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Abstract

Forecasting of the telecommunication traffic is the foundation for enabling intelligent management features as

cellular technologies evolve toward fifth-generation (5G) technology. Since a significant number of network

slices are deployed over a 5G network, it is crucial to evaluate the resource requirements of each network slice

and how they evolve over time. Mobile network carriers should investigate strategies for network optimization

and resource allocation due to the steadily increasing mobile traffic. Network management and optimization

strategies will be improved if mobile operators know the cellular traffic demand at a specific time and location

beforehand. The most effective techniques nowadays devote computing resources in a dynamic manner based

on mobile traffic prediction by machine learning techniques. However, the accuracy of the predictive models is

critically important. In this work, we concentrate on forecasting the cellular traffic for the following 24 hours

by employing temporal and spatiotemporal techniques, with the goal of improving the efficiency and accuracy

of mobile traffic prediction. In fact, a set of real-world mobile traffic data is used to assess the efficacy of mul-

tiple neural network models in predicting cellular traffic in this study. The fully connected sequential network

(FCSN), one-dimensional convolutional neural network (1D-CNN), single-shot learning LSTM (SS-LSTM), and

autoregressive LSTM (AR-LSTM) are proposed in the temporal analysis. A 2-dimensional convolutional LSTM

(2D-ConvLSTM) model is also proposed in the spatiotemporal framework to forecast cellular traffic over the next

24 hours. The 2D-ConvLSTM model, which can capture spatial relations via convolution operations and temporal

dynamics through the LSTM network, is used after creating geographic grids. The results reveal that FCSN and

1D-CNN have comparable performance in univariate temporal analysis. However, 1D-CNN is a smaller network

with less number of parameters. One of the other benefits of the proposed 1D-CNN is having less complexity and

execution time for predicting traffic. Also, 2D-ConvLSTM outperforms temporal models. The 2D-ConvLSTM

model can predict the next 24-hour traffic of internet, sms, and call with root mean square error (RMSE) values

of 75.73, 26.60, and 15.02 and mean absolute error (MAE) values of 52.73, 14.42, and 8.98, respectively, which

shows better performance compared to the state of the art methods due to capturing variables dependencies. It

can be argued that this network has the capability to be utilized in network management and resource allocation

in practical applications.

Keywords: 5G, cellular traffic forecasting, deep neural networks, big data, temporal analysis, spatiotemporal

model
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Summary for Lay Audience

Forecasting telecommunication traffic is significantly important in providing intelligent management features as

cellular technologies progress toward the fifth generation (5G) technology. It is critical to assess the resources need

for each network slice and how they change over time since a substantial number of network slices are deployed

over a 5G network. If mobile operators become aware of the cellular traffic demand at a certain time and location

in advance, network management and optimization strategies will be more effective. The most efficient methods

now dynamically allocate computer resources based on machine learning technology that forecasts mobile traffic.

However, the accuracy of the forecasting model is vital. In this study, we focus on cellular traffic forecasting for

the next day by using temporal and spatiotemporal approaches. In order to evaluate the performance of the various

neural network models to forecast cellular traffic, a collection of real-world mobile traffic data is utilized in this

study. It should be mentioned that the proposed spatiotemporal network has the capability to be used practically

for resource allocation and network management.
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Chapter 1

Introduction

1.1 Motivation

One of the main factors driving the increase in mobile traffic globally is the constantly expand-

ing number of wireless devices connecting to mobile networks throughout the world. Devices

and connections are expanding more quickly (10% compound annual growth rate (CAGR))

than both the population (1.0% CAGR) and Internet users worldwide (6 percent CAGR). The

average number of devices and connections per home and per person is rising, and this trend is

driving that growth. The expansion of devices and connections is being significantly aided by

an increasing variety of machine-to-machine (M2M) applications, such as video surveillance

and healthcare monitoring. When it comes to devices and connections, M2M connections will

have the highest growth, nearly doubling in size throughout the projected period (19 percent

CAGR) to reach 14.7 billion connections by 2023. As shown in to Figure 1.1, smartphones

will rise at the second-fastest rate, with a 7 percent CAGR (a 1.4-fold increase) [1].

Mobile network operators (MNOs) are expected to enhance and optimize system perfor-

mance due to the growing volume of exchanged data and new requirements for higher peak

data rates, enhanced reliability, and decreased latency facilitated by fifth-generation (5G) net-

works. Maintaining fast and reliable cellular connections is a key challenge for MNOs given

the faster 5G networks and various connected devices. MNOs are required to utilize more

1
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Figure 1.1: Global device and connection growth[1].

computing resources and expand the infrastructure. However, the risk of ineffective resource

consumption is increased which might result in imposing extra costs on service providers. Net-

work operators can expand their networks and allocate resources more efficiently and provide

higher-quality services to their customers if they are aware of the demand growth in advance.

The ability to predict mobile data traffic is crucial for resource management, reducing mainte-

nance and operational expenses, and also meeting user needs.

Time, space, or a combination of two of them can be used to categorize data traffic predic-

tion. While the spatial domain explores the data traffic based on the geographical loacation,

the temporal domain investigates the trend and seasonality of data traffic. Also, the spatiotem-

poral domain captures both the temporal and spatial dependencies simultaneously. The major

motivation of this study is to deploy machine learning techniques to extract the temporal and

spatiotemporal dependencies of data traffic and forecast future cellular traffic. In this study,

we used the telecommunication records of Milan from the Telecom Italia [3] dataset to pre-

dict cellular traffic. In fact, from temporal and spatiotemporal aspects, Milan cellular traffic is

investigated using a variety of neural network models.
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1.2 Problem Statement

Network management is a crucial step that relies on the current traffic demand and resource

utilization in order to address the increment in cellular traffic. Accurately anticipating data

traffic demand at a certain time and location with an appropriate strategy is required to satisfy

the needs of the rapidly increasing data traffic.

Forecasting cellular traffic is a challenging task due to non-stationary, non-linearity and

complex data dependencies and spatial and temporal correlation in the multivariate data. Di-

verse regions of the city, encounter a large dynamic range of data consumption due to various

user involvement during work and leisure at different times of the day and on weekdays and

weekends, leading to complicated temporal data patterns. Moreover, user movement and vari-

ous population densities in different locations contribute to the development of spatial patterns.

Predicting mobile traffic involves assessing the volume of cellular traffic for the next hours

based on the preceding hours. Our goal in this study is to automatically forecast the 24-hour

volume of telecommunications traffic using historical data from the preceding period of 24

hours. In the temporal domain, we aim to forecast the upcoming 24-hour volume of telecom-

munication, including sms, calls, internet, count, and frequency features. Furthermore, the

spatiotemporal framework is intended to predict various sorts of cellular traffic, such as inter-

net, sms, and call. The predictions that are a temporal sequence of network activity volume in

various geographic areas are the main focus of the spatiotemporal framework.

1.3 Objectives and Contribution

The main objective of this thesis is to analyze the performance of machine learning in pre-

dicting the network traffic in high dimensional spatial-temporal cellular data. The goal is to

investigate the effectiveness of various neural network models in traffic prediction from the

univariate and multivariate perspectives. First, the univariate analysis will be conducted by

applying the temporal framework including the fully connected sequential Network (FCSN),

one-dimensional convolutional neural network (1D-CNN), single-shot learning LSTM (SS-
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LSTM), and autoregressive LSTM (AR-LSTM) to capture the temporal dependencies. In the

second section, the multivariate spatiotemporal analysis will be conducted using 2-dimensional

convolutional LSTM (2D-ConvLSTM) to forecast the traffic in Telecom Italia [3] data in city

of Milan. The objective in the multivariate spatiotemporal analysis is to automatically incor-

porate the inter dependencies among different variables, spatial and temporal information into

our predictive modeling. Our objective is to dvelop a model that has the potential to aid in

network management and resource allocation in 5G networks.

The main contributions of this work can be summarized as follow.

• This study focuses on predicting the cellular traffic of the next 24 hours by utilizing both

temporal and spatiotemporal analysis.

• The proposed temporal and spatiotemporal models can be used to facilitate resource allo-

cation and network optimization in the 5G network by accurately predicting the cellular

traffic.

• We introduce a new feature named “count,” which is utilized as model input. Since this

metric shows the number of records in a certain period of time for a specific grid id, using

count as model input aids in the prediction of various kinds of cellular traffic.

• The multivariate spatiotemporal analysis takes the variables’ correlation and spatial and

temporal dependencies into account in the predictive modeling.

• The proposed models have relatively low complexity, small number of parameters and

short execution time for forecasting the traffic of the internet, call, and sms.

1.4 Thesis Structure

The remaining of this thesis is organized as follows:

• Chapter 2 presents the literature review including the vision and motivation of 5G net-

works, network slicing, 4G to 5G migration, significant technologies, emerging use cases

of 5G, and challenges and opportunities of 5G.
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• Chapter 3 provides background information on the 5G core. This chapter covers the

concept of service-based architecture, main network functions, network slices, 5G core

deployment approaches, the 4G to 5G core migration, role of artificial intelligence (AI),

edge computing, and next-generation radio access network (RAN).

• Chapter 4 discusses the related works on the study of mobile network traffic and also

explains the utilized dataset. Also, in the methodology section of this chapter, prepro-

cessing, temporal and spatiotemporal predictive models, and results and evaluation are

elaborated.

• Chapter 5 as the final chapter is devoted to discussing the advantages and drawbacks of

the proposed models as well as drawing the conclusion, and outlining the future works.



Chapter 2

Literature Review

2.1 Vision and Motivation

5G is a unified, more capable air interface. It has been designed with an extended capacity to

enable next-generation user experiences, empower new deployment models, and deliver new

services. 5G wireless technology is meant to deliver higher data speeds, ultra-low latency,

more reliability, massive network capacity, increased availability, and a more uniform user

experience to more users. Higher performance and improved efficiency empower new user ex-

periences and connect new industries. The industry is envisaging to see how networks might be

utilized to address future intense capacity and performance needs as the demand for improved

mobile broadband experiences continues to increase. Enabling a host of diverse platforms

to function together as a unified entity, mostly software-controlled and adaptable to any con-

sumption pattern, is the actual challenge. In this context, 5G is expected to meet industrial and

social demands. It focuses on improving capacity by combining existing methodologies with

advancements in radio technology or if necessary, a transformation in system design concepts.

Also, 5G has delivered fast and pervasive internet coverage since 2020. Standardized and more

uniform solutions would allow for substantially bigger volumes and hence higher integration

densities. In addition, the proposed solutions will lower energy usage, and reduce expenses

[4]. One of the key enablers for 5G networks include the deployment of artificial intelligence

6
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(AI) .

2.2 Architecture

Control plane operations, user plane functions, and subscriber data management are all sup-

ported by a 5G network. In fact, mobile devices have been acquainted with the logical depiction

of mobile network architectures since the beginning of the global system for mobile commu-

nications (GSM) and subsequently general packet radio service (GPRS). These schematics are

composed of functional blocks that are connected to each other. The reference point represen-

tation of 5G architecture is shown in Figure 2.1. In this architecture, the control plane and user

plane functions are separated, with the control plane being further divided into subscriber man-

agement and control plane functions. The subscriber management functions include the unified

data management (UDM) which is the development of the home subscriber service (HSS), and

the authentication server function (AUSF).

As for the control plane, a session management function (SMF), access and mobility man-

agement Function (AMF), a network slice selection function (NSSF), a policy control function

(PCF), and an application function (AF) make up the control plane function. In terms of the

user plane, there is user equipment (UE) which might be a smartphone.The UE links to the

user plane function (UPF) and then to a data network (DN) including a business intranet and a

public internet, through the RAN. Also, the connection among the UE and RAN is established

through the air interface [5].

Figure 2.1: 5G Network Architecture.
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2.3 Network Slicing in 5G

The splitting of a physical network into numerous virtual networks, each of which may be

modified and optimized for a certain kind of application , is referred to as network slicing.

The shared physical network resources may be dynamically and effectively allocated to logical

network slices depending on changing user needs by leveraging cloud computing and virtual-

ization technologies. Network slicing in 5G is made up of a set of network functions that have

been integrated for a particular use case [6].

2.3.1 Challenges in network slicing

As for sharing radio resources among RAN slices, an apt radio scheduling method is required

for avoiding certain issues. Also, mobility management in network slicing such as smooth

handover creates some challenges. For real-time services, quick mobility handover is critical,

and this has a direct impact on service quality. Another challenge relates to the mobility needs

of network slices since the mobility management requirements vary. For example, the mobility

requirements of the mobile broadband slice differ from those of the autonomous driving slice

[7].

2.3.2 Deploying network slicing in 5G

In terms of slicing deployment in 5G, distinct services with diverse requirements including

low latency and high motility should be combined into one shared physical infrastructure in

5G network. Also, 5G network supplies specialized network slicing for each of the services.

A network slice is a virtual network that runs on top of a physical network, giving the tenant

the impression that it is running on its own physical network. To satisfy a variety of service

requirements, network slicing must be implemented in an end-to-end fashion. Also, protocols

and network architecture may be distinct for every slice.

