
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-24-2022 11:00 AM 

Human neuroimaging reveals that agency in a video game boosts Human neuroimaging reveals that agency in a video game boosts 

functional connectivity within and between networks functional connectivity within and between networks 

Emily J. Davidson, The University of Western Ontario 

Supervisor: Culham, Jody C., The University of Western Ontario 

Co-Supervisor: Anderson, Michael L., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Neuroscience 

© Emily J. Davidson 2022 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Cognitive Neuroscience Commons 

Recommended Citation Recommended Citation 
Davidson, Emily J., "Human neuroimaging reveals that agency in a video game boosts functional 
connectivity within and between networks" (2022). Electronic Thesis and Dissertation Repository. 8943. 
https://ir.lib.uwo.ca/etd/8943 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/57?utm_source=ir.lib.uwo.ca%2Fetd%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8943?utm_source=ir.lib.uwo.ca%2Fetd%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

Abstract 

In naturalistic settings, brains continuously interface with a dynamic and 

interactive external environment. The inclusion of such an environment in an fMRI study 

is difficult, given the practical constraints imposed by the machine itself. This study 

sought to test whether the ecological validity of fMRI could be enhanced by testing a new 

paradigm that incorporated a dynamic and interactive virtual environment (DIVE). To 

determine the viability of this paradigm, functional connectivity was assessed during a 

DIVE condition and compared to functional connectivity patterns acquired in conditions 

with equally dynamic stimuli but that lacked interactivity with the environment. This 

study found significant differences in functional connectivity between the DIVE 

condition and non-interactive conditions, suggesting that control within an environment 

may have a major impact on patterns of brain activation. Further, this may also suggest 

that DIVE paradigms could be viable candidates for increasing the ecological validity of 

fMRI experiments. 
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Summary for Lay Audience 

Environments, in the real-world, are in constant flux. They change and shift based 

on events occurring not only external to us, but also as a result of actions we take within 

them. But when we interact with objects in our environment, the external world isn’t the 

only thing that changes. Perceptions of our world change in response to the effects within 

our environment. These changes affect how our brain functions, which in turn, can 

change the way we interface with our environment. One of the major difficulties in 

neuroimaging is trying to balance controlled experimentation with real-world conditions. 

If the conditions of an experiment are too far removed from those found in real-world 

conditions, it can be difficult to create substantive models of how the brain functions. 

Functional magnetic resonance imaging (fMRI) is a type of neuroimaging in which 

incorporating environments and interactive agency is particularly difficult, given the 

practical constraints of the technology; subjects must remain motionless, supine and 

confined within a narrow tube. The goal of this study was to bring some fundamental 

elements of a natural environment—dynamism and agency—into the fMRI setting to see 

whether the brain acts differently than it does when compared to the conditions normally 

found in these studies. To circumvent the practical barriers of fMRI, I used a video 

game—Pac-man—as a dynamic and interactive virtual environment (DIVE). This study 

found significant differences in functional connectivity between the DIVE condition and 

non-interactive conditions, suggesting that control within an environment may have a 

major impact on the way the brain functions when in contexts closer to real-world 

conditions. My hope is that this study illustrates the utility of using the DIVE paradigm in 

the neuroimaging space—in particular, fMRI—to bring more real-world conditions into 

the toolkit for studying brains and how they operate. 
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Chapter 1  

1 Introduction 

1.1 Dynamic & Interactive Environments (DIVEs) 

External environments are more than just one’s physical surroundings to be perceived 

through our senses; they are arenas for continuously flowing action. In a very real sense, 

both a ‘static environment’—an environment impervious to change—and a ‘passive 

environment’—an environment impervious to change by an agent—are deeply unnatural 

phenomena. In the real world, nearly all environments are both dynamic and interactive 

with a near-infinite number of ways in which they change based on how we interact with 

them. A dynamic and interactive environment offers an important dimension in studying 

what brains do because it allows perceptions and actions to be fluidly updated through the 

feedback of actions and effects within that environment (Chiel & Beer, 1997; Wolpert & 

Flanagan, 2001). This type of environment facilitates what has been called enactment—

cognition as generated through the interactive and fully engaged agent using perceptually 

guided action—which is what brains do naturally (Varela et al., 1991). Given the 

universal tendency for brains to operate within the context of these environments, this 

raises the question of whether it is even possible to understand what the brain is actually 

doing when enactment is removed from the equation. This study tackled this question by 

incorporating video games as a form of dynamic and interactive virtual environment 

(DIVE). DIVEs facilitate dynamic and contiguous perception while also incorporating a 

(virtual) environment in which dynamic actions and environmental effects can feed back 

onto perceptions for a ‘closed-loop’, cyclical effect. In this sense, closed-loop 

experiments can be viewed as enactive by incorporating environmental feedback in a 

continuous cycle, as opposed to ‘open-loop’, which examine only feedforward processes 

with minimal feedback (see Figure 1). 

The term ‘closed-loop’ has been used in the description of systems for a wide variety of 

contexts and disciplines from circuits to chemical bonds, each with subtle differences 

meaning. I wish, therefore, to clear up any ambiguity in meaning at the outset. For the 

purposes here, when referring to a closed-loop system, I am speaking explicitly about 
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systems with two main criteria. First, feedback must occur between all components of 

agent perception, agent action and the environment in which the agent is situated. Second, 

the state of the environment must be amenable to changes by a situated agent. This latter 

component would thereby imply that agency—a state of control over one’s actions within 

an environment—is a necessary element in this type of closed-loop system.  Agency 

should, therefore, be considered necessary to closed-loop perception-action-effect 

systems. Given its importance to closed-loop, agency’s role as a key component in this 

study will be discussed more in depth. 

1.2 Current Practices in fMRI 

The methods used in fMRI have improved dramatically since its initial development only 

thirty years ago. It began with a highly reductionist approach, using subtractions between 

rigidly constrained stimuli or tasks to isolate perceptual, cognitive or motor processes 

(Poldrack, 2010; Roland, 1993). Although this approach has been powerful, it is also 

often limited by the need for tightly controlled comparisons between conditions, 

difficulties with the underlying assumptions (Friston et al., 1996), and the need for an 

endless range of condition contrasts to study the full gamut of brain processes. As 

technology and techniques alike have improved, so too have the approaches of 

researchers. Neuroscience has begun to shift towards embracing complexity, both in the 

way we view cognition as an integrative system and the kinds of inferences we can make 

when measuring it.  

Stimulus Response 

OPEN-LOOP CLOSED-LOOP 

Perception 

Action Effect 

 

Figure 1: Illustration of Open vs. Closed Loop Systems 

This illustrates the difference between ‘open-loop’ and ‘closed-loop’ paradigms; A) depicts an 'open-loop' 
paradigm in which stimulus-response is isolated as a feedforward process. In this example, the stimulus (cherry) 
elicits a response (approach); B) depicts a ‘closed-loop’ paradigm in which perception-action-effect are integrated 
as contiguous feedback cycle. In this example, the perception (cherry) elicits an action (approach), which, in turn, 
elicits an effect (points popup). The points popup is then perceived, and the cycle continues. 
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Steps towards an appreciation of the dynamic and interdependent nature of cognition have 

followed the rise and success of resting state scans, which have been largely influential in 

highlighting the interplay of functional networks (Deco et al., 2011). Due to the inherent 

lack of external stimuli, resting state scans initially had only one task that could be 

reliably correlated with brain activity: rest. Rather than discovering a specific region for 

rest, researchers discovered a network of regions that underpinned this purportedly 

‘default’ state, which came to be canonized as the default mode network, or DMN 

(Raichle et al., 2001). This discovery of the DMN helped to transition the field away from 

a modular approach to the brain—a view in which there is a one-to-one mapping of 

neural real-estate and external event—and towards the view that the brain is a many-to-

many system (also known as the principle of degeneracy (Tononi et al., 1999)). The shift 

highlighted a major new development in assessing brain-event relationships: intrinsic 

functional connectivity (Raichle & Snyder, 2007). Functional connectivity, in its simplest 

form, is a statistical method in which temporal correlations are made between prescribed 

regions or networks in the brain to determine whether a relationship exists (Eickhoff S.B. 

& Müller V.I, 2015). It is important to note the caveat that functional connectivity, unlike 

effective connectivity, is purely correlative in nature and thus, on its own, cannot be used 

to establish causal influence of neural coupling (Friston, 2011).  

Despite the success of resting state, the lack of interactions with the external environment 

limits real-world applicability (Finn, 2021). Acknowledgement of the limitations in using 

over-simplified or purely internal stimuli has led to a call for more naturalistic methods 

when looking at functional connectivity, with more researchers beginning to answer it.  

The resulting forays into the frontier of naturalistic paradigms have been impressive, 

offering unique insights within domains inaccessible to most of the common experimental 

models thus far (Jääskeläinen et al., 2021; Sonkusare et al., 2019). One type of 

naturalistic method involves the use of narratives in the scanner. Participants are told 

stories while undergoing fMRI, which afford participants the opportunity to self-generate 

the accompanying imagery. It has also yielded distinct patterns of connectivity, 

differentiating it from resting-state (Jääskeläinen et al., 2021). Of course, these narratives 

are still pre-determined by an external agent, precluding them from being truly enactive in 

nature (Tikka & Kaipainen, 2014). 
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Another major type of naturalistic paradigm gaining traction involves having subjects 

passively watch movies while undergoing fMRI. These so-called “movie paradigms” 

have shown great promise in providing reproducible, region-specific functional activation 

patterns without the need for an overly complicated design (Hasson, 2004; Hasson et al., 

2008; Naci et al., 2014; Sun et al., 2012). More important, however, they have succeeded 

in capturing different functional connectivity patterns from those found in more 

traditional paradigms, like stimulus-response and resting-state approaches (Aliko et al., 

2020; Meer et al., 2020). Further still, they demonstrate greater predictive power with 

respect to both behavior and trait assessment (Finn & Bandettini, 2021). This suggests 

that by eliminating the rigid boundaries around ‘stimuli’ and allowing perception to 

continuously flow through a dynamic external environment, the brain is functioning in 

ways we have historically failed to capture. Although movies have served as a step in the 

right direction for naturalistic studies, they are limited by being fundamentally passive. 

