
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

7-1-2017

Soft Sides of Software
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Faheem Ahmed
Thompson Rivers University, fahmed@tru.ca

Fabio Queda Silva
Federal University of Pernambuco, fabio@cin.ufpe.br

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Capretz, Luiz Fernando; Ahmed, Faheem; and Silva, Fabio Queda, "Soft Sides of Software" (2017). Electrical and Computer Engineering
Publications. 115.
https://ir.lib.uwo.ca/electricalpub/115

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/115?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

1

Soft Sides of Software

Luiz Fernando Capretz
Western University, Department of Electrical and Computer Engineering, London, N6A5B9,

Canada
lcapretz@uwo.ca

Faheem Ahmed

Thompson Rivers University, Department of Computing Science, Kamloops, V2C0C8, Canada
fahmed@tru.ca

Fabio Q. B. da Silva

Universidade Federal de Pernambuco, Centro de Informática, Recife, 50740-560, Brazil
fabio@cin.ufpe.br

It is impossible to exclude the human factors from software engineering expertise during
software development because software is developed by people and for people. The intangible
nature of software has made it a difficult product to successfully create, and a close examination
of the reasons for major software system failures shows that several of these reasons eventually
boil down to human issues. As software practitioners are immersed in the technological aspect of
the product, they can quickly learn lessons from technological failures and readily come up with
solutions to avoid them in the future. Nonetheless, they do not learn lessons from the human
aspects of software engineering.

Dealing with human errors is much more difficult for developers and often this aspect is
overlooked in the development process as software developers move on to problems that they are
more comfortable solving. The main reason for the oversight is that human factors are usually
related to soft skills, i.e., teamwork, motivation, emotions, commitment, leadership, multi-
culturalism, interpersonal skills, etc. Another reason is that there has been a lack of progress in
this area since the field of software psychology (a soft side) has not focused on problems arising
from human failings to the same extent as we have on strictly technical problems.

A quick search for "human factors" in the IEEE Guide to the Software Engineering Body of
Knowledge (SWEBOK) and the ACM/IEEE Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, reveals that the term appears only eight times in each document
body. Nevertheless, one prominent sentence does reinforce the importance of the topic: "Students
need to repeatedly see how software engineering is not just about technology." However, due to
the constraints of most software curricula, the reality indicates that, at best, human factors are
squeezed into only one or two HCI courses. SWEBOK-v3.0 suggests that only five hours of
studies be given to group dynamics. This is clearly not enough for a topic of such crucial
importance. Educators willing to venture into this area face an arduous task if they try to
convince their colleagues and software engineering zealots of the importance of soft skills
materials.

One factor that may have influenced this lack of attention in the past is that very few researchers
and practitioners have explored programming as an individual cognitive activity and not looked
at personality traits. Others have touched on team and social perspectives of software

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

2

engineering and focused on the human aspects in the software development processes. One can
find trustworthy materials and heated discussions at the website of the Psychology of
Programming Interest Group (www.ppig.org). Nevertheless, studies on human factors to date
have only scratched the surface of their impact on the software development process.
Occasionally papers have described results obtained by quantitative and qualitative research
conducted in this field. Quick searches at Google Scholar have shown a few thousands results for
“human factors in software”, “psychology of computer programming” and “software
psychology”, but hundreds of thousands results for “cloud computing“ – a much more recent
topic in the computing/software arena. Google shows only seven entries for “course in software
psychology.” Even worse is the fact that this kind of research has had a minimal impact on the
daily life of professional software engineers in the last 40 years.

Pioneers and Late Research on Software Psychology

Software engineering has come a long way from its defining days of the 1970-s. While it has
been excelling in serving diverse requirements of disparate customer bases, ranging from space
scientists and weather forecasters to boutiques and retail shop owners, it has also been causing
serious concerns due to major system failures caused by software glitches or improper software
verification and validation, or human limitations. However, human aspects of software
engineering continue to be a neglected research area. Possible reasons for this neglect are: the
complex relationships between human psychology and the software development processes, lack
of awareness of the impact of human factors in software engineering, and possibly lack of trust
in empirical studies on human factors in software engineering. If the status quo lasts long, the
software engineering discipline may face serious problems.

