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Abstract

Tandem mass spectrometry (MS/MS) is the key technology for glycopeptide identification

in high-throughput large-scale glycoproteomics. Estimation of false discovery rates (FDR) is

essential for evaluating the quality of the MS/MS-based identification software tools. Although

numerous glycopeptide identification tools have been recently proposed, there have been few

widely accepted approaches for glycopeptide FDR analysis due to the great structural diversity

of glycans. The target-decoy search strategy is currently the most common method for FDR

estimation of peptide-spectral matches. In this study, we constructed decoy glycan databases

by various methods and compared the FDR from the database search scores produced by each

decoy glycan database. Furthermore, we employed a mixture model that facilitates distinguish-

ing between correct and incorrect identifications among the database search score distribution

for a better comparison of different decoy glycan database constructions.

Keywords: Tandem mass spectrometry, false discovery rate, target-decoy search strategy
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Summary for Lay Audience

Tandem mass spectrometry (MS/MS) is an essential tool to identify chemical substances.

Since various glycopeptide identification software have been developed for the past decades,

a large quantity of MS/MS data can be identified in a single run of this software. In large-

scale glycoproteomics, false discovery rate (FDR) estimation plays a vital role to evaluate the

identification results produced by the software because the results may contain incorrect as-

signments, and manually checking them is not feasible for large datasets. Although extensive

research has been carried out on FDR estimation in proteomics, there have been few widely

accepted approaches to FDR analysis for glycan because of their structural diversity. Target-

decoy search strategy is the standard method to estimate FDR in proteomics, where the se-

quencing software searches the real target database and incorrect decoy database. In this study,

we generated different kinds of decoy glycan databases and compared the effectiveness of the

databases for reasonable FDR estimation of glycopeptide identification. To compare the de-

coy glycan database, we used a mixture model for the differentiation of correct and incorrect

glycopeptide assignments.
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Chapter 1

Introduction

1.1 Glycoproteomics

Protein glycosylation is one of the most common and important post-translational modification

(PTM). Glycosylation is the covalent attachment of glycans to proteins and occurs not only in

animals and plants but also in all other domains of life, such as bacteria and archaea. Protein

glycosylation is mediated by glycosyltransferases, the enzymes that catalyze the glycosidic

linkages. Interactions between glycosyltransferases, carbohydrate transporters, and glycosi-

dases regulate glycan structures and their functions. Previous research reported that more than

50% of all peptides are modified by glycosylation [1]. It has been estimated that at least 50%

and as high as 70% of human proteins are glycosylated [2] and the modification plays a critical

role in various biological processes such as protein folding, cell signaling, cellular develop-

ment, host-microorganism interactions, and immunity. Previous research has found possible

relationships between glycosylation and several diseases including Alzheimer’s disease and

cancers [3] [4].

Glycoproteomics is an actively developing area of research that identifies and characterizes

glycosylation at a proteome scale. Glycosylation has not yet been fully understood because,

unlike other simple PTMs such as phosphorylation and acetylation, the great structural diver-

sity of glycans and the heterogeneity of glycosylation sites make the glycoproteomics analysis

significantly more challenging. A single protein can have hundreds of possible glycan attach-

ments and a specific site of N-linked and O-linked glycosylation can be carried by numerous

1



2 Chapter 1. Introduction

different glycans [5].

1.1.1 N-linked/O-linked glycans

Various types of glycosylations have been observed that have different target residues for mod-

ification and glycosylation sites within proteins. Among them, there are two main types of

glycans: N-linked glycans and O-linked glycans. N-linked glycans are attached to asparagine

(Asn) side chains in a part of consensus amino acid sequence motif of Asn-X-serine (Ser)/

threonine (Thr), where X can be any amino acid apart from proline (Pro). N-linked gly-

cans commonly have the core glycan structure GlcNAc2Man3, which is composed of two N-

acetylglucosamine (GlcNAc) residues linked to three mannose (Man) residues. Glycans are

classified into three groups: high-mannose, complex, and hybrid. High-mannose N-linked gly-

cans have the core structure to which many mannose residues are attached. Complex N-linked

glycans consist of the core structure with any type of monosaccharides. Hybrid N-linked gly-

cans have mannose residues on one side of the core structure and complex residues on the other

side of the core structure.

O-linked glycans are typically attached to serine (Ser) or threonine (Thr) residues. The

most commonly presented monosaccharide is N-acetylgalactosamine (GalNAc) in O-linked

glycans, but there is no known consensus amino acid sequence for O-linked glycans as opposed

to N-linked glycans. It has been estimated that there are up to 3000 N-linked and O-linked

glycans in humans [6]. Aside from GlcNAc, Man and GalNAc, there are several common

monosaccharides in N-linked and O-linked glycans such as galactose (Gal), Glucose (Glc),

Fucose (Fuc), Xylose (Xyl), N-acetylneuraminic acid (Neu5Ac), and N-glycolylneuraminic

acid (Neu5Gc).
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Figure 1.1: Three types of N-glycan [2]

1.1.2 Sequence format for glycans

There are a number of sequence formats to linearly or graphically represent glycan struc-

tures. Complex Carbohydrate Structure Database (CCSD, also called CarbBank) [7] uses

two-dimensional graphical representations to represent glycan sequences. KCF [8] employs

the connection table approach as used by the Kyoto Encyclopedia of Genes and Genomes

(KEGG) specifying NODE section for monosaccharides and EDGE section for glycosidic

linkages. Glycan data exchange format (Glyde) [9] and CabosML [10] are XML (Extensi-

ble Markup Language)-based formats to represent glycomics data regardless of different data

acquisition and processing systems. GlycoMinds LinearCode [11], LINUCS applied in GLY-

COSCIENCES.de. [12], and Bacterial carbohydrate structure database (BCSDB) [13] repre-

sent carbohydrate sequences uniquely with a condensed description of the monosaccharides,

connections, and modifications in a linear fashion.

These glycan sequence formats have different ability to encode complex structural features

in glycans and none of the current glycan encoding systems can perfectly handle the complex

carbohydrate structural data (Table 1.1, where + represents special structual fearures can be

encoded, - represents the fearures cannot be encoded, and O means the fearures can be partially

encoded). To overcome those limitations of the existing carbohydrate sequence formats, Herget

et al. proposed GlycoCT format [14].



4 Chapter 1. Introduction

Table 1.1: Glycan format comparison [14]

GlycoCT

GlycoCT is a connection table-based glycan representation format. GlycoCT employs a graph

notation with the residue list containing all the monosaccharides in a glycan and the connec-

tivity list describes all the unique linkages between each monosaccharide (Figure 1.2).

Figure 1.2: GlycoCT general concept [14]

In the residue list, GlycoCT uses five attributes to represent glycan features: anomeric

carbon configuration, three-letter stem type code with configuration, the number of carbons in

the chain, ring forming positions, and modifier information (Figure 1.3). GlycoCT does not

use trivial names like fucose for consistency, but, if needed, these names can be created using

other software tools such as GlycanBuilder [15].
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Figure 1.3: GlycoCT residue section [14]

The connectivity list is made up of all the linkages of the monosaccharides in the residue

list with the information of residue numbers corresponding to those in the residue list and

modification patterns of the linkage by chemical bond formation.

