organizing production at a single production unit

(i.e., a plant). Production requires workers to complete a continuum of tasks. The production

unit has finitely many types of workers at its disposal to be assigned to tasks. A single type

of worker can then perform various tasks. I refer to the set of tasks performed by a worker as

their occupation, as in studies using plant-level production data (Combemale et al., 2021a,b).

A worker’s productivity on a given task depends on how well their skills match the skills

used in performing the task (i.e., the degree of mismatch). In what follows, I describe the

role of workers, tasks, and the production technology.

Workers Workers are characterized by a vector of skills x ∈ S ⊂ Rd, where S is the space

of skills and d ≥ 1 is the number of skills. There are N types of workers in the economy:

{x1, . . . , xN} ≡ X . There is a mass pn of workers of type xn. Each worker is endowed with

one unit of time and supplies their time inelastically so that workers of type n supply a total

of pn units of time.8 The workers’ outside option, if they are not assigned to any task, has a

value of w ≥ 0.9 When studying the effects of automation in Sections 4.1 and 5.2, I change

the set of workers by introducing robots that can also perform tasks.

Tasks Production requires completing a set of tasks Y ⊆ T . To facilitate exposition, I

assume that T ≡ S so that tasks and workers are elements of the same space S. This

assumption does not affect any of the results (see the general setup in Appendix B). Tasks

y ∈ Y differ in the skills involved in performing them and how many times they must be

performed. One unit of time is required to perform a task once. Tasks are continuously
8An alternative interpretation is that of N different workers with effective productivity {p1, . . . , pN}.
9In general, the outside options of workers depend on their type, so a type n worker has an outside option

of wn. This does not change the optimal assignment described in Section 2 but plays a role when tasks can
be left unassigned in Section 5.
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distributed on Y . I denote the density of tasks used in production by g : Y → R+ and

maintain the following assumption throughout:

Assumption 1. The set and distribution of tasks satisfy the following properties:

i. g : Y → R+ is an absolutely continuous probability density function with an associated
absolutely continuous measure G on Y;

ii. there are enough workers to complete all tasks; i.e., G (Y) =
∫
Y g (y) dy ≤

N∑
n=1

pn;

iii. and the set of tasks Y is compact.

Task output Workers vary in their productivity across tasks depending on the degree

of mismatch between the skills they possess (x) and the skills involved in performing the

task (y). The function q : X × Y → R gives the worker-task-specific output generated by a

worker with skills x performing task y. No output is generated by unassigned tasks. Abusing

notation, I use ∅ to denote unassignment so that q (∅, y) = 0 for all y ∈ Y . In general, the

degree of mismatch between the worker’s and task’s skills is captured by some notion of the

distance between the worker and the task in the skill space.

The optimal assignment balances the desire to minimize the mismatch between workers

and the tasks they perform, with the capacity constraints imposed by the limited availability

of workers. The assignment’s exact shape depends on how q captures mismatch but the

general properties of the assignment do not. I return to this in Section 2, where I discuss

the optimal assignment, and in Section 4.2, where I discuss changes in technology.

Finally, it will prove useful to impose a functional form on q to derive further results:10

Assumption 2. The task output production function satisfies

q (x, y) = exp
(
a

′

xx+ a
′

yy − (x− y)
′
A (x− y)

)
, (1)

10The functional form in Assumption 2 corresponds to the payoff function of Tinbergen (1956), the utility
function of Feenstra and Levinsohn (1995), and the production technology of Lindenlaub (2017).
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where A is symmetric and positive definite.

Under (1), the mismatch between a worker and a task is measured by the weighted

quadratic distance between the worker’s and task’s skills. Matrix A controls the weights of

each skill in the mismatch. The terms a
′
xx and a

′
yy capture more skilled workers and tasks

involving higher skill levels generating more output.

Assignment The assignment of tasks to workers is described by a function T : Y → X

so that task y is performed by worker T (y) ∈ X . The set of tasks performed by a type of

worker forms that worker’s occupation. The occupation of type xn workers is11

Yn ≡ T−1 (xn) = {y ∈ Y |xn = T (y)} . (2)

Figure 1 in the introduction shows an example of an assignment that partitions the space of

tasks into three occupations, corresponding to three worker types.

An assignment is feasible if workers can supply the time demanded by their occupation.

The demand for workers xn corresponds to the time required to perform their assigned tasks:

Dn ≡
∫
Yn

dG. (3)

Definition 1. An assignment T is feasible if Dn ≤ pn for all n ∈ {1, . . . , N}.

Production Technology Production at the plant aggregates the output from all

worker/task pairs through a Cobb-Douglas technology given an assignment T :12

F (T ) = exp

∫
Y

ln q (T (y) , y) dG

 . (4)

11It is possible that Yn = ∅ so that no task is assigned to worker xn.
12The aggregator does not need to be of the Cobb-Douglas type. The results hold for aggregators of the

CES family: F (T ) =
(∫

(q (T (y) , y))
σ−1
σ dG (y)

) σ
σ−1

, with σ > 1. See Appendix B.
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Under this technology, production only occurs if all tasks are assigned and performed. Recall

that task output is zero if a task is left unassigned; q (∅, y) = 0.13 I extend the technology

to allow for unassigned tasks in Section 5.

Single-dimensional representation It is possible to map the underlying

multidimensional heterogeneity into worker-specific single-dimensional indices of task

complexity. Doing so facilitates comparison with single-dimensional task assignment

models and makes explicit the role of multidimensional skills in the model.14 These indices

are endogenously determined by the model’s primitives (here the production function q and

the distribution of tasks G). Moreover, rather than having a common ordering for tasks

(where workers rank tasks in the same way), the ordering is worker specific, reflecting the

underlying differences in skills and the mismatch between workers and tasks.

The single-dimensional complexity index corresponds to worker-specific task rankings,

with the higher-ranked tasks being more productive. The rank is worker specific because

different workers have different productivity in a given task depending on their underlying

(multidimensional) skill mismatch. Crucially, changes in the distribution of tasks or the

production technology affect the rankings and can do so in different ways for different workers.

The rank of a task y for worker xn is

rn (y) ≡ Pr (q (xn, Y ) ≤ q (xn, y)) , (5)

where the probability is taken with respect to the distribution of tasks, G. The ranks are
13The production technology resembles a continuous version of Kremer (1993)’s O-ring production function.

To make the comparison precise, it is necessary to change the interpretation of q. Consider a continuous
production line indexed by y ∈ Y. A fatal error can occur at each point in the production line that terminates
the production process in failure. The arrival rate of an error is given by ln q (x, y) ≥ 0 and depends on the
point in the production process (y) and the worker assigned to that point (x). The probability that no error
arrives at the end of the whole process is given by (4). Thus, F (T ) can also be interpreted as expected
output given an assignment T . See Sobel (1992) for another application of this idea.

14The approach is akin to the construction of the “canonical formulation” of the multisector model in Gola
(2021). Adopting the single-dimensional representation is also useful for studying how changes in the overall
demand for skills affect the assignment. See Appendix C.
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worker independent when q satisfies the separability assumption of Chiappori, Oreffice, and

Quintana-Domeque (2012, p. 665).

The model’s representation is completed by defining an alternative production function,

Qn : [0, 1]→ R+, that maps rankings into task output:

Qn (rn (y)) ≡ q (xn, y) . (6)

Qn (r) gives the output of worker xn when performing a task with rank r. It follows from

the definition of the rank in (6) that Qn is increasing in r. For a given set of primitives

{X ,Y , q, G}, it is then possible to solve for the assignment in terms of {rn, Qn, }Nn=1.

However, the rankings’ dependence on the model’s primitives means that the mapping

must be recomputed in response to any change in the economic environment. Because of

this, I focus on the solution to the multidimensional setup in the rest of the paper.

2 The optimal assignment of tasks to workers

The problem is finding a feasible assignment that maximizes output:

max
T

F (T ) s.t. ∀nDn ≤ pn. (7)

This can be seen as the problem of a manager organizing production, taking as given the type

and quantity of workers at their disposal. If all firms are identical, the allocation coincides

with that of firms hiring workers in a decentralized market and assigning them to tasks once

hired, with wages determined by the workers’ marginal products (see Section 3.2).15

It is possible to guarantee the existence and uniqueness of a solution by imposing

conditions only on the production technology q. Proposition 1 makes this precise:

15The model can also be interpreted as a multisector assignment model where heterogeneous workers sort
into a finite set of sectors. See Appendix C.
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Proposition 1. Consider the optimal assignment problem in (7). If q is such that

i. every worker/task pair is productive: q (x, y) > 0 for all pairs (x, y) ∈ X × Y;

ii. q (x, ·) is upper-semicontinuous in y given x ∈ X ; and

iii. q discriminates across workers: for all xn ̸= xℓ, q (xn, y) ̸= q (xℓ, y) G-a.e.

Then, there exists a (G−) unique solution T ⋆ to the problem in (7). Moreover, there exists
a unique λ⋆ ∈ RN with minλ⋆

n = 0 such that T ⋆ is characterized as

T ⋆ (y) = argmax
x∈X

{
ln q (x, y)− λ⋆

n(x)

}
, (8)

where n (x) gives the index of a type of worker x ∈ X .

Proof. The result is established by expressing the problem in (7) as an optimal transport problem.
The proof is divided into three lemmas that relax the problem by allowing for non-deterministic
assignments and then constructing a solution from the dual of the relaxed problem. A
non-deterministic assignment is a joint measure over worker/task pairs: π : X × B (Y) → R+,
where B (Y) denotes the Borel sets of Y. In contrast to a deterministic assignment T , a
non-deterministic assignment π allows for mixing in the matching of workers and tasks, so that the
same task can be performed by more than one type of worker. The relaxed problem, in terms of π,
is linear in the choice of the assignment after a suitable transformation of the objective function:

max
π∈Π(P,G)

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) . (9)

The dual to (9) expresses the problem in terms of the multipliers (or potentials) λ and ν:

max
π∈Π

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) = inf
(λ,ν)∈RN×L1(G)

λn+ν(y)≥ln q(xn,y)

N∑
n=1

λnpn +

∫
Y
ν (y) dG (10)

= inf
νx∈RN

N∑
n=1

νxnpn +

∫
Y
max
n
{ln q (xn, y)− λn} dG.

Under the conditions above, this problem admits a unique solution that characterizes a deterministic
assignment T ⋆ according to equation (8).

Lemmas B.1, B.2, and B.3 formalize these arguments and establish the properties of the solution
to the primal and dual problems. The results follow from Theorems 5.10 and 5.30 in Villani (2009),
summarized in Theorem A.1 of Appendix A. All lemmas are stated and proven in Appendix B.

Before discussing the characterization of the optimal assignment, I briefly discuss the

role of the three conditions in Proposition 1. The first condition ensures that F (T ) is
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defined for any assignment, the second guarantees that duality applies to the problem so

that the equality in (10) holds, and the third plays a crucial in role in establishing the

uniqueness of an optimal assignment function T ⋆. The injectivity of q in x given y makes

it possible to distinguish between workers in each task. Without this injectivity, there

would not be a unique deterministic assignment; instead, optimal assignments would be

non-deterministic but only differ in the assignment of workers across tasks in which they are

equally productive.16 The discreteness of the problem on the worker side considerably relaxes

the standard differentiability conditions necessary to obtain a deterministic assignment. The

injectivity plays the same role as the “twist condition” of Carlier (2003) and the condition

for positive assortative matching in Lindenlaub (2017).17

The characterization of the optimal assignment in (8) allows me to more explicitly

characterize the occupations in terms of the production technology q:

Yn = {y ∈ Y | ∀ℓ ln q (xn, y)− λ⋆
n ≥ ln q (xℓ, y)− λ⋆

ℓ} . (11)

Tasks are optimally assigned to workers who are more productive at performing them (lower

skill mismatch), subject to the penalty captured by λ⋆ that balances the demand for that

type of worker with the limited supply of workers (pn).