The importance of the people dimension has been highlighted by thoughtful leaders, like
Weinberg [1], Dijkstra [2] and DeMarco [3]. Since the 1970, egoless programming is one of the
most cited and most misunderstood concepts in software psychology; it has given rise to a
variety of powerful software review techniques. Lately, Weinberg stated that “there is no
shortage of evidence that, for example, technical reviews lead to more reliable code produced
more cheaply and consistently. And, indeed, more software organizations today regularly use
some form of technical review as a standard part of their software processes”. This is one of the
first pieces of evidence that good software engineering best practices influenced by egoless
programming, i.e. reviews and walkthroughs, outlast specific technologies such as old-fashioned
CASE tools.

Recently, Cruz et al. [4] conducted an extensive mapping study, in which 19,000 articles
published between 1970 and 2010 were retrieved, but only 90 were considered to be
representative and relevant to the understanding of the role of individual personality in software
engineering. This clearly confirms that despite being a significantly important piece of the
software engineering puzzle, the personality factor is still missing when it comes to empirical
evidence of realities. Many of the empirical studies to date have revolved around discovering the
personality traits of a software engineer while at school or working in the profession. However,
little evidence is available on the effectiveness or impact analysis of the personality profile
needed in managing a software project, developing group cohesiveness, dealing with individual
behavior, conflict management, etc. The micro-level interpretation of software development

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

3

activities (such as system analysis, design, coding, and testing) demands, in order to effectively
carry out the activity, a certain set of abilities from the individuals involved. Determining the
best personality traits for these particular roles and the individuals who have these personality
traits are concepts that are rarely discussed. Perhaps, that is because determining answers to these
questions is not a simple matter.

Undoubtedly, it is important to assign people with particular personality traits to their preferred
tasks in a software project; this increases the chances of a successful project outcome [5]. This
study tackles a difficult-to-measure aspect of software engineering: that is, how to best choose
individuals for the various tasks in a software project. To a certain extent, successful approaches
use psychological types to determine who prefers certain software development roles. The study
found patterns that link personality traits to role preferences in a software life cycle. Among the
various roles, the most preferred ones among the participants are system analyst, software
designer, and programmer. In contrast, tester and maintainer happen to be the least popular roles
among software engineers. However, that study omits the different characteristics that may be
most appropriate for other software occupations, such as project manager, troubleshooter,
helpdesk personnel, database administrator, and so forth.

The Importance of Soft Skills

When software employers advertise jobs, they divide their wish list into technical and non-
technical skill sets. Technical skills are relatively easy to evaluate by looking into academic
credentials, certifications, professional experience, etc. On the other hand, the difficulty of
assessing non-technical skills – such as interpersonal skills, teamwork, ability to work under
strict deadlines, being a fast learner, and open and flexible to change – tend to make these skills
overlooked compared to technical skills when employers evaluate candidates for jobs [6]. About
80% of the individuals who fail at work do not fail due to a lack of technical skills but rather
because of their inability to relate or communicate well with others in a team [7]. Software
development is a collaborative type of work in which solo performers are rare. In this case, an
individual who has appropriate academic credentials but is unable to work in a group setting may
have a catastrophic effect on the project. However, as we have mentioned, these non-technical
skills are difficult to assess at the time of hiring. Similarly, the rapid growth in technology and
continuous process improvement are characteristics of software development that make work
difficult for someone who has an inability to learn fast or work under constant pressure.

Kappelman et al. [8] provided insights into the diverse and dynamic nature of skills required at
different stages of a software engineering career, from new hires to CIOs. They assert that the
key to progression to software project management is to hone one’s technical and functional-area
skills, and that communication skills are critical throughout a software professional career; they
advised software professionals to build their people and decision-making skills. Organizations
can use these skills to enhance their software-related workforce practices, and software engineers
can use them to achieve their personal career objectives and help others do so too. It appears that
the time is now ripe to address essential soft skills that complement technical skills.