Task-based designs involving cognitive control have shown that functional networks 

communicate differently than they do under passive conditions that lack this same 

element of cognitive control (Cocchi et al., 2013; Moraschi et al., 2020). If this is the 

case, we might also suspect that by eliminating the rigid boundaries around ‘responses’ 

and instead allowing perception and action to continuously flow through an interactive 

dynamic environment, there may be considerable differences in the patterns of brain 

activity that are not typically reflected in traditional paradigms. 

1.3 Ecological Validity & Embodiment 

A core assumption of a functional magnetic resonance imaging (fMRI) experiment is that 

the results obtained are indicative of what brains do in real-world environments. This 

allows researchers to translate their findings into neurological, psychological and 

cognitive models that can spur new treatments, technologies and techniques that work 

well, even outside of the laboratory. If a tightly-controlled, experimental model fails to 

replicate an effect under more naturalistic conditions, such a model ought to, at best, be 

considered limited. In this way, the inclusion of naturalistic conditions can serve as a 

standard to measure the completeness of a model derived from more traditional stimulus-

response paradigms (Felsen & Dan, 2005); the more naturalistic elements incorporated, 
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the more robust the standard. But fMRI experiments contend with unique difficulties, 

given the natural restrictions the machine itself places upon perception, action and the 

environment. These difficulties impact the ecological validity of experiments, which, in 

turn, can hamper the efficacy of our models to foster new discoveries. A great deal of 

creativity on part of researchers has begun to address this problem with an effort in 

bringing more naturalistic paradigms into the scanner. As mentioned, one of these major 

developments in this pursuit has been the introduction of movie-watching paradigms. 

Movie paradigms have been boasting many advantages when combined with fMRI 

neuroimaging. One of the major drawbacks of classic experiments is the lack of 

multimodal integration with dynamic contexts that unfold over time, which makes the 

inferences drawn from them difficult to extrapolate to real-world scenarios (Sonkusare et 

al., 2019). Moreover, as fMRI techniques become more advanced, the ability to assess 

temporal dynamics of brain activity has begun to improve (Lindquist et al., 2014), thereby 

widening the kit of researchers seeking new breakthroughs in neuroimaging. This makes 

studies involving dynamic stimuli, like movie-watching paradigms, all the more valuable. 

The quest for increasingly naturalistic paradigms has been greatly served by movie-

watching paradigms, but there are a few key ways in which their ecological validity may 

fall somewhat short. First, though movies offer naturalistic stimuli, these stimuli are 

highly curated in ways that simply do not occur in real-world environments. Camera 

angles, editing and style of direction are some of the tools used to evoke highly specific 

reactions and experiences for viewers (Hasson et al., 2008). If one of the major 

contributions of movie-watching paradigms towards ecological validity is the dynamism 

of the stimuli, it ought to be considered that many of the transitions between events, 

scenes and shots are artificially inducing patterns of activation to serve the portrayal of a 

narrative, rather than arising as organic phenomena in their own right.  It may be that the 

latter case produces something fundamentally different from the former. 

The second feature to consider about movie-watching paradigms is that they are 

intrinsically passive activities; there is no interactivity or agency of any kind. The degree 

to which this is a difficulty is still controversial, but there is some evidence to suggest 

that, in light of the brain’s evolutionary history, “[it] should be understood as an action-
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oriented system,” embodied within the context of an interactive environment (Anderson 

& Chemero, 2016). This may be especially important when considering the role of the 

cerebellum, which has been argued as a key player in facilitating an embodied cognition, 

through which thought is made possible (Koziol et al., 2012). While this debate is far 

from settled, we still must contend with the fact that a large proportion of what the brain 

does is facilitate action. Ignoring this aspect of cognitive function is likely to, at the very 

least, make our models of the brain incomplete. Indeed, the results of the present study 

also seem to suggest that perhaps something different is occurring with the inclusion of 

action and environment in closed-loop fashion. This is an avenue worth exploring, and 

DIVE paradigms might be the way to further our empirical toolkit in combining this 

philosophical approach with practical neuroscience methods. 

1.4 Current Experiment 

The goal of this project was to sustain the gains achieved through movie-paradigms while 

also pushing them a major step further to close the loop through the addition of agency in 

an interactive environment. I chose to use a form of DIVE in which a video game—Pac-

man—served as the external environment while subjects underwent fMRI. While it is 

certainly the case that there are other, more realistic games on the market, the simplicity 

of Pac-man is a major asset in this initial stage of exploration; events and game states are 

more easily defined and objectives are clear, simple and straightforward for participants 

to engage with. Nevertheless, despite this simplicity, Pac-man still offers up a wide 

assortment of engagement opportunities, with participants navigating mazes, claiming 

rewards, fleeing hostile foes and climbing their way up the leaderboard. The diversity of 

task types provided ample opportunity for feedback through perception, action and 

environmental effects from a wide variety of functional networks. If even a game as 

simple as Pac-man were to show that the introduction of dynamic and interactive 

components evoke substantial changes in brain processes, this proof-of-concept 

demonstration would open the DIVE approach to be extended to more realistic games that 

tap into an even broader range of cognitive functions. 

Given the sheer size and scope of this data set, there are innumerable ways in which to 

analyze it. These include: investigation of specific regions for differences in activation 
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levels, examination of how in-game events evoke changes in activation patterns, or the 

incorporation of different types of connectivity to examine how brain states temporally 

impact each other or shift over time. Ultimately, my hope is that the results herein spark 

sufficient interest and curiosity that these avenues may constitute exciting follow-up 

projects, but for this project, in particular, I chose to analyze intrinsic, network-level 

functional connectivity between conditions for several major reasons. First, the case I am 

attempting to make is that active control within an immersive environment changes the 

way in which functional activity unfolds when compared to passive perception of an 

environment. A study of functional connectivity provides a data-driven way to examine 

large-scale differences in brain processes without needing prior hypotheses about specific 

regions or interactions (for which there are many possibilities but limited theoretical 

context). Second, this study aims to be a stepping stone in ushering neuroscience towards 

viewing the dynamic interaction of perception, action and environment as a key 

determinant of brain activity. It is necessary to first demonstrate that a fundamental 

difference exists in a DIVE through intrinsic functional connectivity, before examining 

how the differences unfold through dynamic functional connectivity. 

This study began with a broad but simple hypothesis: brains will act differently in the 

context of a dynamic, interactive environment than when in a dynamic, passive 

environment. Indeed, I predicted that the variable of active control would be sufficiently 

robust that an effect would be evident even in virtual environments, where action is 

indirect. In order to assess whether the inclusion of a DIVE had an impact on patterns of 

brain activity, I examined functional connectivity under three different conditions: Play, 

Reactive Replay and Passive Replay. The Play condition allowed participants to exert 

control over their environment (using a controller) through the Pac-man avatar in a 

closed-loop way; effects within the environment were based upon participant actions 

within that environment. The Passive Replay condition acted as a proxy for movie-

paradigms in which participants passively observed actions occurring in a non-interactive 

environment. To ensure that any differences observed were not due to the difference in 

motor movement from using the controller, I also included the Reactive Replay condition. 

In Reactive Replay, participants watch an identical replay, but in this case, participants 

retroactively follow Pac-man’s movements using the controller. The major benefit of 
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Reactive Replay is that it provides a condition in which both visual input and motor 

responses are matched to play. The primary difference between these two conditions is 

the order of action and effect: in play, motor actions precede environmental effects, 

whereas in Reactive Replay, environmental effects precede motor actions—in Play, 

participants had control in an interactive environment and in Reactive Replay, they did 

not. By comparing the Play condition with the Reactive Replay condition, I was able to 

assess whether the variable of environmental interactivity had an effect on functional 

connectivity while controlling for both sensory stimulation and motor responses. 
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Chapter 2  

2 Materials and Methods 

2.1 Experimental Design 

In this study, participants both played, and watched replays of, a customized version of 

the classic arcade game “Pac-man” while they underwent fMRI. Each session was broken 

up into three separate run types: Play, Reactive Replay, and Passive Replay (Figure 2).  

Play: Participants controlled a circular yellow avatar (Pac-man) through which 

they navigated mazes and gained points to attain the highest score possible by completing 

levels, and eating pellets, ghosts, and cherries. During play runs, participants had full 

control over game events. For example, if a participants moved the trackball to the right, 

the Pac-man avatar would move to the right. 

Reactive Replay: Participants watched the replay of their most recent play run and 

used the controller to reactively follow the movements of the Pac-man avatar; in this case, 

Figure 2: Illustration Showing Variable Comparisons for Each Condition 

Individual runs (top) consisted of participants either playing a full run of Pac-man, or watching a replay of a full 
Pac-man run. The Play condition is always first, followed by both replay conditions in alternating, sequential order. 
These replays are time-locked to Play, as indicated by the lock icon. The controller icon depicts the conditions in 
which the controller is used. The ‘A’ depicts whether the variable adjacent to it is both present and matched with 
the Play condition. 
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without any control over in-game events. For example, if the participant saw Pac-man 

turn right, they moved the trackball to the right.  

Passive Replay: Participants watched the replay of their most recent play run 

without any interactivity with either the game controller or the in-game events. 

Participants did not make movements with the controller. 

By necessity, play runs always came before both types of replay runs. Reactive replay and 

passive replay condition runs were presented in counterbalanced order. All replay 

conditions were time-locked to their most recent play run, creating a triplet of runs, with 

each run in a triplet containing the same number of volumes (see Figure 3). Upon 

completion of a run triplet, players began a new triplet in which they started with the play 

condition (see Figure 3). Sessions lasted up to three hours and were comprised of two to 

four triplets (with the variation based on player performance).  

Each run began and ended with a 30-s fixation period in which participants were 

instructed to maintain their gaze on a central cross on a fixed screen. Total run time was 

variable and based on player performance during play time. Play time, by contrast, 

constituted only time in which the participant was in control of the Pac-man avatar, and 

was capped at eight minutes per run. Play time was paused (or prematurely terminated, in 

the case of a ‘Game Over’ event) based on any of the four potential event sequences:  

Level Completion: A level-completion event was initiated the moment Pac-man 

consumed the last pellet on the map. As soon as a level was completed, play time was 

This figure illustrates the counterbalancing of the three run types. Play, as represented in purple, is first in each 
triplet. Reactive and Passive Replay (represented in green and blue, respectively) we presented in alternating 
order during a single session. 