The process of slicing a 5G network comprises slicing the 5G core network, 5G RAN, and

even user equipment. To construct core network slices for specific service demands, software
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defined networking (SDN) and network functions virtualization (NFV) may be used to dynam-

ically manage virtual network resources such as bandwidth and processing capacity. To apply

the 5G RAN slicing, the logical abstraction to physical radio resources and physical hardware

such as a base station should be implemented. It is possible to devote RAN and core network

slices to a single class of service users or they can also be shared across many classes [7].

2.4 4G to 5G Migration

For vast majority of operators, the migration from 4G to 5G is a huge step since it affects

numerous areas, and each of these areas must be planned and converted to take full advantage

of 5G technology. As the 5G architecture [8] varies from the current 4G architecture, it is

necessary to consider the following facets:

2.4.1 Preparedness in infrastructure and data center

5G requires a distributed data centre strategy, with some central data centres containing sig-

nalling and multiple core network functions, as well as numerous regional data centres holding

multi-access edge computing (MEC) nodes. In addition, there might potentially be several

other data centres hosting the dispersed RAN nodes [9].

2.4.2 Preparedness in radio network

Virtualization and separation of the 5G radio are required in this stage. The scattered and

central components that may be disseminated over far edge data centers and software integrated

with radio interface units (RIU) are included in the radio network nodes [9].

2.4.3 Preparedness in core network

The core of the 5G network differs significantly from prior generations. Furthermore, the

messaging infrastructure must be modified for supporting cloud-native services as the major

network elements are based on cloud-native and they leverage service-based interfaces (SBI),
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for example the REST [9].

2.4.4 Preparedness in automation

Given the virtualization of all network functions in 5G, including RAN, and the sophisticated

distributed data centers strategy, automation along with surveillance, administration, upgrad-

ing, and evaluation is essential for the deployment of multiple network functions [9].

2.5 Significant technologies in 5G

Novel concepts and approaches are being developed to create a network platform that is adapt-

able, agile, scalable,and programmable. Among these strategies, NFV, SDN, and MEC are the

three main techniques used in 5G networks which are elaborated below.

2.5.1 NFV

NFV will enable network slicing in 5G, a virtual network architectural feature that allows many

virtual networks to be constructed on top of a common physical infrastructure. For instance, the

virtualized firewalls and load-balancers on commodity hardware are referred to as NFV[10].

In comparison with the traditional approach, NFV introduces the following three modifica-

tions in how network services are supplied [11].

• Decoupling software from the hardware platform: In NFV, the hardware and software en-

tities are not coupled, and their operations can run individually in parallel to one another.

• Implementing network functionalities with more flexibility: Software and hardware may

execute distinct functions at different times as they are separated. This allows operators to

implement new innovative applications while still utilizing the same hardware platform.

• Providing services and network operation dynamically: By scaling the performance of

NFV dynamically, network operators may launch customized services based on client

requirements.
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2.5.2 SDN

To overcome hardware restrictions, SDN has evolved as a new intelligent design for network

architecture. SDN’s major goal is to decouple the control plane from the switches and enable

external data control via a logical software component known as controller. Simple abstractions

are leveraged by SDN to elaborate the elements and their functions besides the protocols re-

quired for managing the forwarding plane and Mobile IP from a remote controller via a secure

connection. Therefore, the difficulty to mutually access various sections of diverse networks

would be resolved. For the majority of switches and associated flow tables, this abstraction is

employed instead of the conventional methods such as forwarding tables. As a consequence,

the controller examines network packets, resolves faults, and publishes policy based on moni-

toring outcomes.

Furthermore, since hardware components are costly, Internet service providers cannot afford

to incur large upgrades, adaptation, or construction expenditures to meet the constantly expand-

ing requirements of consumers. As a result, another benefit of utilising SDN is that it makes

it simpler to create and deploy new products and services than traditional hardware-dependent

standards.

Finally, the main purpose of SDN is to construct a network that does not require any ad-

ministrator intervention in terms of design or changes. Hence, the network’s management may

be totally automated and will be supervised more effectively through the controller plane by

dictating the required policies to the routers and switches while maintaining complete network

monitoring. [12].

2.5.3 MEC

MEC provides cloud-based applications, IT, and network services at the mobile network’s edge

[13]. MEC also processes data near the point of production and consumption. This allows the

network to provide the ultra-low latency essential for various applications while still supporting

customer experiences in high-traffic areas. In addition, the cost of data transfer can greatly be

minimized by processing locally in MEC applications [14].
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MEC achieves numerous important network benefits including improved QoS to end-users

in the context of video streaming allowed by 5G network slicing as well as optimization of

mobile resources at the network edge [15]. Furthermore, the MEC application server, which

operates on top of the MEC NFVI infrastructure and offers services to end-users as separate

MEC Applications (MEC Apps), is the key part of MEC in an architectural examination of

MEC and NFV. The MEC platform, where MEC services are maintained, shares communica-

tion interfaces with MEC Applications. MEC service nodes can execute locally or remotely

in the cloud, depending on the installed data center. Interfaces to the traffic offload function

(TOF), which are embedded in the data plane and prioritize traffic via visible packet monitor-

ing, are included in both MEC Apps and MEC services. MECs’ integration into the RAN is

made easier as a result, and they play a crucial role as a general surveillance element [16].

2.6 Emerging use cases in 5G

2.6.1 Smart cities

Smart cities refer to an approach in which information, communication, and technology (ICT)

are combined with a city’s conventional structure and then organized and managed using digital

technology. The sensors and actuators integrated into smart devices that detect the environment

for effective decision-making are at the heart of the smart city. The microcontrollers in these

devices have been designed to make decisions spontaneously depending on the data collected

by sensors. This entails combining various information and communication technologies such

as the internet of things (IoT), wireless sensor networks (WSN), AI, and protocols [17].

2.6.2 Intelligent transportation systems

5G aims to connect individual cars through the development of cooperative intelligent trans-

port systems (CITS). The main technologies used for intelligent transportation systems (ITS)

include vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-everything

(V2X) [18]. In the V2I system, the traffic data created by the vehicle will be initially col-
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lected. Then, warnings regarding environmental concerns or safety from the infrastructure will

be transmitted to the automobile and will notify the driver [19].V2V communication allows

cars to convey information such as their location and speed wirelessly, which can reduce traffic

jams and minimize collisions [20]. Finally, V2X is a communication system that allows cars

to interact with each other and with the infrastructure surrounding them, such as traffic lights.

Thus, the key components of V2X are V2V and V2I [21].

To consider a large ITS, multiple road side units (RSUs) are essential, each of which handles

many IoT devices and edges and connects with other RSUs for accessing data and performing

analysis. Every RSU tends to cover a particular physical zone, and the devices in that region

are usually associated with it. A more dynamic relation, on the other hand, is feasible. Since

vehicles often employ short-range wireless communications, they are more likely to connect

to various RSUs as they travel. The vehicular clients and roadside units in the ITS model

which deploy a hierarchical edge computing approach with a three-layer design are depicted

in Figure 2.2. Edge and IoT devices, such as sensors and cameras, comprise the bottom layer,

which constantly feeds data to the monitored region. Then, a collection of RSUs in the middle

layer streams data from the devices in its proximity. These RSUs store data for a limited time

and analyze the real-time data to acquire intelligence. Ultimately, an ITS server (traffic control

center) that enables long-lasting data storage and sophisticated data investigation is embedded

in the top layer[2].

Figure 2.2: Vehicular clients and RSUs in ITS model deploying Edge Computing [2].

Consequently, cities with 5G-enabled CITS will be smarter, and automated transit systems
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will be more effective and safer compared to the current networks. By providing a genuinely

smart transportation system with high-speed Internet access in public transportation, 5G can

cope with main transportation concerns in megacities, such as pollution, traffic jams, and ac-

cidents. Moreover, the real-time data from connected devices and vehicles such as cars can

be gathered and assessed by a linked traffic system which aids in enhanced navigation, deci-

sion management, and resource optimization. In fact, the various slice types in 5G including

massive Internet of Things (mIoT) and enhanced mobile broadband (eMBB) can support and

improve numerous elements of ITS operation [22].

2.6.3 Internet of things (IoT) and industrial internet of things (IIoT)

IoT is a technological concept describing the pervasive Internet connection that transforms reg-

ular objects into linked gadgets. However, in most cases, it is best to think of IoT as consumer

IoT [23] [24]. In the consumer IoT, “things” are smart consumer electronic gadgets that are

connected. In fact, they can increase human awareness of their surroundings which leads to

saving money and time. Also, all industrial assets, such as machines and control mechanisms

are linked to business processes and information in the IIoT. The IIoT is the term given to the

application of IoT in the industries [25]. A huge number of smart industrial machinery and

sensors interact with one another to establish a network of smart IoT-based gadgets with pro-

cessing capabilities, storage, and communication management [26], which may eventually be

utilized to execute complex computations cooperatively.

The maximum potential of IoT, including improvement in efficiency and connectivity, and

data speeds for industrial applications, can only become feasible if it is supported by a flex-

ible communication network able to support a variety of requirements, ranging from ultra-

reliable low-latency communications (URLLC) to massive connectivity [27]. Technological

breakthroughs in 5G telecommunications have emerged as the heart of IIoT applications [28],

delivering quicker data transfer, higher bandwidth, and better spectral efficiency, all backed by

micro operators and localized private networks [29].
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2.7 Challenges in 5G

2.7.1 Network softwarization

Network softwarization refers to the process of designing, implementing, operating, and main-

taining network components using software based network functions instead of traditional

hardware supported ones.

2.7.2 Delays in network softwarization

The 5G Core (5GC) Networks commonly utilize cloud-native software packages. Also, 5GC

entities should be deployed in distinct virtual machines (VMs). Practically, 5GC is used to han-

dle calls in a hierarchical manner at multiple local and national data centres. Also, in response

to changes in incoming traffic, the orchestrator initiates automatic service in a virtual environ-

ment. Moreover, the VMs can be started or stopped by leveraging a maintenance management

architecture. Therefore, various state of network can be created by scaling VMs which results

in extra delays for generated traffic. Furthermore, the execution of functions on hypervisors

that separate virtual resources from a commercial-off-the-shelf (COTS) causes systematic time

delays. However, the overall required time for 5G services that has been influenced by this

delay is minimal and it can be handled in seconds [30].

2.7.3 Complexity

The advance from 4G to 5G also makes the protocol more complicated. This complexity is due

to the existence of many different sorts of commands (messages) transmitting among MNOs

in 5G compared to 4G. This is derived from the 3rd Generation Partnership Project (3GPP)

Rel-15, and the quantity of command and information components delivered both intra and

inter of the MNOs for Rel-16 is much more significant than the previous releases [31].

Also, the use of data-based networking to simulate NFV-enabled networks necessitates mas-

sive quantities of network-generated data. As a result, the size of network-generated data grows

which leads to network complexity [32].
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The next factor which plays a vital role in causing complexity is the increase in the number

of users and devices. Devices and connections are rising at a quicker rate denoted by a 10

percent CAGR compared to the population and Internet users combined (1.0 and 6 percent

CAGR).

Every year, a variety of new gadgets with enhanced functionalities and intelligence are

released and endorsed in the marketplace. An enormous range of M2M applications, such

as healthcare control and video inspection are fuelling growth in the number of devices and

connections. M2M connections will possess the quickest growth in the device and connection

sector, rising approximately 2.4-fold during the prediction time frame (19% CAGR) to 14.7

billion associations by 2023. Whereas M2M traffic has primarily been less than the traffic

from the end-user devices such as phones and PCs, it is estimated that the volume of traffic is

expanding faster compared to the number of connections due to the higher implementation of

video applications on M2M connections and increase in the applications like those of telehealth

and smart vehicle navigation systems, which need more bandwidth and lower latency [1].

Moreover, the next-generation use cases which are developing would lead to further com-

plexity. For instance, the huge volume of data produced by billions of locally linked devices in

smart cities needs sophisticated data management and processing approaches, as well as deeper

and broader insights. Also, technical roadblocks in the shift from the traditional to smart sys-

tems exacerbate the complexity. Scalability, backward compatibility, diversity of devices and

data, interoperability, and multiple data standards, all bring problems and challenges that must

be tackled [17].

2.7.4 Tackle the 5G complexity with machine intelligence

5G networks are intrinsically complex and will be implemented at a scale that will eventually

outpace human operators’ capacity to stay on top of network and service management in order

to meet service level agreements (SLAs) and maintain the end user’s quality of service.

The deployment of 5G will need a shift away from operator-centric network management.

ML and AI will be considered necessary to supplement the capabilities of operations staff by
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producing real-time operational intelligence that directs network automation and orchestration

functions with the least manual interference. The functioning of cloud-native infrastructure

is also dependent on machine intelligence. Continuous input on the system state is required

for continuous integration/continuous delivery (CI/CD), which is obtained from analytics, ma-

chine learning, and AI, and this operational intelligence is utilized to drive automation and

orchestration activities in the cloud-native architecture. Leveraging machine intelligence, will

have a direct correlation in the reduction of 5G complexity [33].

