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Abstract

The persistent latent reservoir of long-lived cells carrying integrated HIV DNA is the source

of reinfection upon treatment interruption, and a primary focus for cure research. The reservoir

is difficult to study because these cells are relatively rare or located in tissues that are difficult to

sample. Sequencing proviral DNA in the latent reservoir is an important source of information

about reservoir establishment and persistence, especially from the presence of identical (clonal)

sequences. I evaluated the relationship between select measures of these clonal sequences and

drivers of reservoir persistence, e.g., clonal expansion, by implementing a simulation model

of within-host HIV dynamics in actively and latently infected cells. I implemented a discrete

event simulation in the R package treeswithintrees, with four populations of cells correspond-

ing to active, latent, replenishment and death compartments. To simulate molecular evolution

on the resulting trees, I collapsed branches representing infected cells in a latent state and ran

the program INDELible with parameters calibrated to HIV-1 on a representative env sequence.

I propose a new clonality statistic (pairwise clonality) that can capture the genetic diversity of a

sample with less information loss. I then evaluated the response of two clonality statistics used

in literature (the proportion of identical sequences, Gini coefficient) and my proposed clonality

statistic (number of identical pairwise comparisons) to changes in simulation parameter values

by fitting a General linear Model (GLM). I found that the former clonality statistics were not

as robust as the proposed pairwise clonality score. In addition, there were significant associa-

tions between clonality statistics and simulation parameters. Finally, I implemented a particle

filtering method to evaluate non-linear relationships between simulation parameters and the

clonality scores.

Keywords: HIV (Human Immuno-deficiency Virus), Latent Reservoir, Within-Host Evo-

lution, Viral Evolution.
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Lay Abstract

Human Immunodeficiency Virus (HIV) is a disease with significant social and economic

burden without a cure – it is currently manageable through combination Antiretroviral Ther-

apy (cART). However cART is unable to remove viruses that have inserted themselves into

the DNA of host cells (the latent reservoir). The latent reservoir is relatively stable and long

lasting and is a source of re-infection if cART is halted, or otherwise made ineffective. The

latent reservoir is difficult to study in humans for various reasons. Therefore, simulations can

be helpful to study the evolution & dynamics of HIV within a host. I created a simulation

framework “simclone” that can simulate within-host evolution of HIV. Events of evolutionary

significance during the course of an HIV infection were simulated: acute infection, cART initi-

ation and chronic infection. Sequence evolution is conducted on the outputs of HIV infection.

Clonality statistics (i.e. how many sequences in a sample are identical) are used to understand

the latent reservoir, but the commonly used statistics (proportional clonality, GINI coefficient)

have significant drawbacks. I propose the “pairwise clonality” statistic as a response to this

issue. I then analyze the simulation model to see if any parameter values (e.g. infection rate)

are associated with increased clonality scores for each of the metrics. I then implement a par-

ticle filtering method to attempt simulation parameter estimation based on clonality score. The

results shown in this work i) provide a framework for simulating within-host evolution that

enables specific hypotheses testing ii) proposes a clonality statistic that has better statistical

properties than existing measures iii) highlights the difficulties in using particle filtering for

parameter estimation.
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Chapter 1

Introduction

1.1 Natural History of HIV Infection

Human Immunodeficiency Virus Type I (HIV) is a retrovirus that has a significant global

burden of disease. Retroviruses are viruses in the family Retroviridae, of which the defining

feature is obligate reverse transcription of the viral RNA genome into DNA, and insertion of

the viral DNA into the host genome (Coffin, 1995; Telesnitsky, 2010). HIV is grouped with

other immunodeficiency viruses (e.g. Simian Immunodeficiency Virus, SIV) in the Lentivirus

virus genus, under the subfamily Orthoretrovirinae (Luciw, 1996).