Figure 3: Illustration Demonstrating Condition Counterbalancing 
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paused until the subsequent level began. Upon completing a level, participants viewed a 

‘Victory!’ screen, received 10,000 points and viewed the game screens in the first 

sequence as shown in Appendix A. After the final frame of this event sequence 

completed, the play sequence began again for the next level, beginning with the fixation 

cross and subsequent ready screen. 

Death: A death event was triggered when a participant’s Pac-man avatar collided 

with a ghost in the Scatter/Chase state (see Figure 4 below). As soon as a death event was 

triggered, play time was paused until the subsequent level began. Participants began each 

game with five lives and lost one each time a death event occurred. If a death event 

occurred with lives remaining, the play sequence began again after display of a 

leaderboard. Player score, level, number of ghosts, number of pellets carried over to the 

next attempt, but Pac-man’s position and ghost positions were reset to their defaults.  

Time’s Up: Players began each Play run with an eight minute play-time timer. A 

‘time’s up’ event was be triggered once the play-time timer at the top of the screen 

reached zero. At the end of this sequence, the fixation cross appeared for 30 seconds 

instead of 10, and game time was terminated. Participants picked up where the time’s up 

event occurred during the next play run (provided it was not the final play run of the 

session). Player score, level, number of ghosts, number of pellets carried over to the next 

play session; only Pac-man’s position and ghost positions were reset to their defaults 

upon resuming the game. 

Game Over: A game over event was triggered when a participant’s remaining 

lives reached zero. A game over event prematurely terminated the play time, resulting in 

the end of a run after the last frame of the game over sequence finished. Participants 

Scatter/Chase Frightened Retreat 

Figure 4: Ghost Status Images 

This illustrates the different sprites used for the ghosts in different mode types; Scatter/Chase indicates the ghost is 
moving around the map and can initiate a death event. Frightened indicates the ghost can be eaten and temporarily 
removed from play. Retreat indicates the ghost has just recently been eaten and is temporarily removed from play. 
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would begin a brand new game of Pac-man on the next play run, starting from level one 

with five lives and zero points.  

2.2 Pacman Simulation 

The Pac-man simulation was designed in Unity version 2019.4.19, which was used as 

both the game engine and the development tool. An image capture of the game screen can 

be seen in Figure 5 below: 

A) The players current score accumulated throughout the play session; B) The current high score at the top of the 
leaderboard. This score is the same for every participant and does not change. It was selected to be extremely 
difficult to surpass in the amount of time allotted; C) The current displayed level the player is on; D) The play time 
remaining in the current play session in minutes and seconds; E) The number of lives remaining for the player; each 
player starts the game with 5 lives; F) A power pellet, which causes ghosts to switch to the’ frightened’ state 
temporarily; G) The Pac-man avatar controlled by a player; H) A ghost currently in the ‘scatter’ state; J) The ‘ghost 
house’. Ghosts remain here for a short duration at the beginning of the level and after they are eaten. While in the 
ghost house, ghosts remain in the ‘stop’ state; K) Warp gates in which Pac-man can enter into one side and be 
teleported out of the other warp gate. The gates are bidirectional; L) The amount of total time that has elapsed 
since the game session began; M&N) A model showing where the current player is in relation to the top score on 
the leaderboard. Each player chooses a 3-letter username which is demonstrated in N). 
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Figure 5: Screen Capture of Pac-man Simulation 

B 
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Game data acquisition consisted of 98 separate variables, including game state 

information such as ghost positions (separate variables for each ghost), Pac-man 

positions, cherry appearance times, etc. The recording of each variable was synchronized 

such that each was recorded during the exact same moment of a cycle or game state. 

These game states were captured at a refresh rate of 60 Hz such that each second 

contained 60 game state captures at roughly consistent intervals (with a 0.01-ms 

fluctuation occasionally found at some intervals). The variables involved in monitoring 

controller direction and pressure were collected through the use of the Current Designs 

Trackball 2 fiber optic trackball mouse which uses a two axis encoder for moving the 

mouse pointer. Input from the encoder came in the form of a two-dimensional vector (x,y) 

where x was the horizontal input from the user, and y was the vertical input. The input 

was manipulated such that the raw values from the track ball were interpolated to cover a 

small amount of time.  This interpolation was necessary to avoid jittery changes in the 

direction, allowing for more intentional input.  The processed input from the trackball 

was also clamped on each axis to a range of -1.0 to 1.0 

The goal of the game was complete levels and attain the highest score possible in the 

allotted time. The simulation included a ‘Leaderboard’ comprised of artificial scores and 

usernames; the information that these were artificial scores was withheld from 

participants. The difficulty of the game was determined largely by the skill of the 

participant. Difficulty would increase with each level, and variables such as number of 

ghosts, ghost speed and size of map were modified based on how quickly a participant 

completed levels and avoided death events. The artificial scores and attenuation of game 

difficulty, based on player skill, was determined such that participants would typically 

end the session in the second position of the leaderboard, relatively close to the first. This 

was done to maintain motivation to increase participant score, irrespective of skill level. 

No players surpassed the second position on the leaderboard. Only one participant failed 

to reach the second position by the end of the session. 
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During the play condition, participants interacted with various elements within the game 

screen. The key variables that underwent real-time changes based on user input were as 

follows: 

Pac-man: A player-controlled avatar, which moved along either the x or y axis of 

the map (provided no walls impeded the path).The speed of Pac-man remained fixed and, 

once the game began, movement was continuous unless Pac-man encountered an 

obstacle. This movement was generated through player interface with the mouse 

trackball. 

Ghosts: Up to four ghosts that moved along either the x or y axis of the map. 

Movement speed of the ghosts increased slightly with difficulty. The game began with 

only one ghost active (red) with the number of ghosts increasing, based on level and 

difficulty, to a maximum of four (adding pink, blue and orange, in that order).  

Cherries: Rewards appeared as cherries at random time intervals and at random, 

navigable locations on the map. Only one cherry was present at a time. Cherries remained 

on the map until eaten or until the level ended. When eaten, they disappeared and text 

demonstrating the value of points obtained (1000) briefly appeared at the site in which 

they were eaten.  

Power Pellets: Each map initially began with four power pellets in total; one in 

each corner of the game map. If Pac-man consumed one of these power pellets, ghosts 

immediately entered the ‘Frightened’ state (see Figure 4) and the power pellet 

disappeared. Each power pellet eaten by Pac-man yielded 50 points.  

Pellets: These appeared as small white dots throughout the corridors of the game 

map. When Pac-man ate these pellets, they disappeared. Each pellet eaten by Pac-man 

yielded 10 points. A level was completed when all pellets were cleared from the map. 

2.3 Participants & Data Collection 

Data was acquired from 24 healthy, right-handed participants ranging in age from 19-38 

(median age 24; 14 female) with no known underlying, preexisting neurological 
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conditions and with normal or corrected-to-normal vision. Participants were recruited 

through both Western University’s Our BrainsCAN participant registry and word-of-

mouth recruitment. Each participant provided informed consent and was compensated for 

their time. All experimental procedures used within this study were approved by the 

Western University Non-Medical Research Ethics Board. 

Upon arrival, each participant was given an information letter describing the experiment 

and consent form to be signed; the information letter described, in general terms, what 

they would be doing during the session and address potential risks of MRI. Participants 

then completed the Edinburgh Handedness Questionnaire to assess handedness, with all 

participants scoring as unequivocally right-handed (>300). Next, participants were asked 

to complete a Pre-Scan Questionnaire with six questions using QualitricsXM software to 

gather preliminary data on prior video game experience and habitual engagement in 

gaming activities; the full survey is included in the supplemental materials. After 

completion of the Pre-Scan Questionnaire, participants were given a brief explanation of 

the experiment, what to do during each of the three condition types (Play condition, 

Reactive Replay condition and Passive Replay condition) and were given a brief 

explanation on how to play the modified version of Pac-man (described in detail below). 

Instructions included only game mechanics; no strategic information was provided. 

Finally, a short practice session was performed outside of the scanner, with the in-game 

timer set to five minutes. This five-minute practice time gave participants the opportunity 

to familiarize themselves with the controller and game-mechanics. After exiting the 

scanner, participants were given a Post-Scan Questionnaire with 12 questions based on 

subjective evaluations of in-game events and were compensated for their time. 

2.4 fMRI Data Acquisition 

Scanning utilized a 3-Tesla Siemens Prisma Fit scanner at the Centre for Functional and 

Metabolic Mapping at the University of Western Ontario. Structural scans used T1-

weighted imaging (TE = 2.93ms; MP2RAGE, 1-mm isotropic resolution; 4° flip angle; 

Slices = 176). Functional scans, based on the blood oxygenation level-dependent signal 

used T2*-weighted scans, which were acquired using a multi-echo (ME) gradient-echo 

echo-planar imaging sequence (TR = 1000 ms; TE1 = 13.2 ms, TE2 = 30.1 ms, TE3 = 47.2 
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ms; 2-mm isotropic resolution; 40° flip angle; Slices = 52). Data was collected using a 

28-channel head coil (modified from a 32-channel by removing coils over the eyes) 

adapted to reduce visual occlusion of the screen. Participants lay supine and viewed a 

projection screen (26.6 cm wide, 20 cm high) through a 45° mirror at a viewing distance 

of 70 cm for a visual angle of 21.5° wide x 16° high. Heart rate and respiration rate were 

acquired continuously during scan sessions through the use of an integrated pulse 

oximeter (affixed to the right index finger) and respiratory belt. 

2.5 fMRI Data Preprocessing & Quality Assurance 

Preprocessing utilized open-source pipelines: fMRIPrep (Esteban et al., 2019), Tedana 

(Kundu et al., 2012) and the CONN Toolbox (based out of SPM12, Whitfield-Gabrieli & 

Nieto-Castanon, 2012). Quality assurance was performed at all stages. Data exclusion 

was determined on fully preprocessed data through the use of MRIQC (Esteban et al., 

2017).  

