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Abstract 

Hemodialysis (HD) provides life-saving treatment in individuals with kidney failure. 

However, HD is associated with poor quality of life and extremely high mortality rates mainly 

caused by cardiovascular disease due to heart failure and sudden cardiac death. Standard 

pharmacological treatment developed within the non-kidney disease community are largely 

ineffective in HD patients because of the difference in pathophysiology of cardiovascular 

mortality. HD treatment causes hypotension and recurrent ischemic injury to multiple vascular 

beds including the heart, leading to heart failure. These injuries can be abrogated by improving the 

patient’s tolerability of the treatment. To apply interventions that may improve hemodynamic 

tolerability of HD, it is crucial to understand the mechanisms of HD-induced injury at every layer 

of the vasculature: the endothelial, microvasculature and macrovasculature. The purpose of this 

thesis was to study the endothelial and vascular dysfunction affecting tissue perfusion as a result 

of HD and under conditions of intradialytic exercise and alteration of dialysate sodium 

concentration.  

 In one study, computed tomography (CT) imaging and echocardiography was used to 

identify the presence of coronary artery disease (CAD), quantify myocardial perfusion, and 

determine myocardial segments with stunning. HD induced myocardial ischemia and stunning in 

all participants independent of CAD. However, individuals with CAD demonstrated reduction in 

segmental myocardial perfusion which corresponded to an increased number of myocardial 

segments experiencing stunning compared to HD participants without CAD. The findings from 

this study suggest that the addition of CAD is associated with reduced tolerance to HD, even if the 

CAD is not clinically evident.  
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The second study in this thesis investigated the role of dialysate sodium as a contributor to 

HD-induced endothelial injury, predisposing HD patients to microvascular dysfunction and 

ischemia. The choice of dialysate sodium concentration is a difficult but crucial decision for the 

care of HD patients. High sodium dialysate is prescribed to prevent intradialytic hypotension but 

it is associated with high ultrafiltration, excess sodium deposition in the tissue, and injury to the 

endothelial glycocalyx. In this study, sodium concentration was manipulated in a rat HD model to 

study its effect on the endothelium as measured by plasma syndecan-1, and intravital video 

microscopy to quantify microvascular perfusion. The findings of this study suggest high sodium 

dialysate induced endothelial injury leading to functional changes in perfusion. Hence, a low 

dialysate sodium prescription could be beneficial if the patient demonstrates hemodynamic 

stability during HD. 

In a third study, the mechanism and effects of intradialytic exercise was investigated using 

CT perfusion imaging for quantification of myocardial perfusion and echocardiography to assess 

myocardial stunning. In contrast to the hypothesis made by other investigators, intradialytic 

exercise did not increase perfusion in the muscle. However, HD participants demonstrated a 

decrease in myocardial stunning with exercise. These results suggest that intradialytic exercise is 

not driven by perfusion-related mechanisms but rather by means of cardioprotection to improve 

ischemic tolerability of the tissue in the HD setting of challenged perfusion. 

 

Keywords 

End stage renal disease, hemodialysis, endothelial dysfunction, myocardial stunning, myocardial 

perfusion, coronary artery disease 
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Lay Summary 

Kidney failure is common, and it is the inability for the kidneys to clean the blood in our 

body from waste and toxins. The build-up of waste products can be very dangerous, and it must 

be removed regularly by a machine (hemodialysis, HD) that acts as an artificial kidney. HD is a 

life-saving therapy but people who need it die much more often than people with healthy kidneys. 

The most common cause of death in patients on HD is heart failure. This is because HD requires 

removal of blood from your body into a circuit that is outside of your body, causing the blood flow 

in the small blood vessels in the heart tissues to fall. Low blood flow means not enough oxygen 

will be delivered to the tissue causing it to fail. The purpose of this thesis was to study the changes 

in the blood vessels effecting blood flow in the tissue due to HD and under conditions of exercise 

and alteration in sodium levels of the dialysis fluid. 

  In one study, blood flow in the heart tissue and the contractile function of the heart during 

HD was studied in patient with large vessel disease using computed tomography (CT) imaging 

and a heart ultrasound. HD affected blood flow in all patients, whether or not they had large vessel 

disease. Compared to HD patients without large vessel disease, individuals with large vessel 

disease had even lower blood flow to certain tissue regions of the heart during HD that 

corresponded to the loss in contractility of the heart. Therefore, large vessel disease added to the 

injury that HD patients experienced during HD treatment.  

In a second study, a rat HD model was used to study the role of sodium in the small vessels 

and its circulation. The purpose of this study was to determine the optimal sodium level for the 

dialysate fluid which helps the patient’s tolerate HD treatment better. The results showed that high 

levels sodium in the blood caused damage to the walls of the blood vessels that reduced the 
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effectiveness of the vessel from circulating blood in the tissue. This study concluded that dialysis 

fluid with low sodium would cause less damage to the blood vessel wall and reduce the risk of low 

blood flow during HD. 

 In a third study, exercise during HD treatment was evaluated in human participants to 

study its effect on blood flow and overall heart function. In this study, we showed that exercise did 

not change blood flow in the heart tissue, but it improved heart contractility. It was concluded that 

exercise is able to protect the heart from low blood flow and starvation of oxygen that is 

experienced during HD. 
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Chapter 1  

1 Introduction 

Parts of this chapter has been published in Current Opinions in Nephrology and Hypertension: 

this is a non-final version of an article published in final form in Current Opinions in Nephrology 

and Hypertension 29 (6), 555-563. November 2020., Authored by Lisa Hur and Christopher W. 

McIntyre, titled “Current and novel imaging techniques to evaluate myocardial dysfunction during 

hemodialysis.”  

1.1 Overview of Thesis 

The purpose of this thesis was to study the endothelial and microcirculatory dysfunction 

effecting tissue perfusion as a consequence of hemodialysis (HD) and under conditions of 

intradialytic exercise and alteration of dialysate sodium. The studies presented in this thesis applied 

techniques such as echocardiography, dynamic contrast enhanced computed tomography (CT), 

coronary CT angiography, intravital microscopy, and enzyme-linked immunosorbent assay 

(ELISA) to study the endothelial, microvascular, macrovascular, and functional changes in both 

human HD participants and pre-clinical rodents during HD. 

  Section 1.2.1-1.2.2 of this chapter provides a brief summary of the anatomy, function and 

pathophysiology surrounding the kidney and it related-disease forms. Section 1.2.3-1.2.4 

summarized the available treatment methods for end stage renal disease and its associated 

complications. The remaining sections (Sections 1.3-1.5) address the techniques that have been 

used to assess HD-induced injury and detail the techniques that were utilized in this thesis. 

The completed scientific investigations are described in the following three chapters. 

Chapter 2 investigates the association between the vascular bed of the heart (myocardial perfusion) 

and the health of the coronary arteries (macrovasculature) supplying the blood in response to HD. 
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It was hypothesized that the impairment of the coronary arteries would exasperate the ischemic 

injury associated with HD as measured by dynamic myocardial CT perfusion and significantly 

reduce cardiac function as assessed with echocardiography. In line with this hypothesis, 

myocardial segments with hemodynamically significant stenoses were less perfused and 

participants with this impairment experienced higher levels of myocardial stunning with HD. 

In Chapter 3 of this thesis, intravital microscopy was utilized in a preclinical platform to 

examine the endothelial and microvascular response to levels of dialysate sodium during HD. It 

was hypothesized that levels of acute sodium loading during HD results in direct endothelial cell 

injury marked by increased plasma syndencan-1, and a decrease in microvascular perfusion.  

With the interest of minimizing the adverse effects of HD, an intradialytic imaging study 

was performed (Chapter 4) to examine intradialytic exercise as a way of mitigating the HD-induced 

ischemic injury. The effects of intradialytic exercise were assessed by quantification of plasma 

syndecan-1, global myocardial perfusion, and segmental myocardial stunning. 

The last chapter of this thesis (Chapter 5) summarizes the scientific contributions of these 

works and details opportunities for future investigations. 

1.2 The Kidneys 

1.2.1 Kidney Anatomy and Function 

The kidneys are part of the renal system, and its principle function is the production of 

urine which is composed of water, metabolic by-products, and ions1. From this, we know that it 

plays a major role in the regulation of water and electrolyte balance, the excretion of waste 

products, the absorption and secretion of bicarbonate and hydrogen ions, as well as the secretion 

of essential hormones involved in the regulation of physiological functions2,3. 
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The kidneys are located in the dorsal abdomen and each kidney has an adrenal gland on its 

upper surface responsible for the production of hormones. Each kidney is composed of three 

layers: the renal capsule of collagen fibers (innermost layer), the perirenal fat capsule (a layer of 

adipose tissue), and the renal fascia outermost later of collagen fibers1–3. These three layers 

together provides each kidney structural stability 1–3. Within the cross section of the kidney (Figure 

1-1), the outermost region is referred to as the renal cortex and inner layer, the renal medulla 1–3. 

The renal medulla can be separated into two distinct regions: the renal pyramids and the renal 

columns that separate the renal pyramids 1–3. Nearing the center of the kidey, each renal pyramid 

opens into the minor calyces (singular: minor calyx) which mergers together at the core of the 

kidney to form the major calyx that leads into the renal pelvis 1–3.  

 

Figure 1-1 Anatomy of the kidney and nephron 
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The nephron is known to be the basic functional unit of the kidney, populating at one 

million per kidney. The nephron consists of two distinct parts: the renal corpuscle and the renal 

tubule. The renal corpuscle is composed of the glomerulus (a bundle of capillaries) and the 

Bowman’s capsule (site of storage for the glomerular filtrate). First, the blood flows into the kidney 

through the renal artery that branch into smaller vessels, entering a glomerulus where filtration 

takes places through an afferent arteriole1. The amount of glomerular filtrate produced is 

dependent on the percentage of the body’s cardiac output being delivered to the kidneys, roughly 

twenty to twenty-five percent. Everyday approximately 180 liters (or 125 mL per minute) of filtrate 

is produced by the glomerulus4–6. The rate at which the glomerulus filters the blood is referred to 

as the glomerular filtration rate (GFR, mL/min/1.73m2), and it is determined by the filtration 

pressure gradient between the glomerulus and the Bowman’s capsule and can be modified by the 

contraction and relaxation of the smooth muscles surrounding the afferent and efferent arterioles4–

6. The volume of filtrate produced during this process are stored in the Bowman’s capsule before 

making its way into the renal tubule while the filtered blood returns to the systemic circulation 

through the efferent arterioles7. Within the renal tubule, the glomerular filtrate will undergo further 

modifications via tubular reabsorption and secretion within the compartments of the renal tubule 

for the production of urine.  

1.2.2 Renal Pathophysiology 

1.2.2.1 Acute Kidney Injury 

Acute kidney injury (AKI) is the sudden loss of kidney function defined by a decrease in 

urine output (less than 0.5ml/kg/hr within 6 - 12 hours) and/or a rapid increase in serum creatinine 

(greater than 1.5-fold from baseline over 10 days; greater than 26.4µmol/L in 48 hours)8. In the 

early 20th century, the term acute renal failure was used to characterize the compounding effects 
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of abrupt decrease in urine output and the accumulation of uraemic toxins8. This terminology was 

re-examined and replaced by the standardized terminology AKI, that is associated with the RIFLE 

(Risk, Injury, Failure, Loss and End-stage kidney disease) classification system to grade the 

severity of the injury8. The RIFLE classification system is dependent on serum creatinine and urine 

output and was adopted into the KDIGO (Kidney Disease Improving Global Outcomes) guidelines 

to ensure international coherence of research.  

Approximately 10 - 15% of hospitalization involve complications of AKI, making up more 

than 50% of the intensive care unit9. The diagnosis and treatment of AKI is complicated due to the 

presentation of multiple underlying causes including sepsis, ischemia, and nephrotoxicity. The 

etiology of AKI can be divided into three major categories: pre-renal, intra-renal, and post-renal10. 

Pre-renal causes of AKI result from impairment in renal perfusion, ultimately decreasing the GFR 

without further damage to the renal parenchyma; possible abnormalities include hypovolemia, 

impaired cardiac function, systemic vasodilation, and increased vascular resistance11. Intrinsic 

AKI results from damage to parts of the kidney itself, for example, damage to the tubular, 

glomerular, interstitial and the intra-renal vasculature. Lastly, post-renal AKI results from an acute 

obstruction in the extrarenal and intrarenal space that impedes urinary flow8,9.  

Urine and blood samples have been used to detect biomarkers of AKI including tissue 

inhibitor of metalloproteinase-2, neutrophil gelatinase associated lipocalin, and cystatin C10. Upon 

clinical presentation and diagnosis, AKI injuries are managed pharmacologically or through the 

initiation of renal replacement therapy in the form of dialysis depending on the severity of the 

injury.  
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1.2.2.2 Chronic Kidney Disease 

Chronic kidney disease (CKD) is an umbrella term encompassing any renal disease 

resulting in the progressive loss of kidney function over time and is characterized by a reduction 

in estimated GFR (eGFR) of less than 60 mL/min/1.73m2 12,13. In the recent years, the prevalence 

of CKD has been rising worldwide; amounting to more than ten percent of the worldwide 

population or over 850 million people14–16. CKD is most common in females (11.8%)16, in 

individuals over 70 years of age (27.9%)16, and in ethnic minority groups17. CKD can be 

categorized into five stages of severity depending on the eGFR and is summarized in Table 1-1. 

Table 1-1 Stages of chronic kidney disease 

Stage of CKD eGFR (mL/min/1.73m2) Classification of Renal 
Impairment 

1 ³ 90 Normal 
2 60 – 89 Mild 
3a/b 30 - 59 Moderate 
4 15 -29 Severe 
5 < 15 Kidney Failure 

 

 The primary causes of CKD are diabetes (diabetic nephropathy)18–21 and hypertension 

(hypertensive nephrosclerosis)21–23, and these factors contribute to increased risk for 

cardiovascular (CV) morbidity and mortality in this population. According to the United States 

Renal Data System’s 2020 report, over thirty-five percent of individuals diagnosed with CKD are 

diabetic17. Diabetes mellitus is characterized by hyperglycemia resulting from defective insulin 

action and secretion. Chronic hyperglycemia increases the deposition of extracellular matrix 

protein which induces the expansion of the mesangium. At this time, the glomerular basement 

membrane that assists with the filtration of waste and fluid from the blood thickens alongside the 

development of glomerulosclerosis. These changes that occur in the glomeruli as a result of 
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hyperglycemia cause disturbances in the glomerular filtration rate, reducing kidney function as a 

consequence of diabetes. Clinical trials investigating preventative measures of diabetic induced 

kidney injury demonstrated that the practice of intensive blood glucose control early in the course 

of the disease may delay or even prevent the progression of renal damage24. 

 Worldwide, hypertension is the strongest risk factor for cardiovascular disease (CVD) and 

its association with CKD is well recognized25. The role of hypertension in renal disease is 

complicated because it can be both a cause and a consequence, creating a vicious cycle that 

ultimately exacerbates high blood pressure (BP) in CKD population. Mechanism of systemic 

hypertension in this population include volume overload, salt retention, changes in BP regulating 

hormones, overactive sympathetic nervous system, and endothelial dysfunction22,23. To manage 

hypertension in CKD appropriately, acquisition of BP measurements and quantification of 

proteinuria are key. Based on these measurements, hypertension can be managed through 

pharmacological (antihypertensive medication) and non-pharmacological (such as reducing 

dietary sodium intake and weight loss) treatment methods23. 

 Generally, CKD remains silent, and its symptoms are not evident until substantial decline 

in kidney function. Prior to irreversible kidney failure, CKD can be diagnosed through routine 

blood work and urinalysis. In advanced kidney disease, common symptoms include chest pain, 

itchiness, loss of energy, irregular urination, muscle cramps, loss of appetite and shortness of 

breath. With time, the kidney will gradually lose its ability to function and reach stage 5 of CKD 

(kidney failure), requiring renal replacement therapy (RRT) to remove waste and fluid. 
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1.2.2.3 End Stage Renal Disease 

In 2010, approximately 2.6 million individuals worldwide were newly registered as having 

treated end stage renal disease (ESRD) amounting to 4.9 – 9.7 million people with prevalent ESRD 

that required treatment; an estimated 2.3 million or more people died prior to treatment initiation 

due to the lack of access26. ESRD is the final stage of CKD where the kidney will no longer 

function to rid toxins and waste from the body and is clinically defined by a GFR of less than 

15mL/min/1.73m2. The two main causes of ESRD are diabetes and hypertension leading to 

glomerulonephritis (inflammation of the glomerulus)22,23. One of the common characteristics of 

rapidly progressing kidney injury from early stages of CKD to ESRD is the worsening of uremia27. 

Uremia is the elevation in concentration of urea in the blood that is associated with electrolyte, 

fluid, and hormonal imbalance experienced with a decline in kidney function28. In patients with 

ESRD prior to RRT, urea levels in the blood are typically ten times greater than in healthy 

individuals. In the past, urea was considered an inert molecule with no evidence of toxic effects. 

However, in recent years, urea has been shown to interact and interfere with many biochemical 

pathways (including the generation of cyanate and ammonia) and modulate organ function 29–31. 

Uremia can be asymptomatic or symptomatic, nevertheless in conjunction with decline in kidney 

function it may be an indication for the initiation of RRT to reverse uremic symptoms and prolong 

life. With ESRD, the health of the kidney cannot be reversed. 

1.2.3 Renal Replacement Therapy in ESRD 

There are many clinical approaches to RRT, all of which have the common objective to 

replace the function of a failed kidney and remove waste and toxin from the blood32,33. The point 

at which to start RRT is a topic of debate. Observational studies have shown that early initiation 

or preemptive interventions does not improve survival34–36. Generally, more than half of the ESRD 
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patient population begin RRT when eGFR reaches a threshold of 10mL/min/1.73m2. If RRT is 

initiated too late, the patients are at risk for complications of uremia, reduced quality of life, and 

increased mortality rate. The decision to start RRT is not simply made on a single objective 

measurement but is rather based on a combination of symptoms, biochemistry, fluid overload, 

eGFR and most importantly, the patient’s preference. Modes of RRT include kidney transplant, 

peritoneal dialysis, and hemodialysis (HD). In principle, the patients must only consider one 

question to decide which form of RRT to receive: will transplantation improve my quality of life 

compared to peritoneal dialysis or HD? To most patients and their kidney care team, the answer is 

glaringly apparent because certain treatment methods are not available or unaffordable. The 

upcoming sections 1.2.3.1 -1.2.3.3 aims to detail the different modes of RRT and the associated 

risks and benefits.  

1.2.3.1 Kidney Transplantation 

When successful, kidney transplant remains the most favorable treatment option for ESRD 

as it is associated with fewer complications and reduced mortality rates, while significantly 

improving the quality of life33. Kidney transplantation as a potential method of treatment is widely 

dependent on the availability of organs for transplantation, existing comorbid conditions of the 

patient and their commitment to lifelong need for immunosuppressant drugs. Often, the general 

public’s understanding of transplantation is an immediate cure. However, it involves regular 

follow-up and continuous effort from the patient and the family to adhere to the medication 

protocols37. With successful transplantation, the life-expectancy of a transplanted patient is still 

much shorter than age- and sex-matched individuals with normal kidney function38. An additional 

risk factor that transplanted patients face is the maintenance of the graft; the graft is lost prior to 

death in more than half of the population with kidney transplant. When a graft is deemed lost or 
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failed after a transplant, the recipient undergoes a re-transplantation procedure, or proceeds to 

dialysis treatment. Long term survival of a graft depends on a multitude of factors including the 

donor and recipient’s age, the type of immunosuppressant medication, the frequency of acute 

rejection episodes, living versus deceased donor, and the delayed functionality of the graft39–43. 

However, studies indicate superior outcomes with kidney transplantation compared with 

peritoneal dialysis and HD treatment methods.  

1.2.3.2 Peritoneal Dialysis 

Peritoneal dialysis is one of the alternative modes of RRT and it is a process at which 

solutes, fluids, and waste products are removed within the patient’s peritoneal cavity44–48. A 

suitable healthy peritoneum is required to pursue this form of dialysis; contraindications include 

adhesions, fibrosis, or malignancy in the peritoneum. For the performance of peritoneal dialysis, a 

catheter is surgically inserted into the abdomen enabling the transfer of fluid in and out of the 

abdominal cavity. The dialysis fluid, composed of varying levels of electrolyte and salt 

concentration, precisely formulated to manage the solute composition in the plasma is connected 

to the catheter to allow inflow of the dialysate into the peritoneal cavity. The exchange of solutes, 

toxins, and fluids takes place across the peritoneal barrier between the dialysate fluid and the blood 

within the peritoneal capillaries. The peritoneum itself is densely lined with the capillary-rich wall 

and the efficiency at the which the solutes are cleared is dependent on multiple factors including 

the permeability of the peritoneal barrier, the blood flow and vascularity within the capillary walls, 

the surface area of the peritoneum, and osmotic or oncotic gradient generated through the instilled 

dialysate content. Once, the waste products are filtered, it is drained out of the body into an empty 

bag for disposal. 
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Peritoneal dialysis can be delivered in two forms: continuous ambulatory peritoneal 

dialysis and automated peritoneal dialysis. With continuous ambulatory peritoneal dialysis, 

patients manually perform exchanges three to five times per day ranging at 1.5 to 3L per 

exchange49. The automated peritoneal dialysis takes place at night while the patient sleeps. With 

this form of peritoneal dialysis, the patient is hooked up to a machine that runs through the night 

and a series of overnight exchanges are carried out automatically for 7 to 10 hours49. Peritoneal 

dialysis is the favorable form of dialysis treatment allowing independence and flexibility for the 

patient. It is often the method of choice for infants and children, in patients with difficult vascular 

access for HD and in those who are active and working.  

1.2.3.3 Hemodialysis 

In the United States, over 500 000 ESRD patients were on HD as their primary mode of 

RRT in 2019, of which approximate 492 000 individuals receive treatment in-center17. Patients on 

HD require short daily treatments, typically thrice weekly for 3 to 5 hours per session or long 

nocturnal treatment every other night for 8 to 10 hours per session50,51. Regardless of the type of 

HD treatment, all patients require a well-functioning, durable vascular access for the performance 

of the treatment. The three major types of vascular access are: primary arteriovenous (AV) fistulas, 

synthetic arteriovenous fistulas (AV graft), and a central venous catheter (Figure 1-2) 52,53. Due to 

its longevity and fewer probable complications, the AV fistula is the preferred vascular access for 

HD. 
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Figure 1-2 Types of hemodialysis vascular access. Recreated from Challenges and novel 

therapies for vascular access in haemodialysis by Lawson, Niklason and Roy-Chaudhury, 2020. 

At the start of HD treatment, the two dialysis lines are connected to the vascular access of 

the patient; the arterial line allows the flow of blood from the body to the dialysis machine and the 

venous line allows the filtered blood to return from the dialysis machine to the body (Figure 1-3) 

54. To prevent coagulation of blood within the extracorporeal circuit, heparin is infused into the 

dialysis line. The exchange of water molecules, electrolytes and toxins occur once the blood 

reaches the dialyzer, through a semi-permeable membrane. On the opposing sides of the 

membrane, there is countercurrent flow of blood and dialysate fluid allowing the equilibrium of 

solute concentration to be reached as solutes of specific size and charge pass through the semi-

permeable membrane. HD employs two processes for solute and fluid clearance: diffusive and 

convective33. Diffusive clearance involves the movement of solutes down a concentration gradient, 

from region of high concentration to low concentration and is most effective in the movement of 

small solutes. Water molecules “follow” the solutes and its exchange is facilitated by the osmotic 

gradient. Convective clearance, also known as ultrafiltration, is the most effective way of removing 

fluid, utilizing the difference in transmembrane pressure to forcibly push water through the 

membrane down a pressure gradient. Along this bulk transfer of plasma water, a great proportion 
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of middle-sized water-soluble molecules (500-5000 Dalton) are dragged across the membrane for 

removal. Dialysate that has been used is pumped out of the dialysis machine for disposal and the 

filtered blood is returned to the patient through the venous line.  

Adequacy of HD treatment refers to the delivery of the treatment dose that is sufficient 

enough to promote the patient’s well-being55. It is conventionally assessed by the clearance of 

small solutes, mainly urea. Urea clearance is commonly represented in terms of urea reduction 

ratio index, quantified using acquired levels of blood urea nitrogen before and after the treatment56 

and through the quantification of Kt/V index where, K is the dialyzer blood water urea clearance 

(L/hr), t is the dialysis time (hr), and V is the volume (L) of water in the body57. The Kt/V index is 

the most widely used and a minimum single pool dose of 1.2 per dialysis is recommended.  
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Figure 1-3 Hemodialysis circuit diagram. Recreated from Hemodialysis by NIH: National 

Institute of Diabetes and Digestive and Kidney Disease, 2018. 