The occupation boundaries play a central role in determining the assignment’s properties,

like the the workers’ marginal product, compensation, and substitutability. Intuitively, the

boundaries are formed by a worker’s marginal tasks, a concept that I expand on in Section

3.1. Formally, the boundaries are formed by task y ∈ ∂Yn for which the inequality in (11) is
16This assumption precludes q to take a Leontieff form, i.e., requiring a minimum level of skill to perform

tasks, where skills in excess of the requirement do not affect output. In this case there would be areas of the
task space that can be arbitrarily divided among (qualified) workers, generating the same overall output.

17When the distribution of workers is continuous, it is necessary to distinguish between workers who
are arbitrarily close (in the skill space). This idea is captured by the derivative of the objective function,
which is required to be injective, often referred to as the twist condition. These conditions underlie the
local existence results for the assignment in Villani (2009, ch. 10) used across many applications of optimal
transport. In technical terms, both the condition (iii) in Proposition 1 and the conditions on the injectivity
of the derivative of the objective function guarantee that the q-subdifferential of (the dual potential) ν is
single valued: ∂qν (y) = {x ∈ X |λ (x) + v (y) = ln q (x, y)}. The q-subdifferential of ν, ∂qν (y), corresponds
to the solution of the optimal assignment problem as in (8). See Lemma B.3 in Appendix B.
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(a) Manhattan distance: L1 (b) Euclidean distance: L2

(c) Minkowski distance of order 4: L4 (d) Chebyshev distance: L∞

Figure 2: Assignment Example: Mismatch Loss
Note: The figure shows the optimal assignments in a two-dimensional skill space (cognitive and manual skills) with three
types of workers {x1, x2, x3} with mass P = {0.4, 0.3, 0.3}. Tasks are uniformly distributed over the unit square; i.e.,
Y = [0, 1]2 and g (y) = 1. The production function q is given by ln q (x, y) = a

′
xx + a

′
yy − d (x, y), where d (x, y)

is a distance measure capturing mismatch. Each sub-figure considers a different distance of the L-p distance family:

d (x, y) =
(∑d

i=1 |xi − yi|p
)1/p

. A higher p puts more weight on the dimension with the highest mismatch. The Chebyshev

distance is obtained as limp→∞
(∑d

i=1 |xi − yi|p
)1/p

= maxi |xi − yi|.
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met with equality for some ℓ:

∂Yn = {y ∈ Y|∃ℓ̸=n ln q (xn, y)− λ⋆
n = ln q (xℓ, y)− λ⋆

ℓ (12)

∧∀m ̸=ℓ,n ln q (xn, y)− λ⋆
n ≥ ln q (xm, y)− λ⋆

m} .

The assignment’s key feature is that the mismatch between workers (pairs) is constant

across the occupation boundaries, as in equation (12). The difference in mismatch is

reflected by the difference in the productivity between workers (ln q (xn, y)− ln q (xℓ, y))

and is captured by the multipliers as (λ⋆
n − λ⋆

ℓ).

The shape of the boundaries in the skills space depends on how the mismatch measure

implicit in q weighs the distance between workers and tasks. However, the assignment follows

the common principle of minimizing mismatch regardless of the functional form chosen for q.

Figure 2 exemplifies this by plotting the optimal assignment under four different measures

of distance for the plane. I consider distances belonging to the L-p family: d (x, y) =(∑d
i=1 |xi − yi|p

)1/p

. A larger value for p makes the distance measure more sensitive to the

dimension of highest mismatch, which affects the curvature of the boundaries.18

Imposing Assumption 2 simplifies the characterization of occupations. When q is as in

equation (1), the occupation boundaries take the form of hyperplanes whose normal vectors

depend on matrix A and the difference in skills between neighboring workers. The boundary

between the occupations of workers xn and xℓ is

y ∈ Yn ∩ Yℓ ←→ 0 = y
′
A (xℓ − xn)︸ ︷︷ ︸
Normal Vector

−1

2

(
x

′

ℓAxℓ − x
′

nAxn + a
′

x (xℓ − xn) + λ⋆
ℓ − λ⋆

n

)
︸ ︷︷ ︸

Intercept

. (13)

Equation (13) reveals an equivalence between the optimal assignment and the partition
18Alternative measures of mismatch can reduce the dimensionality of the problem by encoding the

differences between workers and tasks into a single dimension. This is the case when measuring mismatch
with the cosine similarity between the skill vectors of workers and tasks. The assignment problem reduces to
finding cutoff values for angles θ ∈ [0, π/2] that characterize rays partitioning the space. The cosine similarity
has been used to measure the distance between occupations by Gathmann and Schönberg (2010) and Baley,
Figueiredo, and Ulbricht (2021). I provide details for the cosine similarity mismatch in Appendix D.
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Figure 3: Assignment Example: Quadratic Mismatch Loss

Note: The figure shows the optimal assignment in a two-dimensional skill space (cognitive and manual skills) with three types

of workers {x1, x2, x3} with mass P = {0.4, 0.3, 0.3}. Tasks are uniformly distributed over the unit square; i.e., Y = [0, 1]2 and

g (y) = 1. The production function q is as in (1) with A = I2.

induced by a power diagram, which allows me to use tools from computational geometry

to analyze the assignment’s properties.19 The optimal assignment partitions the space into

convex polyhedra defined by hyperplanes as in Aurenhammer, Hoffmann, and Aronov (1998)

and Galichon (2016, ch. 5). Figure 3 exemplifies this by plotting the optimal assignment

under the task output function of Assumption 2.

Indirect production function The optimal assignment implies an indirect production

function that transforms inputs (workers) into goods. Crucially, the amount of an input (a

type of worker) used in production and what that input is used for are not the same (Autor,

2013). Consequently, the relationship between inputs and output depends on how tasks are

assigned to workers and how the assignment itself changes as the amount of inputs varies.
19A power diagram partitions a space into cells that minimize the power between a node (x) associated

with the cell and the points y in the cell. The power function between two points is pow (x, y) = d (x, y)
2−µ,

where d (x, y) is a distance and µ ∈ R.
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The role of workers in production is captured by the value of the assignment problem (7):

V (p1, . . . , pN) ≡ max
T

F (T ) s.t. ∀nDn ≤ pn. (14)

Function V : RN
+ → R+ describes how production changes when the workforce composition

changes, allowing for workers to be reassigned optimally across tasks.

3 Properties of the assignment

I now examine the properties of the assignment. The multipliers λ⋆ that characterize the

assignment in (8) play a central role by determining the boundaries of occupations and

therefore workers’ marginal product and compensation. I show that λ⋆ also implies an

ordering of workers based on their relative productivity in boundary tasks. This ranking

plays an important role in shaping the effects of automation and other worker-replacing

technologies studied in Section 4.

3.1 Marginal products and worker ranks

The marginal product of type n workers is obtained from the indirect product function V

as the change in output if the supply of type n workers (pn) were to increase. In this way,

the marginal product takes into account how the assignment changes optimally in response

to an increase in the supply of type n workers.20

Proposition 2. The marginal product of type n workers is

MPn ≡
∂V (p1, . . . , pN)

∂pn
= F (T ⋆)λ⋆

n. (15)

20It is also possible to define a measure of the marginal product of a type n worker at a given task y, given
some arbitrary assignment T . See Appendix B.2.
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Proof. The result follows from the relationship between the multiplier λ of the relaxed problem
(9) and its dual (10) and the multipliers of the original problem (7). The relationship is obtained
by applying the envelope theorem (Milgrom and Segal, 2002) and the definition of the indirect
production function in (14). See Lemma B.4 in Appendix B for a detailed derivation of the result.

The relationship between the value of λ⋆ and the workers’ marginal product comes from

how the assignment responds to an increase worker supply. When pn increases, the additional

workers increase output only if tasks are reassigned to them from other workers. The first

tasks to be reassigned are those in the occupation boundaries. Consider the occupations of

two types of workers, n and ℓ. Tasks in the boundary, y ∈ Yn ∩ Yℓ, satisfy

λ⋆
n − λ⋆

ℓ = ln q (xn, y)− ln q (xℓ, y) . (16)

Then, the difference in the multipliers λ⋆
n and λ⋆

ℓ is given by the log difference of output in

boundary tasks, that is, the percentage increase (or decrease) in output if the tasks along

the boundary are reassigned from ℓ to n.21 Thus, it is only optimal to use the additional

supply of workers if output increases along the boundary of their occupation. In this sense,

these are a worker’s marginal tasks, as in Figure 4a.

The reassignment process that originates in the increase in the supply of workers creates a

cascading effect that affects other workers’ assignments (Figure 4b). As tasks are reassigned

toward type n workers, workers along the Y3 boundaries are displaced. This process generates

an excess supply of workers of other types, giving rise to a new round of reassignment

along the boundaries. Following the cascading process reveals an ordering of workers by

productivity, with the least productive worker being displaced by increases in the supply of

more productive ones. As a result, the least productive worker has zero marginal product.

Increases in the supply of that type of workers do not increase output because the additional
21It is useful to consider an example with finitely many tasks, say {y1, y2}, one assigned to worker xn and

the other to worker xℓ. Then, total output is F (T ) = q1 (xn) q2 (xℓ). If the assignment changes by having

worker xn perform both tasks, the new output is F
(
T

′
)
= q2(xn)

q2(xℓ)
F (T ). Then, ln

F
(
T

′)
F (T ) = ln q2(xn)

q2(xℓ)
= λn−λℓ

so that output increases by approximately 100 (λn − λℓ)%.
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(a) Optimal assignment (b) Changes in demand when λ⋆
3 increases

Figure 4: Marginal Tasks and Task Reassignment

Note: The figure shows the assignment in a two-dimensional skill space (cognitive and manual skills). Five types of workers

are considered {x1, . . . , x5} with mass P = {0.3, 0.2, 0.3, 0.1, 0.1}. Tasks are uniformly distributed over the unit square; i.e.,

Y = [0, 1]2 and g (y) = 1. The production function q is as in (1) with A = I2. The left panel highlights the marginal tasks

of worker x3. The right panel shows the reassignment of tasks following an increase in the supply of x3 workers. The Y3

boundaries are pushed outwards as well as the shared boundary of Y2 and Y1, following the cascading effect of the reassignment.

workers are left unassigned.22

The total gain in output from the initial increase in the supply of type n workers takes

into account the increase in output from all the reassignments. Using the relation in (16),

and recalling that minλ⋆
n = 0, we get a total increase in output of λ⋆

n as in Lemma 2.

The value of λ⋆ depends on the differences in skills and skill mismatch of workers relative

to the least productive worker. Under Assumption 2, it is possible to make this precise.

Manipulating equation (13) gives

λ⋆
n = ax′ (xn − x)︸ ︷︷ ︸

Difference in Skills

− (xn − yn)
′
A (xn − yn)︸ ︷︷ ︸

xn mismatch at boundary

−
(
x− y

)′
A
(
x− y

)︸ ︷︷ ︸
x mismatch at boundary︸ ︷︷ ︸

Difference in Mismatch

, (17)

22The least productive worker has zero marginal product because of the capacity constraint on the set of
tasks captured by G. This motivates the normalization of the multiplier λ in Proposition 1.
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where x are the skills of the least productive worker (the worker with λ⋆
m = 0) and yn

and y are boundary tasks of workers xn and x, respectively. This makes it clear that the

contribution of each skill to the worker’ marginal product depends on the whole assignment.

Therefore, skills are not individually priced independently of the occupations, similar to the

results of Mandelbrot (1962) and Heckman and Scheinkman (1987).

Finally, it is worth stressing the role of the multipliers λ⋆ in determining worker ranks.

