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Abstract

My thesis consists of three chapters on the Economics of Education. In the first chap-
ter, I take a structural approach to studying the extent to which teacher behavior and teacher
interactions with students determine teaching contribution to test score growth in the class-
room. Teachers’ contribution may differ across classrooms, as it may depend on the types of
students taught, and because teachers may adjust their effort to new contexts. The estimated
model suggests that teacher and student efforts play a significant role in determining student
knowledge. My findings indicate that teachers who are effective in teaching low-performing
students may not be as effective teaching high-performing students. In a counterfactual, I as-
signed teachers assessed as highly effective according to value-added estimates, to classrooms
with a high proportion of low-achieving students. The results suggest that the value-added
measures overstate the expected performance of certain teachers in the reassigned classrooms.
Additionally, I quantify the benefits of reassigning teachers based on their comparative advan-
tages, effort choices, and endowments. Compared to the assignment based on the value-added
specification, the new reassignment produces higher gains for the low-performing students.

In my second chapter, I estimate the potential gains of paying teachers according to varying,
optimally-designed linear schemes. The empirical literature considers a variety of schemes
that have been evaluated under randomized controlled trials. However, there is little evidence
about their relative performance. To better understand these mechanisms behind the schemes’
performance, I use a publicly-available dataset from a teacher incentive experiment in Andhra
Pradesh, India, containing both individual- and group-based piece-rate bonuses. I exploit the
experimental nature of the data to test for the presence of peer pressure in the group-based
scheme. I first document the existence of peer pressure in the group-based scheme, which
mitigates free-rider incentives. Based on this result, I estimate the structural parameters of my
model to recover the optimal incentive schemes that maximize the expected value of student
achievement, minus the expected payment to teachers. I find that an optimally designed group-
based scheme could increase student academic achievement by about twice as much as the
results obtained from an optimally designed individual-based incentive scheme.

In my third paper, I study the impact that teachers may have on the academic performance
of Black and Hispanic students, which I refer to as minority students. To do so, I estimate
the distribution of matching effects between teachers and minority students. These match-
ing effects capture the teachers’ ability to reduce the achievement gap between their assigned
students. Then, I study the relationship between the estimated matching effects and a set of
teachers’ characteristics and skills. This allows me to explore what type of teachers are better
suited to teach minority students. I find that teachers can have a meaningful impact on their mi-
nority students’ performance: a one-standard-deviation increase in the teacher matching effect
generates achievement gains of 0.05 standard deviations. I do not find a relationship between
the estimated matching effects and the teachers’ race. However, I find that the matching effects
are higher for teachers with better control of students’ behavior. This evidence suggests that
how teachers teach matters in improving minority students’ performance.

Keywords: Teacher Effectiveness, Educational Policy Design, Achievement Gaps, Op-
timal Contracts.
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Summary for Lay Audience

My thesis consists of three chapters on the Economics of Education. In the first chapter, I take
a structural approach to studying the extent to which teacher behavior and teacher interactions
with students determine teaching contribution to test score growth in the classroom. Teachers’
contribution may differ across classrooms, as it may depend on the types of students taught, and
because teachers may adjust their effort to new contexts. The estimated model suggests that
teacher and student efforts play a significant role in determining student knowledge. My find-
ings indicate that teachers who are effective in teaching low-performing students may not be as
effective teaching high-performing students. In a counterfactual, I assigned teachers assessed
as highly effective according to value-added estimates, to classrooms with a high proportion
of low-achieving students. The results suggest that the value-added measures overstate the ex-
pected performance of certain teachers in the reassigned classrooms. Additionally, I quantify
the benefits of reassigning teachers based on their comparative advantages, effort choices, and
endowments. Compared to the assignment based on the value-added specification, the new
reassignment produces higher gains for the low-performing students.

In my second chapter, I estimate the potential gains of paying teachers according to varying,
optimally-designed linear schemes. The empirical literature considers a variety of schemes
that have been evaluated under randomized controlled trials. However, there is little evidence
about their relative performance. To better understand these mechanisms behind the schemes’
performance, I use a publicly-available dataset from a teacher incentive experiment in Andhra
Pradesh, India, containing both individual- and group-based piece-rate bonuses. I exploit the
experimental nature of the data to test for the presence of peer pressure in the group-based
scheme. I first document the existence of peer pressure in the group-based scheme, which
mitigates free-rider incentives. Based on this result, I estimate the structural parameters of my
model to recover the optimal incentive schemes that maximize the expected value of student
achievement, minus the expected payment to teachers. I find that an optimally designed group-
based scheme could increase student academic achievement by about twice as much as the
results obtained from an optimally designed individual-based incentive scheme.

In my third paper, I study the impact that teachers may have on the academic performance
of Black and Hispanic students, which I refer to as minority students. To do so, I estimate
the distribution of matching effects between teachers and minority students. These match-
ing effects capture the teachers’ ability to reduce the achievement gap between their assigned
students. Then, I study the relationship between the estimated matching effects and a set of
teachers’ characteristics and skills. This allows me to explore what type of teachers are better
suited to teach minority students. I find that teachers can have a meaningful impact on their mi-
nority students’ performance: a one-standard-deviation increase in the teacher matching effect
generates achievement gains of 0.05 standard deviations. I do not find a relationship between
the estimated matching effects and the teachers’ race. However, I find that the matching effects
are higher for teachers with better control of students’ behavior. This evidence suggests that
how teachers teach matters in improving minority students’ performance.
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Chapter 1

Introduction

My thesis consists of three chapters on the Economics of Education. In the first chapter, I take
a structural approach to studying the extent to which teacher behavior and teacher interactions
with students determine teaching contribution to test score growth in the classroom. Standard
value-added models of educational production usually treat teacher’s contribution to test score
growth as unvarying across contexts. However, teachers’ contribution may be determined by
their behavior and interactions with students in the classroom. Thus, I develop and estimate a
model in which teachers and students interact by exerting effort to produce student knowledge.
Teacher effectiveness may differ across classrooms, as it may depend on the types of students
taught, and because teachers may adjust their effort to new contexts. The estimated model sug-
gests that teacher and student efforts play a significant role in determining student knowledge.
My findings indicate that teachers who are effective in teaching low-performing students may
not be as effective teaching high-performing students. In a counterfactual, I assigned teach-
ers assessed as highly effective according to value-added estimates, to classrooms with a high
proportion of low-achieving students. The results suggest that the value-added measures over-
state the expected performance of certain teachers in the reassigned classrooms. This result
is consistent with recent findings suggesting that similar reassignment policy efforts did not
achieve their main goal of promoting the academic performance of low-achieving students.
Additionally, I quantify the benefits of reassigning teachers based on their comparative advan-
tages, effort choices, and endowments. Compared to the assignment based on the value-added
specification, the new reassignment produces higher gains for the low-performing students.

In my second chapter, I estimate the potential gains of paying teachers according to vary-
ing, optimally-designed linear schemes. Evidence that teachers play a key role in promoting
student academic achievement has led to considerable policy interest in teacher performance
pay schemes. The empirical literature considers a variety of schemes that have been evaluated
under randomized controlled trials. However, there is little evidence about their relative per-
formance. A possible deficiency in group-based schemes is the presence of the so-called free-
rider effect: if a teacher’s responsibility over the totality of student achievement decreases, the
teacher may exert less effort because they have less impact on total production. However, there
are also potential benefits of using group-based schemes. First, averaging teacher output re-
duces noise, which benefits risk-averse teachers. Second, peer pressure can increase effort. To
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better understand these mechanisms, I use a publicly-available dataset from a teacher incentive
experiment in Andhra Pradesh, India, containing both individual- and group-based piece-rate
bonuses. I exploit the experimental nature of the data to test for the presence of peer pressure
in the group-based scheme. I first document the existence of peer pressure in the group-based
scheme, which mitigates free-rider incentives. Based on this result, I estimate the structural
parameters of my model to recover the optimal incentive schemes that maximize the expected
value of student achievement, minus the expected payment to teachers. I find that an optimally
designed group-based scheme could increase student academic achievement by about twice as
much as the results obtained from an optimally designed individual-based incentive scheme.

In my third paper, I study the impact that teachers may have on the academic performance
of Black and Hispanic students, which I refer to as minority students. To do so, I estimate
the distribution of matching effects between teachers and minority students. These match-
ing effects capture the teachers’ ability to reduce the achievement gap between their assigned
students. Then, I study the relationship between the estimated matching effects and a set of
teachers’ characteristics and skills. This allows me to explore what type of teachers are better
suited to teach minority students. I find that teachers can have a meaningful impact on their mi-
nority students’ performance: a one-standard-deviation increase in the teacher matching effect
generates achievement gains of 0.05 standard deviations. I do not find a relationship between
the estimated matching effects and the teachers’ race. However, I find that the matching effects
are higher for teachers with better control of students’ behavior. This evidence suggests that
how teachers teach matters in improving minority students’ performance.



Chapter 2

The Determinants of Teaching
Effectiveness:
Evidence from a Model of Teachers’ and
Students’ Interactions

2.1 Introduction

Teachers are widely believed to play a key role in promoting students’ study efforts, motiva-
tion, and academic achievement (Hanushek and Rivkin, 2006; Blazar and Kraft, 2017; Jack-
son, 2018). Thus, it is not surprising that policymakers have turned their focus to interventions
targeting teachers. For instance, vast resources have been allocated to measuring individual
teachers’ contributions to test score growth, a measure commonly referred to as teachers’ ef-
fectiveness (Kane et al., 2013). These measures have then been used to support students’
learning using multiple policy levers, such as assigning teachers measured as highly effective
to classrooms with below-average test scores. However, contrary to what was expected, recent
findings show that some of these policies’ efforts did not achieve their main goal of promoting
the academic achievement of low-performing students (Glazerman et al. 2013; Stecher et al.
2018). These findings suggest that commonly used measures of teachers’ effectiveness may
not be as useful for certain policies as previously thought.

The standard value-added models of teachers’ effectiveness treat teachers as an educational
input that can be considered invariant across contexts such as classrooms (Jackson et al., 2014;
Koedel et al., 2015). However, teachers’ contributions to students’ learning may be deter-
mined by what teachers actually do in the classroom; thus, teachers’ effectiveness may not be
a fixed attribute. In fact, recent evidence suggests that how teachers teach (i.e., what they do
in the classroom) plays an essential role in promoting students’ academic achievement (Gar-
rett and Steinberg, 2015; Taylor, 2018; Aucejo et al., 2021). Thus, not accounting for the
decisions made in the classroom may render extrapolations— which are crucial for design-
ing effective policies—problematic. In particular, teachers’ effectiveness may not be invariant

3



2.1. Introduction 4

to commonly suggested interventions, such as transferring highly effective teachers to poor-
performing schools or replacing the least effective teachers (Hanushek, 2011; Chetty et al.,
2014b).

In this paper, I take a structural approach to study the extent to which teachers’ behavior and
interactions with students may determine teachers’ effectiveness in a classroom. I develop and
estimate a model in which teachers and students interact by exerting effort to produce knowl-
edge. Teachers’ effectiveness may differ across classrooms because it may depend on the types
of students being taught and because teachers may adjust their effort. The model nests stan-
dard value-added specifications, which allows me to study whether commonly used measures
of teachers’ effectiveness are enough to inform policymakers and how much could be gained
by providing a cohesive framework to study its determinants. Doing so would enable a better
understanding of how teachers would respond to new education policies and, consequently,
the extent to which students’ academic achievement would be affected, which is crucial for
designing effective interventions.

Prior research acknowledges the heterogeneity in teachers’ effectiveness but cannot com-
prehensively evaluate how it varies across contexts for several reasons. First, students’ achieve-
ment may be determined by educational inputs, such as teachers’ and students’ efforts, that are
difficult to measure and, as such, are not commonly found in databases. However, it may
be important to assess the relative importance of these inputs to separate teachers’ contribu-
tions to students’ achievement from other possible confounding factors, which are typically
unobserved or mismeasured. Second, recent research using direct classroom observation has
studied the effects of different teaching practices on students’ achievement, yet very little re-
search considers how teachers make their effort decisions to implement these practices. It may
be important to consider these decisions because the amount of effort exerted by teachers may
change across classrooms, likewise changing their contributions to students’ learning. Finally,
some teachers may be more effective in classrooms with low-achieving students, while others
may be more effective in classrooms with high-achieving students. Not accounting for these
comparative advantages may miss important dimensions of teaching that could better direct
teachers’ assignments.

To address these challenges, the model takes into account several interrelated components.
First, it allows for flexible distributions of teachers’ and students’ endowments. In particu-
lar, teachers may differ in their general teaching skills and their per-unit (i.e., marginal) effort
costs. Students may differ in their stocks of initial knowledge and their home environments.
Furthermore, I model a flexible distribution of the classroom environment, which allows some
classrooms to be more prone to disruptions than others, regardless of teachers’ effort. I allow
teachers’, classrooms’, and students’ endowments to be flexibly correlated. Second, teachers
contribute to the production of students’ knowledge with their general teaching skills and by
exerting effort to keep the class on task and well-behaved, which is a teaching practice (i.e.,
an intermediate input to knowledge production) that has been shown to be effective in promot-
ing students’ achievement (Kane et al., 2014). The amount of effort exerted by teachers may
depend on their preferences for promoting classroom knowledge. The effects of the teaching
inputs may differ across classrooms due to changes in students’ and classrooms’ endowments.
Third, students contribute to their knowledge gain with their initial stocks of knowledge and
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learning efforts. Finally, the teaching practice may also promote achievement by increasing
students’ engagement in their learning, thereby increasing students’ effort. Thus, teachers who
are effective motivators may have another mechanism to promote students’ achievement.

Estimating such a model requires access to a rich dataset containing student-, classroom-,
and teacher-level data on multiple inputs. The unique information in the Measures of Effective
Teaching Longitudinal Database (METD) allows me to overcome these data challenges. I use
Ronald Ferguson’s 7Cs framework from the Tripod student survey to measure what teachers
do in each classroom (Ferguson and Danielson, 2015). I use the rich sets of measures from
the 7Cs framework to assess the impact of teachers’ behavior on students’ achievement. I
complement these measures with measures of students’ home environments and effort from
the Tripod survey. I estimate the model using data on 6th grade middle school students from
the first year of the METD (2009-2010). I then exploit the random assignment of teachers
to classrooms in the second year of the METD to check the validity of my model to predict
students’ and teachers’ efforts, as well as students’ academic achievement in the holdout data.

The database contains multiple measurements of the educational inputs. I treat these mea-
surements as noisy measures of underlying latent inputs. Following the factor model literature,
I define a measurement system combining continuous and ordinal measures of the latent vari-
ables. I exploit the closed-form solution of the model to estimate the measurement system in
one step using simulated maximum likelihood with analytical gradients, which provides fast
convergence.

The estimated model reveals that teachers’ and students’ efforts play a key role in determin-
ing students’ academic achievement. The effect of the teaching practice of keeping students on
task is higher for students with a lower initial stock of knowledge. In comparison, the effect of
the general teaching skill is higher for students with a higher initial stock of knowledge. For
teachers, the marginal utility of increasing the classroom knowledge is higher in classrooms
with higher initial stocks of knowledge. I also find that being in a well-behaved classroom sub-
stantially reduces students’ utility cost of exerting effort, implying a complementarity between
students’ effort and the teaching practice. Overall, these results suggest that teachers’ contri-
butions to student knowledge vary across classrooms due to changes in students’ and teachers’
efforts and the contribution of the teaching inputs.

The estimates also suggest that teachers with higher general teaching skills or higher per-
unit effort costs tend to be sorted into classrooms with higher initial stocks of knowledge and
more supportive home environments. Additionally, teachers with lower per-unit effort costs
tend to be sorted into classrooms with worse classroom environments. As previous research
suggests, not accounting for the non-random sorting of teachers into classrooms may generate
biased estimates of teachers’ contributions to students’ knowledge (Kane et al., 2013; Roth-
stein, 2017).

I use my estimates to study the impact of changing teachers’ and students’ endowments on
academic achievement considering their behavioral responses. I find that, compared to an aver-
age teacher, teachers with higher general teaching skills are more effective in teaching students
with higher initial knowledge. On the other hand, teachers with lower per-unit effort costs are
more effective in teaching students with lower initial knowledge. The teachers’ endowments
are correlated: I find that teachers with higher general teaching skills also tend to have higher
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per-unit effort costs. Overall, these results suggest that teachers who are effective in teaching
low-performing students may not be as effective teaching high-performing students, and vice
versa. Accordingly, I expand upon standard value-added models, which usually consider a sin-
gle dimension of teaching effectiveness, by taking into account the comparative advantages of
teachers.

I use the model to conduct a series of policy-relevant counterfactuals. The counterfactuals
are motivated by recent policy interventions that did not achieve their main goal of promot-
ing students’ academic achievement. For instance, the Talent Transfer Initiative (Glazerman
et al., 2013) provided incentives to highly effective teachers, based on value-added measures, to
transfer to schools with high proportions of low-achieving students. The program did not sig-
nificantly increase middle school students’ academic achievement in poor-performing schools.

In the first two counterfactuals, I quantify the achievement gains of reassigning teachers,
who are measured as highly effective using a standard value-added specification, into class-
rooms with a high proportion of low-achieving students.1 The first counterfactual reassigns
the selected teachers into classrooms with below-average test scores from the previous year,
while the second counterfactual reassigns these teachers into classrooms with high proportions
of minority students. In the third counterfactual, I replace the least effective teachers with the
most effective teachers based on their value-added estimates. Overall, the results suggest that
the value-added estimates overstate the expected performance of the selected teachers in the
reassigned classrooms. Moreover, I quantify the effects of reassigning teachers considering
their effort choices, and the full set of endowments. Compared to the previous reassignment
based on the value-added specification, the new reassignment produces higher gains for the
low-performing students. For instance, the first counterfactual suggests that the reassignment
using the value-added specification would reduce one quarter of the achievement gap between
the low-achieving classrooms and the rest, whereas if behavioral responses were taken into
account, the achievement gap would be reduced by a third.

This paper contributes to the teachers’ effectiveness literature in several ways. First, a
growing body of evidence suggests that teachers who use good practices can effectively in-
crease students’ achievement (Kane et al. 2011; Garrett and Steinberg 2015). The natural next
step I take is studying how teachers exert effort to implement these practices. By taking this
step, I can study how the teaching practices would vary across classrooms due to changes in
teachers’ effort and how these variations would ultimately affect students’ achievement.2

Second, this paper relates to work studying heterogeneity in teachers’ effectiveness due
to the matching of teachers and students (see, for example, Loeb et al. 2014, Fox 2016, Ger-
shenson et al. 2018, Aucejo et al. 2020, and Ahn et al. 2021). I focus on two teaching inputs
that may have heterogeneous effects on students’ achievement: the general teaching skill and
the desirable teaching practice of keeping students on task and well-behaved. There is a new
strand of the literature on this topic studying heterogeneity in the effect of teaching practices on

1As opposed to tracking interventions where students are sorted into new classrooms, the counterfactual
reassignment keep the classroom composition fixed and match teachers to already established classrooms.

2Steinberg and Garrett (2016) find that the average prior achievement of the classroom positively influence
measured teaching practices’ scores. My model rationalizes this evidence by allowing teachers to adjust their
effort to implement the teaching practice in response to changes in the classroom composition.
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students’ achievement and the implications for reassignment policy (Lavy, 2015; Aucejo et al.,
2021; Graham et al., 2020). I expand on this literature by distinguishing the teaching practice
from the endowments that may determine it. Accordingly, teachers may adjust their teaching
practice to new classrooms. Thus, my framework can suggest the impact that the teaching
practice may have on different classrooms and the most effective teachers to implement it.

Third, there is an ongoing debate about the validity of value-added estimates predicting
teachers’ effects on students’ achievement due to bias generated by unmeasured or mismea-
sured factors that may be correlated with the estimated teachers’ effectiveness (see, for exam-
ple, Chetty et al. 2014a, Rothstein 2017, and Horvath 2015). For example, if some teachers
are systematically assigned to disruptive classrooms (i.e., with a worse classroom environ-
ment), their estimated value-added may understate their true effectiveness in those classrooms.
I address this concern by explicitly taking into account multiple inputs that are commonly un-
observed by researchers, such as the students’ home and classroom environments. Given that
measurement error in the observed inputs may produce biased estimates, I exploit the mul-
tiple measures of the educational inputs available in the database and follow a factor model
approach to separate the distribution of latent variables from measurement error (see, for ex-
ample, Cunha et al. (2010) and Agostinelli and Wiswall (2016a)). Furthermore, the decisions
of teachers and students are allowed to interact, allowing for flexible complementarity patterns
that are not present in the traditional (linear-in-means) value-added model.