 

1.2.4 Complications of HD 

Common acute CV complications that occur with HD treatment are hypotension, 

hypertension, and arrythmias58. A reduction in BP or hemodynamic instability during HD is a 

direct response to the ultrafiltration and the rapid removal of fluid in attempts to achieve dry 

weight59–67. There are a few approaches to managing hypotension during dialysis. For example, 

intradialytic hypotension can be managed by reducing and maintaining a steady, constant 

ultrafiltration rate as well as increasing the dialysate sodium concentration to prevent decline in 

plasma osmolality and protect extracellular volume68–71. Recent studies have also demonstrated 
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controlling the temperature of the dialysate to cool or isothermic (below 36.5°C) levels can 

contribute to hemodynamic stability and improve patient tolerability to dialysis treatment72–76.  

While ultrafiltration during HD reduces BP in most patients, up to 15% of HD patients 

demonstrate paradoxical increases in BP during dialysis, and this is referred to as intradialytic 

hypertension77–79. Furthermore, hypertension outside of dialysis is prevalent in 70-90% of patients 

and is associated with adverse events. Management of intradialytic hypertension includes reduction 

in dry weight, antihypertensive pharmacological therapy, increasing the frequency of dialysis 

sessions, and reducing dialysate sodium concentration.  

Ventricular and atrial arrhythmias are common causes of sudden cardiac death in the HD 

population80–89. Studies have utilized implantable loop recorders for continuous monitoring of 

irregular heart rhythms and have demonstrated high prevalence of bradycardias and atrial 

fibrillations90,91. It was revealed that rates of clinically significant arrhythmias were highest at the 

first dialysis session of the week in patients receiving HD thrice weekly and the frequency of 

episodes increased during the last twelve hours of the interdialytic interval. These findings could be 

due to the fluctuation in fluid and electrolyte levels during dialysis and other studies have suggested 

dialysate potassium concentration to be a contributing factor. However, the mechanism of HD 

induced arrhythmia remain unclear and further investigation is needed.  

1.2.4.1 Effects of HD induced Circulatory Stress  

1.2.4.1.1 Endothelial Dysfunction 

The proper functioning of the microcirculation and its endothelial cell layer is important 

for CV function.92 Endothelial dysfunction is known to occur in CKD patients undergoing HD, 
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possibly contributing significantly to CV dysfunction such as defective BP control, impaired 

vasodilation, ischemic tissue injury, and increased inflammation93–95.  

The mechanisms by which endothelial dysfunction contributes to CV dysfunction include 

impaired release of endothelial nitric oxide (NO) secondary to reduced endothelial NO synthase 

activity93,94. NO is a vasodilator, an anti-inflammatory, and an inhibitor of platelet aggregation96,97. 

Impaired vasodilation results in impaired circulatory autoregulation which has implications for 

altered perfusion in vascular beds such as the heart and brain, especially in situations of circulatory 

stress such as during dialysis. Loss of the anti-inflammatory and anti-platelet effects of NO due to 

endothelial dysfunction may exacerbate the pro-inflammatory state of CKD patients and contribute 

to atherosclerosis98–100 in this population. 

It is thought that the dysregulation of the renin-angiotensin-aldosterone system in CKD 

induces endothelial dysfunction primarily due to the dysregulation of angiotensin II101,102. This 

assertion is supported by prior studies observing that increased levels of angiotensin II increased 

the levels of reactive oxygen species and promotes vascular inflammation94,103. It has also been 

shown that increased levels of reactive oxygen species results in oxidative excess and leads to 

diminished NO. In fact, in patients with CKD, markers of oxidative excess correlates with markers 

of endothelial dysfunction. 

As discussed previously, one of the most common causes of CKD and ESRD is 

nephropathy secondary to diabetes. In diabetes, insulin signaling is altered, downregulating the 

expression of endothelial NO synthase activity, resulting in decreased NO release, with the CV 

consequences as described above104,105. Advanced glycation end products are also produced in 

states of hyperglycemia such as diabetes, which also impair endothelial function106–108. With 
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reduced GFR in CKD, clearance of advanced glycation end products is impaired, creating a vicious 

cycle of endothelial dysfunction. 

Importantly, endothelial dysfunction may be induced by the life-saving HD treatment that 

patients with renal disease rely on. Coupled with the fact that endothelial dysfunction may not only 

be related to cardiovascular disease such as impaired myocardial perfusion and contractility, but 

may in fact precede it, it is crucial that endothelial dysfunction be sensitively assessed in the CKD 

and hemodialysis population. As discussed further in this thesis and as demonstrated in the work, 

one method to measure endothelial dysfunction is via plasma syndecan-1 levels. 

Endothelial dysfunction has been assessed by quantification of injury to the endothelial 

surface layer. The endothelial glycocalyx is a protective barrier overlying the monolayer of 

endothelial cells that line the blood vessels, and its degradation is an early indicator of endothelial 

damage109,110. The glycocalyx is comprised of cell-bound proteoglycans (e.g., syndecan protein 

family) which are bound to glycosaminoglycan side chains (e.g., heparan sulfate), and this layer 

protects the endothelium from damage by direct interaction with ions and proteins that are present 

in the plasma109. Degradation of the endothelial glycocalyx can result from sepsis, prolonged 

hyperglycemia, and ischemic-reperfusion injury, which ultimately causes ‘shedding’ of its 

constituents into the circulation. Syndecan-1 is a protein in the heparan sulfate proteoglycan, and 

elevation of this glycocalyx constituent in serum correlate with damage to the glycocalyx111. 

Clinical studies have shown glycocalyx damage in kidney disease that is associated with 

endothelial dysfunction and the level of glycocalyx damage, marked by increased glycocalyx 

constituent ‘shedding’, is proportional to kidney dysfunction (i.e., markers of glycocalyx shedding 

increased incrementally with CKD stages)111,112. This marked damage to the glycocalyx is the 

precursor to injury or dysfunction of the endothelium.  
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Exactly how glycocalyx damage results in endothelial dysfunction is still an active area of 

research. One possible mechanism is that the molecular structure of glycocalyx molecules such as 

syndecan-1 results in their oscillation when exposed to fluid (blood) flow, generating a lifting force 

that keeps red blood cells away from the endothelial cell and allows them to glide with minimal 

friction along the vascular endothelium113,114. The electrostatic charge of the glycocalyx also helps 

with this. Damage to the glycocalyx results in the loss of this lifting force, increasing friction to 

blood flow, with implications for microvascular resistance and perfusion113,114. A second possible 

mechanism is the mechanical coupling between the glycocalyx and the endothelial cell’s actin 

cytoskeleton113,114. Shear forces on the glycocalyx creates tension on the actin cytoskeleton 

triggering a signaling cascade resulting in production of NO. This mechanical relationship is 

modulated by osmotic stress and hydrostatic stress as these stresses can result in remodeling of the 

actin cytoskeleton113,114. This has implications for the endothelial cell’s ability to produce NO, 

with the resulting cardiovascular consequences as discussed above. 

1.2.4.1.2 Large Vessel Disease in Uremia 

In non-CKD patients, atherosclerosis is characterized by plaque development in the intimal 

layer of the arteries. Lipoproteins composed of proteins, phospholipids and lipids are deposited in 

the underlying smooth muscle of the intima layer, initiating proliferation of fibrous tissues115. With 

the formation of the atherosclerotic plaque (Figure 1-4), the conduit function of the artery is 

disturbed by the restriction of blood flow and induces ischemia to tissues downstream of the 

narrowed region, leading to myocardial damage. Risk factors of atherosclerosis in non-CKD 

population include high cholesterol, hypertension, smoking, diabetes mellitus, obesity, and age. 
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Figure 1-4 Progression of atherosclerosis. Recreated from Late complications of atherosclerosis 

by Wikimedia Commons, 2020. 

 

Coronary artery disease (CAD) is highly prevalent in ESRD and the underlying 

pathogenesis of atherosclerosis in this cohort of patients is from the local inflammatory response 

to endothelial dysfunction. In autopsy studies, coronary plaques in ESRD have been documented 

in its advanced stages with heavy calcification in the medial layer, deposited as phosphate, with 

an increased media thickness which differed from the mostly fibroatheromatous plaques of non-

renal patients116 (Figure 1-5). The degree of calcification was also shown to increase with longer 

exposure to dialysis treatment117,118. Investigations to date questioned the mechanism of 

accelerated atherosclerosis and it was hypothesized that the rate of plaque growth in CKD 

increased with decrease in renal function, which possibly was responsible for the high CV event 

rate in this group. However, the acceleration and nature of atherosclerotic plaque in ESRD remains 
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a topic of debate119–123. Diagnosis of CAD in CKD is discussed further in section 1.3.4.1 of this 

chapter. 

 Normal Coronary Artery CKD related CAD Non-CKD CAD 

 

    

Intima 
- No calcification 
- No Plaque 
- Contains normal endothelial cells 

No atherosclerotic 
plaque 
 

Heavily calcified 
atherosclerotic plaque 

Calcified 
atherosclerotic plaque 

Media No calcification 
Organized smooth muscle 

Calcification Calcification Generally, no 
calcification 

Figure 1-5 Morphology of coronary artery in chronic kidney disease. Recreated from Diagnosis 

and management of atherosclerotic cardiovascular disease in chronic kidney disease: a review 

by Mathew et al., 2017. 

 

Risk factors for atherosclerosis in CKD include mineral bone metabolism, vascular 

calcification, uremic toxins, inflammation, oxidative stress, and endothelial dysfunction; all of 

which are commonly experienced in patients undergoing HD120,124. In this thesis, we aim to further 

evaluate the compounding effects of CAD and HD-induced circulatory stress on cardiac function. 

1.2.4.1.3 Structural and Functional Cardiac Injury 

 Although dialysis is a life-saving treatment for patients with CKD, their CV comorbidities 

make them susceptible to HD-induced cardiac injury. In this patient population, there is a high 

prevalence of CAD125, as well as increased peripheral artery stiffness126. Increased peripheral 

artery stiffness results in increased peripheral vascular resistance and ultimately left ventricular 

hypertrophy (LVH) a common finding in CKD patients127. Microcirculatory changes in patients 
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with CKD have also been reported. Together, larger vessel and microcirculatory changes result in 

reduced coronary flow128–130, while LVH result in increased myocardial demand. The reduced 

ability to increase coronary blood flow to match the increased myocardial demand creates a flow-

demand mismatch, reducing the ischemic threshold and creating susceptibility to demand 

ischemia. 

Because of this, the circulatory stress imparted by dialysis treatment is enough to induce 

acute reversible segmental myocardial hypoperfusion and contractile dysfunction131–133. Repeated 

dialysis treatments cause recurrent ischemic injury, although initially reversible, eventually 

accumulates into long-term loss of segmental and global cardiac contractility. The amount of 

injury may be related to the amount of relative hypotension experienced by the patient during HD 

as well as the rate of ultrafiltration during dialysis. Defective BP control due to impaired baroreflex 

sensitivity, decreased vascular compliance, and microvascular/endothelial dysfunction in CKD 

patients may also contribute to the amount of injury126. 

However, the relative contributions of the macro-cardiac circulation (i.e., CAD) versus the 

micro-cardiac circulation (i.e., endothelial dysfunction) remains unclear. This exact question is 

investigated in this thesis. 

If relative hypotension is one of the main factors determining the amount of HD-induced 

cardiac injury, it then follows that therapies targeted at improving the hemodynamic response 

during dialysis may be protective against HD-induced cardiac injury. As discussed previously, 

therapies that have been studied include dialysate cooling73–76, remote ischemic 

preconditioning134,135, and intradialytic exercise136–152. Intradialytic exercise as a cardioprotective 

therapy is further investigated in this thesis. 
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1.3 Imaging Modalities to Assess HD-induced Myocardial and 
Microcirculatory Injury 

The acute changes to a patient’s heart function during HD treatment are still not fully 

elucidated. Imaging offers a non-invasive means to explore these changes and to shed light on how 

to effectively address the associated clinical concerns. Currently available imaging modalities can 

identify morphological and functional changes to the heart during dialysis and may be sensitive 

enough to detect the heart’s response to cardioprotective interventions. Here, we describe and 

compare currently available and emerging modalities for intradialytic myocardial assessment and 

discuss the latest insights gleaned from recent imaging studies exploring HD-induced myocardial 

dysfunction. In particular, we focus upon new developments in cardiac CT which can allow the 

totality of cardiac structure and function to be imaged, at rest and under the stress of HD. 

1.3.1 Positron Emission Tomography 

A number of research studies have investigated the functional changes within the 

myocardium associated with dialysis treatment using position emission tomography (PET). 

Radioactive tracers such as 13N-Ammonia or 15O-labeled water are administered intravenously to 

quantitatively measure myocardial perfusion133,153. A metric called myocardial perfusion reserve 

(MPR) can then be calculated from perfusion measurements at rest and during a stress test, and is 

defined as the global myocardial perfusion at stress normalized to the myocardial perfusion at 

rest154,155. MPR reflects the capacity at which the vascular bed responds to a maximal increase in 

perfusion and is considered a surrogate measure of endothelial dysfunction. To ensure a maximal 

increase in perfusion during stress, a pharmaceutical agent is typically administered to induce 

systemic vasodilation. Adenosine, dobutamine, and dipyridamole are commonly used vasodilators 

during this test. 
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Research teams have conducted intradialytic PET studies investigating the change in 

myocardial perfusion during a single dialysis session. A case study reported a significant decrease 

in myocardial perfusion at peak dialysis stress (220 minutes of HD) relative to both baseline and 

early dialysis (30 minutes of HD). Similarly, McIntyre et al. reported an acute decrease in global 

myocardial perfusion during HD133. They also showed that PET measurements can be 

complementary to ultrasound measurements, as myocardial segments developing RWMAs had 

significantly greater reductions in perfusion.  

Despite its use in current clinical practice, a major limitation of PET imaging is its 

accessibility. PET tracers with the best performance have short half-lives and require additional 

on-site access to cyclotron facilities to produce the isotopes for immediate utilization. Another 

drawback of PET imaging is its poor spatial and temporal resolution which limits the 

morphological or anatomical information it provides. Due to the low spatial resolution of PET, CT 

images may also be acquired concomitantly for anatomical reference using a PET/CT hybrid 

scanner. This provides additional structural information but no additional information about 

contractile function.  

1.3.2 Magnetic Resonance Imaging 

1.3.2.1 Four Dimensional MRI to Assess Contractile Function 

Magnetic resonance imaging (MRI) is a powerful and versatile modality capable of 

obtaining detailed local and global mechanical function of the myocardium. Zerhouni et al. was 

first to describe the use of tissue tagging to track the motion of the myocardium in four-

dimensions156. Tissue tagging is achieved by using magnetization saturation to null the signal from 

specific spatial locations in the tissue. These signal voids can then be used as dark fiducial markers 

to track movement, allowing the calculation of mechanical parameters that describe the regional 
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wall motion of the myocardium in HD population157. These parameters include strain, strain rate, 

twist and torsion.  

Strain is defined as the ratio of the change in length of the myocardial fibers to their initial 

dimension and can be measured in 3D158,159. Measurement of radial, circumferential, and 

longitudinal strain enables the calculation of the 3D deformation of myocardial wall. The rate at 

which strain changes over time can also be determined. Both 3D deformation and strain rate are 

considered measures of left ventricular (LV) function and are sensitive indicators of ventricular 

wall remodelling. On the other hand, twist and torsion are parameters that indicate the amount of 

opposing rotation between the base and apex of the heart and are considered to be sensitive to 

changes that occur in both systolic and diastolic dysfunction.  

There are many inherent limitations of 4D MRI. As tissue tagging involves a continuous 

sequence of (radiofrequency) pulses to create the signal voids, increased energy deposition in the 

tissue and non-uniform tag intensity can occur158. Also, because the tags are created using 

magnetization saturation, they will fade with time due to T1 relaxation. This can lead to 

inaccuracies in the measurement of myocardial wall motion especially in diastole. 

1.3.2.2 Exogenous and Endogenous Contrast MRI for Assessment of 
Perfusion 

In exogenous contrast-enhanced MRI, a gadolinium-based contrast agent is administered 

to the patient prior to the scan. A dynamic image is acquired, and a tracer kinetic model is applied 

to the measured local blood volume to estimate perfusion160. This validated technique offers high 

spatial and temporal resolution images of the heart. However, in patients with impaired kidney 

function, there is a risk that injecting gadolinium could precipitate nephrogenic systemic 

fibrosis161. Newer formulations of gadolinium contrast have reduced these risks but use in patients 
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receiving maintenance dialysis is still discouraged. Therefore, in a cohort of CKD population, 

taking advantage of an endogenous tracer of blood flow is a favorable option. 

Arterial spin labelling (ASL) is a non-invasive imaging technique that magnetically labels 

the protons of water in the blood and uses it as a free diffusible endogenous tracer155,160. Protons 

are labelled by an inversion pulse, which inverts its magnetic spin. After a delay to allow the 

labelled blood to flow into and perfuse the tissue of interest, the tissue is imaged. As perfusion 

occurs, the labelled protons in the blood exchange with protons in the tissue, resulting in a 

reduction of signal. A perfusion weighted image can then be generated by taking the difference 

between a labelled and a non-labelled image.  

A short-term trial studying the effects of hemodiafiltration, and HD on CV response 

utilized intradialytic ASL-MRI to detect a decrease in myocardial perfusion during dialysis 

treatment to baseline157. These results are broadly comparable to studies done using PET, 

suggesting that MRI, a more accessible technique, may be able to provide similar information to 

PET. 

1.3.2.3 MRI to Assess Tissue Viability 

There are many specialized MRI sequences that can be used for assessing specific changes 

to the myocardium. For example, T1-weighted images can be used to detect fat, fibrosis, and 

calcification, while T2-weighted images can identify areas of infarct, edema, and inflammation162–

164. Both types of images can be used concurrently to study the progression of a chronic CV disease 

over time, as well as the identification of viable myocardium post ischemic injury165–168.  

Cardiac MR imaging remains challenging because of the long acquisition time, which 

needs to be minimized to reduce the effects of inherent cardiac and breathing motion. In almost all 
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cases, steady breathing or breath-hold techniques are necessary for producing high quality images. 

Improper breath-holds result in motion artefact and inaccurate measurement of perfusion. 

Although patients with CV disease could benefit from MR imaging, many struggle to comply with 

breathing directions and coaching; especially when multiple repeated acquisition is necessary for 

signal averaging to improve the signal-to-noise ratio (e.g. ASL). In HD research studies, 

combining high field magnets with HD equipment is very challenging and further limits the 

application of these techniques to HD-based CV challenges. 

1.3.3 Echocardiography 

Echocardiography is an imaging tool that uses high frequency ultrasound waves to produce 

two-dimensional images of the heart in real-time. Ultrasound is a popular imaging modality 

because it is readily accessible in the clinic and can be used at the bedside. Operators can quickly 

image the heart from different directions by positioning the ultrasound probe accordingly. Each 

cardiac view is useful in examining the overall morphology of the heart, its ability to pump blood, 

and the condition of the heart valves. In addition, stenosis, hyper- or hypotrophy, and tumor growth 

can be detected with ultrasound.  

Cardiac ultrasound images can also be processed to determine global and segmental 

longitudinal strain of the myocardium and assess regional wall motion abnormalities (RWMA), 

providing a direct measurement of the contractile performance of the heart. The development of 

RWMAs reflects myocardial segments that reduce in contractile function during dialysis as a 

consequence of regional ischemia. Assa et al. analysed echocardiography data from 105 patients 

and detected HD-induced RWMAs in 29 of them169. In a similar proportion of patients, Dubin et 

al. reported worsening RWMAs due to HD and found that patients with a previous diagnosis of 

heart failure had a higher risk of worsening RWMA during HD131. Since dialysis patients who 
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develop RWMAs during HD have a higher 1-year mortality, intradialytic echocardiography may 

be able to identify patients who are more vulnerable to complications associated with dialysis.  

Measuring RWMAs with echocardiography could also be a useful metric for assessing 

physiologic response to interventions. An exploratory study by Penny et al., which investigated 

the effect of exercise for immediate cardio-protection against ischemia, demonstrated that 

intradialytic exercise is an effective preconditioning approach that significantly reduced the 

incidence of acute HD-induced cardiac injury, as quantified by a decrease in RWMAs148.  

LV ejection fraction and LV systolic function can also be quantified using 

echocardiography, providing a measurement of heart function. In addition, recent advancements 

in echocardiography have proven capable of acquiring myocardial perfusion information in real 

time with continuous intravenous administration of a contrast agent (e.g., microbubbles)170. 

Dynamic perfusion measurements provide invaluable information about the microvasculature 

abnormalities of the myocardium. However, perfusion imaging with myocardial contrast 

echocardiography has yet to be adopted in HD studies for several reasons. First, a very low 

mechanical index (related to the energy delivered by ultrasound) must be maintained to visualize 

the injected contrast. Second, echocardiography comes with an inherent limitation in image 

resolution. Third, image artefacts are common when imaging the heart as a result of its dynamic 

contractile movement, its positioning adjacent to the lungs, and its motion during respiration. 

Many other imaging modalities have overcome these limitations and will be discussed later on.  
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1.3.4 Principles of Computed Tomography Imaging 

1.3.4.1 Coronary CT Angiography 

Coronary angiography (CA) is not a tool for imaging acute dysfunction during HD. Rather, 

it is used to assess the chronic effects of renal impairment and dialysis on the coronary arteries to 

provide an assessment of flow limiting stenosis in the coronary circulation. Although traditionally 

performed with invasive cardiac catheterization, CA can be performed with different non-invasive 

imaging modalities, many of which enable three-dimensional acquisition of coronary angiograms 

in high resolution. Not only can CA assess the degree of luminal narrowing, but it can also detect 

areas of calcification within the wall of the coronary arteries themselves – first quantified by 

Agatston171.  

The use of CA in HD patients is considered clinically relevant as excess coronary artery 

calcification (CAC) is common in this patient population and is associated with high CV risk172–

177. It is a common misconception that the origins of CV mortality in all stages of CKD are 

equivalent. In non-uremic CKD patients, arterial calcification is predominantly due to 

atheromatous plaques derived from the vessel intima130,178. For these patients, plaque burden is 

characteristically high and progresses rapidly. In patients with worsening degrees of CKD (and in 

particular those requiring dialysis, i.e. uremic CKD patients) the origin of the calcifications is 

different from that of non-uremic patients. Calcifications in uremic CKD patients commonly 

express bone-associated protein as well as the core-binding factor a-1, and arise from the arterial 

media rather than the intima176,178. CAC scoring used to assess the amount of calcium deposits in 

the arteries provides a measurement of intimal calcification (as a measure of plaque burden) and 

medial calcification (effecting arterial compliance). The CAC score is an essential measure for CV 

risk stratification as both of these entities contribute to increased CV risk.  
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Conventional cardiac CT angiography provides accurate assessment of coronary arterial 

calcifications (as compared to other imaging modalities such as intravascular ultrasound, 

fluoroscopy, and MRI)179,180. Contrast-enhanced CT angiography not only quantifies vascular 

calcifications, but also detects coronary artery stenoses which can put a patient at risk for HD-

induced myocardial ischemia. However, conventional CT angiography provides no functional 

information on myocardial viability. To overcome this limitation, current studies have adopted 

new cardiac CT protocols that allow simultaneous acquisition of perfusion and angiography in a 

single dynamic heart scan. These protocols increase the amount of information we can obtain from 

the patient, while keeping radiation exposure low. 

1.3.4.2 Overview of Myocardial CT Perfusion Imaging 

In the recent decade, CT scanners have become widely used with the introduction of high 

slice system from 64 to 256, to even 320-slice scanners. The newer generation of scanners utilize 

faster gantry speed rotation, improved image reconstructive software, and a more sensitive detector 

to permit ultra-low dose cardiac imaging181,182. A faster gantry rotation speed can reduce cardiac 

and breathing motion artefact during a scan, while improved iterative and model based 

reconstructive software can significantly reduce the number of x-ray projections required for 

diagnostic quality thereby lessening the radiation dose. In addition to technological advancement 

of the scanner itself, new acquisition techniques have also been introduced with the goal of 

achieving clinical utilization of cardiac CT. So far, these techniques have yet to make their way 

into clinical practice but are available for research purposes. 