2.7.5 Security

To minimize hacking threats, 5G cybersecurity requires major upgrades. Some of the security

concerns stem from the network itself, whereas others are related to the equipment that connect

to 5G. However, these issues endanger customers, and corporations. One of the key issues

regarding security in 5G is decentralized security. The traffic routing points in 5G’s dynamic

software-based systems are considerably greater. All of these must be monitored to enable

5G to be totally secure. Considering this may be difficult, any unprotected locations may

jeopardize other sections of the network.

Another concern worth mentioning is related to surveillance of security due to higher band-

width. The advantages of a larger 5G network might be detrimental to cybersecurity. Because

of the increased speed and volume, security teams will be forced to devise new techniques for

countering attacks [34].

2.7.6 Mitigation for security issues

To address the specific security issues of 5G, network providers should pay more attention

on software security. They will need to cooperate with cybersecurity companies to provide

encryption solutions, network monitoring, and other services. Furthermore, it is essential to

highlight the importance of cybersecurity by educating customers. So, consumers must be in-

formed of the importance of keeping all internet-connected devices up to date with software

upgrades. Along with the initial implementation of 5G, attempts to improve security are un-
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derway. However, because we require actual information to fine-tune the protections, work is

still ongoing long after 5G has been launched [34].

2.7.7 Big data in 5G

Numerous connected devices in 5G network, and multiple use cases and services generate big

data which leads to more traffic. With growing number of devices, 5G faces challenges as it

floods the network with a huge amount of data. Besides being large, this massive data is diverse

as well since it is gathered from distinct sources [35].

2.7.8 Managing big data in 5G

Calls are established by sending forward and reverse call setup signals between the local and

remote users. The voice or data call between the users will follow identical pathways after the

call is formed; however, the remote and local base station (BS) will vary dynamically based

on the motion of the two users. When a mobile phone passes from one BS coverage area to

another, control is transferred from the prior to the latter using a technique known as handoff

or handover, which leverages the relative intensities of the signals received at the two nodes to

determine the control transfer decision. BSs, also known as access nodes (ANs), offer users

access to the network’s infrastructure. Since each cellular region is covered by just a single

AN and can handle only a few carrier frequencies, this old design does not satisfy the 5G

demand that a massive number of devices with high-bandwidth needs to remain connected in

any area for a long period of time. To overcome this restriction, a radical transformation from

AN-centric to user-centric design is required. This architecture is founded on the concept that

providing every user/device with a personalized BS to achieve the objective of always-on con-

nectivity without sacrificing quality or user needs [36]. The challenges of 5G are summarized

in Table 2.1.
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Table 2.1: 5G Challenges.
Challenges in 5G Definition

Delays in Network • Various state of network causes delays.
Softwarization • The execution of functions on hypervisors results in time delays.

Complexity • Various sorts of commands in 5G leads to complication.
• The size of network-generated data grows and increases the complexity.
• Increase in the number of users and devices causes complexity.
• Next-generation use cases add to complexity.

Security • Security concerns stem from network itself and the equipment.
• Decentralized security which means the traffic routing points in 5G are greater.

Big data • Growing number of connected devices floods the network with huge amount of data.
• The diverse massive data are gathered from different sources.

2.8 Opportunities facilitated by 5G

2.8.1 Self-healing

The ability to deliver a seamless continuous service became a need after the emergence of

the ubiquitous network utilising 5G technology. Given the massive size of the 5G network,

diagnosing and maintaining the network is a challenge. As a result, an automated system

capable of performing network diagnosis and predicting self-healing is essential.

The Self Organized Networks (SON) architecture can manage the automation of the fault

tolerance diagnosis and the rectifying procedure [37]. The self-healing process comprises a va-

riety of actions and functions that are necessary for the smooth recovery from various defects.

Figure 2.3 depicts a flow diagram for a first level (L0) self-healing process model that includes

five major sub-processes described as: monitoring and detection, diagnosis of fault, and sys-

tem compensation and recovery [38]. The cycle of the self-healing process is represented in

the process model. Every process in the model is designed for conducting one or several of

self-healing functions specified in the 3GPP technical standard for self-healing principles and

standards. L0 is a self-healing general process model that begins with evaluating the system

and terminates with recovery in the event of a fault [39].

The research conducted by Peter Szilagyi and Szabolcs Novaczki presents an automatic

recognition and detection framework in an experiment to identify the root cause of the failure

or to offer the appropriate action to heal from the failure without being aware of the underlying
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process[40]. To manage their impact on self-healing, the framework focuses primarily on the

detection and diagnosis functions. In terms of getting the diagnosis, learning the effects of

faults on various performance metrics and recognizing deviance from typical behaviour are

used. To improve the performance of the diagnostic function, a decision support system (DSS)

must be built to assist in the root cause analysis for each failure that occurs in the network [38].

Figure 2.3: Self-healing model.

2.8.2 Self-configuration and self-optimization

Based on the information supplied by terminals as well as its own observation and cognition,

the 5G network may execute intelligent configuration and optimization. For instance, the 5G

network can discover new neighbour cells that have yet to be added to the neighbour list and

perform automated neighbour cell addition. Also, the 5G network employs AI technology to

create a model that reflects the association between the reason for radio link and handover

failure and the radio link failure information given by the terminal and the handover record

transferred between the base stations. 5G networks may use the above model to dynamically

change parameters to prevent ping-pong handover, too early handover, and too late handover.

Furthermore, the 5G network can recognize effective migration of users between base stations

and minimize cell congestion by leveraging perception information transmitted among base

stations such as resource usage and the number of active and connected users [41].
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2.8.3 Network management

Maintenance and administration of mobile networks are still done manually or semi-automatically

nowadays. Every mobile operator must have an operational group with a significant number

of network specialists to diagnose faults, adjust software, and repair hardware during the trou-

bleshooting process [42].

5G system must, on the other hand, become considerably more sophisticated and diversified

than existing systems to fulfill various and radical KPIs of improved mobile broadband and

Internet of Things. This places a lot of strain on today’s network administration, which is

already expensive, fragile, and time-consuming [6].

To reduce human interference in network management, the research community has lately

begun to investigate AI [43]. The intelligence-defined networks research group was established

by the internet engineering task force (IEFT) to explore the application of machine learning in

networking. Moreover, an intelligent management framework can supply self-healing, self-

optimization, and self-protection abilities for wireless networks by reactively and proactively

coping with network problems utilizing AI approaches [42].

2.9 Towards sixth-generation (6G) and Motivation

A slew of new apps and use cases inspired by the recent trends in technology are now being

developed which strains 5G’s capabilities. This has prompted academics to reconsider and

develop next-generation mobile communications systems, “6G” [44], [45]. It is predicted that

6G networks will usher in a paradigm shift in mobile networking by achieving extraordinary

network capabilities to meet the needs of a data-driven world.

During the past four decades, mobile networks have progressed through five generations.

Every ten years, a new development of mobile networks arises, with additional technology and

advancements to enable humans to enhance the quality of their life and job experience. Among

these generations, 5G mobile networks are still being utilized globally. The eMBB feature in

5G allows for peak traffic speeds of up to 10 Gbps. Moreover, compared to 4G, URLLC reduces
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latency to as little as 1 millisecond, while massive machine type communication (mMTC)

accommodates over 100 times more devices per unit area. Also, network softwarization is

a significant 5G technology that allows networks to be more dynamic, programmable, and

abstracted [46].

Edge intelligence (EI), non-orthogonal multiple access (NOMA), communication from sub-

6GHz to THz, self sustaining networks (SSN), and large intelligent surfaces (LIS) are just a

few of the innovative concepts that have emerged in recent years in the field of communications

[47], [48]. Also, predicted to develop as major applications of future communication systems

are extended reality (XR), unmanned aerial vehicles (UAV), space, and deep-sea exploration.

But nevertheless, the network functionalities promised by 5G do not fulfill the criteria of these

applications, which include real-time availability to strong computational resources, ultra-high

data rates, incredibly low latency, and exceedingly high availability and reliability [49], [50].

This has prompted researchers to consider 6G mobile communication systems. 6G is planned

to make use of new communication technologies that link a wide range of devices, completely

support developing apps, and offer users proper access to strong storage and computation ca-

pabilities.
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5G Core

3.1 Service-Based Architecture

First attempts towards virtualization were started with LTE virtual evolved packet core (vEPC).

service-based architecture (SBA) which is used in 5G networks is an evolution of LTE vEPC

[51]. Network functions (NFs) are the key components of SBA and the interaction among NFs

can be established through two approaches. The first approach, the reference point representa-

tion illustrates a point-to-point reference point between the NFs. The reference point diagram is

shown in Figure 2.1 as metioned in the architecture section in Chapter 2. In the second method

of interaction (SBA) between NFs , the SBI are being deployed between NFs of the control

plane as depicted in Figure 3.1. The NFs of 5G control plane is represented in the top part of

Figure 3.1. Instead of point-to-point connections, the NFs of the control plane are connected

by a network bus. The entity name is contained in the interface name that is prefixed with “N”,

whereas, the point-to-point interfaces are designated by “N” and a number in the lower section

of Figure 3.1 [52]. In SBA a common framework is utilized among various NFs to expose their

services to other NFs. Moreover, in SBA, the HTTP-based APIs are utilized instead of conven-

tional telecom signaling methods [53]. In this architecture, network repository function (NRF)

acts as a centralized repository for all the NFs. Also, the NRF allows every NF to recognize

other NFs services. The network is more flexible under a service-based architecture, and it can

23
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rapidly adapt to unforeseen needs. However, if a new network entity requires to be defined in

a point-to-point architecture, multiple new interfaces and protocols should be standardized for

connecting to other entities. This frequently results in a complicated network [52].

Figure 3.1: Service-Based Architecture

Also, a producer-consumer model is used for interacting among NFs over SBI. Hence, a

service provided by an NF (Producer) would be used by another NF (Consumer) who has been

authorized to do so. NFs deploy one of the following methods as presented in Figure 3.2 to

communicate with each other:

• Request-response approach: In this method, a producer NF would provide a service to

a consumer NF when it is requested.

• Subscribe-notify approach: In the subscribe-notify methodology, a consumer NF sub-

scribes to the services that are provided by the producer NF that would notify the sub-

scriber of the result.

The SBA allows for more decoupled and granular network functions. Also, this architecture

allows various services to be upgraded independently with minimum impact on other services.

In this architecture, services are on demand basis which enables the automation and reduction

of delivery time.
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Figure 3.2: NF Service Operations

3.2 5G Core Architecture

In the 5G network architecture, network slicing, and switching are leveraged to obtain better

efficiency in different scenarios, and each new advancement in this technology acquires higher

efficacy, capabilities, and use cases in diverse scenarios [54]. In the development of mobile

wireless communications, the 5G core architecture has the goal to have the largest range of ser-

vices and applications [55]. URLLC, eMBB, and mMTC are the three types of 5G innovative

applications. The development objectives for 5G include agility, programmability, dependabil-

ity, resilience, multi-tenancy compliance, and economical resource usage [56]. To attain the

specified objectives, 5G core is based on SBA which is elaborated in previous section and in

Figure 3.1. It denotes that the 5G core is made up of separated NFs that are connected and each

of which can use the services of the others if that NF is allowed to do so [57]. Since 5G core

architecture leverages NFV, SDN, and service-based approaches, its architecture is considered

as “cloud-native”. The following are some of the most important 5G core design concepts that

should be taken into consideration [58]:

• control and user plane separation (CUPS): CUPS is utilized to provide decoupled tech-

nological progress. The control plane is separated from the data flow. However, they are

connected together via standardized interfaces which leads to greater flexibility and scal-

ability [58].
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• Decreasing the access network (AN) and core network (CN) dependencies: Operators

are able to design a convergent and multi-access core network using standard AN-CN

interfaces that incorporate many 3GPP and non-3GPP access forms [58].

• Supporting the stateless NFs: In this concept which is inspired by cloud applications,

compute and storage resources are separated. It also makes the usage of network process-

ing pathways much more efficient [58].

• Exposing the network capabilities: In 5G, it is crucial to expose the information of the

network’s capabilities with external and internal applications. This is particularly impor-

tant when operators attempt to incorporate 5G with vertical industrial operations. Vertical

clients, especially those with worldwide operations and multi-operator partnerships, ben-

efit from standardizing the exposure of network capabilities [58].

3.3 5G Core Main Network Functions

Accessibility and communication between services are enabled via network functions. Every

NF is able to behave as both a producer and a consumer of service when a service is required.

Some NFs are associated with the control plane, whereas others are related to the user plane.