Finally, in recent years, the majority of US school districts have implemented teacher eval-
uation systems that contain measures based on students’ test scores (Steinberg and Donaldson
2016; Steinberg and Kraft 2017). Given the extensive use of these measures in ongoing poli-
cies, it is crucial to assess the extent to which teachers’ preferences for promoting students’
achievement may be an important determinant of their effectiveness. Not accounting for teach-
ing preferences may render extrapolations problematic because teachers may not be willing to
exert the same amount of effort in all classrooms. To address this, my model allows teach-
ers’ preferences for academic achievement to depend on the level of initial knowledge in the
classroom.

My model is closest in spirit to that of Todd and Wolpin (2018), which also models the
effort choices of teachers and students in a classroom. The authors develop and estimate the
model to better understand the reasons for the poor performance of high school students in
Mexico. My model is designed to study how teachers’ effectiveness may vary across class-
rooms, and whether commonly used measures are capable of capturing it. As such, my model
nests standard specifications used in the teaching effectiveness literature, such as the standard
value-added model, and allows teachers’ contribution to students’ knowledge to differ across
classrooms. Additionally, I allow for flexible distributions of commonly unobserved endow-
ments to capture potential non-random sorting of teachers to classrooms.

The remainder of the paper is organized as follows. Section 2.2 presents the model. Section
2.4 discuss identification. Section 2.3 discuss potential limitations of the standard value-added
model. Section 2.5 discuss the estimation method. Section 2.6 describes the data and esti-
mation sample. Section 2.7 discusses estimation results. Section 2.8 presents a comparative
statics analysis. Section 2.9 present the results from the counterfactuals. Finally, section 2.10
concludes.
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2.2 The Model

In this section, I present a model of the interaction between teachers and students in a classroom
to produce knowledge. The model nests commonly used value-added specifications of educa-
tional production. Additionally, it allows for flexible distributions of teachers’ and students’
endowments to capture the potential non-random sorting of teachers to classrooms. Teachers’
and students’ decisions are the outcomes of a sequential Nash game with complete information
where teachers internalize the students’ actions. Teachers choose effort to maximize utility
from their students’ achievement, net the cost of effort of keeping the classroom well-behaved
and on task. After observing the teacher’s effort, students exert effort to maximize utility from
achievement, net the cost of learning effort. Each classroom is a separate game.

2.2.1 Basic Setup

Consider teacher j in classroom c, which is endowed with a continuum of students of measure
Nc j. Teacher j has two types of endowment: A general teaching skill, θG j, and a per-unit cost of
effort, θE j. I allow for a flexible distribution of the teacher endowments, by treating them as a
set of teacher-specific parameters, which may be correlated with the students’ and classrooms’
characteristics.

Student i is endowed with an initial stock of knowledge, Kic j, and a home environment,
Hic j.3 All endowments are observed by the teacher and the students. Students’ endowments
are formed by a structure that depends on a vector of exogenous student variables, Xic j, and
unobservable shocks to the econometrician, ξKic j and ξHic j:4

ln Kic j = µKc j + Xic jβK + ln ξKic j

ln Hic j = µHc j + Xic jβH + ln ξHic j.
(2.1)

The unobserved shocks, ξKic j and ξHic j, may be correlated with each other but are uncorrelated
with the observed variables and teachers’ skills. In particular, ln ξKic j and ln ξHic j follow a
joint normal distribution with mean zero and a variance-covariance matrix, Λ. To capture the
potential nonrandom sorting of students to teachers, the classroom-specific intercepts, µKc j and
µHc j, are allowed to be arbitrarily jointly distributed with the observed student variables and
the teachers’ endowments.

Teacher j chooses managerial effort, EMc j, to keep the class on task and well-behaved.
However, some classrooms may be harder to manage than others, regardless of the teacher’s
effort, due to inherently bad classroom environments. Therefore, I model the classroom man-
agement practice, Mc j, as the effective input provided by the teacher j in classroom c, which
may depend on the teacher’s managerial effort and the classroom environment, µMc j, and is

3The home environment captures characteristics associated with the cost of students exerting effort. Similar
to Agostinelli et al. (2019), the home environment includes measures such as the number of books and computers
in the household and parents’ education.

4The exogenous student variables are student age, race, gender, special education status, gifted status, English
learner status, and twice-lagged test score.
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given by

Mc j = µMc jE
δE
Mc j. (2.2)

I use the number of students in the classroom as a measure of the classroom environment:
following the work of Lazear (2001), all else equal, a larger classroom may be prone to more
disruptions, which in turn may adversely affect student learning.5 The classroom environment
is allowed to be arbitrarily jointly distributed with the students’ and teachers’ endowments.

Student i’s achievement is a function of the student’s initial stock of knowledge, Kic j, the
student’s learning effort, Lic j, the classroom management practice, Mc j, the teacher j’s general
skill, θG j, and the average of the initial stock of knowledge in classroom c, K̄c j. The production
function is given by

Yic j = KαK
ic j K̄

αK̄
c j LαL

ic jM
αMic j

c j θ
αGic j

G j . (2.3)

I allow for the parameters governing the marginal product of the classroom management
practice and general teaching skill to be affected by the initial stock of knowledge, by setting

αMic j =αM + αMK ln Kic j,

αGic j =1 + αGK ln Kic j.
(2.4)

All else equal, a negative coefficient value of αMK and αGK implies a lower marginal product
of Mc j and θGc j for students with a higher stock of initial knowledge, while the opposite would
happen if the interactions terms were positive. In this regard, it could be that two different
students have the same level of classroom management practice, but if αMK < 0, the student
with the lower initial stock of knowledge may benefit more from being more focused due to a
better-behaved classroom (i.e., due to an increase in Mc j).

The utility cost of studying depends on learning effort and may be determined by the stu-
dent’s home environment, Hic j, and classroom management practice, Mc j:

Cic j = cLHβH
ic j M

βM
c j Lic j. (2.5)

A better home environment and classroom management practice may increase students’
engagement in their learning, which in turn may reduce the utility cost of learning.6 Therefore,
reducing the utility-cost of learning represents a natural channel through which teachers could
improve students’ achievement.

After observing the teacher’s effort, student i chooses learning effort, Lic j to maximize the
utility from achievement minus the utility cost of effort, Cic j

U s(Lic j) =
YγL

ic j − 1

γL
−Cic j, (2.6)

5As I further discuss in Section 2.6.1, I measure teachers’ effort using survey questions that directly reference
the teacher behavior in the classroom, such as “My teacher doesn’t let people give up when the work gets hard.”,
while for the management practice, I choose survey questions that relate to the effective impact of teachers’ effort
in the classroom, such as “student behavior in this class is under control”.

6One would expect home and classroom environment to reduce the cost of learning, i.e., βH < 0 and βM < 0,
but I do not impose this restriction in my estimation.
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where the students’ preference for achievement, γL ∈ (−∞, 1], allows for a flexible substitution
pattern between inputs: as I further discuss in Section 2.2.2, all else equal, this specifica-
tion allows the utility-maximizing learning effort to decrease in the student’s initial stock of
knowledge and the teacher’s general teaching skill when γL < 0. Furthermore, if γL < 0, the
utility-maximizing learning effort may decrease in the classroom management practice if γL is
sufficiently low to outweigh the effect of the practice on students’ utility cost of effort.

Teachers maximize their utility from average classroom achievement minus their cost of
effort:

U t(EMc j) =
Ȳ
γEc j

c j − 1

γEc j

− θE jEMc j, (2.7)

where Ȳc j is the geometric mean of students’ achievement considering students’ best responses
to teacher j’s effort.7 I allow for additional flexibility by letting the teachers’ preference for
student achievement, γEc j , to depend on the average initial stock of knowledge in the classroom:

γEc j = γE + γEK ln Kc j. (2.8)

For instance, teachers may receive higher utility from improving the performance of high-
achieving classrooms: all else equal, a positive coefficient, γEK > 0, implies that teacher j’s
marginal utility from increasing the classroom average achievement, Ȳc j, would be higher in
classrooms with higher average initial stocks of knowledge. Conversely, teachers may be in-
terested in reducing the achievement gap across classrooms, and so, have higher marginal ben-
efits of increasing the knowledge of classrooms with lower initial stocks of knowledge, which
would be captured by a negative coefficient, γEK < 0. Additionally, as shown in Appendix A.1,
this specification allows teachers’ efforts to decrease in response to changes in the home and
classroom environments, as well as their general teaching skills when γEc j < 0.

2.2.2 Solution

The equilibrium concept is sub-game perfect Nash equilibrium. The timing of the model is
as follows: In stage 1, teacher j chooses the level of managerial effort for classroom c, EMc j.
In stage 2, students choose the level of learning effort, Lic j. Finally, in stage 3, students’
achievement is produced.

In stage 2, students’ best responses can be obtained from their first-order condition. At the
interior solution for learning effort, the marginal benefit must equal the marginal cost of effort.
As shown in Appendix A.1, the sufficient condition for an interior solution for student effort
requires that αLγL < 1.8

7The geometric mean, Ȳc j = exp
(
E(ln Yic j)

)
, generates a simple closed-form solution, which is useful in the

estimation of the model.
8The sequential game assumption rules out zero-effort equilibria. This assumption is consistent with the data

as more than 90% of the students in the sample report studying more than 0 hours per week and complete part of
their weekly homework.
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Student i’s best response to the classroom management practice is given by the function

ln Lbr
ic j =

ln
(αL

cL

)
+ γLαK ln Kic j + γLαK̄ ln K̄c j + γLαGic j ln θG j

1 − αLγL
+

(γLαMic j − βM) ln Mc j − βH ln Hic j

1 − αLγL

(2.9)

Students may respond to the classroom management practice through production (i.e., αMic j ln Mc j)
and the utility cost of effort (i.e., −βM ln Mc j). The overall response to the classroom manage-
ment practice also depends on the curvature parameter γL. If γL < 0 and the utility-cost param-
eter βM is not too negative, students may reduce their effort in response to a better classroom

management practice (i.e.,
∂ ln Lbr

ic j

∂ ln Mc j
=
γLαMic j−βM

1−αLγL
< 0). Similarly, if γL < 0 and αK > 0, all else

equal, knowledgeable students would study less than students with lower initial knowledge

(i.e.,
∂ ln Lbr

ic j

∂ ln Kic j
=

γLαK
1−αLγL

< 0). Additionally, students may respond differently to increases in the
teaching inputs due to the heterogeneity in the parameters governing the marginal products of

the teaching inputs (e.g.,
∂2 ln Lbr

ic j

∂ ln θG j∂ ln Kic j
=
γLαGK
1−αLγL

> 0, if αGK > 0 and γL > 0).

In stage 1, the teacher maximizes their utility by exerting managerial effort. The first order
condition is derived from Equation (2.7).9 At the interior solution for managerial effort, the
marginal benefit must equal the marginal cost of managerial effort, which is given by the per-
unit cost of effort, θE j. In equilibrium, the teacher’s managerial effort is given by the known
function

E∗Mc j =

[( 1
θE j
× δE
αMc j − αLβM

1 − αLγL

)1−αLγL

×

(ααL
L × K̄αK+αK̄

c j × θ
αGc j

G j × µ
αMc j−αLβM

Mc j

cαL
L × H̄αLβH

c j

)γEc j
] 1

1−αLγL−δEγEc j(αMc j−αLβM )
(2.10)

where K̄c j and H̄c j are, respectively, the geometric means of students’ knowledge and home
environment, averaged at the classroom level, and αMc j = αM + αMK ln K̄c j, and αGc j = 1 +
αGK ln K̄c j.10 As seen in Equation (2.10), teacher j’s effort may vary across classrooms due
to changes in the classroom endowments: K̄c j, H̄c j, and µMc j. However, the model is flexible
enough to allow the teacher effort to be constant across classrooms, by setting γEK = 0 and
αMK = 0.

The closed-form classroom management practice is then

M∗c j = µMc jE∗
δE

Mc j. (2.11)

9As shown in Appendix A.1, the sufficient condition for an interior solution fo teacher effort is given by:
αLγL + δEγEc j(αMc j − αLβM) < 1, where αMc j = αM + αMK ln K̄c j.

10The geometric mean of students’ achievement, Ȳc j, in the teachers’ utility function, Equation (2.7), makes
teachers’ effort choices depend on classroom-level and teacher-level endowments only. The continuum of students
assumption implies that teachers’ efforts do not depend on individual student-level shocks since E(ln ξKic j) = 0
and E(ln ξHic j) = 0.
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In equilibrium, the student-level endogenous variables, Lic j and Yic j, are given by the known
functions:

L∗ =L(Kic j,Hic j, K̄c j, H̄c j, µMc j, θE j, θG j,Γ), and
Y∗ =Y(Kic j,Hic j, K̄c j, H̄c j, µMc j, θE j, θG j,Γ),

(2.12)

which are obtained by replacing Equation (2.11) in the students’ best responses, Equation
(2.9), and the production function, Equation (2.3). The vector Γ contains the production and
behavioral parameters. The closed-form equations (2.10), (2.11), and (2.12) express teachers’
and students’ efforts inputs, and students’ achievement as functions of exogenous variables
and the structural parameters. These reduced-form equations are used for estimation in Section
2.5. The reduced-form equations would be log-linear if the parameters governing the marginal
product of the classroom managements, αMic j , the general teaching skills, αGic j , and teachers’
preferences for students’ knowledge, γEc j, were constant across students and classrooms. I
study the implications of assuming log-linear specifications in Section 2.3.

2.2.3 Measurement System

I allow the achievement, efforts’ choices, and endowments to be measured with error. For
convenience, I group latent variables in a set Ω = {Kic j,Hic j,Yic j, Lic j, EMc j,Mc j, µMc j}. To sim-
plify the notation, I omit the student, classroom and teacher sub index from Ω. The variables
contained in the sets Ω are functions of observable and unobservable exogenous endowments.
For example, Kic j, which is defined in Equation (2.1), is a function of the observed students’
characteristics, Xic j, the latent shock, ξKic j, and the latent effect, µKc j, while teacher effort, EMc j,
is determined by the classroom-level endowments (i.e., K̄c j, H̄c j, and µMc j), and teacher-level
endowments (i.e., θE j and θG j) as defined in Equation (2.10).

The data contain a rich variety of continuous and discrete measures. Let Ωd represent the
dth variable in the set Ω. I denote a continuous measure for Ωd as Zdm, where m is a sub index
for an specific measure of Ωd. Each continuous measure relates to the corresponding latent
variable through the following equation:

Zdm = κdm + λdm lnΩd + ϵdm, (2.13)

where κdm is a location parameter, and λdm is a scale parameter. I follow the standard procedure
in the literature and assume a log-linear system of equations and errors ϵdm that follow an
independent normal distribution, N(0, σ2

ϵ,dm) (Cunha et al., 2010).

For the discrete measures, I consider an ordinal system of equations, where each measure
ZO

dm, has P categories, p = P is the lowest category, and P = 1 is the highest:11

ZO
dm =



P if λdm lnΩd + ϵdm < κPdm

P − 1 if κPdm < λdm lnΩd + ϵdm < κP−1dm
...
2 if κ3dm < λdm lnΩd + ϵdm < κ2dm

1 if λdm lnΩd + ϵdm > κ2dm

(2.14)

11Most of the measures have five categories ranging from “totally untrue” to “totally true”.
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where the κ’s are unknown cutoff parameters to be estimated. As discussed in Agostinelli and
Wiswall (2016a), the identification of the system of ordinal measures requires a parametric
assumption for the distribution of the measurement error. For this reason, I assume ϵd,m ∼
N(0, 1).12

2.3 Implications for Teacher Reassignment

This section discusses the implications for teacher reassignment and the potential limitations
of using the standard value-added specification to predict the gains of reassigning teachers to
different classrooms. Consider that teacher j = 1, who may be replaced by teacher j = 2,
is assigned to classroom c. For student i in classroom c, the potential achievement gain of
being reassigned to teacher 2 is given by the difference in achievement due to the teachers’
reassignment, ∆ ln Yic(2,1):

∆ ln Yic(2,1) = ln F(Ki, K̄c, Lic2,Mc2, θG2) − ln F(Ki, K̄c, Lic1, µMc,Mc1, θG1), (2.15)

where the first term on the right-hand side of Equation (2.15) is the log production function
of latent knowledge, Equation (2.3), if teacher 2 were assigned to classroom c, and the second
term is the production function without reassignment. For student i, the gain of reassignment
partially depends on the counterfactual amount of studying effort, Lic2, that student i would
exert under teacher 2, and the counterfactual classroom management practice, Mc2, that, as
defined by Equation (2.2) depends on the counterfactual amount of effort that teacher 2 would
exert in classroom c, and the classroom c’s environment effect. Teacher 2 would be more
effective than teacher 1 in teaching student i if ∆ ln Yic(2,1) > 0.

Based on the production function defined in Equation (2.3), classroom c’s averaged achieve-
ment gain due to the teachers’ reassignment, ∆ ln Ȳc(2,1), can be decomposed into the gain due
to changes in students’ effort, ∆ ln L̄c(2,1), teachers’ effort, ∆ ln EMc(2,1), and teachers’ general
teaching skills, ∆ ln θG(2,1). The decomposition is given by

∆ ln Ȳc(2,1) = αL∆ ln L̄c(2,1)︸          ︷︷          ︸
Change in student effort

+αMc jδE∆ ln EMc(2,1)︸                   ︷︷                   ︸
Change in teacher effort

+ αGc j∆ ln θG(2,1)︸            ︷︷            ︸
Change in general teaching skill

,

where

∆ ln L̄c(2,1) =
γLαGc j∆ ln θG(2,1)

1 − αLγL︸                 ︷︷                 ︸
Change in general teaching skill

+
(γLαMc j − βM)

1 − αLγL
δE∆ ln EMc(2,1)︸                                 ︷︷                                 ︸

Change in teacher effort

∆ ln EMc(2,1) =
γEc jαGc j∆ ln θG(2,1)

1 − αLγL − δEγEc j(αMc j − αLβM)︸                                       ︷︷                                       ︸
Change in general teaching skill

−
(1 − αLγL)∆ ln θE(2,1)

1 − αLγL − δEγEc j(αMc j − αLβM)︸                                       ︷︷                                       ︸
Change in marginal cost of teaching effort

.

(2.16)

As seen in Equation (2.16), the gain for classroom c would ultimately depend on the impact
of changing the teachers’ general teaching skill, ∆ ln θG(2,1), and the teachers’ marginal cost of

12The only exception is “Time in a week spent doing homework for this class”, a measure of student effort,
for which I assume N(0, σ2

ϵ,dm) and take the value of the thresholds, κ2dm to κJdm, as known, which allows me to
estimate σ2

ϵ,dm.
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effort, ∆ ln θE(2,1). Thus, Equation (2.16) can be simplified to the reduced-form equation given
by

∆ ln Ȳc(2,1) =
αGc j∆ ln θG(2,1) − δE(αMc j − αLβM)∆ ln θE(2,1)

1 − αLγL − δEγEc j(αMc j − αLβM)
. (2.17)

However, some of the classrooms originally assigned to teacher 1 may benefit more from being
reassigned to teacher 2. In particular, the gain may differ across classrooms due to changes in
the parameters governing the marginal product of the teaching inputs, αMc j and αGc j, as well
as the teachers’ preferences for promoting students’ knowledge, which is captured by γEc j.
Similar to Ahn et al. (2021), I consider that teacher 2 has a comparative advantage in teaching
low-performing classrooms if the gain of reassigning teacher 2 to a classroom with lower initial
knowledge (i.e., lower ln K̄c j) is higher than the gain of reassigning the teacher to a classroom
with higher initial knowledge. In contrast, a teacher has a comparative advantage in teaching
high-performing classrooms if the opposite happens.