As discussed previously, current clinically available imaging modalities are each 

individually useful in acquiring specific information about particular aspects of myocardial 

dysfunction. For patient assessment and CV research, multiple imaging modalities are usually used 
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in combination to obtain a more complete understanding of the pathophysiology at hand. This 

requires additional resources and time that often make the use of multi-modality imaging infeasible 

in the clinic and impractical in a research setting. In particular, using multiple imaging modalities 

during an HD session to assess intradialytic changes in myocardial function is very difficult to 

accomplish. However, an advanced CT system in parallel with novel imaging techniques that can 

acquire high quality information about multiple aspects of myocardial dysfunction in one rapid 

scanning session would be ideal for assessing the structural and functional changes of the heart in 

response to HD.  

 Dynamic contrast-enhanced (DCE)- CT is an x-ray imaging modality that quantifies the 

enhancement of tissue over time as a bolus of injected iodine contrast washes in and out of the 

tissue. A common concern with dynamic imaging is an increase in radiation exposure resulting 

from the frequent number of scans per imaging session. To overcome this, recent advancements 

in CT scanners have made prospective ECG-gating possible, allowing for the reduction of effective 

radiation dose to the patient from 12mSv to 3mSv. This is because images are acquired during a 

specific phase (often diastolic) of the cardiac cycle rather than over the whole cardiac cycle. A 

further benefit is that this approach also reduces the cardiac motion between each image slice. This 

is especially important because motion artefacts hinder the accuracy of perfusion measurements. 

To further reduce radiation exposure, there are approaches including decreasing the tube voltage 

or acquiring half the number of x-ray projections, but discussion of these techniques is beyond the 

scope of this article.  

Following a dynamic scan, a tracer kinetic model that mathematically describes the 

delivery of contrast from the intravascular to the extravascular components of the tissue is applied 

to the DCE-CT image to generate functional maps of physiologic parameters such as myocardial 
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perfusion, blood volume, mean transit time, and extravascular contrast distribution volume 

(ECDV). Thus, a single dynamic scan can simultaneously provide valuable functional information 

about multiple aspects of myocardial dysfunction.  

1.3.4.3 Dynamic CT Imaging for Myocardial Perfusion 

Cardiac DCE-CT is a comprehensive imaging technique that can extract information on 

myocardial dysfunction, ischemia, tissue viability, fibrosis, edema, and coronary calcification 

from a single scan. It can also track changes in cardiac morphology during the progression of 

dialysis treatment. In the case of myocardial dysfunction during HD, it is well established that 

most treatment sessions introduce recurrent ischemic injury and stunning of myocardial segments. 

Following repeated treatment and recurring ischemic episodes, affected tissue will no longer be 

viable. With DCE-CT imaging, this can easily be identified as hypoperfused regions of interest in 

a myocardial perfusion map (Figure 1-6) that correspond to decreased blood volume. As the 

repetitively stunned myocardial tissue becomes irreversibly damaged over time, cell membranes 

within the region degenerate and become ‘more permeable’, allowing extravasation of iodine 

contrast to the intracellular space. To quantitatively distinguish viable from infarcted tissue, 

consideration of the intracellular compartment is necessary. To do this, So et al. developed the 

extended Johnson-Wilson-Lee tracer kinetic model and defined a new functional parameter, 

ECDV183,184. Quantitative measure of ECDV can also be used to detect myocardial fibrosis in HD 

as the same tracer kinetic model can be used to demonstrate an increased contrast distribution to 

the fibrotic tissue relative to normal tissue. 
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Figure 1-6 Morphological change in LV myocardium during an intradialytic CT imaging session. 

Perfusion images of HD patient at three time points: A) Before dialysis B) Peak dialysis; 225 

minutes into HD C) Post dialysis. A decrease in global myocardial perfusion (ml/min/100g) is also 

demonstrated throughout the dialysis session. Adapted from Current and novel imaging techniques 

to evaluate myocardial dysfunction during hemodialysis by Hur and McIntyre, 2020. 

Perfusion heterogeneity has been reported as a marker of endothelial dysfunction in the 

dialysis population. In 2018, Kharche and colleagues quantified myocardial perfusion 

heterogeneity in peritoneal dialysis patients using DCE-CT via fractal dimensions to test whether 

or not dialysis increased heterogeneity185. The same approaches can be applied to HD. 

Qualitatively, a case study demonstrated a significant increase in perfusion heterogeneity at peak- 

and post-HD relative to baseline (Figure 1-7). A patient with a prior history of peritoneal dialysis 

demonstrated an increase in perfusion heterogeneity during HD (Figure 1-8), consistent with 

previous studies that concluded HD stresses the myocardium more than PD. 
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Figure 1-7 Myocardial CT perfusion (ml/min/100g) image of a HD patient at pre-dialysis (A), 

peak-dialysis (B), and post-dialysis (C). White arrows denoting increased perfusion heterogeneity 

throughout the left ventricular myocardium as the patient progresses through dialysis treatment. 

Adapted from Current and novel imaging techniques to evaluate myocardial dysfunction during 

hemodialysis by Hur and McIntyre, 2020. 

 

Figure 1-8 Myocardial CT perfusion (ml/min/100g) image of a single patient. Panel A during 

peritoneal dialysis and panel B during HD. It is qualitatively evident by the uneven, speckle-like 

perfusion effect seen in panel B that there is greater perfusion heterogeneity during HD treatment 

compared to peritoneal dialysis in the same subject. Adapted from Current and novel imaging 

techniques to evaluate myocardial dysfunction during hemodialysis by Hur and McIntyre, 2020. 
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There is a lot of potential for DCE-CT in terms of studying the hemodynamic effects of 

HD treatment and assessing HD patient responses. Not only can it measure multiple markers of 

myocardial dysfunction with high spatial resolution, it can do so in a rapid, single dynamic scan 

that allows patients to free-breathe. With the availability of these various radiation-reducing 

measures, the clinical benefit from the high-quality data provided by DCE-CT would outweigh the 

risks of radiation. The accessibility of CT and the short acquisition times offer additional 

advantages that enable increased clinical throughput. Multiple CT approaches (e.g. CT perfusion 

and CT angiography) can also be performed simultaneously to acquire even more complete 

morphological and functional information, as discussed previously. However, it is important to 

note one limitation to this technique. When generating functional maps such as perfusion, blood 

volume, and mean transit time maps, a tracer kinetic model must be used. This tracer kinetic model 

is selected based on the pathophysiology specific to a disease. In other words, different models are 

used for different pathophysiology, and selecting the correct model is essential for accurate 

quantification of functional data. 

1.3.4.4 Risks Associated with CT Contrast Agents 

Contrast-induced nephropathy has historically been an important concern for those with 

renal impairment. Most clinical research involving CT has therefore excluded participants with 

low residual renal function. However, recent studies investigating the effect of contrast agents on 

residual renal function found no evidence of contrast-induced nephropathy186. The benefits of 

contrast-enhanced imaging in patients with high CV mortality rate therefore outweigh the potential 

harm. 
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1.4 Motivation and Objectives of Thesis 

The overarching goal of this thesis work is to study the acute effect of HD on the circulation 

at multiple levels—macrovascular, microvascular, and at the endothelial level—under conditions 

of intradialytic exercise and varying levels of dialysate sodium concentration. To address this 

overarching hypothesis, this thesis has been divided into three research projects (Chapters 2, 3, 

and 4) and the individual objectives are as follows: 

Project 1: The effect of coronary artery disease on myocardial perfusion and stunning response 

to HD treatment 

o Examine how coronary artery disease affects global myocardial perfusion during HD 

o Examine how coronary artery disease affects segmental myocardial perfusion during HD 

o Examine the effects of coronary artery disease on myocardial stunning during HD 

Project 2: Investigating the role of dialysate sodium concentration on the endothelium and 

microcirculation during HD 

o Examine endothelial injury and microvascular perfusion defect as a result of HD treatment 

o Study the effect of dialysate sodium on endothelial injury and microvascular perfusion 

o Explore the relationship between endothelial injury and microvascular perfusion with 

respect to dialysate sodium concentration 

Project 3: Assessment of intradialytic exercise for cardioprotection to HD-induced circulatory 

stress  
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o Investigate the acute effect of intradialytic exercise on the endothelium during HD 

o Examine how intradialytic exercise affects global myocardial perfusion during HD 

o Assess whether or not intradialytic exercise improves ischemic tolerability of HD treatment 

through measures of myocardial stunning 
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Chapter 2  

2 Presence of coronary artery stenoses reduces segmental 
myocardial perfusion and is associated with myocardial 
stunning 

 

A version of this chapter is in preparation for publication: Lisa Hur, Ali Islam, Jarrin Penny, Justin 
Dorie, Christopher W. McIntyre, “Presence of coronary artery stenoses reduces segmental 
myocardial perfusion and is associated with myocardial stunning,” In preparation. Aug 2022. 

 

Abstract Hemodialysis (HD) is associated with repetitive ischemia-reperfusion cardiac injury 
occurring during each treatment that accumulates with subsequent treatments. Conventional 
cardiovascular therapies effective in patients with atherosclerotic disease or myocardial infarction 
have been largely ineffective in treating HD-induced injuries. The objective of the present study 
was to use coronary CT angiography (CCTA), intradialytic CT perfusion and echocardiography 
imaging to noninvasively evaluate the myocardial perfusion and stunning response during HD in 
patients with and without coronary artery disease. CCTA images were acquired prior to HD 
(baseline) on thirteen patients and assessed by an experienced radiologist for clinically significant 
stenoses. In addition, dynamic contrast-enhanced CT scans (Revolution CT, GE) were conducted 
at baseline, peak HD stress, and 30 mins post HD. The dynamic CT images were analyzed using 
the Johnson-Wilson-Lee tracer kinetic model to quantify global myocardial perfusion (MP) of the 
left ventricular myocardium. Following each dynamic CT scan, apical 4-chamber and 2-chamber 
views of the heart were acquired with 2D echocardiography (Vivid Q, GE). The systolic function 
was evaluated by measuring segmental longitudinal strain (LS) using commercially available 
software (EchoPAC, GE). Myocardial segments demonstrating >20% reduction in LS compared 
to baseline were defined as regional wall motion abnormalities (RWMA). Three patients were 
identified with asymptomatic coronary artery disease (CAD+). In participants with stenoses, there 
were no significant intradialytic changes in global MP. HD participants with no identifiable 
stenoses lesions (CAD-) demonstrated a decrease in global MP from baseline to peak HD and a 
recovery of perfusion to baseline level at post HD timepoint. Furthermore, CAD+ participants had 
elevated number of myocardial segments experiencing RWMA that remained elevated post HD. 
The presence of coronary artery disease alters myocardial perfusion and stunning response to HD 
treatment.  
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2.1 Introduction 

Cardiovascular disease (CVD) is highly prevalent in end stage renal disease (ESRD) and 

is the major cause of morbidity and mortality1–6. Vascular dysfunction induced by uremia in ESRD 

is a potential underlying cause of these complication7,8. The interplay of uremic toxins such as 

guanidine compounds, advanced glycation end products, p-cresyl sulfate, indoxyl sulfate and 

asymmetric dimethylarginine promote the progression of atherosclerosis9. In an autopsy study, the 

intima-medial layer of the artery thickens with decreased renal function leading to arterial stiffness, 

a loss of vascular wall compliance10. The alteration in hemodynamics caused by arterial stiffening 

induces left ventricular hypertrophy associated with coronary hypoperfusion. Naturally, it can be 

assumed that a coronary perfusion compromise would alter myocardial perfusion producing 

ischemic regions in hypoperfused areas of the heart. 

 As part of the progression of atherosclerosis and arterial stiffening in uremic patients on 

hemodialysis (HD), vascular calcification of the intimal and medial layer is commonly seen1. The 

vascular calcification can be deleterious and have been shown to be associated with arterial 

stiffening and endothelial dysfunction11,12. This current study questions the effect of vascular 

dysfunction of the coronary arteries on the microvascular perfusion and cardiac function during 

HD.  

During the HD treatment, multiple vascular beds experience ischemia and reduction in 

oxygen delivery, followed by reperfusion at the end of the dialysis treatment. A single episode of 

HD treatment exerts significant hemodynamic instability that can potentially lead to intradialytic 

hypotension, defined as greater than 20 to 30 mmHg decrease in systolic blood pressure13–18. This 

degree of circulatory stress and hypotension is associated with myocardial stunning and is due to 

the considerable reduction in intravascular volume as a result of the removal of large amounts of 
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fluid that is not adequately negated by plasma refill during dialysis19. Studies investigating the 

frequency of intradialytic hypotension and its association to clinical outcome have identified this 

significant reduction in systolic blood pressure in five to thirty percent of HD treatments, 

dependent on the set threshold20–22. Furthermore, the frequency of intradialytic hypotension was 

associated with increased patient mortality and hospitalization16,23–25. It is now common 

knowledge that the administration of HD results in recurrent circulatory stress. 

In conjunction with the hemodynamic instability experienced with HD, the high prevalence 

of CVD and other comorbidities can further exacerbate the dialysis-induced ischemic injury26–38. 

ESRD patients with diabetes mellitus have reduced coronary flow reserve in the absence of 

angiographically evident coronary artery disease (CAD)39. Similarly, utilizing transthoracic 

doppler echocardiography, a study showed that HD patients without left anterior descending 

stenoses had significantly lower coronary flow reserve than compared to those with normal renal 

function40. These findings may be due to structural and functional cardiovascular abnormalities, 

such as left ventricular hypertrophy and increase in left ventricular mass resulting from 

hypertension that is commonly present in this cohort of patients41–44. Clinical studies using 

advanced imaging techniques to assess coronary flow have also demonstrated a reduction in 

myocardial perfusion in response to HD treatment, indicating that CAD is not a prerequisite for 

myocardial ischemia experienced with HD37,45–47. It is clear that HD patients have a higher risk for 

cardiovascular disease relative to the general population, which may be compounded by the 

presence of existing CAD and vascular dysfunction. Since HD induces challenges to tissue 

oxygenation due to perfusion anomalies and consequently induce myocardial stunning, it would 

be important to determine the effect CAD on perfusion during HD and evaluate whether or not 

asymptomatic CAD in HD patient should be intervened. 
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 Therefore, the aim of this exploratory study was to identify flow restricting coronary artery 

lesions in HD participants with asymptomatic CAD and observe HD’s effect on myocardial 

perfusion and stunning using serial multimodal imaging during HD. Coronary artery status was 

evaluated with coronary computed tomography (CT) angiography, myocardial perfusion was 

quantified with dynamic CT perfusion imaging, and myocardial stunning was assessed with 

echocardiography. It is hypothesized that HD is associated with an acute reduction in myocardial 

perfusion that is independent of coronary artery status. However, the coupling of flow limiting 

coronary artery lesions and HD-induced ischemia may affect the overall myocardial function, 

marked by the severity of myocardial stunning. 

2.2 Methods 

2.2.1 Study Design 

This study aims to investigate the effect of coronary artery status on the myocardial 

response to HD. It is a single-centered cross-sectional study conducted on a cohort of ESRD 

patients requiring maintenance HD. Participants who agreed to participate in the study were asked 

to attend an intradialytic imaging session at St. Joseph Health Centre (London, Ontario, Canada). 

During the study, a series of dynamic contrast enhanced CT images, echocardiography, and blood 

samples were collected throughout the course of the dialysis treatment: prior to HD initiation 

(baseline), at maximal HD-induced circulatory stress (peak HD) and following the recovery phase 

after the return of blood (post HD). Collection of both blood and multimodal imaging enable the 

evaluation of myocardial perfusion and the presence of myocardial stunning in relation to 

intradialytic electrolyte changes. 
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2.2.2 Study Population 

Fourteen participants, eighteen years of age or older, were recruited from the London 

Health Science Centre Renal Program (London, Ontario, Canada). Those recruited were required 

to have received HD for a minimum of three months prior to study enrollment and undergo HD at 

least thrice weekly. Prior to the initiation of the study, all participants enrolled provided informed 

consent. The HD participants enrolled in this study were at random and none were suspected of 

CAD. However, previous studies have suggested considerable plaque burden in this patient 

population that may be subclinical. The exclusion criterion for the involvement of this study 

included a history of chronic arrhythmia, being on anti-arrhythmic medications, and having 

implanted cardiac devices such as a pacemaker or cardioverter defibrillator. A single participant 

was removed from analysis as the coronary angiography image could not be acquired at the time 

of the study visit.  

2.2.3 Demographic Information 

At the time of enrollment, the following demographic information was collected from the 

participants: date of birth (month and year), biological sex, weight, height, ethnicity, and chronic 

kidney disease related patient information. From the provided information, additional 

demographics such as age and body mass index were calculated. Patient demographics are 

summarized in Table 2-1. 
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Table 2-1 Participant information and demographics 

Characteristics Prevalence 
Ethnicity: Caucasian, n 10 (76%) 
Men, n 8 (62%) 
Age, yr 66 ± 13 
BMI 33 (26-41) 
Dialysis vintage (mo) 58 (20-141) 
Hemodialysis vintage (mo) 50 (16-141) 
Charlson comorbidity index* 7.4 (4-12) 
Congestive heart failure 4 (31%) 
Primary renal diagnosis  
Hypertension 4 (31%) 
Hypertensive nephrosclerosis 2 (15%) 
Diabetic nephropathy 6 (46%) 
Acute Interstitial Nephritis 1 (8%) 
IgA nephropathy 2 (15%) 
Current Smoker 1 (8%) 
Medications  
ACEi/ARB 5 (38%) 
b - blocker 7 (54%) 
2+ antihypertensive agent 4 (31%) 

 

2.2.4 Dialysis Treatment Information 

The study visits were conducted midweek and dialysis treatments were delivered on the 

Fresenius 5008 dialysis machine using high-flux polysulfone dialyzers by a single operator (JP). 

HD treatment duration ranged from three to four hours. The dialysate composition was prescribed 

and delivered in accordance with the patient’s individual prescription as summarized in Table 2-

2: sodium range 135 to 140 mmol/L, potassium range 1.5 to 3.0 mmol/L, calcium range 1.25 to 

1.5 mmol/L, and bicarbonate range 35 to 40 mmol/L. Dialysate flow ranged from 500 to 800 

mL/min, with six patients using an arteriovenous fistula, a single patient dialyzing with an 

arteriovenous graft, and six dialyzing with a central line. Anticoagulation was achieved using low 

molecular weight heparin and the dialysate temperature was 36.5°C for all patients. 
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Table 2-2 Mean dialysis prescription (n=13) 

Dialysis Prescription Mean ± SD 
Treatment Time (hr) 3.5 ± 0.7 
Sodium (mmol/L) 139 ± 1.8 
Calcium (mmol/L) 1.3 ± 0.1 
Bicarbonate (mmol/L) 37.6 ± 2.3 
Dialysis flow, Qd (ml/min) 546 ± 113 
Vascular Access (AVF: AVG: CVC)* 6:1:6 

*AVF = arteriovenous fistula; AVG = arteriovenous graft; CVC = central venous catheter 

2.2.5 Assessment of Hemodynamic Stability 

Intradialytic changes in systolic blood pressure were used as a marker of hemodynamic 

stability. Measurements were acquired upon participants arrival and then periodically throughout 

the dialysis session until thirty minutes following the end of HD treatment. Blood pressure 

measurements were made with patients seated upright on the dialysis chair. 

2.2.6 Assessment of Coronary Artery Status 

Coronary CT angiography was routinely collected at baseline before commencing dialysis 

for non-invasive anatomical assessment of coronary artery stenosis. To achieve the highest quality 

image of the coronary arteries, a smart prep feature allowing real time monitoring of the contrast 

agent as it enhances the descending aorta at low x-ray dose, was utilized to determine specific 

parameters that are personalized to the patient being scanned. Once the parameters were set, the 

prospectively ECG-gated scan was acquired at peak aortic enhancement of contrast during patient 

breath hold. The scanning parameters are as follows: display field of view = 25.0 cm; 75%-75% 

R-R interval; tube voltage = 100 kV; tube current = smart mA 600 – 700; detector coverage = 

160mm; slice thickness = 0.625mm; gantry period = 0.28s. For contrast enhancement, iodine 

contrast (Isovue 370, 0.7 mL per kilogram of body weigh)t was administered intravenously at an 

infusion rate of 3 – 4 mL per second followed by a set 30 mL saline flush bolus at the same 

injection rate.  
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 The images were retrospectively reconstructed on the scanner console using an adaptive statistical 

iterative reconstruction (ASiR) algorithm to further improve image quality and diagnostic value 

(Revolution, GE Healthcare). The slice thickness was maintained during the reconstruction and 

the processed images were transferred to a proprietary workstation for analysis (Advantage 

Workstation, GE Healthcare). An experienced radiologist (A.I) reviewed the coronary anatomy 

for clinically significant stenosis in the three major arteries: (1) right coronary artery (RCA), (2) 

left anterior descending (LAD) artery, (3) left circumflex (LCx) artery. As per literature, coronary 

arteries with greater than fifty percent narrowing of the vessel’s diameter were identified to be 

stenosed lesions with potential hemodynamic significance. For each participant, the number of 

coronary arteries and the specific arteries with the stenosis were recorded. Based on the reported 

coronary artery status, the participants were divided into two arms. Individuals with one or more 

coronary artery stenoses were distinguished into the ‘CAD+’ group while the remaining 

participants with no reports of stenosed lesions were distinguished into the ‘CAD-’ group. 

2.2.7 Dynamic Contrast Enhanced Computed Tomography 

Prospectively ECG-gated, dynamic CT images of the heart were acquired at baseline, peak 

HD stress), and post HD treatment. To quantify perfusion, iodinated contrast agent (Isovue 370) 

was delivered during a series of axial scans that repeated every 1 to 2 heart beats (at approximately 

1.5 seconds) was acquired. Participants were aligned on the CT bed in feet first-supine position. 

The scanner settings for all dynamic CT images acquired for this study were as follows: display 

field of view = 45.0 cm; 75%-75% R-R interval; tube voltage = 100 to 120 kV; tube current = 

100mA; detector coverage = 160mm; slice thickness = 2.5mm; gantry period = 0.28s. 

 Retrospectively, the dynamic images collected at the three timepoints of HD treatment were 

reconstructed at 5mm slice thickness using the ASiR algorithm to increase the signal to noise ratio 
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(Revolution, GE Healthcare). Using a three-dimensional non-rigid registration algorithm, 

correction for residual cardiac and respiratory motion was then applied to the images on a 

proprietary workstation (GE proprietary software, advantage workstation, GE Healthcare). 

 Subsequently, the Johnson-Wilson-Lee model of tracer kinetics that characterizes the 

delivery of the contrast agent was applied to the motion corrected dynamic image to generate 

functional maps of the heart including absolute myocardial perfusion and blood volume. Maps 

were generated for each slice of the dynamic image set. For the purposes of this study, only the 

myocardial perfusion maps were examined. 

2.2.8 Quantification of Global Myocardial Perfusion 

The myocardial perfusion maps that were generated show the heart in the horizontal long 

axis view as defined by the American Heart Association’s standardized myocardial nomenclature. 

Seven slices of the left ventricular myocardium taken parallel to the horizontal long axis view were 

selected (the mid slice, three slices posterior and three slices anterior to the selected mid slice) to 

measure global myocardial perfusion. This was completed for maps generated from the dynamic 

images acquired at baseline, peak HD stress, and following the end of HD. 

2.2.9 Quantification of Segmental Myocardial Perfusion 

The original perfusion images generated in the horizontal long axis view were rendered 

into a three-dimensional volume and reconstructed to produce a standard short axis view of the 

heart. Using the short axis view, the perfusion maps were segmented into sixteen myocardial 

segments as defined by criteria established by the American Heart Association. Myocardial 

perfusion was then quantified for each segment. Since the segments are anatomically defined, the 
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amount of myocardial perfusion corresponding to a particular coronary artery responsible for the 

supply of blood to the particular segments could be quantified. 

2.2.10 Assessment of Regional Wall Motion Abnormality 

Standard apical 4-chamber and 2-chamber views of the heart was imaged with 

echocardiography at baseline, peak HD stress, and post HD to study the effect of HD on myocardial 

stunning. Each cardiac view was imaged over three cardiac cycles identified using a built-in, three 

electrode ECG. A single cardiac cycle with the highest level of image quality was selected for 

calculation of longitudinal strain. Using an offline two-dimensional speckle tracking proprietary 

software (EchoPac, GE Healthcare), segmental longitudinal strain values were calculated for 

twelve myocardial segments visualized in the 4-chamber and 2-chamber views. This was 

completed for all intradialytic timepoints (baseline, peak HD stress, post HD treatment).  