Figure 1.4: GlycoCT linkage section [14]
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1.2 Mass spectrometry

1.2.1 Mass spectrometry

Mass spectrometry (MS) is a widely used method for analyzing complex protein samples. Pro-

teomics based on mass spectrometry is an essential technology for interpreting gene-encoded

information. A mass spectrometer basically consists of the ion source, the mass analyzer, and

the detector. A mass spectrometer first produces ions from the sample (liquid or gas) in the ion

source. Then, it separates ions according to their mass-to-charge ratio, m/z (m means the rela-

tive mass of the ions in Daltons (Da), and z means the number of charges, which is counted in

accordance with the charge of one electron in absolute value), and fragments the selected ions

in the mass analyzer. After that, the mass spectrometer detects the ions, measures the number

of ions at each m/z value, which is called abundance, and converts them into electrical signals

in the detector. Finally, it processes and records the signals, and transmits them to a computer.

The output of a mass spectrometer is a spectrum represented as a set of m/z and intensity pairs.

The mass spectrum is mostly shown as a bar graph. The x-axis indicates m/z and the y-axis

indicates the intensity, or relative abundance, which is the figure proportional to the number of

ions detected in per cent of the most abundant one.

1.2.2 Tandem Mass Spectrometry

The mass analyzer is the fundamental part of the mass spectrometer. Tandem mass spectrom-

etry (MS/MS) is a technique using several analyzers to increase the key parameters in pro-

teomics: the sensitivity, resolution, accuracy of mass measurement, and the ability to generate

spectra with a lot of information from peptide fragments. In bottom-up proteomics, proteins

are first broken into short peptides by proteases (e.g., trypsin), because the whole protein mass

spectrometry is less sensitive than that of the peptide level. Then, the first spectrometer (MS1)

selects a precursor ion, which represents a peptide, and fragments it through collision. The

second spectrometer (MS2) records and analyzes m/z of each fragmented ion, which is called

a product ion. Analyzing the product ions provides information about the peptide sequences
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(Figure 1.5).

Figure 1.5: Proteomics workflow [16]

1.2.3 Mass spectrometry-based glycoproteomics

Mass spectrometry (MS)-based proteomics has been a standard method for the identification

and quantification of glycoproteins thanks to the developments in MS instrumentation, frag-

mentation strategies, and high-throughput workflows over the past decades. Glycopeptide char-

acterization is often difficult because glycopeptides are low in abundance and commonly used

fragmentation methods preferably dissociate glycan with fewer peptide fragments. For these

challenges, the traditional approach to identifying glycopeptides is a separation of glycans from

peptides by deglycosylation. For N-linked glycopeptides, the enzyme PNGase F is commonly

used to remove glycans from glycopeptides [17]. The separated peptides and glycans subse-

quently are analyzed to identify and characterize peptide sequences, glycosylation sites, and

glycan structures. This approach, however, has a drawback in that a glycosylation site and the

corresponding glycan structural information cannot be directly obtained. The alternative ap-
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proach to the deglycosylation strategy is the intact glycopeptide strategy. This strategy leaves

glycan attachments to peptides intact, and thus makes it possible to obtain the information for

peptide sequences, glycosylation sites, and glycan structure concurrently [18].

1.2.4 Dissociation methods

It is necessary for intact glycopeptide analysis to employ high sensitivity and high throughput

tools that can provide fragments from peptide backbones and attached glycans. Several MS

peptide fragmentation methods have been developed, which can be classified into two groups

by their energy deposition: vibrational methods and electronic methods. The vibrational meth-

ods include low-energy collision-induced dissociation (CID), higher-energy collisional disso-

ciation (HCD), and infrared multiphoton dissociation (IRMPD), while the electronic methods

include electron capture dissociation (ECD), electron transfer dissociation (ETD) and ultravi-

olet photodissociation (UVPD).

Using these methods, peptides and glycans are dissociated into many smaller fragment

ions. Peptide fragment ions from the C-terminus are labeled as x1, y1, and z1 to xn, yn, and

zn, where n is the number of amino acids in the peptide. The other types of peptide fragment

ions from the N-terminus are called a1, b1, and c1 to an, bn, and cn (Figure 1.6). In the same

manner, glycan fragment ions from the reducing end are labeled as X1, Y1, and Z1 to Xn, Yn,

and Zn, from the non-reducing end are A1, B1, and C1 to An, Bn, and Cn (Figure 1.7). Different

dissociation methods produce different types of fragment ions.

CID [19] is the most employed method to elucidate peptides and glycans. HCD [20] is

a higher energy version of CID specific to modern orbitrap mass spectrometers. CID and

HCD mostly cleave glycosidic linkages. The single-bond cleavages of precursor ions and

low dissociation energy by CID produce abundant B-ions and Y-ions for glycan fragments,

and a few b-ions and y-ions for peptide backbone fragments, which are useful information to

determine glycan composition, but uninformative for glycosylation sites and peptide sequences

(Figure 1.8). In addition to the ions fragmented by CID, HCD can generate several diagnostic

oxonium ions, which can be used to distinguish glycan structures. The common oxonium ions
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are HexNAc internal fragment (m/z = 138.05), Hex (m/z = 163.06), HexNAc (m/z = 204.09),

Neu5Ac-H2O (m/z = 274.09), Neu5Ac (m/z = 292.10), Hex+HexNAc (m/z = 366.14) [21]

(Table 1.2). HCD can produce b- and y- peptide fragment ions, but is likely to lose their glycan

modifications. CID and HCD can also produce A-ions and X-ions resulting from cross-ring

fragmentation, which can be informative for glycan structure identification, by modulating the

collision energy.

ECD [22] and ETD [23] generate mostly c- and z- peptide backbone fragments that keep

glycan moieties intact, which are used to identify peptide sequences and glycosylation sites.

Due to the drawbacks of ETD such as incomplete fragmentation of precursor ions, ETD is

often combined with CID/HCD for glycopeptide characterization.

Table 1.2: Monosaccharide mass
Monosaccharide Abbreviation Formula Monoisotopic mass

Galactose Gal C6H12O6 162.0528
Glucose Glc C6H12O6 162.0528
Mannose Man C6H12O6 162.0528

N-Acetylgalactosamine GalNAc C8H15NO6 203.0794
N-Acetylglucosamine GlcNAc C8H15NO6 203.0794

Fucose Fuc C6H12O5 146.0579
Xylose Xyl C5H10O5 132.0423

N-Acetylneuraminic acid Neu5Ac C11H19NO9 291.0954
N-Glycolylneuraminic acid Neu5Gc C11H19NO10 307.0903

1.2.5 Hybrid fragmentation methods

The recent approaches that combine these multiple dissociation techniques are called hybrid

fragmentation methods. Hybrid fragmentation methods can complement the limitation of each

method and produce more ions and different ion types. In CID/HCD, different fragmentation

energy generates different fragmentation types. By stepped collision energy, or SCE, which

applies different collisional energy for the same ion groups, more diversified fragmentation

ions can be produced [27]. Low energy fragmentation generates B-ions, intermediate energy
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on residues R, K, Q, and N, and will lose water at S, T, E and D 
residues (18). Immonium ions can also provide valuable informa-
tion as to which amino acids are present in a peptide. Immonium 
ions are formed through the combination of a-type and y-type 
cleavage. Observation of these ions in the low mass region of the 
mass spectrum can give clues as to the presence or absence of 
specific amino acids. Other characteristic peaks such as a-series 
ions adjacent to b-series ions generated through the loss a carbon 
monoxide (−28) from the acylonium group of b-series ions can 
help in the assignment of ion identity. Peptide fragmentation 
mechanisms have been well characterized by numerous groups 
(19–29).