Two special cases of Equation (2.15) are worth mentioning. First, if the teachers’ preference
parameters defined by γEc j were equal to zero for all classrooms, the change in teachers’ effort
due to the reassignment would reduce to ∆ ln EMc(2,1) = −∆ ln θE(2,1), which only depends on
the change in teachers’ marginal cost of effort, and thus, ∆ ln EMc(2,1) would be fixed across
classrooms. Accordingly, all the gains differences across classrooms would be due to changes
in the marginal product of the teaching inputs. Under this scenario, the achievement gain
reduces to a model with linear interactions between the changes in teachers’ endowments and
the students’ initial knowledge. As such, it would resemble specifications in the literature
interacting teachers’ latent effects with students’ fixed inputs (Lockwood and McCaffrey, 2009;
Ahn et al., 2021).

Second, if the parameters governing the marginal product of the classroom management
practice, αMc j, the general teaching skill, αGc j, and teachers’ preference for students’ knowl-
edge, γEc j were fixed across classrooms, the gains would be homogeneous across classrooms,
and as such, teachers would not have comparative advantages in teaching different types of
students. In Section 2.8, I analyze the possible biases that would be produced by assuming
homogeneous changes in the classrooms.

2.3.1 Standard Value-Added Model

A standard value-added specification of the achievement production function takes the form:

Zic j = Wic jβ + µT j + ϵic j, (2.18)

where Zic j the state test score for student i (i.e., a measure of the latent log knowledge), Wic j

is a vector of students and classroom variables, µT j is a classroom-invariant teacher effect, and
ϵic j is an idiosyncratic error term.

Equation (2.18) may potentially capture the reduced-form production of knowledge if the
vector Wic j included all the students’ and classrooms’ endowments: ln Kic j, ln Hic j, ln K̄c j,
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ln H̄c j, and ln µMc j, and the closed-form knowledge function were log-linear.13 Under these
assumptions, the reduced form would perfectly capture the expected changes in efforts, and the
teacher effect, µT j, would be a weighted sum of the teachers’ log general teaching skill, ln θG j,
and log per-unit cost of effort, ln θE j. Within this frame, the potential gain of the reassignment
for student i would be given just by the difference between the teachers’ effects:

∆ ln Yic(2,1) = µT2 − µT1, (2.19)

which, as opposed to Equation (2.16), does not depend on the students’ initial knowledge.
Equation (2.19) does not allow for comparative advantages in teaching and may not be ideal
for extrapolations for several reasons. First, the marginal product of the teaching inputs may
change across classrooms. Accordingly, even if the teaching inputs are fixed across classrooms,
their impact on students’ achievement may change. Second, teacher 2 may adjust her effort to
the new classroom; so, her effectiveness may be different from what was originally predicted
by the value-added specification. Third, there could be omitted or mismeasured variables in
the vector Wic j, and to the extent that the teachers’ effects are correlated with the unobserved
endowments, the omissions and/or mismeasures may generate biased estimates of the teachers’
effects.

A more flexible value-added model could be specified, for example, by allowing for in-
teractions between the teacher effects and students’ observed variables. However, specifying
such models may miss important dimensions of teachers’ effectiveness. For example, a flexible
value-added specification may be given by

Zic j = G(Wic j, µT j) + ϵic j, (2.20)

where the function G(Wic j, µT j) allows for flexible interactions between the teacher effect, µT j,
and the observed variables in the vector Wic j. Specification (2.20) assumes a one-dimensional
teacher effect. Conversely, the production function, Equation (2.3) allows for two types of
teacher endowments, a general teaching skill, θG j, and a per-unit cost of effort, θE j, which are
allowed to have different impacts on different classrooms. All else equal, classrooms where
teachers with a high general teaching skill are most effective may be different from the class-
rooms where teachers with a low per-unit cost of effort are most effective. Therefore, there
may exist comparative advantages of reassigning teachers to different classrooms that could
not be studied with uni-dimensional specifications, such as Equation (2.20). In section 2.8, I
discuss the implications of these comparative advantages for students’ achievement using the
estimates from the structural model.

A growing body of literature estimates the effect of different teaching practices, such as
the classroom management practice, on students’ achievements. However, it may be impor-
tant to examine how teachers would adjust their effort to new classrooms to better understand
the potential gains of different reassignment policies. To see this, I consider the following
specification as an alternative to Equation (2.15):

∆ ln Yic(2,1) = ln G(Ki, K̄c, M̄2, µT2) − ln G(Ki, K̄c, M̄1, µT1), (2.21)
13The reduced form achievement equation would be log-linear if the parameters governing the marginal prod-

uct of the classroom management practice, αMic j, the general teaching skill, αGic j, and teachers’ preference for
students’ knowledge, γEc j were constants across students and classrooms.
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where the classroom management practices, M̄1, and M̄2, are assumed to be fixed endowments
of teacher 1, and teacher 2 respectively. A specification such as Equation (2.21) would im-
plicitly assume that the teachers’ efforts are fixed across classrooms and that the classroom
environments (i.e, µMc j) are attributes of the teachers rather than the classrooms. Therefore,
estimating a specification such as Equation (2.21) may generate biased predictions of the po-
tential gains of reassignment.

2.4 Identification

My identification strategy combines multiple sources of variation. First, I use within-teacher
variation coming from differences between the students and classrooms to which teachers are
assigned, to identify the production and behavioral parameters, and the teachers’ endowments.
Second, I use within-classroom variation coming from differences between students assigned
to a classroom to identify the students’ initial endowments. Third, I use multiple measures of
the latent inputs to identify the distribution of latent endowments and the measurement system
parameters.

2.4.1 Production and Behavioral Parameters

Consider two classrooms with multiple students assigned to teacher j. For simplicity, assume
that all inputs are observed without measurement error. The input parameters on the produc-
tion function, Equation (2.3), are identified due to the input-specific exclusion restrictions. The
home environment, Hic j, shifts students’ learning effort, Lic j. Meanwhile, the classroom envi-
ronment, µc j, and the averaged classroom home environment, H̄c j are shifters of the classroom
management practice, Mc j. A similar argument follows for the determinants of the classroom
management practice, Equation (2.2), where the classroom averaged initial knowledge, K̄c j,
and home environment, H̄c j work as shifters for teachers’ effort.

Given the production and classroom management parameters, the parameter for students’
preference for achievement, γL, is identified from variation in students’ initial stock of knowl-
edge in the students’ best responses, Equation (2.9). The remaining students’ behavioral pa-
rameters, βM, βH, and cL, are identified from variation in the classroom management practice
and students’ home environment. The teachers’ behavioral parameter, γE,c j, is identified from
variation in the classroom-level endowments, K̄c j, H̄c j, and µMc j, using the reduced-form equa-
tion of teachers’ effort, Equation (2.10).

2.4.2 Teachers’ Endowments

Given the results from Section 2.4.1, teacher j′s general teaching skill, θG j, which is a teacher-
specific parameter, and the parameter governing the marginal product of it, αGK , are identified
by rearranging Equation (2.3) to get:

ln Yic j − αK ln Kic j − αK̄ ln K̄ − αL ln Lic j − αMic j ln Mc j = ln θG j + αGK ln Kic j ln θG j, (2.22)
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where the left-hand side is the difference between students’ achievement, ln Yic j, and the student-
and classroom- level inputs in the production function, and the right-hand side is the gen-
eral teaching skill and its corresponding interaction with the initial stock of knowledge (i.e.,
αGK ln Kic j ln θG j). A similar argument follows for the identification of the per-unit cost of
effort, θE j, using the reduced form for teachers’ effort, Equation (2.10).

2.4.3 Students’ Endowments and Measurement System

In reality, endowments, effort choices, and outcomes are measured with error. By having
multiple measures of each educational input, I can separate the joint distribution of the latent
unobserved shocks, ln ξKic j and ln ξHic j , from the measurement errors, ϵdm. In particular, the
multiple measures of students’ endowments, the observed students’ characteristic, Xic j, and the
orthogonality between unobservables and observables allow identifying the joint distribution of
latent endowments given by Equation (2.1). Consider two measures of Kic j in the measurement
system defined by substituting Equation (2.1) into Equation (2.13):

ZK1ic j = κK1 + λK1(µKc j + Xic jβK + ln ξKic j) + ϵK1ic j

ZK2ic j = κK2 + λK2(µKc j + Xic jβK + ln ξKic j) + ϵK2ic j
(2.23)

First, identification requires normalizing one location and scale parameter. Following the
convention in the factor model literature, I normalize κK1 = 0 and λK1 = 1 (Agostinelli and
Wiswall, 2016b). Second, given the orthogonality between observables and the latent shock
and measurement errors, the vector βK is identified by the regression parameters in the first
measurement equation.14 Third, the classroom-specific intercept, µKc j, is identified as a fixed
effect in the first measurement equation. Fourth, given βK and µK j, the measurement parame-
ters, κK2 and λK2, are identified by the regression parameters in the second measurement equa-
tion.

The identification of the variance-covariance matrix of latent shocks, Λ, works as follows.
First, the variance of the unobserved shock, ln ξKic j, is identified by the covariance between the
unobserved components of ZK1ic j and ZK2ic j since ϵK1ic j, ϵK2ic j, and ln ξKic j, are all orthogonal
to each other. Second, given the variance of the latent shock, the variances of the measurement
errors, σ2

ϵ,K1 and σ2
ϵ,K2, are identified using the variance of each measurement. The parameters

for the home environment, ln Hic j, are identified following the same approach. Finally, the co-
variance between the unobserved shocks, ln ξKic j and ln ξHic j, is identified using the covariance
between the first measure of ln Kic j and ln Hic j.

Identification for students’ achievement, students’ effort, the classroom management prac-
tice, and teachers’ effort follow from replacing the reduced form equations (2.10), (2.11), and
(2.12) in the measurement system. For each latent variable, identification requires normalizing
the location, κdm, and scale, λdm of one measure.15 Once the variance-covariance matrix of

14For example, if the vector Xic j contained only one variable, then βK would be given by cov(ẐK1ic j,X̂ic j)
var(X̂ic j)

, where

X̂ic j and Ẑic j represents the variables demeaned at the classroom level.
15Ordinal variables require the normalization of one cutoff. For example, by setting κ3dm = 0.
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latent shocks, Λ, is identified, identification of the remaining parameters follows from the sys-
tem of reduced-form equations, which includes the latent random shocks, with a known joint
distribution, and independent measurement error terms that are all orthogonal to the students’
characteristics and the fixed effects.

Identification of the distribution of latent shocks only requires two measures of each stu-
dents’ endowment, and all the noisy measures are dependent variables in the measurement sys-
tem. Thus, I only require a single dedicated measure of each one of the other latent variables
in the model: academic achievement, student effort, classroom management practice, teacher
effort, and classroom environment.16 However, the METD contains multiple measurements,
which considerably increase the number of observations available. For example, a classroom
with 15 students may have 45 measurements of teachers’ effort, coming from three different
students’ survey items, which is beneficial for obtaining more precise point estimates of the
parameters.

2.5 Estimation

Similar to Todd and Wolpin (2018), I estimate the model using simulated maximum likeli-
hood.17 The estimation procedure is as follows:

1. Choose values for the parameters {βH, βK ,Λ, µ⃗K , µ⃗H,Ψ, µ⃗M, θ⃗E, θ⃗G,Γ}, where βH, βK , Λ
and the vectors {µ⃗K , µ⃗H} denote the students’ initial endowment parameters, Ψ denotes
the parameters of the measurement system, µ⃗M denotes a vector of classroom environ-
ment effects, {θ⃗E, θ⃗G} are vectors of the teacher-specific endowments, and Γ denotes the
production and behavioral parameters.

2. For each classroom, calculate the average of the students’ endowments, ln Kc j and ln Hc j

using arithmetic means of the observable students’ characteristics effects, Xic jβK and
Xic jβH, and fixed effects, µKc j and µHc j, in Equation (2.1).

3. Draw D student-level shocks for the unobserved latent variables, ξKic j and ξHic j.

4. For each draw d, calculate each student initial endowment, ln Kd
ic j and ln Hd

ic j, and the
reduced form equations given by (2.10), (2.11), and (2.12).

5. For each draw and given the measurement system parameters, calculate the likelihood
of observing student i’s measures, f d

ic j, which is a product of likelihood statements for
continuous and discrete measures.

6. For each student, average all the draw-specific likelihoods, fic j =
1
D

∑D
1 f d

ic j.

16I require at least one dedicated measure of the classroom environment to separately identify µMc j from δE

in Equation (2.2) because the classroom environment effects and teachers’ managerial efforts are defined at the
classroom level. The identification of the classroom environment effect comes from variation in the classroom
management practice that is not due to changes in teachers’ effort.

17While Todd and Wolpin (2018) estimates distributions of classrooms’ and teachers’ endowments using ran-
dom shocks, I estimate them using latent fixed effects (see, for example, Agostinelli et al. (2019)).
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7. The total log-likelihood is given by

Log Likelihood =
∑

j

∑
c

∑
i

ln fic j (2.24)

To deal with the computational burden of estimating a large set of parameters, I exploit the
closed-form solution of the model and maximize the log-likelihood using analytical gradients,
which provides a fast convergence.18 Additionally, I can estimate the teachers’ and classrooms
parameters, {µ⃗K , µ⃗H, µ⃗M, θ⃗E, θ⃗G}, as fixed effects in one step, as opposed to iterative procedures
that may not converge to a global maximum (Greene, 2004).

The simulated maximum likelihood procedure allows me to estimate a non-linear model
with multiple latent factors combining continuous and ordinal measures. Students contribute
to the likelihood with their available measures. All the noisy measures are dependent variables
in the likelihood function.

2.6 Data

The Measures of Effective Teaching Longitudinal Database (METLD) was compiled over
two academic years (2009–2010 and 2010–2011) across six districts in the United States:
Charlotte-Mecklenburg, Dallas, Denver, Hillsborough County, Memphis, and New York City.
The METLD collected information about teachers’ and students’ behaviors, as well as district-
wide administrative records on students’ current and past achievements, and other students’
characteristics. The METLD was initially designed to test the validity of different methods to
identify effective teachers (Kane et al., 2013). To do so, teachers were randomly assigned to
already established classrooms before the start of the 2010–2011 academic year. This unique
feature of the database allows researchers to use the 2009-2010 data to estimate different mod-
els and then compare predicted and actual outcomes using the 2010–2011 data.

I estimate the model using data on 6th grade students in the first year of the METD.19 Sixth-
grade schoolteachers are usually subject matter specialists who teach multiple classrooms per
year, which allows me to identify the model using only one academic year (2009–2010). I focus
on math teachers because they have been the focus of recent educational policy interventions in
the US that did not achieve their main goal of increasing students’ performance on standardized
exams (Glazerman et al. 2013; Stecher et al. 2018).

The original sample of classrooms participating in the MET intervention contains 200 6th

grade math teachers, 366 6th grade classrooms with at least one student answering the survey,
and 8,078 6th grade students. I restrict the original sample to include only students with full
information on age, race, gender, special education status, gifted status, and English learner

18Greene (2009, 2018) provides a detailed analysis of how to perform simulated maximum likelihood with
analytical gradients.

19In Denver, no middle schools signed up for the program, which reduces the number of districts in the sample
to five (White et al., 2014).
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status.20 Furthermore, I only keep classrooms that have at least seven students who have at
least one measure of initial knowledge, home environment, academic achievement, and teacher
effort.21 I restrict the sample to teachers assigned to more than one classroom. The final sample
consists of 6,734 students, 298 classrooms, and 149 teachers.

Table 2.1 shows descriptive statistics of the final sample and the original sample of 6th grade
classrooms. The table also shows that no variable in Table 2.1 is significantly different between
the original and estimation samples at any conventional significance level. As seen, students in
the estimation sample are, on average, 11.5 years old, and approximately 62 percent of them
are either African American or Hispanic students.

Table 2.1: Descriptive Statistics

Estimation Sample Original Sample
Mean Std. Dev. Mean Std. Dev.

Student Variables
Age 11.605 .556 11.577 .576
Gender:Male .514 .500 .513 .500
Race: African American .291 .454 .296 .457
Race: Hispanic .328 .470 .331 .471
Race: Asian .063 .243 .068 .251
Gifted Status .101 .302 .102 .303
Special Education .071 .257 .074 .262
English Language Learner .156 .363 .151 .358
Twice Lagged Math State Test Score .046 .935 .051 .950
Lagged Math State Test Score .054 .928 .058 .945
Math State Test Score .075 .955 .076 .962

Classroom Variables
Classroom Size 25.217 6.811 25.156 7.066

Number of Teachers 149 200
Number of Classrooms 298 366
Number of Students 6,734 8,078

2.6.1 Measures of Classroom Management and Teacher Effort

The measures of the classroom management practice and teachers’ level of effort come from
Ferguson’s Tripod survey (Ferguson and Danielson, 2015). The survey was designed to cap-
ture students’ perceptions of what teachers do in the classrooms and how classrooms work by
asking students to rate their agreement with 35 statements using a five-point scale, from “to-

20I do not include the free lunch indicator as an exogenous student variable in my model because one district
did not report it. Missing values for the twice-lagged math test score (13% of the observations) are imputed from
a linear regression of the score of students’ observable characteristics and a classroom fixed effect.

21I exclude classrooms that have fewer than seven observations to avoid estimating fixed effects based on very
few observations.
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tally untrue” to “totally true” (Raudenbush and Jean, 2015; Kuhfeld, 2017). These statements
are grouped into seven dimensions: Care, Control, Clarify, Challenge, Captivate, Confer, and
Consolidate.

Many different models have been proposed to test the dimensionality of the 7 Cs. For ex-
ample, a model proposed by Ferguson and Danielson (2015) groups the Control and Challenge
dimensions into a Press domain, which is defined as “keeping students busy and on task and
pressing them to think rigorously”, while the other five Cs are grouped into an Academic Sup-
port domain, which is defined as “caring teacher-student relationships, captivating lessons, and
other practices that students experience as supportive”.22 The Control items, as opposed to the
majority of the other items, references the effective control of the classroom rather than teach-
ers’ actions to keep the class well-behaved. In this regard, previous work using exploratory
and theory-based factor analysis suggests two latent factors: one consisting of Control state-
ments, and a separate factor containing statements from the other six Cs (Wallace et al., 2016;
Kuhfeld, 2017).

My proposed model comprises a classroom management practice that may depend on
teachers’ effort and a classroom environment effect. Since Control items reference the ef-
fective implementation of teachers’ actions to keep the class on task and well-behaved, I treat
them as measures of the classroom management practice (e.g., “student behavior in this class
is under control”). To measure teachers’ effort, I focus on questions that directly reference
teachers’ actions in the classroom. In particular, I focus on items from the Challenge domain,
such as “My teacher doesn’t let people give up when the work gets hard,” because they relate
to actions taken in the classroom to keep students on task and well-behaved. Lastly, I treat the
number of students in the classroom as a dedicated measure of the classroom environment.23

2.6.2 Selected Measurements

Table 2.2 shows all the measures listed for each variable of the structural model. The students’
achievement measures include state test scores and scores in the Balanced Assessment in Math-
ematics (BAM) test, which is a supplemental test comprised of open-ended math questions. I
treat these measures as continuous and standardize them to have a mean of zero and a variance
equal to 1. The measures of students’ initial stock of knowledge are the student’s standardized
scores on the math and science state tests from the prior year.24

For students’ home environment, I select measures that relate to the cost of students exerting
effort. In particular, the number of books and computers in the house are treated as continuous
measures and standardized to have a mean of 0 and a variance equal to 1. Parents’ level
of education is a categorical variable with five categories, ranging from “did not finish high
school” to “professional or graduate degree. ” For studying effort, the logarithm of the time in

22I developed and estimated a version of the model with Academic Support as an additional teaching input.
However, this input does not show significant variation conditional on the other inputs and the teaching skills.

23The classroom environment effect is also measured by the measures of the classroom management practice
since the latent practice depend on the classroom environment and the teachers’ effort.

24Twenty-seven percent of the sample has information on the prior year’s science test score.
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Table 2.2: Measures of Model Variables

Variable: Students’ Initial Knowledge, ln Kic j

Measures: 5-th grade math score in state test (administrative record, standardized). 5-th
grade science score in state test(administrative record, standardized).

Variable: Students’ Home Environment, ln Hic j

Measures: number of books at home (student survey, in logs, standardized). Number
of computers at home (student survey, in logs, standardized). Parent’s level of education
(student survey).

Variable: Classroom Environment, ln µMc j

Measures: Classroom Size (in logs)

Variable: Students’ Effort, ln Lic j

Measures: Time in a week spent doing homework for this class (student survey, in
logs). Percent of the homework completed (student survey). Stop trying when the work
gets hard (student survey, reverse coded).