Calculating segmental longitudinal strain allowed the identification of segments exhibiting 

regional wall motion abnormalities (RWMAs). RWMAs are defined by a decrease in longitudinal 

strain during HD relative to the baseline strain values, representing a loss of contractile function 

and indicating myocardial stunning. For each of the twelve myocardial segments, percent change 

in longitudinal strain relative to baseline was calculated at peak HD and post HD. Of the twelve 

myocardial segments, those with greater than twenty percent reduction in longitudinal strain 

change from baseline were considered to have experienced RWMAs. For each participant, the 

number of segments experiencing RWMAs at the peak HD and post HD timepoints were counted. 

2.2.11 Statistical Analysis 

All statistical analyses presented in this paper were performed in GraphPad Prism 9 

software (GraphPad Software, La Jolla, California, United States of America). 
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2.2.11.1 Participant Demographics and Dialysis Treatment Information 

Demographic and dialysis treatment information for the thirteen participants are 

summarized with descriptive statistics (minimum value, maximum value, mean and standard 

deviation) in Tables 1 and 2. 

2.2.11.2 Assessment of Hemodynamic Stability 

Hemodynamic stability was assessed using systolic blood pressure measurements. Systolic 

blood pressure measurements acquired at baseline, peak HD stress, and post HD were analyzed 

using a repeated measure one-way ANOVA. The Geisser-Greenhouse correction was applied to 

correct for the sphericity of the data. Pos-hoc testing was completed with Tukey’s correction for 

multiple comparison to determine differences in systolic blood pressure between the intradialytic 

timepoints.  

 To determine differences in systolic blood pressure between the CAD+ and CAD- arm, 

grouped analysis was performed. A repeated measure two-way ANOVA with group (stenosed or 

non-stenosed), timepoint (baseline, peak HD, or post HD), and group-by-timepoint as fixed effects 

was performed for the systolic blood pressure measurements. A Geisser-Greenhouse correction 

was applied. If any of the fixed effects were statistically significant, post-hoc tests were performed 

with Sidak’s correction for multiple comparisons to determine systolic blood pressure differences 

between intradialytic timepoints and between groups.  

2.2.11.3 Laboratory Testing 

Intradialytic changes in electrolyte concentrations measured from the blood samples were 

assessed using linear mixed models. Specifically, levels of ionized calcium, sodium, potassium, 

chloride, bicarbonate, anion gap, creatinine, and calcium were analyzed using linear mixed models 
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with intradialytic timepoint as the fixed effect and participant as the repeated effect. A maximum 

likelihood algorithm was used to estimate variance parameters. The Geisser-Greenhouse 

correction was applied to correct for the sphericity of the data. If there was a significant effect of 

timepoint, post-hoc testing was completed with Tukey’s correction for multiple comparison to 

identify differences in electrolyte between timepoints. A linear mixed model was used for these 

data, as some participants did not have measures of all electrolytes at all timepoints. 

In contrast, intradialytic changes in urea, albumin, magnesium, phosphate, parathyroid 

hormone, cardiac troponin T, hemoglobin, C-reactive protein, and hematocrit levels were 

measured for all participants at all timepoints. As such, these data were analyzed using repeated 

measures one-way ANOVA. The Geisser-Greenhouse correction was applied to correct for the 

sphericity of the data. If the ANOVA was statistically significant, post-hoc testing with Tukey’s 

correction for multiple comparison was completed to determine differences between timepoints. 

Grouped analysis was performed for cardiac troponin T and C-reactive protein 

measurements. A repeated measure two-way ANOVA test with intradialytic timepoint and group 

(CAD+ or CAD-) as fixed effects were performed with the Geisser-Greenhouse correction for 

sphericity. If any fixed effect was statistically significant, post-hoc testing was completed with 

Sidak’s correction for multiple comparisons to determine differences between groups and between 

timepoints. 

2.2.11.4 Global Myocardial Perfusion 

First, the global myocardial perfusion values were assessed to identify outliers using the 

robust regression and outlier (ROUT) removal method. One participant’s perfusion measurement 

of a single timepoint was identified as an outlier and that data point was removed from further 
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analysis. The remaining global myocardial perfusion measurements were analyzed using a linear 

mixed model with intradialytic timepoint (baseline, peak HD, and post HD) as the fixed effect. 

Restricted maximum likelihood estimation was used. If there was a significant effect of 

intradialytic timepoint, post-hoc testing with Tukey’s correction for multiple comparisons was 

performed to identify the differences in myocardial perfusion between timepoints.  

A separate grouped analysis was performed to investigate the effect of CAD on global 

myocardial perfusion during dialysis. A linear mixed model with group (CAD+ or CAD-) and 

intradialytic timepoint as fixed effects was performed with restricted maximum likelihood 

estimation and the Geisser-Greenhouse correction. Post-hoc testing with Tukey’s correction for 

multiple comparison was performed to identify differences in myocardial perfusion within and 

between groups.  

2.2.11.5 Segmental Myocardial Perfusion 

Segmental myocardial perfusion measurements from all participants were pooled for 

analysis. Myocardial segments perfused by coronary arteries identified with greater than 50% 

stenoses were grouped together while myocardial segments perfused by non-stenosed coronary 

arteries composed another group. In total, 156 myocardial segments received their blood supply 

from normal coronary arteries (‘unaffected’ group) and 39 myocardial segments were supplied by 

coronary arteries that had stenosed lesions (‘affected’ group). At each individual timepoint 

(baseline, peak HD, post HD), a parametric unpaired two-tailed t-test was performed to determine 

statistical significance in myocardial perfusion between the unaffected and affected group.  

The number of myocardial segments with greater than thirty percent reduction in perfusion 

relative to baseline perfusion values was determined at peak HD and post HD45. A repeated 
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measure two-way ANOVA test with intradialytic timepoint and group (CAD+ and CAD-) as fixed 

effects was performed with the Geisser-Greenhouse correction for sphericity. If any fixed effect 

was statistically significant, post-hoc testing was completed with Sidak’s correction for multiple 

comparison to determine differences between groups and between timepoints. 

2.2.11.6 Regional Wall Motion Abnormality 

The number of myocardial segments experiencing RWMAs was analyzed with a repeated 

measure one-way ANOVA. If the ANOVA demonstrated statistical significance, a post-hoc testing 

was completed with Tukey’s correction for multiple comparisons to identify differences between 

intradialytic timepoints.  

 Additionally, a grouped analysis was performed to investigate the effect of clinically 

significant stenoses on the number of myocardial segments experiencing RWMAs during dialysis. 

A repeated measure two-way ANOVA was conducted with group (CAD+ and CAD-) and 

intradialytic timepoint as fixed effects and the participant as the repeated effect. A Geisser-

Greenhouse correction was applied for this analysis. If any of the fixed effects were significant, 

post-hoc tests were completed with Tukey’s correction for multiple comparisons to identify 

differences in the number of myocardial segments experiencing RWMAs within and between 

groups. 

2.3 Results 

2.3.1 Participants 

Of the fourteen participants enrolled, thirteen had a complete set of coronary CT 

angiography, dynamic CT perfusion, and echocardiography image data. A coronary CT 

angiography image was not successfully acquired for one participant and that participant was 
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excluded from all analyses. All thirteen participants included for assessment in this study 

completed laboratory testing at baseline, peak HD, and post HD. In our analysis of RWMA, one 

participant from the CAD- arm was excluded due to the poor image quality of the echocardiograph. 

The participants demographic information reflects the general HD population and is summarized 

in Table 2-1. 

 

2.3.2 Dialysis Treatment 

The dialysis treatment is summarized in Table 2-3 and includes weight +gain/-loss, pre-

systolic blood pressure (SBP), pre-diastolic blood pressure (DBP), SBP nadir, DBP nadir, Kt/V, 

minimum relative blood volume (RBV), mean ultrafiltration rate (UFR), mean UFR relative to 

pre-HD weight, and total fluid removed during the HD treatment session. 

Table 2-3 Intradialytic clinical information 

 Mean ± SD 
Weight +gain/-loss (kg ± SD) 1.4 ± 0.7 
Pre HD SBP (mmHg ± SD) 147 ± 20 
Pre HD DBP (mmHg ± SD) 62 ± 18 
SBP nadir (mmHg ± SD) 103 ± 19 
DBP nadir (mmHg ± SD) 52 ± 14 
Kt/V ± SD 1.48 ± 0.3 
Min RBV (% ± SD) 85.0 ± 3.5 
Mean UFR (mL/hr ± SD) 666 ± 203 
Mean UFR/pre weight (mL/kg/hr ± SD) 7.57 ± 2.7 
Total fluid removed (mL± SD) 2548 ± 816 

*SBP = systolic blood pressure; DBP = diastolic blood pressure; RBV = relative blood volume; UFR = ultrafiltration 
rate  

 

2.3.3 Laboratory Testing 

Electrolytes that were measured at baseline, peak HD, and post HD included sodium, 

calcium, potassium, chloride, phosphate, magnesium, and bicarbonate (Table 2-4). Linear mixed 



 68 

modelling and post-hoc multiple comparison test demonstrated expected changes in sodium, 

potassium, chloride, bicarbonate, and calcium resulting from dialysis (Supplementary Figure 2-1, 

Panel B, C, D, E, and J, respectively). Repeated measure one-way ANOVA and post-hoc testing 

showed expected decrease in levels of potassium and magnesium electrolytes with dialysis. 

(Supplementary Figure 2-1, Panel C and K, respectively). Similarly, analyses of serum creatinine 

and urea displayed decrease in concentration of these electrolytes due to dialysis (Supplementary 

Figure 2-1, Panel G and H, respectively). Repeated measure one-way ANOVA test showed a 

significant intradialytic change in hemoglobin levels (F(1.686, 20.23)=19.91, p < 0.0001, 

Supplementary Figure 2-1, Panel O), Post-hoc testing showed that hemoglobin increased 

significantly from the start of dialysis to peak HD stress (100.9 ± 9.4 to 110.9 g/L ± 11.1, p = 

0.0002), followed by a decrease at post HD (107.4 ± 10.6 g/L, p = 0.03), while remaining elevated 

compared to the start of dialysis (p = 0.01).  

Table 2-4 Mean plasma electrolyte concentration of those with significant changes as a response 

to hemodialysis treatment 

Electrolyte (Conc. ± SD) Control (n=13) 
Baseline Peak HD Post HD 

Ionized Calcium (mmol/L) 1.09± 0.1 1.05 ± 0.1 1.04 ± 0.1 
Potassium (mmol/L) 4.62 ± 0.8 3.33 ± 0.4 3.35 ± 0.4 
Bicarbonate (mmol/L) 24.5 ± 2.5 30.1 ± 2.2 30.1 ± 2.1 
Anion Gap (mmol/L) 16.0 ± 3.7 12.6 ± 2.5 12.1 ± 2.5 
Creatinine (umol/L) 732 ± 190 260 ± 86 254 ± 98 
Urea (mmol/L) 18.0 ± 4.7 5.06 ± 1.6 4.85 ± 1.7 
Albumin (g/L) 36.3 ± 3.8 41.5 ± 4.6 40.1 ± 4.6 
Calcium (mmol/L) 2.25 ± 0.3 2.28 ± 0.2 2.21 ± 0.2 
Magnesium (mmol/L) 1.07 ± 0.2 0.94 ± 0.2 0.92 ± 0.2 
Phosphate (mmol/L) 1.77 ± 0.5 0.71 ± 0.1 0.78 ± 0.2 
Hemoglobin (g/L) 101 ± 9.4 111 ± 11 107 ± 11 
C-Reactive Protein (mg/L) 10.2 ± 10.1 11.5 ± 11.2 11.0 ± 10.8 
Hematocrit (L/L) 0.31 ± 0.03 0.34 ± 0.04 0.33 ± 0.03 
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 Biomarkers of cardiac injury and inflammation analyzed were cardiac troponin T (cTnT) 

and C-reactive protein (CRP). A one-way ANOVA analysis did not show a statically significant 

effect of timepoints on the levels of cTnT (F (1.019, 12.22) = 3.178, p=0.09, Supplementary Figure 

2-1, Panel N). Two-way ANOVA analysis with group designation (CAD+ and CAD-) as fixed 

effect revealed a significant group effect (F (1,11) = 18.34, p = 0.0013, Figure 2-1A), but no 

significant effect of timepoint were seen (F (1.023, 11.25) = 0.5215, p = 0.4889). Post-hoc testing 

showed increased cTnT signal in the CAD+ group relative to CAD- group at peak HD (t (2.755) = 

4.485, p = 0.0723) and post HD (t (2.605) = 4.434, p = 0.0831) timepoints. 

In the thirteen participants, a one-way ANOVA analysis showed a statistically significant 

effect of timepoint on levels of CRP (F (1.407, 16.88) = 13.75, p = 0.0008, Supplementary Figure 

2-1, Panel P). Post-hoc testing showed that the levels of CRP were significantly higher at peak HD 

(11.5 ± 11.2 mg/L) compared to baseline (10.2 ± 10.1 mg/L, p = 0.0041) that remained elevated 

post HD relative to baseline (11.0 ± 10.7 vs. 10.2 ± 10.1 mg/L, p = 0.011). Two-way ANOVA 

analysis with group designation (CAD+ and CAD-) as a fixed effect revealed a significant effect 

of timepoint (F (1.441, 15.85) = 12.95, p = 0.0011, Figure 2-1B), but no significant group effect 

(F (1, 11) = 1.677, p = 0.2218). Post-hoc testing showed an increase in CRP level from baseline to 

peak HD (8.3 ± 7.2 vs. 9.4 ± 8.1 mg/L, p = 0.0167) that remained elevated post HD in the CAD- 

group, although insignificant (9.0 ± 7.7 mg/L, p = 0.0671).  
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Figure 2-1 Mean cardiac troponin T (panel A) and C-reactive protein (panel B) in CAD- (n=10) 

and CAD+ arm (n=3) at baseline, peak HD stress, and post HD. Error bars represent the standard 

error of the mean. * Denote p < 0.0332. 

 

2.3.4 Systolic Blood Pressure for Hemodynamic Stability 

The repeated measure one-way ANOVA demonstrated a significant effect of timepoint (F 

(1.614, 19.3) = 8.963, p = 0.003). The post-hoc testing showed that systolic blood pressure was 

significantly lower at peak HD in comparison to baseline (119.5 ± 24.15 mmHg vs. 145.2 ± 24.92 

mmHg, p = 0.019, Figure 2-2). Systolic blood pressure post HD (121.9 ± 21.70 mmHg), was not 

significantly different from peak HD (p = 0.886) but was significantly reduced relative to baseline 

(p = 0.012).  

In the grouped analysis with the CAD+ and CAD- arms, two-way ANOVA showed a 

significant effect of intradialytic timepoint (F (1.523, 16.75) = 5.161, p = 0.0246). Post-hoc testing 

revealed no differences in systolic blood pressure between the CAD+ and CAD- groups at 

individual HD timepoints. However, only the CAD- group demonstrated a statistically significant 
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reduction in mean systolic pressure at peak HD (p = 0.0362, Figure 2-3) relative to baseline, 

followed by a partial recovery to baseline values at post HD (p = 0.0727, Figure 2-3). 

 
 

Figure 2-2 Mean systolic blood pressure (n=13) at baseline, peak HD stress, and post HD. Error 

bars represent the standard error of the mean. * Denote p < 0.0332. 
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Figure 2-3 Mean systolic blood pressure in CAD- (n=10) and CAD+ arm (n=3) at baseline, peak 

HD stress, and post HD. Error bars represent the standard error of the mean. Solid significance bar 

is based on the post hoc test performed on the non-stenosed group. * Denote p < 0.0332. 
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imaged across thirteen participants. Of these, three were not evaluable due to poor image quality 

and were removed from further analysis. Amongst the three participants with CAD, seven coronary 

arteries had stenosed lesions with potential for hemodynamic significance (2 RCA, 2 LAD, 3 LCx).  

Table 2-5 Descriptive analysis of coronary artery status of individual patients. (+) denote lesions 

with > 50 % stenoses in the respective coronary artery and (-) indicate no stenosed lesions or 

stenosis ≤ 50 %. 

Participant # RCA LAD LCx Highly Calcified  
1 - - - - 
2 - + + - 
3 - - - - 
4 - - - - 
5 NE - - - 
6 - - - - 
7 + + + + 
8 - - - + 
9 - - - - 
10 + NE + - 
11 - - - - 
12 NE - - - 
13 - - - - 

Total Lesions (%) 15 15 23 15 

*RCA = right coronary artery; LAD = left anterior descending artery; LCx = left circumflex artery; NE = not evaluable 

 

2.3.6 Global Myocardial Perfusion 

Linear mixed modelling revealed a statistically significant fixed effect of timepoint (Figure 

2-4, p = 0.0115). Post-hoc testing showed that global myocardial perfusion was significantly lower 

at peak HD compared to baseline (79.18 ± 21.00 ml/min/100g vs. 94.14 ± 18.01 ml/min/100g, p = 

0.0001) before normalizing back to baseline levels at post HD (90.35 ± 17.76 ml/min/100g, p = 

0.37, Figure 2-4). When including the group designation (CAD+ vs. CAD-) in the linear mixed 

model, there were no significant effect of group (F (1,11) = 0.021, p = 0.8874). However, there 
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was a trend towards an effect of timepoint (F (1.416,14.86) = 3.375, p = 0.07). Figure 2-5 

qualitatively demonstrates the effect of timepoint on a single participant. Post-hoc multiple 

comparison testing showed a reduction in global myocardial perfusion in the CAD- participant 

group from baseline to peak HD (97.25 ± 18.13 ml/min/100g vs. 78.65 ± 17.89 ml/min/100g, p 

<0.0001, Figure 2-6), and perfusion recovery from peak HD to post HD (78.65 ± 17.89 

ml/min/100g vs. 94.81 ± 16.49 ml/min/100g, p = 0.0029, Figure 2-6). There were no significant 

changes in intradialytic global myocardial perfusion measurements in the CAD+ participant group 

(Figure 6).  

 

 
Figure 2-4 Mean global myocardial perfusion in all participants (n=13) at baseline, peak HD 

stress, and post HD. Error bars represent the standard error of the mean. *** Denote p < 0.0002. 
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Figure 2-5 Qualitative assessment of changes in myocardial perfusion through dialysis of a single 

participant, in the absence of coronary artery stenosis. Cardiac image in of a short axis view and 

the regions outlined in white and identifiable by the white arrows represent myocardial regions 

with perfusion reduction.  

 

 
 
Figure 2-6 Mean global myocardial perfusion in CAD- (n=10) and CAD+ (n=3) participants. Error 

bars represent the standard error of the mean. Significance bar for pairwise comparison reflect that 

within the non-stenosed group. ** Denote p < 0.0021 and **** denote p < 0.0001. 
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2.3.7 Segmental Myocardial Perfusion 

At baseline (Figure 2-7A), the segmental myocardial perfusion measurements were not 

significantly different between the affected and unaffected group (t (193) = 1.587, p = 0.1142). 

Similarly, the segmental perfusion measurements were not different between groups at peak HD 

(Figure 2-7B, t (193) = 0.9012, p = 0.369). However, at post HD timepoint (Figure 2-7C), the 

mean segmental myocardial perfusion in the affected group was significantly lower compared to 

the unaffected group (70.02 ± 21.59 ml/min/100g vs. 92.19 ± 39.48 ml/min/100g, t (193) = 3.380, 

p = 0.0009). 

 The number of myocardial segments with greater than thirty percent reduction in perfusion 

were quantified (Figure 2-8). Two-way ANOVA showed no significance in the interaction 

between timepoint and group (F (1, 11) = 0.2362, p = 0.6365). There was a signal for an effect of 

intradialytic timepoint (F (1,11) = 4.217, p = 0.0646), warranting further testing. Post-hoc testing 

showed that fewer myocardial segments experienced greater than thirty percent reduction in 

perfusion at post HD compared to peak HD in CAD- participant group (p = 0.045). In participants 

with CAD+, no statistical difference between the timepoints was seen (p = 0.629).  
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Figure 2-7 Mean myocardial perfusion in unaffected segments (n=156) and affected segments 

(n=39) at (A) baseline, (B) peak HD stress, and (C) post HD. Error bars represent the standard 

error of the mean. *** Denote significance of p < 0.0002. 
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Figure 2-8 Mean number of myocardial segments with greater than 30% reduction in myocardial 

perfusion at peak HD stress and post HD relative to baseline myocardial perfusion. Error bars 

represent standard error of the mean. * Denote p < 0.0332. 

2.3.8 Regional Wall Motion Abnormality 

In the twelve participants with viable echocardiography data, one-way ANOVA analysis 

showed a statistically significant effect of timepoint on the number of myocardial segments 

experiencing RWMAs (F (1.875,20.62) = 31.16, p = 0.0115, Figure 2-9). Post-hoc testing showed 

that the number of segments experiencing RWMAs were significantly higher at peak HD 

compared to baseline (5.5 ± 2.9 segments, p = 0.0001). This remained elevated at post HD relative 

to baseline (4.7 ± 2.6 segments, p = 0.0002). Two-way ANOVA analysis with group designation 

(CAD+ vs. CAD-) as a fixed effect revealed a significant effect of timepoint (F (1.844,18.44) = 
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group from baseline to peak HD (5.1 ± 3.2 segments, p = 0.003), that is reduced post HD compared 

to at peak HD (4.0 ± 2.5 segments, p = 0.003). In the CAD+ group, there was a similar increase in 

segments experiencing RWMAs at peak HD (6.7 ± 1.5 segments, p = 0.031). A trend towards 

increased segments experiencing RWMA at post HD relative to baseline (6.7 ± 2.1 segments, p = 

0.056) was also detected for the CAD+ group. 

 

 

Figure 2-9 Mean myocardial segments with regional wall motion abnormalities (n=12). Error bars 

represent the standard error of the mean. *** Denote p < 0.0002. 
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Figure 2-10 Mean regional wall motion abnormality in CAD- (n=9) and CAD+ (n=3) participants. 

Error bars represent the standard error of the mean. Solid significance bars for pairwise comparison 

performed in the non-stenosed group. Dotted significance bar for pairwise comparison completed 

for the stenosed arm. * Denote p < 0.0332 and ** denote p < 0.0021. 
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perfusion during HD. Marants et al. conducted an intradialytic CT perfusion study to explore HD 

effects on renal perfusion, and was able to show acute decrease in renal perfusion during HD 

treatment48. Many studies looked into the effects of HD on the brain and similarly concluded that 

HD induced reduction in cerebral blood flow. This was confirmed using transcranial doppler, CT, 

magnetic resonance imaging, and near infrared spectroscopy49–54. As all vascular beds originate 

from a single contiguous endothelial surface, it is expected that during an ischemic insult such as 

the one experienced during HD, the reduction in blood flow occurs in multiple vascular beds. The 

heart is also a vascular bed that experiences HD ischemic injury. McIntyre et al. demonstrated a 

reduction in regional myocardial perfusion throughout dialysis using positron emission 

tomography, with its lowest mean perfusion measurement at four hours from commencing 

dialysis45. They also determined that myocardial segments identified to have RWMAs were 

significantly associated with greater reduction in myocardial perfusion from baseline compared to 

normal segments45. This study also identified a greater than thirty percent reduction in perfusion 

from baseline as the perfusion threshold associated with regional wall motion abnormality45. It is 

evident from our current study that with HD, there is a general reduction in global myocardial 

perfusion and an increased number of myocardial segments experiencing regional wall motion 

abnormality or myocardial stunning in participants with no CAD. Shortly after the end of HD 

treatment, global myocardial perfusion is recovered and stunned myocardial segments are partially 

salvaged upon reperfusion.  

The addition of CAD appears to be associated with worsened response to HD treatment as 

evidenced by the consistently hypoperfused myocardium and prolong stunning that does not 

recover following the end of HD treatment. We have shown that unlike the traditional perfusion 

response seen with HD, participants with CAD showed no intradialytic perfusion changes, 
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however, the mean perfusion measurements tended to be lower at baseline and post HD timepoint 

compared to those without known CAD. The modest level of global myocardial perfusion in the 

CAD+ arm at baseline may be the result of the flow limiting epicardial artery stenoses that have 

been identified through coronary angiography. In all intradialytic timepoints, myocardial segments 

corresponding to coronary arteries with stenosed lesions greater than fifty percent demonstrated 

trends of lower perfusion, indicating that these identified stenoses were in fact flow-limiting. The 

reduction in perfusion in the myocardial segment affected by CAD was most evident after the end 

of HD treatment. This suggests that reperfusion of these segments affected my flow-limited 

stenoses may take longer to return to baseline perfusion levels, which is also evident through the 

lack of improvement in the number of myocardial segments with greater than 30% reduction in 

perfusion in CAD+ arm. With this in mind, it is interesting to see that with the extended duration 

of ischemic-reperfusion injury associated with CAD, the number of stunned myocardial segments 

remained elevated and persistent from peak HD to post HD. These findings suggest that the CAD 

plays a significant role in the recovery phase of HD treatment (post HD). 