During pilot testing, some participants became so immersed in game play that abrupt 

motion artifacts occurred; as such, for the experiment participants, I took additional steps 

to minimize the effect of head motion on data quality and to quantify and compare motion 

across the three game states. Most notably, I implemented multi-echo imaging and 

applied a multi-echo independent component analysis (ME-ICA) pipeline using the 

Tedana, TE-Dependent Analysis, Python library (tedpca algorithm, aic; Kundu et al., 

2012) in order to minimize the impact of motion artifacts on data. In one pilot participant, 

we confirmed that this pipeline was effective in greatly reducing the impact of head 

motion on data quality (Buur et al., 2009). 

The preprocessing pipeline used on this data set is was follows: first, data was minimally 

preprocessed using fMRIPrep version 21.0.0 for standard motion correction, slice timing 

correction and susceptibility correction; motion was estimated using the first echo of the 

time series. Motion parameters and their derivatives were calculated by fMRIPrep and 

recorded in the list of confounds to be used to testing correlation of motion artifacts with 

functional connectivity correlation strength. No participants or runs were excluded due to 

motion. 
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The next stage of the preprocessing pipeline was the multi-echo ICA denoising (ME-ICA) 

using Tedana version 0.0.11 (Kundu et al., 2012). Tedana’s approach combines both a 

principal component analysis and independent component analysis and then ascertains 

whether these components are TE-dependent or TE-independent. The former are 

considered to be BOLD components and are retained whereas the latter are classified as 

non-BOLD and the timecourses are cleaned from the data (Kundu et al., 2012). The 

denoising process for Tedana involves three steps: decomposition, metric calculation and 

component selection. In decomposition, PCA is used to reduce the dimensionality of the 

data to prepare it for ICA. Components from Tedana’s principal component analysis 

(tedpca) components were selected with a seed of 42 using the Tedana ‘aic’ tedpca 

component selection, which. The tedpca algorithm is used for classifying components as 

‘accepted’ or ‘rejected’ based on the kappa and rho distributions that characterize multi-

echo datasets) algorithm. ‘Aic’ is a balanced approach without being too liberal or 

conservative in selecting components. After the tedpca step, ICA is performed and metric 

selection begins such that BOLD and non-BOLD components are classified. Finally, in 

component selection, the non-BOLD timecourses are removed from the data. For the 

small number of unclassifiable components that were classified as ‘ignored’, Rica was 

used for manual classification; ‘ignored’ components within the 30th percentile for kappa 

and rho variables were manually included and excluded, respectively. This manual 

classification was incorporated into the categorization output for Tedana with which the 

multi-echo data was optimally combined and denoised. The structural and anatomical 

data was then converted into 2-mm MNI template space and segmented using SPM12. 

The final denoising phase was done through the CONN toolbox (Whitfield-Gabrieli & 

Nieto-Castanon, 2012), in which the timecourses of the cerebrospinal fluid regions were 

regressed out, and a band-pass filter of 0.008-0.09 Hz (preserving fluctuations between 11 

and 125 s/cycle) was applied after regression. 

2.6 fMRI Data Analysis 

ROI-to-ROI Functional Connectivity: Functional connectivity was assessed 

using the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). I segmented the 

cortical, subcortical and cerebellar areas into 133 regions-of-interest (ROIs) and 
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networks-of-interest (NOIs) through the use of three separate atlases: the Schaeffer 100-

parcellation, 2-mm cortical parcellation (Schaefer et al., 2018), the Melbourne SI 16-

parcellation subcortical, 2-mm subcortical atlas (Tian et al., 2020) and the Buckner 17-

parcellation, 2-mm cerebellar atlas (Buckner et al., 2011). The average timecourse of each 

region was used to calculate the Pearson correlation coefficients between each pair of 

ROIs. These correlation coefficients were Fisher z-transformed (to make them normally 

distributed). For the correlation between each pair of ROIs, a one correlation coefficient 

of each individual ROI when compared to each other ROI. A one-sample t-test was used 

to determine whether the correlation different significantly from zero, with a false-

discovery rate (FDR) correction applied based on the number of comparisons within a 

given condition as outlined in Benjamini & Hochberg (1995).These thresholded 

correlation coefficients were organized into one correlation matrix per condition with the 

diagonal—comprised of perfect, self-correlations which necessarily had a perfect 

correlation—excluded. 

Subtraction Matrices: To better highlight the differences between conditions, 

subtraction matrices were generated using the Fisher z-transformed correlation 

coefficients obtained for each ROI in the ROI-to-ROI Functional Connectivity 

calculation. The additional step of subtracting the correlation coefficients of one condition 

matrix from another condition matrix was performed to control for the similarities in 

connectivity between conditions. Thresholding for significance was conducted using a 

paired-samples t-test at p < 0.05 (FDR-corrected for the number of comparisons within 

the contrast). 

Network-Level Functional Connectivity: Functional connectivity for the cortical 

atlas was also conducted at the network level. Each ROI in the cortical parcellation 

corresponded to one of 17 resting-state networks, as outlined in Yeo et al. (2011). For a 

full list of all ROIs and, where applicable, their correspondent networks, see Appendix A. 

The correlation coefficient of each ROI was grouped with other ROIs within the same 

network and an average of these correlation coefficients was obtained for each network. 

The 17 cortical networks chosen were the same 17 networks delineated in the cerebellar 

atlas (Buckner et al., 2011). Further, the subcortical atlas ROIs (originally differentiated 
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by left/right hemisphere), were each combined with their corresponding homotopic 

partner and an average of their correlation coefficients was calculated. A matrix with 

cortical and subcortical ROIs grouped into networks, and existing cerebellar networks, 

was generated and was thresholded for significance using a one-sample t-test at p < 0.05. 

2.7 Eye-Tracking 

One possible explanation for any differences between conditions is a difference in eye-

movement patterns. In order to rule this out, I conducted a behavioral study to test for 

these differences. Ten healthy, right-handed participants (5 female, median age 37; four 

of the ten participants were also included in the fMRI study) with normal vision and no 

underlying neurological issues had their eye movements tracked while playing Pac-man. 

Data collection and stimuli conformed exactly to the procedures outlined in section 2.1 

and 2.3 with the only difference being session length. Eye-tracking sessions were limited 

to one hour and two runs of each condition type were collected for each participant, 

irrespective of participant performance. To facilitate this, play time was limited to eight 

minutes total. Participants were seated in front of a screen with a viewing distance of 40 

cm. An EyeLink 1000 (SR Research) was used to collect eye-position (both eyes) data at 

1000 Hz. I analyzed data for several forms of eye movement: number of saccades, 

number of blinks and x/y coordinates. One participant was excluded as an outlier from the 

data analysis for number of blinks because they demonstrated a blink rate 400% above 

average. Calibration was done using the built-in nine-point calibration script, and 

subsequently verified using the same nine-point script. The experiment was conducted 

once a rating of ‘good’ was obtained according the EyeLink software.. Data analysis of 

eye tracking data was done through the Edf2Mat Matlab Toolbox v.1.6 (Adrian Etter, 

2013). 
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Chapter 3  

3 Results 

3.1 ROI-to-ROI Connectivity 

I began the data analysis with an ROI-to-ROI comparison in order to examine the intra-

network functional connectivity patterns, and how they might be related to inter-network 

connectivity overall. Figure 6 shows the results of the ROI-to-ROI comparison in a 

correlation matrix, with each cell representing a correlation coefficient between two 

regions and thresholded for statistical significance (p < 0.05, FDR-corrected). All three 

conditions exhibit overlap in functional connectivity patterns, but these results also 

demonstrate two major differences when comparing Play against Reactive Replay and 

Passive Replay. First, intra-network connectivity appears to be significantly more robust 

in Play. Those clusters which are bisected by the diagonal represent regions within the 

same networks and indicate intra-regional connectivity. Those clusters which are bisected 

by the diagonal represent regions within the same networks. Second, inter-network 

connectivity also appears more robust in Play. This can be most plainly observed in the 

strength and pervasiveness of the anti-correlations between networks. 

One particularly interesting relationship is the anti-correlation between the regions within 

the DAN and DMN. This relationship has been highlighted, with DMN regions contained 

within the purple dashed lines and DAN regions contained within the green dashed lines. 

Note the conjunction of these networks demonstrates some degree of anti-correlation in 

all three conditions but that the strength of this anti-correlation differs markedly in the 

play condition when compared with both replay conditions. In play, anti-correlations 

between the DMN and DAN regions appear to be more robust. Indeed, this robustness of 

anti-correlation in play is not limited to ROIs within the DMN/DAN conjunction and can 
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be seen in most of the negatively correlated clusters across conditions. This effect also 

appears particularly striking within the cerebellar comparisons.  

The visible difference in the degree of intra-network connectivity is highly evident for 

ROIs within the default mode network. This appears paradoxical in light of early studies 

that found a reduction of activity in the DMN during tasks, and, thereby affording it the 

familiar term, “task-negative network” (Raichle et al., 2001; Shulman et al., 1997). More 

recently, however, some studies have been demonstrating an increase in intra-network 

connectivity of the DMN during a variety of tasks including motor, executive function 

and narrative comprehension tasks (Chai et al., 2012; Crittenden et al., 2015; Vatansever 

et al., 2015). The increased intra-network connectivity of the DMN during Play further 

corroborates the idea that the DMN may play an active role during complex tasks 

requiring external attention. 

Each cell in the matrix represents a single correlation coefficient indicating the time-course similarity between two regions, 
thresholded to indicate correlations significantly differ from zero. Each region is located within one of three anatomical 
domains: cortex (COR, n=100), subcortex (SUB, n=16) and cerebellum (CER, n=17). The black lines within the matrix indicate 
boundaries between anatomical domains with adjacent labels indicating which anatomical domain the regions correspond 
to. The colour scale indicates correlation strength and direction; dark red indicates a strong positive correlation between two 
regions and dark blue indicates a strong negative correlation between two regions. Green dashed lines indicate regions 
within the Dorsal Attention Network (DAN) and purple dashed lines indicate regions within the Default Mode Network 
(DMN). 

Figure 6: ROI Correlation Matrices for Play, Reactive Replay and Passive Replay 
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To highlight the differences between conditions, I have included subtraction matrices 

which were generated by subtracting the correlation coefficients from the original 

correlation matrix (Figure 6) of a single condition from the correlation matrix of another 

condition and thresholding for significance (p < 0.05, FDR-corrected) (see Figure 7). A 

large discrepancy in the number of significant relationships both within and between 

networks can be observed between Passive vs. Reactive Replay. Strikingly, Play shows 

prevalent differences when compared to both Reactive Replay and Passive Replay 

conditions across many regions and networks, demonstrating a unique clustering pattern 

indicating enhanced connectivity at both intra- and inter-network level.  