As the network must always perform some basic functions including communication with the

UE, storing its subscription, permitting the access to external services and networks, controlling

access and mobility, and providing and maintaining security, some of NFs possess a high degree

of similarity to the CN of the earlier generations. However, several NFs that have not been

introduced previously are added to the 5G core architecture for enabling new network concepts

such as service-based interactions and slicing. NFs are software-based which allows them to

be adjusted according to necessity, for assisting the enablement of various data services and

requirements. The 5G core is made up of the following significant NFs that are elaborated

below [59]:

• AMF: AMF has a similar role to the mobility management entity (MME) in LTE. The

AMF also plays a key role in authenticating the subscriber within the network, and pro-
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vides the device with a temporary identity which can be used whenever it signals the

network. The temporary ID is used in paging as well. The AMF can also [59] terminate

non-radio signalling (NAS), protect NAS ciphering and integrity, monitor registrations,

connections, access authentication, and authorization.

• SMF: The next element in 5G core is the SMF. Traditionally in LTE, the MME would

perform mobility management of AMF and session management of SMF. In 5G, these

functionalities have been split between AMF and SMF. The SMF is directly involved in

protocol data unit (PDU) session establishment and modification. It will be routinely used

with the policy control function to determine whether or not a particular user data session

is allowed to proceed.

• UPF: In this proposed 5G core architecture, UPF is the only NF related to the user plane.

The UPF is basically an integration of SGW and PGW, which are the data plane sections

in the 4G LTE. The UPF is responsible for conducting the routing and forwarding user

data packets between the gNB and the external WAN. It also has a connection to the

SMF. UPF is an anchor point for the next generation radio access network (NG-RAN)

mobility. Moreover, UPF ensures that the right data is sent down the correct QoS flow

and implements an appropriate policy.

• PCF: Next in line is PCF, which is used to implement the policy control function and

enforce the subscriber policies. The implementation of policy control is on a dynamic

basis and these dynamic policy decisions are based on conditions that might be active in

the network.

• AUSF: As its name represents, AUSF is an authentication server that decides on the au-

thentication of UE.

• UDM: The UDM can generate authentication and key agreement (AKA) credentials, ac-

cess authorization, handle user identification, and monitor subscriptions.

• AF: The AF allows applications to affect traffic routing, access network exposure function
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(NEF), and communicate with a policy framework.

• NEF: NEF facilitates the exposure of capabilities and events, as well as the secure trans-

mission of data from an external application to the 3GPP network and the translation of

external and internal data.

• NSSF: NSSF redirects traffic to a network slice. In addition, the NSSF executes the

selection of the network slice instance for serving the UE and determines the NSSAI and

the AMF to be employed to serve the UE.

• NRF: Network Functions can recognize each other thanks to the NRF’s service registra-

tion and discovery feature. It also keeps track of the NF profile and available NF instances.

3.4 Network Slices

Network slicing, an important method utilized by the 5G network, is a research priority in

both academia and industry. The next generation mobile network (NGMN) Alliance describes

network slicing in the scope of 5G as a technique that allows the incorporation of physical

and logical network and cloud resources into the accessible, software-based, multi-tenant, pro-

grammable, network environment [6]. It entails connecting multiple self-contained logical

networks to a shared physical infrastructure platform, resulting in the creation of a flexible

ecosystem of stakeholders that fosters technological and business development.

A network slice is a separate network that contains its own virtualized resources, traffic flow,

and topology. The 5G core network consists of four slice types including default slice, eMBB,

URLLC, and mMTC which are explained below (Figure 3.3):

• Default slice: To facilitate UE registration to the 5G core network for all service slices,

the default slice consists of widely used network functions such as AMF, NSSF, PCF,

UDM, and AUSF. The default slice authenticates that the UE is permitted for network

access when it initially connects to the 5G core. Moreover, the default slice maps service

types that the UE brings into matching slice IDs that the UE will utilize, and allocates
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a temporary ID and IP addresses to the UE. Policies such as load balance and regional

distribution can be used to install the default slice. Each default slice is given its own

slice ID in this circumstance [60].

• eMBB: eMBB is capable of maintaining stable connections with extremely high peak

data rate and is commonly utilised for entertainment purposes, such as event streaming.

The applications of eMBB use a wide range of bandwidth. Also, eMBB generates the

most traffic of the mobile network.

• URLLC: The URLLC is utilized for mission-critical networks. URLLC allows for low-

latency, high-reliability transmissions of small payloads from several terminals that are

activated in response to external events like alarms [27].

• mMTC: mMTC supports slices that contains a high number of IoT devices. Data volumes

are often low in this type, therefore traffic related to mMTC does not require a huge

bandwidth. Offering high coverage of transfer rate with low expenses is one of the unique

features of the mMTC slice.

Figure 3.3: Slice Types in 5G

The slices can be fine-granular in the user and service layer or they can be coarse-granular

in industry or corporate level such as the connected car slice. The slice should preferably reach
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all the way to the UE and run end-to-end all over the RAN, transport, and core domains.

3.5 5G Core Deployment Review

For 5G networks, there are two major deployment methods: non-standalone (NSA) or as a

standalone (SA).

3.5.1 5G NSA

By integrating a 5G RAN with the LTE evolved packet core (EPC), clients are provided with

faster data transmission speeds in the 5G network. This is known as a Non-Standalone Archi-

tecture because the 5G RAN is still dependent on the 4G core network to handle control and

signal information, and the 4G RAN is still viable. Carriers can deliver faster and more reli-

able eMBB without fully rebuilding their core network technology by employing the current

infrastructure of a 4G network [61].

3.5.2 5G SA

The operation of standalone 5G is not reliant on an LTE EPC. Instead, 5G radios are incorpo-

rated with a 5G core network that is cloud-native. In 5G SA deployment, the 5G core is based

on SBA for providing the entire range of 5G functionalities that are required by enterprises for

deploying automation in industry, automobiles, and so on [61]. The end-to-end support for 5G

services and faster speed are the clear benefits of the 5G SA deployment.

3.5.3 Comparison between 5G SA and 5G NSA

There are some advantages of 5G NSA versus 5G SA. For operators in the early stages of 5G

rollout, 5G NSA is preferable since by deploying the current 4G infrastructure, the time that

takes to launch the network is decreased. This enables telecom operators to deploy their 5G

network and deliver 5G services considerably faster than they could if they employed the SA

strategy. The cost of network implementation is also lessened by utilizing existing infrastruc-
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ture. It alleviates the strain on operators, allowing them to focus on providing high-quality

service to clients. However, the advantages of faster deployment and lower costs come at the

expense of network performance. Even though 5G NSA is a substantial upgrade over 4G LTE,

it is not capable of delivering the full benefits of 5G [62].

The possibilities for 5G SA, which are based on a new 5G network core, are enormous. For

instance, ultra-reliable low-latency functionality for fields, such as autonomous devices and

next-generation IoT, and massive machine-to-machine communication solutions, will be avail-

able with this version of 5G. Also, 5G SA will provide extra bandwidth and lower latency.

This type of deployment is required for numerous applications and use cases, including virtual

reality and industrial IoT. Figure 3.4 illustrates the NSA and SA deployments of 5G network.

Figure 3.4: NSA and SA Deployment Methods in 5G

3.6 4G Core to 5G Core Migration

5G can be implemented in a standalone mode using the 5GC or in a non-standalone mode

employing the EPC, as explained in the preceding section. For most operators, properly man-

aging the migration from the 4G core to the 5G core as well as optimizing expenditure are vital

parts of a 5GC strategy. A migration [63] from evolved packet system (EPS) to standalone
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5G is performed by utilizing inter-RAT mobility methods to shift devices from 4G LTE with

EPC coverage to 5G new radio (NR) with 5GC coverage, in this proposed structure. One of

the main advantages of this approach is that SA architecture can fully leverage 5G end-to-end

capabilities provided by NR and 5GC, allowing for the efficient supply of customised services,

particularly to vertical industries. This migration results in a more enhanced and customized

user experience by enabling new capabilities such as network slicing, SBA, and MEC based

on the certain requirements of each service [63].

Interworking between the 5GC and the current EPC is the ideal way to enable services demand-

ing wide-area coverage during the migration phase when NR coverage is being established. As

user data and policies must cover two networks (the EPC and 5GC), interworking with the EPC

puts a strain on the backend business support system’s (BSS) integration. New devices must

have 5G capabilities, whereas devices that merely support the EPS, such as incoming roaming

devices, will remain for a long time and will need network maintenance. This long-time re-

quirement is a compelling justification for a dual-mode core network solution that incorporates

both EPC and 5GC. The defined operating paradigm for the EPC and 5GC, which simplifies

overall system supervision, is a fundamental advantage of a dual-mode core network solution

[64].

3.6.1 The architecture of interworking between 5G and EPS

Presenting the 5G to a network demands a complete plan that takes into account all network do-

mains, spectrum assets, coverage techniques, and gadgets and also determines where each ser-

vice should be provided. New NFs and interfaces are presented via 5G internally and through

operation support systems and BSS such as charging systems. As for the NG-RAN, 5G also

contains innovative protocols and interfaces, which means there must be coordination between

the RAN migration and the 5GC rollout. Furthermore, SBA containing a network repository

function for registering and discovering a service along with new features such as network ex-

posure and network slicing should be addressed while introducing the 5GC [64].

Operators possessing both NR and LTE access can leverage 5GC capabilities for tight inter-
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working to the EPS, which was formerly referred to as EPC-5GC tight interworking in the

3GPP’s initial release of 5G standards [65]. The 5G architecture for EPC-5GC tight inter-

working is illustrated in Figure 3.5. In this figure, purple lines indicate signaling while the

blue lines represent the user plane interactions. The 5GC architecture comprises a common

user plane (UP) anchor point recognized by the session management function with the packet

DN gateway control plane function (SMF+PGW-C) and the user plane function along with the

PGW user plane function (UPF+PGW-U) to enable IP address preservation while connecting

over and shifting between 4G and 5G access. Moreover, the MME and the AMF communicate

directly through the N26 reference point, which supports devices in single-registration mode,

to provide smooth service continuity and network-controlled handover. In fact, the device is

either registered in the MME or the AMF, but not both at the same time. In addition, mapping

the protocol data unit (PDU) sessions in the 5G to packet data network (PDN) connections in

the EPS and vice versa is part of tight interworking.

The interworking architecture guarantees that new 5GC-capable devices are constantly con-

nected to the UPF in the 5GC, regardless of whether they are connected via 4G or 5G access,

preserving IP addresses when devices switch accesses. For a device with NR or LTE access,

policy and subscription management must be offered in a stable manner. Furthermore, through

EPC, the interworking architecture supports numerous 5GC features, including network slicing

capability. By transferring the packet gateway, subscription, and data management, providing

additional features, and policy control, operators can enable the migration from a single-mode

EPC to a dual-mode EPC and 5GC network solution.

3.6.2 The scope of packet core

The packet core scope contains capability for MME, AMF, the serving-gateway-control plane

function SGW-C, PGW-C, SMF, and UP functionality (SGW-U/PGW-U, UPF), and session

management. The 5GC was first introduced for wide-area services, allowing RAN and core

migration to occur independently of one another. Moreover, a split of the gateway functions in

the EPC into control plane (CP) and UP, defined as CUPS, was standardized by 3GPP previous
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Figure 3.5: The Architecture for EPC-5GC Tight Interworking

to the standardization release of 5G. CUPS opens up new possibilities for UP distribution and

edge breakout of existing EPC traffic. In central and local deployments, for instance, separate

PDN connections can deploy various SGW-U/PGW-Us. Furthermore, separating the CP and

UP functions in the 5GC architecture is performed over the SMF and UPF respectively.

Several migration pathways from the EPC to the 5GC are feasible due to the existence of both

CUPS and EPC-5GC tight interworking. Before migrating to the 5G, one possibility is to first

incorporate CUPS into the EPS, allowing the operator to leverage the CP and UP segregation.

This approach would be effective in dealing with growing traffic demand. In terms of NR NSA

deployment and plan for a seamless migration to the 5GC based on a UP implementation that

supports both the EPC and the 5GC, CUPS would be advantageous.

Another approach involves integrating SMF+PGW-C with SGW-C functionality and UPF+PGW-

U with SGW-U functionality for implementing CUPS simultaneously as the 5GC. While con-

necting through either 4G or 5G access, the new high-capacity 5G devices can be handled by a

CP and UP split-gateway design, as indicated in the middle section of Figure 3.6. The ability to

dispense the UP more flexibly in multiple places is a further perk of this method. For instance,

if we put the UP adjacent to the RAN, low-latency services can be assessed. The center section

of Figure 3.6 further demonstrates that when deploying the 5GC, older devices with 4G-only

subscriptions may continue to employ the current SGW and PGW functions in the EPC, mini-

mizing the effect on existing customers and services. Also, for gadgets with 5GC subscriptions
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and 5GC-NAS (non-access stratum), the gateway selection (SGW-C & SMF+PGW-C) capa-

bilities must be handled by the MME. Also, more approaches including dedicated access point

names or domain name system lookup enhancements, can be deployed by the MME to facili-

tate the gateway selection.