The two laboratory measurements that have been important predictors of CAD in HD 

patients include cTnT and CRP. A rise in cTnT has been used as a marker of myocardial cell injury 

in clinically suspected myocardial ischemia55. There continues to be controversy regarding the 

clinical usefulness of measuring cardiac troponin levels to diagnosis acute ischemic injury 

continues in the chronic HD population, as its levels are frequently higher at baseline without 

evidence of injury56–64. In our current study, there were no evident intradialytic changes in mean 

cTnT levels in the thirteen HD participants, despite its higher-than-normal levels. The three 

participants with CAD showed trends of increased cTnT at baseline relative to the CAD- arm, that 

remained higher at peak HD and post HD timepoints. The elevated levels of cTnT at baseline in 
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the CAD+ arm may represent the existence of a prior silent infarct or subclinical myocardial 

ischemia where the stenoses constructs the delivery of blood and ultimately, oxygen to the 

myocardial cells, causing injury. The presence of a coronary stenoses may potentially have an 

additive effect on cTnT levels in those with chronic HD. The lack of change in troponin levels 

throughout dialysis in the CAD+ arm may be a response to the increased ischemia experienced in 

these participants when HD-induced and stenoses effects are combined.  

In a study completed on a HD population, it was concluded that the probability of 

cardiovascular disease almost doubles when the serum CRP levels are greater than 0.6md/dL65. 

CRP shows trends of higher concentration in the blood stream of the CAD+ group than the non-

stenosed. Generally, CRP > 3.0mg/L is a major risk factor for heart disease66. In this study, the 

mean CRP levels at baseline was greater than 3.0 mg/L in HD with no CAD. This elevation in 

CRP in CAD- HD participant can be a result of the chronic inflammation associated with HD, that 

is most evident with significant intradialytic changes in CRP. The mean CRP levels are 

approximately doubled in participants on HD with CAD. CRP levels has shown to be a possible 

biomarker of vascular inflammation in coronary artery disease67–69. The excessive levels of CRP 

we see in the CAD+ arm may be an indication of vascular inflammation and vessel damage 

localized to the affected artery. 

This study was a retrospective exploratory study with a limited number of HD participants; 

data should be interpreted with this in mind. Despite the small number of participants, the effect 

sizes of the reported results in the present study are large. Cohen’s d was calculated for the primary 

outcomes of global myocardial perfusion and RMWAs. The calculated Cohen’s d value for global 

myocardial perfusion between the two arms at baseline, peak HD, and post HD were 1.38, 0.08, 

and 1.21, respectively. The calculated Cohen’s d value for regional wall motion abnormality 
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between the two arms at peak HD and post HD were 0.62 and 1.16, respectively. Generally, a 

Cohen’s d value greater than 0.8 is considered to be a large effect size. While the number of 

patients studied was small, it was able to demonstrate the circulatory and function cardiac changes 

to HD with respect to the coronary artery health. It is important to also note that as a result of the 

small sample size, it is unlikely that other variables presented in this work were powered to detect 

change. 

2.5 Conclusion 

HD treatment induces ischemic injury to the heart causing myocardial stunning that is not 

specific to the presence or absence of CAD. In a limited number of participants with no clinical 

evidence or symptoms of CAD, this study has shown that the cardiac response (perfusion and 

stunning) to HD is exacerbated with the addition of stenosed lesions in the coronary artery. Patients 

with severe and unresolved intradialytic stunning may warrant screening for CAD with CT 

angiography for intervention to improve tolerability of HD treatment. Further work is required, 

and we acknowledge that a larger randomized clinical trial would be beneficial in providing a 

complete summary of varying degrees of CVD on patient’s cardiac response to HD. This would 

further allow personalized treatment methods for patients undergoing HD. 
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Legend 

 
✱ p < 0.0332 
✱✱ p < 0.0021 
✱✱✱ p < 0.0002 
✱✱✱✱ p < 0.0001 
ns = not significant 

Supplementary Figure 2-1. Intradialytic changes in serum electrolyte and protein levels. Error 

bars represent standard error of the mean 
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Chapter 3  

3 The effect of dialysate sodium on endothelial injury and 
microcirculatory dysfunction 

A version of this chapter is in preparation for publication: Lisa Hur, Yanmin Zhang, Barry 
Janssen, Christopher W. McIntyre, “The effect of dialysate sodium on endothelial injury and 
microcirculatory dysfunction,” In preparation. Aug 2022. 

Abstract Each episode of hemodialysis (HD) treatment causes injury to the glycocalyx which 
induces shedding of syndecan-1 (syn-1), a transmembrane heparan sulfate proteoglycan. This 
damage results from hemodynamic stress of HD itself and injury caused by oncotic shifts in the 
presence of additional sodium (Na+) during HD. The glycocalyx binds Na+, buffering sudden 
serum Na+ shifts, and can be damaged with acute changes in Na+ concentration. The aim of this 
study is to use a preclinical platform to investigate the effects of Na+ dialysate concentration on 
endothelial cell injury and microcirculatory dysfunction during HD. We hypothesize that changes 
in plasma Na+ concentration will result in the direct injury to the glycocalyx and reduce 
microcirculatory perfusion. Twenty-seven healthy male Wistar Kyoto rats underwent HD: eight 
were exposed to dialysate Na+ concentration at typical rat plasma Na+ level (isonatric, 140mM), 
ten were exposed to dialysate Na+ below typical rat plasma Na+ level (hyponatremic, 130mM), 
and nine were exposed to dialysate Na+ above typical rat plasma Na+ level (hypernatremic, 
150mM). Throughout HD, intravital microscopy (IVM) was used to image the microvasculature 
at baseline, during extracorporeal circulation with no dialysate flow (“Sham”), at 1 hr into HD, at 
2 hrs into HD, and post HD (“Final”). The IVM images were processed to derive the number of 
identified intersecting points, a metric quantifying microcirculatory blood flow, to observe the 
change in perfusion index at each timepoint. Blood samples were collected at the same timepoints 
corresponding to the IVM image acquisitions to measure syn-1 and quantify glycocalyx shedding 
during HD. Blood pressure of the animal were acquired continually throughout the experiment. 
Blood pressure between the three groups were comparable. The findings demonstrate a gradual 
increase in syn-1 concentration in blood plasma throughout the duration of the experiment in the 
isonatric, hyponatremic, and the hypernatremic groups. The percent change in syn-1 of the 
hypernatremic group doubled that of the isonatric and hyponatremic group by 2hrs into HD. The 
experimental groups demonstrated a consistent trend of lower perfusion index throughout the 
duration of the experiment. A single HD session can possibly elevate syn-1 and reduce 
microvascular perfusion, indicating HD-associated endothelial injury and microcirculatory 
dysfunction. As well, the damage to the glycocalyx may be more pronounced with hypernatremic 
effects.  
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3.1 Introduction 

The therapeutic aim of hemodialysis (HD) is to artificially remove the interdialytic sodium 

load accumulated between dialysis sessions that cannot be eliminated efficiently by the kidney in 

individuals with end stage renal disease (ESRD). Failure to effectively remove sodium from the 

body results in interdialytic fluid gain, hypertension and exacerbated ischemic injury as a result of 

the unfavorably high ultrafiltration requirement to achieve target weight1–5. This can be explained 

by the need to intake fluid to maintain sodium-water balance in our body after the ingestion of 

sodium rich content which in turn increases interdialytic weight gain. Furthermore, sodium that 

was not cleared through dialysis is deposited in the skin and muscle (including the myocardium)6; 

the storage capacity of sodium in the tissue is limited and the buffer capacity of the vasculature for 

interdialytic circulating serum sodium is variable amongst individuals7. Excess serum sodium 

concentration directly results in injury to the endothelial glycocalyx (discussed below) and 

aggravates ischemic vulnerability to the circulatory stress induced during HD. However, excessive 

sodium depuration during HD could cause hypotension and circulatory collapse owing to the lack 

of maintenance of plasma tonicity and refill.  

Currently, the manipulation of dialysate sodium concentration is the principle approach in 

achieving sodium homeostasis in HD patients. Low dialysate sodium concentration has been 

shown to reduce sodium deposition in the tissue using sodium MR imaging while minimizing 

interdialytic weight gain6. Despite these advantages of low dialysate sodium concentration, sodium 

dialysate concentration cannot be prescribed as a one size fits all approach. As discussed earlier, 

one of the detrimental effects of low sodium is hypotension and circulatory collapse; patients 

predisposed to these symptoms would experience worsening HD-associated cardiovascular injury 

when treated with low sodium dialysate concentration. Hence, it is difficult to determine the most 
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optimal dialysate sodium concentration based on the limitations in our knowledge relating to the 

mechanism of HD-induced circulatory dysfunction in the presence of sodium. One of the common 

non-invasive methods of assessing tolerability to HD treatment is through quantification of 

myocardial stunning, a surrogate marker of regional ischemia8–14. The observed variation in 

myocardial stunning during HD is mostly attributed to factors relating to hemodynamic stress 

including hypovolemia, hypotension, tissue ischemia, and arrythmias15. Investigation of other non-

hemodynamic stress factors such as osmotic shift and changes in electrolyte may potentially shed 

light on other approaches to improving tolerability to HD treatment.  

 The recent findings of endothelial damage with acute rise of plasma sodium during dialysis raised 

the possibility that investigation of sodium may be important16. Syndecan-1 is a transmembrane 

heparan sulfate proteoglycan and a component of the glycocalyx layer on the luminal side of the 

endothelial cell17. With endothelial dysfunction, syndecan-1 sheds from the cell surface into the 

bloodstream. Consequences of a damaged endothelium include the loss of vascular integrity (i.e. 

inability to control dilation and constriction) and increases in vascular permeability18,19. The earlier 

study investigating changes in plasma sodium during HD suggested that the stability of the 

endothelium was influenced by the plasma sodium concentration exceeding the buffering capacity 

of the glycocalyx. The hemodynamic stress of HD itself in addition to the injury caused by the 

acute oncotic shift in the presence of excess sodium during HD may explain the endothelial 

vulnerability and damage seen in the HD population. With damage to the endothelium, we expect 

to consequently see dysfunction in the vasculature. Microvascular dysfunction results in the 

maldistribution of blood flow or irregular microcirculation within arterioles, venules, and 

capillaries20. This transpires with maintenance HD treatment; there is inadequate perfusion to the 
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tissue due to microvascular dysfunction, causing irreversible ischemic damage and reaching organ 

failure with time 21–24.  

 The question we aim to address in this research paper is whether or not sodium is a contributor of 

HD-induced endothelial injury, making the patient more vulnerable to microvascular dysfunction 

and ischemia. Our lab has previously created a small-animal hemodialysis system to study the 

effect of hemodialysis on the microcirculation in a small animal model24. Using intravital video 

microscopy on surgically exposed muscle tissue, changes in microvascular blood flow were 

measured and quantified while the animal was be dialyzed. The purpose of this current study was 

to use this established preclinical model to investigate the effects of sodium dialysate concentration 

on endothelial cell injury and microcirculatory dysfunction during HD. It is hypothesized that 

changes in plasma sodium concentration will result in the direct injury to the glycocalyx, affecting 

the degree of microcirculatory perfusion during HD. 

3.2 Methods 

3.2.1 Experimental Animals 

The experiments conducted in this study followed the Canadian Council of Animal Care 

and the ARRIVE guidelines and regulations. This work has been approved by the Animal Care 

and Use Committee of Western University (London, Ontario Canada).  

Thirty-one male Wistar-Kyoto rats (approximately 250 – 300g in weight, SPF, Charles 

River, Wilmington, MA, United States of America) were group-housed in standard conditions, at 

room temperature. The animals were fed without restriction and were exposed to 12-hour periods 

of light-dark cycle per day. Interaction with cage-mates were unrestricted. Upon arrival from the 
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supplier, animals had a minimum of 72 hours to acclimatize to the new environment before 

proceeding with experiment procedures. 

3.2.2 Surgical Procedure for Muscle Microvasculature Imaging 

 Prior to muscular surgery, the animals were anaesthetized with a mixture of four percent 

isoflurane and one percent oxygen. To ensure the maintenance of anesthesia while minimizing its 

effect on blood pressure, two percent isoflurane was delivered continuously through a facemask 

ventilator fitted for small animals. A rectal temperature probe was used for continuous monitoring 

of the core body temperature throughout experimental procedure (TCAT-2 Temperature 

Controller, Physitemp Instruments LLC, Clifton, NJ, United States of America). The body 

temperature was maintained at 36.5°C with an infrared lamp. For continuous monitoring of the 

animal blood pressure, a catheter was inserted into the carotid artery and connected to a pressure 

transducer that measured the mean arterial blood pressure and heart rate (DMSI-400, Micro-Med 

INC, Louisville, Kentucky, United States of America). Heparinized dialysate (2U/mL) was used 

periodically to ensure the carotid artery catheter did not occlude.  

The extensor digitorum longus (EDL) muscle of the animal’s right hind leg was exposed 

for intravital microscopy according to the surgical procedure outlined by Tyml and Budreau25. 

After the exposure, the EDL muscle was left open to air for thirty minutes prior to the visualization 

of the circulation under the intravital microscopy. Microvascular perfusion behaviors were 

observed using an inverted microscope (Nikon Eclipse-Ti, Nikon Instruments, Melville, New 

York, United States of America) with a modified microscope stage, a 100-watt xenon light source 

(PTI LPS 220, Horiba Scientific, Piscataway, New Jersey, United States of America) and an 

optical light guide (Thorlabs, Newton, New Jersey, United States of America). To prevent tissue 

damage, a 400-550nm bandpass filter was used to restrict the frequencies of light used for tissue 
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imaging. For better visualization of the red blood cells, an additional 450nm/20nm bandpass filter 

was placed directly on the camera. 

3.2.3 Small-Animal Dialyzer Unit 

The small-animal dialyzer units used in this study were assembled in-house using 75 fiber 

parts of an existing conventional polysulphone dialyzer (FX 600 Helixone, Fresenius, Canada). 

Following the designs of the dialyzers utilized clinically, the fibers were encapsulated in a 

polycarbonate tube (Figure 3-1). The internal volume of the microdialyzer was 290µL. The 

dialyzer had an external bypass line connected from one end to the other, holding the equivalent 

volume of fluid as the dialyzer itself, and enabling study of the effects of the change in systemic 

blood volume that occurs during dialysis but in the absence of dialysate flow. 

 

Figure 3-1 Small animal dialysis unit 

3.2.4 Dialysate Composition 

To study the effects of dialysate sodium concentration on the microvasculature, fresh 

dialysate fluid of specific sodium concentration was prepared for each experiment. The first group 
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was the isonatric (control) group; animals in this arm were exposed to dialysate fluid of 140mM 

sodium concentration that is comparable to their baseline plasma sodium level. The second was 

the hyponatremic group, whose dialysate fluid was of lower sodium concentration (130mM). 

Lastly, the third arm was the hypernatremic group, exposed to high levels of sodium (150mM). To 

assess accuracy of the dialysate prescription, samples of the dialysate fluid were collected, and 

levels of sodium were measured. The dialysate sodium concentration for the isonatric group were 

determined based on our previous rodent study that showed plasma sodium concentration ranging 

between 139 and 140 mmol/L at baseline24. To ensure variability in the delivered sodium dialysate 

concentration, the sodium concentration chosen for the hypo- and hypernatremic group were ± 10 

mM of the isonatric group. 

3.2.5 In-vivo Hemodialysis Experiment 

In the left hind limb, the limb without EDL muscle exposure, two catheters were inserted 

to establish extracorporeal blood flow (Figure 3-2). A catheter was placed in the left femoral artery 

for blood outflow to the dialyzer, and a second catheter was inserted within the left femoral vein 

for the return of filtered blood from the dialyzer to the systemic circulation of the animal. The 

catheters were securely connected to the dialyzer, and the extracorporeal circulation of blood was 

initiated using a peristaltic pump (P720, Instech Lab., Plymouth Meeting, Pennsylvania, United 

States of America). Immediately after initiation, ‘baseline’ blood samples and intravital 

microscopy images were acquired. The blood was then circulated through the dialysis circuit for 

one hour. After one hour, blood samples and intravital microscopy images were collected for the 

‘sham’ timepoint. Subsequently, the blood flow was directed to pump through the dialyzer for two 

hours at a rate of 2ml/kg/hr. For dialysate flow, two peristaltic infusion pumps (Sigma Spectrum 

V8 Infusion System, Baxter, Deerfield, Illinois, United States of America) were used at 1ml/min, 
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with continuous adjustment throughout the experiment depending on the hematocrit level. Blood 

samples and intravital microscopy images were repeated at 1hr and 2hrs into HD treatment. 

 

Figure 3-2 Small animal hemodialysis experimental set-up 

3.2.6 Acquisition of Experimental Blood Work 

At baseline, sham, 1hr HD, and 2hr HD, 200µL of blood were sampled from the animals, 

directly through the dialyzer unit. Of the 200µL, 100µL of the sample was added to the iStat EC8+ 

cartridge (Abbot, Princeton, New Jersey, United States of America) for analysis of sodium, 

potassium, chloride, glucose, blood urea nitrogen, hematocrit and hemoglobin levels. Creatinine 

levels were measured with the remaining blood sample (100µL) with the iStat Crea cartridge 

(Abbot, Princeton, New Jersey, United States of America). The cartridges were processed using a 

VetStat point of care blood gas analyzer (VetScan i-STAT-1 Handheld Analyzer, Abaxis, Union 

City, California, United States of America.  
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3.2.7 Intravital Microscopy: Quantification of Microvascular Perfusion 

The acquisition of the dynamic (sequence of 60 seconds at 30 frames per second) 

microvascular perfusion images at baseline, sham, 1hr HD, and 2hr HD were completed using a 

multispectral multicamera system (MSMC-23-1-A, Spectral Device Inc., London, Canada). At 

baseline, multiple adjacent fields of views are selected for recording. In the subsequent imaging 

timepoints, the microvascular perfusion of previously selected fields of views are acquired, 

allowing the quantification of the observed change in microvascular perfusion throughout the 

experiment.  

The intravital images were post-processed using in-house software written in Matlab (Matlab 

2020a, the Matworks Inc, Natrick, Massachusetts, United States of America)26,27. The software 

applies an algorithm to identify perfused vessels within the field of view captured based on the 

active flow of the red blood cells. This is completed by assessing the change in light intensity 

caused by the movement of the red blood cell within the pixels of interest. From this information, 

a sum of absolute intensity difference image is generated for each field of view at each 

experimental imaging timepoints (baseline, sham, 1hr HD, and 2hr HD), allowing the user to 

visualize the perfused vessels. An additional processing step follows for the quantification of the 

number of perfused vessels: a ten-by-ten grid is mapped onto the sum of absolute intensity 

difference image, where a separate two-step machine learning algorithm is applied to identify 

points within the grid with observed perfusion. The number of identifiable points of intersection 

between the grid and the regions of vessel perfusion are added to represent the perfusion index of 

the specific field of view and experiment timepoint. 
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3.2.8 Plasma Sampling: Quantification of Syndecan-1 

At baseline, sham, 1hr HD, and 2hr HD, 150µL of blood were obtained from the animal, 

directly through the dialyzer unit. Shortly after the end of HD, a final set of blood samples were 

collected from the animal. This served as the endpoint for the animals. The acquired blood samples 

were centrifuged for thirty minutes at 2500 RCF in 4°C to extract the plasma layer. The plasma 

samples collected in thirty-one animals were stored in a -80°C freezer before processing. A 

commercially available ELISA kit was used to quantify rodent syndecan-1 levels (Novus 

Biologicals, NBP2-76611, Littleton, Colorado, United States of America). ELISA experiments 

were performed in accordance with the manufacturers’ instruction manual. The reference 

standards were within the limits of detection and were fitted to a 4-parameter logistic model. This 

model was then used to estimate absolute concentration of syndecan-1. To assess the damage of 

the glycocalyx and endothelium, the percent change in syndecan-1 concentration at sham, 1hr HD, 

2hr HD, and final were calculated in reference to the baseline. 

3.2.9 Statistical Analysis 

All statistical analyses described in this section were completed using GraphPad Prism 9 

software (GraphPad Software, La Jolla, California, United States of America). 

3.2.9.1 Dialysate Composition 

Ordinary one-way ANOVA was performed to compare the dialysate sodium levels 

between the experimental groups (isonatric, hyponatremic, and hypernatremic). In the case the 

one-way ANOVA test demonstrated statistical significance, post-hoc tests were completed with 

Tukey’s correction for multiple comparison. The means and standard deviations were also 

recorded following a descriptive statistical analysis. 
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3.2.9.2 Experimental Blood Work 

Levels of sodium, potassium, chloride, glucose, blood urea nitrogen, creatine, hematocrit, 

and hemoglobin were recorded at baseline, sham, 1hr HD, and 2hr HD. For each of these 

measurements, a repeated measure two-way ANOVA with group (hyponatremic, isonatric, 

hypernatremic) and timepoint (baseline, sham, 1hr HD, 2hr HD) as the fixed effect was performed 

to enable comparison between timepoints as well as between experimental groups. A Geisser-

Greenhouse correction was applied. If a fixed effect was statistically significant, post-hoc testing 

was performed with Tukey’s correction for multiple comparison.  

3.2.9.3 Mean Arterial Pressure for Assessment of Hemodynamic Stability 

Hemodynamic stability throughout the experiment was assessed via continuous monitoring 

of mean arterial pressure. The mean arterial pressure was recorded for analysis at baseline, sham, 

1hr HD, and 2hr HD. To analyze the mean arterial pressure data between the three experimental 

groups across the timepoints, a linear mixed model analysis was completed with group 

(hyponatremic, isonatric, hypernatremic) and timepoint (baseline, sham, 1hr HD, 2hr HD) as the 

fixed effects. Residual maximum likelihood estimation was used and a Geisser-Greenhouse 

correction for sphericity was applied. If a fixed effect was statistically significant, post-hoc testing 

with Tukey’s correction for multiple comparison was completed. 

 In addition, a Pearson correlation analysis was performed on the pooled data of all animals 

across at all available timepoints to assess the association between the percent change in syndecan-

1 measurements and the microvascular perfusion index.  
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3.2.9.4 Microvascular Perfusion Index through Intravital Microscopy 

The changes in microvascular perfusion index throughout the experiment were analyzed 

with a repeated measure two-way ANOVA with timepoints (sham, 1hr HD, 2hr HD) and group 

(hyponatremic, isonatric, hypernatremic) as the fixed effects. The Geisser-Greenhouse correction 

was applied. If any of the fixed effects were statistically significant, post-hoc testing was 

completed with Tukey’s correction for multiple comparisons to identify statistically significant 

differences. 

3.2.9.5 Syndecan-1 as a Marker of Endothelial Injury 

The percent change throughout the experiment of syndecan-1 relative to baseline was 

analyzed using a repeated measure two-way ANOVA with group (hyponatremic, isonatric, 

hypernatremic) and timepoints (sham, 1hr HD, 2hr HD, final) as the fixed effects. The Geisser-

Greenhouse correction was applied. If any fixed effect was statistically significant, additional post-

hoc testing was completed with Tukey’s correction for multiple comparisons to identify 

statistically significant differences.  

In addition, a Pearson correlation analysis was performed on the pooled data of all animals 

across at all available timepoints to assess the association between percent change in syndecan-1 

and microvascular perfusion index. 

3.3 Results 

Of the thirty-one animals, four were excluded from analysis due to death, two from the 

isonatric arm and two from the hypernatremic arm. In total, there were eight animals in the 

isonatric group, ten animals in the hyponatremic group, and nine animals in the hypernatremic 

group. 
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3.3.1 Dialysate Composition 

Ordinary one-way ANOVA analysis showed a significant effect of group (F (2, 24) = 211.3, 

p < 0.0001), indicating statistically significant differences in sodium dialysate composition 

between isonatric, hyponatremic, and hypernatremic groups. Post-hoc testing showed the expected 

statistically significant differences in sodium levels between the hyponatremic and isonatric (131.6 

± 2.0mmol/L vs 139.8 ± 2.6mmol/L, p < 0.0001), isonatric and hypernatremic (139.8 ± 2.6mmol/L 

vs. 150.2 ± 1.2, p < 0.0001), and hyponatremic and hypernatremic arms (131.6 ± 2.0mmol/L vs. 