One interesting finding that arose upon examination of the ROI-to-ROI correlation 

matrices was the differences in cerebellar activation patterns when comparing [Play – 

Reactive] and [Reactive – Passive]; there appeared to be much greater inter-network 

functional connectivity. I wanted to determine whether there was also greater intra-

regional functional connectivity within the cerebellum, so I ran a separate parcellation 

analysis on only cerebellar regions with a higher degree of resolution using a probabilistic 

Subtraction matrices for each condition pairing: [Play – Reactive], [Play – Passive] and [Reactive – Passive], 
thresholded for statistical significance. Each cell in the matrix represents the remaining correlation coefficient of two 
regions after subtracting the corresponding correlation coefficient from another condition. 

 

Figure 7: ROI Subtraction Matrices for Play, Reactive Replay and Passive Replay 
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atlas of the major lobules, shown in Figure 8 (Diedrichsen et al., 2009). These results 

show that, when comparing Play vs. Reactive Replay, there is a widespread difference in 

inter-regional connectivity that is absent when comparing Reactive Replay vs. Passive 

Replay. 

3.2 Network Connectivity 

Figure 9 shows a correlation matrix in which cortical ROIs were clustered according to 

the Yeo-17 resting-state functional network model. This model identified seven large-

scale cerebral networks, which were fractionated into a more fine-grained resolution, 

yielding 17 networks (Thomas Yeo et al., 2011).  The same pattern of inter-network 

correlation enhancement evident in the ROI-to-ROI comparisons is preserved after 

averaging the ROIs to examine network-level connectivity. This holds true both for both 

positive and negative correlations between networks (Figure 10). Many of the same 

Subtraction matrices at the cerebellar level using a probabilistic atlas of the major cerebellar lobules. Each cell represents 
a correlation between two regions. These matrices illustrate intra-regional connectivity and are thresholded for 
significance. Left: [Play – Reactive]; Right: [Reactive – Passive]. 

Figure 8: Subtraction Matrices for Cerebellar Regions 



24 

 

cortical relationships found at the ROI level (like the DMN and DAN anti-correlation, 

Figure 9) are also preserved at the network level.  
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A network-level correlation matrix for Play that includes labels at the network level. Thick black lines indicate 
boundaries between brain areas (cortex, subcortex and cerebellum). Thin black lines indicate boundaries 
between networks at the 7-network level. Dashed grey lines indicate boundaries between networks at the 17-
network level. 

Figure 9: Network Correlation Matrix for Play at the Network Level 
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One of the most striking differences evident when examining network level connectivity 

is the difference in cerebellar connectivity between Play and Replay conditions. This 

difference is highlighted in Figure 8 and Figure 11, through the use of a subtraction 

matrix. Some of the greatest functional connectivity differences between Play and Passive 

Replay can be found in the functional relationships with cerebellar networks. This is 

consistent with the notion that the key role of the cerebellum is motor control and motor 

learning (Wolpert et al., 1998). After all, there is motor movement and learning involved 

in the use of a trackball which is present in Play, whereas in Passive Replay, motor 

movement is not involved at all. Both Play and Reactive Replay involve the same motor 

movements (down to consistency of directionality and timing), and, again, consistent with 

the cerebellar motor-control model, much of the cerebellar functional connectivity in Play 

can be explained by controlling for the network activation in Reactive Replay. 

 

 

Figure 10: Network Connectivity Matrices for Play, Reactive Replay and Passive Replay 

Connectivity matrices for each condition at the network level, thresholded for significance.  Thick black lines indicate 
boundaries between brain areas (cortex, subcortex and cerebellum). Thin black lines indicate boundaries at the 7-
network level. 
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In order to break down the condition-specific differences in network connectivity, 

I conducted paired-sample t-tests on each of the 861 possible NOI pairings between each 

pair of conditions (Figure 12). I then characterized which NOI pairings showed a 

statistically significant difference (p < .05, uncorrected) for one condition compared to the 

other two. For example, Play-specific differences would need to show (Play ≠ Reactive 

Replay) AND (Play ≠ Passive Replay). Moreover, I then classified each instance of a 

statistically significant difference based on the correlation effect as one of six possible 

categories: Enhanced Positive Correlation, Enhanced Negative Correlation, Reduced 

Positive Correlation, Reduced Negative Correlation, Induced Anti-correlation, or 

Eliminated Anti-correlation. An Induced Anti-correlation indicates that the direction of 

correlation changed from positive to negative in the different condition, whereas an 

Eliminated Anti-correlation indicates that the direction of correlation changed from 

negative to positive in the different condition. I then performed a Chi-Square Goodness of 

Fit Test to test whether the number of condition-specific differences was equivalent for 

the three conditions. By the null hypothesis, each of the three conditions would yield an 

equal number of condition-specific differences. Alternatively, if one of the conditions 

Figure 11: Network Subtraction Matrices Comparing Play, Reactive Replay and Passive Replay 
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Subtraction matrices for each condition at the network level, thresholded for significance. Thick black lines indicate 
boundaries between brain areas (cortex, subcortex and cerebellum). Thin black lines indicate boundaries at the 7-
network level. 
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evoked qualitatively different networks, it would produce a disproportionately large 

number of differences in comparison to the other two conditions. Note that although the p 

values in the first stage of this analysis were not corrected for multiple comparisons, the 

main goal was not to evaluate individual NOI pairings but rather to set an arbitrary 

threshold for the number of condition-specific differences. The crucial statistical test was 

the second stage of the analysis in which a single chi square test was performed and thus 

no correction for multiple comparisons was necessary. The Chi-Square Goodness of Fit 

Test was performed to determine whether the condition-specific functional connectivity 

patterns were equal between conditions. The proportion of these differences was found to 

differ by condition X2 (2, N = 3) = 157, p = <.001. This indicates that the number of 

differences between conditions is different from what would be expected if the condition-

specific functional connectivity pattern distributions were the same. 

Table 1a, Table 1b and Figure 13 characterize the nature of these condition-

specific differences in NOI-pairings. The results showed that 163 of these NOI pairings 

were significantly different in Play (significant at p < 0.05 when compared to both 

Reactive Replay and Passive Replay). Of these 163 play-specific differences, 75% of 

those were in the form of enhanced connectivity strength (56% were increased positive 

correlations and 19% were increased negative correlations) with only 25% demonstrating 

a reduction in connectivity strength. Connectivity strength, in this case, indicates the 

absolute value of r. Conversely, there were only 58 NOI pairings that were unique to 

Passive Replay and 76% of these were in the form of reduced connectivity strength. 

Further, of the 24% of NOIs that were characterized by enhanced connectivity, 64% of 

those involved an increase in DMN connectivity. None of the increases in connectivity 

strength involved anti-correlations. Finally, there were only 11 significant NOI 

correlations unique to Reactive Replay and 82% of these were characterized by an 

increase in connectivity strength, none of which involved anti-correlations.  
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Figure 12: Condition-Specific Network Connectivity 

A matrix depicting condition-specific network connectivity. Condition-specific coloured squares indicate that a particular 
NOI-to-NOI in one condition is significantly different when compared to both of the other conditions. Scalar connectivity 
indicates that all conditions are significantly different from each other and exhibiting a directional effect on correlations 
that coincides with level of activity of the condition. If an NOI-to-NOI pairing is not condition-specific, this indicates that 
either none of the conditions were significantly different from one another, or that significant differences were limited to 
one condition comparison only. Thick black lines indicate boundaries between different brain areas (cortex, Subcortex and 
cerebellum). 

Play-Specific Connectivity 
Reactive-Specific Connectivity 
Passive-Specific Connectivity 

Scalar Connectivity Effect 
No Condition-Specific Connectivity 
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 Play Reactive Passive 

Total Condition-Specific Differences 163 11 58 

Enhanced Positive Correlations 91 9 12 

Reduced Positive Correlations 40 2 44 

Enhanced Negative Correlations 8 0 0 

Reduced Negative Correlations 0 0 0 

Eliminated Anti-correlations 1 0 2 

Induced Anti-correlations 23 0 0 

Table 1: Condition-Specific Pattern Breakdown by Correlation Effects 

 

Area-to-Area Comparison # Possible Play Reactive Passive 

Cortical-Cortical  272 23 (8%) 4 (1%) 16 (6%) 

Cortical-Subcortical 136 19 (14%) 2 (1%) 14 (10%) 

Cortical-Cerebellar  289 58 (20%) 1 (0%) 13 (5%) 

Subcortical-Subcortical  56 8 (14%) 1 (2%) 2 (4%) 

Subcortical-Cerebellar  289 17 (6%) 0 (0%) 4 (1%) 

Cerebellar-Cerebellar  272 38 (14%) 3 (1%) 9 (3%) 

Table 2: Condition-Specific Pattern Breakdown by Brain Area 

There were also 48 NOI pairings in which each condition was significantly 

different from another, demonstrating a scalar effect with level activity of the condition 

(Play > Reactive Replay > Passive Replay). Out of these, 83% were characterized by an 

enhancement in functional connectivity (65% were in the form of increased positive 

correlations and 19% were increased negative correlations).  

Table 1 demonstrates the number of condition-specific differences in NOI-to-NOI connectivity based on correlational 
effect. Enhancements to correlations indicate that correlation strength increased; reductions to correlations indicate 
that correlation strength decreased. An induced anti-correlation indicates that correlation direction changed from 
positive to negative; an eliminated anti-correlation indicates that correlation direction changed from negative to 
positive.  