An estimated 38,000,000 [95% CI: 31,600,000 - 44,500 000] individuals are living with

HIV, with a estimated yearly death toll of 690,000 [95%: CI 500,000 - 970,000] as of 2020

(UNAIDS, 2021). An estimated 1.5 million [95% CI: 1.0 - 2.0 million] individuals are newly

infected each year. It is a disease with severe economic and individual impact. While HIV-

related deaths and new HIV infections have declined yearly since the early 2000’s (UNAIDS,

2021) due to advancements in treatments and increased funding for HIV related programs,

there is currently no practical cure for HIV. Three individuals have been cured of HIV, however

these therapies were extreme in nature and are not practical for widespread use. The patients

that have been cured of HIV had cancers that required a bone marrow transplant, a procedure

1



2 Chapter 1. Introduction

that confers significant risk. The patients were transplanted with stem cells from a donor with

the CCR5∆32/∆32 mutation (Gupta et al., 2020; Hsu et al., 2022; Hütter et al., 2009). This

mutation confers protection on the patient by preventing HIV binding to the CCR5 co-receptor

(Ni et al., 2018).

Uncontrolled, progression of HIV infection to Acquired Immunodeficiency Syndrome (AIDS)

can take months to years (T. Schacker, 1996; T. W. Schacker, 1998; UNAIDS, 2021). AIDS

is clinically defined as a 200 CD4+ cells per µL or by occurrence of HIV specific associated

disease (Mandell et al., 1995). There is wide variation in the course of HIV infection, the vari-

ation is generally understood to be caused by a combination of host (Fauci, 2008; Goff, 2007)

and viral characteristics (Li et al., 1999, Naif et al., 1999, Cavarelli and Scarlatti, 2009). Pa-

tients who progress to AIDS are at a higher risk for opportunistic infections caused by bacteria,

viruses, fungi, and parasites due to the reduced CD4+ T-cell levels (Douek et al., 2003; C. B.

Holmes et al., 2003).

ART

Anti-Retroviral Therapy (ART) for HIV has evolved significantly from its original form. The

earliest class of treatments for managing active HIV infection were Nucleoside Reverse Transcriptase

Inhibitors (NRTI). Both sequential and concurrent application of NRTI class drugs resulted

in the rise of drug resistant genotypes (Schmit et al., 1996). Combination Anti-Retroviral

Therapy (cART), also known as Highly Active Anti-Retroviral Therapy (HAART) is the mod-

ern standard for ART. It combines anti-retroviral agents of multiple drug classes to reduce the

risk of drug resistance, which typically results in failure of the treatment (Collier et al., 1996;

D’Aquila, 1996; Staszewski et al., 1996). cART targets at least two distinct molecular targets

in the HIV replication cycle. While statistically likely that resistance to at least one agent in the

cART ‘cocktail’ will occur, multiple drug resistance is unlikely if the therapy regime is adhered

to (Coffin, 1995; Frost and McLean, 1994; Stengel, 2008). It is statistically unlikely that drug

resistance mutations would occur at multiple sites concurrently. The typical cART combina-
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tion anti-retroviral agents can be divided by function into six groups: nucleoside-analog reverse

transcriptase inhibitors (NARTIs), non–nucleoside reverse transcriptase inhibitors (NNRTIs),

integrase inhibitors, protease inhibitors (PIs), fusion inhibitors, and co-receptor antagonists

(Arts and Hazuda, 2012). It is important to note ART is not a cure, as the treatment does not

excise integrated HIV sequences in the host genome (Arts and Hazuda, 2012). The significance

of these integrated HIV provirus sequences will be discussed further in detail.

Viral Load and HIV Viremia

Viral Load is a density measure of HIV in peripheral blood (HIV copies/mL) (Fraser et al.,

2007). It can vary between patients, and also within patients over time (Mellors et al., 1996).

After the initial infection, there is a phase of exponential viral replication. At this stage, in-

dividuals are likely asymptomatic, but are the most infectious. Over the next several months,

the amount of circulating RNA HIV slowly decays to the set point load. The set point value is

the approximate viral load level of an asymptomatic patient. It can differ significantly between

patients, with up to a 1000 fold difference (de Wolf et al., 1997; Mellors et al., 1996). HIV

viral loads are highly predictive of disease prognosis - higher viral loads are associated with

quicker disease progression; and of transmission direction between transmission pairs - higher

viral loads are typically found in the originating individual of a tranmission pair (de Wolf et al.,

1997; Mellors et al., 1996).