150.2 ± 1.2, p < 0.0001). The prescribed sodium dialysate and the actual experimental sodium 

dialysate concentration are summarized in Table 3-1. 

Table 3-1 Dialysate composition for isonatric, hyponatremic, and hypernatremic experimental 

arms. Values represent the mean ± standard deviation. Statistical significance performed to 

isonatric group. 

Sodium Conc. 
(mmol/L) 

Isonatric Hyponatremic p - value Hypernatremic p - value 

Prescribed 140.0 130.0  150.0  

Experimental 139.8 ± 2.6 131.6 ± 2.0 < 0.0001 150.2 ± 1.2 < 0.0001 

 

3.3.2 Experimental Blood Work 

The blood work obtained at baseline, sham, 1 hr HD, and 2 hr HD included serum sodium, 

potassium, chloride, glucose, blood urea nitrogen, creatinine, hematocrit and hemoglobin levels. 

Repeated two-way ANOVA showed a significant effect of timepoint-by-group effect for both 

plasma sodium (F (6,72) = 63.13, p < 0.0001) and chloride (F (6,72) = 113.8, p <0.0001). Post-

hoc testing showed no differences in plasma sodium and chloride levels between the isonatric, 

hyponatremic, and hypernatremic groups at the baseline and sham timepoints (Figure 3-1A,C). 
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After 1 hr of commencing HD, the plasma sodium level was significantly different between 

groups. Specifically, plasma sodium level was higher in the hypernatremic group (142.4 ± 2.0 

mmol/L) and reduced in the hyponatremic group (133.0 ± 0.8 mmol/L), relative to the isonatric 

group (p < 0.0001 and p = 0.0004, respectively). At 2 hrs into HD treatment, there remained a 

significant difference between the three groups with the mean sodium level remaining elevated in 

the hypernatremic group (141.6 ± 2.7 mmol/L, p = 0.0071) and low in the hyponatremic group 

(132.6 ± 0.8 mmol/L, p < 0.0001), relative to the isonatric group. 

 Repeated two-way ANOVA showed no statistically significant group effect for potassium, 

glucose, blood urea nitrogen, creatinine, hematocrit, and hemoglobin levels. However, significant 

effect in timepoint was revealed in levels of potassium, glucose, blood urea nitrogen creatinine, 

hematocrit, and hemoglobin. Table 3-2 reports the results of the post-hoc tests for the isonatric 

group over the duration of the experiment. In the standard isonatric arm, the mean potassium 

increased from baseline to sham (4.5 ± 0.2 mmol/L vs. 4.7 ± 0.3 mmol/L, p = 0.0375) but was 

reduced with 1 hr and 2 hr dialysis compared to baseline values (3.2 ± 0.1 mmol/L, p < 0.0001 and 

3.4 ± 0.1 mmol/L, p < 0.0001, respectively). In this group, there was a trend of increasing plasma 

glucose from baseline (184 ± 22.4 mg/dL) to sham (197 ± 19.5 mg/dL, p = 0.06), followed by a 

significant reduction in glucose at 1 hr and 2 hr after initiating HD relative to baseline 

measurements (122 ± 4.6 mg/dL, p = 0.0005 and 106 ± 16.3 mg/dL, p = 0.0005, respectively). 

Relative to baseline levels, the blood urea nitrogen was elevated at the time of sham (24.9 ± 2.7 

mg/dL, p = 0.0022), but declined at 1 hr HD (10.5 ± 2.2 mg/dL, p = 0.0002) and 2 hr HD (12.9 ± 

2.7 mg/dL, p = 0.0038). Similarly, relative to baseline, creatinine levels elevated at the time of 

sham (0.49 ± 0.06 mg/dL, p = 0.0068), but declined at 1 hr HD (0.23 ± 0.05 mg/dL, p = 0.0105) 
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before recovering to baseline levels at 2 hr HD (0.33 ± 0.14 mg/dL, p = 0.6551). Hematocrit and 

hemoglobin levels in the blood were not significantly different throughout the experiment. Similar 

changes in blood work were seen in the hyponatremic and hypernatremic groups as summarized 

in Table 3-3 and 3-4. These results have been graphically presented in Figure 3-1. 
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Table 3-2 Concentration of basic electrolyte at baseline, sham, 1 hr- and 2 hr- into hemodialysis 

for to isonatric group (n=8). Values represent the mean ± standard deviation. Statistical 

significance test represents comparison of timepoints to the baseline timepoint. 

Electrolyte Baseline Sham p - 
value 

1 hr into 
HD 

p - 
value 

2 hr into 
HD 

p - 
value 

Sodium (mmol/L) 137.8 ± 0.5 137.5 ± 0.5 0.85 137.8 ± 1.4 >0.9999 137.8 ± 1.5 >0.9999 

Potassium 
(mmol/L) 

4.49 ± 0.22 4.74 ± 0.17 0.0375 3.21 ± 0.10 <0.0001 3.39 ± 0.13 <0.0001 

Chloride (mmol/L) 97.8 ± 1.75 98.9 ± 1.13 0.0569 92.9 ± 2.2 0.0003 93.1 ± 1.7 0.0005 

Glucose (mg/dL) 184 ± 22.4 197 ± 19.5 0.0603 122 ± 4.6 0.0005 106 ± 16.3 0.0005 

BUN (mg/dL) 19.4 ± 2.8 24.9 ± 2.7 0.0022 10.5 ± 2.2 0.0002 12.9 ± 2.5 0.0038 

Creatinine (mg/dL) 0.38 ± 0.07 0.49 ± 0.06 0.0068 0.23 ± 0.05 0.0105 0.33 ± 0.14 0.6551 

Hematocrit 
(%PCV) 

33.5 ± 2.62 34.8 ± 2.32 0.6388 33.9 ± 4.79 0.9972 32.8 ± 3.45 0.9615 

Hemoglobin (g/dL) 11.4 ± 0.89 11.8 ± 0.79 0.6571 11.5 ± 1.64 0.9981 11.1 ± 1.17 0.9572 
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Table 3-3 Concentration of basic electrolyte at baseline, sham, 1 hr- and 2 hr- into hemodialysis 

for to hyponatremic group (n=10). Values represent the mean ± standard deviation. Statistical 

significance test represents comparison of timepoints to the baseline timepoint. 

Electrolyte Baseline Sham p - 
value 

1 hr into 
HD 

p - 
value 

2 hr into 
HD 

p - 
value 

Sodium (mmol/L) 137.5 ± 1.2 137.3 ± 1.2 0.48 133.0 ± 0.8 <0.0001 132.6 ± 0.8 <0.0001 

Potassium 
(mmol/L) 

4.56 ± 0.34 4.92 ± 0.34 0.0062 3.07 ± 0.21 <0.0001 3.20 ± 0.28 <0.0001 

Chloride (mmol/L) 97.5 ± 1.90 99.1 ± 1.20 0.0087 87.8 ± 1.03 <0.0001 87.7 ± 1.06 <0.0001 

Glucose (mg/dL) 183 ± 28.1 192 ± 26.8 0.2599 118 ± 13.5 <0.0001 98.2 ± 24.6 <0.0001 

BUN (mg/dL) 18.8 ± 2.3 24.1 ± 1.7 0.0001 12.0 ± 8.1 0.0646 12.8 ± 3.9 0.0045 

Creatinine (mg/dL) 0.39 ± 0.07 0.51 ± 0.11 0.0009 0.28 ± 0.06 0.0141 0.37 ± 0.13 0.9675 

Hematocrit 
(%PCV) 

33.2 ± 3.23 34.2 ± 1.75 0.7128 33.2 ± 1.75 >0.9999 33.3 ± 2.63 0.9997 

Hemoglobin (g/dL) 11.3 ± 1.10 11.6 ± 0.48 0.6877 11.3 ± 0.59 >0.9999 11.3 ± 0.89 0.9998 
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Table 3-4 Concentration of basic electrolyte at baseline, sham, 1 hr- and 2 hr- into hemodialysis 

for to hypernatremic group (n=9). Values represent the mean ± standard deviation. Statistical 

significance test represents comparison of timepoints to the baseline timepoint. 

Electrolyte Baseline Sham p - 
value 

1 hr into 
HD 

p - 
value 

2 hr into 
HD 

p - 
value 

Sodium (mmol/L) 137.4 ± 131 136.9 ± 1.6 0.18 142.4 ± 2.0 0.0001 141.6 ± 2.7 0.0074 

Potassium (mmol/L) 4.37 ± 0.23 4.52 ± 0.26 0.2047 3.58 ± 0.17 <0.0001 3.78 ± 0.24 0.0014 

Chloride (mmol/L) 98.1 ± 0.60 98.9 ± 1.05 0.1542 100.3 ± 1.22 0.0086 101.4 ± 0.88 0.0002 

Glucose (mg/dL) 188 ± 22.7 201 ± 19.1 0.0390 133 ± 3.17 0.0003 114 ± 16.0 0.0001 

BUN (mg/dL) 18.2 ± 0.8 23.2 ± 2.9 0.0026 13.1 ± 2.7 0.0006 16.2 ± 3.2 0.2252 

Creatinine (mg/dL) 0.38 ± 0.07 0.48 ± 0.07 0.0121 0.26 ± 0.05 0.0002 0.41 ± 0.15 0.7538 

Hematocrit 
(%PCV) 

31.8 ± 2.39 33.9 ± 1.69 0.0186 31.4 ± 3.75 0.9568 29.8 ± 4.87 0.3274 

Hemoglobin (g/dL) 10.8 ± 0.81 11.5 ± 0.58 0.0192 10.7 ± 1.28 0.9602 10.1 ± 1.66 0.3318 
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(A) 

 

(B) 

 

(C) 
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(F) 

 
(G) 

 

(H) 

 

Legend 

 
 
✱✱ p < 0.0021 
✱✱✱ p < 0.0002 
✱✱✱✱ p < 0.0001 

Figure 3-3 Mean serum electrolyte levels throughout the experimental procedure timepoint in 

hyponatremic (n=10), isonatric (n=8), and hypernatremic (n=9) arms. Error bars represent standard 

error of the mean. Statistical significance bars denote significant differences between groups at 

individual timepoints.  
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3.3.3 Levels of Syndecan-1 

Two-way ANOVA analysis of syndecan-1 levels showed statistically significant effect of 

timepoint (F (1.383, 33.19) = 88.30, p <0.0001, Figure 3-2), but no group effect (F (2, 24) = 0.9408, 

p = 0.4042). Post-hoc testing revealed increases in percent change in syndecan-1 between sham 

and 2 hr HD in the isonatric (42.6 ± 39.2% vs. 113.9 ± 64.5%, p = 0.0030), hyponatremic (27.8 ± 

30.6% vs. 85.9 ± 48.2%, p = 0.0034), and hypernatremic (51.3 ± 56.6% vs. 178.2 ± 108.1%, p = 

0.0024) groups. Elevation in percent change in syndecan-1 was also evident from 2 hr HD to the 

final experimental timepoint as assessed by post-hoc testing in the isonatric (113.9 ± 64.5% vs. 

228.3 ± 135.9%, p < 0.0155), hyponatremic (85.9 ± 48.2% vs. 237.7 ± 90.9%, p < 0.0001), and 

hypernatremic (178.2 ± 108.1% vs. 265.6 ± 155.5%, p = 0.0270) groups. The percent change in 

syndecan-1 at 2hr HD were assessed by post-hoc testing. The isonatric and hyponatremic group 

showed comparable levels of syndecan-1 in the blood (113.9 ± 64.5% vs. 85.9 ± 48.2%, p = 

0.5780). However, the percent change in syndecan-1 nearly doubled in the hypernatremic group 

(178.2 ± 108.1%) compared to the hyponatremic group at 2hr HD (p = 0.0896). 
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(C) Hypernatremic 
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Figure 3-4 Mean plasma sodium levels (left y-axis) throughout the experimental procedure 

timepoint in isonatric (A), hyponatremic (B), and hypernatremic (C) arms. Mean percent change 

in syndecan-1 concentration (right y-axis) throughout the experimental procedure timepoint in 

isonatric (A), hyponatremic (B), and hypernatremic (C) arms. Error bars represent standard error 

of the mean. Dotted statistical significance bars denote significant differences in % change in 

syndecan-1 between experimental timepoints. 

3.3.4 Microvascular Perfusion 

The absolute microvascular perfusion index measured as the number of identified points 

using intravital microscopy was compared using a two-way ANOVA. The two-way ANOVA 

demonstrated a significant effect of time (F (2.033, 46.76) = 19.38, p < 0.0001, Figure 3-3), but no 

significant effect of group. Post-hoc testing showed a trend towards a decreased microvascular 

perfusion index at 2hr HD compared to baseline in the isonatric group (116.7 ± 48.8 points vs. 

154.1 ± 60.0 points, p = 0.0889). A trend towards a decreased microvascular perfusion index at 

2hr HD compared to sham in the hyponatremic group (111.8 ± 55.7 points vs. 145.2 ± 42.2 points, 
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p = 0.0982) was also observed. The hypernatremic group demonstrated a statistically significant 

reduction in the microvascular perfusion index from baseline (208.9 ± 68.9 points) and sham 

(166.5 ± 46.0 points) to 2 hr HD (119.9 ± 39.7 points) (p = 0.0098 and p < 0.0103, respectively). 

A trend towards a decreased microvascular perfusion index at 1hr HD compared to baseline in the 

hypernatremic group (146.5 ± 36.9 points vs. 208.9 ± 68.9 points, p = 0.0622) was also observed. 

 

Isonatric 

 

(A) Hyponatremic 

 
(C) Hypernatremic 

 

Legend 

 
 
✱ p < 0.0332 
✱✱ p < 0.0021 
✱✱✱ p < 0.0002 
✱✱✱✱ p < 0.0001 

Figure 3-5 Mean plasma sodium levels (left y-axis) throughout the experimental procedure 

timepoint in isonatric (A), hyponatremic (B), and hypernatremic (C) arms. Mean number of 

identified points (right y-axis) throughout the experimental procedure timepoint in isonatric (A), 

hyponatremic (B), and hypernatremic (C) arms. Error bars represent standard error of the mean. 

Dotted statistical significance bars denote significant differences in identified points between 

experimental timepoints.  
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3.3.5 Relationship between Microvascular Perfusion and Syndecan-1 

A Pearson correlation analysis demonstrated a negative association between percent 

change in syndecan-1 and the microvascular perfusion index measured by the number of identified 

points (R2 = 0.13, Pearson r = -0.36, p = 0.0012). In other words, a greater change in syndecan-1 

from baseline levels was associated with decreased number of identified perfusion points (Figure 

3-4). 

 

Figure 3-6 Correlation in number of identified perfusion points and percent change in syndecan-

1 in all subjects (n=27).  
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3.3.6 Mean Arterial Pressure 

Linear mixed model analysis of mean arterial pressure for assessment of hemodynamic 

stability showed a significant effect of experimental timepoint (F (2.642, 61.65) = 93.53, p < 

0.0001). Post-hoc testing showed that, in the standard isonatric group, the mean arterial pressure 

did not change from baseline to sham (88.6 ± 10.5 mmHg and 87.1 ± 9.9 mmHg, p = 0.9843). 

However, in the hyponatremic and hypernatremic groups, there was a trend towards decreasing 

mean arterial pressure from baseline to sham. At baseline, the mean arterial pressure was 85.3 ± 

2.1 mmHg at baseline and reduced to 81.0 ± 4.5 mmHg in the hyponatremic group at sham (p = 

0.0694) with one hour of extracorporeal circuit in the absence of dialysate flow. In the 

hypernatremic group, the mean arterial pressure was 85.8 ± 8.2 mmHg at baseline and reduced to 

75.5 ± 8.1 mmHg at sham (p = 0.0825). Compared to baseline, post-hoc testing showed that the 

mean arterial blood pressure was significantly lower at 1 hr HD and 2 hr HD in all three 

experimental groups as shown in Figure 3-5A. The mean arterial pressure did not recover to 

baseline levels during the remainder of the experiment. Post-hoc testing revealed no significant 

differences in mean arterial pressure between the experimental groups. 

3.3.7 Relationship between Mean Arterial Pressure and Syndecan-1 

A Pearson correlation analysis demonstrated a negative association between percent 

change in syndecan-1 and mean arterial pressure (R2 = 0.07, Pearson r = -0.2645, p = 0.019). In 

other words, a larger change in syndecan-1 from baseline levels was associated with lower levels 

of mean arterial pressure (Figure 3-5B). 
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(A) 

 

 

 

(B) 

 

Figure 3-7 (A) Experimental changes in mean arterial pressure in the isonatric (n=8), 

hyponatremic (n=10), and hypernatremic (n=9) groups. Error bars represent standard error of the 

mean. Statistical significance bars denote significant differences mean arterial pressure between 

experimental timepoints. (B) Correlation in mean arterial pressure and percent change in 

syndecan-1 in all subjects (n=27).  

 

3.4 Discussion 

The objective of this study was to study hemodialysis-induced endothelial injury with the 

specific question of whether acute changes in plasma sodium during dialysis were a contributor. 

First, the results of this study confirmed that HD directly led to endothelial damage. Plasma 

syndecan-1 levels increased over the course of dialysis in all animals, regardless of whether they 

were members of the hypernatremic, isonatric, or hyponatremic groups. This replicates prior 
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HD treatment 28,29. Animals also demonstrated a marked reduction in mean arterial pressure 

throughout dialysis, while mean arterial pressure remained consistent throughout the sham 

procedure (removal of volume via an extracorporeal circuit without dialysis), confirming that HD 

induces hypotension, and replicating the well-demonstrated phenomenon of intradialytic 

hypotension and hemodynamic circulatory stress that occurs during HD 1,2,30–40 Interestingly, we 

showed an association between the mean arterial pressure and the percent change in syndecan-1, 

with low mean arterial pressure being associated with high levels of plasma syndecan-1. This 

suggests that increased hemodynamic instability during dialysis is associated with increased 

endothelial dysfunction. In other words, hypotension and circulatory stress can lead to endothelial 

injury. 

The results of our study also show that HD-induced endothelial injury is significant with 

respect to microvascular dysfunction and microcirculatory perfusion. Using the microvascular 

perfusion index derived from intradialytic intravital microscopy, statistical analysis showed a 

significant effect of time, suggesting that, across the entire cohort of animals, perfusion decreased 

over the course of dialysis. This is consistent with prior work done by our group, which showed a 

significant reduction in microvascular perfusion from baseline to 2hr into HD in animals exposed 

to standard dialysate with 140 mM of sodium24. In the present study, a pattern of microvascular 

perfusion index decrease was seen in the isonatric group in the same timepoints in post-hoc 

analysis adjusted for the additional multiple comparison tests required to compare the experimental 

groups over time with changes in plasma sodium. However, when perfusion trends for the standard 

sodium level group was assessed separately with an ordinary one-way ANOVA, the result was 

replicated, with a statistically significant reduction of perfusion from baseline to 2hr HD. Together, 

the simultaneous intradialytic increase in syndecan-1 and intradialytic decrease in microvascular 
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perfusion index suggests that HD-induced endothelial injury is significant with respect to 

perfusion. Indeed, a significant association between plasma syndecan-1 levels and microvascular 

perfusion index was demonstrated, with higher levels of syndecan-1 associated with a lower 

microvascular perfusion index. 

Plasma sodium levels during dialysis appear to mediate the HD-induced endothelial injury 

and microvascular hypoperfusion. In the hypernatremic group, cumulative syndecan-1 shedding 

tended to be higher than in the isonatric and hyponatremic groups. Post-hoc analyses of 

microvascular perfusion index demonstrated a significant reduction in microvascular perfusion 

index with dialysis in the hypernatremic group but not in the isonatric and hyponatremic groups. 

These results suggest that increased plasma sodium levels during dialysis secondary to a higher 

sodium dialysate prescription aggravates endothelial injury and exacerbates microvascular 

perfusion. This is consistent with human studies looking at acute sodium changes and endothelial 

injury. In one study by Koch et al., where hemocontrol hemodialysis was employed, plasma 

sodium levels were manipulated during dialysis and plasma syndecan-1 levels were measured; 

plasma syndecan-1 levels tracked with plasma sodium levels increased with acute rise in plasma 

sodium16. In general, these results lend support to the view that lower dialysate sodium 

concentrations may be the way forward and that supra-physiological dialysate sodium 

concentrations should be avoided. Not only can lower dialysate sodium concentrations lead to 

more modest intradialytic weight gain and reduced tissue deposition of sodium41, it may also lower 

the severity of HD-induced endothelial injury. 

As this study’s primary objective was to study the effects of dialysate sodium in HD-

induced injuries, it was important to ensure that sodium concentration delivered to the animals 

matched the prescribed dialysate sodium and to show that sodium levels were successfully 
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manipulated with the dialysate used. Indeed, the mean sodium dialysate levels were the same 

within group, but significantly different between isonatric, hyponatremic, and hypernatremic 

groups. This is often a point of concern in human studies, with a recent study conducted by Shendi 

et al. showing discrepancies between the prescribed dialysate sodium and the sodium concentration 

that was delivered to the patient through dialysis42. 

This study had its limitations. This was an exploratory study, and its primary objective was 

to investigate the effects of sodium dialysate on endothelial cell injury and microvascular 

perfusion. For this purpose, healthy animals with normal kidney function were used to eliminate 

confounding factors associated with kidney failure. To holistically understand the mechanism of 

sodium induced injury in HD, future studies should be conducted on chronic kidney disease model 

of animals. A major limitation of utilizing a small animal experimental platform is the availability 

of blood. Based on the IACUC guideline, the total blood volume of a 300g rat is estimated to be 

17 to 21mL. Increasing the number of times blood is sampled can lead to harmful hemodynamic 

instability in a study that is already removing large volume of blood into the extracorporeal circuit. 

Hence, we were limited with the amount of blood that could be sampled during this experiment. 

Because of the nature of the preclinical platform in this current study, including the surgical 

exposure of tissue for intravital microscopy, animals were sacrificed at the end of the HD treatment 

preventing a cross-over design that has been used in human studies16 to enable a paired comparison 

analysis that eliminates covariates in the relationship between plasma sodium and syndecan-1. 

3.5 Conclusion 

In this study, we demonstrate that during a single HD session, there are marked elevations 

in levels of syndecan-1 that is associated with the reduction in microvascular perfusion. Through 

the small animal model of healthy rats, we conclude that HD treatment itself induce endothelial 
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injury and microcirculatory dysfunction. As well, the degree of damage to the glycocalyx may be 

more pronounced with hypernatremic effects of high sodium dialysate leading to structural and 

function changes to the microvasculature.  

The optimal dialysate sodium concentration to deliver during HD is not known. Lower 

dialysate sodium is ideal considering the deleterious effects of high sodium levels on the 

endothelium, exacerbating HD-induced circulatory dysfunction and ischemia to the extent of 

worsening myocardial stunning. However, sodium level must be sufficient enough to avoid 

inducing intradialytic hypotension and hemodynamic injury. Clinically, dialysate sodium 

concentration should be manipulated and individualized to each patient’s needs and further refined 

through iterative evaluation of intradialytic weight gain, hemodynamic stability, sodium 

deposition in the tissue and symptoms of intolerability.  
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Chapter 4  

4 A Pilot Study: Assessment of intradialytic exercise on the 
circulation and function of the heart 

 

A version of this chapter is in preparation for publication: Lisa Hur, Jarrin Penny, Justin Dorie, 
Christopher W. McIntyre, “A Pilot Study: Assessment of intradialytic exercise on the circulation 
and function of the heart ,” In preparation. Aug 2022. 

