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Abstract
Several studies have considered driver’s attention for a multitude of distinct purposes, rang-

ing from the analysis of a driver’s gaze and perception, to possible use in Advanced Driving
Assistance Systems (ADAS). These works typically rely on simple definitions of what it means
to “see,” considering a driver gazing upon an object for a single frame as being seen. In this
work, we bolster this definition by introducing the concept of time. We consider a definition of
”seen” which requires an object to be gazed upon for a set length of time, or frames, before it
can be considered as seen by the driver. This is done by examining consecutive frames to find
those where the driver’s gaze remains uninterrupted within a constant bounding box of a given
traffic object over a series of frames. A time-considering approach to defining traffic objects as
seen or unseen provides a more thoughtful and accurate measure of driver’s perception, as we
avoid the naı̈ve assumption that gazing upon an object for a single frame is enough time for a
driver to process the object gazed upon, which ultimately could prove vital to a wide array of
ADAS and i-ADAS systems.

Keywords: ADAS, Computer Vision, Driver Attention, Driver Gaze, Driver Perception,
Gaze Estimation, i-ADAS, RoadLab, Traffic Objects
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Summary for Lay Audience
This thesis introduces a novel approach for examining the notion of what a driver “sees” in

the context of Advanced Driving Assistance Systems (ADAS) where determining what a driver
sees is based on images (frames) from cameras and computation of a driver’s gaze. Previous
research often assumes that what a driver “sees” is based on determining a driver’s gaze on a
single frame. “Seeing”, however, is complex and is based on function of the human eye and
human cognition and a computational approach that a single frame is sufficient is likely too
limited. This research considers a driver’s gaze and objects across a number of frames. It looks
at the impacts that adjusting the number of frames considered under a driver’s gaze can have on
the number of objects seen. This is investigated through the utilization of various frame length
thresholds as the basis for our definition of seen, allowing us to compare these thresholds. The
work aims to provide conclusions on the impact of these varied frame length thresholds and
whether future work on determining what a driver “sees” as part of ADAS would benefit from
a more thoughtful definition of “seen”.
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Chapter 1

Introduction

1.1 Overview
1.25 million. This is the estimated number of fatalities caused by automotive accidents world-
wide each year, with these accidents being the leading cause of death for young people, ranging
in age from 15-29 [29]. These fatal accidents also account for approximately 3% of government
GDP annually [29]. With such significant numbers, the advancement of intelligent driving sys-
tems, including both autonomous vehicles and Advanced Driver Assistance Systems (ADAS),
have been explored. ADAS in particular have been derived with the purpose of reducing hu-
man driver error.

ADAS have been used for a variety of tasks to assist drivers in driving more safely. Some
examples include adaptive cruise control, forward collision warnings, lane departure warnings,
and traction control. Adaptive cruise control sets the speed of the vehicle to match the speed
limits and surrounding traffic, maintaining safe follow distances to allow for correction in the
event of a dangerous situation. Forward collision and lane departure warnings alert the driver of
their respective situations which could prove disastrous. Traction control detects when sliding
is occurring and will adjust the braking and turning of the wheels to account for the low surface
traction in an attempt to counteract the sliding motion.

1.2 Problem
As discussed, driving has been proven to be a dangerous act. This is why in many societies we
require proper training and licensing in order to partake in the activity of driving. There are
a wide variety of automotive accident causes, including faulty vehicle parts causing failures,
natural causes such as animals running into the road, or even human error. Human error itself
could have an array of causes, and according to the U.S. Department of Transportation, Na-
tional Highway Traffic Safety Association (NHTSA), lack of attention is cited as the number
one cause of accidents, specifying drowsiness and distractions as sources of attention breakers
[27]. Another notable source of attention breaking is drivers choosing to pay less attention due
to an excessive trust in driving assistance and car safety features, Suzuki et al. [25].
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Chapter 1. Introduction 2

When a driver is on the road it is a common expectation that they will take in and process
their surroundings. But the unfortunate truth is that humans are not capable of seeing every-
thing, all of the time, especially when drivers lose full attention. To gain a better understanding
of what drivers are aware of during actual driving, we will analyze what drivers see and do
not see while driving. In this context, the idea of see is limited, so we need to define what it
means to see. To know if a driver has ”seen” an object we will consider two factors, whether
the driver’s gaze has fallen onto the object, as well as for how long their gaze remained on said
object. As for the object in question, we will utilize a predetermined set of common traffic
objects, including various vehicles, traffic signs, and pedestrians.

1.3 Contribution
In this thesis, a novel idea of seeing vs gazing is considered. In the past, few works seem to
touch on the idea of driver’s seeing objects beyond the high-level scope, typically considering
the simplest case of; if the point of gaze lies on an object in a frame, that frame is ”seen”.
We logically know that such a simple definition of seen may be sufficient for some works, but
scrutiny of the definition of ”seen” could prove beneficial. Where some research may consider
and object ”seen” or ”unseen” based on simplistic definitions, this contribution looks to begin
the exploration of differing ideas of what it means to see, within the scope of drivers, without
going as far as to consider human cognition. We will utilize some of the architecture from
Shirpour et al. [22] to perform object detection on a dataset collected from drivers during
actual driving activities. We then investigate the driver’s observation of objects during the
driving sequence to identify those objects which are both ”seen” and ”unseen” given our self-
defined and varied definitions of ”seen”.

1.4 Thesis Organization
This thesis is organized as such:

In Chapter 2 we look at some prior work in the fields of advance driver assistance sys-
tems, traffic object detection, driver’s gaze, and other related topics. In Chapter 3 we describe
data collection and present the overall architecture for this work. In Chapter 4, we then present
the analysis of our data and our results. In Chapter 5 we discuss our work and draw any rele-
vant conclusions, as well as discussing future works through identifying areas of interest both
by expanding the current work as well as broadening the scope of the work done.



Chapter 2

Related Work

In this Chapter an investigation into previously completed works will be conducted. The ar-
eas of interest include Advanced Driver Assistance Systems (ADAS), traffic object detection,
driver’s gaze, and seen versus unseen objects.

2.1 Advanced Driver Assistance Systems
Advanced Driver Assistance Systems, or ADAS, are systems implemented to ”enhance, among
other things, active and integrated safety”, Bengler et al. [6]. A more recent movement in the
field of ADAS is intelligent Advanced Driver Assistance Systems, or i-ADAS. i-ADAS are
intended to reduce the feedback to the driver while behind the wheel by adding a sense of
intelligence to the ADAS. This can be done through a variety of ways, but the main goal is
to have the ADAS system only relay the information that is relevant to the driver or vehicle,
at the appropriate time. An example of this could be only turning on surveillance measures,
such as a dashcam, if the i-ADAS detects that damage may be done to the vehicle, as discussed
by Lee et al. [16]. This research proposes an improved and more efficient ADAS processor,
doing so by incorporating intelligence. A microchip with hardware specifications is presented
in a theoretical blueprint alongside analyses of the performance. This microchip exemplifies
the benefits of moving ADAS towards i-ADAS. Another example is provided by Shadeed et
al. [21], where an i-ADAS is proposed involving front-lighting systems which would provide
better visibility while also utilizing a glare-free highbeam lighting system. This system would
provide the driver with useful information without adding any dashboard display by providing
the information naturally in the environment.

In recent years there have been even more strides to produce higher quality, more effi-
cient, and new approaches to implementing i-ADAS. After the initial foundations of ADAS
were realized, research in this area shifted to the improvement and advancement of ADAS
as a whole. We now know that driver assistance is possible and research has moved forward
in a variety of areas, ranging from improvement of current systems, to ideas for whole new
ADAS which could benefit drivers. Nidamanuri et al. [18] provides us with an exceptional
review of these research areas including automotive electronics, vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication, RADAR, LIDAR, computer vision, and ma-

3



Chapter 2. RelatedWork 4

chine learning. This review is an excellent resource summarizing the ADAS works done in
recent years for the underlying systems as well. Additionally, we are presented with a variety
of ADAS which have been researched along with the areas where more research is required for
each of these ADAS presented, such as collision avoidance systems, traffic sign recognition,
lane change assistance, and several others.