Viremia, the presence of circulating virus in the blood stream, is present soon after primary

infection. For most individuals on ART without drug failure, HIV viral loads decrease signifi-

cantly, below detectable levels (20 - 40 copies/mL). These low levels provide clinical benefits

to the individual (Palella et al., 1998). HIV proviruses are HIV DNA viral sequences that are

integrated into host genomes. Despite controlling the replication of HIV, there exists a set of

infected cells that contain provirus that can produce replication competent HIV (Finzi et al.,

1997a; Siliciano et al., 2003; Wong et al., 1997,Bruner et al., 2016; Y.-C. Ho et al., 2013).

Transient viremia with plasma viral load of up to 500 copies/mL or “viral blips” can occur
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even when patients adhere to ART (Young et al., 2015). Viral blips are specific situations of

viremia - a sharp, transient increase in virus concentration followed by a decrease to unde-

tectable levels. Sustained plasma viral loads above this threshold are interpreted as drug failure

events (Garcia-Gasco et al., 2008). There are many possibilities for the cause of these blips:

poor drug adherence or absorption; or conditions that lead to increased replication (infection,

or vaccinations) (Günthard et al., 2000; L. Jones and Perelson, 2005; Nettles, 2005). Ramifi-

cations of viral blips are not yet clear. Investigations into the relationship between viral blips

and subsequent drug therapy failure are mixed (Günthard et al., 2000; L. Jones and Perelson,

2005; Young et al., 2015). Viral blips could be due to integrated proviral sequences in latent

(memory) CD4+ cells. Reactivation is the basis for small spikes of low level viremia and “viral

blips” (Chun et al., 1997; Finzi et al., 1997b; Siliciano et al., 2003). Low level viremia is not

clinically significant (i.e. no significant difference in disease progression or drug efficacy) for

individuals remaining on ART (Nettles et al., 2005).

Disease Progression

The rate of HIV disease progression after a transmission event can differ between individuals.

Speed of progression is governed by host factors, viral factors, and stochastic processes that

are not well understood (Cavarelli and Scarlatti, 2009; Fauci, 2008; Li et al., 1999; Naif et

al., 1999. There are three distinct stages of HIV infection, however individuals may progress

through these stages at different speeds. The acute infection is the first clinical stage of HIV

infection. This stage is charactertized by a CD4+ cell count per µL ≥ 500. Individuals may

present with viral symptoms in this stage such as fever and rash (Moir et al., 2011). Typical

CD4+ cell counts range from 500-1200 per µL. As a patient’s infection progresses, viral load

increases and CD4+ cell counts further decrease due to the cytotoxic effects of HIV replication

(Davey et al., 1999; Fauci, 2008; T. Schacker, 1996). This chronic stage is characterized by

a CD4+ cell count between 200-499 per µL, and can last for months or years. In the second

stage, the concentration of CD4+ lymphocytes declines. The third clinical stage is character-
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ized by high viral loads, a CD4+ cell count lower than 200 per µL or opportunistic infections

(AIDS) (C. B. Holmes et al., 2003). Individuals with HIV do not necessarily progress to AIDS.

Individuals that have at least 12 years of asymptomatic infection, are termed Long Term Non-

Progressors (LTNP). Although the end result is the same - long term asymptomatic infection

- the basis for asymptomatic disease control differs. Long term control of HIV infection has

been associated with strong neutralizing antibody response and cell-mediated immunity to HIV

(Grabar et al., 2009; Zanussi et al., 1996). Mutations to HIV that result in a weakly replicat-

ing strain can also result in asymptomatic infection (Deacon et al., 1995; Iversen et al., 1995).

Weakly replicating strains can still infect large number of cells in a host, however the viral load

is much lower due to ”attenuated productive viral infection” (Iversen et al., 1995). Although

the virus is under control for a period of time, LTNP’s may eventually progress to symptomatic

infection. For most infected with HIV, HIV-mediated CD4+ T-cell depletion occurs early in

an infection. Immunodeficiency does not present immediately, as there is regeneration of the

CD4+ T-cells resulting in an equilibrium. If the virus is left uncontrolled, this equilibrium

deteriorates over time (A. A. Okoye and Picker, 2013).

