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ABSTRACT

We propose a convolutional neural network (CNN) aided factor
graphs assisted by mutual information features estimated by a neu-
ral network for seizure detection. Specifically, we use neural mutual
information estimation to evaluate the correlation between differ-
ent electroencephalogram (EEG) channels as features. We then
use a 1D-CNN to extract extra features from the EEG signals and
use both features to estimate the probability of a seizure event. Fi-
nally, learned factor graphs are employed to capture the temporal
correlation in the signal. Both sets of features from the neural
mutual estimation and the 1D-CNN are used to learn the factor
nodes. We show that the proposed method achieves state-of-the-art
performance using 6-fold leave-four-patients-out cross-validation.

1. INTRODUCTION

Epilepsy is a highly common neurological disorder, causing re-
current episodes of the involuntary movement known as epileptic
seizures [1]. Based on the place in the brain where seizure starts
and the intensity of the abnormal signals, patients with epilepsy may
suffer from different symptoms such as auras, repetitive muscle con-
traction, and loss of consciousness. [2]. Epileptic seizure severely
affects the patient’s quality of life and can have other social and eco-
nomic impacts; for instance, some activities, including swimming,
bathing, and climbing a ladder, become dangerous as a seizure
during that activity might result in unpredictable injuries and even
death. Therefore, early detection of epilepsy can notably improve
the patient’s quality of life. A leading tool to diagnose seizure is
based on electroencephalogram (EEG) monitoring, being econom-
ical, portable, and non-invasive [3]. However, the review of EEG
recordings is a time-consuming expert-dependent process due to
contamination by physiological and non-physiological resources [4],
and similarity of epileptic spikes to normal EEG waveforms.

The challenges associated with EEG monitoring gave rise to
a growing interest in machine learning aided automatic seizure
detection. A common approach is to train a model, typically a
convolutional neural network (CNN), applied to features extracted
from the Wavelet or Fourier transform of the signal [5-10], typi-
cally involving careful feature engineering. Other seizure detection
methods process the raw EEG signals directly. These include the
application of CNNs [11, 12] to the segmented EEGs (e.g., 4-second
blocks), providing instantaneous prediction without exploiting tem-
poral correlation between blocks. Prior works have also considered
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CNN-recurrent neural network (RNN) architectures to capture tem-
poral correlation [13, 14] that lead to high computational complexity
during training. The challenges associated with previous works
motivate the formulation of a reliable automatic seizure detection
algorithm which generalizes to different patients, benefits from
both temporal and inter-channel correlation, and is computationally
efficient facilitating its application in real-time.

In this work, we propose a data-driven automatic seizure detec-
tion system coined Mutual Information-based CNN-Aided Learned
factor graphs (MICAL). MICAL combines computationally effi-
cient 1D CNNs with principled methods for benefiting from tem-
poral and inter-channel correlation. Following [15], we exploit the
temporal correlation by imposing a Markovian model on the latent
seizure activity [16], using the CNN output not as seizure estimates,
but as messages conveyed as a form of learned factor graph infer-
ence [17-19]. We expand our previous work [15], to exploit the
inter-channel correlation during the seizure by estimating the mutual
information (MI) between each pair of EEG channels through a neu-
ral MI estimator. To the best of our knowledge, this is the first time
MI has been used as the feature for seizure detection. The MI fea-
tures along with features learned by the 1D-CNN are then used for
learning the factor nodes for factor graph inference. Our numerical
evaluations, which use the CHB-MIT dataset [20], demonstrate how
each of the ingredients combined in MICAL contributes to its reli-
ability, allowing it to achieve improved accuracy and generalization
performance compared to previous algorithms.

The rest of this paper is organized as follows. In Section 2 we
describe the problem statement and review necessary preliminaries.
Then, in Section 3 we describe the proposed MICAL algorithm; Sec-
tion 4 presents a numerical study, while Section 5 provides conclud-
ing remarks.

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1. Seizure Detection Problem

In this paper, seizure detection refers to the identification and local-
ization of the ictal (i.e., the seizure) time intervals from EEG record-
ings of patients with epilepsy [21]. To formulate this mathematically,
let X = {X1, X2, -, X~} be the EEG recordings of a patient,
where N represents the number of channels. Each measured channel
X ; is comprised of n consecutive blocks, e.g., blocks of 1-second
recordings, and we write X; = [wg’), azg), . ,:1:51)] where "
is the signal corresponding to the i-th EEG channel during the ¢-th
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block. The seizure state for each block is represented as a binary
vector 8 = [Sy,, ... S, ], where s¢ € {0, 1} models whether or not
a seizure occurs in the ¢-th block. Our goal is to design a system
which maps the EEG recordings X into an estimate of s, which is
equivalent to finding the time indices where seizure occurs.