 

Abstract Hemodialysis (HD) is associated with high rates of cardiovascular mortality. 
Intradialytic exercise (IDE) has been shown to improve intradialytic hemodynamic tolerability, 
although its mechanisms remain elusive. The objective of the present study was to use intradialytic 
CT perfusion imaging and echocardiography to noninvasively evaluate cardiac injury during HD 
with and without exercise. Fourteen participants underwent two intradialytic imaging sessions with 
and without exercise. In both visits, dynamic CT scans (Revolution CT, GE) were conducted at 
baseline, peak HD stress, and 30 mins post HD. From the CT scans, global myocardial perfusion 
(MP) of the left ventricle was quantified. In addition, apical 4-chamber and 2-chamber views of 
the heart were acquired with 2D echocardiography (Vivid Q, GE). The systolic function was 
evaluated through segmental longitudinal strain (LS) using a commercially available software 
(EchoPAC, GE). Segments demonstrating >20% reduction in LS compared to baseline were 
defined as regional wall motion abnormalities (RWMA). During the control visit, MP significantly 
dropped from baseline to peak HD stress (p=0.0001) followed by partial recovery post HD. Similar 
intradialytic MP results were found with IDE. MP of control and exercise visits were not 
significantly different. The number of myocardial segments experiencing RWMA at post HD were 
reduced with IDE in comparison to the peak HD stress (p = 0.0009). A decrease in the number of 
RWMAs post-HD with exercise suggests potential exercise-associated cardiac resilience to HD-
induced cardiac ischemia injury. 
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4.1 Introduction 

Hemodialysis (HD) patients have elevated mortality rates related to cardiovascular disease 

and specifically, sudden cardiac death1–3. Many imaging modalities have been utilized to study the 

perfusion changes of vital organs during HD, including arterial spin labelled magnetic resonance 

imaging4,5, computed tomography6,7, and positron emission tomography8,9. These studies 

demonstrated HD-induced injury during a single treatment session. In addition, some studies also 

investigated the phenomenon of recurrent and transient myocardial ischemia causing persistent 

left ventricular dysfunction in the HD population, by looking for the presence of myocardial 

stunning10–19. Echocardiography throughout HD and identifying reduced segmental regional wall 

motion abnormalities (RWMAs) has been the preferred means to assess HD-induced myocardial 

stunning20,21. In sum, the existing literature suggests that HD precipitates recurrent harm and is 

responsible for the increased mortality in patients upon the first year of dialysis initiation22.  

In the past decade, studies have investigated and employed various interventions to reduce 

the hemodynamic perturbation during HD, detailing the practicability of incorporating it into 

clinical practice; all of which rely on different mechanisms to target hemodynamic tolerability to 

HD. One of the most safe and effective ways of minimizing intradialytic hypotension and exerting 

protective effects on multiple vascular beds is through the delivery of cooled dialysate to increase 

peripheral vasoconstriction23,24. This simple approach has been shown to reduce the presence and 

severity of HD-induced ischemia25,26 and improve left ventricular circumferential fiber 

shortening27. Cooling the dialysate has no addition cost associated with it and can be delivered on 

any dialysis machine. Biofeedback dialysis technology is another way of reducing hypotension 

and ischemia during dialysis, through active modulation of ultrafiltration rate and conductivity of 



 132 

the dialysate during the HD treatment session28. Despite its effectiveness, it is limited in 

availability as it utilizes a specific dialysis machine restricting its application in clinical settings.   

Intradialytic exercise (IDE) has been the intervention of interest in the recent years that 

demonstrated clinical feasibility29–46. In summary, patients would perform an exercise regime 

determined by the dialysis clinic while dialyzing on the dialysis chair. Many studies suggest that 

exercise benefits the HD cohort by increasing quality of life, muscle power, and dialysis efficacy. 

Systematic reviews have suggested an improvement in peak oxygenation uptake (measure of 

cardiopulmonary capacity) by 23% with exercise43. In a clinical crossover design study, Kt/V was 

calculated to evaluate dialysis efficacy, where K is the dialyzer clearance (mL/min), t is the 

duration of dialysis treatment (mins), and V is the volume of distribution of urea clearance (mL) 

47. Exercise intensity and its effect on Kt/V was questioned; the study observed an increase in 

dialyzer urea clearance with IDE relative to control but no significant difference between varying 

exercise intensities. Similarly, an exploratory study was conducted by our lab and a reduction in 

RWMAs was shown with exercise with no statistical significance between exercise doses48. These 

results were confirmed by others, suggesting that IDE is cardioprotective against myocardial 

stunning with respect to HD treatment40,49–51; its mechanism remains elusive. These studies have 

proposed improved muscle perfusion and changes to vascular tone as potential underlying 

mechanisms for exercise improving HD tolerability. However, no studies to date have investigated 

the perfusion response to IDE.  

Using multimodal intradialytic imaging, this study will, for the first time, investigate the 

circulatory response to IDE and determine its ability to deliver cardioprotection to HD in exercise-

naïve dialysis patients. To do so, echocardiography and cardiac computed tomography (CT) 

perfusion imaging will be incorporated to quantify RWMAs and changes to myocardial blood flow 
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throughout HD treatment. In addition, ELISA experiments will be performed to assess endothelial 

injury in the vasculature with respect to HD treatment and IDE intervention by quantifying levels 

of syndecan-1. We hypothesize that IDE is not driven by perfusion-related mechanisms, but rather 

by means of cardioprotection to improve ischemic tolerability of the tissue in the HD setting of 

challenged perfusion. 

4.2 Methods 

4.2.1 Study Design 

This is a single-centered cross-sectional study designed to investigate the effects of 

intradialytic exercise in a cohort of ESRD patients undergoing HD. Consented patients participated 

in two study visits: a control visit with no intervention and a treatment visit with exercise during 

HD. At each study visit, a series of dynamic contrast enhanced computed tomography (DCE-CT) 

images and echocardiography images were acquired prior to HD (baseline), at the last thirty 

minutes of HD during maximal circulatory stress (peak HD), and following the end of HD (post 

HD) to quantify myocardial perfusion and stunning. Blood samples were collected at timepoints 

corresponding to the image acquisition to assess intradialytic electrolyte changes and endothelial 

dysfunction. 

4.2.2 Study Population 

This study was an extension of the work presented in Chapter 2 of this thesis. The 

participants enrolled in the study presented in the previous chapter were asked to attend a second 

imaging visit where intradialytic exercise was performed. The participants were recruited from the 

London Health Science Centre Renal Program (London, Ontario, Canada). Fourteen exercise-

naive participants, 18 years of age or older who had received HD for a minimum of three months, 
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thrice weekly were enrolled. Those enrolled provided informed consent prior to the initiation of 

the study. Patients with a prior diagnosis of chronic arrhythmia on anti-arrhythmic drugs or with a 

pacemaker or cardioverter defibrillator were excluded.  

4.2.3 Demographic Information 

The demographic information collected from the participants included the death of birth 

(month and year), age, biological sex, body mass index, ethnicity, and chronic kidney disease 

related patient information.  

4.2.4 Dialysis Treatment Information 

The control and exercise study visits were conducted midweek and the dialysis treatments 

delivered at both visits were consistent with what was described in Chapter 2.  

4.2.5 Assessment of Hemodynamic Stability 

Hemodynamic stability of the participants throughout the HD treatment at the control and 

exercise exposure visit was assessed by measuring the systolic blood pressure (mmHg). 

Measurements were acquired while the patient was sitting on a dialysis chair and was obtained 

within five minutes of CT imaging at baseline, peak HD stress, and post HD treatment.  

4.2.6 Exercise Performance 

On the second study visit, participants began exercise treatment at the start of the HD 

treatment for a duration of thirty minutes. At this time, participants cycled on a MonarkTM 

(Sweden) leg ergometer to reach an exercise intensity threshold of 3 or 4 out of 10 on a Borg rating 

of perceived exertion scale, defined as moderate or somewhat hard. Participants cycled whilst 

upright and sitting on a dialysis chair. Participants were encouraged to take rest periods throughout 

the thirty minutes of exercise if they were experienced any symptoms of exercise intolerance such 
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as shortness of breath and angina. Following the end of the exercise treatment, the following data 

were recorded from the cycling device: calories burnt during exercise, number of rotations, and 

the minutes spent exercising without rest within the 30-minute exercise prescription. From these 

measurements, the number of rotations per minute and the amount of calories burnt per minute 

were quantified.  

4.2.7 Quantification of Myocardial Perfusion 

During each study visit, a DCE-CT image was acquired at baseline, peak HD stress, and 

post HD. Iodinated contrast agent of 0.7mL per kilogram of body weight (Isovue 370) was 

administered intravenously at 3-4mL/s followed by a 30mL bolus saline flush at the same infusion 

rate. Scanning was conducted using a single-phase prospective ECG gated acquisition protocol: 

32 axial scans every 1 to 2 heart beats (approximate 1.5 seconds). The scanner settings for all 

dynamic image acquisitions were as follows: tube voltage of 100 to 120kV, tube current of 100mA, 

0.28s gantry period, slice thickness of 2.5mm giving a total coverage of 160mm.  

The dynamic CT images were retrospectively reconstructed into 5mm thick cardiac images 

from the scanner console (Revolution, GE Healthcare) and transferred to a workstation for analysis 

(Advantage workstation, GE Healthcare). To correct for the residual cardiac and respiratory 

motion between the 32 scans of a single dynamic CT image set, the images were registered using 

a three-dimensional non-rigid registration algorithm (GE proprietary software, advantage 

workstation, GE Healthcare).  

Following motion correction, the Johnson-Wilson-Lee tracer kinetic model was 

implemented to the registered dynamic images to generate a myocardial perfusion map 

corresponding to each slice53–57. The left ventricular myocardium was delineated for seven slices 
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with visible apex, apical, mid, and basal regions of the heart to measure global myocardial 

perfusion. The global myocardial perfusion values of the seven slices were averaged to represent 

the mean global myocardial perfusion of the patient at a particular timepoint of a single study visit.  

4.2.8 Assessment of Regional Wall Motion Abnormality 

Echocardiography was conducted to acquire standard apical 4-chamber and 2-chamber 

views of the heart following the DCE-CT acquisition at baseline, peak HD stress and post HD 

timepoints during the control and exercise study visits. Three cardiac cycles were recorded at each 

cardiac view for offline digital analysis using a proprietary two-dimensional speckle tracking 

software (EchoPac, GE Healthcare). The longitudinal strain values for twelve myocardial 

segments were quantified using a single cardiac cycle at a given HD timepoint.  

The longitudinal strain values of the twelve myocardial segments at peak HD and post HD 

were normalized to its baseline values to calculate the percent change in longitudinal strain. The 

myocardial segments at peak HD and post HD with greater than twenty percent reduction in 

longitudinal strain in relation to the baseline values were identified to be segments with RWMAs. 

The total number of segments (out of 12) experiencing RWMAs were determined at peak HD and 

post HD for study visits and was used as a metric to study the effect of intradialytic exercise on 

myocardial stunning.  

4.2.9 Quantification of Endothelial Dysfunction 

Blood samples collected at control and exercise visits for baseline, peak HD stress, and 

post HD timepoints. The plasma from all participants were stored at -80°C freezer until processed 

using a commercially available ELISA kit to quantify human syndecan-1 (Abcam, ab46506). All 

ELISAs were performed according to the manufacturers’ instruction manual. Reference standards 
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were within the limits of detection and were fitted with a 4-parameter logistic model. This model 

was used to estimate the concentration of syndecan-1 in blood samples. The percent change in 

syndecan-1 concentration at peak HD and post HD relative to baseline was calculated for each 

visit to study the acute effects of intradialytic exercise on syndecan-1, a marker of endothelial 

dysfunction and injury.  

4.2.10 Statistical Analysis 

All statistical tests of global myocardial perfusion, RWMAs, and syndecan-1 were 

completed using IBM SPSS Statistics version 27 (IBM, Armonk, New York, United States of 

America). Statistical test of patient demographics, dialysis prescription, intradialytic treatments, 

and changes in laboratory blood measurements were performed using GraphPad Prism 9 

(GraphPad Software, La Jolla, California, United States of America). Figures presented in this 

manuscript were produced using GraphPad Prism 9 (GraphPad Software, La Jolla, California, 

United States of America). 

4.2.10.1 Participant Demographics and Dialysis Treatment Information 

Demographic information and prescribed dialysis treatment information for the fourteen 

participants are summarized with descriptive statistics (minimum value, maximum value, mean 

and standard deviation) in Table 4-1 and Table 4-2.  

4.2.10.2 Intradialytic Clinical Information at the Study Visits 

Intradialytic clinical parameters including pre-systolic blood pressure (SBP), pre-diastolic 

blood pressure (DBP), SBP nadir, DBP nadir, Kt/V, minimum relative blood volume (RBV), mean 

ultrafiltration rate (UFR), mean UFR relative to pre-HD weight, and total volume of fluid removed 

during HD were compared between visits. A parametric paired two-tailed t-test was performed for 
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each of the listed parameters to determine differences in the delivered treatment between visits 

(control vs. exercise).  

4.2.10.3 Assessment of Hemodynamic Stability 

Hemodynamic stability was assessed using SBP measurements acquired at baseline, peak 

HD, and post HD. A repeated measure two-way ANOVA with visit (control or exercise), timepoint 

(baseline, peak HD, post HD), and visit-by-timepoint as fixed effects was perform for the SBP 

measurements. A Geisser-Greenhouse correction was applied. If any of the fixed effects were 

statistically significant, post-hoc tests were performed with Tukey’s correction for multiple 

comparison to determine SBP differences between intradialytic timepoints and between groups.  

4.2.10.4 Exercise Treatment Information 

The intradialytic exercise information for the twelve participants is summarized with 

descriptive statistics (minimum value, maximum value, mean and standard deviation) in Table 4-

4. 

4.2.10.5 Laboratory Testing 

Intradialytic changes in electrolyte and protein concentrations measured from the blood 

samples were assessed using linear mixed models. Levels of ionized calcium, sodium, potassium, 

chloride, bicarbonate, anion gap, creatinine, urea, albumin, calcium, magnesium, phosphate, 

parathyroid hormone (PTH), cardiac troponin T (cTnT), hemoglobin, hematocrit, and C-reactive 

protein (CRP) were analyzed using linear mixed models with intradialytic timepoint and visit 

(control and exercise) as the fixed effect. A maximum likelihood algorithm was used to estimate 

variance parameters. The Geisser-Greenhouse correction was applied to correct for the sphericity 

of the data. If any fixed effect was statistically significant, post-hoc testing was completed with 
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Sidak’s correction for multiple comparison to identify difference in electrolyte between timepoints 

and between visits.  

4.2.10.6 Percent Change in Syndecan-1 Concentration 

The percent change in syndecan-1 concentration was measured at peak HD and post HD 

relative to the baseline syndecan-1 concentration. A repeated measure two-way ANOVA test with 

intradialytic timepoint and visit (control or exercise) as fixed effects were performed with Geisser-

Greenhouse correction for sphericity. If any fixed effect was statistically significant, post-hoc 

testing was completed with Sidak’s correction for multiple comparison to determine differences 

in syndecan-1 between visit and between intradialytic timepoints. 

4.2.10.7 Global Myocardial Perfusion 

A grouped (control vs. exercise) analysis was performed to investigate the effect of exercise 

on global myocardial perfusion during dialysis. A linear mixed model with visit (control or 

exercise) and intradialytic timepoint as fixed effects was performed with restricted maximum 

likelihood estimation and the Geisser-Greenhouse correction. Post-hoc testing with Sidak’s 

correction for multiple comparison was performed to identify differences in myocardial perfusion 

between visits and between timepoints 

4.2.10.8 Regional Wall Motion Abnormality 

The number of myocardial segments experiencing RWMAs was analyzed using a linear 

mixed model with visit (control vs. exercise), intradialytic timepoints, and interaction between 

visit and timepoints as fixed effects. A Geisser-Greenhouse correction was applied for this analysis 

for sphericity. If any of the fixed effects were significant, post-hoc tests were completed with 
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Sidak’s correction for multiple comparison to identify differences in the number of myocardial 

segments experiencing RWMAs between visit and between timepoints.  

4.3 Results 

4.3.1 Participants 

Of the fourteen, twelve participants completed both the control and exercise study visits. 

One participant did not complete the exercise treatment visit due to death. Another participant was 

unable to complete the exercise treatment visit due to HD-related complications. As a result, 

twelve participants had a total of six DCE-CT images (control visit = 3 images; exercise visit = 3 

images). Of the twelve participants, a single perfusion map of a participant at post HD during the 

exercise visit could not be generated due to a defect in the software.  

Echocardiography data were obtained in fourteen participants (control visit=14 

participants; exercise visit = 12 participants). Due to poor image quality, RWMA measurements 

could not be retrieved for the control visit of one patient. Additionally, for the same reason, 

RWMA measurement could not be retrieved for the exercise visit of one patient. In total, thirteen 

RWMA measurements were available for analysis in the control visit for each timepoint and eleven 

RWMA measurements were available in the exercise visit for each timepoint.  

All fourteen participants completed the blood work for the visits attended. However, of the 

fourteen participants, plasma samples of only eleven participants were analyzed for change in 

syndecan-1 concentration due to limitations in resources.  

The participants demographic information for this study is summarized in Table 4-1. A 

summary of the participants regular dialysis prescription is given in Table 4-2. 
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Table 4-1 Participant information and demographics 

Characteristics Prevalence 
Ethnicity: Caucasian, n 10 (71%) 
Men, n 9 (64%) 
Age, yr 66 ± 13 
BMI 33 (26-41) 
Dialysis vintage (mo) 60 (20-141) 
Hemodialysis vintage (mo) 53 (16-141) 
Charlson comorbidity index* 7 (4-12) 
Congestive heart failure 4 (29%) 
Primary renal diagnosis  
Hypertension 4 (29%) 
Hypertensive nephrosclerosis 3 (21%) 
Diabetic nephropathy 6 (43%) 
Acute Interstitial Nephritis 1 (7%) 
IgA nephropathy 2 (14%) 
Current Smoker 1 (7%) 
Medications  
ACEi/ARB 5 (36%) 
b - blocker 7 (50%) 
2+ antihypertensive agent 5 (36%) 

*Age-adjusted 

 

 
 
 

Table 4-2 Mean dialysis prescription (n=14) 

Dialysis Prescription 
Treatment Time (hr ± SD) 3.5 ± 0.7 
Sodium (mmol/L ± SD) 139 ± 1.8 
Calcium (mmol/L ± SD) 1.3 ± 0.1 
Bicarbonate (mmol/L ± SD) 37.4 ± 2.3 
Dialysis flow, Qd (ml/min ± SD) 543 ± 109 
Vascular Access (AVF: AVG: CVC)* 6:1:7 
*AVF = arteriovenous fistula; AVG = arteriovenous graft;  
CVC = central venous catheter 
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4.3.2 Dialysis Treatment 

The dialysis treatment is summarized in Table 4-3 and includes weight +gain/-loss, pre-

systolic blood pressure (SBP), pre-diastolic blood pressure (DBP), SBP nadir, DBP nadir, Kt/V, 

minimum relative blood volume (RBV), mean ultrafiltration rate (UFR), mean UFR relative to 

pre-HD weight, and total fluid removed during the HD treatment session. The multiple paired 

parametric t-tests revealed no differences in the listed parameters between visits and this is 

summarized in more detail in Table 4-3. 

Table 4-3 Intradialytic clinical information 

Parameters Control (n=14) Exercise (n=12) p-value 
Weight +gain/-loss (kg ± SD) 1.4 ± 0.7 1.8 ± 0.7 0.8162 
Pre HD SBP (mmHg ± SD) 149 ± 20 143 ± 22 0.4772 
Pre HD DBP (mmHg ± SD) 64 ± 18 64 ± 14 0.8301 
SBP nadir (mmHg ± SD) 106 ± 21 101 ± 16 0.6499 
DBP nadir (mmHg ± SD) 55 ± 16 56 ± 14 0.4921 
Kt/V ± SD 1.47 ± 0.3 1.46 ± 0.3 0.6079 
Min RBV (% ± SD) 85.0 ± 3.3 84.7 ± 4.6 0.8440 
Mean UFR (mL/hr ± SD) 662 ± 196 733 ± 190 0.6065 
Mean UFR/pre weight (mL/kg/hr ± 
SD) 

7.50 ± 2.6 8.5 ± 2.9 0.5277 

Total fluid removed (mL± SD) 2539 ± 785 2847 ± 732 0.4829 

*SBP = systolic blood pressure; DBP = diastolic blood pressure; RBV = relative blood volume; UFR = ultrafiltration 

rate 

4.3.3 Systolic Blood Pressure for Hemodynamic Stability 

The repeated measure two-way ANOVA demonstrated a significant effect of timepoint (F 

(1.824, 43.77) = 22.17, p < 0.0001). The post-hoc testing showed that SBP was significantly lower 

at peak HD in comparison to baseline in the control (120.9± 23.8 mmHg vs. 145.0 ± 23.9 mmHg, 

p = 0.0179) and exercise visit (112.2 ± 15.2 mmHg vs. 142.4 ± 19.5 mmHg, p < 0.0001, Figure 4-

1). SBP post HD was not significantly different from baseline during the control visit (126.0 ± 

25.8 mmHg, p = 0.0615) but was significantly reduced during the exercise visit (123.3 ± 22.4 
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mmHg, p = 0.0038). The repeated measure two-way ANOVA did not show significant effect of 

visit (control vs. exercise) on SBP (F (1, 24) = 0.4139, p = 0.5261). 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Exercise Prescription Information 

The exercise treatment is summarized in Table 4-4 and includes calories burnt during 

exercise, the number of rotations (count), the number of rotations per minute (RPM), and the 

amount of calories burnt per minute (CPM). 

 

Table 4-4 Mean exercise information (n=12) 

Patient exercise information Mean ± SD (Min – Max) 

Baseline Peak HD Post HD
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Figure 4-1. Mean systolic blood pressure measured at baseline (pre HD initiation), peak HD stress 

and post HD at the control and exercise treatment visit. Error bars represent standard error of the 

mean. * Denote p < 0.0332, ** denote p < 0.0021, **** denote p < 0.0001. 
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Calories (cal ± SD) 108.4 ± 162.3 (9.4 – 479.0) 
Count (# of rotations ± SD) 1235 ± 933 (14.3 – 3340) 
RPM (# of rotation/min ± SD)* 50.67 ± 31.96 (0.77 – 133.6) 
CPM (cal/min ± SD)* 3.86 ± 6.91 (0.98 – 25.7) 

*RPM = rotations per minute; *CPM = calories per minute 

4.3.5 Laboratory Testing 
The electrolyte and protein concentrations measured at baseline, peak HD, and post HD 

included ionized calcium, sodium, potassium, chloride, bicarbonate, anion gap, creatinine, urea, 

albumin, calcium, magnesium, phosphate, PTH, cTnT, hemoglobin, hematocrit, and CRP. Linear 

mixed modelling showed no significance in fixed effect of timepoint in levels of ionized calcium 

(F (1.054, 24.77) = 3.690, p = 0.0644), calcium (F (1.220, 28.07) = 0.4901, p = 0.5262), and sodium 

(F (1.298, 30.51) = 0.0123, p = 0.9522). The same electrolytes also showed no significant effect 

of visits (control vs. exercise) in levels of ionized calcium (F (1, 24) = 0.0188, p = 0.8920), calcium 

(F (1, 24) = 0.8099, p = 0.3771), and sodium (F (1, 24) = 0.0362, p = 0.8508). 

Biomarkers of cardiac injury and inflammation analyzed were cTnT and CRP. Linear 

mixed modelling indicated insignificant effect of timepoints and visits (control vs. exercise) in 

levels of cTnT (timepoint: F (1.039, 24.93) = 3.755, p = 0.0627 and visit: F (1, 24) = 0.1110, p = 

0.7419) and CRP (timepoint: F (1.003, 23.57) = 0.0257, p = 0.8746 and visit: F (1, 24) = 0.0016, 

p = 0.9680). 