Variable: Classroom Management Practice, ln Mc j

Measures: students in this class treat the teacher with respect (student survey). Student
behavior in this class is under control (student survey). My classmates behave the way
my teacher wants them to (student survey).

Variable: Teacher Managerial Effort, ln EMc j

Measures: my teacher doesn’t let people give up when the work gets hard (student
survey). In this class, my teacher accepts nothing less than our full effort (student survey).
My teacher pushes me to become a better thinker (student survey).

Variable: Student Knowledge, ln Yic j

Measures: 6-th grade math score in state test (administrative record, standardized).
BAM score (supplemental test, standardized).

a week spent doing homework is an ordinal variable with seven categories.25

The measurements for teacher effort and classroom management practice come from the
Tripod 7Cs and are treated as ordered categorical measures with a 5-point scale, ranging from
“totally untrue” to “totally true.” Finally, I use the logarithm of classroom size as a measure
of the latent classroom environment effect.26 The Appendix Table A.A.2 reports the mean and
standard deviation of continuous measures and the proportion of students who answered each
category of the ordinal measures, as well as the number of observations for each measure.

25The cutoffs of the logarithm of the time in a week spent doing homework are known, which allows me to
recover the variance of the error term for this measure.

26The classroom size is the only measure that is not defined at the student level.
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2.7 Estimation Results

The model contains 1,287 parameters, including 13 parameters of the utility and production
functions, 57 parameters of the measurement system, and 298 parameters for the teachers’
endowments; the rest of the parameters relate to the students’ endowments. The sufficient
conditions for an interior solution for teachers and students are not binding at the estimated
parameters.

Table 2.3: Production and Utility Functions Parameter Estimates

Structural Parameters
Value SE

(1) Knowledge, Yic j:
Coefficient on students’ initial knowledge: αK .949 .017
Coefficient on classroom initial knowledge: αK̄ -.134 .017
Coefficient on students’ effort: αL .318 .016
Coefficient on classroom management: αM .083 .007
Interaction on classroom management: αMK -.074 .002
Interaction on general teaching skill: αGK .111 .022

(2) Students’ Utility:
Coefficient on students’ home environment: βH -.508 .024
Coefficient on classroom management: βM -.192 .014
Students’ preference for achievement: γL .059 .013
Intercept: log(cL) -1.675 .057

(3) Classroom Management Practice, Mc j:
Coefficient on teachers’ effort: δE 1.429 .018

(4) Teachers’ Utility:
Preference for students’ achievement: γE .799 .011
Interaction parameter: γEK .13 .008

Table 2.4: Summary Statistics of the Educational Inputs and Achievement

Mean Standard Deviation
Student Knowledge, ln Yic j -.009 .883
Student Initial Stock of Knowledge, ln Kic j -.023 .906
Student Home Environment, ln Hic j -.039 .565
Student Effort, ln Lic j .542 .362
Classroom Stock of Initial Knowledge, ln K̄c j -.061 .714
Classroom Home Environment, ln H̄c j -.056 .424
Classroom Environment, ln µMc j -.818 .531
Classroom Management Practice, ln Mc j .209 .675
Teacher Effort, ln EMc j .719 .393
Teacher General Teaching Skill, ln θG j -.175 .226
Teacher per-unit Effort Cost, ln θE j -2.311 .371

Table 3.8 presents estimates of the structural parameters of the production and utility func-
tions. Estimates for the production function appear in the first panel of table 3.8. The point
estimates indicate that the students’ initial knowledge is a positive and significant determinant
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of academic achievement (αK > 0). As seen in Table 2.4, the student’s initial stock of knowl-
edge is the educational input that varies the most (i.e., the standard deviation is .906). All else
equal, increasing the (log) initial stock of knowledge by one standard deviation above the mean
increases the mean log achievement by .859 points (.972 of a standard deviation of the latent
achievement). However, this effect is ameliorated by the averaged classroom initial knowledge
(αK̄ < 0): on average, increasing the classroom average initial knowledge, ln K̄c j, by one stan-
dard deviation above the mean decreases the log achievement by .096 points (.109 of a standard
deviation).

Students’ achievement increases with their studying effort (αL > 0). As seen in Table 2.4,
the mean student log effort is .542, which corresponds to 1.72 hours a week doing homework
for the class. On average, increasing student log effort by one standard deviation above the
mean increases the log knowledge by .115 points (.13 of a standard deviation).

The parameter governing the marginal product of the classroom management practice,
αMic j, is, on average, equal to .083, and decreases with the student stock of initial knowl-
edge (i.e., αMK = −.074). To give a sense of the magnitude of this parameter, first I calculate
the impact of a one standard deviation increase in the log classroom management practice if
the log initial stocks of knowledge were at the mean. This change results in a .056 points
(.063 of a standard deviation) increase in the average log knowledge. If the log initial stock of
knowledge were one standard deviation below the mean, the average increase would be .150
points (.17 of a standard deviation) instead. In contrast, if the log initial stock of knowledge
were one standard deviation above the mean, the mean log knowledge would increase by only
.016 points (.018 of a standard deviation).

The parameter governing the marginal product of general teaching skill increases with the
students’ stock of initial knowledge (i.e., αGK = .111). Increasing the log general teaching skill
by 1 standard deviation for a student whose log initial stock of knowledge is at the mean results
in a .226 points increase in log knowledge (.256 of a standard deviation), while this increase
would be .249 points (.282 of a standard deviation) if the student were one standard deviation
above the mean instead. Accordingly, all else equal, a knowledgeable student benefits more
from teachers’ general teaching skill and less from the classroom management practice.

The estimated parameters for the students’ preferences and cost function appear in the
second panel of table 3.8. To ease their interpretation, I replace the point estimates in the
students’ best response function in Equation (2.9):

ln Lbr
ic j =.538 + .056 ln Kic j − .01 ln K̄c j + (.06 + .01 ln Kic j) ln θG j+

(.20 − .00 ln Kic j) ln Mc j + .52 ln Hic j.
(2.25)

The students’ preference for achievement parameter γL is positive but close to zero, which
implies that students do not respond much to changes in their initial knowledge, the averaged
classroom initial knowledge, and general teaching skill. However, the estimates indicate that
students present strategic complementarity with teachers’ effort. A better classroom manage-
ment practice considerably increases learning effort through a reduction in study cost, as shown
by the negative and significant coefficient βM. All else equal, increasing the classroom man-
agement practice by one standard deviation above the mean results in .248 hours increase in the
mean study hours. The parameter governing the marginal product of the home environment,
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βH, is negative, which indicates that students’ effort increases with a more supportive home
environment due to a reduction of the utility cost of studying. All else equal, increasing home
environment by one standard deviation above the mean increases mean students’ effort by .572
hours.

The third panel of table 3.8 presents the teacher effort parameter, δE, in the classroom
management practice Equation (2.2). The positive δE implies that the classroom management
practice increases with teacher effort. Finally, the fourth panel of table 3.8 shows that teachers’
preference for students’ knowledge, γEc j, is, on average, equal to .79, and increases with the
initial classroom knowledge (γEK = .13), meaning that the teachers’ marginal utility from
students’ achievement is higher in classrooms with knowledgeable students.27

Table 2.5 shows the determinants of students’ endowments. All else equal, students’ initial
knowledge is higher for younger students and those who are gifted, as well as those with
higher twice-lagged math scores. In contrast, all else equal, African American and Hispanic
students, as well as English language learners, and students with special education status have
lower initial knowledge. There is no significant difference due to gender in the initial stock
of knowledge. The results are similar for the determinants of students’ home environments.
Additionally, Table 2.5 shows that there exists a positive correlation between the unobserved
shocks of the students’ endowments, ln ξKic j and ln ξHic j.

Table 2.5: Determinants of Student Endowments

Structural Parameters
Initial Knowledge, Kic j Home Environment, Hic j

Value SE Value SE
Exogenous Student Variables

Age -.041 .006 -.064 .01
Gender:Male -.001 .012 -0.001 .016
Race: African American -.155 .013 -.198 .023
Race: Hispanic -.032 .015 -.32 .022
Race: Asian .132 .026 -.154 .035
Gifted Status .138 .02 .052 .03
Special Education -.083 .022 -.014 .035
English Language Learner -.123 .019 -.042 .029
Twice Lagged Math Score .529 .007 .058 .011

Unobserved Shocks
S D(ln ξKic j) .342 .0142
S D(ln ξHic j) .379 .007
Corr(ln ξKic j, ln ξHic j) .108 .007

Table 2.6 presents a correlation matrix of teachers’ and students’ endowments averaged at
the classroom level. For the teachers’ endowments, the correlation shows that those who are
more skilled at increasing students’ academic achievement (i.e., a higher ln θG j) tend to have

27I performed a likelihood ratio test forcing the interaction parameters αGK , αMK , and γEK to be equal to zero.
I reject the hypothesis that these restrictions are valid at all standard confidence levels.
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a higher per-unit cost of effort (i.e., a higher ln θE j). For the classrooms’ endowments, the
correlations show that those with a higher initial knowledge (i.e., a higher ln K̄c j) tend to have
students with better home environments (i.e., a higher ln H̄c j). However, these two classrooms’
endowments are not strongly correlated with the classroom environment, ln µMc j.

Table 2.6 also shows that teachers with higher general teaching skill tend to be sorted into
classrooms with higher initial knowledge and better home environments. A similar pattern can
be seen for teachers with a higher per-unit cost of effort. However, teachers with higher general
teaching skill tend to be sorted to classrooms with a slightly worse classroom environment ,
while teachers with a lower effort cost tend to be assigned to classrooms with a worse classroom
environment. Finally, Table A.A.1 in the appendix shows the parameters of the measurement
system.

Table 2.6: Correlation Matrix of Teachers’ and Averaged Stu-
dents’ Endowments

ln θG ln θE ln Kc j ln Hc j ln µM

ln θG (.051)
ln θE .342 (.138)
ln Kc j .077 .050 (.51)
ln Hc j .145 .132 .667 (.18)
ln µM -.052 .348 .043 .001 (.282)

Note: The elements in parenthesis on the main diagonal are the variance of the
endowments

2.7.1 Model Fit

Table 2.7 presents statistics for each measurement and compares them to the predicted statis-
tics from simulations of the model. I report the mean and standard deviation of continuous
measures and the proportion of students who answered each category of the ordinal measures.
Moreover, the last column of table 2.7 reports the fraction of variation of each measure that is
due to the variation in its corresponding latent factor (i.e., the signal ratio).28 Overall, Table 2.7
shows that the model closely fits the statistics.

The first panel shows the statistics for the measures of academic achievement. As seen,
there is no meaningful difference between the actual and simulated statistics for both measures.
However, the measures differ in the fraction of the variance that comes from variation in the
latent factor. In particular, latent achievement accounts for 79 percent of the state test score
variation, while it accounts for 62 percent of the variation in the BAM test.

The second and third panels of table 2.7 show statistics for the measures of students’ en-
dowments. Similar to the measures of academic achievement, the model fits the mean and
the standard deviation of both measures of students’ initial knowledge very well. The latent

28The fraction of variation explained by the model is defined as λ2
dmσ

2
True

λ2
dmσ

2
True+σ

2
ϵ
. Ordered categorical measures are

treated as discrete measures of a continuous latent variable, with total variation given by the variation explained
by the model (i.e., λ2

dmσ
2
True) plus the variation in the measurement error (i.e., σ2

ϵ ).
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factor for students’ initial knowledge explains 82 percent of the lagged math test score vari-
ation. In comparison, it accounts for 60 percent of the variation of the lagged science test
score. These results highlight the importance of treating educational inputs as latent factors;
not accounting for measurement error can generate biased estimates of the effect of students’
initial knowledge on other educational inputs and, ultimately, students’ achievement. As seen
in the third and fourth panels, the model also fits very well with the statistics for students’ home
environment and effort.

The last two panels of table 2.7 compare the statistics for classroom management practice
and teachers’ effort. The first measure of classroom management practice, “students treat the
teacher with respect,” has five categories ranging from “totally untrue” to “totally true,” and
the model fits the proportions very well. The fraction of variation explained by the model is 31
percent, which can partially be due to the measurement error term being defined at the student
level while the latent factor is defined at the classroom level. The fits for the other measures
of classroom management practice are similar, but they are noisier than the first measure. The
fit for the measures of teacher effort is also good. However, the fraction of variation explained
by the model is smaller. The least noisy measure is “my teacher pushes me to become a better
thinker,” for which the latent effort explains 15 percent of the total variation.

Table 2.7: Model Fit: Mean and Standard Deviation

Actual Model

Mean SD Mean SD λ2
dmσ

2
True

σ2
Total

(1) Measures of ln Yic j

State Test 0 1 -.001 .997 .786
BAM 0 1 -.002 1.001 .621

(2) Measures of ln Kic j

Previous Year Math 0 1 -.009 1.001 .821
Previous Year Science 0 1 -.008 .998 .602

(3) Measures of ln Hic j

Number of Books 0 1 -.012 .993 .320
Number of Computers 0 1 -.006 .991 .244
Parents’ Education .319

Did not finish HS 19.8 19.97
High School 20.86 21.21
Some College 13.66 13.89
4-year College 18.41 18.06
Professional or Graduate degree 27.27 26.87

(4) Measures of ln Lic j

log Hours/week of study .845 .84 .855 .82 .15
Homework Completed: .137

None of it/Never Assigned 3.6 3.48
Some of it 11.38 11.38
Most of it 23.23 23.70
All 53.74 53.22
All plus some extra 8.05 8.22

Stop Trying: .116
Totally Untrue 4.54 4.51
Mostly Untrue 5.72 5.69
Somewhat Untrue/True 14.77 14.99
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Table 2.7: Model Fit: Mean and Standard Deviation

Actual Model

Mean SD Mean SD λ2
dmσ

2
True

σ2
Total

Mostly True 22.65 22.76
Totally True 52.31 52.05

(5) Measures of ln Mc j

Students Treat with Respect: .313
Totally Untrue 6.92 6.83
Mostly Untrue 9.36 9.35
Somewhat Untrue/True 26.41 26.71
Mostly True 32.22 32.11
Totally True 25.10 25.00

Behavior under control: .228
Totally Untrue 12.56 12.64
Mostly Untrue 12.96 12.74
Somewhat Untrue/True 26.89 27.06
Mostly True 26.31 26.45
Totally True 21.28 21.11

Classmates behave: .279
Totally Untrue 14.76 14.72
Mostly Untrue 14.79 14.78
Somewhat Untrue/True 31.02 31.36
Mostly True 25.26 24.95
Totally True 14.17 14.19

(6) Measures of ln EMc j

Doesn’t let give up: .134
Totally Untrue 3.92 3.92
Mostly Untrue 4.21 4.11
Somewhat Untrue/True 16.44 16.38
Mostly True 25.41 25.53
Totally True 50.02 50.05

Better Thinker: .152
Totally Untrue 6.22 6.19
Mostly Untrue 6.12 6.10
Somewhat Untrue/True 20.61 20.72
Mostly True 26.33 26.40
Totally True 40.72 40.59

Accepts Nothing Less: .126
Totally Untrue 3.78 3.81
Mostly Untrue 4.49 4.44
Somewhat Untrue/True 19.64 19.50
Mostly True 26.79 26.98
Totally True 45.31 45.28

The model aims to predict the impact of commonly suggested reassignment policies, such
as transferring teachers with high value-added estimates to low-performing classrooms. Thus,
it is important to check whether the model captures moments that relate to these teachers and
classrooms. Table 2.8 compares the actual and predicted means of selected measures, con-
ditional on being below or above mean characteristics of the classrooms and teachers. The
selected measures are the math score of the state test (a measure of students’ achievement), the
lagged score in the math state test (a measure of initial knowledge), the number of books in the
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Table 2.8: Model Fit: Conditional Means

Actual Model
Below Mean Above Mean Below Mean Above Mean

(1) Classroom Averaged Lagged Score:
State Test Score (Yic j) -.451 .648 -.474 .636
Lagged Test Score (Kic j) -.495 .709 -.522 .689
Number of Books (Hic j) -.247 .325 -.241 .290
log Hours/week of Study (Lic j) .690 1.052 .705 1.018
Students Treat with Respect (Mc j) 3.479 3.742 3.511 3.692
Doesn’t let give up (EM,c j) 4.078 4.208 4.086 4.202

(2) Classroom Averaged Number of Books:
State Test Score (Yic j) -.398 .439 -.387 .416
Lagged Test Score (Kic j) -.406 .451 -.368 .396
Number of Books (Hic j) -.373 .380 -.397 .392
log Hours/week of Study (Lic j) .646 1.051 .669 1.023
Students Treat with Respect (Mc j) 3.469 3.719 3.517 3.669
Doesn’t let give up (EM,c j) 4.054 4.216 4.089 4.188

(3) Estimated Value-Added :
State Test Score (Yic j) -.222 .256 -.251 .269
Lagged Test Score (Kic j) -.107 .086 -.06 .054
Number of Books (Hic j) -.017 .011 -.069 .068
log Hours/week of Study (Lic j) .807 .893 .772 .923
Students Treat with Respect (Mc j) 3.463 3.763 3.401 3.793
Doesn’t let give up (EM,c j) 4.025 4.259 4.023 4.26

(4) Proportion of Minority :
State Test Score (Yic j) .408 -.359 .429 -.383
Lagged Test Score (Kic j) .383 -.335 .386 -.348
Number of Books (Hic j) .311 -.307 .309 -.309
log Hours/week of Study (Lic j) 1.062 .633 1.014 .680
Students Treat with Respect (Mc j) 3.700 3.488 3.675 3.512
Doesn’t let give up (EM,c j) 4.205 4.065 4.149 4.127

household (a measure of the home environment), the time in a week spent doing homework (a
measure of students’ effort), the categorical variable “students treat the teacher with respect”
(a measure of the classroom management practice), and “the teacher doesn’t let students give
up when the work gets hard” (a measure of teacher effort).29 Given the model’s parametric
restrictions, this is a challenging test.

Classroom-Averaged Lagged Score: The first panel of Table 2.8 shows the means of the
selected measures, conditional on being assigned to classrooms that are below or above the
mean classroom-averaged lagged math state test score. Overall, Panel (1) shows that the model
fits well with the relationship between the selected measures and the averaged classrooms’
lagged score. For example, the first row of the first column shows that the actual mean state
test score for classrooms below the mean is −.451, while the model predicts −.474. Meanwhile,
the first row of the second column shows that the actual mean state test score for classrooms
above the average is .648, while the model predicts .636.

29In Table 2.8, the measures of classroom management and teacher effort are treated as continuous with values
ranging from 1 (Totally Untrue) to 5 (Totally True).
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Classroom-Averaged Number of Books: The second panel of Table 2.8 shows the means
of the selected measures, conditional on being below or above the mean of the classroom-
averaged number of books at home, which is a measure of the home environment. This is a
demanding test because the home environment enters the model through the students’ cost of
effort only. Similar to Panel (1), the model fits very well with the conditional moments.

Estimated Value-Added: In the third panel of Table 2.8, I estimate a standard value-added
specification of teachers’ effectiveness using teacher fixed effects.30 I then estimate the mean of
the selected measures, conditional on being assigned to teachers who are below/above the mean
value-added score. The panel tests the ability of the model to replicate correlation patterns of
the commonly used value-added estimator. As in the previous panels, the model predicts the
patterns in the data. In particular, the actual mean state test score for students assigned to
teachers below the value-added mean is −.222, while the model predicts −.251. Similarly,
the actual mean for teachers above the value-added mean is .256, while the model predicts
.269. Table A.A.3 in the Appendix shows the fit of the value-added regression. As shown, the
model fits the coefficients of the regression, the proportion of variation being explained, and
the coefficient of variation of the value-added estimates.

Proportion of Minority Students: Lastly, the fourth panel of Table 2.8 shows the means of
the selected measures, conditional on being below or above the mean classroom proportion of
minority students, or students who are either African American, Hispanic, or Native Ameri-
can. Since students’ ethnicity only appears in their initial endowments and not directly in the
achievement function, this is also a demanding test. As in the previous panels, Panel (4) shows
that the model fits well with the patterns observed in the data.