1.2 Infection Cycle

The HIV infection cycle can be grouped into six stages. These are: entry; DNA synthesis; inte-

gration; transcription; RNA modification, transportation and protein synthesis; and, assembly

and budding. The DNA synthesis and integration stages of the infection cycle in particular are

of evolutionary and clinical significance: the DNA synthesis stage is responsible for the vast

majority of mutations in HIV, and thus immune evasion (Coffin, 2002; Hu and Hughes, 2012;

Takeuchi et al., 1988); and the integration stage is responsible for long term HIV infection (Z.

Wang et al., 2018).
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1. Entry (Receptor Recognition and Binding)

Host cell entry is the requisite first step of the replication cycle. Entry is mediated by the

interaction between the HIV env (envelope) spike protein with a host CD4 receptor (Bosque

et al., 2011; Chan et al., 1997; Douek et al., 2002; Kowalski et al., 1987). The HIV env spike

protein constituent proteins are GP120 and GP41 glycoproteins. The GP120 protein mediates

binding between HIV virions and CD4+ T-cells. Conformational changes in GP120 after the

binding between CD4 and GP120 allow for subsequent co-receptor (CCR5 or CXCR4) binding

(Brower et al., 2009). The CD4 receptor is necessary but not sufficient for HIV entry into a cell:

at least one of the aforementioned co-receptors must be present (Brower et al., 2009; Li et al.,

1999). Co-receptor binding causes surface protein re-arrangement, drawing the host membrane

and viral membrane in close proximity and thus allowing the formation of a membrane fusion

pore (Chan et al., 1997). The viral pore provides an avenue for deposition of virion components

into the cytoplasm (Didigu and Doms, 2012). Importance of env proteins and the CD4 host

receptor to viral entry is a motivating factor for vaccine research focusing on the interactions

between these two proteins (Arts and Hazuda, 2012).

2. DNA Synthesis

RNA from the HIV virion is in the positive single strand form. Reverse Transcriptase (RT)

is responsible for converting RNA to double stranded DNA (Hu and Hughes, 2012). RT is

encoded within the HIV genome. RT starts by creating an RNA-DNA hybrid double strand

using the RNA virion genome as a guide (Coffin, 2002). RNase subsequently degrades the

RNA genome, leaving the single negative sense DNA (Kudesia and Wreghitt, 2009; Sarafianos

et al., 2009). RT then swaps strands and uses the single negative sense DNA as a template to

fill out the positive DNA strand. RT jumping between strands allows for high recombination

frequency (Carr et al., 1996; Hu and Hughes, 2012; Kudesia and Wreghitt, 2009). The low

fidelity of RT and the lack of proof-reading mechanism is the molecular driver for the genetic

diversity found within HIV. RT is an important target for antiviral compounds because of its’
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importance in the life cycle (Arts and Hazuda, 2012; Coffin, 1995; Frost and McLean, 1994).

3. Integration

In the integration step, proviral DNA is inserted into cellular DNA. This is an obligate step.

After HIV RNA is reverse transcribed into DNA, it is bound with proteins to create a pre-

integration complex (Coffin, 1995; Craigie and Bushman, 2012). This complex contains inte-

grase, cellular DNA and other proteins necessary for successful integration. HIV integration is

similar to other transposition systems found in other pathogens such as bacterium (Kulkosky

et al., 1992). The integration step is permanent – to date there are no successful therapies that

can excise the integrated viruses from host genomes. Current drug therapies for HIV are not

curative, rather, they focus on restricting or reducing the ability for HIV to actively replicate.

Long-lived T-cells with integrated HIV proviral sequences is the genetic basis for long term

infection (Chavez et al., 2015; Z. Wang et al., 2018). Integrated HIV in long-lived memory

T-cells can be transcribed and result in release of active virions months to years after integra-

tion (Grabar et al., 2009; Zanussi et al., 1996). Cure efforts are focused on addressing this

integrated virus with differing approaches such as: (i) complete replacement of cells with inte-

grated virus; (ii) excision using gene editing technology such as CRISPR; (iii) “shock and kill”,

which activates cells with integrated virus to allow targeted immune response; and (iv) “block

and lock”, a technique where transcription of integrated HIV provirus is blocked via epige-

netic modifications (Ahlenstiel et al., 2020). The importance of integrase in the HIV life cycle

and the role of integrase in creating long-lived sources of HIV re-infection, makes integrase a

useful target for inhibitors (Arts and Hazuda, 2012)).