Linear mixed modelling indicated significant effects of timepoint in the following 

electrolytes and proteins: potassium, chloride, and bicarbonate, anion gap, creatinine, urea, 

albumin, magnesium, phosphate, PTH, hemoglobin, and hematocrit. Post-hoc testing for multiple 

comparison revealed expected intradialytic changes in these electrolytes and proteins. There was 

no significant effect of visit (control vs. exercise) in the listed electrolytes. Details of these analyses 

are summarized in Table 4-5 and shown in the Supplementary Figure 4-1.  
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Table 4-5 Mean plasma electrolyte concentration of those with significant changes as a response 

to hemodialysis treatment 

Electrolyte (Conc. ± SD) 
Control (n=14) Exercise (n=12) 
Baseline Peak HD Post HD Baseline Peak HD Post HD 

Potassium (mmol/L) 4.60 ± 0.8 3.32 ± 0.4 3.34 ± 0.4 4.43 ± 0.7 3.24 ± 0.5 3.22 ± 0.4 
Chloride (mmol/L) 93.3 ± 3.2 91.9 ± 2.9 91.7 ± 3.0 92.8 ± 3.2 91.6 ± 2.9 91.6 ± 2.5 
Bicarbonate (mmol/L) 24.4 ± 2.5 29.8 ± 2.4 29.9 ± 2.2 25.2 ± 2.4 29.8 ± 2.6 29.8 ± 2.3 
Anion Gap (mmol/L) 16.3 ± 3.8 12.7 ± 2.4 12.3 ± 2.6 16.3 ± 3.7 12.8 ± 2.7 12.8 ± 2.8 
Creatinine (umol/L) 758 ± 207 274 ± 97 268 ± 107 766 ± 210 275 ± 97 274 ± 100 
Urea (mmol/L) 18.2 ± 4.6 5.19 ± 1.6 5.01 ± 1.8 18.3 ± 5.9 5.1 ± 1.4 4.85 ± 1.4 
Albumin (g/L) 36.7 ± 3.9 41.8 ± 4.6 40.7 ± 4.9 37.8 ± 2.5 41.7 ± 4.1 42.0 ± 3.9 
Magnesium (mmol/L) 1.07 ± 0.2 0.96 ± 0.2 0.93 ± 0.2 1.10 ± 0.3 0.91 ± 0.2 0.92 ± 0.2 
Phosphate (mmol/L) 1.78 ± 0.5 0.72 ± 0.1 0.78 ± 0.2 1.78 ± 0.7 0.77 ± 0.5 0.80 ± 0.4 
PTH (pmol/L)* 34.5 ± 21 42.6 ± 24 41.4 ± 24 34.1 ± 17 43.9 ± 24 40.6 ± 21 
Hemoglobin (g/L) 102 ± 10 112 ± 11 109 ± 12 98.8 ± 9.9 109 ± 11 106 ± 9.1 
Hematocrit (L/L) 0.32 ± 0.03 0.35 ± 0.04 0.34 ± 0.04 0.31 ± 0.03 0.33 ± 0.03 0.33 ± 0.03 

*PTH = Parathyroid hormone 

 

4.3.6 Percent Change in Syndecan-1 

In the twelve participants with viable syndecan-1 measurements, a two-way ANOVA 

revealed a significant effect of visit (control vs. exercise) on the percent change in syndecan-1 as 

measured in the blood (F (1, 19) = 7.673, p = 0.0122). Post-hoc testing showed that at post HD, 

the percent change in syndecan-1 relative to baseline was significantly higher in the exercise visit 

(6.5 ± 5.9 %) than in the control (-4.1 ± 4.8 %, p = 0.0005, Figure 4-2). In the control visit, percent 

syndecan-1 was reduced at post HD (-4.1 ± 4.8 %) from peak HD (0.9 ± 5.8%, p = 0.0270). 
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4.3.7 Global Myocardial Perfusion 

The linear mixed model revealed a statistically significant fixed effect of timepoint (F (2, 

13.21) = 23.26, p < 0.0001) and no effect of visit (F (1,13.47) = 3.216, p =0.095). The mean global 

myocardial perfusion in the control visit decreases from 100.0 ± 9.4 ml/min/100g to 77.8± 5.5 

ml/min/100g from baseline to peak HD (p = 0.002, Figure 4-3), and partially recovers to 88.7± 4.9 

ml/min/100g post HD (comparison with baseline perfusion, p = 0.5330). Comparably, the mean 

global myocardial perfusion during the exercise visit is reduced from 92.5 ± 7.4 ml/min/100g to 

73.5± 3.5 ml/min/100g from baseline to peak HD (p = 0.015, Figure 4-3), and partially recovers 

to 82.2± 5.1 ml/min/100g post HD (baseline vs. post HD: p = 0.2050 and peak HD vs. post HD: p 

= 0.0090, Figure 3). Additional post-hoc testing demonstrated a trend towards increased 
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Figure 4-2 Percent change in syndecan-1 concentration at peak HD stress and post HD treatment 

relative to baseline syndecan-1 concentration. Error bars represent the standard error of the mean. 

The significance bar represents statistical significance between visits. *** Denote p < 0.0002. 
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myocardial perfusion in the control visit relative to the perfusion measurements obtained in the 

exercise at post HD timepoint (88.7± 4.9 ml/min/100g vs. 82.2± 5.1 ml/min/100g, p = 0.072, 

Figure 4-3). 

 

 

 

 

 

 

4.3.8 Regional Wall Motion Abnormality 

Linear mixed modelling revealed a statistically significant fixed effect of timepoint (F (1, 

10.392) = 11.489, p = 0.007) and interaction between timepoint and visit (F (1, 9.847) = 6.789, p 

= 0.027). Post-hoc testing showed no difference in the mean number of myocardial segments 
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Figure 4-3. Mean global myocardial perfusion at baseline, peak HD stress, post HD during control 

and exercise visit. Solid significance line represents statistical significance for the control visit. 

Dotted significance line represents statistical significance for the exercise visit timepoint. Error 

bars represent standard error of the mean. Grey significance line represents the statistical 

significance between the control and exercise visits. * Denote p < 0.0332, ** denote p < 0.0021, 

*** denote p < 0.0002. 
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experiencing RWMAs at peak HD (5.4 ± 0.8 segments) and post HD (4.7± 0.7 segments, p = 

0.289) at the control visit (Figure 4-4, ns, p = 0.29). With exercise, there was a reduction in 

RWMAs from 5.6 ± 0.9 segments at peak HD to 3.2 ± 0.7 segments at post HD (Figure 4-4, p < 

0.001). At post HD timepoint, there was a trend towards decreased number of RWMA with 

exercise compared to the control (Figure 4-5B, p = 0.086). 
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Figure 4-4. Mean number of myocardial segments experiencing regional wall motion 

abnormality (RWMA) relative to baseline at peak HD stress and post HD during the control and 

exercise visit. Dotted significance line represents statistical significance for the exercise visit. 

Error bars represent the standard error of the mean. *** Denote p < 0.0002 
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Figure 4-5. (A) Mean number of myocardial segments experiencing regional wall motion abnormality 

relative to baseline at peak HD stress during the control and exercise visit (B) Mean number of myocardial 

segments experiencing regional wall motion abnormality relative to baseline at post HD timepoint during 

the control and exercise visit. Error bars represent the standard error of the mean. 

 

4.4 Discussion 

This study is the first to investigate the effects of intradialytic exercise (IDE) on myocardial 

perfusion and contractility during HD and its role in protection against HD-induced cardiac injury.  
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Reduced myocardial perfusion during HD leads to ischemic cardiac injury.  A common 

clinical marker of ischemic cardiac injury is the troponin level, and some studies have 

demonstrated a relationship between HD and cardiac troponin T (cTnT) levels13,63–65.  However, 

no intradialytic change in plasma cTnT levels were observed in the present study.  This may be 

because elevation in cTnT after cardiac ischemia is a delayed response, with elevation typically 

seen 6-12 hours following an ischemic event66. 

Intradialytic exercise has long been hypothesized to increase myocardial perfusion and 

decrease myocardial stunning, thereby attenuating intradialytic cardiac ischemic injury 67.  Based 

on the results of this study, this hypothesis does not appear to be entirely correct.  We observed no 

difference in the intradialytic changes in the myocardial perfusion between the control visit (HD 

without IDE) and the exercise visit (HD with IDE).  At both visits, global myocardial perfusion 

decreased at peak HD with partial recovery following the end of HD, indicating that IDE does not 

attenuate the perfusion defects caused by HD.  IDE also did not affect the patient’s hemodynamic 

response to HD, with no differences in intradialytic changes in SBP between both visits.  At both 

visits, SBP reduced at peak HD, followed by partial recovery post HD. This demonstrates that IDE 

does not increase myocardial perfusion as hypothesized in the literature. 

However, this is not to say that IDE does not impart cardioprotection. Using 

echocardiography, this study demonstrated that the number of myocardial segments experiencing 

regional wall motion abnormality was not significantly different between peak HD and post HD 

during the control visit, while there was a statistically significant reduction in the number of 

segments with regional wall motion abnormality from peak HD to post HD during the exercise 

visit.  This suggests that the contractile function of the heart may be protected with intradialytic 

exercise.  These results are consistent with other studies of Intradialytic exercise that also used 
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echocardiography as a means to assess cardiac function. Previously, our group assessed cardiac 

function using intradialytic echocardiography in 19 participants exposed to different amounts of 

intradialytic exercise. Although global longitudinal strain (a measure of global myocardial 

contractile function) did not improve with exercise, there were reductions in the number of 

myocardial segments with RWMAs at peak HD stress with exercise exposure 48. Another study 

conducted by McGuire et al., showed in 20 participants a reduced mean number of stunned 

segments (i.e. segments with RWMAs) at 2.5 hours into HD, following exercise exposure one hour 

into HD treatment51 .  

Taken together, these results suggest that IDE does not impart cardioprotection by affecting 

myocardial perfusion like other interventions such as dialysate cooling does, but by maintaining 

cardiac contractility.  Said another way, IDE appears to improve ischemic tolerability of cardiac 

tissue in the setting of the same degree of HD-induced perfusion challenge.  The mechanism by 

which it does this remains unclear and is an area of further study. 

The optimal prescription of IDE in terms of intensity, duration, and timing during the 

dialysis session remains an open question.  In our study, we administered IDE for 30 minutes upon 

HD initiation. Other studies, such as the one done by McGuire et al., administered exercise one 

hour into HD treatment for 30 minutes, closer to the time during HD at which a patient experiences 

the most hemodynamic instability or HD-induced stress.  Our study showed no difference in the 

number of segments experiencing RWMA at peak HD (1 hour from the end of dialysis), whereas 

McGuire et. al did demonstrate a difference at 2.5 hours into dialysis51.  This discrepancy suggests 

that the time window at which participants are exposed to exercise in relation to their HD treatment 

may be crucial in minimizing myocardial abnormalities and optimizing cardioprotection. 
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The intensity and duration of IDE may be less crucial for achieving optimal 

cardioprotection, as previous work has shown that the dose of IDE had no affect on the number of 

myocardial segments with RWMAs during dialysis48. However, it remains possible the 

cardioprotection imparted by IDE is balanced against possible harms.  One of these possible harms 

is endothelial injury.  The metric by which endothelial injury was assessed in the present study 

was via measurement of plasma levels of sydecan-1, a dominant heparan sulfate proteoglycan, 

propagating at the surface lining of the endothelial glycocalyx68, known to degenerate or shed into 

the circulating blood in inflammatory conditions, during states of oxidative stress, and even due to 

HD69–71. It has also been previously shown to increase in response to exercise72.  Interestingly, in 

our study a significant rise in plasma sydecan-1 from peak HD to post HD was demonstrated only 

at the exercise visit, and not at the control visit. Thus, our IDE intervention appeared to have 

induced shedding of the glycocalyx, which may be an indication of IDE-related endothelial injury.  

Further study on the impact of IDE on the endothelium should be done to enable titration of IDE 

dose to prevent IDE related endothelial injury. 

The optimal prescription of IDE may also vary amongst patients with different 

comorbidities such as those with a history of coronary artery disease or a history of myocardial 

infarction.  Further study to determine how IDE modulates cardiac perfusion and contractility in 

patients with varying degrees of coronary artery stenosis would be valuable. 

A number of limitations should be addressed. This study was a pilot study to demonstrate 

the effect of intradialytic exercise on myocardial perfusion and regional wall motion abnormality. 

As a result, it was completed on a small, predominately male cohort. However, a retrospective 

effect size was calculated for myocardial perfusion and RWMAs between intradialytic timepoints 

in the control and exercise visit. Cohen’s d value for our primary outcome measure of myocardial 
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perfusion measurements were 0.77 between baseline and peak HD and 0.56 between peak HD and 

post HD in the control visit. Cohen’s d value for myocardial perfusion measurements were 0.89 

between baseline and peak HD and 0.43 between peak HD and post HD in the exercise visit. The 

determined values suggested that the size of effect was medium to large. We also experienced 

difficulty in painting the exact same exercise regime between patients, as patients differed in their 

exercise tolerance levels secondary to limitations associated with CKD such as muscle atrophy 

and existing cardiovascular disease. 

4.5 Conclusion 

To our knowledge, this is the first intradialytic study investigating the effects of 

intradialytic exercise on cardiac perfusion and function using CT perfusion and echocardiography. 

First, this study established that in an exercise-naive group of HD participants, a single small dose 

of exercise was sufficient to induce endothelial damage during HD. Secondly, it was demonstrated 

that intradialytic exercise did not affect the hemodynamic and electrolyte changes traditionally 

seen with HD treatment. This study confirmed that the ischemia-reperfusion injury of the heart 

resulted from the HD treatment itself that is recurrent at each HD treatment session. Most 

importantly, the results of study indicated that intradialytic exercise did not affect the perfusion 

response to HD but was able to mitigate cardiac dysfunction with the reduction in RWMAs. 
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Q 

 

Legend 

 

✱ p < 0.0332 
✱✱ p < 0.0021 
✱✱✱ p < 0.0002 
✱✱✱✱ p < 0.0001 

Supplementary Figure 4-1 Intradialytic changes in serum electrolyte and protein levels. Error 
bars represent standard error of the mean. 
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Chapter 5  

5 Thesis Summary and Future Works 

5.1 Project Summary and Conclusion 

The purpose of this thesis was to study the microcirculatory changes during hemodialysis 

(HD) in conditions of coronary artery stenoses, intradialytic exercise intervention, and alteration 

of sodium dialysate. The scientific investigations that were conducted are summarized in this 

section.  

5.1.1 Presence of coronary artery stenoses reduces segmental myocardial 
perfusion and is associated with myocardial stunning 

Chapter 2 described an exploratory study where multimodal intradialytic imaging was used 

to evaluate myocardial perfusion in fourteen individuals on hemodialysis treatment. Unlike studies 

reported in the literature to date, this study did not exclude patients with coronary artery disease. 

Interestingly, this study showed that systemic hemodynamics (as assessed using intradialytic blood 

pressure measurements) and the global myocardial perfusion response (as assessed using 

computed tomography perfusion imaging) did not change with the presence of coronary artery 

stenoses. Ischemic myocardial injury associated with HD is apparent three hours from the initiation 

of dialysis whether there is coronary artery stenosis or not. 

It appears that coronary artery stenosis affects perfusion not at the global level, but at the 

segmental level. Myocardial segments supplied by the stenosed coronary arteries experienced a 

significant reduction in perfusion that did not recover to baseline levels following the end of HD 

treatment. In contrast, the segments supplied by non-stenosed coronary arteries experienced a 

recovery of perfusion to baseline levels at the end of HD treatment. Accordingly, the group of 

participants with no coronary artery stenosis had fewer segments experiencing hypoperfusion 
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(defined as a >30% reduction in myocardial perfusion relative to baseline) after HD compared to 

during HD, while the group of participants with coronary artery stenosis had the same number of 

segments experiencing hypoperfusion after HD as during HD. In other words, there was an absence 

of perfusion recovery at the segmental level in the group of participants with coronary artery 

stenosis. 

The fact that coronary artery stenosis affects perfusion at the segmental level has 

consequences that may be of clinical significance. The absence of perfusion recovery after HD in 

the stenosed participant group was associated with the persistence of regional wall motion 

abnormality after HD indicating myocardial stunning. Consistent with this, the stenosed participant 

group also had higher levels of cardiac troponin T during HD, which remained elevated following 

the end of HD treatment, while the non-stenosed participant group had troponin levels that 

recovered following the end of HD.  

Together this suggests that the presence of coronary artery stenosis may result in greater 

and clinically significant amount of myocardial injury due to differences in segmental perfusion, 

despite no detectable differences in systemic hemodynamics or global myocardial perfusion. 

5.1.2 The effect of dialysate sodium on endothelial injury and 
microcirculatory dysfunction 

Dialysis does not only result in injury to vascular beds such as the heart at a global, 

segmental, or macrovascular level, but also at a microvascular level. It has been well established 

that ischemic injury can cause endothelial damage, but this may be exacerbated by significant 

osmotic shifts during dialysis. Generally, dialysate fluid used during HD contains high sodium 

concentrations to improve hemodynamic stability during HD, at the cost of significant sodium 

loading. HD-induced sodium loading and the subsequent osmotic shift that takes place during HD 
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can compound the endothelial damage caused by HD-induced ischemia. This is because it is the 

endothelium that serves as a buffer for sudden serum sodium shifts. Endothelial cells have a 

pericellular coat (glycocalyx) that contains transmembrane heparan sulfate proteoglycans such as 

syndecan-1 which bind sodium. 

The role of sodium loading due to dialysis in HD-associated microvascular injury is not 

well understood. Chapter 3 described a study that aimed to study the effects of sodium loading 

during HD on the endothelium. HD was performed on rodents without kidney disease using 

dialysate that differed with respect to sodium composition. The resulting effects on the 

microvasculature were assessed using intravital microscopy and plasma syndecan-1 levels. 

Plasma syndecan-1 levels increased during dialysis at all three levels of dialysate sodium 

tested (130, 140, and 150 mM). However, with higher dialysate sodium concentration (150 mM), 

the level of syndecan-1 in plasma at two hours into dialysis was greater than baseline measures by 

almost two-folds, whereas with lower dialysate sodium concentration (130, 140 mM) sydecan-1 

levels only demonstrated a one-fold increase at two hours into dialysis relative to baseline. At the 

intradialytic timepoints where syndecan-1 levels increased, there was a concomitant reduction in 

microvascular perfusion only in the rats exposed to high sodium dialysate. Thus, this suggests that 

sodium loading not only directly mediates endothelial injury during dialysis, but also compounds 

endothelial damage caused by HD-induced ischemia and may induce a functional change in the 

microvasculature. This assertion is supported by detection of strong negative correlations between 

percent change in syndecan-1 and mean arterial pressure and between percent change in syndecan-

1 and microvascular perfusion. 
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5.1.3 A Pilot Study: Assessment of intradialytic exercise on the circulation 
and function of the heart 

Recurrent myocardial injury due to hemodialysis can eventually lead to heart failure and 

death. Injury has been attributed primarily to HD-associated circulatory stress and volatile 

hemodynamics during HD. In a single HD treatment session, patients can experience episodic 

hypotension and multiorgan ischemia. There have been studies of various interventions to improve 

the hemodynamic tolerability of dialysis, including the use of a biofeedback dialysis system, 

applying cooled dialysate, and prescribing remote ischemic preconditioning to a limb prior to HD. 

However, one of the simplest and easiest to implement may be intradialytic exercise. 

In Chapter 4, intradialytic exercise was studied as an intervention to mitigate HD-induced 

cardiac ischemic injury. In particular, the aim of the study was to investigate the effects of 

intradialytic exercise on the microcirculation and myocardial perfusion. Participants were asked 

to engage in exercise during HD; their cardiac responses were evaluated with CT imaging and 

echocardiography, while their microcirculation was assessed with plasma syndecan-1 levels. 

Exercise did not affect myocardial perfusion during HD, with perfusion of the myocardium 

reduced at peak HD (defined as three-hours into HD at the time of maximal circulatory stress) in 

concert with a reduction in systolic blood pressure, regardless of whether exercise was performed 

or not. However, exercise had a positive effect on the contractile function of the heart (as measured 

using echocardiography) which improved with exercise intervention during dialysis. Intradialytic 

exercise also caused an increase in plasma syndecan-1 levels. 

Together, this suggests that intradialytic exercise may be cardioprotective by improving 

cardiac contractility during dialysis without affecting myocardial perfusion, at the cost of acute 

endothelial damage. 
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5.2 Significance and Impact 

The work completed in this thesis generated new understanding about the acute effects of 

HD on the circulation, an area of nephrology that remains poorly understood. Utilizing state of the 

art tools such as myocardial CT perfusion imaging and echocardiography intradialytically, the 

detrimental effect of HD on myocardial segments in HD patients with coronary artery disease, a 

rarely studied patient population, was demonstrated. Using an innovative small-animal 

hemodialysis system, a preclinical dialysis research platform was developed that enabled the 

observation of HD-induced microvascular dysfunction with intravital microscopy and plasma 

syndecan-1 levels. Having established that both perfusion-related ischemic injury and systemic 

microvascular injury occurs acutely due to hemodialysis, intradialytic exercise was evaluated as 

an intervention for cardio protection against the acute effects of HD treatment. These contributions 

are clinically impactful and have the potential to change our understanding of hemodialysis, to 

change clinical practice, and to improve patient outcome. 

5.3 Future Directions 

5.3.1 A Comprehensive Study of the Coronary Arteries in HD 

In Chapter 2 of this thesis, we have demonstrated that clinically significant coronary artery 

stenosis aggravates HD-induced injury to the myocardium at a segmental level, with consequences 

for the contractile function of the heart. This result was clear, despite having only three HD 

participants with significant coronary artery stenosis and ten HD participants without coronary 

artery stenosis. Coronary artery disease increases the harms of HD and increased understanding of 

the effects of HD in the understudied population of patients with coronary artery disease on dialysis 

is a must. To establish generalizability of these findings, a more comprehensive study with a larger 

sample size would be valuable. In this larger study, nuances surrounding how coronary artery 
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disease modulates the harms of HD can be established by assessing which coronary vessels are 

stenosed, grading the degree and level of vessel stenoses, and relating this to segmental 

measurements of segmental myocardial perfusion and contractility. 

5.3.2 Sodium Induced Microvascular Injury with HD in an Animal Model of 
CKD 

In Chapter 3 of this thesis, an innovative small animal dialysis system was described and 

served as the basis for a novel preclinical dialysis research platform. This platform enabled the 

study of the effects of dialysate sodium on the microcirculation. A higher dialysate sodium caused 

an increase in plasma sodium that resulted in direct injury to the endothelial glycocalyx, inducing 

microvascular dysfunction during HD in healthy rats. In other words, the study described in 

Chapter 3 established that large osmotic shifts during HD was detrimental to microvascular 

function. 

A more nuanced understanding around the degree of osmotic shift would be helpful. Using 

the same preclinical dialysis platform, the effect of a wider range of dialysate sodium levels in 

smaller increments of 2-4 mM on the microcirculation could be assessed, and a dose-response 

curve generated. We could then establish whether or not there is a threshold at which osmotic 

shifts become detrimental. Nuanced understanding around the rate of osmotic shift would also be 

helpful. It is possible that a rapid dialysis rate causing a more rapid shift would result in greater 

harm to the microcirculation. This understanding could be used to guide human studies in the 

future with the ultimate goal of optimizing dialysis prescriptions to minimize circulatory harm. 

Translatability of the results would be improved if rats with kidney disease were studied 

rather than healthy rats, as was done in Chapter 3. It is logical to assume that circulatory response 

to changes in sodium level during HD may differ depending on the level of kidney function. 
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Although this can be directly studied in humans, extending the preclinical dialysis research 

platform by creating and validating a reliable small-animal model of chronic kidney disease would 

be valuable. 

5.3.3 Optimization of Intradialytic Exercise  

In Chapter 4, intradialytic exercise was assessed as a means of cardioprotection against the 

acute effects of HD on myocardial perfusion and cardiac contractility. Although the literature has 

established that different amounts of intradialytic exercise is comparable in terms of benefits, there 

is no consensus regarding the optimal timing of exercise during HD for the most effective 

cardioprotection. A randomized control trial with multiple arms corresponding to the timing of 

intradialytic exercise (e.g. at the start of HD, 30 mins into HD, 1 hr, 1.5 hr, 2 h, and 2.5 hr from 

the start of HD treatment session) would be needed to identify the golden time window at which 

cardioprotection is maximized. Outcome measures can include the same measurements made in 

the study described in Chapter 2 and 4. These include global and segmental myocardial perfusion 

as assessed by intradialytic CT, as well as echocardiography to measure myocardial contractile 

function at a segmental level. 

5.3.4 HD-Induced Perfusion Anomalies and its Association with Clinically 
Significant Cardiovascular Events 

In the studies presented in this thesis, the detrimental effect of HD on myocardial perfusion 

was well established. This effect was demonstrated over one dialysis sessions, but patients with 

end stage renal disease require repeated dialysis treatment, often multiple times per week. This 

results in recurrent cardiac ischemic injury. Recurrent cardiac ischemic injury is thought to be a 

precursor to the development of clinically significant arrhythmia with the risk of sudden cardiac 

death in this patient population. It would be important to establish how the altered myocardial 
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perfusion in HD relates to the development of clinically significant arrhythmia in future studies. 

Possible mechanisms that may contribute include the disruption of the propagation of electrical 

waves through ischemic zones and ectopic depolarization within injured myocardial regions. The 

relationship between perfusion and arrhythmic events in the HD population is a missing piece of 

our understanding that must be addressed. 
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