2.7.2 Out-of-Sample Fit

The joint estimation of the production and behavioral parameters with the flexibly-correlated
latent endowments ameliorates the sources of bias due to the non-random sorting of teach-
ers to classrooms. However, a prevalent concern in the teachers’ effectiveness literature is
that teachers may be consistently assigned to classrooms based on unobserved traits of their
students, which in turn may generate biased estimates of teachers’ effectiveness (see, for exam-
ple, Rothstein (2017)). The main goal of the METD study was to test the validity of commonly
used measures of teachers’ effectiveness by eliminating the systematic sorting of teachers to
classrooms (Kane et al., 2013). This was operationalized by randomly assigning teachers to
classrooms in the second year of the program (2010-2011) and testing the validity of different
measures that were estimated using the data from the first year of the program (2009-2010).
This feature of the METD allows me to explore whether my model can predict different statis-
tics using from the randomized data.

30The value-added specification controls for the students’ observable characteristics (excluding the twice-
lagged math score), the lagged math state test score, the previous variables averaged at the classroom level, and
the classroom size, as well as teacher fixed effects to measure teachers’ effectiveness.
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Table 2.9: Out-of-Sample Fit: Mean and Standard Deviation

Actual Model
Mean SD Mean SD

(1) Students’ achievement:
State Test Score .044 .965 .073 .975

[.004,.084]
BAM socre .044 1.007 .015 .982

[-.002,.089]
(2) Students’ Effort

log Hours/week of study .859 .771 .865 .825
[.824,.893]

Homework Completed 3.599 .917 3.528 .919
[3.557,3.639]

Stop Trying 4.215 1.089 4.145 1.123
[4.166,4.263]

(3) Classroom Management Practice:
Behavior under control 3.447 1.272 3.402 1.284

[3.390,3.504]
Classmate behave 3.172 1.204 3.194 1.249

[3.118,3.225]
(4) Teachers’ Effort :

Doesn’t let give up 4.229 1.070 4.178 1.052
[4.181,4.276]

Accept Nothing Less 4.247 .960 4.089 1.059
[4.204,4.290]

Note: 95% confidence intervals reported under each estimated mean coefficient. Sample consist of
100 teachers assigned to 2,274 students in 100 classrooms.

The new sample consists of 2,274 students, 100 classrooms, and 100 teachers. Thus, this
is a challenging test because the sorting mechanisms between teachers and classrooms change,
and the randomized data consists of a subset of the teachers included in the estimation sample.

Before conducting the validation, I recover the fixed effects parameters of the second-year
classrooms. In particular, I recover µKc j and µHc j, defined in Equation (2.1), using the lagged
math score and the number of books at home. I use the first measure of the classroom manage-
ment practice to recover the classroom environment effects, µMc j in Equation (2.2). To perform
the out-of-sample validation, I use the observed characteristics of the new students and the
full set of estimated parameters to predict the mean and standard deviation of the unused mea-
sures of students’ knowledge, students’ effort, classroom management practice, and teachers’
effort.31

As seen in Table 2.9, the model predicts the mean and standard deviation of the measures
very well. The model tends to slightly underpredict the mean of the measures of teachers’

31The measure of teachers’ effort, “My teacher pushes me to become a better thinker”, is not available in the
second year of the program.
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(a) Overall Effect (b) Effect Decomposition

Figure 2.1: Achievement Gains due to Changes in the General Teaching Skill

effort, as well as the second and third measures of students’ effort. However, the predicted
mean of the measures of academic achievement, the first measure of students’ effort, and the
measures of managerial practice all lie within the 95% confidence interval of the sample means.

2.8 Comparative Statics

A crucial aspect of my theoretical model is that it allows teachers to have comparative ad-
vantages in teaching certain types of students. In what follows, I use the estimated model to
study whether some classrooms may benefit more from a particular type of teacher. I use the
classroom achievement gain, Equation (2.17), to summarize the effects of changing teachers’
general teaching skills and marginal costs of effort on academic achievement considering the
behavioral responses of teachers and students. To explore the heterogeneous effects of these
changes, I evaluate the gains at different points of the classroom initial knowledge distribution.
In particular, I calculate the gains of reassignment for values of ln K̄c j ranging from 1.5 stan-
dard deviations below the mean (i.e., at ln K̄c j = −1.132), to 1.5 standard deviations above the
mean (i.e., at ln K̄c j = 1.01).

To better understand the importance of increasing students’ access to teachers with higher
general teaching skills, I study the gains of replacing an average teacher (with average endow-
ments) with a teacher who has a general teaching skill that is two standard deviations above
the mean. The first panel from Figure 2.1 graphs the gains from the proposed reassignment
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against the initial classroom knowledge (X-axis). The solid line shows the model-predicted
gains. The dashed line is the gain, ignoring the heterogeneity in the parameters governing
the marginal product of the teaching inputs and teachers’ preferences and equalizing them to
their corresponding means. As seen, the proposed reassignment produces higher gains in class-
rooms with a higher initial knowledge; ignoring the heterogeneity in the parameters overstate
the gains in classrooms with a below-average initial knowledge, while the opposite is true for
classrooms with an above-average initial knowledge. On an average classroom, the proposed
reassignment increase achievement by .55 standard deviations. If the initial classroom knowl-
edge was set to be 1.5 standard deviations below the mean, the reassignment would increase
the classroom’s achievement by .51 standard deviations. In contrast, classrooms with an initial
knowledge that is 1.5 standard deviations above the mean would increase their knowledge by
.565 standard deviations due to the reassignment. Overall, Figure 2.1 suggests that increas-
ing the general teaching skill is a practical mechanism to increase students’ achievement, and
classrooms with a higher initial knowledge benefit more from the proposed reassignment.

To better understand the mechanisms behind the achievement gain, Panel (b) from Figure
2.1 decompose the overall gain into the effect of changing students’ and teachers’ efforts, as
well as the direct effect of increasing the general teaching skill. The dashed line in Panel
(b) shows the direct effect of increasing the general teaching skill by two standard deviations
above the mean. As seen, this effect is higher in classrooms with higher initial knowledge.
This is due to the higher marginal product of the general teaching skill, captured by αGc j,
in classrooms with higher initial knowledge. Similarly, the dotted line shows that the gains
from the increased students’ effort are higher in classrooms with higher initial knowledge. In
contrast, the solid line shows that the gains due to changes in teachers’ efforts decrease with the
initial classroom knowledge. This decrease is due to the lower marginal product of the teaching
effort in classrooms with higher initial knowledge, which ameliorates the overall gains.

The first panel of Figure 2.2 shows the gains from replacing an average teacher with a
teacher who has a marginal cost of effort that is two standard deviations below the mean. As
seen by the intersection between the solid and dashed line, an average classroom can increase
its knowledge by .195 standardized points due to the reassignment. However, this average
masks important heterogeneity in the gains. In particular, a classroom that is 1.5 standard de-
viations below the mean would gain .313 standardized points due to the reassignment, while
a classroom that is 1.5 standard deviations above the mean would only gain .087 points. The
second panel of Figure 2.2 shows that both efforts’ effects are decreasing on the initial class-
room knowledge. Overall, Figure 2.2 shows that decreasing teachers’ cost of effort leads to a
considerable increase in students’ achievement. As opposed to the general teaching skill, a re-
duction in teachers’ per-unit cost of effort has a bigger impact in classrooms with lower initial
achievement.

An important feature of the theoretical model is that it predicts the counterfactual amount of
effort teachers would exert in the reassigned classroom. Not accounting for these endogenous
choices may generate biased predictions of the achievement gains. To give a better sense of the
impact of the efforts’ adjustments, I contrast the equilibrium gains of reassignment from Figure
2.1 and Figure 2.2, with the gains ignoring the endogenous effort adjustments of the reassigned
teacher. In particular, I set the reassigned teacher’s effort equal to the effort she would exert in
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(a) Overall Effect (b) Effect Decomposition

Figure 2.2: Achievement Gains due to Changes in the Marginal Cost of Effort

(a) Change in General Teaching Skill (b) Change in Marginal Cost of Effort

Figure 2.3: Gains of reassignment: Baseline Versus Fixed Teaching Effort
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an average classroom. The first panel from Figure 2.3 graphs the achievement gains from in-
creasing the general teaching skill by two standard deviations above the mean. The dashed line
represents the baseline case, taking into account teacher effort responses, while the solid line
shows the gains, ignoring teacher effort adjustments. As seen by the solid line, not accounting
for teaching effort adjustments overstate the achievement gains by .10 standard deviations in
classrooms that are 1.5 standard deviations below the mean and understate the gain by 0.01
standard deviations in classrooms that are 1.5 standard deviations above the mean.32 These
results suggest that not accounting for the teaching efforts’ adjustments may generate large
biases, especially for classrooms at the lower tail of the initial knowledge distribution. The
second panel from Figure 2.3 shows a similar pattern from bringing a teacher with a marginal
cost of effort that is two standard deviations below the mean, but the biases are smaller.

2.9 Counterfactual Simulations

I now use the estimated model to simulate policy-relevant reassignments of teachers to low-
performing classrooms. The purpose of this exercise is twofold: to study the extent to which
standard value-added models overpredict teachers’ effectiveness in low-performing classrooms
and to show how much could be gained by considering the endogenous interactions between
teachers and students. The counterfactuals are based on reassignment interventions aimed at
reducing the achievement gap between disadvantaged students and the rest. These interventions
targeted classrooms that had low average test scores in the past or a high proportion of minority
students. Additionally, I consider the commonly suggested intervention of replacing the least-
effective teachers, who usually teach in low-performing classrooms, with the most-effective
teachers, as measured by their value-added scores.

In the first counterfactual, I reassign teachers who are measured as highly effective using
value-added estimates to classrooms ranked at the bottom of the (simulated) distribution of
lagged math test scores. This counterfactual is motivated by a recent policy intervention, the
Talent Transfer Initiative (TTI) (Glazerman et al., 2013), which provided incentives to highly
effective teachers, based on value-added measures, to transfer to low-achieving schools, as
measured by the previous year’s achievement. The TTI was implemented in 114 schools in
ten districts across seven states over two academic years, 2009-2010 and 2010-2011. The
program targeted teachers in the top 20 percent of the value-added distribution and schools
with the lowest achievement in the district. The TTI used an experimental design, where the
student achievement in treated schools was compared to achievement in comparable schools
in a control group. However, the TTI did not show a significant impact of the transfers on the
math achievement of middle school students (6th to 8th grade).

In the second counterfactual, I reassign teachers in the top 20 percent of the value-added
distribution to classrooms with high proportions of minority students. This counterfactual
is motivated by recent evidence from the Intensive Partnerships for Effective Teaching (IP)
initiative (Stecher et al., 2018), which was designed to increase low-income minority students’

32The solid line becomes increasing when the effect of a higher general teaching skill starts to dominate the
other effects.
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access to effective teachers by, among other things, revising recruitment and hiring practices
and adjusting placement and transfer procedures.33 As a whole, the IP initiative did not have
a significant impact on low-income minority students’ achievement. Though multiple factors
could explain this result, I examine one potential explanation: the possibility that teachers who
are measured as highly effective using a value-added specification may not perform as well in
classrooms with higher proportions of minority students, who tend to have lower initial stocks
of knowledge.34

The final counterfactual is driven by a commonly suggested policy of replacing teachers
based on their value-added estimates (Hanushek, 2011; Chetty et al., 2014b). Teachers with
lower value-added estimates tend to be sorted into classrooms with high proportions of low-
achieving students. To keep the analysis comparable to the previous counterfactuals, I select
the bottom 20 percent teachers of the simulated value-added distribution and replace them with
teachers in the top 20 percent of the same distribution following a similar descending order.
Accordingly, the top teachers selected for this counterfactual are the same as the top teachers
from the previous counterfactuals.

For the first two counterfactuals, I first simulate the model and estimate teachers’ value-
added using fixed effects.35 This closely matches the commonly used specifications in the
literature. Second, I rank teachers based on their estimated value-added and select the top 20
percent in each district, 30 teachers in total. Third, I rank classrooms based on the selection
criteria and keep the first thirty (top/bottom 10% of the classroom distribution). Fourth, I sort
the selected teachers into the selected classrooms in decreasing order (i.e., the best teacher to
the worst classroom, the second-best teachers to the second-worst classroom, etc.). Fifth, for
the selected classrooms, I predict the change in achievement from the standard value-added
model, which equals the difference between the value-added estimates of the selected teachers
and the value-added estimates of the original teachers (see Equation (2.19)). Finally, I reassign
the selected teachers to the selected classrooms and simulate the model again to obtain the
performance of the selected classrooms after the transfers, considering the behavioral response
of teachers and students. For the final counterfactual, I select the bottom 20 percent teachers of
the simulated value-added distribution and replace them with teachers in the top 20 percent of
the same distribution following a similar descending order. I repeat this process 100 times and
report the averaged results.

33The IP initiative defines low-income as eligible for free or reduced-price lunch, and minority students as
those classified as Black, Hispanic, or Native American.

34I focus only on minority students because reduced-price lunch status is missing for one of the districts.
35The value-added specification controls for the students’ observable characteristics (excluding the twice-

lagged math score), the lagged math state test score, the previous variables averaged at the classroom level, and
the classroom size.
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Table 2.10: Achievement Gap

Coefficient SE
(1) Lowest Lagged Math Score

Achievement Gap -1.052 .040
(2) Highest Share of Minority Students

Achievement Gap -0.586 0.028
(3) Bottom 20 percent Teachers

Achievement Gap -0.667 0.040
Note: Each row is a separate regression. The dependent variable is math test score

and sample size is 6,603 students. Each regression controls for an indicator of whether
the student belongs to a classroom at the bottom 20 percent of the lagged score (Panel
1), the top 20 percent of the minority distribution (Panel 2), and bottom 20 percent of
the value-added distribution (Panel 3).

Table 2.10 shows the achievement gap between students in low-performing classrooms
and other students in the sample. As seen in the first panel of Table 2.10, the average math
test score of students in classrooms at the bottom 10 percent of the lagged score distribution
is approximately 1.05 of a standard deviation below the rest of the students in the sample.
The second panel of Table 2.10 shows the average state test score for classrooms with a high
proportion of minority students is approximately .59 standard deviations below the rest. The
third panel of Table 2.10 shows that students assigned to teachers at the bottom 20 percent of the
value-added distribution perform approximately .66 standard deviations below other students’.
Overall, these statistics highlight considerable gaps between groups.

The first row of Table 2.11 summarizes the results of the counterfactual reassignment. The
first column shows that the predicted increase in students’ math scores due to the reassignment
is .385 standard deviations. However, as shown in the second column, the increase after al-
lowing for teachers’ and students’ behavioral responses is .247 of a standard deviation, which
is .138 standard deviations points below expected. The increase is considerably smaller than
was initially predicted by the value-added estimates. Thus, the simulated intervention reduces
approximately one-quarter of the achievement gap (.235 percent of the achievement gap).

Table 2.11: Counterfactual Reassignment of Teachers to Classrooms

Simulations
Value-Added Change Unrestricted Change

(1) Reassignment Using Value-Added
Bottom 20 percent Lagged Math Score .385 .247
Top 20 percent Minority .345 .235
Bottom 20 percent Teachers .657 .507

(2) Reassignment Using Model
Bottom 20 percent Initial Knowledge - .354
Top 20 percent Minority - .321
Bottom 20 percent Teachers - .570

To examine the potential gains of transferring teachers to the selected classrooms, I sim-
ulate the increase in students’ achievement if teachers were reassigned using the structural
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model instead of their estimated value-added. This simulation may provide better outcomes
because the model considers changes in the marginal product of the inputs, effort adjustments,
and the full set of students’ and classrooms’ endowments. To find the matches, I first simu-
late the model for each classroom– teacher combination within each district and calculate the
expected classroom performance. I then choose the most effective teacher for each selected
classroom. I simulate the model under the new assignments and estimate the potential gains
for the selected classrooms. The first row of the second panel of Table 2.11 shows the result of
this intervention. The reassignment using the model increases students’ math scores by .354
standard deviations, or equivalently, reduces approximately one third of the achievement gap,
which is similar to what was predicted by the wrongly specified value-added specification, but
considerably higher than (.107 standard deviations above) the actual change when using the
value-added specification instead.

For the second counterfactual, I follow a similar procedure to the previous one, but this time
I rank classrooms based on the proportion of minority students. Similar to the first counterfac-
tual, the second row of table 2.11 shows that the expected achievement gain using the value-
added specification is .345 standard deviations, which is considerably higher than the actual
gain shown in the second column (.235 standard deviations, or 40 percent of the achievement
gap). The second panel shows that when the structural model is used to perform the reassign-
ments, the potential gain for the selected classrooms would be .321 standard deviations, which
represents a reduction of approximately 55 percent of the achievement gap.

The third row of the first panel of Table 2.11 summarizes the results of replacing teachers
based on value added. The first column shows an expected increase of .66 standard deviations.
In contrast, the second column shows that the actual increase is .513 standardized points (77
percent of the achievement gap) which is .147 standardized points below what is predicted by
the value-added estimates. However, the optimal assignment increases the selected students’
achievement by .570 standardized points,

As seen in Table 2.11, all counterfactuals show a gap between the predicted and actual
change in students’ achievement when using the value-added specification. This gap may be
due to several factors. First, the value-added specification does not control for students’ home
environments and classroom environments, which, as shown in Table 2.6, are correlated with
the teachers’ endowments. Not accounting for these endowments may bias the estimates of
teachers’ effectiveness due to omitted variable bias. Second, the impact of the students’ lagged
math scores is downward biased due to measurement error, which may also affect the estimates
of teachers’ effectiveness. Finally, the linear value-added model is misspecified because it does
not allow the contribution of the teachers’ inputs to vary across classrooms.

Table 2.12: Addressing Omitted-Variable Bias and Measurement Error

Simulations
Value-Added Change Unrestricted Change

Reassignment Using Value-Added
Bottom 20 percent Lagged Math Score .353 .287
Top 20 percent Minority .317 .268
Bottom 20 percent Teachers .617 .601
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To better understand the importance of these factors, Table 2.12 shows the results of esti-
mating teachers’ value added considering the full set of students’ and classrooms’ latent en-
dowments. Accordingly, any discrepancy between the predicted and actual changes in students’
performance would be due to changes in the marginal product of the teaching inputs and effort
adjustments. Similar to Table 2.9, the first row of Table 2.12 shows the predicted and actual
changes in students’ achievement for classrooms at the bottom 20 percent of the lagged score
distribution. As shown, the actual change in students’ achievement is .287 standard deviations,
which is .04 standard deviations higher than the results from Table 2.9, but still, .067 stan-
dard deviations lower than the gains when the structural model is used instead. The results for
classrooms at the top 20 percent of the minority distribution follow a similar pattern. The third
row of Table 2.12 shows that after controlling for all students’ and classroom endowments,
the predicted changes closely match the actual changes in achievement for students who were
assigned to teachers at the bottom 20 percent of the value-added distribution.36

Overall, the counterfactuals suggest that not accounting for students’ and teachers’ behav-
ioral interactions in the classroom and the full set of endowments would overstate the predicted
effectiveness of teachers in classrooms with a high proportion of low-achieving students. As
opposed to the value-added specification, the reassignment from the structural model produces
higher gains for the low-achieving students.

2.10 Conclusions

In this paper, I develop and estimate a model in which teachers and students exert effort to
produce knowledge. The model expands upon standard value-added specifications by allowing
teachers’ effectiveness to differ across classrooms. The model fits multiple patterns observed
in the data very well.

The estimated model shows that the contribution of the teaching inputs to students’ achieve-
ment is heterogeneous across classrooms. In particular, teachers with high general teaching
skills tend to be more effective in teaching students with high initial knowledge. On the con-
trary, teachers with low per-unit effort costs tend to be more effective in teaching students with
lower initial knowledge.

I use the estimated model to perform multiple policy-relevant counterfactuals. The coun-
terfactual results are consistent with recent findings in the literature. I find limitations in using
standard value-added specifications to study the potential impact of commonly suggested reas-
signment interventions targeting low-performing students. In particular, transferring teachers
who are thought to be highly effective to classrooms with below-average test scores reduces
one-quarter of the achievement gap, which is considerably lower than initially predicted. Ad-
ditionally, I find that much could be gained by considering the endogenous effort choices of
teachers and students. In particular, the same reassignment using the model can reduce one-
third of the achievement gap.