As for current research, there are some areas that have been more problematic than others
for ADAS. Some of the more substantive challenges include driver drowsiness and distraction,
varied illumination, and occlusions. The problems of inconsistent illumination and occlusion
of objects are sub-problems in the object detection domain. While in the drowsiness and dis-
traction category, driver perception of objects may well benefit from the knowledge of a driver’s
object of attention. In the research conducted by Dong et al. [10] an investigation and proposed
solution are provided for determining drowsiness or distraction of the driver. Various factors
which may indicate drowsiness or distraction are collected and these factors are then searched
for during testing, ultimately contributing to the classification of driver fatigue (utilizing a Ran-
dom Forest) and driver distraction (utilizing an CNN). Of these factors, the driver’s attention
on objects, either inside or outside of the vehicle, is not considered. The closest parameters
are some from the drowsiness detection, including various gaze directions (left, right, center)
and blink frequency. Another attempt to recognize driver distraction is presented in the work
by Banerjee et al. [3]. In this work, again, the gaze direction was utilized but divided into 6
categories instead of the 3 used in the previous work discussed. This research also looks at
”down”, ”rearview mirror”, and ”instrument cluster” as gaze directions. Although this work
does not handle the driver distraction itself, it does tackle glance estimation which is an impor-
tant part of distraction. But similarly to the previously discussed work, this research also does
not account for the driver’s attention on objects.

2.2 Traffic Object Detection
Object detection is not a new breakthrough and traffic object detection is no different. There are
plenty of works detailing both of these topics. Works have been done for each type of traffic
object individually, including vehicle, traffic signs, traffic lights, pedestrians, etc. For traffic
object detection we’ve seen various approaches over the years. Kuo et al. [15] provide works
where we see colour and shape utilized in the detection of traffic signs. This work, although
highly performing, is limited in its capabilities as it is restricted to signs either triangular or
round in shape. This work does however nearly overcome the issue of illumination by utilizing
HSI coloring rather than typical RGB for its specific use cases. In [8], Dalal et al. propose an
approach for human detection that involves the use of locally normalized Histogram Oriented
Gradient (HOG) descriptors. Coincidentally, this work also has proven performance for shape
based object classes. The key discovery from this paper however was not the human detec-
tion itself, but rather the fact that smoothing actually hurts performance in human detection,
whereas normally smoothing is beneficial. Wang et al. [28] show this performance by utilizing
the work done in [8] to further improve upon the detection of traffic signs by applying it in a
two step process, first using a HOG with a small window for classification followed by a HOG
with a large window for a further classification. This work achieved nearly perfect classifica-
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tion across all sign categories (prohibitory, mandatory, and danger) but could benefit from an
improvement to efficiency, taking over one second to detect a single object.

In terms of vehicles, they are more complicated to detect, mostly due to their large varia-
tion in given scenes as well as possible viewing angles. This can be attributed to the fact that,
unlike stationary objects, vehicles are usually not stationary; they could also be in front of,
behind, or beside the vehicle, giving a large range of possibilities to account for. Sivaraman
et al. [23] provide us with a survey of methods for the detection of vehicles, which use vi-
sion based approaches. This paper indicates that vehicle detection is divided into two major
categories; monocular and stereo-vision. Each of these categories can be further divided into
appearance-based approaches and motion-based approaches. Though these methods may have
proved useful in their time, today their usefulness comes from acting as a basis to apply along-
side machine learning techniques. This is exemplified by Dong et al. [9]. In this research we
can also see how utilizing a Convolutional Neural Network (CNN) alongside colour and depth
images can improve upon vehicle detection. This proposed approach provided high perfor-
mance while nearly maintaining weather indifference for the identification of vehicles. Error
and error-prone samples are focused through targeted learning to improve on the areas with the
worst performance and achieve high overall performance.

2.3 Driver’s Gaze
Driver’s gaze is a term used to describe where a driver is looking while driving, with past ap-
proaches focusing on either vision-based methods or learning-based methods. Vision-based
methods focus more on the driver and their head/eye positions to estimate gaze while learning-
based methods focus on the use of machine or deep learning practices, with or without driver
head/eye data to estimate gaze.

Looking at vision-based approaches, Murphy et al. [17] and Baker et al. [2] provide early
works in the area of head pose estimation while Hansen et al. [12] provide a summary of
eye detection frameworks as well as the gaze estimation techniques at the time, prior to 2010.
More recently we have seen works such as that produced by Sugano et al. [24] proposing a gaze
estimation framework which auto-calibrates through the use of saliency maps. This work pro-
vides solid groundwork in the area of gaze estimation, but is limited to stationary head position.

For more learning-based approaches, with the help of eye gaze tracking, Bublea et al.
[7] produce two Deep Neural Networks (DNN) which can determine the driver’s behaviour
(drowsiness, distracted, etc.) during a driving sequence. It proposes two methods for eye gaze
estimation, a geometric approach and an auto-keras approach, ultimately producing almost
identical results. We can also see saliency maps utilized on eye imagery in [24] to estimate the
gaze of users watching a video.

More recent research looks to incorporate vision and learning based approaches to estimate
gaze. This is exemplified in the work done by Shirpour et al. [22], considering the position
of the driver’s head in relation to a forward stereo system implemented within an experimental
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vehicle. Gaussian process regression is then implemented using this head pose to estimate the
gaze direction as a confidence interval, which is less hardware intensive and does not require
eye tracking capabilities. During further investigation, Shirpour et al. integrates eye tracker
data to determine a singular point of gaze in the driving scene. With these two sets of data (the
gaze estimation and the eye tracker data) the eye fixation is then estimated. This final driver’s
eye fixation estimation is exhibited as a confidence region on the frame image.

2.4 Driver Perception
Defining ”seen” and ”unseen” objects is logically simple, either the driver sees an object, or
they do not see it. Typically, any research which does make reference to objects being seen,
uses very simplistic definitions, usually defining ”seen” as the driver’s gaze being on a given
object during a single frame, and ”unseen” being any object not falling under this definition of
”seen”.

One such example of works done which consider defining ”seen” and ”unseen” objects is
that done by Shabani et al. [20]. This work looks to assess whether drivers are seeing traf-
fic signs present during driving sequences. The definition of ”seen” used is one which looks
for the driver’s point of gaze and whether it intersects with a traffic sign in the corresponding
frame. This definition may suffice for some research, such as that done by Shabani et al. whom
use it as a feature in the determination of driver’s attention, but the consideration of ”seeing”
vs ”gazing upon” could benefit other research.

In the work done by Huang et al. [14], the consideration of driver focus of attention (DFoA)
and True DFoA (TDFoA) is utilized to produce a driver distraction detection (DDD) method.
Huang et al. developed D3DRN-AMED to act as the tool to predict TDFoA. This TDFoA is
then included in the proposed DDD process along with the DFoA. This work, similarly to that
done by Shabani et al., focuses on the driver’s attention in a singular frame, but only considers
attentional area, not whether the object is seen or not. Another example of research in this area
is that conducted by Tang et al. [26], which combines driver gaze data and a car’s perception of
the environment to accentuate the objects of concern only if they are deemed as ”not perceived”
by the driver. This research proposes a ADAS to reduce unnecessary warnings to the driver,
reducing clutter and potentially avoiding over stimulation of the driver. Once again, though the
research provides us with a quality ADAS system, the idea of perception is defined by a point
of gaze on the environment within a single frame.

In the founding works of the DR(eye)VE project, Palazzi et al [19], looks to predict what
drivers will pay attention to whilst driving. A unique approach is taken in this work, where
rather than focusing on the drivers gaze in a frame, a series of frames is considered. These
frames are analyzed and in the final frame of the series, a fixation map is produced to show the
areas most likely to be looked at by the driver. Works in ADAS research that consider more
than a singular frame when considering driver perception or attention are near non-existent, and
even this piece, providing both a comprehensive dataset and an excellent predictor of driver
attention, does not touch on what it means for a driver to ”see” an object. The contribution
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we hope to make involves an analysis of what it means to ”see” through the consideration
of point of gaze over time (multiple frames). The main difference between the DR(eye)VE
project and the work presented in this thesis is that the DR(eye)VE project is a prediction tool
which utilizes a series of frames to predict where a driver is likely to look, whereas this work
takes a series of frames and determines where the driver is actually looking, based on our given
definition of seen.