Table 2 demonstrates the number of condition-specific differences in NOI-to-NOI connectivity based on connectivity of 
brain area across the cortex, Subcortex and cerebellum. The ‘# Possible’ column indicates the maximum number of 
unique connections possible based on the number of NOIs used (this excludes network correlations with themselves in 
within-area pairings). For each condition column, the number listed indicates the number of significant connections 
within the areas compared and the bracketed percentage indicates the proportion of total possible unique connections 
listed in the ‘# Possible’ column. 
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 The connectivity both within and between brain areas (cortex, subcortex and 

cerebellum) are not only more numerous in Play, but it also boasts a striking difference in 

cerebellar activity in particular. Of the 163 Play-specific differences in connectivity, 69% 

of these involved cerebellar networks, a proportion substantially higher than that found in 

Reactive at 36% and Passive at 45%. Play – 27% 

3.3 Confound Assessments 

Head Motion: Based on the findings from movie-viewing studies, functional 

connectivity strength is unlikely to be a result of head motion artifacts. In fact, movie-

viewing studies have, overall, far lower level of head motion (Vanderwal et al., 2019), 

while also having been shown to enhance network differentiation and anti-correlations in 

comparison to resting state (Emerson et al., 2015; Meer et al., 2020). This may suggest 

that less motion leads to strong patterns of functional connectivity. Nevertheless, due to 

the greater degree of motion in play runs discovered in the pilot phase, I wanted to assess 

motion for two major reasons. First, I wanted to make sure that strength of correlations 

Figure 13: Condition-Specific Directional Effects for NOI-Pairings 

Matrix depicting the information contained in Table 1 within the NOI-to-NOI matrices for each condition. Coloured 
squares indicate a condition-specific significant difference in functional connectivity pattern for the corresponding 
NOI-pairing. White squares indicate that the NOI-pairing was not significantly different in one condition over the 
others. 
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was not related to level of motion. Second, I wanted to ensure that motion was not an 

excessive problem for this dataset, and that the multi-echo denoising had been successful.  

I correlated motion timecourses for each run with all ROI and NOI timecourses in the 

corresponding run. The head-motion timecourses were comprised of both translation and 

rotation parameters and their first order derivatives for the x, y and z planes (in mm). Out 

of 133 ROIs and 17 networks, only one ROI time-course, a region in the left visual 

striate, was significantly correlated with head motion at an FDR-corrected threshold of p 

= 0.009). No other correlations between motion parameters and ROIs or NOIs were 

significant. This suggests that head motion is not the underlying cause of the differences 

seen between conditions. 

Heart Rate: The measure of heart rate could potentially play two different roles in 

this data set. First, it could be construed as an indirect measure of arousal (Wang et al., 

2018). Second, it could also be viewed as a potential artifact that affects blood flow and 

thereby, inadvertently, affects the BOLD response (Chang et al., 2009). I have included a 

section in the discussion to address both of these possibilities and how they might be 

framed, given these results. The average heart rate for Play was 77.4 bpm, for Reactive 

Replay 73.9 bpm, and for Passive replay 73.3 bpm. There was a significant difference in 

average heart rate between Play vs. Reactive Replay (p = 0.0001), and Play vs. Passive 

Replay conditions (p = 0.0004) in which average heart rate in Play was higher than in 

Reactive and Passive Replays. No significant difference in average heart rate was found 

between Reactive Replay vs. Passive Replay (p = 0.4443). In order to get a better 

understanding of what these differences meant, I correlated heart rate timecourses with 

cortical and cerebellar network timecourses, and subcortical region timecourses. The 

results of this correlation are shown in Figure 14 below. 
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Out of the 40 networks listed, 15 were significant (p < 0.05) with the highest correlations 

being in DAN A and DAN B (r = 0.109 and r = 0.106, respectively). 

Other Confounds: There were no significant differences with respect to age or 

sex. There were also no significant within-subject differences across runs of the same 

condition. 

3.4 Eye-Tracking 

The results of the eye tracking data suggest that differences seen between conditions are 

not a result of either eye movements or looking behaviors. There were no significant 

differences found for number of saccades, number of blinks, pupil dilation or gaze 

position between any of the conditions (Table 3): 

 Play vs. Reactive Play vs. Passive Reactive vs. Passive 

# Saccades p = 0.41 p = 0.18 p = 0.46 

# Blinks p = 0.57 p = 0.35 p = 0.35 

Pupil Dilation p = 0.35 p = 0.99 p = 0.22 

Gaze Position p = 0.72 p = 0.83 p = 0.93 

Figure 14: A Subtraction Matrix for Play vs. Reactive Including Heart Rate 

A subtraction matrix comparing Play and Reactive Replay conditions that includes all cortical networks, cerebellar 
networks and subcortical ROIs correlated against heart rate, thresholded for significance. 
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Table 3: P-Values for Blinks, Saccades, Pupil Dilation and Gaze Position When Comparing Conditions 

Gaze position was determined based on the difference in Euclidean distance (in pixels) 

and the position of Pac-man to evaluate whether looking behaviors were different 

between conditions. Figure 15 illustrates the similarities in eye gaze between conditions. 

Gaze position was similar across conditions, with Play and Reactive Replay being the 

most closely aligned. Participants were found to be looking just in front of Pac-man in the 

direction of movement. In Passive Replay, this was also typically the case, but with a 

tendency to be even further ahead in the direction of movements than was seen in Play 

and Reactive Replay. In this sense, Passive replay could often be used to predict Pac-

man’s future coordinates a few seconds earlier, but somewhat less accurately than the 

other two conditions.  

 

 

Figure 15: Screen Capture with Eye-Tracking Superimposed 

A screen capture of a participant playing Pac-man with the x/y eye position coordinates for each condition 
superimposed. The red ring corresponds to eye position in the Play condition, the blue ring corresponds to eye 
position in Reactive Replay and the green ring corresponds to Passive Replay. 
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Chapter 4  

4 Discussion 

The overarching result of this study has been to show that there are major differences in 

functional connectivity during the Play condition when compared to both Replay 

conditions, both in number of significant connections and the enhanced strength of 

functional connectivity. This suggests that the incorporation of active control within an 

environment could be a critical component to support ecological validity in 

neuroimaging. Moreover, this paradigm can be instantiated through the use of low-cost 

tools already available, such as video games, virtual environments and dynamic 

narratives.  

4.1 The Difference of Closed-Loop? 

The most salient result of this study has undoubtedly been the difference in functional 

connectivity patterns between Play and both Replay conditions. Previous video game 

studies have demonstrated differences in amygdala activation in response to violent 

actions (Mathiak & Weber, 2006) and differences in key reward structures when game 

difficulty outpaces competence (Huskey et al., 2018). It has even been shown, for 

example, that levels of activation in orbitofrontal and striatal areas are significantly 

different in participants winning or losing a game than they are in participants simply 

watching someone else win or lose a game (Kätsyri et al., 2013) which echoes the results 

obtained in the present study here. This is, however, the first study to use video games to 

examine the difference in widespread functional connectivity when comparing a closed-

loop paradigm with an open-loop paradigm. The results of the present study are a 

preliminary step in making the case that the incorporation of video games can yield 

results in functional connectivity research that differ from those using passive stimuli. 

 The large differences between Play and Replay conditions support the possibility that a 

closed-loop paradigm is fundamentally different. Play boasted roughly three times as 

many significant functional connections when compared to Passive Replay. Moreover, 

the composition of these condition-specific connectivity differences is strikingly different. 

A substantial proportion of the differences in Passive Replay involve functional 
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connectivity of the DMN, whereas Play exhibits changes in a diverse array of functional 

network connections not limited to any domain or locale, but drawing substantially more 

on cerebellar networks than the other conditions.  

Moreover, the differences do not appear to be attributable to motor effects, given that 

these differences continue to exist even when compared to Reactive Replay, a condition 

that shares motor demands with Play. One point to be addressed is whether Reactive 

Replay ought to be considered a unique condition in its own right. Given that the task is 

different from that of Play and Passive Replay, there may be a concern that Reactive 

Replay is recruiting a unique set of functional connectivity pairings. The results here 

seem to indicate, however, that this is not the case, given the very small number of 

network connections uniquely different in differenthis condition. Further, the results show 

that most of these are limited to subcortical and limbic structures. While the role of these 

structures in Reactive Replay is an interesting question, the limited number of unique 

connections and their rigid localization suggests that Reactive Replay is not engaging 

largely different functional connections across the brain. This further supports its role as a 

control condition for Play to ensure differences are not related to motor activity. 

It is worth noting that this study did not examine activity levels within particular regions 

with known associations, but rather, it examined functional connectivity within and 

between networks. These large differences were found in the fundamental relationships 

regions and networks have with each other. This might suggest that differences in activity 

levels might be missing a major part of the story. If regions are circumscribed particular 

functions through the use of isolated and decontextualized stimuli, how can we be sure 

these functions hold when their functional relationships change with context? (Gibson, 

1979; Willems & Peelen, 2021). This is not to say that examinations of activity levels are 

not valuable. Rather, it is to say that an exploration between regional activity levels and 

their functional connectivity may help to paint a broader picture about dynamics. The 

large functional connectivity differences here may be inadvertently signaling that there 

are interesting discoveries to be made with a shift in attention from localization of 

function and towards dynamic relationships between brain, body and environmental 

context.  
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4.2 Anti-correlations 

One of the most conspicuous effects between conditions is the shift in inter-network 

strength, the greatest marker of which is seemingly found in the anti-correlations present 

in all conditions, and the degree to which they differ. The anti-correlation between the 

DMN and DAN has been widely demonstrated in both resting-state and task-paradigms 

alike (Fox et al., 2005; Golland et al., 2007; Uddin et al., 2009), but it has nevertheless 

remained controversial. Some research has suggested that these anti-correlations can be 

artificially induced in the preprocessing stage with certain types of regression methods, 

primarily global-signal regression (Murphy et al., 2009). Through the use of alternative 

regression methods for dealing with motion and physiological noise, researchers have 

found these same anti-correlations, even in the absence of global signal regression (Chai 

et al., 2012; Li et al., 2021). The results of this study corroborate this research in 

demonstrating these anti-correlations in all three conditions in the absence of global-

signal regression and, indeed, minimal regression altogether. This suggests that these anti-

correlations are not merely artifacts of fMRI preprocessing techniques but instead, real 

patterns of brain activation in need of explanation. 

More importantly, however, is the difference in apparent robustness of these anti-

correlations between conditions. The results of the present study appear to suggest that in 

many cases, the more immersive the context, the greater the anti-correlation effect. 

Crucially, however, is the result showing that Play was unique in being able to showcase 

anti-correlations that were either not present, or not sufficiently detectable, in the other 

conditions. One of the major difficulties of not only establishing anti-correlations, but 

also studying them, is that in the absence of global-signal regression, negative 

correlations suffer from smaller effects (Dixon et al., 2017). Functional network 

activation is biased towards positive activation patterns, possibly as a result of anatomical 

differences (Hayasaka, 2013) or differences in time-lag responses (Goelman et al., 2014). 