36However, this reassignment policy does not consider the potential gains of taking into account changes in
the marginal products and effort adjustments.
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These results have important implications for educational policy design. Student surveys
recently started to be used by schools, contain rich information that can be used to evaluate the
role of teachers in promoting students’ knowledge. My findings suggest that accounting for
teachers’ behavior and interactions with students in the classroom may considerably increase
the impact of commonly suggested reassignment policy interventions. Furthermore, by distin-
guishing teaching practices from teachers’ skills and preferences, policymakers may evaluate
the role of different teaching inputs in a classroom
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Chapter 3

Group or Individual Teacher Bonuses?
An Estimation of the Potential Gains

3.1 Introduction

Student performance in standardized exams has been shown to be an important determinant
of their future wealth. For example, in India, increasing test performance by one standard
deviation has been found to increase earnings from 16 to 20 percent (Aslam et al., 2011),
while in the United States, the average increase in earnings is around 12 percent (Hanushek,
2011). Further, vast literature shows that teachers play a crucial role in determining students’
performance, with just one year of exposure to a high-quality teacher having a lifelong positive
impact on a student’s wealth (Chetty et al., 2014).1

The proven importance of teachers has motivated the creation of teachers’ incentive pro-
grams worldwide. These programs reward teachers for the extra effort required to improve test
scores.2 On this regard, the empirical literature shows a variety of incentive schemes that have
been evaluated under randomized controlled trials.3 But still, there is no conclusive evidence
about their relative performance. A major challenge is that these incentive programs were not
necessarily designed using the same incentive schemes, budgets, and objective functions. Thus,
it is not possible to make a meaningful comparison between them. However, given the impor-
tance of teachers, providing optimal incentive schemes should be a priority for policymakers.
This paper is an attempt to fill this gap.

In this paper, I estimate a model of teacher effort under two different linear bonus schemes:
an individual-based (II) and a group-based (GI) piece rate bonus. I use the model to bet-

1For a review see Koedel et al. (2015), Jackson et al. (2014) and Murnane et al. (2014)
2As an example, consider two popular incentive schemes in education: Tournaments and piece rate bonuses.

In the first case, teachers are ranked and paid according to their relative performance. In the second case, their
payment is a linear function of their absolute performance. Piece rate bonuses can also be divided into individual-
or group-based categories. In the first case, a teacher’s payment depends on their own performance, while in the
second case their payment is a weighted average of the team (school) performance.

3Muralidharan and Sundararaman (2011), Glewwe et al. (2010), Barrera-Osorio and Raju (2017), Duflo et al.
(2012), Loyalka et al. (2016) and Behrman et al. (2015) are examples for developing countries.

44
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ter understand the performance of these bonuses if they were designed to maximize the ex-
pected value of student academic performance, minus the expected payment to teachers. I use
data from Muralidharan and Sundararaman (2011), a teacher incentive experiment in Andhra
Pradesh, India, which has the unique feature of containing both types of incentives, and a
control group.

The experiment randomly assigned schools to a control group and two incentive schemes
that paid teachers a bonus based on test-score improvements. These bonuses were designed to
be jointly equivalent to providing schools with Rp.10,000 in inputs. Both schemes followed
the same piece rate bonus formula but averaged test scores at different levels. The II scheme
is based on average teacher-level improvements, while the GI scheme is based on average
school-level improvements.

Even though the experiment shows that the II scheme produces a higher average treatment
effect (ATE) than the GI scheme, it is not clear which one would be preferred if they were
optimally designed. This is because GI schemes are subject to potential drawbacks and advan-
tages that could be considered in their design. Accordingly, an optimally designed GI scheme
may have a different bonus formula and produce better results than an optimally designed II
scheme.

A possible deficiency in GI is the presence of the so-called free-riding effect, as discussed
in Imberman and Lovenheim (2015). If teachers’ responsibility over the total “achievement
production” decreases, they may exert less effort because their impact on the total production
would be smaller. Thus, the incentive strength is reduced. However, there are also potential
benefits of using group incentives. First, averaging the outputs of multiple teachers reduce
noise, which make these scheme more attractive for risk-adverse teachers. Second, peer pres-
sure can increase effort because teachers will suffer if they deviate from the team norms (Kandel
and Lazear, 1992).

My empirical strategy allows me to disentangle the importance of these mechanisms in
the GI scheme. First, I model the piece rate bonuses taking into account the possibility of
free-riding and peer-pressure in the GI scheme. I do so by modifying the well-known moral
hazard model with an exponential utility function and constant absolute risk aversion (see, for
example, Bolton and Dewatripont 2005 and Mehta 2017). Second, I exploit the experimental
nature of the data to test for the presence of free riding and peer pressure in the GI scheme.
Third, I estimate the structural parameters and use them to counterfactually recover the II and
GI scheme that maximizes the expected value of students’ performance, minus the expected
payment to teachers.

My results suggest that teachers with a small share of students are subject to higher peer-
pressure which ameliorates the free-riding incentives. Therefore, I take into account the ob-
served heterogeneous effect of peer-pressure to model the optimal GI bonus scheme. I find that,
contrary to the original design, the GI scheme is preferred to the II scheme. This highlights the
importance of evaluating optimally designed contracts.

There exists a rich literature on randomized controlled trials for teacher incentives in schools.
These papers’ analyze the effect of a variety of schemes that were not necessarily designed to
maximize student achievement. In addition, the results have been mixed on the success of
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such schemes. Glewwe et al. (2010) analyze an unique tournament scheme between schools
in Kenya. They find mixed evidence on student performance and no variation on the reward
formula. Using experimental data from Pakistan, Barrera-Osorio and Raju (2017) randomly
assign teachers to different types of piece-rate cash bonus schemes and find no signs of exam
score improvements. Muralidharan and Sundararaman (2011) and Muralidharan (2012) find a
positive impact on student grades for both types of piece rate contracts with a larger effect of
II compared to GI after the first year of the program. I show that this is not necessarily optimal
if the policymaker wants to maximize the present value of student performance, net the cost of
paying teachers.

Mehta (2017) is the closest paper to mine. He uses Muralidharan and Sundararaman
(2011)’s results to calibrate the parameters of a utility function for the II scheme and then
recovers the optimal II linear scheme. I focus on the GI scheme and consider different mech-
anisms that may influence its performance. Then, I study the performance of an optimally
designed GI scheme and compare it with an optimally designed II scheme.

My paper is also closely related to Imberman and Lovenheim (2015), who analyze a tourna-
ment between schools in Houston, Texas and is therefore subject to teacher free-riding. Their
primary goal is to test whether the share of students a teacher teaches affects the incentive
strength. My paper uses a similar approach, and test for the presence of different models of
peer-pressure to rationalize the results. Another related paper is Macartney et al. (2015) who
proposes a semi-parametric method to retrieve the relationship between the incentive strength
and teachers’ effort and then estimates the optimal contract. I complement their analysis by
focusing on the relative performance the GI scheme taking into account free-riding and peer
pressure.

There is an ongoing debate about the benefits of using an atheoretical approach with ex-
perimental data versus using structural estimation.4 I benefit from both approaches. First, the
experimental data allow me to identify causal effects and test different GI models. Second, the
contracts are exogenously assigned. Therefore, I do not need to model that selection problem,
what reduces the number of assumption I need to identify the parameters5.

The paper is organized as follows. In Section 3.2 I give a brief review of the Andra Pradesh
dataset. Section 3.4 presents a model of optimal teachers’ effort. In section 3.5, I present
the empirical methodology that I am going to use to test the model’s implications. Finally, in
section 3.8, I estimate the structural parameters to recover the optimal contracts.

3.2 The Andra Pradesh Experiment

The Andra Pradesh experiment is a randomized controlled trial that took part in Andra Pradesh,
India over three years (2005-2007) (see Muralidharan and Sundararaman 2011 for additional
details about the experiment). The experiment consisted of four different treatments, which

4See, for example, Angrist and Pischke (2010) and Keane (2010)
5Bellemare et al. (2016) provides a summary of the benefits of combining structural estimation with experi-

ments in personnel economics.
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were effective after the first year, and a control group. From a total of 500 randomly selected
schools, 100 were assigned into a teacher’s individual-based piece rate incentive scheme (II);
100 were assigned into a group-based piece rate scheme (GI), and 100 schools were assigned
to a control group. The other schools were assigned either to an extra contract teacher or a
block grant.

Students from first to fifth grade comprised the population under study and took a set of
standardized tests to measure their knowledge. Once a year, students had to take two tests
in two subjects - math and Telugu (language) - that covered material up to the previous year
(first test) and the current year (second test). This was done with the objective of covering a
broad range of topics and reducing measurement error. Teachers were told that the program
would last for at least two years and after that it will be subject to budget availability6. For
now on, year 0 (June-July 2005) refers to the baseline test period, while year 1 (March-April
2006) refers to the first period with treated schools; and year 2 (March-April 2006) refers to
the second period of treatment.

In years 1 and 2, treated teachers were exposed to a bonus payment on top of their baseline
wage that was given by the following formula:

Bonust =

500 × (q̄k
t − q̄k

t−1) i f q̄k
t − q̄k

t−1 > T
0 Otherwise,

(3.1)

where k ∈ {II,GI} is an indicator for the type of scheme, t ∈ {1, 2} is the program year, and q̄k
t

represents students’ average score in year t. For the II scheme, q̄II
t represents the average per-

formance for all students assigned to a teacher. Meanwhile, for the GI scheme, q̄GI
t represents

the average school performance. The difference between scores, q̄k
t − q̄k

t−1, is the percentage
gain (or loss) in the average test scores from year t − 1 to year t. During the second year, the
schemes had a T = 0 threshold. However, in year 1, a T = .05 punishment was introduced
because the year 0 tests were taken in June-July instead of March-April. Thus, students might
forget material during the summer vacation making q̄k

0 smaller than what it should be to fairly
compare it with q̄k

1.

There exist potential “threshold effects” that could undermine my analysis. First, the first
year 5% threshold could disincentivize teachers who expect to produce less than 5%. However,
Muralidharan and Sundararaman (2011) report that there is no evidence of this effect. Second,
the bonus does not punish teachers, so they could strategically produce less in year 1 and more
in year 2 to maximize the present value gains. To reduce the dynamic incentives, the year 2
lagged score was set to be the maximum between year 0 and year 1 classroom (school) scores.
Third, teachers could have incentives to only focus on good students. To avoid this issue, low
grades were assigned to students who did not take test.

6The experiment was extended for three more years with small changes in the incentives design (Muralidha-
ran, 2012), but the database is not publicly available
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3.3 Sample Selection

In this paper, I focus on the first year of the experiment and leave the second year for a future
analysis considering dynamic aspects of the incentive schemes. I use the normalized scores
provided by Muralidharan and Sundararaman (2011): year 0 scores are normalized relative
to the distribution of scores across all schools for the same test. Scores in years 1 and 2 are
normalized with respect to the score distribution of the control group for the same test level
and subject, and then averaged to obtain an unique normalized score for each student.

Muralidharan and Sundararaman (2011) provides a detailed description of the data. In this
section, I focus on the teachers’ share. To test for the presence of free riding in the GI scheme,
it is necessary to construct the teachers’ share of assigned students. The bonus GI formula
implies that the share of total output that corresponds to each teacher is given by the number
of students that they are in charge of divided by the total number of students that in the school.

Table 3.1: Descriptive Statistics of Teachers’ Share

Year 1
Control II GI p-Value

(1) (2) (3) (4)
Teacher Share:

Average .312 .307 .315 0.87
Standard Deviation .155 .158 .159
5% percentile .129 .139 .138
50% percentile .261 .246 .253
95% percentile .630 .622 .632

N of teachers per school:
Average 3.2 3.26 3.17 0.87
Min 2 1 2
Max 5 5 5

N of Schools: 100 100 100
N of Teachers: 320 326 317

Table 3.1 provides descriptive statistics for teacher shares and the number of teachers in
the school for each treatment group. As seen, there are approximately 3 teachers per school,
which implies that each teacher is responsible of 31% of the students. The 95% percentile
corresponds to a share of 63% of students, and the standard deviation is approximately .16
standard deviations, implying that very few teachers are responsible of a large share of students.

3.4 Theoretical Model

In this section, I develop a static hidden action model with an exponential utility function and
normally distributed shocks. The model embeds the II and the GI schemes and is based on
the workhorse CARA-Normal model from Bolton and Dewatripont (2005). The objective of
this section is to predict the level of teacher effort under different schemes. To do so, I assume
that teachers are willing to participate in a given bonus scheme, and I leave the details of the
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optimal design to section 3.8.1.

I define the education output as the test score q for student i assigned to teacher j. The
educational production function is given by

qi j = si j + e j + ϵi j, (3.2)

where si j represents student i’s expected performance without the presence of teacher effort, e j

is teacher effort, and ϵi j is an idiosyncratic independent error with variance σ2. The variable
si j captures characteristics of the students and teachers that directly affect the production of
knowledge, such as teachers’ innate instructional quality. As such, teacher j can contribute to
student i’s outcome even when she does not exert effort.

I define q̄ j as the average performance of students assigned to teacher j. The variance for

the average performance is given by σ2
J =

σ2
S

N j
, where N j is the number of students assigned

to teacher j. Accordingly, the relevancy of the unobserved shock decreases as the number of
students assigned to teacher j becomes larger.

Teachers are paid based on the average students’ performance. The linear wage function
for the GI scheme is given by

WGI(e j, e− j) = β0 + β1

J∑
j=1

ω jq̄ j (3.3)

where teacher j’s share of students is given by ω j := N j

school size . Naturally, the share is defined
in the interval ω j ∈ [0, 1]. The parameter β0 is the fixed compensation and β1 represents the
variable compensation (the contract slope). The average school performance is defined by∑J

j=1 ω jq̄ j, where J is the total number of teachers in a particular school, and e− j is the effort of
other teachers in the school. The wage equation for the II scheme is given by

W II(e j) = β0 + β1q̄ j, (3.4)

which is equal to equation (3.3) after setting ω j = 1 and J=1. As seen, the II and GI schemes
have the same contract slope, given by β1. However, under the GI scheme, teachers’ compen-
sations depend on the share of students, ω j, and the efforts of other teachers in the school.

The cost of effort, C(e j), is defined as a quadratic function C(e j) = 1
2

e2
j

γ
, where γ is a

parameter that captures the marginal cost of effort. Teachers under the GI scheme could be
subject to peer-pressure. Based on Kandel and Lazear (1992), I model peer-pressure as the
disutility that is generated by producing less than an established social norm that states how
much teachers should produce. I assume that teachers can perfectly observe each other’s effort.
I propose a flexible peer-pressure function that is given by

P(e j) = (α − ρω j) × (ē − e j), (3.5)

where ē is the social norm, α ≥ 0 is the homogeneous punishment for deviating from it, and
ρ ≥ 0 captures the degree to which teachers with higher share are exposed to lower peer
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pressure. As seen by equation 3.5, teachers who exert less effort than the social norm would
have a disutility due to peer pressure.

Teachers have a constant absolute risk aversion and an exponential utility that is given by

Uk(e j) = −e−ξ[W
k−C(e j)−IGI P(e j,ω j)] (3.6)

where k ∈ {II,GI}, ξ is a teacher’s coefficient of absolute risk aversion, and IGI is an indi-
cator for the GI scheme. As Bolton and Dewatripont (2005) show, maximizing the expected
utility with respect to e j is equivalent to maximizing the certainty equivalent compensation.
Therefore, the optimal effort under the II scheme is given by

eII
j = β1γ. (3.7)

Accordingly, teachers’ would exert more effort when their marginal cost is lower (i.e., higher
γ) and when the bonus scheme is steeper (i.e., higher β1). Under the GI scheme, the optimal
level of effort is given by

eGI
j = ω jβ1γ + (α − ρω j)γ. (3.8)

The first term in equation (3.8) is the so-called free-riding effect, which is equal to the optimal
effort under the II scheme multiplied by the share ω j. Thus, teachers with a higher share will
exert more effort. The second term in equation (3.8) captures the effect of peer pressure.

I consider three scenarios for the optimal teacher effort under the GI scheme. First, if there
is no peer pressure, teachers would be only subject to free riding, and their effort would be

e f r
j = ω jβ1γ. (3.9)

Second, if all teachers are subject to the same level of peer pressure, the optimal effort would
be

eho
j = ω jβ1γ + αγ. (3.10)

Under this scenario, teachers would exert a constant amount of effort on top of the aforemen-
tioned free-riding effect. Finally, if ρ = β1, the optimal effort would be given by

ehe
j = αγ, (3.11)

implying that the optimal effort would not depend on the share of students being taught.

3.5 Testing the Group Incentive Models

The experimental nature of the Andra Pradesh dataset allows testing for the presence of free-
riding and peer pressure using the students’ outcomes, and the teachers’ shares of students, ω j.
The empirical methodology exploits the predicted linearity of the teacher effort and the random
assignment to treatments.
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Thus, the ATE for the II scheme is given by

E[qi j | I II] − E[qi j | IControl] = E[eII
j ] = β1 E[γ | I II], (3.12)

with a similar result holding for each GI model. Table 8 in Muralidharan and Sundararaman
(2011) shows that the combined math and language ATE for the II scheme is 15.6 SD in year 1,
while for the GI is 14.1 SD. These values are not statistically different from each other. Thus,
this results cast doubt on the presence of pure free riding (without peer-pressure).

Still, it is not clear whether the free riding effect plays a role in the ATE estimate. For
example, the models given by equations (3.10) and (3.11) could produce the same expected
effort, but only the first one is subject to free-riding. However, the underlying mechanism that
generates these results are crucial for the design of the optimal contract. Thus, it is necessary
to disentangle the combined effects of free-riding and peer-pressure.

The main specification is based on the following regression that includes dummies for each
treatment, and the interaction with ω j:

qi j = πC + Xi jβ + πII I II + πGI IGI+

πWω j + πIW × ω j × I II + πGW × ω j × IGI + λm + ϵi j
(3.13)

where qi j is the normalized test score of student i taught by teacher j. The variables I II and
IGI are indicators for each treatment group, and the variable ω j represent teacher j’s share.
The vector Xi j includes student, teacher and school characteristics. The variable λm represents
district fixed effects. The model is estimated pooling Math and Language outcomes, and the
standard errors are clustered at the school level.

Based on equation (3.2), si j is approximated using a linear function of the previous year’s
standardized score and other characteristics included in Xi j. The parameter πW recovers the
expected performance of students assigned to teachers with a higher share of students. The
parameters π̂II and π̂GI recover teachers’ effort under each scheme, in the extreme case when
ω j = 0.

The parameters of interest are πIW and πGW . The parameter πIW captures any change in
teacher effort due to changes in the share ω j. A negative πIW coefficient would imply that
teachers with a higher share have a higher cost of effort, which may be due to teachers being
assigned to larger, harder-to-teach classrooms or the selection of less able teachers to larger
classrooms. The parameter πGW captures the effects mentioned above, plus any additional
incentives to exert effort due to free riding.

The empirical methodology is based on the derivative of equation (3.8) with respect to the
share ω j, which is given by

∂eGI
j

∂ω j
= β1ω j

∂γ

∂ω j︸    ︷︷    ︸
Selection

+ β1γ︸︷︷︸
Free Riding

+
∂P̃(ω j, γ j)
∂ω︸       ︷︷       ︸

Peer Pressure

(3.14)

The first term captures the change in effort due to selection in effort (which is also present in the
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II scheme). The second term captures the pure free-riding effect, i.e., the change in the incentive
strength due to an exogenous increase in the share of production a teacher is responsible for.
The last term captures the change in effort due to changes in peer-pressure, where P̃(ω j, γ j) =
(α−ρω j)γ. Since the peer pressure effect ameliorates the free-riding incentives, any significant
difference between schemes must be due to the free-riding effect.

The key identifying assumption is that, conditional on the share ω j, the marginal cost of
effort, γ, is the same under the GI and II scheme. Intuitively, any difference between schemes
is due to the teachers’ responses to peer pressure and free-riding, and it is not due to sorting.
Formally, the assumption is given by

Assumption 1 E[γ | II, ω j] = E[γ | GI, ω j] ∀ω j

3.6 Balance Test

Even though the dataset is a randomized controlled trial, it was not designed to randomly assign
teachers to students. Therefore, I provide a balancing test to check whether there is evidence
of non-random sorting on observables. The following regression captures the relationship be-
tween the share ω j for each incentive scheme and a set of explanatory variables.

zi j = πC + Xi jβ + πII I II + πGI IGI+

πWω j + πIW × ω j × I II + πGW × ω j × IGI + λm + ϵi j,
(3.15)

where zi j is a specific explanatory variable. I test the equality of π2 and π3. I include district
dummy variables and clustered errors at the school level. The estimates of these two parameters
are provided in Table 3.2. Columns (3) and (8) present the p-Value of the t-test for the equality
of the II and GI interaction coefficient on each year respectively.