While CID is the most common fragmentation method, 
electron capture (ECD) and electron transfer dissociation (ETD) 
have been implemented in more recent mass spectrometers  
(30–32). ECD and ETD peptide ions are fragmented after reaction 
with electrons generated from filaments or anionic species, 
respectively. ECD and ETD form c and z type ions through 
cleavage of the peptide bond between the amino group and alpha 
carbon (Fig. 2). ECD and ETD are more efficient than CID 
for larger, multiply charged ions. The combination of both 
CID and ETD or ECD is now available on instruments such as 
Orbitrap and qFT-ICR types of mass spectrometer. This allows 
for the acquisition of spectra from the same sample using two 
fragmentation techniques generating complementary series of 
fragment ions.

H2N

H2N H2N

C C N C CNCCNC C

O
R1

R1 R2 R3 R4 R5

b2ion

a1 b1 c1 a2 b2 c2 a3 b3 c3 b4 c4a4

x4 y4 z4 x3 y3 z3 x2 y2 z2 y1 z1x1

R2 R4 R5R3

OH

OOO

HHH H HHH
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Fig. 2. Peptide fragmentation
Figure 1.6: Peptide fragmentation [24]

fragmentation generates Y-ions, and further rounds of high energy fragmentation on Y1 ions

for N-glycopeptides or Y0 ions for O-glycopeptides generate peptide backbone fragments. Pre-

viously, multiple rounds of fragmentation on the same or different collisional energy were

performed sequentially, which tends to take a longer time, but the recent development of the

instruments has made it possible in one scan.

Product-ion triggered fragmentation combines different fragmentation methods on the same

precursor ions [28]. HCD can accurately detect low m/z fragment ions, and thus it is used

to search for the presence of glycans by diagnostic oxonium ions. Since the most abundant

fragment ion in N-glycopeptides is HexNAc, HexNAc oxonium ion (m/z = 204.09), its internal

fragment ions (m/z = 138.05 and 168.07), and the combination of ions at these m/z values are

typically used to detect the diagnostic oxonium ions. If a diagnostic oxonium ion is detected, an

additional round of ETD fragmentation is carried out, which is called HCD-product dependent-

ETD or HCD-pd-ETD [29].

Electron transfer/higher-energy collisional dissociation (EThcD) [30], a combination of

the collisional dissociation method and the electron dissociation method, produces abundant

structural information on glycopeptides with both glycan fragment ions and peptide backbone
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Figure 1.7: Glycan fragmentation [25]

Figure 1.8: Glycopeptide fragmentation by diffrerent dissociation methods [26]

fragment ions in one single spectrum. Previous research shows EThcD outperforms ETD and

HCD for larger glycopeptides [31].

1.2.6 Peptide identification strategy

There are three common strategies for peptide identification: database searching, spectral li-

brary searching, and de novo sequencing. Database searching [32] is the most widely used

strategy for peptide identification and characterization in bottom-up proteomics. The strat-

egy is to match experimental MS/MS data with a theoretically possible sequence in reference

proteome databases including UniProtKB [33] and NCBI RefSeq [34]. If proteases have a
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known digestion pattern and peptides have a known fragmentation pattern, a list of plausible

peptides and corresponding fragments is produced. By computationally comparing the exper-

imental mass spectrum with the theoretical fragment masses (Table 1.3), peptides are scored

and ranked depending on the degree of matching between candidate peptides and the experi-

mental data, and the best-scoring peptide is reported. The most common search engines for

database searching are SEQUEST [35] and MASCOT [36].

Database searching has drawbacks in that the strategy heavily depends on the quality and

availability of reference databases. When an organism of interest has not been sequenced, or

when there are no accurate reference databases because of splice variants, single amino acid

variations and PTMs, database searching does not work well. Database searching also has

some disadvantages such as false positive identifications caused by noisy spectra and scoring

imbalances between low-quality long peptides and high-quality short peptides. One of the al-

ternative strategies to database searching is a direct spectrum-to-spectrum comparison between

experimental MS/MS spectra and reference.

MS/MS spectra in a spectral library is referred to as spectral library searching [37]. Al-

though spectral library searching has lower processing times and potentially higher identi-

fication rates compared to database searching, it also relies on available accurate reference

databases for spectrum data. To compare theoretical and experimental data, a sufficient amount

of precisely annotated MS/MS spectra is needed in spectral libraries.

When there is no appropriate database and to overcome those disadvantages of the database-

dependent approach, de novo sequencing [38] approach is the only way for peptide identifica-

tion. De novo sequencing can reconstruct the original amino acid sequences from an MS/MS

spectrum and make it possible to identify previously unknown peptide sequences, peptide ho-

mologues, and modifications. Also, the results of de novo sequencing can be used to validate

the results of database searching, because both results are very similar [39]. There are various

widely used de novo sequencing software available such as PEAKS [40], Novor [41], and Pep-

Novo [42].
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Table 1.3: Amino acid mass

Residue
3-letter
code

1-letter
code

Formula
Monoisotopic

mass
Alanine Ala A C3N5NO 71.03712
Arginine Arg R C6H12N4O 156.10112
Asparagine Asn N C4H6N2O2 114.04293
Aspartic acid Asp D C4H5NO3 115.02695
Cysteine Cys C C3H5NOS 103.00919
Glutamine Gln Q C5H8N2O2 128.05858
Glutamic acid Glu E C5H7NO3 129.04260
Glycine Gly G C2H3NO 57.02147
Histidine His H C6H7N3O 137.05891
Isoleucine Ile I C6H11NO 113.08407
Leucine Leu L C6H11NO 113.08407
Lysine Lys K C6H12N2O 128.09496
Methionine Met M C5H9OS 131.04049
Phenylalanine Phe F C9H9NO 147.06842
Proline Pro P C5H7NO 97.05277
Serine Ser S C3H5NO2 87.03203
Threonine Thr T C4H7NO2 101.04768
Tryptophan Trp W C11H10N2O 186.07932
Tyrosine Tyr Y C9H9NO2 163.06333
Valine Val V C5H9NO 99.06842

1.3 False discovery rates and target-decoy approach

In proteomics, a database search algorithm is used to obtain confidence metrics such as p-value

and e-value after examining spectra against peptides in a database. The algorithm performs

verification for a single peptide identification using these metrics. These metrics represent the

goodness of fit of an observed spectrum and the corresponding peptide candidate, but most

search engines assign all experimental MS/MS spectra to peptides in a database if they are

within specified mass tolerance. It has previously been observed that only 10-50% of spec-

trum assignments are correct in MS/MS experiments [43]. This is because not all peptides are

included in the reference database and incorrect peptide candidates sometimes can outscore

correct sequences. For small datasets, it is reasonable to manually examine each PSM to ver-
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ify identification correctness, but in the current large-scale, high-throughput proteomics, this

strategy is not viable. For a large group of identification, rather than examining the correct-

ness of each assignment, the proportion of incorrect identifications is estimated for assignment

verification, which is called false discovery rate (FDR) estimation.

1.3.1 Target-Decoy Search Strategy

Large-scale proteomics requires a method to estimate the proportion of incorrect peptide as-

signments among correct assignments. Target-decoy search strategy [44] is simple to imple-

ment and a standard strategy to estimate FDR in large-scale proteomics. To estimate FDR in

the target-decoy search strategy, decoy peptide sequences that do not exist in nature are created.

The target-decoy search strategy assumes that the original peptide database (target database)

and the decoy database do not overlap so that decoy hits are incorrect assignments. Decoy

sequences, therefore, should be constructed to avoid the common peptide sequences between

the target and the decoy database and to preserve the general composition of the sequences in

the target database.