4. Transcription

The HIV genome contains sites that resemble transcription, activator and enhancer regions.

For example, the long terminal repeats in the HIV genome contain enhancers that bind to tran-

scription factors only found in active CD4+ T-cells. When these CD4+ T-cells transition into
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memory cells, transcription factors (i.e. NF-KB, Sp1 and the TATA-box binding protein (TBP))

are no expressed Dutilleul et al., 2020. Without these factors, the expression of HIV proviruses

is halted, resulting in latent (memory) cells that still contain integrated virus. Transcription and

translation of the HIV DNA hijacks normal host cellular machinery (i.e. RNA polymerase II

for reverse-transcription) (Colin and Van Lint, 2009).

5. RNA modification, Transportation and Protein Synthesis

HIV RNA is necessarily modified before protein synthesis. First the virus requires a 5’ cap

and poly-A-tail (Freed, 2001). Next, as with other RNA viruses, the RNA needs to be spliced

to synthesize proteins, however it needs to remain intact to be packaged into virions (Ferguson

et al., 2002; Freed, 2001). Thus there is a phased expression pattern of HIV patterns with

feedback patterns controlling the expression levels of HIV (Ferguson et al., 2002). Initial

proteins govern RNA transport (R) and transactivation (tat). Other (later) proteins are silenced

through splicing (Tomezsko et al., 2020; S. Wang et al., 2022). One of the first proteins to

be synthesized, tat, increases production of other early proteins. Transport of unspliced HIV

RNA out of the nucleus follows rev binding to env (Pollard and Malim, 1998). It is also a

negative feedback regulator, rev down-regulates the production of early genes that encourage

transcription of HIV mRNA and simultaneously up-regulates the transcription of late proteins

necessary for the continuation of the HIV life cycle) Fisher et al., 1986; Pollard and Malim,

1998. Late proteins include cell surface proteins (env) and caspid proteins (Ferguson et al.,

2002; Freed, 2001).

6. Assembly and Budding

The final stage of the HIV lifecycle is the assembly of all constituent parts of the virion in the

cytoplasm of a host cell. Virion assembly occurs through the random simultaneous joining of

all necessary components – viral proteins, membranes and RNA (Ferguson et al., 2002; Freed,

2001). Assembly of the virion is driven by protein interactions with the viral genome. The
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process of budding is initiated after assembly (Sundquist and Krausslich, 2012). HIV is an

membrane enveloped protein, and as such incorporates host membrane into virion particles

(Go et al., 2017; Zanetti et al., 2006; Zhu et al., 2006). Cellular proteins are also randomly

included, based upon cell membrane proteins located at the point of budding. The high amount

of host proteins incorporated into the virion, especially on the surface provides some degree

of immune evasion (Aloia et al., 1993; Ott, 2008). Immune cells have difficulty recognizing

virions with endogenous surface host proteins. The immature HIV virion is released after the

closure of the bud. The virion matures after release when the protease protein is expressed,

and cleaves the gag poly-protein (Ferguson et al., 2002; Freed, 2001). Only mature virions can

infect other cells.

1.3 Latent Reservoir

Cytotoxic effects of active HIV replication result in short life spans for virion producing HIV

cells (the average half-life is approximately 1 day) (Pollack et al., 2017). HIV infection persists

even while ART completely suppresses active replication. HIV persists in individuals adhering

to ART as integrated proviral sequences. While viral blips do occur, integration events from

these reactivated viruses are unlikely to occur due to ART targetting multiple points in the HIV

lifecycle. Therefore the division of long lived resting CD4+ T cells are likely responsible for

the longevity of infection.