Whatever the reason, Dixon et al. (2017) found that the exclusion of global signal 

regression decreased the effect of the anti-correlation between the DMN and DAN by 

75%, from 0.24 to 0.06. The skew towards positive correlations in the absence of global 

signal regression can overshadow negative correlations, making it not only more difficult 
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to ascertain statistical significance, but to then subsequently replicate these findings. It is 

worth noting, however, that a preponderance of studies examining anti-correlations are 

doing so on resting-state data. Task-based data, on the other hand, appear to have an 

impact on anti-correlation strength, showing connectivity patterns more similar to resting 

state with global signal regression (Li et al., 2021). Given that Play was able to both 

induce and enhance anti-correlations in a significant way, it is perhaps the case that 

DIVEs may provide new insights about anti-correlations and their role in network 

connectivity. This is an interesting finding that may be fertile ground for subsequent 

study. 

With new methods to facilitate their study, anti-correlations may be the next opportunity 

for functional connectivity research. Exploration of what anti-correlations mean for the 

brain has been stalled by the effort required to establish whether they even exist as 

empirically valid phenomena in the first place. The DMN-DAN anti-correlation has 

already begun to suggest to researchers that brain function may be more readily 

discoverable in the dynamic coordination through cooperation and competition within and 

between regions, rather than within the regions themselves (Bressler & Kelso, 2016; 

Cocchi et al., 2013). Indeed, some research suggests that perhaps the DMN may be the 

key hub that determines wide-scale degrees of connectivity throughout the brain based 

upon competitive cross-network couplings with other networks (Wens et al., 2019). The 

results of the present study reveal a strong set of anti-correlations, most of which are 

found in the between the DMN and other networks which would corroborate this view. It 

may well be the case that the DMN is simply acting differently in an immersive 

environment, causing a whole cascade of downstream network connectivity effects. It 

seems likely that proper network-thinking will likely involve the incorporation of not 

merely a single, network interaction, but rather, a holistic approach to the brain as a 

system of dynamic and interactive networks (Anderson, 2014). Indeed, there appears to be 

some evidence suggesting higher degrees of intra-network connectivity corresponds to 

stronger inter-network anti-correlations (Brier et al., 2012). The results of the slope 

analysis show that Play enhances both intra-network and inter-network connectivity to a 

larger degree than Reactive or Passive Replay. This may suggest that, at the very least, 
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anti-correlations might be more readily discoverable using a closed-loop paradigm. This 

is an interesting finding that may be fertile ground for subsequent study. 

4.3 Cerebellum 

There has been a long history identifying the cerebellum as being mainly devoted to the 

coordination and facilitation of motor functions (Glickstein & Doron, 2008; West & 

Gelderd, 2003). The winds, however, have begun to shift and more researchers have now 

come to recognize that the cerebellum perhaps plays a larger role in higher order 

cognitive functions that what was previously believed (Buckner, 2013; Rapoport et al., 

2000; Schmahmann & Caplan, 2006). Much of this emphasis on motor control and 

coordination has been the result of a myriad of cerebellar lesion studies in which a variety 

of motor coordination and learning deficits arise in consequence of such lesions (Jeljeli et 

al., 2003; Joyal et al., 1996). This link between lesion location and deficit of motor 

function makes good sense if one is to take a modular approach to the cerebellum. If a 

lesion to region X, for example, results in an oculomotor movement abnormalities, then 

region X must be responsible for oculomotor movement coordination. Indeed, a modular 

structure has been proposed as the proper way to think about the cerebellum, even at a 

functional level (Apps et al., 2018).  

Presupposing a modular view of cerebellar structure responsible primarily for motor 

control, one might hypothesize a greater degree of connectivity would be found within 

networks in the cerebellum when comparing the Reactive and Passive Replay conditions 

than when comparing Play and Reactive Replay conditions. In the former pairing, the 

substantive difference is the coordination of motor movements whereas, in the latter 

condition, motor movements are matched. This is not what is observed in the results, 

however. At the modular level, there are substantial significant differences when 

comparing Play versus Reactive Replay and very few when comparing Reactive Replay 

with passive Replay. These differences are then also found at the network level, both 

within the cerebellum and between the cerebellum and cortex. Even after controlling for 

motor movements in this way, many significant functional relationships within the 

cerebellum remain. Further, the differences between Reactive and Passive Replay show 

some significant relationships in the cerebellum, but these are minimal in comparison to 
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the Play condition. This suggests that functional connectivity, both within the cerebellum 

and between the cerebellum and cortical networks, extends beyond the purview of motor 

control and motor movement alone. 

This study further corroborates the growing body of evidence suggesting the cerebellum 

is involved in far more cognitive tasks than what was once appreciated, but even these 

findings may not be telling the whole story. For example, the cerebellum has been 

implicated in cognitive tasks involving the generation of forward models which have been 

argued to be instrumental in task performance monitoring (Ben-Yehudah et al., 2007; 

Popa & Ebner, 2019). Indeed, Popa & Ebner (2019) found neuronal spiking patterns 

consistent with prediction error and optimization in motor commands. However the 

results of the present study do not appear to demonstrate such a role for the cerebellum. In 

the Reactive Replay condition, participants are asked to follow the movements of Pac-

man using the controller and error feedback is obvious and immediate (if the direction of 

Pac-man does not match controller direction). Nevertheless, the minimal differences 

between Passive Replay (where such error prediction feedback and correction occurs) and 

Reactive Replay (where such error prediction feedback and correction does occur) may 

suggest that it is more than simple forward modelling occurring, at least in this particular 

case. 

This study does not purport to solve the mystery of the cerebellum and its functionality. 

Rather, this study suggests that novel contexts may provide interesting questions not fully 

answerable by our current understanding of the cerebellum. Further, framing the 

cerebellum in terms of forward modelling may also be insufficient on its own. What the 

results of this study suggest is that there may be some kind of interaction between these 

variables and the external context occupied by an agent. Feedback from the environment, 

and agency within it, may be important components to consider when studying the 

cerebellum and its functions. If this is the case, DIVE paradigms may be useful tools in 

furthering our understanding of this unique brain structure.   
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4.4 Artifact, Arousal or Agency? 

The statistical analysis showing Play as evoking significantly faster heart rate than both 

Replay conditions has an impact on the way in which functional connectivity differences 

in Play ought to be interpreted. There are three main ways the effect of heart rate might be 

construed: as an indicator of possible cardiovascular artifacts contaminating the BOLD 

response, as a proxy for a confound approximating arousal, or as an essential, modulatory 

component of the brain in a closed-loop framework.  

 At the outset, it is important to ascertain whether the effects seen in this study are the 

result of cardiac-induced artifacts given the correlation of heart rate with blood flow, as 

this can have an effect on the BOLD response and fMRI signal (Dagli et al., 1999). There 

a few reasons to suspect that is not what is driving the effects in this study, however. 

First, while ME-ICA denoising does not eliminate all cardiovascular artifacts, it has been 

shown to do an adequate job of removing physiological noise (Beckers et al., 2022). 

Further, the subsequent use of RICA to exclude missed components with clustered 

activation in locations near major arteries and blood vessels as outlined in Dagli (1998) 

further enhances this cardiovascular artifact regression. Finally, the upper limit of the 

band-pass filter used was fairly conservative at 0.09 Hz so as to eliminate even lower-

frequency cardiac artifacts that can be found around 0.1 Hz (Shmueli et al., 2007). Taken 

together, these methods deal with the issue of cardiovascular artifacts so as minimize the 

possibility that they are the driving force behind the effects. 

The next question that might be addressed is the degree to which heart rate should be 

viewed as a proxy for arousal, two variables shown to be highly correlated (Azarbarzin et 

al., 2014). Previous studies have also indicated that heart rate variability has an impact on 

the BOLD signal which can, in turn, affect patterns of functional connectivity (Chang et 

al., 2013). Thus, arousal might be reasonably flagged as a confound that needs to be 

controlled for, and indeed, there are some who have called for more care when 

interpreting results in these cases (Gu et al., 2020). While this is certainly true, it is worth 

underscoring the point that arousal is a term (and a physiological response) that is used to 

explain a great many different types of phenomenon that occur in the brain and body. 

Delineating which components of arousal are signal, noise, or modulatory factors could 
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be misleading when trying to evaluate the system more holistically. As such, while 

arousal cannot be ruled out as a confouder, the extent to which it should be entirely 

viewed as such is still an open question in need of further research. 

Arousal might be better viewed as one of the main variables linking brain, body and 

environment. The default mode network has been shown to have an incredible degree of 

overlap with changes in sympathetic nervous system activity (and, thereby, autonomic 

arousal), which likely indicates that these systems are related in a fundamental way (Fan 

et al., 2012; Nagai et al., 2004). Rather than consider that the changes in functional 

connectivity are confounded by the relationship with arousal, it might instead be worth 

considering how arousal of the brain and body modulate each other as component parts of 

a closed-loop system. Certainly, more research will need to be done to disentangle such a 

relationship, but it is one that might be better explored when the system is taxed and 

arousal varies naturally through self-generated action and feedback, as occurs in real-

world settings. The immersive nature of DIVE paradigms might, for this reason, provide a 

tool to study the relationship between functional activation and arousal in unique 

contexts. 

4.5 Limitations & Directions for Further Investigation 

This study has examined the virtues of a DIVE paradigm and has discussed some of the 

ways in which such a paradigm might be useful in exploring a wide variety of scientific 

questions. It is worth remembering, however, that this study is highly exploratory. For 

this reason, it goes without saying that more research will need to be done in order to 

draw any substantive conclusions on what the results here might mean.  

One potential limitation to consider is that this study lacks concrete corroboration that the 

motor movements between Play and Reactive Replay are the same. While it is possible 

that participants moved the controller in significantly different ways during Reactive 

Replay, this seems unlikely for four reasons. First, the task was extremely simple. 