The other assumption of this strategy is that false positive identifications are equally likely

to come from the target database and the decoy database. Incorrect decoy peptides should

be similar to incorrect but unknown peptides derived from target peptides regarding peptide

length, amino acid composition, peptide mass, and output scores from the search engine. Ex-

perimental MS/MS spectra are then searched against the target and decoy database. Since

peptide sequences in the decoy database cannot exist in the sample, any PSMs to the decoy

sequences are incorrect identifications and one can estimate the relative proportion of target

and decoy sequences.

1.3.2 Decoy sequence construction

Several methods for constructing decoy sequences have been developed. Each method has

its advantages and disadvantages, and there is no single best way to create a decoy database.

Reversing the amino acid sequences in the target database is one of the simplest and most com-
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mon ways to create decoy sequences. This method has advantages in that the general features

of the target sequence such as peptide length and amino acid composition are preserved. Also,

this reversal method is so simple to implement that other researchers can create the same decoy

sequences. On the other hand, this method has disadvantages in that decoy sequences by re-

versal are not random transformations and it is difficult to create decoy peptides corresponding

to the target sequences with palindromic or low complexity.

Shuffling sequences is another method for decoy sequence construction. Since this method

randomly rearranges the target peptide sequence, it is easy to deploy and preserves peptide

length and amino acid composition of the target sequences like the reversal method.

One can also completely randomize the sequences to generate decoy sequences. Random-

ized sequences should preferably have the same distribution of peptide length and amino acid

composition as those in a target database. For that purpose, the random method first creates a

frequency matrix of amino acids and a histogram of peptide length in the target database, and

then randomly chooses amino acids according to the frequency matrix, and adds these amino

acids until a specified length. The shuffle method and the random method have a drawback in

that they do not preserve redundancies and homologies between peptide sequences, and thus

there can be much more decoy sequences than sequences in the target database. For FDR

estimation, this imbalance and observed decoy bias should be considered.

There are two main types to carry out target-decoy search (Figure 1.9). Separate database

search is performed by searching the target database and the decoy database separately. In the

separate search, two identifications are reported for each spectrum: the target identification

from the best score in the target database and the decoy identification from the best score

in the decoy database. When searching the target and the decoy database separately, there

is no competition between target and decoy sequences for the top-ranked score in a single

search. Some researchers argue that decoy sequences that partially match high-quality MS/MS

spectra are likely to get higher scores than other top-ranked matches in the separate database

search, and thus higher score threshold should be used [44]. Also, separate database search

has difficulty in estimating correct identifications with the low scores because of incorrect

identifications with high scores.

Concatenated database search is performed by combining a database of the target and decoy
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sequences. In the concatenated search, only one match with the best score from either target

or decoy sequences is reported for each spectrum based on the idea that when a given PSM is

correct, the target sequence is expected to produce a higher score than the decoy sequence. On

the other hand, when a PSM is not correct, there is an equal probability of matching a target

sequence and a decoy sequence.

1.3.3 FDR estimation

In the context of the target-decoy search strategy, true positive (TP) means the number of cor-

rect assignments above a given score threshold, whereas false positive (FP) means the number

of incorrect assignments above a given score threshold. True negative (TN) represents the

number of incorrect assignments below a given score threshold, whereas false negative (FN)

represents the number of correct assignments below a given score threshold.

Sensitivity refers to the fraction of all correct assignments above a given score threshold,

and using the above notations, it can be written as

Sensitivity =
TP

TP + FN
(1.1)

On the other hand, specificity represents the fraction of all incorrect assignments above a

given score threshold written as

Specificity =
TN

TN + FP
(1.2)

Precision is the fraction of correct assignments above a given score threshold that is calcu-
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lated by

Precision =
TP

TP + FP
(1.3)

FDR is the fraction of incorrect assignments above a given score threshold, which estimates

the ratio of the incorrect PSMs among the accepted PSMs in the target-decoy search strategy,

written as

FDR = 1 − Precision (1.4)

=
FP

TP + FP
(1.5)

Separate/simple FDR simply computes the ratio of the number of decoy PSMs above the

threshold and the number of target PSMs above the threshold for a given score threshold:

FDR =
Number of decoy PSMs above the threshold (D)
Number of target PSMs above the threshold (T )

(1.6)

where decoy PSMs are reported by searching a decoy peptide database and target PSMs are

reported by searching the original peptide database.

Concatenated database search assumes that there is the same number of false identifications

in target PSMs above a given threshold as the number of decoys above the threshold, and

therefore, the number of false positives is doubling the number of decoy PSMs above the

threshold. The true positive PSMs tend to match the target sequences, while the false positive

PSMs are equally distributed among target and decoy sequences. The number of decoy PSMs
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represents half the number of false positive PSMs.

FDR =
2 × D
T + D

(1.7)

Figure 1.9: Schema of separate database search and concatenated database search [45]

Käll et al. [46] proposed a more sophisticated calculation method than simple separate

FDR by incorporating the percentage of incorrect target PSMs (PIT). Separate FDR does not

consider incorrect target PSMs. The target-decoy search strategy assumes not all target PSMs

are correct while all decoy PSMs contribute to incorrect matches, and thus, the set of target

PSMs consists of a mixture of correct and incorrect target PSMs. This bimodal target score

distribution containing correct and incorrect target hits causes an overestimation of FDR. To
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consider this bias, these incorrect target PSMs need to be factored into the calculation of FDR.

To estimate the PIT, which is also commonly known as π, from the observed score distributions,

PIT is calculated by the ratio of the number of false discoveries to the total number of PSMs.

For example, supposing 1000 target PSMs, which contain 200 correct PSMs and 800 incorrect

PSMs, PIT equals 0.8. Then, the FDR of this method is the ratio of the number of decoy

PSMs to the number of target PSM multiplied by PIT, 0.8 in this example. This method needs

estimation of PIT based on the experimental score distributions. Factoring into this correction

weight allows FDR estimation more accurate.

FDR = PIT × D
T

(1.8)

Extensive research has been carried out to examine the methods for FDR estimation for

peptide identification, but there have been no common methods to calculate FDR for glycopep-

tide identification because of the great diversity of glycan structures. In this thesis, we carry

out various approaches for decoy glycan database construction based on target-decoy search

strategy for validation of peptide identification. However, the target-decoy strategy for peptide

identification and that for glycopeptide identification is different in that peptides consists of

a linear sequence of amino acids whereas glycans are composed of monosaccharide in a tree

structure. One of the strategies employed in previous research is generating theoretical target

glycopeptide spectra and adding a random mass to Y-ions of the target spectra, which yield

decoy spectra. We constructed decoy glycan databases by maintaining the tree structure of

the glycans and changing the monosaccharides in the tree. In addition, we employ a mixture

model that facilitates distinguishing between correct and incorrect identifications among the

database search score distribution for a better comparison of different decoy glycan database

construction and examines the appropriateness and effectiveness of the simple FDR estimation

method.
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Methods

2.1 Datasets

In this work, publicly available RAW MS data of mouse brain glycopeptide samples were

retrieved from PRIDE proteomics database [47]. This dataset was analyzed by liquid chro-

matography tandem mass spectrometry (LC-MS/MS) using an Orbitrap mass analyzer with

HCD fragmentation. The protein database was obtained from UniProtKB/Swiss-Prot [48].

The following parameters of the database search software were used in our experiment. The

precursor mass tolerance was ±10 p.p.m., the fragment ion mass tolerance for peptide was

±0.2 Da, and the fragment ion mass tolerance for glycan was ± 20 p.p.m. Trypsin was used as

the enzyme for protein digestion. PTMs were specified for glycan search. Carbamidomethyla-

tion on cysteine residues (C+57.02 Da) was set as the fixed modification, in which all cysteine

residues were modified. Oxidation on methionine residues (M + 15.99 Da) was set as the vari-

able modification, some of which were modified. There were 2794 N-glycans in our target

glycan database.