To model the relationship between the EEG signals X and the
seizure states s, it is needed to consider both inter-channel correla-
tion as well as temporal correlation that the recordings exhibit. The
former stems from the fact that when the seizure starts, the epilep-
tic activity propagates to other areas in the brain [22] which affects
the patterns of other channel recordings [23]. This manifests high
dependence between different channels, i.e., between wgi’) and m%j ),
when t is at the beginning and during ictal phase. Temporal cor-
relation results from the fact that seizures typically span multiple
recording blocks, and thus the probability of observing a seizure at
time instance ¢ depends on the presence of a seizure in the previous
block, such that the entries of s can be approximated by a Markovian
structure [16]. Our proposed solution, detailed in Section 3, exploits
this statistical structure using factor graphs.

2.2. Factor Graph Inference

Factor graphs are a representation of factorizable multi-variable
functions, such as probability distributions, as a bipartite graph.
These graphical models facilitate inference at reduced complexity
via message passing algorithms, such as the sum-product meth-
ods [24]. Consider an observed sequence Y = [y,,...,y,] encap-
sulating a latent state sequence s = [s1, ..., S,| Whose entries take
values in a finite set S, as a form of a hidden Markov model (HMM).
In such cases, the joint distribution of y, s obeys

P(s,y) = [ [ P(sklse-1)P(ylse), (M
k=1

which can be represented as factor graph with variable nodes
{sk}r=1 and function nodes {fr}r—_;, where fix(sk,sk—1) :=
P(sk|sk—1)P(yplsk)-

The factor graph representation allows one to compute the
maximum a-posteriori probability (MAP) decision rule with a com-
plexity that only grows linearly with n as opposed to exponentially
with n. This is achieved by evaluating the marginal distribution
P(sk,y) foreach k € {1,...n} via message passing over the fac-
tor graph. In this case, the forward messages are recursively updated
via

k
proos(se) = > [ filssrsi-1), 2)
{517... asi—l} Jj=1

and the backward messages via

> I fiGsisic). @)

{sk41,rsn} J=k+1

Hfrp1—sk (Sk) =

Then, the desired marginal distribution, which is maximized by the
MAP rule, is given by

P(Skvy) = Kfr—sp (sk) K1 sk (Sk) 4

Intuitively (2)-(3) are interpreted as an aggregate of neighboring in-
formation. Once all neighbors have communicated (i.e., messages
have propagated the entirety of the graph) the product of the for-
wards and backward messages determines the marginal probability.

3. MICAL SEIZURE DETECTION ALGORITHM

In this section, we present the proposed MICAL algorithm. MICAL
is comprised of three main components: neural MI estimator quan-
tifying the instantaneous dependence between different channels at
each EEG block to capture the inter-channel correlation (see Sub-
section 3.1); a 1D CNN which generates a latent representation of
the raw EEG block plus a soft estimate of the seizure state using the
joint features from the 1D-CNN and the neural MI estimator (see
Subsection 3.2); and factor graph inference utilizing the soft esti-
mates as learned function nodes to incorporate temporal correlation
(see Subsection 3.3). A high-level illustration of the flow of MICAL
is depicted in Fig. 1.

3.1. Neural Mutual Information Estimation

MI is a measure of the statistical dependence between two random
variables. While cross-correlation measures linear dependence, MI
can capture higher-order statistical dependence [25], and is thus able
to capture nonlinear relationship between signals, which is likely to
exist between EEG signals during seizure [22,23]. The MI between
the random variables x1, z2 taking values in X x X with a joint
distribution Py, x, and marginals Px, and Px, is defined as

I(X1; X2) = Dxn(Px, x5 |1 Px, Px,)s Q)

where Dxi, is the Kullback-Leibler (KL) divergence.