An a priori ranking of workers does not exist because they are heterogeneous along

multiple dimensions. However, the optimal assignment implies a ranking based on the

relative productivity of workers in their boundary tasks. This ranking is completely

captured by λ⋆ and has direct implications for how a reassignment happens following a

change in the environment. I will return to this in Section 4.1 when I introduce

worker-replacing technologies like automation.

3.2 Worker compensation and the skill premia

The marginal product determines worker’s compensation. Consider the problem of a price-

taking firm seeking to maximize profits. The firm’s problem is to choose both the demand

for each type of worker and the assignment of tasks to workers:

max
T

F (T )−
N∑

n=1

wnDn (T ) , (18)

where wn is the wage paid to type n workers and Dn is their demand (equation 3). This

problem results in the same assignment as the optimal assignment problem in (7) if the

workers’ wages correspond to their marginal products plus a constant guaranteeing that
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they all receive at least their outside option:23

wn = F (T ⋆)λ⋆
n + κ, where κ ≥ w. (19)

The level of wages is not pinned down because only the difference in wages affects the

assignment (see equation 11).24 Nevertheless, wage differences are determined by marginal

products and are informative about the role of skill mismatch in determining skill premia.

In particular, the wage of a worker relative to the lowest paid worker gives their marginal

product, which depends on the worker’s mismatch and skill level as in (16) and (17).

The marginal product of workers also pins down the labor share. Workers do not

appropriate all the output they produce, only the output they generate in marginal

(boundary) tasks plus the compensation for their outside option. The labor share is25

LS ≡

N∑
n=1

wnDn

F (T )
=

N∑
n=1

λ⋆
npn +

κG (Y)
F (T )

. (20)

3.3 Substitutability across workers

The substitutability of workers in production, as measured by their elasticity of

substitution, plays an important role in policy analysis and in determining the effects of

changes to technology. Intuitively, workers performing similar tasks are more substitutable,

as are workers with similar skills. I make these results precise by computing the elasticity
23These results apply if all production units in the economy operate with the same technology (i.e., G and

q) or if markets are segmented. It is also possible to determine wages in an economy with various technologies
described by different combinations of tasks (or blueprints), captured by different G distributions. Doing
so becomes intractable in the multidimensional setting I am describing. See Haanwinckel (2021) for an
application of these ideas to the dispersion of income in a single-dimensional framework.

24The indeterminacy of the level of wages is a common feature of assignment models (Sattinger, 1993).
This result is not a consequence of the discreteness in the distribution of workers; see Teulings (1995) and
Lindenlaub (2017). The level of wages is pinned down, for example, when there is an excess supply of workers
(P > G (Y)) so that (at least) one type of worker will be partially unassigned (unemployed), driving down
the wage for that type of worker to w. This will be the case when I introduce automation in Section 4.1.

25Adenbaum (2021) exploits the first order condition of this problem and the relationship of marginal
products with the labor share to determine productivity gains from worker specialization.
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of substitution under the optimal assignment. To do this, I use the Morishima elasticity of

substitution (Blackorby and Russell, 1981, 1989), which is the appropriate measure of

substitutability in a setup with more than two types of workers.26 It measures the change

on the ratio of demands for two inputs (in this case two workers, Dℓ/Dn) after the marginal

products (MPn, MPℓ) change.

Definition 2. The elasticity of substitution between type n and ℓ workers is

Mℓn ≡
∂ lnDn/Dℓ

∂ lnMPn

= Eℓn − Enn, (21)

where Eℓn ≡ MPn

Dℓ

∂Dℓ

∂MPn
is the cross-elasticity of demand for worker k with respect to a change

in worker n’s marginal product.27

A direct implication of the assignment is that workers are gross substitutes in the sense

of Kelso and Crawford (1982): the elasticity of substitution is always positive. An increase

in worker xn’s marginal product, captured by an increase in λ⋆
n, results in a decrease of their

demand, Dn, and a weak increase in the demand for other workers (see equation 11). It

follows that Enn < 0 and Enℓ ≥ 0. From the point of view of worker compensation, increasing

λ⋆
n raises the cost of worker n, causing the firm to substitute them for other workers.

Moreover, only neighbors are directly substitutable for one another. The cross-elasticity is

zero between workers who do not share a boundary. Only worker xn’s neighbors are directly

affected when λ⋆
n changes. The sensitivity of the boundaries depends on the slope of the

production function q evaluated at the boundary tasks; see (16). To obtain the magnitude

of the cross-elasticities, Enℓ, it is necessary to determine this change, which depends on q.

The geometric structure gained by imposing Assumption 2 makes it possible to further

characterize the change in demand following a change in λ⋆. In this case, the change in

demand is given by the area of a (hyper)trapezoid, formed as the plane that defines the
26See Baqaee and Farhi (2019) for a recent application of the Morishima elasticity.
27With more than two inputs, the direction of the change in the ratio of marginal products matters because

the demands for inputs changes differently depending on whether MPn or MPℓ vary (Blackorby and Russell,
1989, p. 885). Because of this, the elasticity is in general asymmetric so that Mℓn ̸= Mnℓ.
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(a) Optimal assignment (b) Changes in demand when λ⋆
3 increases

Figure 5: Assignment Example: Change in worker demand

Note: The figure shows the assignment in a two-dimensional skill space (cognitive and manual skills). Five types of workers

are considered {x1, . . . , x5} with mass P = {0.3, 0.2, 0.3, 0.1, 0.1}. Tasks are uniformly distributed over the unit square; i.e.,

Y = [0, 1]2 and g (y) = 1. The production function q is as in (1) with A = I2.

boundary between occupations moves. Figure 5b illustrates this by increasing the value of

λ⋆
3. The figure shows that the boundaries of Y3 shift “inward,” reducing the demand for x3

and increasing the demand for their neighbors. In contrast, the boundary of Y2, which does

not share a boundary with Y3, does not change.

The following Proposition formalizes the above results:

Proposition 3. Let λ⋆ ∈ RN characterize the optimal assignment as in (8). If q is
continuous, then Dn is continuously differentiable with respect to λ and

i. if Yn ∩ Yℓ = ∅, then ∂Dn

∂λℓ
= ∂Dℓ

∂λn
= 0 and Enℓ = Eℓn = 0;

ii. ∂Dn

∂λn
= −

∑
ℓ̸=n

∂Dℓ

∂λn
< 0.

If Assumption 2 holds, then

iii. ∀ℓ̸=n
∂Dn

∂λℓ
= area(Yn∩Yℓ)

2
√

(xn−xℓ)
′
A′A(xn−xℓ)

=

∫
Yn∩Yℓ

dG

2
√

(xn−xℓ)
′
A′A(xn−xℓ)

≥ 0.
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Proof. The first result follows immediately from the characterization of occupations in (11). The

second result follows from the feasibility of the assignment, which ensures that
N∑

n=1
Dn =

∫
Y dG so

that the sum of demands is constant. Then,

∂Dn

∂wn
+
∑
m̸=n

∂Dm

∂wn
= 0. (22)

The third result extends the findings of Feenstra and Levinsohn (1995) for arbitrary configurations
of workers (x) by applying Reynolds’ transport theorem (see Theorem A.2 in Appendix A). I present
the complete proof in Lemma B.5 of Appendix B.3.

The first result in Proposition 3 formalizes the idea that only neighbors are directly

substitutable, while the second result exploits the feasibility of the assignment to find a

relationship between the change in demand across workers. This relationship gives rise to a

sharper formula for the elasticity of substitution that takes into account the cascading effect

tied to task reassignment:

Corollary 1. The Morishima elasticity of substitution between workers xn and xℓ is a

weighted average of the cross-elasticities of demand of all workers, with the weights given

by the demand of each worker type relative to worker n’s demand.

Mℓn =

(
1 +

Dℓ

Dn

)
Eℓn +

∑
m ̸=n,ℓ

Dm

Dn

Emn. (23)

The last result of Proposition 3 exploits the geometric structure induced by Assumption

2 to compute closed-form expressions for the derivatives of demand. The cross-derivative of

demand depends on how exposed two workers are to one another, measured by the length of

their boundary, and how similar their skills are, measured by the weighted distance between

their skills (xn and xℓ). This captures the idea that workers with more common tasks, i.e.,

with longer boundaries, are more substitutable. How much the boundary reacts to a change

in demand depends on how similar workers are at performing tasks, as captured by the

denominator. The closer their skills, the more substitutable they are along their boundary.
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4 Directed technical change

Changes in technology are a major factor in shaping the way in which tasks are assigned to

workers. For instance, the increase of information technology (IT) in the workplace has

shifted focus away from manual skills and changed the distribution of tasks across

occupations. Alternatively, automation technologies and offshoring have replaced workers

in performing certain tasks across manufacturing jobs, customer services, accounting, etc.

In this section, I consider two forms of technical change and study how they affect the

division of tasks into occupations. Innovation in worker-replacing technologies lead to certain

tasks being automated and to (the remaining) tasks being reassigned to workers. Innovation

in skill-enhancing technology, such as IT in the modern workplace, or the power loom in the

industrial revolution, changes worker productivity, inducing task reassignments to reduce

mismatch across occupations.

4.1 Worker-replacing technologies

I introduce worker-replacing technologies in the form of robots that can replace workers at

performing tasks. The robot is a flexible technology that can be adapted to perform different

types of tasks, capturing the flexibility of current technologies like industrial robots or AI

programs (Frey and Osborne, 2017; Acemoglu and Restrepo, 2020). It also relates to other

work-replacing technologies like offshoring (Blinder, 2009; Blinder and Krueger, 2013).

The automation problem consists of designing a robot and assigning tasks to the workers

and the robot to maximize production. The tasks assigned to the robot are automated. I

denote by r ∈ S the robot’s skills and by pr ≥ 0 its supply. The automation technology is

embodied by a cost function Ω : S × R+ → R so that the cost of producing a mass pr of

a robot with skills r is given by Ω (r, pr). Once the robot is designed, the set of available

workers is expanded to include it: XR ≡ {x1, . . . , xN , r}. Accordingly, the assignment is

now described by a function TR : Y → XR. I denote by qR : S × Y → R the production
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technology of the robot so that a robot with skills r performing task y produces qR (r, y).

When tasks are automated, the total demand for labor decreases, leaving some workers

unassigned.28 As tasks are assigned to the robot, the workers who would have performed

those tasks are directly displaced. However, these workers do not necessarily remain

unassigned because they can take over other workers’ tasks. The end result of this process

depends on their relative productivity as captured by λ⋆. As in Section 3.1, workers with

the lowest marginal product will become displaced even if the tasks in their occupation are

not directly affected by automation.

However, a large enough displacement of tasks can change worker ranks, reflecting the

increased mismatch of displaced workers after being reassigned. In this way, low levels of

task displacement reduce wages, but larger levels can also change the worker ranking. These

patterns are in line with findings for the U.S. from Acemoglu and Restrepo (2021).

The automation problem is to choose jointly the robot’s skills and mass (r, pr) and the

new assignment (TR) to maximize output, net of the automation cost (Ω):

max
{r,pr,TR}

FR (TR)− Ω (r, pr) s.t. ∀nDn ≤ pn DR ≤ pr, (24)

where

FR (TR) = exp

 ∫
Y\YR

ln q (TR (y) , y) dG+

∫
YR

ln qR (r, y) dG

 (25)

and

YR = T−1
R (r) , DR =

∫
YR

dG. (26)

It is convenient to think of the problem in two steps, first solving for an optimal

assignment given a set of workers and a robot and then choosing the robot’s optimal skills

and mass. The problem of finding an optimal assignment can be simplified by using the

results in Proposition 1. Taking as given the robot’s skills and mass (r, pr), the optimal
28This is a consequence of the assumption that the set of tasks to be performed (Y) is fixed, as is the

distribution of tasks (G). I relax this assumption in Section 5.
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assignment is characterized by a vector µ⋆ ∈ RN+1:29

T ⋆
R (y) = xn ←→∀ℓ ln q (xn, y)− µ⋆

n ≥ ln q (xℓ, y)− µ⋆
ℓ (27)

∧ ln q (xn, y)− µ⋆
n ≥ ln qR (r, y)− µ⋆

R.