2.2 Notations

There are various kinds of monosaccharides, but in this study, we considered six frequently

observed monosaccharide residue types: Hex, HexNAc, Fuc, Xyl, NeuAc, and NeuGc (Table

2.1). Since glucose, mannose, and galactose have the same formula and mass, they are classi-

20
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fied into Hex in this work. In the same way, N-Acetylglucosamine and N-Acetylgalactosamine

are categorized as HexHAc.

Table 2.1: Types of monosaccharides

Monosaccharide Symbol
Monoisotopic

mass
Generic term

Galactose 162.0528 Hex
Glucose 162.0528 Hex
Mannose 162.0528 Hex

N-Acetylgalactosamine 203.0794 HexNAc
N-Acetylglucosamine 203.0794 HexNAc

Fucose 146.0579 Fuc
Xylose 132.0423 Xyl

N-Acetylneuraminic acid 291.0954 NeuAc
N-Glycolylneuraminic acid 307.0903 NeuGc

There were 2794 glycans in our glycan database in which each glycan is represented by

GlycoCT connection table-based format. To construct decoy glycan databases, glycans in Gly-

coCT format were transformed into glycans represented by the linear notation (Figure 2.1).

HexNAc(HexNAc(Hex(Hex)(Hex)))

Glycan structure Linear representation

GlycoCT

Figure 2.1: Glycan tree example
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2.3 Decoy glycan construction

To construct a decoy glycan database, we rearranged nodes of a glycan in the target database

while keeping the target glycan structure. In addition, we generated decoy glycan sequences so

that there were no common sequences between the target glycan database and the decoy glycan

database, which conforms to the key assumption of the target-decoy search strategy.

2.3.1 Permutation method

This method permutates all the monosaccharides in a given glycan (Figure 2.2). After carrying

out multiple sets of permutations for each glycan, we selected a decoy glycan sequence that had

a maximum tree edit distance [49] from the corresponding target glycan sequence. The glycan

topology and the composition of monosaccharides in a given target sequence were preserved

for the corresponding decoy glycan in this method. We created decoy glycan databases from

10 sets, 30 sets, and 60 sets of permutation.

Target glycan Decoy glycan

Figure 2.2: Permutation method

2.3.2 Swap method

The swap method replaces nodes between a pair of monosaccharides, which has the effect of

randomly adding or subtracting a certain amount of mass to the corresponding target glycan.

First, we made three pairs of monosaccharides that have similar residue mass (Table 2.1): Hex

and HexNAc, Fuc and Xyl, and NeuAc and NeuGc. Then, a monosaccharide was swapped

with the other monosaccharide in the pair. For example, if a Hex node is presented at a given

position of the tree structure in a target glycan, the Hex node is changed to a HexNAc node on

the same position of the same tree structure in the corresponding decoy glycan (Figure 2.3). In
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this method, glycan topology is preserved but monosaccharide composition and glycan mass

are different between the target glycan and the corresponding decoy glycan. We created swap-

based decoy databases where 50%, 75%, and 100% of monosaccharides in a target glycan were

swapped to generate the corresponding decoy glycan.

Target glycan Decoy glycan

Figure 2.3: Swap method

2.3.3 Random method

For the random method, we first observed the frequency of each monosaccharide in the whole

target database: HexNAc, 0.380; Hex, 0.409; Fuc, 0.103; Xyl, 0.001; NeuAc, 0.058; and

NeuGc, 0.049. We then randomly chose monosaccharides for each node in the glycan tree in

accordance with the monosaccharide frequency in the target database (Figure 2.4). Similar to

the swap method, monosaccharide composition and glycan mass in the target glycan sequence

were not preserved for the corresponding decoy glycan sequence, although the tree structure

for the decoy glycan was maintained in the random method.

Target glycan Decoy glycan

Figure 2.4: Random method
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2.4 Software

GlycanFinder is an advanced feature of PEAKS Studio [50], which is a software platform that

performs protein identification and quantification, PTM analysis, and peptide de novo sequenc-

ing, that is designed to identify and quantify glycopeptides from LC-MS/MS spectra data. The

software tool provides identification of glycosylation sites and visualization of the N-linked

and O-linked glycan structures, annotation of spectra, and glycan de novo sequencing for a

comprehensive analysis and interpretation of glycopeptides. The software is a preliminary ver-

sion developed by Bioinformatics Solutions Inc. GlycanFinder has the default built-in glycan

database, but we can incorporate our own decoy glycan database into the software and compare

the results from different decoy glycan databases. Although the new version of this software

has been developed recently, we show the results from the previous version we have been using

in this thesis. For the default decoy method, the latest version of GlycanFinder adds random

mass to the mass of theoretical target spectra to generate the decoy spectra and search experi-

mental spectra against target and decoy spectra.

2.5 FDR estimation

We calculated FDR by the following simple calculation method:

FDR =
Number of decoy PSMs above the threshold (D)
Number of target PSMs above the threshold (T )

(2.1)

From all the glycopeptide-spectrum matches (GPSMs), FDR for each GPSM was calcu-

lated using Equation 2.1. In this work, we focused on the analysis of glycan FDR, which was

obtained by glycan target matches and glycan decoy matches, and analyzed the target glycan

matches and decoy glycan matches below 1% glycan FDR.　
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2.6 Comparative search engine

We compared the above decoy construction methods using a different search engine for gly-

copeptide identification: GlycanFinder and pGlyco 2.0 [51]. pGlyco 2.0 is one of the most

common software tools for intact glycopeptide identification, which conducts glycan-level,

peptide-level, and glycopeptide-level false discovery rate evaluation for glycopeptides. pGlyco

2.0 employs its decoy method based on a mass list of glycopeptides and random addition of

mass. GlycanFinder and pGlyco 2.0 used the same parameter setting for the analysis of mouse

brain glycopeptides.　

2.7 Mixture model

From the assumption of the target-decoy strategy that the target database and the decoy database

do not have any overlapped entries, all the decoy hits are incorrect matches. On the other hand,

target hits can contain both correct and incorrect matches. Therefore, the distribution of glycan

scores for target matches can be considered as a mixture of a distribution of glycan scores for

correct matches and a distribution of scores for incorrect matches. The objective of the mixture

model approach is to estimate the distribution parameters from the observed data. To better

assess the effectiveness of glycopeptide identification software, we use a statistical model for a

distinction between correct identifications and incorrect identifications among target matches.

We modeled the distribution of glycan score data with a mixture of two component distri-

butions representing correct score distribution for one and incorrect score distribution for the

other by the Bayesian approach.

It is unknown from which mixture component each observed data comes. The mixture of

multiple distributions is a weighted sum of K components formulated by

f (x; θ1, ..., θk) =
K∑

k=1

πk fk(x; θk) (2.2)

where θk represents parameters of each component in the mixture and the mixing weights πk
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meet the conditions

K∑

k=1

πk = 1 (2.3)

and

πk ≥ 0 (2.4)

The distributions can be the same parametric family of distributions such as normal with dif-

ferent distribution parameters or different distributions.