Merging the whole EPC and 5GC capability into a dual-mode packet core, which will serve

5G-enabled subscribers, is the next migration phase as indicated in the bottom side of Fig-

ure 3.6. In this scenario, the SMF+PGW-C is used to service the new 5GC devices, whereas a

separate PGW instance is utilized to serve the traditional 4G-only devices. Other deployment

models are possible as well. The migration’s objective is to provide a solution that adheres

to the concepts of a common operational model in accordance with cloud-native deployment

and helps both new 5G-enabled customers, irrespective of access technology, and legacy 4G

customers, who are only connected via the EPC.

3.7 Role of AI in 5G

AI is the application of scientific knowledge which makes machines as clever as humans, and it

has long been utilized to improve communications systems in a variety of configurations [66].

Significant advancements in AI and computation have motivated communication researchers

to deploy AI in the 5G network. For instance, the establishment of an intelligent and complete

data repository can be performed by an AI-defined 5G network via separating, analyzing, and

interpreting operational data.

Furthermore, AI algorithms are also utilized to tackle security concerns. In fact, the in-

formation security sector is creating an increasing amount of data, which exposes them to

advanced attacks, and AI is currently used as an effective countermeasure. Indeed, threat detec-

tion, data analysis, and human assistance are performed by the first generation of AI, whereas

less human-dependent systems which operate autonomously are handled by the second gener-

ation of AI [67].

The 5G network proposes a wide range of technical solutions, including increased band-
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Figure 3.6: Migration from 4G to 5G Utilizing EPC-5GC Tight Interworking
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width, continuous connectivity, reduced latency, large data capacity, and enhanced quality of

service (QoS). AI is one of the significant technologies that is currently used in 5G. It supports

a wide range of aspects related to the technological requirements [68]. Also, machine learning

(ML) is a subset of statistics that entails generating techniques which allow computers to learn

from statistical patterns in data and create an analytical model without having to be manually

programmed [69]. Therefore, devices which utilize machine learning capabilities can learn

from data, recognize data patterns and make decisions with little human intervention.

3.7.1 The application of ML in 5G

The use of ML in the field of 5G has caught the interest all around the world. ML has the

potential to play a critical role in network automation, lower operational costs, and enhance

customer experience. 5G network modeling, optimization of a non-linear network objective

function [70], parameter evaluation based on prior experience, anomaly detection, and fraud

prediction, all utilize ML.

3.7.2 Learning approaches

The discriminative characteristics of a system that cannot be elaborated by mathematical prin-

ciples are learned via ML models. A model which has been trained on the supplied data,

can make decisions on unseen data based on the learned patterns and execute tasks employing

arithmetic calculations. This would enable ML modeling to be accessible and portable based on

data. The automation in network management can be facilitated by utilizing ML approaches.

For instance, the key performance indicators (KPIs) within predefined thresholds help to main-

tain the performance of network management. Also, ML models can improve troubleshooting,

energy usage, and QoS. ML comprises three main subcategories, which are described below:

• Supervised learning: Supervised learning (SL) employs labeled datasets to conduct a

mapping from the input data to the known output targets. SL deals with two main tasks

of regression and classification. Decision trees (DTs), k-nearest neighbours (KNN), and

Gaussian Process Regression (GPR) algorithms are some examples of SL approaches.
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• Unsupervised learning: Due to the fact that data labeling is not always feasible, un-

supervised learning (uSL) has been introduced to discover underlying data patterns and

associations between unlabeled input data values and cluster them. K-means clustering

and principal component analysis (PCA) are two examples of unsupervised learning ap-

proaches.

• Reinforcement learning: Reinforcement learning is a technique in which the data is

not predefined and a learning agent interacts with its surroundings and learns to map

each input to a certain action and determining the output by trial and error. Q-Learning,

policy learning, and the Markov decision process (MDP) are examples of Reinforcement

learning approaches [71].

3.8 5G Core, Edge Computing and Next Generation RAN

Latency constraints between the UE and the computing/storage platform are becoming increas-

ingly rigorous in the 5G era. Traditional cloud computing may not be able to meet these new

latency requirements, as ultra-low latency has become one of the major aspects of 5G tech-

nology. To meet these needs, a new paradigm is needed. The European Telecommunications

Standards Institute (ETSI) proposed the mobile edge computing paradigm, which was renamed

as multi-access edge computing (MEC) in 2017 [72]. In fact, MEC’s main idea is to move cloud

computing storage and processing functions to the mobile network’s edge.

Operators have an impact on the sites of base station controller and transport aggregation.

There is a possibility to turn the centralized data centers into distributed ones. These data cen-

tres may be utilised to terminate access connections from the 5G RAN and become the apparent

area to implement 5G core functions, particularly user plane functions. Furthermore, they can

host latency-sensitive applications, based on service needs. In fact, a distributed computing

system in which data processing takes place near the edge where data is generated is called

Edge computing [73].

By leveraging edge computing, the storage and processing of data and computing capabilities
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are located nearer to the gadgets and devices which generate the data. Some objectives of

leveraging edge computing include decreasing the latency between serving applications and

UE and offering the bandwidth that is needed for the core network. Along with delay en-

hancement, there are other benefits in utilizing MEC in 5G. Some of these advantages can be

included as expense savings and optimzed network usage through employing shorter data traf-

fic paths. Also, computation and network resources would be managed in NFV scope. Most

operators are undergoing a lengthy network transition in preparation for 5G which involves a

transition to full virtualization and MEC is an important step in this process.

The content delivery networks (CDNs), which provide video material to consumers from edge

servers located near them, rolled out the edge computing. These edge servers subsequently

evolved and began to host applications [74] leading to an innovative distributed framework

currently known as edge computing. Centralized data centers cannot assure the necessary la-

tencies and transfer data rates due to the considerable growth of devices in the network edge.

High service quality criteria such as ultra-low service latency that cannot be met by cloud com-

puting can be achieved by utilizing the edge computing. Since the 3GPP architecture integrates

fixed access networks (FAN) and RAN, edge computing is not just associated with cellular net-

works. MEC, like edge computing, minimises service latency and bandwidth consumption by

locating MEC hosts which process user data near to the end-users. While MEC applications

are correctly deployed in these MEC hosts, hosts can be located with base stations and other

cellular nodes that are more adjacent to the network edge, such as radio network controllers

(RNC) and base stations. MEC is significant in 5G because it can assist in creating a service

environment with ultra-low latency and real-time access to radio network information, both of

which are key properties of the technology.

Finally, a high-level architecture of MEC in 5G is illustrated in Figure 3.7. With the support

of the MEC system, an edge application is located near the RAN and user plane in this ar-

chitecture. While the user accesses the application on the user equipment, depending on the

user location, the MEC system leads the 5G core network to choose a user plane function for

generating a traffic session closer to the user location. UE gets access to the application from
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the edge based on the edge application and user plane selection which decreases the latency.

Figure 3.7: MEC Architecture in 5G



Chapter 4

Application of Machine learning to Traffic

Forecasting in 5G Networks

The notion of a network slice, which is described as a virtualized subset of the physical re-

sources of the 5G infrastructure, is used in the standard for 5G communication. It is vital to

assess the resource requirement of each network slice and how it evolves over time since a

large number of network slices are deployed over a 5G network. This enhances the resource

efficiency without compromising network slice performance as a typical method of determin-

ing resource demand in traffic forecast. The efficiency of ML predictors for traffic prediction in

5G networks has been established in cutting-edge research. A deep-learning based analysis of

a traffic dataset is conducted in this chapter. In fact, temporal and spatiotemporal models were

experimented. In the temporal analysis, the study explores the forecasting performance of the

FCSN, 1D-CNN, SS-LSTM, and AR-LSTM models. Moreover, to predict the next 24 hours of

cellular traffic and incorporating the spatial and temporal dependencies, a 2-dimensional Con-

volutional LSTM model (2D-ConvLSTM) is developed in a multi-channel framework. Fur-

thermore, baseline models for both frameworks are presented to assess the performance of the

aforementioned models.The results reveal that FCSN and 1D-CNN have comparable perfor-

mance. However 1D-CNN is a smaller network with less number of parameters. One of the

other benefits of the proposed 1D-CNN is having less complexity and faster execution time for

41
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predicting the next 24-hour traffic.

Also, the proposed 2D-ConvLSTM model outperformed the spatiotemporal baseline model

in terms of MAE and RMSE metrics for forecasting all three types of cellular traffic including

internet, sms, and call. The high performance of the 2D-ConvLSTM model is due to its strong

ability in capturing spatiotemporal dependencies simultaneously. Also, we shrank the network

via progressive channel sorting for optimization to reduce the number of parameters.

4.1 Introduction

Mobile devices with Internet access are infiltrating every part of people’s lives, including their

job and leisure. The proliferation of smartphones, as well as the advent of increasingly diversi-

fied applications, have increased cellular data traffic. Due to the shift in customer preference for

wireless access, present mobile infrastructure is experiencing significant capacity constraints.

To meet this rising need, pioneering approaches propose deploying resources more quickly

and tackling mobility management in a distributed manner [75], [76] [77]. Nonetheless, in the

long term, intelligent heterogeneous architectures and technologies capable of spawning the

5G, should be built to address more demanding end-user application requirements [78], [79]

[80].

5G employs a variety of technologies to satisfy these requirements, with network slicing be-

ing one of the most important. In fact, the splitting of a physical network into numerous virtual

networks, each of which may be modified and optimized for a certain kind of application, is

referred to as network slicing. The shared physical network resources may be dynamically and

effectively allocated to logical network slices depending on changing user needs by leveraging

cloud computing and virtualization technologies. It is essential to identify the resource require-

ments for each slice and how these requirements change over time. If a network slice requires

more resources than those initially allocated, it is considered under-provisioned. This results in

poor network slice performance and QoS for users [81]. In contrast, if the network slice utilizes

fewer resources, it is over-provisioned. In this case, resources are not required but active. this
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incurs expenditures on infrastructure providers. Dynamically adjusting the resources allocated

to network slices is crucial as both of these scenarios (over- and under- provisioning) cause ex-

penses on infrastructure providers and leads to quality of service deterioration [82]. Therefore,

recognizing the traffic profiles of each slice is critical for allocating resources dynamically.

Also, communication networks are becoming more intelligent and self-organized as the 5G

technology evolves [83]. The SON must adapt to changing usage patterns and take proactive

measures. As a result, using big data to anticipate and analyze mobile traffic, provides the

cornerstone for smart management features and is extremely important in the industry [84].

ML and time series analysis, which have been used in a variety of applications, are consid-

ered as powerful tools for modelling and forecasting network traffic. Incorporating adaptable

machine intelligence into the future mobile networks is attracting a lot of attention in the sci-

entific community [85] [86][32]. This trend is represented in the development of networked

systems that leverage ML techniques to tackle challenges ranging from radio access technol-

ogy (RAT) selection to malware diagnosis [87],[88]. ML allows for the systematic extraction of

useful information from traffic data and the automated discovery of correlations that otherwise

is too complicated for human specialists to obtain.

In this study, the prediction performance of several neural network models are evaluated

in forecasting the mobile traffic. Specifically, the temporal and spatiotemporal frameworks

are developed for a univariate and multivariate analysis to predict the next 24 hours of cellular

traffic. This chapter is structured as follows. In section 4.2, related works are presented. Section

4.3 describes the details of the analyzed dataset. In Section 4.4, the applied neural network

models are introduced. The experimental results are provided in Section 4.5. Section 4.6

depicts discussion and comparison.

4.2 Related works

Data created by mobile devices is extremely varied since it is often collected from multiple

sources and has various formats [89]. Traditional machine learning methods become infeasible
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to solve a variety of challenges within this scope such as data abstraction and extraction of a

meaningful embedding. Also, when the data scale increases, the performance does not enhance

[90], and in control problems, they cannot manage highly dimensional spaces [91]. Therefore,

the incorporation of deep learning in 5G mobile and wireless networks is highly justified with

an automated and intelligent data representation and feature selection. This implies that data

can be effectively distilled and higher abstractions can be recognized while decreasing the

requirements for the pre-processing. Recently, deep learning-based algorithms have been ex-

plored to find potential representations of Internet traffic flows. Oliveira et al. [92] investigated

internet traffic prediction techniques based on the recurrent neural network (RNN). The pro-

posed RNN was found to outperform the stacked auto-encoders in network traffic prediction.

Wang et al. [93] proposed an approach that combined an auto-encoder with a long short term

memory (LSTM) network to take advantage of distinct cells’ spatial dependency. However, the

representation learnt by auto-encoder was a lossy depiction of the original data [94], and they

may not adequately capture the spatial dependency of nearby cells. In addition, Zhang et al.

[95] presented a new technique for citywide traffic forecast that takes advantage of the tremen-

dous capabilities of a deep convolutional neural network (CNN). More precisely, the densely

connected CNN [12], was used to represent the spatial and temporal dependency of traffic in

distinct cells collectively. The convolution operation naturally captures the spatial dependency

along with two CNNs which are used to model two temporal dependencies named proximity

and period. However, one of the challenges of the proposed approach is the requirement for a

large training dataset.