The problem then becomes

max
{r,pr}

VR (r, pr)− Ω (r, pr) , (28)

where VR (r, pr) ≡ FR (T ⋆
R) takes into account how the optimal assignment reacts to changes

in the robot’s skills and mass.

I obtain the first order conditions of the problem using the envelope theorem of Milgrom

and Segal (2002) and Reynolds’ transport theorem.30 I first focus on the derivative of output

with respect to the robot’s skills:

∂ (VR (r, pr)− Ω (r, pr))

∂r
= VR (r, pr)

∫
YR

∂ ln qR (r, y)

∂r
dG− ∂Ω (r, pr)

∂r
= 0d×1. (29)

The first term in (29) accounts for the change in output across all tasks assigned to the

robot. It gives the net gain in output from a change in the robot’s skills as skill mismatch

changes with r across tasks. Unlike previous results, all of the tasks assigned to the robot

matter, not only those in the boundary of the automated region.

It is convenient to use an explicit functional form for qR to fix ideas. Assuming that

qR (r, y) is as in (1), the first order condition becomes

∂ (FR (µ⋆ (r, pr) , r)− Ω (r, pr))

∂r
= 2FRDR

(ax
2
− A (r − bR)

)
− ∂Ω (r, pr)

∂r
= 0d×1, (30)

29This strategy has been exploited by the optimal sensor placement literature under quadratic loss
functions; see Aurenhammer et al. (1998, Thm. 1) and Xin et al. (2016, Thm. 1).

30See Xin et al. (2016) for further applications of power diagrams with capacity constraints. Proposition 5
in Appendix B provides an alternative derivation for the result based on de Goes et al. (2012). The alternative
proof is lengthier but more explicit, making it clear how changing the robot’s skills affects output.
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where bR =

∫
YR

ydG

DR
is the centroid (or barycenter) of the automated area. Absent other

considerations, it is optimal to set the robot’s skills to the centroid of the automated region

as this minimizes the (quadratic) loss from skill mismatch, thus maximizing the robot’s

output.31 The robot’s skills deviate from the centroid to account for gains from having

higher skills (ax) and for the cost of automation (∂Ω(r,pr)/∂r).

The first order condition with respect to pr takes the usual form of equating marginal

product to marginal cost. As in (15), the marginal product is MPR = FRµ
⋆
R:

FR (T ⋆
R)µ

⋆
R −

∂Ω (r, pr)

∂pr
= 0. (31)

The first order condition is descriptive of the properties that the robot’s skills must satisfy

relative to the automated region, but it does not pin down the set of tasks to be automated.

The automation problem in (24) is not concave in r, and thus condition (29) is only necessary

and not sufficient (Urschel, 2017). Regardless, the problem can be solved numerically using

a version of Lloyd’s algorithm (Lloyd, 1982). This algorithm has been proven to converge

monotonically to a local minimum of the objective function (Du et al., 2010). Urschel (2017)

gives sufficient conditions for convergence to a global minimum.32

Figure 6 presents the solution to the automation problem, assuming that q and qR satisfy

Assumption 2 and the automation cost is Ω (r) = r
′
ARr. Both figure panels differ only on

the weights of cognitive and manual skills in the automation cost function. The two examples

in the figure capture a general feature of the automation problem: robots are designed to

replace workers in performing tasks where skill mismatch is high. These tasks are located

along the boundaries of occupations, and thus the “core” tasks are less likely to be automated

because the worker performing those tasks is best suited to do so.
31This result is shared by the literature on the optimality of centroidal Voronoi diagrams. It is also used

in K-means and other vector quantization methods.
32In practice there are only finitely many candidates for a global minimum, making the selection of the

solution simple. It is optimal to automate tasks around one of the vertices of the partition induced by the
initial assignment (without automation). Aurenhammer (1987) shows there at most 2n–5 of these vertices
in a diagram when the production function is quadratic in x and y, d = 2 and n ≥ 3.
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(a) Symmetric weights (b) Asymmetric weights

Figure 6: Directed Automation Example: Quadratic Automation Cost

Note: The figure shows the result of the automation problem, taking the robot’s mass as given in a two-dimensional skill

space (cognitive and manual skills). Three types of workers are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are

uniformly distributed over the unit square; i.e., Y = [0, 1]2 and g (y) = 1. The production function q is as in (1) with A = I2,

ax = [0.2, 0.1]
′
, and ay = [0, 0]

′
. The automation cost function is Ω(r) = r

′
ARr, with AR diagonal. The mass of the robot is

fixed at pr = 0.05. The assignment without the robot is presented in gray.

Panel 6a assumes symmetric weights, and thus it is optimal to automate the tasks around

the center vertex of the original assignment. However, because endowing the robot with high

cognitive and manual skills is costly, it is not optimal to place it in the automated area. The

introduction of the robot displaces all three workers with respect to the original assignment,

but only worker x1 is displaced after reassignment. This shows how it can be optimal to

design robots that are themselves mismatched for the tasks they perform. Because of this,

output increases but mismatch remains.

Panel 6b assumes a higher weight on automating cognitive tasks. It is now optimal to

automate the tasks around the vertex formed by Y1, Y2, and the boundary of the task space.

These tasks involve less cognitive skills, so it is possible to locate the robot’s skills closer to

the centroid of the automated region. As in panel 6a, automation induces a reassignment of

tasks along the Y1 boundary toward more productive workers.
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Wages and the labor share The effect of automation on wages is ambiguous. First,

automation causes tasks to be reassigned. As a result, the workers previously performing

the automated tasks are not the only ones affected. The reassignment weakly increases the

mismatch between workers and tasks. Introducing the robot relaxes the assignment problem

and weakly decreases the value of the multipliers associated with each worker; i.e., µ⋆
n ≤ λ⋆

n for

n = {1, . . . , N}. This increase in mismatch reduces marginal products and wages. Second,

automation reduces the skill mismatch for the tasks being automated, increasing overall

output. This then increases the marginal product and wages of all workers.

Whether or not wages decrease depends on how productive robots are at the tasks they

overtake (Acemoglu and Restrepo, 2018a). A major increase in productivity due to

automation can increase workers’ marginal product, increasing wages, while moderate

increases in output from the automated tasks can be dominated by the higher mismatch

experienced by workers, ultimately reducing their wages.

Regardless of the change in wages, the labor share decreases as the value of the multipliers,

µ⋆, and the total demand for labor, G (Y\YR), decrease.

Lemma 1. The labor share LS =
N∑

n=1
wnDn/F (TR) decreases with automation.

Proof. The decrease in the total demand for labor, G (Y\YR) < G (Y), and (weak) increase in
output, F (T ⋆

R) ≥ F (T ⋆), follow from the automation problem in (24). The effect on the labor
share follows from its definition in (20).

Worker training The same tools developed for analyzing the automation problem can

be used to study the problem of optimal worker training. Formally, the problem of training

worker n by choosing new skills x̃ ∈ S is

max
{x̃,T̃}

F
(
T̃ , x̃

)
− Γ (x̃|xn, pn) s.t. ∀ℓ Dℓ ≤ pℓ, (32)

where the cost of changing skills (Γ) depends on the workers’ current skills and mass. I

discuss the solution to this problem in Appendix B.5.
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The worker training problem is particularly useful when thinking about the introduction

of new tasks. Workers are unlikely to be well suited for performing new tasks, increasing

mismatch at early stages of adoption. It is then optimal to train them. The introduction

of new technologies, like computers and information technologies, will change occupations

directly by modifying the tasks carried out by workers. The training process that follows

will further change occupations as workers’ skills adapt.

4.2 Skill-biased technology

Technical change can also complement workers’ skills. This is the case with the introduction

of software that complements cognitive over manual skills in the completion of tasks, or heavy

machinery, such as cranes, that complements dexterity over brawn. Unlike automation, this

type of technical change affects the productivity of workers across tasks without displacing

them. But as with automation, technical change is followed by a reassignment of tasks.

Skill-biased technical change can also be directed. It is optimal to favor the skills with

the lowest mismatch, concentrating technology on enhancing the skills the workforce already

excels at. This contrasts with the way in which automation is directed. Instead of replacing

workers at the tasks they are ill-suited for, technology enhances the worker’s productivity

by increasing the weight of the skills with a better match while reducing the importance of

the skills that the workforce lacks.

To make the discussion precise, I impose additional structure on how skill mismatch

affects production. Consider two skills, cognitive and manual, and a production technology

q as in (1) where the relative importance of skills is governed by a diagonal matrix A =

diag (α, 1− α), with α ∈ [0, 1]. A higher α makes cognitive match more important for

production while simultaneously reducing the importance of manual skill match.

The problem is to choose the value of α, taking into account changes in the assignment

of tasks to workers. I assume that the cost of changing α is proportional to output; this

simplifies the analysis by making the magnitude of the cost comparable to the gains from
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additional production and captures the idea that changing more productive processes is more

expensive than changing less productive ones. The problem is

max
{T,α}

F (T, α)−Υ(α)F (T, α) s.t. ∀nDn ≤ pn. (33)

The optimality condition for α is obtained using the same techniques as before:

(Mm −Mc)−
∂Υ(α)

∂α
≥ 0, (34)

where Ms is total mismatch in skill s: Ms ≡
N∑

n=1

∫
Yn

(xn,s − ys)
2 dy. The first term captures

how much production would increase if α increases. The net gain in production is determined

by the difference in total mismatch by skill under the current assignment. If there is more

mismatch in the manual dimension (Mm > Mc), it is optimal to direct technical change

toward cognitive skills by increasing α. In this way, technology reinforces the workforce’s

bias by giving more weight to skills for which there is a better match. Absent that cost, it

is optimal to shift all the weight toward one of the skills, specializing production to depend

only on the skill with the lowest mismatch.

Figure 7 shows how the assignment of tasks to workers changes when the weight of

cognitive skills increases. The boundaries of occupations shift and become less sensitive

to differences in manual skills, discriminating across workers based on differences in their

cognitive skills (as α → 1, the boundaries become vertical). As this happens, worker x3

becomes less substitutable with others because of the differences in their cognitive skills;

recall from Proposition 3 that the elasticity of substitution decreases with the weighted

distance between workers’ skills. In contrast, workers x1 and x2 become more substitutable

because they differ mostly in their manual skills, which are now down weighted.
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Figure 7: Assignment Example: Increase in the Weight of Cognitive Skills
Note: The figure shows the result of an increase in the weight of cognitive skills in a two-dimensional skill space (cognitive
and manual skills). Three types of workers are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are uniformly
distributed over the unit square; i.e., Y = [0, 1]2 and g (y) = 1. The production function q is as in (1) with A = diag (α, 1− α).

5 Unassigned tasks

I now extend the model to allow tasks to be left unassigned. I consider first the model without

automation and contrast the result with those in Section 2, then I introduce automation.

Having unassigned tasks also allows automation technology to improve productivity without

replacing workers by automating tasks not otherwise assigned. The number of tasks left

unassigned depends on the productivity of workers relative to their outside option.

5.1 Optimal assignment with unassigned tasks

I modify the aggregator in equation (4) to only aggregate the output of assigned tasks:

F∅ (T ) = exp

 ∫
Y\Y∅

ln q (T (y) , y) dG

− 1, (35)

where T : Y → X ∪{∅} so that tasks can be unassigned and Y∅ = T−1 ({∅}) denotes the set

of unassigned tasks. F∅ expresses output relative to no assignment (T (y) = ∅ for all y) so

that if all tasks are left unassigned, output is zero. It is immediate that (35) is equivalent
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to having q (∅, y) = 1 in the original formula (4), extending T to take values over X and the

unassigned option. That way, unassigned tasks do not add to the integral, obtaining (35)

as a result. Adopting this convention turns out to be useful because it allows me to apply

Proposition 1.