2.5 Summary
The work presented in this thesis examines the parameter of time, i.e., number of frames, and its
impact when considering a definition of seen. This analysis is done in the context of different
types of objects important for driving activities. This concept is not present in much of the
previous research around driver gaze, driver perception or ADASs, but is a topic that deserves
investigation. We take the novel consideration of this parameter of time, and examine how
different lengths of time can affect what is considered to be ”seen” or not and on the different
types of objects considered to be seen.



Chapter 3

Data Processing & Architecture

In this Chapter we look at how the data used for our analyses was obtained and how it is
organized. We also take a look at the architecture of the object detection neural net. Finally,
we look the data processing and manipulation done in both preparing the data and utilizing it,
as well as some of the algorithms used.

3.1 Preliminary Work
This work builds off of that done by Shirpour et al., culminating in 2021. The foundation
laid by this work provided a neural network capable of producing quality object detection and
recognition, as well as point of gaze data. However, the software from this work was done sev-
eral years back and parts of the code and neural networks were outdated and not up to current
standards, or even able to compile and run properly. This required a number of adjustments
and significant error corrections to be made in order to bring the software to a usable state. The
process was long and tedious, essentially involving running the code to receive an uncommon
and convoluted error message, followed by the deciphering of this message to determine what
needed to be changed or updated to match current standards and practices.

3.2 RoadLab
Beauchemin et al [4] developed a tool to aid in ADAS research. This tool is the Roadlab aug-
mented vehicle, which is a vehicle equipped with a variety of sensors and cameras, as well as
GPS, utilized for capturing driving data during driving sequences. These devices were used
to record driver, vehicle, and environmental information in and around the vehicle. The vehi-
cle also featured an on-board computing system with LCD displays and a disk-less cluster of
computing nodes, with scalability being the foremost guiding principle. The on-board labo-
ratory is also equipped with OBD-II (On-Board Diagnostics, 2nd generation) via the CANbus
(Controller Area Network vehicle bus) protocol, which acts as an on-board diagnostic system,
allowing for real-time collection of vehicle subsystem states utilizing the the CANbus commu-
nications network for interconnected components.

8
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The Roadlab vehicle was utilized to record driving sequences from 16 different drivers. The
drivers followed an identical route, producing approximately 100,000 frames of data each, cap-
tured at 30Hz. All of the participants were aged 20 to 47 and performed their driving sequence
in London, Ontario, Canada. A secondary researcher was also present during each driver’s se-
quence in the passenger’s seat, acting as a navigator as well as monitoring the on-board equip-
ment. From the sensors and cameras, the data collected includes frontal stereoscopic video,
driver head position and angle, and driver ocular parameters. The OBD-II system provides
various vehicle subsystem information, including ”current speed and acceleration (longitudi-
nal and lateral), steering wheel rotation, state of accelerator and brake pedals, and independent
wheel speed” [4] and is captured at 60Hz. Additionally, GPS positional data was also recorded
for all drivers at 60Hz.

3.3 Data Collection and Organization
As discussed previously, the data collected included 16 unique drivers routes, consisting of
approximately 100,000 frames of data each. These frames provide a visual image displaying
the area in front of the vehicle and the driver. In the research presented, one of these driving se-
quences is used in full. The driver utilized was subject 8, consisting of 101,290 frames of data
in total. Due to poor gaze data for the last portion of frames, the final 70 frames were removed,
leaving 101,220 frames of data. In terms of gaze data, Beauchemin et al. [5] describe the
analysis of the the data gathered by the RoadLab project to determine produce a single point
in frame indicating the Point of Gaze (PoG) of the driver for that frame. This PoG is presented
as a coordinate (x,y) which may fall within or outside of the current frame, as the driver may
not always be looking straight ahead (or in frame). To determine the Point of Gaze, cameras
which focus on the driver’s eyes were utilized to determine the position and direction of the
eye, and then software is used to compute the gaze vector. The gaze vector is then mapped to
the same coordinate system as the video images of the visual environment which is finally used
to determine the point of gaze. This enables us to obtain only a single point of gaze for each
frame.

The RoadLab data was gathered over a decade ago,with the data gathering taking place in
2010. This data, although old, is still very relevant and valid. The data collected consists real
driving sequences and provides a solid dataset for use in research. As for the validity of the
data, although it could be argued that vehicle or traffic objects styles have since changed, they
remain relatively constant as well. Traffic signs and traffic lights have undergone few changes.
The style of vehicles may change, but their size, shape, features (such as number of wheels,
doors, windows, etc.) remain relatively unchanged. So while it is worth noting that things have
changed since 2010, the dataset is very relevant considering today’s driving environment.
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The table below (Table 3.1) presents examples of the basic gaze data which was collected
and calculated. This data includes the frame number being referenced, as well as the calculated
x and y coordinates representing the PoG of the driver during this frame (a single point being
gazed upon).

Frame Number X-Coordinate Y-Coordinate
6980 311.647888 146.613037
6981 303.729431 147.876968
6982 296.205322 150.162399
6983 284.398773 151.632599
6984 280.167969 150.933044

Table 3.1: Driver point of gaze data

3.4 Object Detection
The object detection method used for this research was based on the work from Shirpour [22],
which utilized a neural net to detect bounding boxes in a driving sequence. The neural net is
a compilation of two separate models, model A and model B. Each of these models provided
benefits to the final neural net; model A provided better results on smaller or further objects
while model B provided better results for larger or closer objects. Model A consisted of two
parts, a multi-scale HOG-SVM and a ResNet-101 network, whereas Model B utilized a Faster
R-CNN. The combination of these two models create a neural net object detection framework
capable of 96.1%, 96.2%, and 94.8% of correct classification for traffic signs, traffic lights, and
vehicles respectively.

This codebase provided by Shirpour in [22] was mostly left unaltered. Although the single
”main” file needed to be altered slightly from the original for the purpose of this research.
These changes mostly revolved around the compatibility to and preparation for this research.
The first changes were made with regards to the output. The initial code would input a driving
sequence as a series of frames, and output the same series of frames with bounding boxes (BBs)
overlaid. This was great for visualization, but did not allow for analysis of the core data. To
resolve this, the code was adjusted to output the various data from the frames and BBs, after
each frame was overlaid with said BBs. The second set of changes made had to do with how
the code was run. This did not change the code’s purpose or output, but made it possible to run
the code in batches, outputting only potions of the desired final output at a time. This was done
as the time and resources required to run one single iteration for all data was impractical.
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3.5 Data Processing
The data processing done for this research starts with the initial driving sequence frames and
outputs data revolving around whether certain objects were seen while driving. To do this,
the starting point is the set of initial, unaltered driving sequence frame images, then BBs are
overlaid on relevant traffic objects, as well as this BB data being input into a table. Next, the
driver’s PoG is overlaid on the BB images, and the PoG is also added to the now created table.
Afterwards, the PoG is considered against the position of BBs to determine if the PoG falls
within any BB in a given frame, keeping a count of consecutive frames where the PoG falls
within any BB. Finally, with the set of all sequences of frames where the PoG fell within any
BB, the sequences are checked to determine for which sequences the PoG falls within is the
same BB (object) for the entire sequence.

The data collected from the RoadLab project provided a series of frames from a driving se-
quence, and the work done by Shirpour [22] provided a coordinate for each frame correspond-
ing to PoG. Additionally, the work done by Beauchemin et al. [5] yielded a neural network
capable of detecting bounding boxes and overlaying each frame with these detected bounding
boxes.