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

4

Emotions, Culture, and Diversity

Modern software development is the result of a complex process that involves many
stakeholders; these stakeholders include product owners, quality assurance teams, the project
manager, and, above all, the software developers. The main difficulty that software project
managers face when tasks are assigned is selecting the right people within a team so that the
chances of successful completion of the project increases. There is no easy gauge to measure
selecting the “right” person for a job because the answer is not deterministic. For example,
“motivation” deals with a reason to perform better; however, motivation by itself is often
insufficient for achieving goals. Arguably, other human-related factors play an important role in
software development. Emotions, moods and feelings in the workplace receive significant
attention in management research and organizational psychology. Using biometrics measures,
Muller and Fritz [9] show that a wide range of emotions (happiness, frustration, anger, etc.)
experienced by software developers is definitely correlated with their progress on the tasks.

Furthermore, software development no longer takes place within one room or building. Instead,
it is a global venture performed by development teams composed of individuals scattered across
the globe, most of them having different cultural backgrounds. Culture has to do with the way
people think, react to events, socialize, and prioritize things, and also the work ethic that they
have. How these diverse individuals operate within the development team can present a complex
problem to solve; for example, in both the USA and the Netherlands, individualism is very high;
whereas, in the cases of China, West Africa, and Indonesia, collectivism is more important in
social behavior [10]. Similarly, some cultures are task-oriented instead of relationship-focused.
When individuals from these opposite cultures interact to develop a software product, the success
of the software project can be relatively difficult to predict, and these opposing factors have the
potential to increase project risks. Despite the awareness that these cultural dynamics may
contribute to the probable success or failure of the software project, the real issue is that the
software industry tends to ignore these dynamics because no one has a clear solution for the
problem.

However, the software industry cannot afford to lose potential professionals who may think
differently. In terms of software development, better software will result from the combined
efforts of a variety of mental processes, experience, and values. Different ways of thinking are
important for software engineering, as individuals with different mindsets can make unique
contributions during the software development process. More than ever, software engineering
needs diversity of thinking because it takes variety to conquer complexity. Binging this to the
software context, skills diversity is needed to solve the myriad problems related to software
development and maintenance [11]. Since strong teams are the ones made up of balanced
perspectives, organizations can benefit from a conscious attempt to diversify the styles of their
software engineers. Diversity and variety will enable us to bring a richness of talents and points
of view to bear upon the inherent complexity of software systems.

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

5

Teams and Interactions

Although the research on diversity has led to important results, it has not fully addressed the
effects, positive and negative, of having different individuals working and interacting in software
development teams. The vast majority of software systems of practical relevance are developed
by teams, not individuals, due to their inherent complexity and also to their size and effort
needed for their development. When individuals must work in teams, a broader view must be
taken: we need to understand how individuals interact and work together in those teams, and this
is much more difficult to understand and requires further attention from researchers in behavioral
psychology, management science, and empirical software engineering. Consequently, team
processes and interactions must be taken into account during team building and throughout the
entire lifetime of the team [12]. More recently some embryonic empirical studies have been
conducted to exam the impact of personalities in software development teams. Acuna et al. [13]
found a positive relationship between some organizational climate factors and satisfaction in
software development teams: the teams whose members score highest for the agreeableness
personality factor have the highest satisfaction levels, and this has an impact on the software
quality. Finally, Yilmaz et al. [14] indicated that effective team structures support teams with
higher emotional stability, agreeableness, extroversion, and conscientiousness personality traits.
This complex and overlooked research area needs further investigation.

Software is a field of rapid changes: the best technology today becomes obsolete in the near
future. If we review the graduate attributes of any of the software engineering programs across
the world, life-long learning is one of them. The social and psychological aspects of professional
development is linked with rewards. In organizations, where people are provided with learning
opportunities and there is a culture that rewards learning, people embrace changes easily.
However, the software industry tends to be short-sighted and its primary focus is more on current
project success; it usually ignores the capacity building of the individual or team.