The main difference with the results of Section 2 is that the level of the worker’s outside

option (w) affects the assignment. To simplify calculations, I further assume that the outside

option is a fraction λ of total output: w (T ) = λF (T ).33 Then, there exists a vector λ⋆ ∈ RN
+

such that minλ⋆
n = 0 and occupations are given by

Yn = {y ∈ Y | ∀ℓ ln q (xn, y)− λ⋆
n ≥ ln q (xℓ, y)− λ⋆

ℓ ∧ ln q (xn, y)− λ⋆
n ≥ λ} . (36)

This condition differs from (11) in the introduction of the second inequality, which compares

the output of worker n in the task with the minimum payment they must receive. This

ensures that assigning the task is profitable. The unassigned tasks are

Y∅ = {y ∈ Y | ∀n ln q (xn, y)− λ⋆
n < λ} . (37)

The higher the λ, the fewer the tasks assigned for production. A worker’s marginal product

is given as in equation (15), and their wage is wn = λ⋆
nF (T ⋆) + w = (λ⋆

n + λ)F (T ⋆).

To fix ideas, consider q as in (1), depending on the quadratic mismatch between the

worker’s and task’s skills. This provides a clear geometrical interpretation for which tasks

are left unassigned. Workers will be assigned to a task only if the mismatch is no greater

than a
′
xx+a

′
yy−λ as this guarantees that the worker produces enough output for it to cover

the workers’ outside option.34 However, the condition does not imply that the task will be

assigned to the worker. This depends on the comparison between workers’ productivity as
33Without this assumption, it is not possible to determine the value of λ independently of the assignment

T . The term λ in (36) must be replaced by w/F (T ).
34With ay = 0, a task will be assigned only if it lies in an ellipse of radius

√
a′
xx around the worker’s skills.

The ellipse’s shape depends on the weights in matrix A.
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(a) Symmetric weights: αy = 1/2 (b) Asymmetric weights: αy = 3/4

Figure 8: Assignment Example: Unassigned Tasks
Note: The figure shows the assignment in a two-dimensional skill space (cognitive and manual skills). Three types of workers
are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed over the unit square; i.e., Y = [0, 1]2

and g (y) = 1. The production function q is as in (1) with A = I2, ax = [0.2, 0.1]
′
, and ay = ay [αy , 1− αy ]

′
, with ay ∈ R+

and αy ∈ [0, 1]. The worker’s outside option is 0.

in Section 2 (see the first inequality in equation 36).

Which tasks to perform will depend critically on which tasks are more productive given

the current technology. This idea is captured by ay, which determines which tasks generate

more output regardless of which worker performs them. A higher cognitive weight in ay

makes cognitive-intensive tasks more likely to be performed.

Figure 8 shows the optimal assignment, with the gray areas representing unassigned

tasks. As in Section 4.1, these tasks are located along the boundaries of the task space

and the vertices of the assignment. The two panels differ on the weight of task skills in

determining the output of a task, as measured by ay. I assume that ay = ay [αy, 1− αy]
′
and

vary the relative importance of skills by choosing αy ∈ [0, 1]. A higher value of αy makes

cognitive-intensive tasks more productive.

Panel 8a presents the assignment under equal skill weights in ay. Most of the unassigned

tasks involve high cognitive skills because performing cognitive-intensive tasks comes at the

cost of greater mismatch for workers x1 and x2. In Panel 8b αy increases, making cognitive-
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intensive tasks more productive and manual-intensive tasks less productive. This makes it

worthwhile to reassign workers toward cognitive-intensive tasks. In both cases, only worker

x1 is not fully assigned. x1 is the least productive worker type.

The role of the outside option An increase in the value of the outside option, w, reduces

employment by limiting the set of tasks that are profitable to produce. The net effect on

wages is nevertheless ambiguous. As the assignment of tasks changes, so does the mismatch

of workers in their boundary tasks. Mismatch necessarily decreases for the workers who

are not fully assigned. This can cause the wage distribution to become compressed because

wages reflect marginal productivity relative to the least productive workers (see equation

17). These effects must be weighted against the increase in the level of wages coming from

w to determine the net effect of the increase of the outside option.35

5.2 Automation and unassigned tasks

The characterization of automation as a worker-replacing technology changes once tasks can

be left unassigned. It is now possible to direct automation toward unassigned tasks, that

is, tasks that are not worthwhile for workers to perform (because of low productivity) or

tasks for which workers lack the appropriate skills (high mismatch). Moreover, performing

additional tasks increases output, potentially raising workers’ marginal products and wages.36

The gains in output and worker productivity from automating previously unassigned tasks

suggest that automation is more profitable in economies where workers have high outside

options, for example, where minimum wage regulations imply high wages or there is a strong

safety net in case of non-employment.
35The effects on the wage distribution are similar to those documented by Engbom and Moser (2018).
36These effects are similar in the model to the effects of immigration. The addition of new workers can in

principle displace current workers from the tasks they perform; however, the new workers can also perform
tasks that were previously left unassigned or tasks for which native workers were not well suited. This
includes both low- and high-skill tasks. Consequently, the addition of new workers through immigration
can cause an increase in wages via the reduction in mismatch in the occupations of native workers and the
increase in productivity by making possible the completion of previously unassigned tasks.
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(a) Symmetric weights: αy = 1/2 (b) Asymmetric weights: αy = 3/4

Figure 9: Assignment Example: Unemployment and Automation
Note: The figures show the assignment in a two-dimensional skill space (cognitive and manual skills). Three types of workers
are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed over the unit square; i.e., Y = [0, 1]2

and g (y) = 1. The production function q is as in (1) with A = I2, ax = [0.2, 0.1]
′
, and ay = ay [αy , 1− αy ]

′
, with ay ∈ R+

and αy = 1/2. The worker’s outside option is 0. The automation cost function is Ω(r) = r
′
ARr, with AR diagonal. The

robot’s mass is fixed at pr = 0.03. The assignment without the robot is presented in gray.

In general, it is optimal to automate unassigned tasks along the boundaries of

occupations. As a result, automation ends up partially displacing workers. To illustrate

this, I expand the example in Figure 8 by solving the optimal automation problem. The

resulting assignment is presented in Figure 9. The robot is placed so as to automate part of

the cognitive-/manual-intensive tasks that were unassigned. The two panels also show how

the incentives for automation change with the production technology. If technology favors

cognitive-intensive tasks over manual-intensive ones, workers are reassigned away from the

latter and into the former (see Figure 8). Consequently, production can be increased by

directing automation toward manual-intensive tasks in a way that avoids disrupting the

optimal assignment of tasks to workers. In this scenario, technological change makes new

tasks available for workers, while automation follows by taking over tasks that are no

longer worthwhile for them to perform.37

37This process is similar to the one in Acemoglu and Restrepo (2018b). Changes in technology lead to a
reassignment of workers toward more complex (and newer) tasks, while relatively simpler (and older) tasks
are automated, displacing workers in the process.
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6 Concluding remarks

In this paper, I develop a framework to study occupations, where production occurs by

assigning tasks to workers in a multidimensional setting. Occupations arise from the

assignment process instead of being taken as a preexisting feature of production, allowing

them to change endogenously in response to changes in the economic environment. This

flexibility is important when addressing the consequences of worker-replacing technologies

like automation or offshoring. These technologies replace workers in some, but not all, of

the tasks they perform, transforming occupations.

The model makes precise the role of tasks in defining the marginal product, compensation,

and substitutability of workers. All these properties are shaped by how productive workers

are at the tasks along the boundaries of their occupations. These are the tasks for which

the workers are the least productive and at which they are directly substitutable for other

workers. The model also makes it possible to ask about the optimal direction of automation,

i.e., which type of tasks should be automated.
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A Mathematical Preliminaries
Definition A.1. [Probability Space] A probability space is a triplet (A,A, µ) of a set
A, a σ-algebra A on that set and a probability measure µ : A → [0, 1]. When the σ-algebra
is understood (generally as the Borel σ-algebra) it is omitted.

Definition A.2. [Polish Space] A set A is a polish space if it is separable (allows for a
dense countable subset) and metrizable topological space (there exists at least one metric
that induces the topology).

Definition A.3. [Coupling] Let (Y , G) and (X , P ) be two probability spaces. A coupling
π of G and P is a joint distribution on (X × Y) such that

∫
X×Y

dπ (x, y) = G (Y ) for all
Y ∈ B (Y) and

∫
X×Y dπ (x, y) = P (X) for all X ∈ B (X ), where B (A) denotes the Borel

sets of A. So π gives G and P as marginals. Let Π(P,G) be the set of all couplings of P and
G. When the assignment is given by an assignment function the coupling is deterministic.

Definition A.4. [h-transform] Let h : X × Y → R be a function. The h-transform of a
function f : X → R is:

fh (y) = sup
x∈X
{h (x, y)− f (x)} .

Definition A.5. [h-convex] A function f : X → R is said to be h-convex if there exists a
function g : Y → R such that:

f (x) = sup
y∈Y
{h (x, y)− g (y)} .

Definition A.6. [h-subdifferential] The h-subdifferential of a function v : Y → R is
defined as the set ∂hv (y) =

{
x ∈ X | v (y) + vh (x) = h (x, y)

}
.

The following theorem joins results from optimal transport on the existence of a solution
to the Monge-Kantorovich problem and the applicability of Kantorovich’s duality to the
mass transportation problem:

Theorem A.1. Villani (2009, Thm. 5.10 and Thm 5.30) Let (Y , G) and (X , P ) be two
Polish probability spaces and let h : X × Y → R ∪ {−∞} be an upper semicontinuous
function.

Consider the optimal transport problem:

sup
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y) ,

where function h (x, y) describes the gain (or surplus) of transporting a unit of mass from y
to x, and Π(G,P ) denotes the set of couplings of G and P .

If there exist real valued lower semicontinuous functions a ∈ L1 (P ) and b ∈ L1 (G):

∀(x,y)∈X×Y h (x, y) ≤ a (x) + b (y) ,

then:
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1. There is duality:

sup
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y) = inf
(λ,v)∈L1(P )×L1(G)

λ(x)+v(y)≥h(x,y)

∫
X
λ (x) dP (x) +

∫
Y
v (y) dG (y)

= inf
w∈L1(P )

∫
X
λ (x) dP (x) +

∫
Y
λh (y) dG (y)

= inf
v∈L1(G)

∫
X
vh (x) dP (x) +

∫
Y
v (y) dG (y) ,

where Π(G,P ) is the set of couplings of G and P and fh denotes the h-transform of
function f :

fh (y) = sup
x∈X

h (x, y)− f (x) .

The functions w and v are h-convex since they are the h-transform of one another.

2. If, furthermore, h is real valued (h : X × Y → R) and the solution to the Monge-
Kantorovich problem is finite

(
maxπ∈Π(G,P )

∫
X×Y h (x, y) dπ (x, y) <∞

)
then there is

a measurable h-monotone set Γ ⊂ X × Y38 such that for any π ∈ Π(G,P ) the following
statements are equivalent:

(a) π is optimal.

(b) π is h-cyclically monotone.

(c) There is a h-convex function λ such that λ (x)+λh (y) = h (x, y) π-almost surely.

(d) There exist λ : X → R and v : Y → R such that λ (x) + v (y) ≥ h (x, y) with
equality π-almost surely.

(e) π is concentrated in Γ.