3.5.1 Determining Bounding Boxes
The first step in the data processing approach was to both produce the bounding box images, as
well as extract the bounding box data. The most bounding boxes detected by the neural net in
a single frame for this dataset was 14 (Figure 3.1), which is later considered when constructing
tables. This max of 14 was not a set cap but simply just the most bounding boxes seen in a
single frame for this iteration. The bounding box data required for this investigation included
the position of the top left corner of the bounding box, the length and width of each bounding
box, and the label for each bounding box. This was done by adjusting the code utilizing the
neural net to also keep record of this data and output it to a text file upon completion. Frames
then had to be provided to the neural net and allow adequate time for the bounding box images
to be produced, taking advantage of Compute Canada’s resources to do so.

Figure 3.1: Frame with the most Bounding Boxes
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The diagram presented in Figure 3.2 illustrates the overall architecture of the object de-
tection process described above. The two neural networks described previously are integrated
together to create a single neural network using non-maximum suppression (NMS) to create a
single network which can perform the object detection. This network is then trained on three
independent models; vehicles, traffic signs, and traffic lights to finally output bounding boxes
with labels.

Figure 3.2: Object detection architecture

The table below (Table 3.2) presents a frame by frame representation of the data extracted
from the detected images during the driving sequence. After running the driving sequence
through the bounding box neural net, this table is essentially the output. For each frame looked
at (which is every frame in a single driving sequence) the code outputs data about each bound-
ing box detected. This data includes the bounding box’s label, the x and y coordinate of the
top left corner, the length, and the width. This data is important because with the top-left coor-
dinate, length, and width, any other information about the bounding box that may be required
could be calculated, such as any other corner, or whether a given coordinate falls within the
bounding box. The table size is also dynamically calculated to be as wide as required for the
given max number of bounding boxes found in a single frame, and as long as the number of
frames in the given driving sequence.

Frame Label 1 X Y Length Width Label 2 X Y Length Width
10954 Car 153 82 32 29 NA NA NA NA NA
10955 Car 155 83 26 26 NA NA NA NA NA
10956 Car 156 84 25 26 NA NA NA NA NA
10957 Car 157 84 23 25 BicycleLane 12 80 16 16
10958 Car 156 82 23 25 NA NA NA NA NA

Table 3.2: Bounding box data for first two labels
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Compute Canada’s (CC) resources were a necessity for this project as the run time for even
just one subject was unrealistic on a single device. But using these resources was not without
complications. The neural net code from [22] had initially begun several years ago and as
a result the code was not up to date to work with current software and resources. This was
the most time consuming portion of this research as there was not much support to be found
regarding the resolution of the various incompatibilities encountered. This lead to long sessions
of trial and error fixing one error after another until producing a version of the code with no
incompatibilities. Once the code was working locally, it then had to be made compatible with
CC’s resources. This was another time consuming process that eventually lead to a code version
which worked both locally as well as on the CC servers. From there the code simply had to be
adjusted to be able to run in portions so that an array job could be submitted to the CC server.
The code ran over a few 3 hour sessions, producing the bounding box images for the chosen
subject’s driving sequence.

3.5.2 Determining Point of Gaze in Each Frame
The next step in the data processing approach was to visualize the PoG with the bounding box
images. This was done simply by overlaying the PoG coordinate as a red cross on the bounding
box images (Figure 3.2). At the same time this was being completed, PoG coordinates were
also able to be added to the bounding box data, as well as adjusting the data to be more uniform,
by adding a placeholder ”NA” to rows (or frames) which had fewer to no bounding boxes in
order to maintain a uniform row size. This would prove useful for further data processing.
Upon completion of this step, there was now had a singular file containing all pertinent data.
This pertinent data includes the frame number, the PoG coordinates, as well as the bounding
box label and measurements (top-left coordinate, width, and height) for each bounding box in
the frame.

Figure 3.3: Driver PoG represented by a red cross
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The diagram presented in Figure 3.4 illustrates the architecture of how the point of gaze is
determined. The gaze data is taken from that of the RoadLab project, which is then utilized to
compute a gaze vector directed outward from the eye. The gaze vector is then mapped to the
same visual environment coordinate system as the video, producing an intersection between
the two. This intersection determines the Point of Gaze on an individual frame.

Figure 3.4: Point of Gaze determination architecture

3.5.3 Consecutive Frame Analysis
The following step was to find all series of images in which the driver gazed at a bounding box
for a given number of consecutive frames. This task was broken down into sub-tasks. The first
sub-task would be to find all frames in which the PoG falls within any bounding box for that
frame. The next would be to look at all the images where bounding boxes were gazed upon
and determine the instances where this produces a series of frames. The final sub-task would
be to take the series of consecutive frames where bounding boxes were gazed upon, and extract
those in which the bounding box gazed upon remained constant (the same bounding box is
gazed upon during the whole series). This process is illustrated in the diagram presented in
Figure 3.5.

Figure 3.5: Determination of ”Seen” objects architecture
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Starting with the first sub-task, using Algorithm 1, we simply have to check that the PoG
falls within any bounding box in the frame. We can utilize the bounding box top left corner
coordinate, as well as the height or width to find a range within each of the x plane and the y
plane. We then check that the PoG x value and y value fall within these determined ranges, if
so, we then can safely say that the PoG fell within the bounding box. We repeat this step for
each bounding box in the frame until there remains no more bounding boxes. Each bounding
box for the frame is marked with either a 1 or a 0 indicating whether or not the PoG fell within
its bounds. These results were then utilized in the subsequent sub-task.

Algorithm 1 Finding all PoGs which fall within BBs
numRows← 101220 #Total Rows (frames)
currRow← 1
numCols← 73 #Total Columns
for currRow ≤ numRows do

currCol← 4
label← f irstBBLabelinCurrFrame
pog← [currentPOGxcoordinate, currentPOGycoordinate]
count = 0
while BBlabel , NA and currCol ≤ numCols do

x← currentBBxcoordinate
y← currentBBycoordinate
xDist ← currentBBWidth
yDist ← currentBBHeight
if x ≤ pog(1) and x + xDist ≥ pog(1) then

if y ≤ pog(2) and y + yDist ≥ pog(2) then
pogInCurrentBB← 1 #TRUE value
count ← count + 1

end if
end if
if count ≥ 2 then

POGinMultipleBB← Y
else

POGinMultipleBB← N
end if
currCol← currCol + 5 #Moves to next BB
if currCol ≤ numCols then

label← nextLabelS ameFrame
end if

end while
end for
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The second sub-task utilized Algorithm 2 to find all series of consecutive frames in which
any bounding box was gazed upon. To do so, we look at each frame and check to see if any
bounding boxes were gazed upon. If so, then we begin a counter and move to the next frame.
We repeat these steps until we either meet a predetermined sequence length, or reach a frame
in which no bounding boxes were gazed upon. For the former, we add the first frame in the
sequence to the list. In both instances, we reset the counter and move back to the frame follow-
ing the first frame checked. This allows series of frames to be indicated which may overlap,
but will also allow us the option to investigate series longer than that required without having
to alter or rerun the code.

Algorithm 2 Counting consecutive frames where a POG falls in any BB
numRowsPOG ← 101220 #Total Rows (frames)
numColsPOG ← 16 #Columns in table holding the BB gazed flags
counter ← 0
currRow← 1
startingCol← 3
while currRow ≤ numRowsPOG do

for currCol = startingCol : numColsPOG do
if BoundingBoxPOGFlags(currRow,CurrCol) = 1 then

count ← count + 1 break
else if BoundingBoxPOGFlags(currRow,CurrCol) = NA then

counter ← 0 break
end if

end for
if counter ≥ consecFramesToBeS een then

f ramesGazed.append(currFrameNumber)
counter ← 0
currRow← currRow − consecFramesToBeS een + 1

end if
currRow = currRow + 1

end while
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The final sub-task used Algorithm 3 to check which sequences of frames gazed upon had
the PoG fall on the same bounding box over the entire sequence. The approach used to deter-
mine whether a bounding box gazed upon is the same in each frame was to utilize the bounding
box change between frames. The bounding box was given a threshold for pixel variation. If
the bounding box moved by more pixels than the threshold in either direction, then it was not
considered to be the same bounding box. Given this restriction we can look at the top left
corner of the bounding box for two adjacent frames, and if this point changes by less than the
threshold between the two, then we can consider it to be the same bounding box.