It is hoped that our software engineering colleagues will be motivated to conduct more research
into the area of software psychology so as to understand more completely the possibilities for
increased effectiveness and personal fulfillment among software engineers working alone and in
teams.

References

[1] G.M Weinberg, The Psychology of Computer Programming, Dorset House, New York,

NY: 1971.
[2] E. Dijkstra, Programming Considered as a Human Activity, ACM Classic Books Series –

Classics in Software Engineering, ACM, Washington, DC: 1979.
[3] T. DeMarco, T. Lister, Peopleware, Dorset House, New York, NY: 1987.
[4] S. Cruz, F.Q.B. Silva, L.F. Capretz, Forty Years of Research on Personality in Software

Engineering: A Mapping Study, Computers in Human Behavior, 46(1):94-113, DOI:
10.1016/j.chb.2014.12.008, 2015.

Information and Software Technology, 92(2017):92‐94, doi: 10.1016/jinfsoft.2017.07.011, July 2017.

6

[5] L.F. Capretz, D. Varona, A. Raza, Influence of Personality Types in Software Task
Choices, Computers in Human Behavior, 52:373-378, DOI: 10.1016/j.chb.2015.05.050,
2015.

[6] F. Ahmed, L.F. Capretz, P. Campbell, Evaluating the Demand for Soft Skills in Software
Development, IEEE IT Professional, 14(1):44-49, DOI: 10.1109/MITP.2012.7, January-
February 2012.

[7] K. Richter, R. Dumke, Modeling, Evaluation, and Predicting IT Human Resources, CRC
Press, Boca Raton, FL: 2015.

[8] L. Kappelman, M.C. Jones, V. Johnson, E.R. McLean, K. Boonme, Skills for Success at
Different Stages of an IT Professional’s Career, Communications of the ACM, 59(8):64-
70, August 2016.

[9] S. Muller and T. Fritz, Stuck and Frustrated or in Flow and Happy: Sensing Developers’
Emotions and Progress, 37th IEEE/ACM International Conference On Software
Engineering, Florence, Italy, Vol. 1, pp. 688-699, May 2015.

[10] J.S. Olson, G.M. Olson, Culture Surprises in Remote Software Development Teams,
ACM Queue, 1(9):52-59, 2003.

[11] L.F. Capretz, F. Ahmed, Making Sense of Software Development and Personality Types,
IEEE IT Professional, 12(1):6-13, DOI: 10.1109/MITP.2010.33, January 2010.

[12] F.Q.B. Silva, A.C.C. França, M. Suassuna, L.M.R.S. Mariz, I. Rossiley, R.C.G. Miranda,
T.B. Gouveia, C.V.F. Monteiro, E. Lucena, E.S.F. Cardozo, Team Building Criteria in
Software Projects: A Mix-Method Replicated Study, Information and Software
Technology, 55(7):1316-1340, DOI: 10.1016/j.infsof.2012.11.006, 2013.

[13] S.T. Acuna, M.N. Gomez, J.E. Hannay, N. Juristo, D. Pfahl, Are Team Personality and
Climate Related to Satisfaction and Software Quality? Aggregating Results from a Twice
Replicated Experiment, Information and Software Technology, 57:141-156, DOI:
10.1016/j.infsoft.2014.09.002, 2015.

[14] M. Yilmaz, R.V. O’Connor, R. Colomo-Palacios, P. Clarke, An Examination of
Personality Traits and How They Impact on Software Development Teams, Information
and Software Technology, 86:101-122, DOI: 10.1016/infsof.2017.01.005, 2017.

	Western University
	Scholarship@Western
	7-1-2017

	Soft Sides of Software
	Luiz Fernando Capretz
	Faheem Ahmed
	Fabio Queda Silva
	Citation of this paper:

	Microsoft Word - Capretz-HF-IST