3. If, h is real valued (h : X × Y → R) and there are functions c ∈ L1 (P ) and d ∈ L1 (G)
such that:

∀(x,y)∈X×Y c (x) + d (y) ≤ h (x, y) .

then the dual problem has a solution. There is a function w that attains the infimum.

4. (this part from Villani (2009, Thm. 5.30))If:

(a) h is real valued (h : X × Y → R)

(b) the solution to the Monge-Kantorovich problem is finite:

max
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y) <∞.

(c) for any h-convex function v : Y → R ∪ {−∞} the subdifferential ∂hv (y) is single
valued G-almost everywhere

38If a, b and h are continuous then Γ is closed.
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Then

(a) there is a unique (in law) optimal coupling π of (G,P ).

(b) the optimal coupling is deterministic: T : Y → X .

(c) the optimal coupling is characterized by the existence of a function h- convex
function v such that T (y) = ∂hv (y).

Finally, Reynolds’ transport theorem is used extensively in the text:

Theorem A.2. [Reynolds’ Transport Theorem] The rate of change of the integral of a
scalar function f within a volume V is equal to the volume integral of the change of f , plus
the boundary integral of the rate at which f flows though the boundary ∂V of outward unit
normal n:

∇
∫
V

f (x) dV =

∫
V

∇f (x) dV +

∫
∂V

f (x) (∇x · n) dA.

47



B Proofs

B.1 Existence and uniqueness of optimal task assignment

Outline of the poof I first relax the problem in (7) to allow for non-deterministic
assignments, see Kantorovich (2006) and Koopmans and Beckmann (1957). An assignment
is then a joint measure over workers/task pairs: π : X × B (Y)→ R+, where B (Y) denotes
the Borel sets of Y , and there are measures P and G so that (X , P ) and (Y , G) are two
Polish spaces. An assignment π is deemed feasible if it is a coupling of measures P and G,
see definition A.3 in Appendix A. In terms of the assignment problem, π must guarantee
that workers have enough time to perform all the time demanded by their occupations, and
each task is completed at most once. Letting Π(P,G) be the set of feasible assignments:

π ∈ Π(P,G) ←→ ∀n
∫
Y
dπ (xn, y) ≤ pn ∀Y ∈B(Y)

N∑
n=1

∫
y∈Y

dπ (xn, y) ≤ G (Y ) . (B.1)

The second condition can be simplified to:
N∑

n=1

π (xn, {y}) ≤ g (y).

The problem is now to choose a coupling π ∈ Π(P,G) to maximize output. I further
simplify the problem by applying natural logarithm to the objective function. Doing so
reveals the linearity of the problem in the choice variable π. The relaxed optimization
problem is:

max
π∈Π(P,G)

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) . (B.2)

Lemma B.1 applies Theorem 5.10 of Villani (2009) to establish duality for the problem:

max
π∈Π

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) = inf
(λ,ν)∈RN×L1(G)

λn+v(y)≥ln q(xn,y)

N∑
n=1

λnpn +

∫
Y
ν (y) dG (B.3)

= inf
λ∈RN

N∑
n=1

λnpn +

∫
Y
max

n
{ln q (xn, y)− λn} dG,

where λ and ν are the multipliers (or potentials) of the problem. Lemma B.2 establishes that
a solution to the dual problem (λ⋆, v⋆) exists. The levels of λ⋆ and ν⋆ are only determined
up to an additive constant. Both the assignment and the value of the dual problem do not
change if λ is increased by a constant κ for all workers and ν is decreased by the same
amount for all tasks. I normalize the value of the minimum λ⋆ to zero. This is convenient
when relating the value of λ⋆ to the marginal product of workers and the wages in the
decentralization of the optimal assignment.

The first two conditions on the production function q ensure that the value of the primal
problem (B.2) and the dual problem (B.3) are finite. This is the key step in verifying
the conditions for Theorem 5.10 of Villani (2009). In particular, the first condition avoids
indeterminacies when evaluating the natural logarithm of q for any worker/task pair.
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The solution to the dual problem provides a way to construct the optimal assignment T ⋆.
Lemma B.3 applies Theorem 5.30 of Villani (2009) to construct T ⋆ as the sub-differential of
v⋆. The third condition on the production function q is crucial to establish single-valuedness
of the sub-differential of v⋆. This gives the formula for the optimal assignment in (8).
Galichon (2016, Ch. 5.3) presents an algorithm to solve the dual problem in (B.3).

I now turn to the general proof of the problem.

General setting Consider the set up of Section 1. There are N types of workers
{x1, . . . xN} ≡ X . The mass of workers is described by a (discrete) measure P so that
P (xn) = pn. There is a continuum of tasks y ∈ Y distributed continuously according to an
absolutely continuous measure G : B (Y)→R+. Y is assumed compact. The setup in
Section 1 further assumes that there is a space of skills S and that X ,Y ⊆ S.

Output is produced by completing tasks. A worker of type xn performing task y produces
q (xn, y). q : X × Y → R is a real-valued function. Output for all worker/task pairs is
aggregated into a final good:

F (π) =


(∑N

n=1

∫
(q (xn, y))

σ−1
σ dπ (xn, y)

) σ
σ−1 if σ > 1

exp

(∑N
n=1

∫
Y
ln q (xn, y) dπ (xn, y)

)
if σ = 1

,

where π ∈ Π(P,G) is a coupling of P and G (see definition A.3). The coupling π describes
the assignment: a mass π (x, y) of workers of type x is assigned to task y.

The problem is to maximize output of the final good by choosing an assignment of tasks
to workers π. I first transform the objective function so that the problem takes the form of
a Monge-Kantorovich problem:

max
π∈Π(P,G)

∫
h (x, y|σ) dπ (x, y) , (B.4)

where h (x, y|σ) =

{
(q (x, y))

σ−1
σ if σ > 1

ln q (x, y) if σ = 1
.

The following proposition establishes duality for this problem:

Lemma B.1. If q satisfies the following properties:

i. σ > 1 or all workers can produce in some task: ∀x∃y q (x, y) > 0.

ii. q (x, ·) is upper-semicontinuous in y given x ∈ X .
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Then, the following equalities hold:

max
π∈Π(P,G)

∫
(h (x, y|σ))

σ−1
σ dπ (x, y) = inf

(λ,v)∈RN×L1(G)

λn+v(y)≥q(xn,y|σ)

N∑
n=1

λnpn +

∫
Y
v (y) dG (y)

= inf
λ∈RN

N∑
n=1

λnpn +

∫
Y
max

n
{q (xn, y|σ)− λn} dG (y) .

Proof. This follows from applying theorem A.1 (Villani, 2009, Thm. 5.10). Note that Y ⊂ Rn and
X is finite so they are both Polish spaces. h (x, y|σ) is upper semicontinuous because f (x) = x

σ−1
σ

and f (x) = lnx are continuous and monotone increasing, and q is upper semicontinuous.
It is left to verify that there exist real valued lower semicontinuous functions a ∈ L1 (P ) and

b ∈ L1 (G):
∀(x,y)∈X×Y h (x, y|σ) ≤ a (x) + b (y) .

For this let a (x) = maxy∈Y {h (x, y|σ)} and b (y) = 0 . The max in the definition of a is well defined
because h is upper semicontinuous and Y is compact, furthermore a is finite (either σ > 1 or, if σ = 1,
h is finite for at least some y guaranteeing a a finite value). Function a is immediately continuous
with respect to the discrete topology. The desired equalities follow from part 1 of Theorem A.1.

The dual problem is then to find a value associated with each type of worker {λ1, . . . , λN}.
The problem is:

inf
λ∈RN

N∑
n=1

λnpn +

∫
Y
v (y) dG (y) where: v (y) = max

n∈{1,...,N}
{h (x, y|σ)− λn} . (B.5)

I show that the dual problem has a solution and I use that solution to construct a solution
to the Monge-Kantorovich problem in (B.4). Furthermore, the solution will take the form of
a deterministic transport and the implied assignment function is the solution to the problem
(7) in the main text. Part 3 of Theorem A.1 establishes that solution to the dual problem
(B.5) exists.

Lemma B.2. If q satisfies the following properties:

i. σ > 1 or all workers can produce in all tasks: q (x, y) > 0 for all pairs (x, y) ∈ X × Y.

ii. q (x, ·) is upper-semicontinuous in y given x ∈ X .

Then there exists λ⋆ ∈ RN such that:

λ⋆ ∈ argmin
λ∈RN

N∑
n=1

λnpn +

∫
Y

(
max

n∈{1,...,N}
{h (x, y|σ)− λn}

)
dG (y) .

50



Proof. This follows from applying part 3 of theorem A.1 (Villani, 2009, Thm. 5.10). The function
h (x, y|σ) is required to be real valued. When σ > 1 this is verified since q is real valued. When
σ = 1 it is verified under the additional condition that q (x, y) > 0 for all (x, y) ∈ X × Y.

It is left to find functions c ∈ L1 (P ) and d ∈ L1 (G) such that:

∀(x,y)∈X×Y c (x) + d (y) ≤ h (x, y|σ) .

For this let c (x) = 0 and d (y) = minn {h (x, y|σ)}. The minimum is well defined because X is
finite.

The final part of Proposition 1 is obtained from applying Theorem 5.30 of Villani (2009),
reproduced as part 4 of Theorem A.1. The result is established under the conditions that
both (F (x, y))

σ−1
σ and the Monge-Kantorovich problem (B.4) have finite value and the F -

subdifferential of v is single-valued G-almost everywhere.

Lemma B.3. If q is such that:

i. σ > 1 or all workers can produce in all tasks: q (x, y) > 0 for all pairs (x, y) ∈ X × Y.

ii. q (x, ·) is upper-semicontinuous in y given x ∈ X .

iii. q discriminates across workers in almost all tasks: if q (xn, y) = q (xm, y) then xn = xm

G-a.e.

Then there exists λ⋆ ∈ RN that solves the dual problem (B.5). Moreover, let T be defined as:

T (y) = argmax
x∈X

{
h (x, y|σ)− λ⋆

n(x)

}
,

where T is single-valued G-almost everywhere and it induces a deterministic coupling π⋆ :
X × B (Y) → R+ that is the unique (in law) solution to the Monge-Kantorovich problem
(B.4). π⋆ is:

π⋆ (xn, Y ) =

∫
Y ∩T−1(xn)

dG.

Function T is an assignment function and it is the solution to the Monge transportation
problem (7).

Proof. The proof follows from applying part 4 of Theorem A.1 (from Villani (2009, Thm. 5.30)).
Finiteness of h (x, y|σ) is guaranteed if σ > 1, or if σ = 1 and q (x, y) > 0 for all pairs (x, y) ∈ X × Y.
Finiteness of the value of the Monge-Kantorovich problem is guaranteed since Y and X are both
compact, and q is upper semicontinuous on y.

It is left to verify that for any h-convex function v : Y → R∪{−∞} the h-subdifferential ∂hv (y)
is single valued G-almost everywhere. The h- subdifferential for a given y is given by:

∂hv (y) =
{
x ∈ X | vh (x) + v (y) = h (x, y|σ)

}
where vh (x) = sup

y
{h (x, y|σ)− v (y)} .
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Because v is h-convex we can instead use its conjugate function vh (xn) = λn. Then the
h-subdifferential is then equivalently given by:

∂hv (y) = argmax
x∈X

{
h (x, y|σ)− λn(x)

}
.

Becuase q (·, y) is injective in x given y G-a.e., and X is finite, we get that ∂hv (y) is generically a
singleton.

The following lemma establishes the relationship between the multipliers of the
transformed problem (B.4) and multipliers of the original problem (B.2).

Lemma B.4. Consider two constrained maximization problems:

V (m) = max
x

F (x) s.t. h (x) = m; (B.6)

W (m) = max
x

g (F (x)) s.t. h (x) = m, (B.7)

where F : X → R, h : X → Rn, m ∈ Rn and g : R→ R is strictly monotone. Let λ ∈ Rn be
the multiplier associated with the constraints in (B.6), and µ ∈ Rn the multiplier associated
with the constraints in (B.7). Then: µ = g

′
(F (x⋆))λ, where x⋆ is a solution for (B.6) and

(B.7).