Algorithm 3 Comparing consecutive gazed frames to determine if the BBs remains constant
numRowsGazed ← 9417 #Number of rows where PoG fell in consecutive BBs
numColsGazed ← 16 #Columns in table holding the BB gazed flags
counter ← 1
currRow← 1
startingCol← 3
BBPixelThreshold ← 30 #Number of Pixels allotted for BB to move between frames
while currRow ≤ numRowsGazed do

f rameNum← f ramesGazed(currRow)
for i = 1 : consecFramesToBeS een − 1 do

for CurrCol = startingCol : numColsGazed do
for nextCol = startingCol : numColsGazed do

if POGinBB f lag(currFrame, currCol) = 1
and POGinBB f lag(nextFrame, nextCol) = 1 then

topLe f tCurr ← topLe f tBBCoordinateCurrFrame
topLe f tNext ← topLe f tBBCoordinateNextFrame
topLe f tDi f f ← topLe f tBBCoordinatesDi f f erence
if (topLe f tDi f f (1) ≤ BBPixelThreshold

and topLe f tDi f f (2) ≤ BBPixelThreshold) then
counter ← counter + 1 break

end if
else if POGinBB f lag = NA then break
end if
if counter ≥ consecFramesToBeS een then

counter = 1
end if
if counter ≥ consecFramesToBeS een then
end if

end for
end for

end for
currRow← currRow + 1

end while
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At this point a table was produced containing all of the frames which were the first frame
in each sequence where the PoG remained in the same bounding box for the entire sequence,
stopping when the required sequence length was reached. From this we look at the consecutive
frames which appear in this table and add 1 to the sequence length for each frame following the
first in a sequence. This is done because if consecutive frames appear in this table, they have
to be gazing at the same bounding box, so we simplify the table by instead listing the starting
frame number with its sequence length, rather than the starting frames for every sequence ex-
actly equal to the required sequence length.

The table below (Table 3.3) illustrates the table described above. The first column shows
the frame number where the sequence starts, with the following column indicating the length of
the sequence found. The length of the sequence must be greater than or equal to the minimum
required sequence length being considered (which is 10 frames in this case).

Frame Length of Sequence
330 10
354 10
392 10
656 16
720 15

Table 3.3: Consecutive frames with length of sequence



Chapter 4

Results

In this Chapter we introduce how we define whether a traffic object is seen by the driver or not.
We also take a look at and summarize the various outputs and data generated throughout this
research. The data used for this analysis is that which was discussed previously, ranging from
the frame numbers and bounding boxes, to the sequences and their lengths. Counts are taken of
different groupings and percentages are calculated to help quantify our results. The definition of
”seen”, which we will introduce, will also be incorporated into the final calculations. Following
this will be the observations drawn from these results. These include any notable points of
interest or areas worth discussing and dissecting more thoroughly.

4.1 Definition of ”Seen”
Whether or not an object can be considered as seen is a complex question requiring knowledge
in human cognition, and one which is worthy of discussion, but is beyond the scope of this
research. For our purposes we will define ”seen” as an object which has been gazed upon for
a predetermined number of frames during the driving sequence. This number must be large
enough that the driver could be considered to have acknowledged the object gazed upon, but
not so long that a driver, who’s eyes would be constantly scanning the environment, would
never gaze at a single object for that long. Since the idea of ”seeing” is more of a cognitive
concept, a broader approach to seeing is considered. A range of 3 frames to 30 frames (or
0.1 second to 1 second) is what was considered to be worth exploring. The other variable that
would be important would be a threshold value for bounding box changes, which would be
measured in pixel variation between frames. This variable would indicate the number of pixels
a bounding box could differ by, between two consecutive frames, to be considered the same
bounding box. We investigated bounding box pixel variations ranging from 10 pixels to 30
pixels.

19
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4.2 Summary of Objects Seen
The main goal of this research is to determine the objects which were seen or unseen by drivers
and whether there were differences in which types traffic objects were seen or not by a driver
during a driving sequence. For this there is a variety of data which could prove useful. Know-
ing the number of bounding boxes detected and the number of bounding boxes seen could let
us differentiate between an object type being missed or simply not being readily available in
the driving sequence. It could also provide us a look into object types which are frequently or
infrequently seen when available. Adding sequence count into this data could then allow us to
see average sequence lengths for object types, which would translate into a length of time that
object type is typically gazed upon when considered seen. With this data available it would
then be possible to calculate some percentages such as the percentage of BBs seen of an ob-
ject type and the percentage of total frames in the driving sequence where object types are seen.

With this in mind, we determined for each type of traffic object the total number of bound-
ing boxes detected (Total BB Count) in the driving sequence, the total number of frames where
they were deemed as seen (Total BB Seen), the total number of sequences found (Seq Count),
the average length of the sequences (Avg Seq Length), the percentage of objects seen out of
their total occurrences (% of BB), and the percentage of objects seen out of the total number
of frames in the driving sequence(% of Total Frames).

Tables 4.1 through 4.4 present results from our analysis representing different frameWin-
dow and bbThreshold values to illustrate the results acquired. These 4 tables were chosen to
be representative of the frameWindow and bbThreshold variations, showing the impact they
have on the results. Appendix A provides an additional 9 tables showing different variable
combinations (frameWindows of 5, 10, 15, & 20 and bbThresholds 10, 20, & 30).
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Table 4.1 presents the results of utilizing a frameWindow of 5 frames and a bbThreshold of
30 pixels. This combination of frameWindow and bbThreshold is very lenient, requiring only
5 consecutive frames for an object to be considered ”seen” and allowing for bounding boxes
to move as many as 30 pixels while being considered the same bounding box. As a result, this
table is one of few to show this number of seen objects. With this low of a frameWindow, some
objects which do not appear very frequently or are not seen frequently, are more likely to be
considered as seen. Additionally, of the total 101,200 frames, approximately 13.9% of them
include a bounding box which is considered as seen.

Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 5 1 5 0.27 <0.01
Bus 10184 1236 141 8.77 12.14 1.22
Car 251200 11234 1206 9.32 4.47 11.10
Construction 1265 8 1 8 0.63 <0.01
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 109 11 9.91 1.76 0.11
LaneTurnsRight 745 6 1 6 0.81 <0.01
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 10 1 10 0.46 <0.01
NoTurn 4713 15 2 7.5 0.32 0.01
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 179 22 8.14 0.41 0.18
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 5 1 5 0.62 <0.01
Stop 48 0 0 0 0 0
TrafficLightAhead 659 5 1 5 0.76 <0.01
TrafficLight Green 19044 13 2 6.5 0.07 0.01
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 70 11 6.36 0.51 0.07
TrafficLight Yellow 4621 31 3 10.33 0.67 0.03
Truck 20633 1095 124 8.83 5.31 1.08
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 14021 1528 N/A N/A 13.87

Table 4.1: Summary table for frameWindow of 5 frames and bbThreshold of 30 pixels
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Table 4.2 presents the results of utilizing a frameWindow of 10 frames and a bbThreshold
of 20 pixels. This combination of frameWindow and bbThreshold is pretty central in the data,
requiring a reasonable number of consecutive frames as well as not allowing to the bounding
box to move an excessive amount while being considered the same. Some of the objects which
were barely seen in Table 4.1 are no longer considered seen, such as BicycleLane and Con-
struction, thus exemplifying the effect that changing frameWindows can have. It is also worth
noting that most objects overall are seen less than in the previous table. Looking again at the
percentage of frames seen, a decrease from 13.9% to 12.5% is seen between Tab;e 4.1 and
Table 4.2.

Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1597 99 16.13 15.68 1.58
Car 251200 9784 621 15.76 3.89 9.67
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 82 5 16.4 1.32 0.08
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 10 1 10 0.46 <0.01
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 156 8 19.5 0.36 0.15
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 16 1 16 0.08 0.02
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 14 1 14 0.10 0.01
TrafficLight Yellow 4621 25 2 12.5 0.54 0.02
Truck 20633 941 63 14.94 4.56 0.93
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 12625 801 N/A N/A 12.47

Table 4.2: Summary table for frameWindow of 10 frames and bbThreshold of 20 pixels
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In Table 4.3 we see the results of utilizing a frameWindow of 15 frames and a bbThreshold
of 20 pixels. This combination of frameWindow and bbThreshold is where the object types
seen really begin to dwindle, largely due to the frameWindow increase. In this table there
remains only 6 unique object types which are seen, with half of these being seen very rarely.
This demonstrates that requiring too high of a frameWindow will lead to objects not being con-
sidered seen which might have been seen if a more appropriate frameWindow were selected.
Again, we also note that the overall number of objects seen decreases when comparing the
results in this table to Tables 4.1 and 4.2; compared to these tables the percentage of frames
seen further decreases from 12.5% to 10.8%.

Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1600 61 26.23 15.71 1.58
Car 251200 8627 332 25.98 3.43 8.52
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 27 1 27 0.43 0.03
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 41 2 20.5 0.09 0.04
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 33 1 33 0.24 0.03
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 604 25 24.16 2.93 0.60
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 10932 422 N/A N/A 10.80

Table 4.3: Summary table for frameWindow of 15 frames and bbThreshold of 20 pixels
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In the fourth table, Table 4.4, we see the results of utilizing a frameWindow of 25 frames
and a bbThreshold of 20 pixels. This combination of frameWindow and bbThreshold gives
an output showing the lack of objects seen when the frameWindow begins to get too large,
requiring almost a full second of attention from the driver. Again, other object types are no
longer seen and the overall number of seen objects decreases further. This table is intended to
reiterate the impact of implementing a frameWindow that is too long. Another decrease in the
percentage of objects seen is observed from 10.8% to 8.75%.

Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1360 34 40 13.35 1.34
Car 251200 6683 134 49.87 2.66 6.60
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 27 1 27 0.43 0.03
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 0 0 0 0 0
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 48 1 48 0.35 0.05
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 739 14 52.79 3.58 0.73
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 8857 184 N/A N/A 8.75

Table 4.4: Summary table for frameWindow of 25 frames and bbThreshold of 20 pixels
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4.3 Observations
At first glance it is apparent that only a few specific types of objects are seen much more fre-
quently than the very common ones, namely, vehicles - buses, cars, and trucks. This trend
extends to all 588 combinations of variables tested. Upon graphing each of the 28 traffic ob-
jects comparing the number of sequences found (see Figure 4.1 on the following page), the
frameWindow variable, and the bbThreshold variable, there is a common trend for each type
of traffic object. The frameWindow has a negative trend whereby increasing the value will
decrease the number of sequences found. This trend continues until a sufficiently low number
of sequences are found. Also, when the sequences found is sufficiently high, the bbThreshold
will also have a negative trend with the number of sequences found, but only having a slight
impact. This trend with bbThreshold is also only seen with the vehicle objects, presumably due
to these objects being the only ones with a considerable number of sequences seen. This can
be seen in Figure 4.1 which presents four graphs showing traffic objects with varying numbers
of sequences found. All 28 graphs look similar to one these four depending on the number of
sequences which were found for their respective object.

Another observation is that for many object types the number of objects seen is very low
or even zero. These objects included those which were smaller (parking), uncommon (rail-
road crossing), or may not have been necessary to look at if the information is known (speed
limit signs). This was a common trend among all variable inputs, with very low frameWin-
dows having the highest number of sequences found for these objects. Even with very low
frameWindows, the sequences found, though more than other frameWindow values, were still
overall very low. Looking at Figure 4.1a and 4.1b below, we can see that even a very low
frameWindow of 5 frames, KeepToRight (an object typically seen very infrequently) still only
reaches a peak of less than 15 seen. In Table 4.1, which represents a very lenient variable selec-
tion of 5 frames for frameWindow and 30 pixels for bbThreshold, 13 of a total 28 object types
went completely unseen, with another 12 objects being seen in less than 0.2% of frames in the
driving sequence. Of these 12 objects, 11 of them also only have less than 1% of their total
bounding boxes being seen. Additionally, when looking at 4.1a, we can see that the impact
of increasing the frameWindow by 1 additional frame has a much less drastic impact once we
reach a frameWindow of approximately 12-15 frames. Thus, considering the frameWindows
of up to 15 frames is sufficient.
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(a) Car (b) Keep To Right

(c) No Turn (d) Stop

Figure 4.1: Various graphs showing the effect of changes in frameWindow and bbThreshold

Another interesting point is the distribution of BBs and the number of BBs seen. As would
be expected, the objects with higher numbers of BBs detected were more likely to have higher
numbers of BBs seen, in general. There are some instances though where this is not the case,
for example, when looking at pedestrians, trucks, and busses. Under our lenient variables, Ta-
ble 4.1, we can see that pedestrians have approximately twice as many BBs detected as trucks
and nearly four times as many detected as busses, with each having similar average sequence
lengths between 8 and 9 frames. But even being much more commonly detected, the total BBs
actually seen is much lower, approximately 6 to 7 times less.

The final point of interest is noticed when looking at the percentage of total frames, which
represents the percentage of frames in the driving sequence in which the driver has seen an
object of one of our classes. This total ranges from 8.75% to 13.9% in Tables 4.1 through
4.4. Even in the most lenient case, a maximum of 13.9% is reached, which seems very low
as one might expect that drivers would see more during their time driving. However, as noted,
this analysis only considers the traffic objects in those classes considered in this work. The
remaining 86.1% of frames not accounted for can likely be attributed not only the objects
where gaze is directed for fewer than the required number of frames, but also for all other
objects not examined in this work, including, but not limited to, the road, power lines, road
markings, buildings, advertising signs, and many more.
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4.4 Implications
When performing analysis at a higher level, there are a couple more notable points of interest.
The first of these being that the most commonly seen objects are vehicles (cars, buses, and
trucks), with pedestrians being the next most seen objects. These objects could be considered
as some of the most critical objects to see with regards to safe driving. Additionally, while
drivers are focused on vehicles most of the time, that also means that drivers’ attention is on
the road most of the time since, unlike signs or traffic lights, vehicles are usually on the road.
This itself is very useful information for ADAS because it tells us that a driver’s gaze is typ-
ically ahead of themselves and on the road. To the inverse of this, knowing driver’s gaze is
typically on the road tells us that their gaze is not as frequently on signage or similar. With
this in mind, it could imply that advancement in sign information processing could be more
beneficial than vehicle information processing, as vehicles are already more commonly seen.

Another interesting implication of these results has to do with the sequence length, or the
frameWindow. By the time the frameWindow reaches 15 frames (0.5 second) the number of
objects seen is sufficiently low. When considering cars in particular, which was the most fre-
quently seen object, looking at frameWindows from 5 frames to 15 frames we see the number
of cars seen declining anywhere from 60% to 80% depending on the bbThreshold used. This
information tells us that drivers can see objects in shorter amounts of time, with 12-15 frames,
or 0.4-0.5 seconds, being an appropriate maximum to set. Anything beyond 15 frames seems
to have little impact on the results comparatively to frameWindows less than 15 frames.

Finally, based on the data collected we see consistency between different combinations of
variables. Although decreasing the frameWindow size decreases the total number of objects
seen, the proportions between which objects are seen remain consistent throughout. Vehicles
are always seen the most, KeepToRight is always seen with much lower frequency, objects that
are not seen at low frameWindows are also never seen at high frameWindows. This consis-
tency reiterates the implications of the results as we know the implications drawn from one set
of variables can be seen in any other set, assuming the frameWindow is not excessively high to
the point where minimal data is seen.