2.7.1 Bayesian approach

In Bayesian statistics, probability reflects a degree of belief in a hypothesis, and the parameter

θ is modeled as a random variable unlike the frequentist approach, where it determines the

parameter θ that represents the true distribution of data. At an initial stage, probability, in

which prior knowledge about parameters from previous experiences is included, is subjective

to some degree. Then, the degree of belief is updated while observing data. Using this method,

we can infer the parameter θ by producing a probability distribution for θ. Point estimate can be

extracted from the distribution. In the Bayesian method, using a probability density function

P(θ), which is called prior distribution of the parameter θ, that shows the degree of belief

about parameter θ and a statistical model P(x|θ), which is called likelihood that represents

the belief about x given θ with an observation of data x1, x2, ..., xn, the belief is updated, and

f (θ|x1, x2, ..., xn), which is called posterior distribution, is calculated.

The joint probability mass function for θ and x is defined as
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P(θ, x) = P(x|θ)P(θ) (2.5)

Using the conditional probability

P(θ|x) =
P(θ, x)
P(x)

(2.6)

and the law of total probability

P(x) =
n∑

i=1

P(xi|θ)P(θ) (2.7)

Bayes theorem is defined as

P(θ|x) =
P(xi|θ)P(θ)

∑n
j=1 P(xi|θ)P(θ)

(2.8)

Since the denominator in equation (2.8) does not depend on θ, and it can be considered a

constant, equation (2.8) can be written as

P(θ|x) ∝ P(x|θ)P(θ) (2.9)

where the symbol ∝ represents proportionality. Bayesian methods carry out the computation

to yield P(θ|x), which represents the updated belief after observing data.
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2.7.2 Mixture model for glycopeptide score distribution

Since we do not have labels of correct assignments and incorrect assignments in the target

distribution, this mixture model is unsupervised learning that extracts useful information from

unlabeled data for the distinction between correct and incorrect identifications. The score dis-

tribution of the glycopeptide assignment was modeled by a one-dimensional mixture model,

in which the score data was one-dimensional with a single variable. The distribution consists

of two component distributions f1(x; θ1) and f2(x; θ2) for correct assignment score distribution

and incorrect assignment score distribution, respectively. This two-component mixture model

can be written by

f (x; θ1, θ2) = π1 f1(x; θ1) + π2 f2(x; θ2) (2.10)

where π1 + π2 = 1. The likelihood and log-likelihood of this mixture model are represented by

L(θ1, θ2) =
n∏

i=1

f (xi; θ1, θ2) (2.11)

=

n∏

i=1

(
π1 f1(xi; θ1) + π2 f2(xi; θ2)

)
(2.12)

l(θ1, θ2) =
n∑

i=1

log
(
π1 f1(xi; θ1) + π2 f2(xi; θ2)

)
(2.13)

where π1 + π2 = 1. To accurately calculate the probability that glycopeptides are correctly

or incorrectly assigned, models of glycan score distributions for correct and incorrect assign-

ment are needed. From the empirical observation, the distribution of correct glycopeptide

assignment was modeled by normal distribution and the probability of correct glycopeptide

identification having database search score S can be calculated by
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p(S |+) =
1

σ
√

2π
e−

1
2 ( S−µ
σ )2

(2.14)

with mean µ, standard deviation σ, and + that represents correct glycopeptide assignment,

On the other hand, lognormal distribution can closely approximate the observed incorrect gly-

copeptide identifications because the shape of the distribution was asymmetric and had a long

right tail. The probability of incorrect glycopeptide identification having a database search

score S can be calculated by

p(S |−) =
1

σ
√

2πS
e−

1
2 ( logS−µ

σ )2
(2.15)

with mean µ, standard deviation σ, and − that represents incorrect glycopeptide assignment.

Using the Bayes theorem, the probability of correct glycopeptide assignment to spectrum i with

database search score S is calculated by

p(+|S i) =
π1 f1(S i)

π1 f1(S i) + π2 f2(S i)
(2.16)

where + represents the correct glycopeptide assignment. The log-likelihood of the mixture

distribution of glycopeptide search score is described by

l =
n∑

i=1

log f (S i) (2.17)

=

n∑

i=1

log
(
π1 f1(S i) + π2 f2(S i)

)
(2.18)
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2.7.3 Markov chain Monte Carlo (MCMC)

To distinguish correct and incorrect identifications, we employed Markov chain Monte Carlo

(MCMC) based mixture model. MCMC is a popular method to determine probability density

function parameters by repeatedly generating samples using Markov chain to find best-fitting

values. The MCMC approach on Bayesian models is a fast and flexible method, especially

when there are numerous parameters, that can be applied to a wide range of problems. The

MCMC-based method does not require evaluation of the likelihood functions, which may have

a large number of integrals. As opposed to maximum likelihood parameter estimation using

numerical optimization, the MCMC generates a sample of parameter values from the posterior

distribution of the model parameters. After a multitude of iterations is carried out, the posterior

distribution is yielded from the sample distribution of the parameters.

The Metropolis algorithm [52] is one of the basic sampling methods for MCMC. The

Metropolis algorithm performs random walks with an acceptance/rejection rule to converge

to the desired target distribution. The algorithm starts with an arbitrarily chosen starting point

of the model parameters, θ0 = (θ01, ..., θ
0
m) from starting probability density p0(θ). For each itera-

tion t = 1, 2, ..., a candidate for the next sample value θ∗ is generated from proposal distribution

at time t, gt(θ∗|θt−1). The proposal distribution can be chosen depending on the current state

θt−1, according to the Markov chain property. Then, the acceptance ratio to decide whether the

candidate is accepted or rejected is calculated by

r =
p(θ∗|y)

p(θt−1|y)
(2.19)

After sampling the random candidate θ∗, whether the candidate is accepted or rejected is de-

cided.

θt =




θ∗ with probability min(r, 1)

θt−1 otherwise
(2.20)
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The algorithm calculates the ratio r for all (θ, θ∗), and samples θ from the proposal distribution

gt(θ∗|θ) for all θ and t.

The Metropolis-Hastings [53] algorithm is a generalized method of the Metropolis algo-

rithm. For the Metropolis algorithm, the proposal distribution has to be symmetric, which must

meet the condition gt(θa|θb) = gt(θb|θa), but this condition is not required for the Metropolis-

Hastings algorithm. Thus, the acceptance ratio is rewritten as

r =
p(θ∗|y)/gt(θ∗|θt−1)

p(θt−1|y)/gt(θt−1|θ∗) (2.21)

Due to the asymmetric jumping rules, the Metropolis-Hastings can perform random walks

more efficiently than the basic Metropolis algorithm. This algorithm Converges to the desired

target distribution in the same manner as the Metropolis algorithm does.

Using the MCMC algorithm, we differentiate correct and incorrect glycopeptide assign-

ments from a mixture of two component distributions. Three chains were generated so that

the algorithm had different starting values and evaluate the convergence of MCMC. The first

1000 samples obtained during the adaptive phase were discarded, in which a Markov chain

is not formed. The number of iterations to reach convergence and achieve correctness in the

sampling phase was set to 3000. To control larger jumps in the chain and keep sample values

to be close to the previous samples, the MCMC algorithm kept every 5 sampled values and

discarded other samples. After separating the two distributions, we compare the shape of the

decoy distribution, which is incorrect score distribution based on the key assumption of the

target-decoy search strategy, and the shape of the target incorrect distribution, which is sepa-

rated from the whole target assignment score distribution.
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2.7.4 Fitting decoy glycan score distribution

We fitted a probability distribution to data from decoy glycan scores by using maximum likeli-

hood estimation. Let data x and the probability of observing data P(x|θ). Since x is known and

the parameter θ is unknown, the value of P(x|θ) is a function of θ, which is called the likelihood

of the data x and is denoted as L(θ; x). Let x = (x1, ..., xn) be a sample independently observed

from a distribution, then

L(θ; x) =
n∏

i=1

P(x1|θ) (2.22)

and the estimate of the parameter is

θ̂ = arg max
θ

L(θ; x) (2.23)