Participants were required to repeat condition task instructions back to the researcher after 

they were explained in order to ensure participants understood. All participants were able 

to successfully reiterate the task instructions for all three conditions. Second, researchers 
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used an interface that clearly showed when the controller was being moved and when it 

was not. There were no cases in which participants did not continually use the controller 

during the Reactive Replay condition. This eliminates the possibility that participants 

were confused as to whether it was a Passive or Reactive Replay condition. Third, there 

was no incentive for participants to deviate from the task and move the controller at 

random. Fourth, while it is the case that participants may have been prone to errors due to 

inaccurate prediction of Pacman’s trajectory, the lack of unique, Reactive Replay-specific 

network connections would suggest that this was no sufficient to impact the results in a 

meaningful way. The similarity between both Reactive and Passive connectivity matrices 

appears to corroborate this as well. 

A more difficult limitation of this study is the large degree of variability between 

individual subjects. Both average connectivity strength and significant patterns of 

functional connectivity varied largely across individuals. These individual differences in 

functional connectivity and the degree to which they may exhibit interaction effects with 

closed-loop contexts is a fascinating topic. Given the individual variability of network 

connection patterns, it should be considered likely that individuals will have different 

responses to their environmental contexts. It is unclear how these individual differences 

in environmental response may be impacting the results of this study.  

4.6 DIVE into the Future 

There are a many potential avenues through which DIVE paradigms might be 

advantageous in opening new vanguards for cognitive neuroscience, computing and 

artificial intelligence and clinical medicine. The exploration of the brain as a closed-loop 

system need not be limited to theoretical model building and, by its very nature, is poised 

to bring a wider array of practical tools for cognitive neuroscience to build upon. The 

very concept of DIVE is about building models based on the real world, rather than 

building models that must be adapted to fit the real world. This makes it an excellent way 

to combine a new, bottom-up approach with tried and tested top-down approaches. By 

integrating bottom-up and top-down approaches into a more holistic dynamic systems 

one, many of the roadblocks that arise from either technique in isolation could be 

ameliorated to some degree (Egan & Matthews, 2006). It is unlikely that most modern 
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researchers actually believe that the brain operates in complete isolation from the body 

and environment, and yet, it is often the case that research is executed so as to implicitly 

treat brains as though this were the case. The integration of dynamical systems theory 

(DST)—a method of studying complex interactions of dynamic systems—has led to some 

concrete applications. One DST examines how evolutionary principles can be used within 

an environment to produce autonomous agents that walk around successfully in such an 

environment (Beer, 1995). Indeed, this is precisely what researchers like Rodney Brooks 

did to revolutionize the ability for robots to navigate and interface with real-world 

environments in a way that had previously not been possible (Brooks, 1989). In a world 

seeking ever more intelligent machines, it may well be that this principle of embodiment 

holds. DIVEs could, thus, be more than tools for learning more about real-world cognitive 

agents, but also tools for artificial cognitive agents to learn how to act in the real world. 

The results of this study may also have some useful implications for psychiatric medicine, 

through the enhancement of functional connectivity patterns. The field is constantly 

searching for more empirical methods of treating and characterizing mental health and 

brain disorders, but the number of individual differences in brains and the diversity of 

contexts in which they operate make it challenging to find robust, universal biomarkers. 

One potential limitation of resting-state, however, is that these paradigms do not tax the 

system sufficiently to demonstrate robust variations. Movie studies, as previously 

mentioned, have been able to evoke more robust patterns of functional activation, and this 

has already found some success in clinical studies when assessing the conscious 

experiences of coma patients (Naci et al., 2014). The potential advances in clinical 

settings of using movies for their ability to enhance functional connectivity patterns for 

finding biomarkers has been well-articulated by Eickhoff and Müller (2015). DIVEs 

might act in a similar capacity to movie studies here due to the increase in functional 

connectivity pattern enhancement of immersive conditions, but, of course, more research 

is needed to explore whether movies or DIVEs can be successfully used in this way. 
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Appendices 

Appendix A: Pac-man Event Tree 

These figures represent the trajectory of the event screen sequences during a play run. 

The play sequence occurs before active play begins and starts with a fixation cross screen 

(at the very beginning of a run, the first fixation cross lasts 20 seconds with all subsequent 

fixations lasting 10). It is then followed by a ready screen and countdown, during which 

game time is paused. The pause on the game timer ends with the ‘Go!’ screen and 

participant interaction begins. Active gameplay ends under one of four circumstances: 

level completion, death, time’s up or game over. In the case of the former two, upon 

completion of the event sequence frames, the play sequence begins again. In the case of 

the latter two, the run is terminated. The numbers on the side of each screen represent the 

amount of time the screen is displayed before transitioning to the next screen. 
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Figure 16: Screen Captures of Frames Preceding Play Time 



54 

 

 

  

  

Figure 17: Possible Sequences of Play Time Termination Events 
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Appendix B: List of ROIs and Networks  

A full list of the regions of interest (ROIs) featured in ROI matrices (see Figure 6 and 

Figure 7): 

 

VISUAL 
   VISUAL A: 

1. Extrastriate 1 (L) 
2. Extrastriate 1 (R) 
3. Extrastriate 2 (L) 
4. Extrastriate 2 (R) 
5. Striate 1 (L) 
6. Extrastriate 3 (L) 
7. Extrastriate 3 (R) 

 

SOMATOMOTOR 
   SOMATOMOTOR A: 

14. Somatomotor A 1 (L) 
15. Somatomotor A 1 (R) 
16. Somatomotor A 2 (L) 
17. Somatomotor A 2 (R) 
18. Somatomotor A 3 (R) 
19. Somatomotor A 4 (R) 

 

 

DORSAL ATTENTION 
   DORSAL ATTENTION A: 
          28. Temporal-Occipital 1 (L) 
          29. Temporal-Occipital 1 (R) 
          30. Parietal-Occipital 1 (L)  
          31. Parietal-Occipital 1 (R)  
          32. Superior Parietal Lobule 1 (L) 
          33. Superior Parietal Lobule 1 (R) 

 

   VISUAL B: 
20. Extrastriate Inferior 1 (L) 
21. Extrastriate Inferior 1 (R) 
22. Striate Cal. 1 (L) 
23. Striate Cal. 1 (R) 
24. Extrastriate Superior 1 (L) 
25. Extrastriate Superior 1 (R) 

   SOMATOMOTOR B: 
20.   Somatomotor B Auditory 1 (L) 
21. Somatomotor B Auditory 1 (R) 
22. Somatomotor B S2 1 (L) 
23. Somatomotor B S2 1 (R) 
24. Somatomotor B S2 2 (L) 
25. Somatomotor B S2 2 (R) 
26. Somatomotor B Center 1 (L) 
27. Somatomotor B Center 1 (R) 

 

    DORSAL ATTENTION B: 
          34. Posterior Commissure 1 (L)  
          35. Posterior Commissure 1(R) 
          36. Posterior Commissure 2 (L) 
          37. Posterior Commissure 2 (R) 
          38. Posterior Commissure 3 (L) 
          39. Frontal Eye Fields 1 (L) 
          40. Frontal Eye Fields 1 (R) 

 

SALIENCE 
   SALIENCE A: 
        41. Parietal Cortex 1 (L)  
        42. Parietal Cortex 1 (R)  
        43. Insula 1 (L)  
        44. Insula 1 (R)  
        45. Insula 2 (L)  
        46. Parietal-Medial Cortex 1 (R) 
        47. Parietal-Medial Cortex 1 (L) 
        48. Frontomedial Cortex 1 (L) 
        49. Frontomedial Cortex 1 (R) 

 

LIMBIC 
   LIMBIC A: 
        55. Temporal Pole 1 (L) 
        56. Temporal Pole 1 (R) 
        57. Temporal Pole 2 (L) 

   SALIENCE B: 
        50. Prefrontal Cortex 1 (L) 
        51. Inferior Parietal Lobule (R) 
        52. Prefrontal Cortex MP 1 (L) 
        53. Prefrontal Cortex L 1 (R) 
        54. Prefrontal Cortex MP 1 (R) 

    LIMBIC B: 
        58. Orbitofrontal Cortex 1 (L) 
        59. Orbitofrontal Cortex 1 (R) 
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CONTROL 
   CONTROL A: 

60. Intraparietal Sulcus 1 (L) 
61. Intraparietal Sulcus 1 (R) 
62. Prefrontal Cortex L 1 (L) 
63. Prefrontal Cortex L 1 (R) 
64. Prefrontal Cortex L 2 (L) 
65. Prefrontal Cortex L 2 (R) 

 

DEFAULT MODE 
   DEFAULT MODE A: 

76. Prefrontal Cortex D 1 (L) 
77. Prefrontal Cortex D 1 (R) 
78. Precuneus PCC 1 (L) 
79. Precuneus PCC 1 (R) 
80. Intraparietal Lobule 1 (R) 
81. Prefrontal Cortex M 1 (L) 
82. Prefrontal Cortex M 1 (R) 

 

 

TEMPORAL-PARIETAL 
   Temporal-Parietal: 
          97.   Temporal-Parietal 1 (L) 
          98.   Temporal-Parietal 1  (R) 
          99.   Temporal-Parietal 2 (R) 
          100. Temporal-Parietal 3 (R) 

 

   CONTROL B: 
61. Prefrontal Cortex LV 1 (L)  
62. Prefrontal Cortex LV 1 (R) 
63. Temporal Cortex 1 (R) 
64. Intraparietal Lobule 1 (R) 
65. Prefrontal Cortex LD 1 (R)  
 

   DEFAULT MODE B: 
83. Temporal Cortex 1 (L) 
84. Temporal Cortex 2 (L) 
85. Intraparietal Lobule 1 (L) 
86. Prefrontal Cortex D 1 (L) 
87. Prefrontal Cortex D 1 (R) 
88. Prefrontal Cortex L 1 (L) 
89. Prefrontal Cortex V 1 (R) 
90. Prefrontal Cortex V 1 (L) 
91. Prefrontal Cortex V 2 (L) 
92. Prefrontal Cortex V 2 (R) 

 

 

   CONTROL C: 
71. Precuneus 1 (L) 
72. Precuneus 1 (R) 
73. Precuneus 2 (L) 
74. Central Cingulate P 1 (L) 
75. Central Cingulate P 1  (R) 

 

   DEFAULT MODE C: 
93. Retrosplinial Cortex 1 (L) 
94. Retrosplinial Cortex 1 (R) 
95. Parahippocampal Cortex 1 (L) 
96. Parahippocampal Cortex 1 (R) 
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