Given the outcome of the results and the data gathered, there are several recommendations
to consider. The first would be to select a single bbThreshold. As apparent in the results, the
bbThreshold does not seem to play a significant role in the final results, only slightly decreasing
the the number of sequences seen at sufficiently high frameWindow values. As for the precise
bbThreshold to use, the value should be low enough that two separate bounding boxes of the
same object will not be considered the same bounding box if nearby one another. This value
should also be high enough that objects nearer to the vehicle, which logically could change by
more pixels per frame, would still be caught and considered as once bounding box. This value
would be specific to each project dependent on the size of the bounding box images, but within
the same environment used here, where the images were sized 486x365 pixels, a bbThreshold
of 20 pixels is recommended.
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As for the frameWindow, given that this variable has a great impact on the number of
sequences seen, a range of values is preferable to a single value. As mentioned previously,
it would be beneficial to have a lower maximum value than was used here, ideally setting
the maximum as some value between 12 and 15 frames. As for the bottom of the range, we
have a drastically increasing number of sequences seen at lower values for frameWindow, so
a significantly low frameWindow minimum could prove beneficial. With that said, human
vision requires cognition and setting a value too low may allow for the eye to gaze upon an
object, but not allow the time for the brain to process this information, leaving the object seen
by the eye but not truly seen by the driver. Thus, a minimum value between 3 and 5 frames
should suffice. Based on the research reported here, one recommendation would be to further
investigate frameWindows in the range of 3 frames to 12 frames (0.1s seconds to 0.4 seconds).

4.5 Limitations
As with any research, certain choices in approach must be made. For this specific research,
some of the key decisions made were; how to implement object recognition, how bounding
boxes would be determined, how driver’s gaze would be determined, the definition of seen to
be used, and the dataset used. All of these decisions could lead to different results and here we
will discuss the limitations of the decisions made.

To start with, the decisions of how to implement object recognition and how bounding
boxes would be determined faced the same logic. With a preceding colleague having done a
lot of related work on the same datasets, the result was a neural network which could produce
96.1%, 96.2%, and 94.8% of correct classification for traffic signs, traffic lights, and vehicles,
respectively. Given a strong performance coupled with the ease of access of utilizing a col-
leagues work for this step, this was the easy choice. As a result, Shirpour’s work done in [22]
was the clear choice to handle the object detection and bounding box determination. Because
the work of a colleague was used, the exploration of object detection methods to be utilized
was not as thorough since ease of access played a large role in this decision. It is quite possible
that a higher-performing method could have been found and utilized assuming ease of access
was not an issue.

The next decision to discuss has to do with driver’s gaze. Again, Shirpour’s work done in
[22] provided us with a method for determining driver’s gaze. The gaze method utilized was
that of a Point of Gaze, or a singular point indicating where a driver is looking at any given
moment. This might be the most limiting decision made as using a single point restricts the
driver’s ability to see. When a single point is used it limits the driver to only being able to
see a single object per frame. The human eye, however, can see more than a single object at a
time. It is also capable of seeing objects it is not directly looking at, through the use of periph-
eral vision. Having our driver’s gaze represented as a PoG was the most limiting decision made.

Another decision which led to limitations was the definition of “seen” to be used. In the
initial work, a few key variable values were selected to represent the whole of the data. The
definition of seen would utilize a few combinations of these variables to view key values and
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would be defined using specific values. This was later changed to accommodate for the limita-
tions of only looking at a few key values, which could lead to missed trends or other observa-
tions as the whole picture isn’t there. It was later decided that using a definition of seen which
is not restricted by specific values would prove more beneficial.

The final decision which led to some limitations was the dataset to be used. For the purposes
of this research, the decision to use a single driving sequence, approximately 100,000 frames
of data, was made. Given complications and time constraints, it was decided that one driving
sequence would be sufficient. But with a limited dataset means limited ability to compare. In
the first summary table, table 4.1, there are many entries which seem much lower than would
logically be expected. But given the limited dataset chosen, it is not possible to compare against
other driving sequences, which could ultimately lead to a more accurate hypothesis as to why.
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Conclusion

In this Chapter we present our conclusions, as well as possible future work based on the re-
search presented. This Chapter is divided into two sections, Testing and Broad Scope. In the
first section, Testing, we will look at future work that can be done to alter and/or improve upon
the work already presented. In the following section, Broad Scope, we will look at work that
can be done which does not require any alteration of the work already presented.

In this contribution we presented a novel concept for consideration in works involving the
driver’s observation of a driving scene. Rather than considering driver observation on a frame
by frame basis, we examine a definition of seen which accounts for time (in frames) and note
the impact on the objects which and how many are deemed as seen. The forefront observation
made at the culmination of this work is that the overall percentage of objects of our specific
categories seen by drivers when taking this approach is low, with no more than 15% of all
frames having an object considered as seen by the driver. This indicates a just how much of an
impact the length of gaze has on objects seen. This approach emphasizes the need to account
for the part that time plays in human vision and recognition.

We utilized the works of Shirpour et al. [22] for our object detection. We then overlay PoG
onto these frames with included bounding boxes. Next we consider where this PoG overlaps
with bounding boxes to indicate if the driver has glanced at an object before finally considering
if this gslance remains on the same bounding box over consecutive frames. We consider a range
of inputs for both the length of gaze, and tolerance of bounding box movement, to establish
various definitions of seen spanning both shorter and longer attention to objects.

5.1 Testing
Given time constraints and complications faced with utilizing aged code, there were areas of
investigation which were not fully explored. There were three main areas in which variables
could be altered to produce further results, the frame window (number of consecutive frames
required for a bounding box to be considered seen), the bounding box threshold (number of
pixels a bounding box could change by between frames to be considered the same bounding
box), and the point of gaze (a single point in the frame the driver is considered to be gazing at).
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The first variable to look at is the frame window. This variable acted as a part of the defi-
nition of ”seen” used in this work. This frame window was considered in the range of 3 to 30
consecutive frames, equating to 0.1 to 1 second of time. Although a frame window in some
facet is required for any definition of seen, the range explored in these works was overextended
and future works should consider a smaller range. As discussed previously, a maximum of
12-15 frames should be sufficient for this variable.

The next of these variables is the bounding box threshold used. In these works, a bounding
box threshold (in pixels) was utilized to identify whether a bounding box was the same object
or not between frames. Simply put, if a bounding box with the same label between frames
did not move by more than the threshold number of pixels in either direction, then it would
be considered as the same bounding box. There are two approaches in which this could be
further expanded, still utilizing a threshold but under different conditions, or using a different
approach to determining bounding box constancy altogether. For the former, further work may
consider different ranges of pixels thresholds, which would also be required for different sized
images, or probably more appropriate, we could consider switching the pixel-based measure to
a percentage-based measure. For the latter option of using new approaches, one such method
may be to investigate the area of object tracking algorithms which can track moving objects.
The work done in [1] proposes a novel bounding box tracking approach which may act as a
good starting point for this research.

The final item worth further examination is the utilization of a driver’s point of gaze. In
this work a single point is found in each frame representing the driver’s gaze. This point is
then used alongside the frame window and bounding box threshold to determine if an object
will be considered as seen. If this point of gaze falls within the same bounding box for a
predetermined number of consecutive frames then that object will be considered as seen. A
further investigation into other other measures of driver gaze rather than a single point could
prove useful. A single point of gaze leaves no indication of what could be seen in peripheral
vision and also limits the driver to only seeing one object per frame. Considering a cone of
vision or confidence interval representing the driver’s gaze could improve upon the results
discussed and account for the two issues just mentioned.

5.2 Broad Scope
Outside of the work presented in this paper, there are other spaces worth exploring, the main
one being the dataset used. The dataset used in this work was a subset of the RoadLab dataset
presented in Section 3.1. This dataset contained driving sequences from 16 unique drivers each
completing the same route. In this work we simply looked at one full driver’s data, one driver
with approximately 100,000 frames present. The data explored could be expanded in one of
two ways, ideally following one another.

The first step would be to expand the research with data which is already collected and
compiled, as presently only 1 of the 16 driver sequences are utilized. This step is easy enough
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as the data has already been collected and exists and simply needs to be used. This data could
then go through the same preparatory steps including passing through the neural net and having
the bounding boxes determined and recorded.

The second step would be to expand the dataset with new data, which could be done in a
few different ways. The first expansion of the dataset could be to expand to more drivers and
compile more instances of the same driving sequences. The second expansion of the dataset
would be to compile driving sequences under various different conditions such as weather or
light levels. And the third expansion of the dataset would be to compile driving sequences
that look at different routes and locations, allowing for different traffic objects to be present in
differing numbers and proportions. Expanding the dataset in one or multiple of these fashions
could help uncover a clearer understanding of objects seen and unseen by drivers.