The lognormal distribution is used to model continuous random variables greater than or equal

to zero. Another characteristic of the lognormal distribution is the distribution is skewed to

the right. By observing the shape of the distribution of the decoy glycan score, we assumed

the lognormal distribution can be better fitted to the data since the lognormal distribution has a

heavier right tail and lighter left tail compared to the other skewed distribution such as gamma

distribution. From the density function for the lognormal distribution

f (x|µ,σ2) =
1

σ
√

2πx
e−

1
2 ( logx−µ

σ )2
(2.24)

where µ ∈ (−∞,+∞) and σ > 0. And the maximum likelihood estimators for µ and σ2 are
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µ̂ =

∑n
i=1 logxi

n
(2.25)

σ̂2 =

∑n
i=1(logxi − µ)2

n
(2.26)
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Results

3.1 Glycan distance comparison for different databases

We first compared the difference between each target and decoy glycan pair because we as-

sumed that if a target glycan and the corresponding decoy glycan are too similar, especially if

the fragment ions of B-ions and Y-ions are too similar, the software tool tends to assign decoy

glycans to a spectrum. Since glycans have a tree structure, in which each monosaccharide can

be treated as a node and each glycosidic bond can be treated as an edge, we calculated the

difference metrics between a target glycan and the corresponding decoy glycan on the basis of

tree edit distance.

There are three types of tree edit operations: insert operation inserts a node, delete operation

deletes a node, and change operation relabels one node to another. Our decoy construction

methods changed monosaccharides while maintaining the tree topologies, the distance can be

calculated by checking each monosaccharide at a certain position in a tree. For example, if the

root node in a target glycan tree is HexNAc and the same position of the node (i.e, the root

node) in the corresponding decoy glycan tree is Hex, we count one to calculate the distance.

Take Figure 3.1 as an example, the distance between target and decoy glycan is 4 and the ratio

of different monosaccharides in a decoy glycan is 0.8.

34
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Target glycan Decoy glycan

Figure 3.1: Permutation method

The average tree distance and the ratio of different monosaccharides in a decoy glycan tree for

each decoy glycan construction method are shown in Table 3.1. The more sets of permutations

were carried out, the more tree distance they had among the decoy construction by permutation

methods. The swap methods had the ratio of different monosaccharides according to the swap-

ping percentage. A random decoy database had enough distance between targets and decoys.

Table 3.1: Glycan distance comparison

Decoy construction Average tree distance
Ratio of different
monosaccharide

Permutation 10 sets 13.20 0.82
Permutation 30 sets 13.96 0.87
Permutation 60 sets 14.32 0.89
Swap 50% 8.23 0.52
Swap 75% 12.35 0.78
Swap 100% 15.97 1.00
Random 10.77 0.67

3.2 FDR estimation for different databases

We then calculated glycan FDR for each decoy glycan construction method using the assign-

ment of glycans to all the spectra. From the largest glycan score to the smallest glycan score,

we applied Equation 2.1 to all the GPSMs. After the glycan FDR calculation, we observed the

number of GPSM at 1%, 2%, and 5%, and the threshold glycan scores for each FDR criteria

(Table 3.2 to 3.4).
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Also, we plotted the FDR curve to observe the relationships between a given FDR and

the number of GPSM (Figure 3.2). As shown in the figure, permutation 10, permutation 30,

and permutation 60 decoy databases had similar curves, although permutation 10 database had

fewer number of matches between FDR of 2% and 4%. Permutation 30 and permutation 60

decoy databases had almost the same number of GPSM below the FDR of 2%, permutation

60 decoy database had more number of GPSM above FDR of 2%. Swap 50 % method had

by far the fewest number of matches at 1% and 2% glycan FDR, while swap 75 % and swap

100 % methods had a much larger number of matches at any FDR threshold, for example,

3264 matches for swap 75 % method and 4672 matches for swap 100 % method at 1% FDR

compared to 674 matches for permutation 60 method. Figure 3.3 to Figure 3.9 show target

glycan score distribution and decoy glycan score distribution for each decoy database method,

and Table 3.5 describes the number of target and decoy matches for each method. If you

look at this information, Swap 50%, Swap 75%, and Swap 100% methods had significantly

fewer decoy matches than the other methods, thus they had much larger GPSM. Therefore we

cannot say that this database method is a reliable method for FDR estimation. We focused on

permutation 10 sets, 30 sets, 60 sets, and random methods in the following analysis.
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Table 3.2: Decoy method comparison at 1% glycan FDR

Decoy construction
Number of GPSM

for 1% glycan FDR
Threshold

glycan score
Permutation 10 sets 453 6.79
Permutation 30 sets 522 6.64
Permutation 60 sets 674 6.29
Swap 50% 65 8.81
Swap 75% 3264 0.65
Swap 100% 4672 0.14
Random 1072 5.25

Table 3.3: Decoy method comparison at 2% glycan FDR

Decoy construction
Number of GPSM

for 2% glycan FDR
Threshold

glycan score
Permutation 10 sets 877 5.77
Permutation 30 sets 1692 3.61
Permutation 60 sets 1884 3.00
Swap 50% 76 8.56
Swap 75% 4667 0.15
Swap 100% 5172 0.11
Random 1768 3.00

Table 3.4: Decoy method comparison at 5% glycan FDR

Decoy construction
Number of GPSM

for 5% glycan FDR
Threshold

glycan score
Permutation 10 sets 2673 1.40
Permutation 30 sets 2834 1.17
Permutation 60 sets 2967 0.99
Swap 50% 5050 0.12
Swap 75% 6070 0.08
Swap 100% 6491 0.07
Random 2651 1.46
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Figure 3.2: Number of GPSM at given glycan FDR

Table 3.5: Number of target/decoy matches for 100% glycan FDR

Decoy construction Target matches Decoy matches
Permutation 10 sets 4525 1449
Permutation 30 sets 4625 1281
Permutation 60 sets 4640 1244
Swap 50% 5172 338
Swap 75% 5273 196
Swap 100% 5288 140
Random 4642 1436
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Figure 3.3: Glycan score distribution of permutaion 10 database

Figure 3.4: Glycan score distribution of permutaion 30 database
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Figure 3.5: Glycan score distribution of permutaion 60 database

Figure 3.6: Glycan score distribution of swap 50% database
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Figure 3.7: Glycan score distribution of swap 75% database

Figure 3.8: Glycan score distribution of swap 100% database
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Figure 3.9: Glycan score distribution of random database

3.3 Mixture model-based comparison between incorrect tar-

get distribution and decoy distribution

The key assumption of the target-decoy search strategy is that false positive identifications are

equally likely to come from the target database and the decoy database. To be consistent with

this assumption, we first decomposed the target matches into target correct matches and target

incorrect matches, which were normal distribution and lognormal distribution, respectively. In

addition, we fitted the decoy glycan score histogram to lognormal distribution to compare it

with the target incorrect match distribution.

Figure 3.10, 3.12, 3.14, and 3.16 show the histograms of target matches and estimated com-

ponents of incorrect target score distributions for each decoy database method. Figure 3.11,

3.13, 3.15, and 3.17 show the histograms of decoy matches and fitted decoy score distributions

for each decoy database method. In order to precisely compare the shape of target incorrect

distribution and decoy distribution, we plotted cumulative density for each distribution in Fig-

ure 3.18 to 3.21. If the target cumulative distribution curve and decoy cumulative distribution
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curve are completely overlapped, we can assume that the two distributions are identical and

have the same parameters. On the other hand, if the two curves are plotted further from each

other, the shapes of these distributions are not so similar, which means the decoy database

method is not consistent with the assumption of the target-decoy search strategy.