Recently, Lin et al. [96] suggested an intelligent data-driven BS sleeping mechanism that

analyzes the capacity of BSs in various locations. A prediction model for spatio-temporal cel-

lular traffic was proposed with a multi-graph convolutional network (MGCN) for capturing the

spatial information. Also, the temporal features are extracted using a multi-channel LSTM

system that includes hourly, daily, and weekly periodic data. The proposed MGCN-LSTM

model performed better compared to other models in terms of cellular traffic forecast accuracy.

Furthermore, Chien et al. [97] explored spatio-temporal dependencies among base stations and
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suggested a data preprocessing method based on CNN architecture to extract spatio-temporal

features. In comparison to previous deep learning methods, their proposed strategy can reduce

neural network parameters and requires just a minimal amount of processing cost to estimate

cellular traffic. To investigate spatial and temporal sequence information at the same time, Liu

et al. [98] devised a Spatial-Temporal Transformer (ST-Tran). The ST-Tran can simulate real-

time spatial correlations between grids in a global area by analysing cellular traffic data of all

grids during one specified time interval as a spatial sequence. Also, regarding the energy-saving

approaches, Gao et al. [99] presented two load prediction models to anticipate traffic load in

cells. A linear ensemble model made up of three sub-models, was one of the proposed meth-

ods for predicting traffic load. Various approaches such as linear regression, and regression tree

were applied to the sub-models. A residual CNN (ResNet) was utilized to train the collected

data. The ensemble model outperformed other baseline models in terms of prediction accu-

racy, while ResNet enhanced calculation efficiency [99]. To deal with the task of large-scale

traffic prediction, Zhou et al. [100] suggested an attention mechanism to create a new spatial-

temporal graph convolutional network (STA-GCN). This research presented a regional transfer

learning technique based on STA-GCN in order to accomplish large-scale traffic prediction.

The experiments indicate that a transfer learning technique may successfully increase knowl-

edge reusability and speed up model fitting without sacrificing prediction accuracy. However,

to capture spatial dependencies effectively, dynamic graphs are required. Moreover, for antici-

pating mobile cellular traffic, Zhao et al. [101] suggested a spatial-temporal aggregation graph

convolution network (STAGCN) to extract the complicated spatial-temporal characteristics at

various timestamps. The external elements were then merged with the outputs of the aggre-

gating GCN modules to acquire the final anticipated traffic. Also, a dual-channel-based graph

convolutional network (DC-STGCN) model was introduced by Pan et al. [102] where two tem-

poral components represent the network traffic correlation on a daily and weekly basis. A gated

recurrent unit (GRU) in each of the two components extracted the spatial-temporal characteris-

tics. The correlation and adjacency feature extraction modules were also included in the model

to capture node connectivity and proximity correlation, respectively. The GRU also captures
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the traffic’s temporal properties. The suggested model outperformed current models and could

make long-term forecasts, according to their results. Furthermore, to successfully capture the

intricate patterns concealed in cellular data, Zhang et al. [103] presented a new deep learn-

ing architecture called STCNet. This research collects three types of cross-domain datasets,

namely, BS information, point of interest (POI) distribution, and social activity level, in order

to produce a complete characterization of external variables that impact cellular traffic volume.

To enhance cellular traffic prediction, the correlations among these datasets and internet traffic

prediction were analyzed. Also, to anticipate cellular traffic, Zhao et al. [104] suggested a

spatial-temporal attention-convolution neural network to capture the daily and weekly tempo-

ral dependencies of traffic data and external factors. Finally, the Spatio-temporal cross-domain

neural network was presented by Zeng et al. [105] (STC-N) and the influence of varying

amounts of cross-domain big data on traffic forecast accuracy was explored. Furthermore, the

authors fused transfer learning across services and between classes to create a new technique

called Fusion-transfer. According to their experimental results, the model outperformed the

No-transfer and Part-transfer models.

4.3 Dataset

A multi-source dataset generated by Telecom Italia in 2015 [3] is used in this study. This

open-source dataset is among the most complete collections from an operator. The collec-

tion was initially developed for addressing a big data challenge with concepts spanning from

mobile networking to social applications. This dataset is made up of data records regarding

telecommunications, weather, news, social networks, and electricity for the city of Milan and

the Province of Trento from November 1, 2013 until January 1, 2014. We used the telecom-

munication records from Milan to predict the traffic in this study. Data recording begins with

the creation of geographical grids which divides the city into 100×100 sections using aggre-

gated call detail record (CDR) data. Each grid has its own square ID and covers an area of

235 x 235 meters. Table 4.1 shows the information which was utilized in this study from the
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telecommunications records.

Table 4.1: Features of telecommunications records.

Features Description
Square ID The identification of the Milan Grid square. The square

ID and the grid ID are identical concepts that are used in
this study.

Time Interval 10-minute time interval from the beginning of the
record’s time.

SMS-in Activity Number of SMSs received inside a certain square id and
over a specified time interval.

SMS-out Activity Number of SMSs sent inside a certain square id and over
a specified time interval.

Call-in Activity Number of calls received inside a certain square id and
over a specified time interval.

Call-out Activity Number of issued calls inside a certain square id and over
a specified time interval.

Internet Traffic Activity (MB) Number of created CDRs in this square id throughout the
time span.

4.4 Methodology

4.4.1 Problem definition

In this study, our purpose is to predict telecommunication traffic by using historical data.

Specifically, based on the previous 24-hour data, we aim to predict the next 24-hour telecom-

munication traffic including the traffic of sms, calls, internet, count, and frequency features. In

this respect, the temporal and spatiotemporal frameworks are developed to predict traffic from

the univariate and multivariate perspectives. In the temporal framework, the FCSN, 1D-CNN,

SS-LSTM, and AR-LSTM are utilized to predict next 24 hours cellular traffic in the sms, call

and internet time series individually. In order to incorporate the spatial and temporal data de-

pendencies a multivariate analysis is conducted as well. For the spatiotemporal framework, a

2-dimensional Convolutional LSTM model is proposed to predict the next 24 hours of cellular

traffic using the multi-channel data including sms, call, internet, and count. Furthermore, the

baseline models are presented to evaluate the performance of the described models for both

frameworks.
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4.4.2 Preprocessing

The required data for analysis was obtained by grouping the original dataset corresponding to

“datetime” and “squareid”. For each Grid ID, one subset was created (totally, 10000 subsets).

Also, a major amount of cell traffic is zero within the 10-minute time frame of the dataset,

which makes the data highly sparse. Furthermore, resource planning at the 10-minute level is a

difficult task that might lead to an unstable network or extreme overhead. Therefore, data was

re-sampled hourly by summing the traffic. We also added three new measures,“count”, “sms”

and “calls” to the dataset, where “count” illustrates the number of records in the specific time

for a particular grid id, “sms” shows sum of “smsin” and “smsout”, and “calls” represent sum

of “callsin” and “callsout” because the total traffic of “sms” and “calls” are important.

4.4.2.1 Feature extraction

We extracted days of the week from the “datetime” column. Weekends were separated from

the weekdays which means Saturdays and Sundays are indicated by True while the weekdays

by False in the “weekend” column. Next, using the holidays in November and December,

and the first day of January and generated a “holiday” feature. Also, a new feature named

“part of day” in which the hours between 6 am and 6 pm are considered as day-time indicated

by 1 and night-time by 0.

4.4.2.2 Correlation analysis

Subsequently, the correlations among different variables were calculated, as shown in Fig-

ure 4.1, with a correlation coefficient in the range of -1 to 1. A coefficient close to 1 indicates a

significant and positive relationship between the two variables, implying that as one grows, the

other will be increased, and if one decreases, the other will be reduced as well. A coefficient

around -1 shows a significant negative relationship between the two variables, indicating that

observations with a large value in one variable are likely to have a lower value in the other, or

vice versa. Moreover, there is no linear relationship between the two variables if the coefficient

is close to zero. From Figure 4.1, we can see that there is a high positive correlation between
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“sms”, “internet”, and “calls”. Also, there is a slight correlation between the “part of day”,

“count”,“internet”, “sms”, and “calls”.

Figure 4.1: Correlation among variables

4.4.2.3 Statistical analysis

Also, the skewness and kurtosis of all features are calculated as shown in Table 4.2. Since

the skewness of all features is positive, features have long right tails. Also, as the kurtosis of

internet, count, call, and sms are greater than 3, this indicates that the dataset has a heavier tail

than the normal distribution which is illustrated in Figure 4.2.

Table 4.2: Skewness and kurtosis of features

Feature Skewness Kurtosis
Internet 7.37 102.40
Count 1.78 6.06
Call 7.96 111.51
SMS 8.97 117.78

4.4.2.4 Time series visualization

Moreover, for visual assessment of any abnormality and presence of correlation between the

recorded data on holidays and weekends, the time series of recorded data with corresponding

mean and standard deviations are plotted. For this purpose, we investigated “grid 5161” (Fig-

ure 4.3) which is near the city center of Milan, and “grid 7524” (Figure 4.4) which is located

in a suburban area in the northwest of Milan city. The weekends are highlighted with blue
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Figure 4.2: Skewness and kurtosis of features
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and the holidays with pink. In the “grid 5161”, the overall average traffic is higher compared

to “grid 7524”. For instance, the mean traffic of count is 14.626 for “grid 5161” whereas the

“grid 7524” shows less mean traffic of count equal to 4.043. Also, In “grid 5161”, we observe

increasing traffic during weekends.

Figure 4.3: Time series visualization of ‘grid 5161”

4.4.2.5 Distribution analysis

Furthermore, the probability density function (PDF) of sms, count, calls, and internet for the

“grid 5161” and “grid 7524” are illustrated in Figure 4.5. For the “grid 5161” we see a bi-

modal distribution that has two peaks. Whereas, in the “grid 7524”, since there is a sudden
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Figure 4.4: Time series visualization of ‘grid 7524”
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increase in particular days, we do not observe bimodality.

Figure 4.5: PDF of ‘grid 5161” and “grid 7524”

For further analysis, we created a data frame for the average of internet, sms, and calls for

all the grid IDs. Also, the histograms of the features, based on their average, are shown which

are right-skewed (Figure 4.6). For each cell, the spatial-temporal average traffic of each feature

is illustrated in Figure 4.7. The areas with a higher average are indicated by red. So, we can

see the hot-spots for traffics in Milan city center with a significant reduction in the activity as

we move away from the city center.

4.4.2.6 Temporal dataset

Since the datetime in string form is not useful, the “datetime” values are converted to seconds.

However, the data has an obvious daily and weekly periodicity. To deal with this issue, we

adopted the time-frequency representation as follows.

f s(ξ) = sin
2π t
P
, (4.1)

f c(ξ) = cos
2π t
P
, (4.2)
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Figure 4.6: Average traffic of each grid

Figure 4.7: The spatial average traffic of each feature
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where t is time in second and P is the length of the analyzed cycle (daily = 86400s, weekly =

604800s). In this temporal dataset, “internet”, “count”, “sms”, “calls”, “Day sin”, “Day cos”,

“week sin”, and “week cos” are used as input to predict the cellular traffic of each grid for the

next 24 hours of internet, count, sms, calls and frequency features based on the previous 24

hours.

4.4.2.7 Spatiotemporal dataset

In the spatiotemporal dataset, the observation data for a specific time is like a frame with

100 × 100 pixels. In fact, the shape of the spatiotemporal dataset is like (1487,100, 100, 4) in

which 1487 shows the time step (hour), 100 × 100 shows the longitude and latitude of grids

and 4 illustrates the channels including the internet, count, sms, and call as model input. Also,

Min-Max scaling was applied to the dataset for re-scaling the range of features between the

range in [0, 1]. In Figure 4.8, the x grid and y grid which contains 100 × 100 grids (in total

10000 grids), and the time steps from the 1 to 1487 hours, are illustrated. Moreover, on the

right side, the frame of the last time step is shown where each cube contains the records of

internet, count, sms, and call. Also, Figure 4.9 illustrates internet usage of time steps 1 to 4.

Higher internet consumption is shown in lighter colors while the low internet usage is depicted

in darker colors.

4.4.3 Predictive Models

4.4.3.1 Temporal models

In this work we explored the performance of five predictive models to forecast the telecom-

munication traffic for the next 24 hours based on the previous 24-hour data. For this purpose,

several neural network-based models, as well as a baseline model, are utilized. The proposed

approaches including Baseline model, FCSN, 1D-CNN, SS-LSTM, and AR-LSTM are elabo-

rated as follows.
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Figure 4.8: Schematic of spatiotemporal data

Figure 4.9: Frames of internet usage form time step 1 to 4
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4.4.3.1.1 Temporal baseline model

It is beneficial to establish a baseline to compare the performance of machine learning models.

For the temporal baseline, it is assumed that the predicted 24 hours would have a similar pattern

as the previous 24 hours. The adopted baseline model is shown in Figure 4.10.

Figure 4.10: Block diagram of Baseline Structure.