The results show limited evidence of differential sorting between treatments. Only two vari-
ables are significant. The household affluence index is significantly different between schemes
at the 1%, and the teacher’s year of service is correlated with GI share at the 10% level. As a
robustness check, I run my main specification (given by equation (3.13)) using the interaction
of this variables with the treatment indicators, and I do not find significant impact on the re-
sults. Thus, I conclude that the outcome cannot by attributed to non-random sorting based on
these variables.

3.7 Results

Table 3.3 summarizes the results for all the regression specifications for year 1. Column 1
shows the results after controlling for student characteristics. Column 2 and 3 add school and
teacher characteristics respectively7. Notice that half of the sample is lost after controlling for

7Student characteristics include previous year score, parent literacy index, household affluence index, gender,
caste, grade, and subject. School characteristics include proximity index, infrastructure index and the number of
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Table 3.2: Balance Test

Control II GI p-Value
(1) (2) (3) (4)

Students:
Baseline Score -0.294* 0.138 0.0409 0.5838
Male -0.0696 0.0373 -0.00994 0.3877
SC 0.197* -0.138 0.00628 0.3205
ST 0.0967* 0.00512 -0.0900 0.3267
OBC -0.220 0.0330 0.151 0.4762
FC -0.0744 0.0996 -0.0673 0.1882
Hh Affluence -0.310 0.536* -0.364 0.0024
Parent Lit. -0.144 -0.236 -0.00891 0.2230

Teachers:
Male 0.315* -0.166 -0.109 0.8273
Head Master 0.562*** -0.0275 0.188 0.3822
Regular Teacher -0.401** 0.0159 -0.224 0.3638
Education Level 0.657** -0.897** -0.694* 0.5983
Training Qual. 0.354 -0.241 -0.401 0.6665
Salary -1,351 3,689* 1,240 0.2287
Years of Service -7.507** 12.37*** 4.805 0.0893

Parental education ranges from 0 to 4; a point is added for each of the following: father’s literacy,
mother’s literacy, father having completed tenth grade, and mother having completed tenth grade.
Household affluence index sums seven binary variables including ownership of land, ownership of cur-

rent residence, residing in a pucca house (house with four walls and a cement and concrete roof), and
having each of electricity, water, toilet, and a television at home.
Scheduled castes (SC) and tribes (ST) are considered the most socioeconomically backward groups in

India. Other backward caste (OBC) are also included.
Teacher education is coded from 1 to 4 indicating tenth grade, twelfth grade, college degree, and master’s

or higher degree.
Teacher training qualifications is coded from 1 to 4 indicating no training, a diploma, a bachelor’s degree

in education, and a master’s degree in education.

teacher characteristics.

Table 3.3 shows the effects of increasing ω j for each treatment. Overall, there is no evi-
dence of selection due to change in the cost of effort as π̂IW is not significantly different from
zero. Additionally, there is no evidence of free-riding effects as π̂GW is negative and not signifi-
cantly different from π̂IW . These results, combined with the positive and significant GI scheme
intercept (i.e., πGI > 0,), imply that teachers under the GI scheme would exert effort even
when their share of students approaches zero. Thus, these results reject the pure free-riding
hypothesis with no peer pressure.

Additionally, the results suggest that the peer-pressure effect must compensate for the free-
riding incentives generated by a higher share, meaning that teachers with a higher share are
subject to lower peer pressure. Accordingly, the evidence from Table 3.3 is consistent with the
predictions from the heterogeneous peer-pressure model (i.e., ehe

j = αγ). The results are con-
sistent after controlling for observable characteristics, implying that the results are not driven
by students’, schools’ and teachers’ observable characteristics.8

teachers. Teacher characteristics include gender, designation (headmaster, regular teacher, contract or community
teacher), education level and training qualifications.

8I do not find evidence of pure free-riding in the second year data. However, I do find an smaller πGI , which
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Table 3.3: Regression results

District Fixed Effect School Fixed Effect
(1) (2) (3) (4) (5) (6)

II intercept (π̂II) 0.223* 0.278** 0.332*** - - -
(0.118) (0.122) (0.125) - - -

GI intercept (π̂GI) 0.283** 0.287** 0.321** - - -
(0.115) (0.120) (0.125) - - -

II slope (π̂IW ) -0.203 -0.311 -0.506 -0.247 -0.302 -0.496
(0.303) (0.320) (0.317) (0.409) (0.398) (0.467)

GI slope (π̂GW ) -0.422 -0.399 -0.430 -0.206 -0.130 -0.309
(0.269) (0.276) (0.283) (0.328) (0.319) (0.338)

Control slope (π̂CW ) 0.110 0.0891 0.130 -0.133 -0.0832 0.0222
(0.178) (0.214) (0.212) (0.248) (0.238) (0.278)

Student Characteristics NO YES YES NO YES YES
School Characteristics NO YES YES NO YES YES
Teacher Characteristics NO NO YES NO NO YES
Observations 42,145 37,617 33,768 42,145 37,617 33,768

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The sources of variation that I use to identify the parameters of interest are the following.
First, I use the between-school variability. The school’s average share decrease as the num-
ber of teachers increases. All else equal, bigger schools are going to have more free-riding
incentives. Second, I use the within-school variability. Those teachers in the GI scheme with
relatively lower shares are going to have more incentive to deviate from the II optimal effort.
It is worth mentioning that each school has at most one teacher assigned to each grade and
they teach both subjects. Therefore, all the within-school variability is coming from teachers
that are being assigned to more classrooms (grades) than others. Thus, there is no marginal
assignment of teachers to students. Thus, the non-random sorting opportunities are limited.

To give a better sense of the source of variation, the second panel of table 3.3 shows the
effects of changing the shares after controlling for school fixed-effects. As seen, the results
have similar magnitudes and are not qualitatively different from the results from the first panel.
Accordingly, the lack of free-riding effects are not driven by unobserved school characteristics
that may bias the results.

3.7.1 Heterogeneous Effects

The existence of non-linearities in peer-pressure could hide free-riding effects for low levels of
teacher shares. Following Imberman and Lovenheim (2015), I estimate a local-linear regres-
sion to recover the heterogeneous impact of the incentives at different share levels. Panel A in
Figure 3.1 presents the year 1 estimates for ω j× I II and ω j× IGI with 95% clustered confidence

is consistent with the results from Muralidharan and Sundararaman (2011) showing an smaller ATE for the GI
scheme in the second year of the program.
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Figure 3.1: Local linear regression
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intervals centered at each share value, with a uniform kernel bandwidth of 0.15. I show the
estimates for values of ω j from 10% to 60%, because that range covers 90% of the sample.
Below and above those values, the confidence intervals become very large. Consistent with the
previous results, the estimates are not significantly different from each other. Therefore, I find
no evidence of heterogeneous free-riding effects.

3.8 Structural estimation and counter-factual analysis

In the previous section, I used the original contract information to find evidence of heteroge-
neous peer pressure in the GI scheme. Still, nothing has been said about the optimality of its
design. In this section, I estimate the model parameters to counterfactually recover the opti-
mal bonus for the average school in Andra Pradesh. By doing so, I can compare my results
with Muralidharan and Sundararaman (2011) and Mehta (2017) and show the relative perfor-
mance of the optimally designed GI bonus scheme under the assumption of heterogeneous peer
pressure.

The empirical strategy is based on estimating the average treatment effect (ATE) for each
scheme expressing the outcome in monetary units. To do so, I recover the present value of the
students’ scores using a similar approach to Muralidharan and Sundararaman (2011). Since
the contract slope is known, I can estimate the following econometric model:

q$
i j = πC + βqi j(t=0) + πII Islope×II + πGI Islope×GI + λm + ϵi jcs (3.16)

where the $ supra index reflects variables expressed in monetary units. I now describe how to
recover q$

i j. First, Aslam et al. (2011) estimate that a one standard deviation score increase on
a standardized math (language) test produces a return of 16 (20) percent. So, multiplying these
returns by the standardized score results (qi j × 16% and qi j × 20%) provides the return for each
student-teacher observation. Second, I follow the same methodology that Muralidharan and
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Table 3.4: Estimated model parameters

Parameter Estimate Confidence I.
Teacher effort (SD):

êII
j .156 [.136, .175]

êGI
j .141 [.121, .160]

Cost Parameter:
γ̂ 4.83 [4.3, 5.52]

Peer Pressure (%):
α̂ 90.1 [77.8, 102]

Variance (U$s):
σ̂$2

84676.7 [83541 , 85827]

Sundararaman (2011) use to recover the present value9. I then multiply the present value by
the return of each student exam to get q$

i j.

To make the results comparable to Mehta (2017) calibration, I only include students’ pre-
vious year scores, qi j(y0) as an student characteristic. The indicators Islope×II and Islope×GI are
indicator variables multiplied by the known contract slope when the observation is treated.

The identification strategy works as follows. First, teachers’ efforts, eII
j = β1γ and ehe

j =

αγ, are estimated using π̂II and π̂GI respectively. Therefore, they are the ATE for each bonus
scheme. Second, I take advantage of knowing the slope to identify the marginal cost parameter,
γ, from the ATE of the II scheme, π̂$

II . Third, I identify the peer pressure parameter α as
α̂ = π̂GI

π̂II
. Finally, I recover the student idiosyncratic error variance σ̂$2

from the residuals of the
regression.

The results are summarized in Table 3.4. As seen, teacher effort under the II scheme in-
crease students’ performance by .156 SD, while teachers under the GI scheme increase it by
.141 SD, which are equivalent to the ATEs from Muralidharan and Sundararaman (2011). The
estimated peer pressure parameter is α = .901, which implies that teachers under the GI scheme
exert 90% of the effort under the II scheme.

3.8.1 Optimal Contract

In this section, I recover the optimal linear piece rate contract for an average school. The
designer’s problem is to maximize the performance of a representative classroom, minus the
cost (the teachers’ payment) subject to the teachers’ willingness to participate (IRC) and their
optimal effort choice (ICC).

max
β0,β1

Eϵ[q̄ j −W j]

s.t Eϵ[−exp{−ξ(Wk
j −C j − IGIP j)}] ≥ U(W̄) (IRC)

and arg max
e

Eϵ[−exp{−ξ(Wk
j −C j − IGIP j)}], (ICC)

9The average annual wage for agricultural labour is calculated to be Rs. 28,000. The present value of 40
years of work, assuming a discount rate of 10%, constant wages and a 12 year delay between year 1 and the first
year of work is Rs.87,662
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Table 3.5: Counterfactual Results

Estimate Confidence I.
Parameter (1) (2)
Optimal Contract Slope:
β̂II

1 .242 [.218, .265]
β̂GI

1 .489 [.457, .521]
Optimal effort (SD):

âII
t 1.168 [.906, 1.43]

âGI
t 2.362 [1.90, 2.81]

Following Mehta (2017), I evaluate this contract for a representative school. In particular,
I focus on an average school, which has 37.5 students and three teachers. I also assume that
students are evenly distributed between teachers. Hence, ωt =

1
J =

1
3 . I set ξ = 6.7 × 103 as

Mehta (2017) using the estimates from Cohen and Einav (2007).

Solving the maximization problem for each case, the optimal effective slope β1 is given by

βII
1 =

1
1 + ξγ−1σ2

J

βGI
1 =

1

α + ξγ−1 σ
2
J

Jα

.
(3.17)

Equation (3.17) suggests that if α = 1, the optimal slope under the GI scheme would be
higher due to the lower risk of an extreme shock, which is capture by the lower variability
given by σ

2
J

Jα instead of σ2
J. When α = 1

3 , the GI slope would be equivalent to the optimal slope
under pure free-riding (i.e., with pee-pressure parameters given by ρ = 0 and α = 1

3 ).

Table 3.5 presents the results of estimating the optimal slopes and the predicted effort under
each contract. As column (1) shows, the optimal II slope induces teachers to increase the
expected student’s performance by 1.16 SD points, which is 7.5 times larger than the result
from Muralidharan and Sundararaman (2011) and almost equal to Mehta (2017). Meanwhile,
the optimal GI contract with heterogeneous peer pressure increases teacher effort by 2.36 SD
points, which is 14 times larger than the original contract and almost two times larger than
the optimal II scheme. Given that the average return from a standardized test in India is 18
percent (Aslam et al. (2011)), the optimal II would increase students’ wealth by 21 percent.
In comparison, the optimal GI contract with heterogeneous peer effect would increase it by 42
percent. The original bonus increased students’ wealth by only 3 percent.

The main intuition behind these results is that a trade-off exists between higher incentives,
through β1, and smaller risk. Steeper contracts generate higher effort. However, if teachers
are risk-averse, steeper contracts do not necessarily generate higher utility, and the IRC binds.
Thus, there is a limit to how steep the slope can be to meet the IRC. The GI scheme allows
teachers to diversify risk as the school-level variance of the shock is a fraction of the teacher-
level variance. At α = .901, for any given slope, teachers under the GI scheme can produce
almost as in the II scheme but with lower risk. Thus, the designer can offer a steeper scheme to
teachers under the GI scheme.
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To check the contract optimality under different peer pressure scenarios, I provide in Figure
3.2 the optimal bonus for the full range of possible peer-pressure parameters, from α = 1

3
(which is equivalent to the pure free-riding case) to α = 1. Panel A shows that the optimal slope
for GI is higher than the II slope, and it increases as α increases. The intuition behind this is
that GI ensures that teachers can withstand their idiosyncratic classroom shocks by diversifying
the risk with other teachers. Thus, the designer can provide more incentives through a steeper
contract slope. In that sense, the optimal contract assuming pure free riding (without peer
pressure) shows that teachers effort would increase by 0.46 SD points (Panel B), which is
three times larger than the original result. Student wealth would increase by 8 percent, which
doubles the original incentive scheme result but is less than half of the II optimal incentive
scheme. Panel B also shows that teacher effort under GI steadily increases and becomes equal
to II when α is 57 percent.

Panel C illustrates the optimal contract intercept which is the fixed compensation level.
The intercept is increasing at low levels of α but then decreases.10 This is due to two opposing
effects. First, risk diversification between teachers allows the designer to provide less insurance
(smaller β0). Second, the incentive strength is low for low levels of α, which could lead to
teachers placing more value on being more insured than having a steeper contract.

My empirical methodology is tempered by the fact that ξ represents the mean estimated ab-
solute risk aversion parameter from Cohen and Einav (2007) who use Israeli data on deductible
choices in auto insurance contracts. Thus, I check the robustness of my results by increasing
the ξ parameter by three times the calibrated value. If ξ = 20 × 103, the optimal II effort in-
creases student performance by 0.47 SD points, while the optimal GI with peer pressure will
increase it by 1.17 SD points. Therefore, even if teachers are considerably risk-averse, the
results are still significant and the relative performance of the GI scheme holds.

3.9 Conclusion

In this paper, I exploit the experimental nature of the data from Muralidharan and Sundarara-
man (2011) to test for the presence of free-riding and peer-pressure in the GI scheme. My
results show that teachers with a small share of students are subject to higher peer pressure
which mitigates the free-riding incentives. I consider the heterogeneous effects of peer pres-
sure to model the optimal GI bonus scheme. I find that, contrary to the original design, the
optimally-designed GI scheme would have different parameters and produce higher test scores
than the II scheme.

An optimally designed piece rate bonus can increase student wealth by 8 to 42 percent.
If teachers are subject to high levels of peer pressure, the optimally designed group-based
contract can double the expected performance of students compared to the optimally designed
individual contract.

The unique feature of this paper is that it exploits the experimental nature of the data to

10I recover β0 using the incentive rationality constraint, normalizing the outside option to be the average
baseline salary. The average lagged performance score is normalized to zero in the baseline year.
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Figure 3.2: Simulation for different α
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recover structural parameters and test for the presence of free-riding in the GI scheme. Still,
the analysis is limited to a statistical model that does not formally treat the dynamic results.
Having access to the larger panel from Muralidharan (2012) with more than three years of data
could substantially enrich the analysis.
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Chapter 4

The Heterogeneous Effect of Teachers on
Minority Students

Evidence shows that African American and Hispanic students in the United States consistently
perform worse than White and Asian students on standardized tests. The achievement gaps
start as early as kindergarten and persist through college (Dee 2005; Redding 2019; Fairlie
et al. 2014). These gaps represent a major educational problem since Blacks and Hispanics
constitute the largest share of students in K-12 public schools in many US districts (NCES
2021). Given the direct relationship between academic achievement and students’ future out-
comes, designing policy levers to increase low-achieving minorities’ performance has become
a priority for policymakers.

A natural way to reduce the achievement gaps is by increasing minorities’ access to effec-
tive teachers. It is well documented that teachers play a major role in determining students’
academic success (Hanushek and Rivkin 2006; Jackson et al. 2014; Koedel et al. 2015). Thus,
identifying the best teachers for minority students is crucial for the design of an effective pol-
icy. However, the standard value-added models (VAMs) used to identify effective teachers do
not consider the differential effect that some teachers may have on different types of students,
such as minority students. In fact, it has been proven difficult to identify effective teachers for
minority students using standard VAMs (Stecher et al. 2018).

In this paper, I study the degree to which teachers can affect the academic performance
of Black and Hispanic students relative to White and Asian students. To do so, I estimate a
flexible value-added model that allows each teacher to have a differential effect on minority
students. These matching effects capture the teachers’ ability to reduce the achievement gap
between their assigned students. Then, I study the relationship between the estimated matching
effects and a set of teachers’ characteristics and skills. This allows me to explore what type of
teachers are better suited to teach minority students. The characteristics include teachers’ race
and gender. Meanwhile, the measures of skills are the teachers’ experience, preparedness to
teach their subject, and a rich set of evaluations of what teachers do in a classroom.

I estimate the econometric model using The Measure of Effective Teaching database, which
contains rich information on teachers and students from six large US districts: Charlotte-
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Mecklenburg, Dallas, Denver, Hillsborough County, Memphis, and New York City. In partic-
ular, the database contains administrative records of students that expand for six years (2008-
2009 to 2013-2014). These records match students to their assigned teachers using unique
identifiers.

During the 2009-2010 and 2010-2011 academic periods, a subset of teachers was video-
taped and evaluated by trained raters using multiple protocols of effective teaching. In partic-
ular, I use the Framework for Teaching (FFT) and the Classroom Assessment Scoring System
(CLASS) protocol, both containing multiple measures of different dimensions of teaching. I
group each protocol into two dimensions that relate to the teachers’ quality of instruction and
their management of the classroom behavior. Additionally, I use the Content Knowledge for
Teaching Math Assessment (CKT) to measure teachers’ understanding of the subject being
taught.

I find that, on average, the minority gap is .08 standard deviations after controlling for stu-
dents’ observable characteristics and teacher-year fixed effects. However, this average masks
important heterogeneity between teachers because teacher’s effectiveness may vary from stu-
dent to student. In particular, a one standard deviation increase in the matching effects trans-
lates into a relative achievement gain of .056 standard deviations, which implies a reduction of
70% of the conditional achievement gap. This result highlights the important role that teachers
may play in reducing the prevalent disparities between minority students and high-performing
students.

I do not find a significant relationship between the matching effect and the teachers’ char-
acteristics, experience, content knowledge, and instructional quality. However, I find a positive
relationship with classroom management as measured by both protocols, implying that minor-
ity students benefit more from teachers who can keep students on task and well-behaved. This
result suggests that how teachers teach matters in improving minority students’ achievement.

There is a recent but growing body of literature studying the differential effect that teachers
may have on students using flexible value-added specifications (Fox 2016; Loeb et al. 2014;
Ahn et al. 2021). Using data from North Carolina, Ahn et al. (2021) find matching effects that
are remarkably similar in magnitude to the ones I found. The combined evidence suggests that
the magnitude of these effects may be similar across several US districts. Additionally, I relate
the estimated matching effects to teachers’ characteristics and multiple measures of teachers’
skills.

4.1 Sample Restrictions

I restrict my analysis to elementary and middle school math teachers with complete informa-
tion on the FFT and CLASS protocols, CKT scores, and at least five minority and non-minority
students assigned. Additionally, I restrict the sample to Black and Hispanic students, tradition-
ally categorized as minority students, and White and Asian students with complete information
on lagged math and language scores and race. The final sample contains 110,731 students and
507 teachers and is summarized in Table 4.1.
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As seen in the first panel of Table 4.1, minority students represent 59% of the sample.
The sample is evenly distributed between male and female students. The average age of the
students is 12 years, which implies that the average student is in 6th grade. The second panel of
Table 4.1 presents descriptive statistics of the teachers. As opposed to students, White teachers
outnumber minority teachers, and a similar pattern occurs for female teachers.