Proof. Because g is strictly monotone both problems have the same argmax, call it x⋆ (m). The
value of each problem is:

V (m) = F (x⋆ (m)) W (m) = g (F (x⋆ (m))) .

By the envelope theorem (Milgrom and Segal, 2002) we know that:

λ =
∂V (m)

∂m
=

∂F (x⋆)

∂x

∂x⋆ (m)

∂m
µ =

∂W (m)

∂m
=

∂g (F (x⋆))

∂F

∂F (x⋆)

∂x

∂x⋆ (m)

∂m
.

Joining gives the result: µ = g
′
(F (x⋆))λ.
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B.2 Marginal product

The marginal product of a worker gives the change in output if more workers of that type
are used in production. The change in output depends on the tasks that are assigned to
additional workers.39 Because of this, it is possible to define the marginal product at a
given task, and under some initial assignment. In the main text, I consider the notion of
equilibrium marginal products, where the assignment is not taken as given, but it is allowed
to react optimally to changes in the supply of workers.

Consider the marginal product of a worker of type xk at task y, given an assignment T .
Since task y has no mass, output does not change if the task is re-assigned to a worker of
type xk. The marginal product is measured by adding a mass of workers of type xk and
assigning them to a region around task y, replacing the workers previously assigned to those
tasks. The marginal product at y is obtained as the change in output when the mass of
added workers tends to zero.

Proposition 4. [Marginal Product] Let T be a deterministic assignment and fix a task
y ∈ Yo

n. The marginal product of a worker of type xk at task y is:

MP (xk, y|T ) = F (T ) (ln q (xk, y)− ln q (xn, y)) ,

where F (T ) = exp
(∫

ln q (T (y) , y) dG
)

and T (y) = xn.

When task y is re-assigned from xn to xk output changes by ln q (xk, y)− ln q (xn, y). The
marginal product takes into account the opportunity cost of assigning task y to xk, which
comes from the capacity constraint of tasks. The derivative of output takes into account the
scale of production at the current assignment. Task y is required to be in the interior of Yn

for technical reasons. If y ∈ Yn ∩Ym it becomes necessary to specify the region around y to
which xk will be assigned.

The proof of the result is complicated because the task y has dimension zero in the space
of tasks, which has dimension d ≥ 1. Before showing the general proof for the result, I
consider the single-dimensional case where the argument is simpler. I further assume that
y ∼ U ([0, 1]). When d = 1 the production function can be written as:

F (T ) = exp

(∫ 1

0

ln q (T (y) , y) dy

)
.

Fix a task y ∈ (0, 1) and consider adding a mass ϵ of workers of type xk. Workers are
39Unlike traditional production functions, the amount of an input used by the firm in production and what

that input is used for are not the same.
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assigned to the set Cy,ϵ =
{
y | |y − y| < ϵ

2

}
=
[
y − ϵ

2
, y + ϵ

2

]
. The new assignment is:

Tϵ (y) =


T (y) if y /∈ Cy,ϵ

0 if y ∈ Cy,ϵ ∧ x ̸= xk

1 if y ∈ Cy,ϵ ∧ x = xk

.

The change in output is:

F (Tϵ)− F (T ) = F (T )

exp

y+ ϵ
2∫

y− ϵ
2

(ln q (xk, y)− ln q (T (y) , y)) dy

− 1

 .

The marginal product is:

MP (xk, y|T ) =
∂F (Rϵ)

∂ϵ

∣∣∣∣
ϵ=0

= lim
ϵ→0

F (Rϵ)− F (T )

ϵ
,

replacing and applying L’HÃŽpital’s rule:

MP (xk, y|T ) = F (R)

∂ exp

(
y+ ϵ

2∫
y− ϵ

2

(ln q (xk, y)− ln q (T (y) , y)) dy

)
∂ϵ

∣∣∣∣∣∣∣∣∣∣∣
ϵ=0

.

The derivative follows from Leibniz’s rule. Generically y ∈ Yo
n and:

MP (xk, y|T ) = F (T )

[
1

2

(
ln q

(
xk, y +

ϵ

2

)
− ln q

(
T (y) , y +

ϵ

2

))
+
1

2

(
ln q

(
xk, y −

ϵ

2

)
− ln q

(
T (y) , y − ϵ

2

))]
ϵ=0

= F (T ) (ln q (xk, y)− ln q (xn, y)) .

If y ∈ Yn ∩ Ym the marginal product takes into account that xk replaces different types of
workers around y:

MP (xk, y|T ) = F (T )

(
ln q (xk, y)−

ln q (xn, y) + ln q (xm, y)

2

)
.

In multiple dimensions, the treatment of the boundary cases becomes intractable, except in
very specific cases for which similar expressions are obtained.

I now provide the general proof of the result.

Proof. Recall that the space of skills is of dimension d. Changing the assignment of tasks to workers
in any region of dimension less than d will have no impact on output. To compute the effect on output
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of the added workers it is necessary to proceed one dimension at a time. Consider a region formed
as a hypercube around y, with sides of length ϵi, denote this region by Cy,ϵ =

{
y | ∀i |yi − yi| ≤ ϵi

2

}
.

Note that as all ϵi → 0 the region Cy,ϵ → {y}. The assignment is modified as in the single-
dimensional example:

Tϵ (y) =


T (y) if y /∈ Cy,ϵ

0 if y ∈ Cy,ϵ ∧ x ̸= xk

1 if y ∈ Cy,ϵ ∧ x = xk

.

The difference in production between the two assignments is:

F (Tϵ)− F (T ) = F (T )

exp

y1+
ϵ1
2∫

y1−
ϵ1
2

· · ·

yd+
ϵd
2∫

yd−
ϵd
2

(ln q (xk, y)− ln q (T (y) , y)) dy

− 1

 .

I proceed by computing the change in output when the region Cy,ϵ changes. The change has to be
computed one dimension at a time. If all dimensions are changed simultaneously the change in F
goes to zero (this can be verified directly using Reynold’s transport theorem- Theorem A.2). The
change in output when Cy,ϵ changes in the dth dimension is:

∂F (Tϵ)

∂ϵd
= F (T )

y1+
ϵ1
2∫

y1−
ϵ1
2

· · ·

yd−1+
ϵd
2∫

yd−1−
ϵd
2

1

2

(
ln q

(
xk, y

+ (d, ϵ)
)
− ln q

(
T
(
y+ (d, ϵ)

)
, y+ (d, ϵ)

))

+
1

2

(
ln q

(
xk, y

− (d, ϵ)
)
− ln q

(
T
(
y− (d, ϵ)

)
, y− (d, ϵ)

))
dy1 . . . dyd−1

)
,

where y+ (d, ϵ) ≡
(
y1, . . . , yd−1, yd + ϵ/2

)T and y− (d, ϵ) ≡
(
y1, . . . , yd−1, yd − ϵ/2

)T .
Applying the same procedure iteratively we obtain the change in output as xk is assigned to

tasks around y in all directions:

MP (xk, y|T ) =
∂dF (Tϵ)

∂ϵ1 · · · ∂ϵd

∣∣∣∣
ϵ=0

= F (T ) (ln q (xk, y)− ln q (xn, y)) .
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B.3 Differentiability of demand

Lemma B.5. Let λ ∈ RN be a vector of multipliers. If q satisfies Assumption (2) then Dn

is continuously differentiable with respect to λ and:

∂Dn

∂λm

=
area (Yn (w) ∩ Ym (w))

2

√
(xn − xm)

′
A′A (xn − xm)

≥ 0.

Proof. The proof follows from an application of Reynolds’ Transport Theorem (Theorem A.2). In
order to apply Reynolds’ theorem recall that Dm =

∫
Ym

ρ (y) dy, where ρ is the density of tasks in
the space. In our case ρ (y) = 1. So the volume is Ym and the function is the density of tasks.

The second term in the theorem measures the rate at which the density flows in and out of the
volume. The density flows out and into other workers as tasks are reassigned. Consider the flow
into of Ym and out of Yk. The flow is in the direction A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

and through the shared

boundary of Ym and Yk, given by Ym ∩ Yk. Note that when prices change the hyperplanes that
define the boundaries of the demand sets move in parallel. Applying the theorem:

∂Dm

∂wn
=

∫
Ym

∂ρ (y)

∂wn
dy +

∑
k ̸=m

∫
Ym∩Yk

ρ (y)


∂y · A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

∂wn

 dy.

Note that for all y ∈ Ym ∩ Yk lie in a plane perpendicular to A (xk − xm). Then they can be
always expressed as y = yλ + av⃗ where a ∈ R, v⃗ is a vector perpendicular to A (xk − xm) and
yλ = (1− λ)xk + λxm is such that yλ ∈ Ym ∩ Yk. Then the change y ∈ Ym ∩ Yk is equal to the
change in yλ.

∂Dm

∂wn
=
∑
k ̸=m

∫
Ym∩Yk

ρ (y)


∂yλ · A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

∂wn

 dy.

The value of λ is obtained from the equation for the hyperplane that defines Ym ∩ Yk:

λ =
(xm − xk)

′
A (xm − xk) + wm − wk

2 (xm − xk)
′
A (xm − xk)

,

so:
∂yλ · xk−xm√

(xk−xm)
′
(xk−xm)

∂wn
=


1

2

√
(xn−xm)

′
A′A(xn−xm)

if k = n

0 otw
.

Replacing:

∂Dm

∂wn
=

∫
Ym∩Yn

ρ (y) dy

2

√
(xn − xm)

′
(xn − xm)

=
area (Yn (w) ∩ Ym (w))

2

√
(xn − xm)

′
(xn − xm)

,

which completes the proof.
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B.4 Directed automation

Proposition 5. Consider the automation problem in 24 and let µ ∈ RN+1 characterize an
assignment according to 27. If q is differentiable then the first order conditions of the problem
are:

FR (µ, r)

∫
YR

∂ ln q (r, y)

∂r
dy − ∂Ω (r, pr)

∂r
= 0; [r]

FR (µ, r)µR −
∂Ω (r, pr)

∂pr
= 0. [pr]

Proof. After replacing TR for µ in the problem, and abusing notation, the corresponding Lagrangian
is:

max
{r,pr,µ,Λ}

L = FR (µ, r)− Ω (r, pr) +
N∑

n=1

Λn (pn −Dn) + ΛR (pr −DR) . (B.8)

The multipliers of the workers/robot capacity constraints are given by the vector Λ ∈ RN+1.
The first order condition of interest is with respect to the skills of the robot:

∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
−

N∑
n=1

Λn
∂Dn

∂r
− ΛR

∂DR

∂r
. (B.9)

Following de Goes et al. (2012) and using the result in Lemma B.4 the first order condition becomes:

∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
− FR (µ, r)

(
N∑

n=1

µn
∂Dn

∂r
− µR

∂DR

∂r

)
. (B.10)

I proceed by computing separately the first term of the first order condition:

∂FR (µ, r)

∂r
= FR (µ, r)

(
N∑

n=1

∂
∫
Yn

ln q (xn, y) dy

∂r
+

∂
∫
YR

ln q (r, y) dy

∂r

)
.

Each of the derivatives follows from Reynold’s theorem.