4.4.3.1.2 FCSN

A fully connected neural network is made up of a sequence of fully linked layers, where every

neuron in one layer is connected to every neuron in other layers. The main benefit of the fully

connected networks is that they are “structure agnostic,” which means no particular hypotheses

about the inputs are required [106]. We proposed the FCSN which stacked two dense layers

with 512 and 192 nodes between the input and the output as shown in Figure 4.11. Also,

rectified linear unit activation (RELU) was used to learn complex patterns in the data. Also,

the graph in Figure 4.12 illustrates the connections in the neural networks. Each node in this

diagram is labeled with the shape of its input and output matrices.

Figure 4.11: Block diagram of FCSN Structure.



Chapter 4. Application ofMachine learning to Traffic Forecasting in 5G Networks 58

Figure 4.12: Graph visualization of FCSN model.
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4.4.3.1.3 1D-CNN

A one-dimensional convolution network produces an output tensor by convolving the input

with the convolution kernel over a single dimension. Convolutional models create predictions

based on a fixed-width history, which may yield better results than dense models since they can

observe the changes over time. In this study, a 1D-CNN with a kernel size of 6 and a RELU

activation function was developed (Figure 4.13) to predict the telecommunication traffic of the

next 24 hours. I also used Graphviz to depict the connections between the neural networks.

Each node in this diagram is labeled with the shape of its input and output matrices which is

shown in the Figure 4.14.

Figure 4.13: Block diagram of 1D-CNN Structure.

4.4.3.1.4 SS-LSTM

The RNN architecture is well suited for processing a sequence of data, such as time series,

since it makes use of memory in cells and takes data history into account (Figure 4.15). LSTM

networks are a specific type of RNN which are developed to prevent the vanishing gradient

problem. By utilizing the LSTM cells long-term dependencies can be learnt from data [107].

The structure of the LSTM units allows for learning the long-term dependencies. Unlike or-

dinary neurons, LSTM contains gates that control the learning process. Through the use of

structures known as gates, each LSTM cell may store or forget information about previous

network states. Due to its architecture, each memory cell’s output is impacted by the sequence

of previous states which makes LSTM appropriate for processing time series with long-time

dependencies. Also, LSTM has been shown to be effective in language translation and speech

recognition by utilizing a long history of inputs. The model will gather an internal state for 24
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Figure 4.14: Graph visualization of 1D-CNN model.
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hours before providing a single forecast for the following 24 hours.

In our proposed single-shot learning approach, LSTM only has to generate an output at the last

time step. In this study, an LSTM layer with 32 internal units processes the sequence of inputs

to predict telecommunication traffic over the next 24 hours. In particular, data from the previ-

ous 24 hours were used as input for a single-shot prediction of the next 24 hours sequence. The

graph in Figure 4.16 shows the connections in the LSTM network. Each node in this diagram

is labeled with the shape of its input and output matrices.

Figure 4.15: Block diagram of SS-LSTM Structure.

Figure 4.16: Graph visualization of SS-LSTM model.
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4.4.3.1.5 AR-LSTM

All of the models listed above, anticipate the whole output sequence in one single step. It

may be beneficial for the model to breakdown this prediction into separate time. Like in the

classic RNN, for generating sequences, each model’s output may be fed back into itself at each

phase, and predictions can be made based on the preceding ones (Figure 4.17). One advantage

of this type of model is that it can be adjusted to generate output of varied lengths. In this

work, we proposed a sequential model, by wrapping an LSTM cell layer in the lower level

of the RNN layer to simplify the “warmup” method to predict telecommunication traffic over

the next 24 hours. The warmup method returns a single time step prediction and the internal

state of the LSTM. With the RNN’s state, and an initial prediction we can continue iterating

the model and feed the predictions at each time step as input to predict the next time steps.

Moreover, the AR-LSTM model summary is illustrated in Figure 4.18. The model summary

contains information on the layers and their order in the model, the output shape of each layer,

the number of parameters in each layer, and the overall number of parameters in the model.

Figure 4.17: Block diagram of AR-LSTM Structure.

4.4.3.2 Spatiotemporal models

A 2D-ConvLSTM model is proposed for the a multivariate spatiotemporal analysis to forecast

cellular traffic over the next 24 hours. Moreover, the spatiotemporal baseline is used as a

benchmark to evaluate the effectiveness of the 2D-ConvLSTM model.

4.4.3.2.1 Spatiotemporal baseline model

Before developing the spatiotemporal model, it is helpful to create a performance baseline for

comparison. The baseline assumes that the anticipated 24 hours will follow a pattern similar to
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Figure 4.18: Summary of AR-LSTM model.

the preceding 24 hours.

4.4.3.2.2 2D-ConvLSTM

In order to extract spatial and temporal dependencies of data simultaneously and incorporate

them in the traffic prediction, a 2D-ConvLSTM network is proposed to analyze the multi-

channel spatiotemporal data. The proposed 2D-ConvLSTM framework (Figure 4.19) consists

of 4 layers of 2D Convolutional LSTM and one 3D convolutional layer. The framework of the

proposed spatiotemporal model is illustrated in Figure 4.19. As for the input, the data with

the shape of (24,100,100,4) are considered to conduct the multivariate analysis and incorporate

correlation among variables, space, and time. Precisely, input data comprise the 24 hours

records across all grids for the 4 channels including internet, count, sms, and call records. In

the proposed model, input data with the aforementioned shape is fed into the 2D Convolutional

LSTM layer which extracts features in 10 channels. In the next layer, the obtained 10 channels

are shrunk via progressive channel sorting to 8, 5 and 3 channels in the next layers, respectively,

for optimization and reducing the number of parameters. Extracted features in each layer are

normalized for mean centering and variance scaling. This batch normalization reduces the

risk of internal co-variate shift in later layers. The obtained 3 channels are then fed into a 3D

convolutional layer in the last layer to predict the next cellular traffic frame for each individual
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data type, d. In fact, d ∈ {internet, sms, call} indicates specific kinds of cellular traffic that are

forecasted individually with the proposed spatiotemporal 2D-ConvLSTM model. Moreover,

the summary of the proposed model is shown in Figure 4.20.

Figure 4.19: Framework of 2D-ConvLSTM model.

4.5 Results and Evaluation

4.5.1 Evaluation metrics

In order to assess the performance of the proposed predictive models compared to other works,

in this study the temporal and spatiotemporal models were evaluated by utilizing MAE and

RMSE.

4.5.1.1 Mean absolute error (MAE)

The average size of the errors in a series of predictions is measured by MAE. The absolute

differences between model prediction and the actual observation are averaged over the test
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Figure 4.20: Summary of 2D-ConvLSTM model.
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sample by MAE.

MAE = (
1
n

)
n∑

i=1

|yi − ŷi| , (4.3)

where n shows the total number of data points, yi indicates the true output value, and ŷi repre-

sents the predicted value for ith data point.

4.5.1.2 Root mean squared error (RMSE)

The RMSE is a quadratic scoring rule that determines the average magnitude of errors. RMSE

is the square root of the average of squared differences between predicted and observed values.

RMSE =

√√
(
1
n

)
n∑

i=1

(yi − ŷi)2 , (4.4)

where n represents the total number of data points, yi indicates the true output value, and ŷi

represents the predicted value for ith data point. RMSE is more sensitive to the data with a

larger difference between actual and predicted values. This is because the error is squared

before the average is reduced with the square root. While MAE is more robust to outliers,

RMSE is more sensitive to outliers compared to the MAE. In fact, data with higher errors

would skew the RMSE.

4.5.2 Temporal cellular traffic prediction

Each grid contains 1487 records. For each grid, We allocated 70% of the dataset, 1040 records,

to the training set, 20%, 298 records, to the validation set, and the remaining 10% of the

dataset, corresponding to 149 records, were devoted to the test set. For instance, the splitting

of the dataset for normalized internet in “grid 5161” is shown in Figure 4.21. Also, the data

was preprocessed and normalized to zero mean and unit variance before feeding to the neural

networks. The models were trained for 50 epochs using Adam optimizer and mean squared

error (MSE) as the loss function. Moreover, hyperparameters were tuned to control the learning

process toward an optimal prediction.

• Temporal baseline: The hyperparameters of the temporal baseline model are shown in
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Table 4.3. The lowest validation loss was achieved by utilizing MSE as the loss function,

Adam optimizer, and a learning rate of 0.001. Also, the temporal baseline is structured

based on utilizing time step 1 to predict the first observed point, time step 2 for predicting

the 2nd observed point and so on, until using time step 24 to predict the traffic on the 24th

observed point.

Table 4.3: Temporal baseline hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
Temporal baseline

Model structure

• Considering time step 23 to predict the next 24 hours.
• Using the time step 1 to predict the first observed point,

time step 2 for predicting the 2nd observed point and so
on, until using time step 24 to predict the traffic of 24th

observed point.

• FCSN: The hyperparameters of the FCSN model are illustrated in Table 4.4. The lowest

validation loss was obtained by using MSE as the loss function, Adam optimizer, and

a learning rate of 0.001. The best prediction results were obtained by utilizing RELU

activation and 512 neurons in the hidden layer.

Table 4.4: FCSN hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
FCSN

Model structure • Considering RELU, leaky RELU, and Tanh activation functions.
• Considering 256, 512, and 1024 units for hidden layer.

• 1D-CNN: Table 4.5 shows the hyperparameter used in the 1D-CNN model. By using

MSE as the loss function, Adam optimizer, and the learning rate of 0.001, the lowest

validation loss was observed. 1D-CNN achieved the best results by utilizing the kernel

size of 6, RELU activation function, and 256 filters in the Conv1D layer.

• SS-LSTM: The hyperparameter tuning of the SS-LSTM model is illustrated in Table 4.6.

The validation loss had the lowest amount when using MSE as a loss function, Adam
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Table 4.5: 1D-CNN hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
1D-CNN

Model structure
• Considering kernel size of 4, 5, 6.
• Considering RELU, Tanh, and sigmoid activation functions.
• Considering 128, 256, and 512 filters in Conv1D layer.

optimizer, and a learning rate of 0.001. Moreover, the best results were obtained by using

32 LSTM units and no dropout.

Table 4.6: SS-LSTM hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
SS-LSTM

Model structure • Considering 32, 64, 128, 256 LSTM units.
• Considering 0, 0.2 and 1 for the dropout.

• AR-LSTM: Table 4.7 illustrates that the lowest validation loss in the AR-LSTM model

is obtained by using MSE as a loss function, Adam optimizer, learning rate of 0.001 and

32 LSTM units.

Table 4.7: AR-LSTM hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
SS-LSTM
Model structure • Considering 32, 64, 128, 256 LSTM units.

The predictions by the baseline, FCSN, 1D-CNN, SS-LSTM, and AR-LSTM models in

the “grid 5161” are illustrated in Figure 4.22, Figure 4.23, Figure 4.24, Figure 4.25, and Fig-

ure 4.26 respectively. Moreover, the overall performance of the prediction scheme on the test

set is evaluated.

The averaged MAE is calculated for the features within all 10000 grids which is shown in

Table 4.8. Although FCSN and 1D-CNN have comparable performance, 1D-CNN is a smaller
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Figure 4.21: Illustration of train, validation, and test set split for the normalized internet traffic of “grid 5161”

Figure 4.22: Baseline model prediction on normalized internet traffic of “grid 5161”.

Figure 4.23: FCSN model prediction on normalized internet traffic of “grid 5161”.
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Figure 4.24: 1D-CNN model prediction on normalized internet traffic of “grid 5161”.

Figure 4.25: SS-LSTM model prediction on normalized internet traffic of “grid 5161”.
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Figure 4.26: AR-LSTM model prediction on normalized internet traffic of “grid 5161”.

network with less number of parameters. Also, Figure 4.27 illustrates the MAE distribution for

each model over all grids.

Table 4.8: Averaged MAE for all features across all grids

Model Averaged MAE
Baseline Model 0.39

FCSN 0.29
1D-CNN 0.29

SS-LSTM 0.32
AR-LSTM 0.32

Moreover, the prediction performance of temporal models including temporal baseline,

FCSN, 1D-CNN, and SS-LSTM are investigated. The AR-LSTM model is not used for the

prediction of specific types of cellular traffic. The AR-LSTM model fails in mobile traffic fore-

casting when the number of features is decreased as the model outputs are fed back at each

phase to be used as input for the predictions of the next time steps. The cellular traffic fore-

casting of temporal models over specific types of cellular traffic including internet, sms, and

calls are summarized in the following Table 4.9. According to the Table 4.9, for predicting

the internet traffic, 1D-CNN outperforms other models with the smallest MAE and RMSE.

However, for sms prediction, all three models have comparable performance. In terms of call
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Figure 4.27: MAE distribution of the proposed models over all grids.

traffic prediction, the performance of the SS-LSTM model is slightly better than other temporal

models. However, the 1D-CNN model has smaller model size with less complexity and it is

more adequate to be used for edge computing deployment.