Table 4.1: Descriptive Statistics

Mean Std. Dev.
Student-Year Variables:

Race: Black .279 .449
Race: Hispanic .309 .462
Race: White .345 .475
Race: Asian .067 .249
Gender: Male .501 .500
Age 12.00 1.42
Free-Reduced Price Lunch .618 .486
Gifted Status .097 .296
Special Education .092 .290
English Language Learner .116 .320
Elementary Level .225 .417

Teacher Variables:
Race: White .633 .482
Race: Black .288 .453
Race: Hispanic .061 .236
Race: Other .002 .139
Gender: Male .191 .394
District Experience 7.43 6.81
Content Knowledge (CKT) 57.45 14.70
FFT: Management 2.65 .289
FFT: Instruction 2.41 .267
CLASS: Management 4.32 .247
CLASS: Instruction 3.87 .522
Elementary Level .495 .50

Number of Teachers 507
Number of Students 110,731

Notes: Descriptive Statistics for 4th to 8th grade math teachers in the aca-
demic years 2008-2009 to 2013-2014. I only observe the district experience
for 377 teachers.

Table 4.2 shows the minority achievement gap from an OLS regression with teacher-year
fixed effects and clustered standard errors at the same level. I standardized students’ achieve-
ment within a year, grade and district. The first column shows an unconditional minority gap
of .50 standard deviation. As seen in the second column, the gap is reduced but persist after
controlling for students’ lagged score and other students’ observable characteristics. The only
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other indicators with large gaps are the gifted and special education status. However, these
students represent a relatively small share of the students in the sample.

Table 4.2: Student Racial Gaps in Math

(1) (2)
Minority -.50*** -.08***

(.012) (.004)

Lagged Math Score - .630***
(.003)

Lagged Language Score - .149***
(.003)

Gender: Male - .013***
(.004)

Free-Reduced Price Lunch - -.041***
(.007)

Gifted Status - .154***
(.009)

Special Education Status - -.0084***
(.007)

Notes: All regressions include Teacher-Year fixed effect. The baseline
category corresponds to White and Asian students. Standard errors are
clustered at the Teacher-Year Level. The first column represents the un-
conditional minority gap. The second column controls for lagged math and
language scores, gender, age, free-reduced price lunch status, gifted status,
and special education status. * Significant at 10 percent. ** Significant at
5 percent. *** Significant at 1 percent.

4.2 The Model

My econometric specification is given by

yi jt = X′i jtβ + γ j × Minorityi + θ jt + ϵi jt (4.1)

where yi jt represents student i’s math achievement under teacher j in year t. The vector Xi jt

corresponds to observable student variables, while ϵi jt captures unobserved components.1 The
model also includes the level effect, θ jt, that is common to all students assigned to teacher j
in year t. The object of interest is the distribution of the matching effects given by γ j, which
captures the minority gap for students assigned to teacher j. A higher matching effect implies
that minority students assigned to teacher j perform relatively better than the average minority
student in the sample.

The teacher-year level effect controls for the possibility that minority students are system-
1The vector Xi jt includes students’ lagged scores in math and language that are allowed to vary by education

level and race, age, gender, gifted status, English language learner status, and missing indicators.
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atically sorted into better (or worse) teachers in a particular year. In this regard, the interaction
parameters γ j could be reinterpreted as a difference-in-difference coefficient, where any gen-
eral unobserved effect for teacher j in year t is removed. Accordingly, the key identification
assumption is that, within teacher-year, the teacher-specific matching effect is uncorrelated
with the unobserved shock, ϵi jt, conditional on the students’ observable characteristics.

4.3 Estimation

4.3.1 Distribution of the Matching Effects

In principle, equation (4.1) could be estimated in one step using fixed effects to capture the
level effects, θ jt, and the matching effects, γ j. However, such estimates would be contaminated
with estimation error, which would upward bias the variance of the effects. Alternatively,
one could shrink the estimated effects using standard post-estimation shrinking techniques.
However, these estimates would underestimate the true variation of the effects. Accordingly,
the true variability of the matching effect would lie between the shrunken and fixed effect (i.e.,
unshrunken) estimates (Raudenbush and Bryk 2002; Kraft 2017; Blazar 2018). Therefore, I
use a two-step procedure to recover an unbiased estimate of the teachers’ effects.

The two-step procedure works as follows. In the first step, I recover the vector of parameters
β from the econometric model by estimating the equation (4.1) using fixed effects. Doing so
allows students’ characteristics to be flexibly correlated with the matching effects, γ j, and
teacher-year effects, θ jt. Then, I calculate the residual between the students’ scores and the part
of the model explained by students’ characteristics, yi jt − X′i jtβ.

In the second step, I estimate the distribution of the teacher effects using restricted max-
imum likelihood (RML) using the estimated residual from the first stage as the dependent
variable. The RML procedure recovers unbiased estimates of the true distribution of effects.2

I estimate a two-level hierarchical structure for the level effect, which is defined at the teacher-
year and teacher level: θ jt = θ̄ j + θ̃ jt. I assume a joint-normal distribution that allows the
matching effects, γ j, to be correlated with the level effects defined at the teacher level, θ̄ j.

4.3.2 Relationship Between the Matching Effects and Teachers’ Charac-
teristics

tudying the relationship between teachers’ characteristics and their corresponding matching
effects requires having estimates of each teacher’s effect. To do so, I recover the best linear
unbiased estimators of the random effects, which are equivalent to the empirical Bayes esti-
mates. Then, I regress the estimated effects on a set of teachers’ characteristics: race, gender,
teaching experience in the district, content knowledge, instructional quality, and classroom
management. I standardize all variables to ease the interpretation of the results.

2See Blazar and Kraft (2017), Chetty et al. (2011) and Kraft (2017) for examples of value-added models using
RML
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Since the FFT and CLASS protocols are based on classroom observations, they may capture
students’ components that are not directly related to teachers’ skills. Therefore, I estimate the
regression

Protocolc jt = X̄′c jtβ + S j + ξc jt, (4.2)

where Protocol jt represents the classroom management or instructional quality of teacher j
in classroom c in year t (i.e., year 2009-2010 and 2010-2011), as measured by the FFT and
CLASS protocols. The vector X̄c jt corresponds to observable characteristics of the students
in the classroom, including lagged scores in math and language, average age, and the propor-
tion of male, minority, gifted, and English language learner students. These variables capture
changes in the protocols’ scores that are due to changes in the composition of students in a
classroom. The objects of interest are the teacher effects, S j, which I estimate using fixed ef-
fects. I use the fixed effect estimates as measures of the teachers’ managerial and instructional
skills.

4.4 Results and Discussion

Table 4.3 presents the estimated variance-covariance matrix of teachers’ effects. The first row
shows the standard deviation of the matching effect. Increasing the matching effect by one
standard deviation increases minorities’ achievement by .056 standard deviations. The second
row shows that the standard deviation of the level effect is .187 standard deviation, which
is consistent with results from the standard value-added models (Hanushek and Rivkin 2006;
Jackson et al. 2014; Koedel et al. 2015). The third row shows that the correlation between these
effects is negative, although non-significant. Therefore, the overall performance of students
assigned to teacher j is not directly related to the differential effect that some teachers may
have on minority students. Finally, the last two rows show the standard deviation of the residual
variation.

Table 4.3: Estimated Teacher Effects

Math
Estimate SE 95% Confidence Interval

Teacher-Level Effects (SD)
Matching Effect .056 .006 (.045,.070)
Level Effect .187 .008 (.172,.204)
Corr(Matching, Level) -.07 .1067 (-.277,.135)

Teacher-Year Effects (SD)
Level Effect .165 .004 (.159,.173)

Student-Year Effects (SD)
Level Effect .517 .001 (.515,.519)

Different mechanisms could explain the matching effects. The matching effects could be
due to students being more motivated when matched to a demographically similar teacher,
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resulting in increased performance. Under this scenario, teachers would play a passive role
and would not directly influence academic outcomes with their teaching skills. Accordingly,
policymakers could increase the participation of minority teachers to promote the performance
of minority students.

Alternatively, some teachers may have teaching skills that are more beneficial for minority
students. Thus, policymakers could design training programs to increase the teaching skills
that benefit minority students the most.

To explore the relevancy of these potential mechanisms, in Table 4.4, I present the rela-
tionship between the estimated matching effects and the set of teachers’ characteristics and
skills. Each row in the first column represents a separate regression. As seen in the first row
of Column 1, the relationship between teachers’ race and the matching effect is positive but
not significant. The results show a similar pattern for teachers’ gender, experience, content
knowledge, and instructional quality. However, as measured by both protocols, I find a pos-
itive and significant relationship between teachers’ managerial skill and the matching effects.
This evidence suggests that teachers may play an active role in determining the minorities’
performance through better classroom management.

In the second and third columns of Table 4.4, I combine the teachers’ characteristics and
skills in a single regression. These estimates remove any effect that the teaching skills may
have on the estimated effect of teachers’ race. The second column presents the results using
the FFT measures of teachers’ managerial and instructional skills, while the third column uses
the CLASS protocol instead. I do not include the teachers’ experience, as it is only observed for
a subset of teachers. The relationship between the teachers’ skills and characteristics is similar
to the previous estimates. Overall, this evidence suggests that improving the managerial skills
of teachers may be an effective mechanism to increase teachers’ contribution to the academic
performance of minority students.
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Table 4.4: Relationship between Matching Effects and Teachers’
Characteristics and Skills

(1) (2) (3)
Teacher: Minority .109 .122 .129

(.093) (.096) (.097)
Teacher: Male .024 .036 .057

(.113) (.114) (.115)
District Experience .051 - -

( .050)
Content Knowledge .023 .060 .050

(.044) (.047) (.046)
FFT: Management .085* .167** -

(.044) (.077)
FFT: Instruction .037 -.087 -

(.044) (.076)
CLASS: Management .097** - .126***

(.044) (.047)
CLASS: Instruction -.028 - -.056

(.044) (.046)
Each row in the first column represent a separate regression. The sample

consists of 507 math teachers. * Significant at 10 percent. ** Significant at 5
percent. *** Significant at 1 percent.
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Appendix A

Appendices to Chapter 2

Table A.1: Measurement System

Value SE Value SE
Measures of ln Yic j Measures of Kic j

State Test Previous Year Math
Location 0.00 - Location 0.00 -
Scale 1.00 - Scale 1.00 -
Standard Deviation .469 .005 Standard Deviation .42 .006

BAM Previous Year Science
Location .048 .011 Location -.13 .017
Scale .89 .013 Scale .857 .019
Standard Deviation .623 .007 Standard Deviation .586 .011

Measures of ln Lic j Measures of ln Hic j

log Hours/week of study Number of Books
Location 0.00 - Location 0.00 -
Scale 1.00 - Scale 1.00 -
Standard Deviation .855 .012 Standard Deviation .824 .014

Homework Completed: Number of Computers
Scale 1.10 .079 Location 0.00 .018
Threshold 1 -1.32 .062 Scale .875 .037
Threshold 2 -.049 .051 Standard Deviation .868 .013
Threshold 3 .314 .05 Parents Education
Threshold 4 2.13 .056 Scale 1.21 .057

Stop Trying: Threshold 1 -.975 .033
Scale .979 .07 Threshold 2 -.221 .030
Threshold 1 -1.24 .05 Threshold 3 .210 .029
Threshold 2 -.792 .045 Threshold 4 .811 .030
Threshold 3 -.155 .044 Measures of ln EMc j

Threshold 4 .502 .046 Doesn’t let give up:
Measures of ln Mc j Scale 1.00 -

Students Treat with Respect: Threshold 1 -1.154 .035
Scale 1.00 - Threshold 2 -.764 .025
Threshold 1 -1.582 .035 Threshold 3 0.00 -
Threshold 2 -.975 .025 Threshold 4 .742 .019
Threshold 3 0.00 - Better Thinker:
Threshold 4 1.023 .023 Scale 1.08 .049

72
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Table A.1: Measurement System

Value SE Value SE
Behavior under control: Threshold 1 -.868 .050

Scale .804 .027 Threshold 2 -.455 .047
Threshold 1 -1.128 .032 Threshold 3 .328 .046
Threshold 2 -.579 .029 Threshold 4 1.063 .047
Threshold 3 .241 .029 Accepts Nothing Less:
Threshold 4 1.08 .031 Scale .961 .048

Classmates behave: Threshold 1 -1.179 .052
Scale .922 .030 Threshold 2 -.766 .047
Threshold 1 -1.036 .035 Threshold 3 .091 .044
Threshold 2 -.430 .032 Threshold 4 .845 .044
Threshold 3 .525 .032 Measures of ln µMc j

Threshold 4 1.452 .034 log Classroom Size
Location 3.00 0.001
Scale -.160 .014
Standard Deviation .253 .007
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Table A.2: Descriptive Statistics: Measures of Latent Variables

Mean Obs. Mean Obs.
Measures of ln Yic j

State Test 0 6,603 Measures of ln Mc j

BAM 0 4,764 Students Treat with Respect: 5,419
Measures of ln Kic j Totally Untrue 6.92

Previous Year Math 0 6,214 Mostly Untrue 9.36
Previous Year Science 0 1,811 Somewhat Untrue/True 26.41

Measures of ln Hic j Mostly True 32.22
Number of Books 0 5,250 Totally True 25.10
Number of Computers 0 5,273 Behavior under control: 5,325
Parents’ Education 3,960 Totally Untrue 12.56

Did not finish HS 19.8 Mostly Untrue 12.96
High School 20.86 Somewhat Untrue/True 26.89
Some College 13.66 Mostly True 26.31
4-year College 18.41 Totally True 21.28
Professional or Grad. degree 27.27 Classmates behave: 5,313

Measures of ln Lic j Totally Untrue 14.76
log Hours/week of study .85 5,267 Mostly Untrue 14.79
Homework Completed: 5,218 Somewhat Untrue/True 31.02

None of it/Never Assigned 3.6 Mostly True 25.26
Some of it 11.38 Totally True 14.17
Most of it 23.23
All 53.74
All plus some extra 8.05

Stop Trying: 5,347
Totally Untrue 4.54
Mostly Untrue 5.72
Somewhat Untrue/True 14.77
Mostly True 22.65
Totally True 52.31

Measures of ln EMc j

Doesn’t let give up: 5,388
Totally Untrue 3.92
Mostly Untrue 4.21
Somewhat Untrue/True 16.44
Mostly True 25.41
Totally True 50.02

Better Thinker: 5,275
Totally Untrue 6.22
Mostly Untrue 6.12
Somewhat Untrue/True 20.61
Mostly True 26.33
Totally True 40.72

Accepts Nothing Less: 5,215
Totally Untrue 3.78
Mostly Untrue 4.49
Somewhat Untrue/True 19.64
Mostly True 26.79
Totally True 45.31
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Table A.3: Model Fit: Estimated Value-Added Regression

Actual Model
Coefficient SE Coefficient

Lagged Math Score .602 .011 .583
Av. Lagged Math Score .179 .028 .211
Age -.039 .008 -.034
Gender:Male -.016 .014 .015
Race: African American -.146 .025 -.141
Race: Hispanic -.039 .025 -.079
Race: Asian .141 .037 .050
Gifted Status .211 .034 .161
Special Education -.246 -.032 -.071
English Language Learner -.048 .025 -.105
log(Class Size) -.247 .062 -.062

R2 .705 .689
Standard Deviation of Teachers’ Effects .260 .271

Note: The dependent variable is math test score and sample size is 6,135 students assigned to 149 teachers.
The control variables include students’ characteristics, their corresponding classroom average, (log) class-
room size, and teacher fixed effects. The standard deviation of the estimated teacher fixed effects gives the
standard deviation of the value added.
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A.1 Additional Model Material

Consider Nc j students in classroom c assigned to teacher j. Students choose studying effort
Lic j ∈ [0,∞), and the teacher chooses managerial effort EMc j ∈ [0,∞). The teacher exerts effort
to maximize utility from their students’ achievement, net the cost of effort. Students exert effort
to maximize utility from achievement, net the cost of learning effort. The teacher moves first
and students move second. The teacher values the average response of the students, which
I denote as L̄br

c j(EMc j). Assume that the utility functions are twice differentiable and strictly
concave. Suppose further that the knowledge production function is increasing in the teacher’s
and students’ effort. Similar to Gal-Or (1985), I define the subgame perfect Nash equilibrium
with sequential move as:

Definition (Nash Equilibrium with Sequential Move). Students’ and teachers’ efforts (L∗1c j, L
∗
2c j, ..., L

∗
Nc jc j, E

∗
Mc j)

corresponds to a Nash equilibrium with sequential move if:

L∗ic j ≡ Lbr
ic j(E

∗
Mc j) = argmax

L
U s(Lic j, E∗Mc j) ∀i in classroom c, and

E∗Mc j = argmax
EM

U t(EMc j, L̄br
c j(EMc j)).

The function Lbr
ic j(E

∗
Mc j) is the students’ best response, Equation (2.9), when teachers exert

the equilibrium amount of effort, E∗Mc j. I omit the endowments from Definition A.1 to keep the
notation simple.

If an interior solution satisfying Definition A.1 exists, then students’ first order conditions
are:

U s
L(L∗ic j, E

∗
Mc j) = 0 ∀i in classroom c,

where the subscript L denotes the partial derivative of the students’ utility function with respect
to Lic j, and the second order conditions are

U s
LL(L∗ic j, E

∗
Mc j) < 0 ∀i in classroom c.

Given the model parametrization, the students’ second order condition holds if αLγL < 1.
Additionally, the sign of the slope of students’ best response Lbr

1c j(E
∗
Mc j) is determined by

∂Lbr

∂EM
= −

U s
LE

U s
LL

⪋ 0,

which, as Equation (2.9) shows, is positive if
γLαMic j−βM

1−αLγL
> 0.

For the teacher, the first order condition is

U t
E(E∗Mc j, L̄

∗
c j) + U t

L̄(E∗Mc j, L̄
∗
c j)
∂L̄
∂EM

= 0,
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and the second order condition is

U t
EE(E∗Mc j, L̄

∗
c j) + 2 × U t

L̄E(E∗Mc j, L̄
∗
c j)
∂L̄
∂EM

+ U t
L̄(E∗Mc j, L̄

∗
c j)
∂2L̄
∂E2

M

+ U t
LL(E∗Mc j, L̄

∗
c j)
( ∂L̄
∂EM

)
< 0.

Notice that the strict concavity of the teacher utility function does not guarantee by itself the
existence and uniqueness of an equilibrium. To find the sufficient conditions, I first replace
the students’ best response, Equation (2.9), and the classroom management practice, Equation
(2.2), in the knowledge production function, Equation (2.3), and then apply the geometric
mean:

Ȳc j =

[ααL
L × K̄(αK+αK̄ )

c j × µ
(αMc j−αLβM)
Mc j × θ

αGc j

G j

cαL
L × H̄αLβH

c j

] 1
1−αLγL

× E
δE (αMc j−αLβM )

1−αLγL
Mc j

where αMc j = αM + αMK ln K̄c j, and αGc j = 1 + αGK ln K̄c j. The average classroom knowledge
is increasing in teachers’ effort if the effort’s exponent is positive, δE(αMc j−αLβM)

1−αLγL
> 0. Thus, after

replacing Ȳc j in the teacher’s utility function, Equation (2.7), the second order condition for
teacher j holds if

αLγL + δEγEc j(αMc j − αLβM) < 1.

The closed-form solution for teachers’ effort, is

E∗Mc j =

[(
αL

cL

)αLγEc j

×

(
δE

θE j
×
αMc j − αLβM

1 − αLγL

)1−αLγL

×

( K̄αK+αK̄
c j × θ

αGc j

G j × µ
αMc j−αLβM

Mc j

H̄αLβH
c j

)γEc j
]B (A.1.1)

where the exponent B is given by

B =
1

1 − αLγL − δEγEc j(αMc j − αLβM)
.

Teacher’s response to changes in endowments depends on the sign of the curvature param-
eter γEc j. For instance, the teacher effort would be increasing in θG j if γEc j > 0, while it would
be decreasing if γEc j < 0 (assuming that αGc j > 0).
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