At a first glance, permutation 10, permutation 30, and permutation 60 methods had less gap

between the two distribution curves, whereas the random method had a wider gap between the

curves, which means the random method did not have similar target incorrect distribution and

decoy distribution. More closely looking at Figure 3.18 to 3.21, we compared permutation 10,

permutation 30, and permutation 60 methods in detail, especially the cumulative distribution

function at a threshold glycan score of 1% FDR. The threshold score for 1% glycan FDR score

for the permutation 10 method was 6.79. The cumulative distribution function of 6.79 in tar-

get incorrect distribution was 0.982 and the cumulative distribution function of 6.79 in decoy

distribution was 0.990. The threshold score for 1% glycan FDR score for the permutation 30

method was 6.64. The cumulative distribution function of 6.64 in target incorrect distribution

was 0.983 and the cumulative distribution function of 6.64 in decoy distribution was 0.991. The

threshold score for 1% glycan FDR score for the permutation 60 method was 6.29. The cumu-

lative distribution function of 6.29 in target incorrect distribution was 0.981 and the cumulative

distribution function of 6.29 in decoy distribution was 0.991.

From this analysis, the gap between the cumulative distribution function at a threshold

score of 1% FDR for target incorrect distribution and decoy distribution observed by the per-

mutation 60 method was larger and the gaps observed by permutation 10 and permutation 30

were smaller compared to each other. Taking account of the assumption in the target-decoy

strategy that there is an equal probability of incorrect matches from the target database and the

decoy database, the permutation 10 method and the permutation 30 method are more suitable

decoy databases with regard to the similarity between target incorrect distribution and decoy

distribution at their threshold score for 1% FDR.
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Figure 3.10: Estimated target incorrect glycan distribution of 10 sets of permutation database

Figure 3.11: Fitting glycan score distribution of 10 sets of permutation database
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Figure 3.12: Estimated target incorrect glycan distribution of 30 sets of permutation database

Figure 3.13: Fitting glycan score distribution of 30 sets of permutation database



46 Chapter 3. Results

Figure 3.14: Estimated target incorrect glycan distribution of 60 sets of permutation database

Figure 3.15: Fitting glycan score distribution of 60 sets of permutation database
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Figure 3.16: Estimated target incorrect glycan distribution of random database

Figure 3.17: Fitting glycan score distribution of random database
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Figure 3.18: Cumulative density of incorrect target distribution and decoy distribution for per-
mutation 10 database

Figure 3.19: Cumulative density of incorrect target distribution and decoy distribution for per-
mutation 30 database
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Figure 3.20: Cumulative density of incorrect target distribution and decoy distribution for per-
mutation 60 database

Figure 3.21: Cumulative density of incorrect target distribution and decoy distribution for ran-
dom database
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3.4 Overlapped identifications between GlycanFinder and pG-

lyco

To evaluate the performance of each decoy construction method, we counted overlapped gly-

copeptide identifications by using another glycopeptide sequencing software. We used pGlyco

2.0 as a benchmark software because it is currently one of the most widely used software

tools. GlycanFinder employs its default decoy glycan method, which adds random mass to the

theoretical target glycan mass list to generate decoy spectra, and the software searches experi-

mental spectra against target and decoy glycan spectra. The new version of GlycanFinder has

been developed as of now, but we compare the results obtained from the previous version of

GlycanFinder in this thesis.

Table 3.6 summarizes the overlapped identifications between GlycanFinder and pGlyco 2.0

for 1% glycan FDR. The number of overlapped identification for swap 75 % and swap 100 %

were larger than other methods. However, considering the ratio of the number of overlapped

identifications between GlycanFinder and pGlyco 2.0 to the number of identifications in Gly-

canFinder, the ratios for swap methods were smaller than that for permutation methods. Thus,

a certain portion of the GlycanFinder identifications by swap 75% and swap 100% method

seems to be not so reliable, although these decoy methods achieved a larger number of identi-

fications for 1% FDR.
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Table 3.6: Number of overlapped identifications between GlycanFinder and pGlyco 2.0

Decoy construction
Number of

identifications
in GlycanFinder

Overlapped
identifications

with pGlyco 2.0
Default 349 74
Permutation 10 sets 453 86
Permutation 30 sets 522 96
Permutation 60 sets 674 119
Swap 50% 65 8
Swap 75% 3264 264
Swap 100% 4672 269
Random 1072 151
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Conclusion and discussion

　
In this study, we constructed various kinds of decoy glycan databases on the basis of the target-

decoy search strategy: the permutation method, the swap method, and the random method. To

evaluate the effectiveness of each glycan construction method, we compared these databases

from the viewpoint of the tree edit distance between the decoy glycan sequences and the cor-

responding target glycans, the number of GPSM at a given FDR threshold, and the distribution

of glycan target scores and decoy scores for 100% glycan FDR. Also, we observed the number

of overlapped glycopeptide identifications between GlycanFinder and a benchmark glycopep-

tide identification software pGlyco 2.0. Furthermore, we estimated a distinction between the

correct assignments and the incorrect assignments among the target glycan score distribution

using the MCMC-based mixture model and compared the shape of the target incorrect distri-

butions and the decoy glycan score distributions for each decoy construction method following

the key assumption of the target-decoy strategy.

From the experimental results, we concluded that the decoy glycan database generated

by the permutation method is a more reasonable method than the swap method and the ran-

dom method for FDR estimation of glycopeptide identification based on the observation of the

number of GPSM and the ratio of the number of GlycanFinder identifications to the number

of overlapped identifications with pGlyco 2.0. With regard to the comparison of the shape

of the target incorrect distributions and the decoy glycan score distributions, the permutation

approaches achieved a more similar shape of the two distributions, which can satisfy the as-
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sumption of equal likeliness of false positives in the target database and the decoy database in

the target-decoy search strategy. Among the permutation methods, the gap of the cumulative

distribution function of a threshold glycan score of 1% FDR between the target incorrect dis-

tribution and the decoy distribution was larger in the permutation 60 method, whereas the gap

was smaller in the permutation 10 and the permutation 30 method. However, the difference in

the metrics among these methods is rather small and the difference may have come from the

difference in the threshold score of 1% FDR.

There are, however, some possible limitations in this study. In this work, we used the

mouse brain glycopeptide dataset for FDR estimation of glycopeptide identification yielded by

GlycanFinder, and compared these results against those produced by the benchmark software

pGlyco 2.0. More various kinds of datasets can be used to validate the performance of decoy

glycan construction approaches, and another benchmark glycopeptide identification software

apart from pGlyco 2.0 for a better comparison of the number of their identifications in future

work.

Another limitation of this study concerns the mixture model to distinguish correct assign-

ments and incorrect assignments in the target score distribution. We employed the unsupervised

normal-lognormal mixture model and compared the distribution curves. A further study could

employ a semisupervised mixture model using the information from decoy matches, which

represents incorrect assignments. Also, another family of distributions apart from normal and

lognormal distribution could be considered for modeling the two-component mixture.

Furthermore, we constructed decoy glycan databases by assigning monosaccharides to each

tree node while maintaining the glycan tree structure in this study to have a similar monosac-

charide composition as the glycans in the target database, specifically for the permutation

method and the random method. In future investigations, it might be possible to construct

a decoy glycan database by changing the glycan tree structure from the corresponding target

tree structure.
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