Table 4.9: Cellular traffic predictions of temporal models

Traffic Model MAE RMSE

Internet

Temporal baseline 153.72 205.95
FCSN 117.39 152.66

1D-CNN 113.54 147.43
SS-LSTM 124.32 160.93

Sms

Temporal baseline 30.07 45.56
FCSN 17.96 32.30

1D-CNN 17.60 32.62
SS-LSTM 17.10 32.66

Call

Temporal baseline 27.02 36.62
FCSN 14.92 22.42

1D-CNN 14.77 22.26
SS-LSTM 13.08 21.25

Furthermore, the spatial distribution of the averaged MAE of the FCSN predictions is

demonstrated in Figure 4.28. In this spatial distribution, high MAEs are indicated in red and

low MAEs are depicted in blue. Hence, darker blue colors show fewer errors.

Finally, in order to have comprehensive assessment of the proposed forecasting models, the

execution time of the models are illustrated in Table 4.10. As we expected, the baseline model
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Figure 4.28: Spatial distribution of MAE for FCSN model predictions.

is the fastest with 0.31 seconds run-time, and the most complex model, AR-LSTM, has the

longest execution time of 24.31 seconds. Table 4.10 confirms that FCSN and 1D-CNN have

significant difference in execution time compared to LSTM approaches.

Table 4.10: Execution time of the proposed predictive models

Model Execution time (seconds)
Baseline Model 0.31

FCSN 6.98
1D-CNN 6.37

SS-LSTM 21.38
AR-LSTM 24.31

4.5.3 Spatiotemporal cellular traffic prediction

For spatiotemporal cellular traffic prediction, we devoted 70% of the dataset (1040 CDRs) for

the training set, 20% (298 records) for the validation set, and 10% (149 records) for the test

set. Moreover, Min-Max scaling was applied to the dataset for rescaling the range of inputs

between the range in [0, 1]. The 2D-ConvLSTM model was trained by considering 500 epochs

with early stopping that monitors the validation loss. The early stopping interrupts the training

process when the error on the validation set has not decreased for four epochs. Also, Adam

optimizer and MAE as the loss function were used during the training process.
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Furthermore, to control the learning process, the hyperparameters leveraged for the spa-

tiotemporal baseline and the 2D-ConvLSTM model are presented below.

• Spatiotemporal baseline: Table 4.11 displays the hyperparameters of the spatiotemporal

baseline model. With MAE as the loss function, Adam as the optimizer, and a learning

rate of 0.001, the lowest validation loss was obtained. Furthermore, the spatiotemporal

baseline is organized so that time step 1 is used to forecast the first observed point, time

step 2 is used to predict the second observed point, and so on, until time step 24 is used

to predict traffic on the 24th observed point.

Table 4.11: Spatiotemporal baseline hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
Spatiotemporal
baseline

Model structure

• Using the time step 1 to predict the first observed point,
time step 2 for predicting the 2nd observed point and so
on, until using time step 24 to predict the traffic of 24th

observed point.

• 2D-ConvLSTM model: The hyperparameter tuning process for the 2D-ConvLSTM model

is depicted in Table 4.12. When utilizing MAE as a loss function, Adam optimizer, and

a learning rate of 0.001, the validation loss is the smallest. The best results are seen by

using sigmoid as an activation function, assuming 5 hidden layers. Moreover, kernel sizes

including (10 × 10), (8 × 8), (5 × 5), and (3 × 3) for the aforementioned layers along with

filter sizes of 10, 8, 5, and 3 lead to achieving the best results.

The predictions of the internet, sms, and call by the 2D-ConvLSTM model across all grids

for the time step 61 are depicted in Figure 4.29, Figure 4.30, and Figure 4.31 respectively.

The cellular traffic performance of internet, sms, and calls for spatiotemporal baseline and

2D-ConvLSTM are presented in Table 4.13. Also, the execution time of the proposed models

over all types of cellular traffic including internet, sms, and call are illustrated in Table 4.14.
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Table 4.12: 2D-ConvLSTM hyperparameters.

Model
Criteria Loss Optimizer Learning rate

MAE MSE Adam Adamax SGD 0.1 0.01 0.001
2D-ConvLSTM

Model structure

• Considering RELU, Tanh, and sigmoid activation functions.
• Considering various numbers of hidden layers starting from

1, 2, 3, 4, and 5.
• Considering different kernel sizes including (10 × 10),

(8 × 8) , (6 × 6), (5 × 5), (3 × 3).
• Considering different filter sizes containing 10, 8, 6, 5, and 3.

Table 4.13: Various types of cellular traffic performance

Traffic Model MAE RMSE

Internet Spatiotemporal baseline 102.12 142.41
2D-ConvLSTM 52.73 75.73

Sms Spatiotemporal baseline 24.03 36.04
2D-ConvLSTM 14.42 26.60

Call Spatiotemporal baseline 15.23 22.06
2D-ConvLSTM 8.98 15.02

Table 4.14: Execution time of proposed models on various types of traffic

Traffic Model Execution time (seconds)

Internet Spatiotemporal baseline 10.15
2D-ConvLSTM 4419.16

Sms Spatiotemporal baseline 6.89
2D-ConvLSTM 2821.77

Call Spatiotemporal baseline 12.87
2D-ConvLSTM 3406.08
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Figure 4.29: 2D-ConvLSTM internet prediction performance on time step 61 .

4.5.4 Spatiotemporal performance compared to the related works

To demonstrate the superiority of the proposed 2D-ConvLSTM model in forecasting cellular

traffic, the performance of the 2D-ConvLSTM is compared with the STCNet which is proposed

by Zhang et al. [103]. STCNet is a cross-domain analysis including social, BS, and POI data

to capture external factors that affect cellular traffic generation. The comparison between the

performance of our proposed model and STCNet on internet, call, and sms traffic prediction

are illustrated in Table 4.15, Table 4.16 and Table 4.17 respectively.

Compared to the reference STCNet models [103], our proposed 2D-ConvLSTM shows the
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Table 4.15: Comparison between models in predicting internet traffic

Traffic Model MAE RMSE

Internet

Spatiotemporal baseline 102.12 142.41
2D-ConvLSTM (Proposed) 52.73 75.73

No cross-domain [103] 94.14 172.70
Incorporating social dataset [103] 91.89 166.18
Incorporating BSs dataset [103] 93.85 167.75
Incorporating POIs dataset [103] 90.95 164.31

No transferring [103] 111.78 186.12
Transferring with sms [103] 97.82 168.87
Transferring with call [103] 94.34 169.53

Table 4.16: Comparison between models in predicting call traffic

Traffic Model MAE RMSE

Call

Spatiotemporal baseline 15.23 22.06
2D-ConvLSTM (Proposed) 8.98 15.02

No cross-domain [103] 17.74 40.11
Incorporating social dataset [103] 18.00 37.04
Incorporating BSs dataset [103] 17.70 33.83
Incorporating POIs dataset [103] 15.85 33.34

No transferring [103] 16.87 35.43
Transferring with sms [103] 15.72 33.47

Transferring with internet [103] 14.42 30.85

Table 4.17: Comparison between models in predicting sms traffic

Traffic Model MAE RMSE

Sms

Spatiotemporal baseline 24.03 36.04
2D-ConvLSTM (Proposed) 14.42 26.60

No cross-domain [103] 32.60 57.71
Incorporating social dataset [103] 27.31 55.59
Incorporating BSs dataset [103] 28.74 54.52
Incorporating POIs dataset [103] 28.17 52.88

No transferring [103] 28.32 55.07
Transferring with call [103] 25.90 50.96

Transferring with internet [103] 25.41 52.77
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Figure 4.30: 2D-ConvLSTM sms prediction performance on time step 61 .

best prediction results in terms of RMSE and MAE for all three kinds of cellular traffic in-

cluding internet, call, and, sms as illustrated in Table 4.15 - Table 4.17. The reason is the

multivariate nature of our model which incorporates the correlation among variables into the

prediction. Also, rather than sticking with the same filter size of 16 in different layers as in

STCNet, in our framework, the number of channels were reduced progressively in the four

2D-ConvLSTM layers which optimizes the model size and memory allocation. Therefore, the

complexity and execution time of our proposed model as depicted in Table 4.14 are relatively

low for predicting the internet, call, and sms traffic.
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Figure 4.31: 2D-ConvLSTM call prediction performance on time step 61 .

Another factor which contribute to the success of our model can be deploying a new measure

named “count” along with “sms”, “call”, and “internet” as the model input. Utilizing count

helps to predict various types of cellular traffic more accurately since this measure indicates

the number of records in a specific time for a particular grid id.

4.6 Conclusion

To anticipate cellular traffic, temporal and spatiotemporal frameworks are developed in this

study. Among temporal models, FCSN and 1D-CNN have comparable performance with the
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smallest MAE. However, 1D-CNN is a smaller network with less number of parameters. More-

over, the proposed 1D-CNN is having less complexity and shows smaller execution time for

predicting the next 24-hour traffic. In terms of spatiotemporal prediction, the proposed 2D-

ConvLSTM model showed better performance for predicting all three kinds of cellular traffic,

including internet, sms, and calls compared to temporal analysis which showed the effective-

ness of incorporating data dependencies in traffic prediction. It is crucial to recognize the

resource requirements for each slice and how these requirements vary over time. Accurate pre-

dictions of the models would help in avoiding under-provisioning which leads to poor network

slice performance and poor QoS for users. Also, over-provisioning can incur expenditures on

infrastructure providers. Hence, as dynamically adjusting the resource allocation to network

slices in 5G network is required, forecasting the traffic profiles of each slice is vital.



Chapter 5

Conclusion

5.1 Discussion and Conclusion

Due to the continuously growing various kinds of cellular traffic, mobile traffic forecasting is

becoming a significant aspect of the optimization of cellular networks. Accurately anticipat-

ing internet traffic can help with resource allocation in 5G networks by devoting the precise

necessary resources for each slice which decreases service provider costs and enhances the

performance of network slices. In this study, we focused on predicting the cellular traffic of the

next 24 hours by utilizing temporal and spatiotemporal approaches and the prediction perfor-

mance of several neural network models was assessed. The temporal framework specifically

consists of the FCSN, 1D-CNN, SS-LSTM, and AR-LSTM. For the spatiotemporal frame-

work, a 2D-ConvLSTM model was proposed to predict cellular traffic for the upcoming 24

hours. For both frameworks, baseline models were also provided to evaluate the performance

of the neural network models.

The results indicate that the FCSN and 1D-CNN have comparable performance in temporal

models. However, SS-LSTM model outperforms other temporal models in terms of both MAE

and RMSE metrics when it comes to the call traffic forecasting. Regarding sms traffic, SS-

LSTM has the lowest MAE while the FCSN better preformed in terms of RMSE. Moreover,

1D-CNN surpasses other temporal models for forecasting internet traffic in terms of MAE and

81
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RMSE. Also, it should be mentioned that 1D-CNN is a smaller network with less number of

parameters and it is adequate for edge deployment. Moreover, the proposed 1D-CNN is less

complicated and has a faster execution time for predicting the next 24-hour traffic.

Furthermore, the 2-dimensional Convolutional LSTM (2D-ConvLSTM) network was pro-

posed to forecast the individual cellular traffic such as the internet, sms, and calls using a multi-

channel spatiotemporal data as an input. The prediction accuracy is improved by this multi-

variate spatiotemporal analysis, due to the capability of extracting the dependencies among

variables, spatial and temporal data characteristics and incorporating that into the prediction.

The model can anticipate the next 24-hour traffic of internet, sms, and call with an RMSE value

of 75.73, 26.60, and 15.02 and an MAE of 52.73, 14.42, and 8.98 respectively, after 24-hour

observations of historical data. The 2D-ConvLSTM model was also optimized for memory

efficiency by shrinking the width progressively and reducing the number of channels in each

layers.

Overall, the experimental results demonstrate that the proposed spatiotemporal model out-

performs the temporal models and other techniques in the literature in forecasting the cellular

traffic including internet, sms, and call. Hence, it is expected that more effective network

optimization and resource allocation would be possible by predicting the cellular traffic via

proposed 2D-ConvLSTM model. In future work, the prediction performance can be improved

and deployment of the 2D-ConvLSTM model in 5G networks can be optimized automatically.

The cost incurred by MNOs for allocating resources to each slice before and after using the

2D-ConvLSTM model for cellular traffic forecasting can be also calculated and compared. Fu-

ture research will also leverage other datasets to measure the model generalization capability

of the proposed spatiotemporal 2D-ConvLSTM model. Another potential next step is to use

more historical data that can be used to forecast different types of cellular traffic. For instance,

by having the whole year data of internet, sms, and calls, yearly and monthly traffic patterns

can be captured which can be used by the 2D-ConvLSTM model to predict the cellular traffic

for the next months and years and even predict the traffic of holidays during each year. The

cellular traffic prediction of holidays would be helpful for MNOs in terms of appropriate re-
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source allocation before different holidays each year. Also, the prediction capability of the

proposed models over longer time frames will be tested in future works. Moreover, Model

pruning and optimization for edge deployment can be explored as well. Another possible fu-

ture work would be conducting statistical analysis to identify extreme values and considering

how the proposed models can handle outliers. Finally, one beneficial further step is considering

the effect of network performance such as latency in the cellular traffic prediction.
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