Using (5) to compute MI as a measure of statistical dependence
for EEG samples, with unknwon probability distributions is a chal-
lenging task [26]. To address this issue, it was recently shown that
neural networks can be trained to estimate MI, based on the Donsker-
Varadhan representation

Dkr(Px,x,||Px, Px,) = sup
T:X X X—R

—log (Elesz [eT(zl’”>]) ,
(6)

where a neural model with parameters ¢ denoted by Ty is used to
represent the function 7" in (6). To maximize the right hand side
of (6) gradient descent can be used to find the maximizing set of
parameters ¢ [27]. To overcome the limitations imposed by the esti-
mation variance, [28] proposed the Smoothed MI Lower-bound Es-
timator (SMILE), which learns to estimate MI by training a neural
network to maximize the objective function

EPx1x2 [T(mlv mQ)]

1¢(X1; X2) =Epy, x, [To (21, 22)]

—logEpy, Py, [clip(eT"s(Il’Iz)7 e 7, eT)] ,

Q)

where clip(v, [, w) := max(min(v, u), ) and 7 is a hyperparameter.
The resulting neural estimator was shown to learn to reliably predict
MI under various distributions. ] )

In MICAL, we apply SMILE to estimate I(x\”; z{")) at each
block ¢ for each channel pair ¢,j. Since MI is symmetric, i.e.,
I(mgi); mij)) = I(zY; mgi)), we only estimate the MI for j > 1.
We set T to be a fully-connected network with two hidden layers
and ReLU activations, and train it with 7 = 0.9 in the objective
(7). The numerical results from neural estimator satisfy the underly-
ing hypothesis of high correlation among recordings during seizure
state. This is illustrated in Fig. 2, where it is observed that the
trained estimator outputs higher MI values during seizure compared
to non-seizure blocks.
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Fig. 2. Neural MI estimation for seizure and non-seizure.

3.2. 1D CNN

In parallel to the neural MI estimator, each raw EEG signals block is
also processed using a dedicated 1D CNN to extract relevant features
from the block. The resulting vector y,, representing the stacking of
these extracted features and the estimated MI at EEG block ¢, is used
to produce a probabilistic estimate of the presence of a seizure. We
develop a 1D CNN architecture to extract meaningful features from
raw EEG signals and combine these features with the MI estimation
results. Compared to 2D CNNs; specifically, the baseline model
proposed by Boonyakitanont et al. [12], 1D CNN can evaluate all
EEG channels at a given time instance, but in 2D CNNs only the
channel indexes that are close together are processed together.

To have a comparable configuration with the baseline model, we
use the same number of filters. Unlike previous studies, we design
the kernel size such that our 1D CNN will have a high receptive
field of 1 second of the recording, compared to approximately 33 ms
in prior works. This feature of the architecture leads to capturing
low-frequency components of the signals and long-term temporal
correlation within the 4-second blocks in EEG signals. The details
of the proposed CNN model is shown in Fig 1.

3.3. Factor Graph Inference

The resulting seizure state probability using only the MI estimates
and the features from 1D CNN does not exploit the presence of
temporal correlation. Therefore, as proposed in [17] for sleep state
tracking, we exploit the presence of temporal correlation by utiliz-
ing the block-wise soft decisions not for prediction, but as learned
function nodes in a factor graph. We incorporate temporal correla-
tion by assuming that the relationship between the extracted features
Y,,-..,Y, and the underlying seizure state si, ..., S, can be rep-
resented as an HMM. Similar modelling was shown to faithfully

capture the temporal statistics in EEG-based seizure detection [16].
For such models, one can compute the MAP rule with linear com-
plexity using sum-product inference over the resulting factor graph,
as described in Subsection 2.2. However, to evaluate the messages
(2)-(3), one must be able to compute the function nodes {fx}r—1,
given by

Si(stysst,_1) = P(Stk‘stk—l)P(ytklstk)' ®)

In MICAL, we utilize the block-wise soft decisions as estimates
of the conditional distribution P(y,, |s¢, ). The transition probabil-
ity P(st,|st,_, ), which is essentially comprised of two values, can
be obtained from histogram, or manually tuned as we do in our nu-
merical study in Section 4. The obtained marginal distributions (4)
are compared to a pre-defined threshold 7" for detection. The result-
ing seizure detection algorithm is summarized as Algorithm 1.

Algorithm 1: MICAL seizure detection
1 Inputs: SMILE and 1D CNN networks, estimated
P(s¢,|st),_, ), EEG signals X, threshold T
Feature extraction:
2 fork=1,...ndo
Apply SMILE to estimate I¢>(wzk ,mgi)), Jj>i
4 Apply 1D CNN to obtain combined features y,, and
obtain soft decision;
5 end
Factor graph inference:
6 Compute { fx} from soft decisions via (8);
7fork=1,...ndo
8 Compute puy,, —s, ({0, 1}) via (2);
9 Compute fi5, —sn_pp (10, 1}) via (3);