∂
∫
Yn

ln q (xn, y) dy

∂r
=

∫
Yn

∂ ln q (xn, y)

∂r
dy +

∫
Yn∩YR

ln q (xn, y)
∂y · cnr

∂r
dy

=

∫
Yn∩YR

ln q (xn, y)
∂y · cnr

∂r
dy,

where cnr =
2A(xn−r)√

(xn−r)
′
A(xn−r)

′ is the normal vector to the direction in which the boundary is moving.
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In a similar way:

∂
∫
YR

ln q (r, y) dy

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

∫
Yn∩YR

ln q (xn, y)
∂y · crn

∂r
dy,

where crn = −cnr. Joining and reorganizing we get:

1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

∫
Yn∩YR

(ln q (xn, y)− ln q (r, y))
∂y · cnr

∂r
dy.

Note now that by the definition of the boundary ln q (xn, y)− ln q (r, y) = µn−µr for all y ∈ Yn∩YR.
Then:

1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

(µn − µr)

∫
Yn∩YR

∂y · cnr
∂r

dy.

Finally note that ∂Dn
∂r =

∫
Yn∩YR

∂y·cnr

∂r dy, which follows from applying Reynold’s Theorem (again)
to Dn.

1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

(µn − µr)
∂Dn

∂r
.

When the location of the robot (r) is changed, there is a change in output due to the change in
mismatch inside the region previously assigned to the robot (YR), that is given by the first term.
There is also a change in the demand for workers, only workers who are neighbors of the robot are
affected. When their demand is affected, the demand of the robot changes in the opposite direction.
The demand for worker n changes by ∂Dn

∂r , that is valued by the planner at λn− λr. Recall that λn

is the shadow price of the supply of a worker.
It is left to spell out the first term:∫

YR

∂ ln q (r, y)

∂r
dy =

∫
YR

∂a
′
xr − (r − y)

′
A (r − y)

∂r
dy

=

∫
YR

(ax − 2Ar + 2Ay) dy

= 2DR

(ax
2
−A (r − bR)

)
,

where bR =

∫
YR

ydy

DR
is the barycenter (centroid, average or center of mass) of the tasks assigned to

r.
It is now possible to obtain the first order condition of the problem with respect to the location

of the robot. Note that since the total demand is constant it holds that:

∂DR

∂r
= −

N∑
n=1

∂Dn

∂r
.

Then:
∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
− FR (µ, r)

(
N∑

n=1

(µn − µR)
∂Dn

∂r

)
. (B.11)
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Replacing for ∂FR(µ,r)
∂r we get:

∂L
∂r

= 2FR (µ, r)DR

(ax
2
−A (r − bR)

)
− ∂Ω (r, pr)

∂r
. (B.12)

The first order condition does not include the effect of r on the demand for workers since the gains
cancel with the reductions/increases of slack in the feasibility constraints.

This is a necessary condition for an optimum. It does not fully characterize the solution. In
fact, there can be, in general, multiple solutions to the problem. The first order condition is also
silent about the location of the region assigned to r. Instead, it prescribes the relationship between
the region’s centroid and the location of r. It is convenient to see what happens when ax = 0 and
∂Ω(r,pr)

∂r = 0. Then the necessary condition reduces to make r equal to the barycenter of its region.
The first order condition with respect to pr is:

∂F

∂pr
= FR (µ, r)µR −

∂Ω (r, pr)

∂pr
.

The first order condition with respect to µ requires more work, but it follows from applying again
Reynolds’ Transport Theorem.

∂F

∂µn
= pn −Dn.
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B.5 Worker training

I introduce the problem of optimal worker training in a similar way to the automation
problem described above. The objective in both cases is to reduce the mismatch between
tasks and workers, now by modifying workers’ skills. Crucially, as the skills of the worker
change the assignment also changes, altering the tasks in the workers’ occupation.

Formally, the problem of training worker n by choosing new skills x̃ ∈ S is:

max
{x̃,T̃}

F
(
T̃ , x̃

)
− Γ (x̃|xn, pn) s.t. ∀ℓ Dℓ ≤ pℓ, (B.13)

where the cost of changing skills (Γ) depends on the workers’ current skills and mass. The
first order condition of the problem is:

F
(
T̃ ⋆
)∫

Yn

∂ ln q (x̃, y)

∂x̃
dG (y)− ∂Γ (x̃|xn, pn)

∂x̃
= 0d×1. (B.14)

The interpretation is the same as in the automation problem. The objective is to minimize
skill mismatch across the tasks in the worker’s occupation given the cost of changing the
workers’ skills. If q is given by (1) this is achieved by setting x̃ to the centroid of the
occupation, and adjusting for the weight of skills in production (ax) and the marginal cost
of changing the worker’s skills. Even if acquiring skills was costless, it is not always optimal
to increase the worker’s skills, doing so can generate its own costs as mismatch increases
with respect to the boundary tasks of the worker’s occupation. The problem is further
complicated by the ambiguous effects on total output, since training one worker can induce
higher mismatch for other workers, as the assignment changes. Because of this, condition
(B.14) is only necessary, and not sufficient, for characterizing the optimal worker training.
However, Lloyd’s algorithm still applies.

60



C Multi-Sector Assignment
There is a tight link between the model presented in Section 1 and a multi-sector assignment
problem. Consider an alternative interpretation of the setup where the roles of tasks and
workers are reversed, so that there is a continuum of workers and finitely many tasks (or
sectors). Under this interpretation it is convenient to think of each sector as having pn
identical firms, each can hire a single worker. The problem is for each sector to select which
workers to hire, or for each worker to select a sector as in the traditional Roy (1951) model.40

A worker y ∈ Y in sector xn ∈ X produces an output of q (xn, y).
Each sector differs in how it ranks potential workers. Differences in the skills of workers

make them better suited for certain sectors over others. The rank of workers in each sector
reflects the productivity of the worker as captured by q:

rn (y) ≡ Pr (q (xn, Y ) ≤ q (xn, y)) , (C.1)

where the probability is taken with respect to the distribution of workers G. The functions
rn : Y → [0, 1] provide a single -dimensional value (the rank) for each worker in each sector.
The rank is ‘sector’ specific as different sectors value workers differently. The conditions in
Proposition 1 ensure that rn is continuous.

We can further make use of it by defining a surplus function:

Qn (rn (y)) ≡ q (xn, y) . (C.2)

The surplus function Qn : [0, 1]→ R+ gives the output of a worker with rank r in sector n.
It follows from the definition of the rank in (C.1) that Qn is increasing. The definition of
the rank functions rn and the surplus function Q follows Gola (2021).

This alternative setup can be solved directly in terms of the multi-dimensional
distribution of workers and sectors and the production function q as in Section 2 or in
terms of the sector-specific (single-dimensional) rankings and the surplus function Qn. The
second approach is used by Gola (2021), who exploits the fact that the joint distribution of
rankings across sectors is a Copula (Sklar, 1959). This is the joint distribution over tuples
(r1 (y) , . . . , rN (y)) for y ∈ Y . In both cases the solution is a tuple of profits (λ1, . . . , λN)
such that firms in sector n have a profit of λn. These profits are supported by wage
functions νn (r) ≡ Qn (r)− λnthat give the wage of a worker in sector n with rank r. These
prices ensure that markets clear when workers choose sectors by maximizing their wage.

While the setup of Section 1 makes it possible to work directly with the primitives of the
model without relying on differentiability, and to tackle the bundling of tasks and changes
in occupations, the setup in this appendix provides additional intuition on the role of skill
heterogeneity across workers. As in Gola (2021), the concordance of the joint distribution of
rankings is informative about the effective supply of skills in the economy.41 If concordance
is high, the same workers are ranked high/low across sectors and the effective supply of skills

40This is equivalent to an economy where we maintain the interpretation of workers and firms as in
Section 1 but we solve the assignment from the perspective of workers that choose which tasks to perform
or equivalently rent machines (tasks) from firms (capitalists).

41A copula, C1, is more concordant than C2, if C1 (r⃗) ≥ C2 (r⃗) for all r⃗ ∈ [0, 1]
N (Scarsini, 1984).
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is low because various sectors (xn) are after the same (type of) workers (y). See Gola (2021)
for the implications of changes in concordance on sectoral wages.

In terms of the model used in the main text, a high concordance means that workers (xn)
are good/bad at performing the same tasks. An increase in concordance (either because of
a change in q or a change in the distribution or workers or tasks) makes it so that workers
are more substitutable as they are more alike in the performance of tasks. Wage differentials
would decrease because of the same reason. To be precise, an increase in the concordance
of the joint distribution of tasks ranks would be reflected in a reduction of the productivity
differentials of workers at boundary tasks.

Higher concordance also reduces total output because it reflects the fact that workers
are good at performing the same set of tasks. Because these tasks are in fixed demand (G),
most workers end up being assigned to tasks in which they are not productive. The flip-side
of this is a change in technology or worker training that reduces concordance. Such a change
reflects workers becoming more specialized in performing different types of tasks, with the
workers that are good at some tasks being bad in others. A decrease in concordance increases
output by allowing for more specialization in production.
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D Cosine Similarity Assignments
I now consider the optimal assignment of tasks to workers when the mismatch is measured
by the cosine similarity between the skill vectors of workers and tasks respectively. The
cosine similarity between two vectors is given by the cosine of the angle between the vectors:

cos (θxy) =
x

′
y

∥x∥ ∥y∥
, (D.1)

where ∥z∥ =
√∑d

i=1 z
2
i is the (Euclidean-)norm of a vector. The cosine similarity varies

between 0 and 1. The main advantage of the cosine similarity is that if effectively reduces
the dimensionality of the problem from d to a single dimension. This is because only the
angle between two vectors, and not their magnitudes, matters for this notion of mismatch.

The set up of the model is just as in Section 1 with just two modifications. First, the set
of tasks can be restricted (without loss) to tasks on a circle in the positive quadrant (or the
surface of a sphere in the positive orthant for higher dimensions). Second, the task output
function is:

q (x, y) = exp (fx (x) + cos (θxy)) , (D.2)

where fx (·) captures the role of workers’ skills in production. Figure D.1a presents the
setup. Each worker x1, x2 and x3 is paired with an angle θx1 , θx2 , θx3 . The cosine similarity
between a worker and a task in is the cosine of the difference between their angles.

(a) Model Setup (b) Optimal Assignment

Figure D.1: Assignment Example - Cosine Similarity Loss
Note: The left panel depicts the setup of the model when mismatch is measured according to the cosine similarity between
workers and tasks as in (D.2). Because the cosine similarity is independent of magnitudes only the tasks in along gray
circumference are considered. There are three types of workers {x1, x2, x3} with mass P = {0.4, 0.3, 0.3} at angles

{
θx1 , θ

x
2 , θ

x
3

}
.

The right panel shows the optimal assignment. The assignment is characterized by two angles, θy12 and θy13, which determine
the boundaries of between Y1 and Y2, and Y1 and Y3, respectively. These angles partition the space as shown by the two rays
that intersect the circumference.
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Figure D.1b shows the optimal assignment. In this setup, the assignment consist on
two cutoff angles (θy12 and θy12) which characterize rays partitioning the space of skills. The
solution is the same regardless of whether tasks are collapsed onto the circle or they are
distributed on the whole plane. The magnitude of the tasks’ vectors does not change the
cosine distance from the task to the worker and therefore does not affect mismatch. This
is undoubtedly a strong assumption, it implies that the magnitude of the skill vectors only
affects production by determining an absolute productive of workers which is independent
of the assignment. This productivity is captured by the value of fx (x).

The assignment in Figure D.1b also reveals the logic behind single-dimensional
assignments. The productivity of workers as measured by fx (x1), fx (x2), and fx (x3)
establishes an ordering of workers prior to the assignment. It is optimal to assign tasks to
the most productive worker first to ensure that all of its time is used in production. In the
example this is worker x3. In fact, the value of θy13 in the assignment is such that a fraction
p3 of the tasks in the circle are assigned to worker x3. Following this process, it is optimal
to assign tasks to worker x2 next. This gives angle θy12 such that the tasks between it and
π/2 are assigned to worker x2. The remaining tasks are assigned to worker x1, who is the
least productive.
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