5.3 Integration
Looking more at the out-of-lab advancement of this work, the integration of the work provided
into a real vehicle could open up more opportunities for further research as well. The work
presented here provides information that could prove useful in the development of or research
into i-ADAS.

As is, this work provides information about which objects during the driving sequence are
seen or unseen, by our definition. Beginning with the objects unseen, these objects should be
considered high priority for an i-ADAS to alert the driver to, as these objects are likely to have
been missed by drivers. This also applies to objects which were rarely seen or objects low
percentages seen by drivers. Conversely, objects deemed as seen by drivers by require less at-
tention the i-ADAS as alerting a driver to something which they have already seen is redundant
and, in situations where fractional time is vital, could hurt the i-ADAS ability to assist in a
detrimental way.

In i-ADAS vehicles, processing time can make or break the effectiveness of the system.
Driving can turn fatal in a fraction of a second and there are many other driving events which
may also occur in marginal time. As such, having an efficient and quick processing time
is necessary. The results presented in this work indicate the effects that different sequence
lengths (number of frames to process) have on objects seen or unseen, so taking another step
to narrow down the possible sequence lengths and determining exactly what sequence length
should be used that is long enough but not excessive is a viable step towards better processing
performance. Additionally, the machine learning algorithms used in this work, a combination
between a Faster R-CNN and a Multi-Scale HOG-SVM with a ResNet-101 network, performs
well, but may not be the fastest possible high-performing algorithm. Since processing time is so
important, it is worthy of investigation into other possible bounding box detection algorithms
to step closer to integration into i-ADAS vehicles.



5.4 Recommendations
We have discussed many changes and directions that could be taken with regards to this work.
Here I will outline what I would recommend as the logical next steps. Firstly, incorporating
the ability for multiple objects to be seen per frame would be the best change, whether that be
through a confidence interval, a cone of vision, or some other consideration of peripheral vi-
sion. The next important change to be made would be to consider an object tracking algorithm
for the determination of whether an object gazed upon is the same object in consecutive frames,
rather than a measure utilizing changes in the bounding box as an independent calculation. Fi-
nally, expand the dataset to include more drivers from the RoadLab project. I have already
discussed the validity of this dataset, and there are still additional driving sequences which
could be considered. Expanding the dataset from one sequence of approximately 100,000
frames, to several sequences each of approximately 100,000 frames is an easy step forward
that could paint a broader, clearer picture.
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Appendix A

Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1423 209 6.81 13.97 1.41
Car 251200 10806 1566 6.90 4.30 10.68
Construction 1265 8 1 8 0.63 <0.01
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 103 14 7.36 1.66 0.10
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 14 2 7 0.30 0.01
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 124 18 6.89 0.28 0.12
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 60 6 10 0.32 0.06
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 64 10 6.4 0.47 0.06
TrafficLight Yellow 4621 17 2 8.5 0.37 0.02
Truck 20633 1041 155 6.72 5.05 1.03
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 13660 1983 N/A N/A 13.5

Table A.1: Summary table for frameWindow of 5 frames and bbThreshold of 10 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 5 1 5 0.27 <0.01
Bus 10184 1386 177 7.83 13.61 1.37
Car 251200 11193 1362 8.22 4.46 11.06
Construction 1265 8 1 8 0.63 <0.01
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 97 13 7.46 1.56 0.10
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 10 1 10 0.46 <0.01
NoTurn 4713 6 1 6 0.13 <0.01
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 5 1 5 0.18 <0.01
Pedestrian 43756 153 19 8.05 0.35 0.15
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 5 1 5 0.62 <0.01
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 33 4 8.25 0.17 0.03
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 59 9 6.56 0.43 0.06
TrafficLight Yellow 4621 31 3 10.33 0.67 0.03
Truck 20633 1117 141 7.92 5.41 1.10
WatchForPedestrian 1002 5 1 5 0.50 <0.01
Yield 2009 0 0 0 0 0
Totals 406645 14113 1735 N/A N/A 13.97

Table A.2: Summary table for frameWindow of 5 frames and bbThreshold of 20 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1531 104 14.72 15.03 1.51
Car 251200 9668 635 15.22 3.89 9.55
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 82 6 13.67 1.32 0.08
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 10 1 10 0.46 <0.01
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 151 9 16.78 0.35 0.15
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 16 1 16 0.08 0.02
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 21 2 10.5 0.15 0.02
TrafficLight Yellow 4621 29 2 14.5 0.63 0.03
Truck 20633 882 58 15.21 4.27 0.87
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 12390 818 N/A N/A 12.24

Table A.3: Summary table for frameWindow of 10 frames and bbThreshold of 10 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1512 90 16.8 14.85 1.49
Car 251200 9708 585 16.59 3.86 9.59
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 83 5 16.6 1.34 0.08
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 10 1 10 0.46 <0.01
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 147 6 24.5 0.34 0.15
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 25 2 12.5 0.18 0.02
TrafficLight Yellow 4621 25 2 12.5 0.54 0.02
Truck 20633 980 60 16.33 4.75 0.97
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 12490 751 N/A N/A 12.33

Table A.4: Summary table for frameWindow of 10 frames and bbThreshold of 30 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1491 60 24.85 14.64 1.47
Car 251200 8531 328 26.01 3.40 8.43
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 47 1 47 0.76 0.05
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 45 2 22.5 0.10 0.04
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 38 1 38 0.28 0.04
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 706 26 27.15 3.42 0.70
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 10858 418 N/A N/A 10.73

Table A.5: Summary table for frameWindow of 15 frames and bbThreshold of 10 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1534 61 25.15 15.06 1.52
Car 251200 8197 311 26.36 3.26 8.10
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 27 1 27 0.43 0.03
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 17 1 17 0.04 0.02
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 38 1 38 0.28 0.04
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 677 23 29.43 3.28 0.67
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 10490 398 N/A N/A 10.38

Table A.6: Summary table for frameWindow of 15 frames and bbThreshold of 30 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1374 30 45.8 13.49 1.36
Car 251200 6395 127 50.35 2.55 6.32
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 25 1 25 0.40 0.03
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 0 0 0 0 0
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 26 1 26 0.19 0.03
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 839 13 64.54 4.07 0.83
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 8659 172 N/A N/A 8.57

Table A.7: Summary table for frameWindow of 25 frames and bbThreshold of 10 pixels
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Label Total BB
Count

Total BB
Seen

Seq
Count

Avg Seq
Length

% of
BBs

% of Total
Frames

Arrow 397 0 0 0 0 0
Background 2950 0 0 0 0 0
BicycleLane 1870 0 0 0 0 0
Bus 10184 1353 32 42.28 13.29 1.34
Car 251200 6397 132 48.46 2.55 6.32
Construction 1265 0 0 0 0 0
DoNotEnter 920 0 0 0 0 0
ExitOnly 420 0 0 0 0 0
KeepToRight 6211 27 1 27 0.43 0.03
LaneTurnsRight 745 0 0 0 0 0
MaximumSpeedLimit 2141 0 0 0 0 0
NoTruck 2170 0 0 0 0 0
NoTurn 4713 0 0 0 0 0
NotAThroughStreet 483 0 0 0 0 0
Parking 2803 0 0 0 0 0
Pedestrian 43756 0 0 0 0 0
PedestrianCrossover 194 0 0 0 0 0
RailroadCrossing 98 0 0 0 0 0
RightLaneEndsAhead 802 0 0 0 0 0
Stop 48 0 0 0 0 0
TrafficLightAhead 659 0 0 0 0 0
TrafficLight Green 19044 0 0 0 0 0
TrafficLight Not Clear 11578 0 0 0 0 0
TrafficLight Red 13729 48 1 48 0.35 0.05
TrafficLight Yellow 4621 0 0 0 0 0
Truck 20633 728 12 60.67 3.53 0.72
WatchForPedestrian 1002 0 0 0 0 0
Yield 2009 0 0 0 0 0
Totals 406645 8553 178 N/A N/A 8.46

Table A.8: Summary table for frameWindow of 25 frames and bbThreshold of 30 pixels
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