“w

—k+2
10 end

1 Detect seizure at tx if pug,, s (Dpife, | s (1) > T

4. NUMERICAL RESULTS

We evaluate MICAL' using the CHB-MIT dataset [20]. The data is
comprised of scalp EEG recordings from 24 pediatric subjects with
intractable seizures, sampled at a frequency of 256 Hz where seizure
start and end times are labeled. In order to balance and denoise
the dataset, few simple pre-processing steps are included. Sample
recordings with at least one seizure are selected and a notch filter
is applied to remove the noise from power line. Due to the short

IThe source code and hyper-parameters can be found on GitHub.
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AUC-ROC AUC-PR F1 score

2D CNN [12] 77.81 +0.08 37+0.17 88.3 £0.03
Spectrogram [ 10] 75.4+0.11 37.65 +0.10 92.77 + 0.03
1D CNN 82.12 + 0.04 42.23 +0.12 91.47 + 0.02

1D CNN-GRU 82.28 + 0.03 44.43 +0.10 90.42 + 0.06
1D CNN-FG 83.15 + 0.05 44.50 £ 0.12 92.35 + 0.02
1D CNN-SMILE | 83.10 £ 0.04 48.50 £ 0.11 92.47 +0.01
MICAL 83.8+0.04 50.38+0.13 93.42 £ 0.01

Table 1. Summary of results

seizure duration, for each recording file, we reduce non-seizure sam-
ples to 10 times before and 10 times after seizure time. Therefore,
for every second of seizure data, there are 20 seconds of non-seizure
data. The seizures are estimated for every second. To estimate the
probability of seizure over the ¢-th second, the past 32 seconds of
recording is used to solve the optimization that estimates MI. This
window size has demonstrated the best results over the dataset. The
past 4 seconds of recording is used as input to the 1D CNN for es-
timating the features. The value of 4 seconds is selected to satisfy
a good trade-off between the number of samples in a block and the
stationarity of the observed signals over a block. In our experiments,
seven models are used for comparison. The 2D CNN used in [12]
and spectrogram detector of [10] as two baseline models since they
reported the best results compared to prior works. For MICAL, we
tune the transition probability to P(s;, = 1|s;, , = 1) = 89.54%
and P(s¢, = 1|st, , = 0) = 17.90%. To evaluate the contribution
of each individual component of MICAL, we conduct a complete
ablation study. We predict seizure probability based solely on in-
put block through 1D CNN features as well as combined features
from MI estimator and CNN. We also add two different structures,
including GRU cells and factor graph to the 1D CNN features to
exploit temporal correlation without incorporating the inter-channel
correlation. All detectors use decision threshold of 7" = 0.5.

For considering variability among patients, a 6-fold leave-4-
patients-out evaluation is conducted. To examine the performance
of the proposed hybrid algorithm, three metrics are measured: area
under ROC curve (AUC-ROC) which shows the capability to distin-
guish between seizure and non-seizure samples, area under precision
recall curve (AUC-PR) that is the indicative of success and failure
rates, and F1 score representing the harmonic mean between preci-
sion and recall.

The results for three performance measures are summarized in
Table 1. The represented values for all metrics show the average
across 6 folds. As presented in Table 1, the 1D CNN used by MICAL
achieves almost 5% improvement compared with the baseline mod-
els, specifically for AUC-ROC and AUC-PR. As indicated, consider-
ing only temporal or inter-channel correlation has no significant ef-
fect on the model performance. Therefore, the incorporation of MI
estimation and factor graph inference by MICAL yields the high-
est performance measures, 83.8% and 50.38% for AUC-ROC and
AUC-PR, respectively and 93.42% for F1 score. The results indi-
cate that our algorithm admits the hypothesis of existing high corre-
lation among signals during seizure states. Furthermore, exploiting
temporal correlations in a principled manner through factor graphs is
shown to facilitate learning an accurate detector, compared to using
a black-box RNNs, at a much reduced computational complexity.

5. CONCLUSION

We proposed MICAL, which is a data-driven EEG-based seizure de-
tector designed to exploit both inter-channel and temporal correla-

tions. For this, MICAL estimates the MI between each pair of EEG
channels to capture the non-linear correlation among recordings ob-
served during seizure times. The estimated MI is combined with a
carefully designed 1D CNN to provide a soft estimate for each signal
block. Instead of using these features for prediction, they are utilized
to evaluate the function nodes of an underlying factor graph, allow-
ing it to infer at linear complexity while exploiting temporal features
between EEG blocks. We demonstrate that MICAL achieves notable
improved performance compared to previously proposed methods.
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