The HIV latent reservoir consists of long-lived resting T-cells with integrated replication

competent proviral HIV DNA (Z. Wang et al., 2018). Less than 5% of cells with integrated pro-

viral HIV DNA are replication competent. The remainder of cells have mutations or deletions

that result in non-functional virus (Wong et al., 1997). Estimates for the size of the latent

reservoir range from 104 - 107 (Zhang et al., 1998). The half-life of cells in the latent reservoir is

approximately 44 months. This half-life estimate translates to a natural decay timeline of over

70 years (Crooks et al., 2015; Finzi et al., 1997a; Siliciano et al., 2003. Cells with integrated
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replication competent HIV can sporadically reactivate, releasing virions. Reactivation is a

process by which cells with integrated dormant provirus are stimulated to produce virions

(Corey et al., 2004; Grabar et al., 2009; Zanussi et al., 1996). Reactivation happens at a

predictable rate, when latent T-cells are activated upon encountering an antigen, or through

indirect activation via an inflammatory process (Corey et al., 2004). Reactivation is a potential

source for reinfection for individuals that do not adhere to an ART regimen or in cases of drug

failure (Arts and Hazuda, 2012). Viral rebound can happen within weeks of drug failure or

cessation (Crowell et al., 2019; Davey et al., 1999). Early models of latent reservoir persistence

suggested that quiescent cells with slow turnover were solely responsible for the longevity and

stability of the reservoir (Y.-C. Ho et al., 2013; Siliciano et al., 2003). This understanding of

the latent reservoir persistence has been challenged by findings that show cellular proliferation

(especially clonal expansion) plays a role maintaining the latent reservoir (Bosque et al., 2011;

Yeh et al., 2021).

Clonal expansion is an adaptive immune process whereby cells that are stimulated by an

antigen proliferate into clones (Adams et al., 2020). Clonal expansion of cells with integrated

pro-viral sequences was shown to contribute to the persistence of the latent reservoir (Mal-

darelli et al., 2014). Three mechanisms have been identified as contributors to the clonal ex-

pansion of infected cells. Firstly, integration of pro-viral sequences in proximity to highly

transcribed regions may promote cellular proliferation, and therefore clonal expansion. HIV

preferentially integrates close to genes that govern cell division (Schröder et al., 2002). Viral

promoter genes may increase the transcription of these genes, thereby promoting cellular pro-

liferation (Maldarelli et al., 2014). The second mechanism that might contribute to clonal ex-

pansion of infected cells is homeostatic proliferation. Memory T-cells are maintained through

cellular proliferation as a normal response to cytokines (Schluns and Lefrançois, 2003). Home-

ostatic proliferation is a non-selective process, whereby a stable T-cell population can be main-

tained for normal immune function. Homeostatic proliferation of HIV+ T-cells occurs without

re-activation, suggesting this process would not trigger response from the immune system or
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immunotherapies (Bosque et al., 2011). The third mechanism that has been identified is anti-

genic stimulation due to chronic exposure. Chronic or repeated antigen exposure could stimu-

late clonal expansion of infected CD4+ T-cells (Douek et al., 2002). In contrary to the clonal

expansion mechanism of latent reservoir persistence, a controversial mechanism is the constant

seeding of the latent reservoir by low levels of ongoing HIV replication in drug sanctuary sites

(C. V. Fletcher et al., 2014). Tissues such as lymph nodes where there is poor drug penetration

may create drug sanctuary sites where active replication of HIV is permissible. This mecha-

nism is contested with studies reporting conflicting results, with proponents citing low latent

reservoir diversity as evidence of ongoing seeding (Barton et al., 2016; Eisele and Siliciano,

2012; Kulpa and Chomont, 2015).

The genetic diversity of the latent reservoir can be quantified using multiple approaches,

each with their own benefits and limitations. Integrated proviruses can be fully sequenced

(albiet missing some nucleotides between the primers) using primers that target conserved re-

gions (Salminen et al., 1995). Only full length coverage guarantees identical sequences are

truly clonal. Sampling short subgenomic regions does not adequately capture the full genetic

diversity of a sample, thus biasing genetic diversity estimates (Laskey et al., 2016; Z. Wang et

al., 2018). Full length sequencing techniques are limited because defective provirus sequences

are included in this sequencing. It is difficult to estimate the viability of integrated provirus

sequences from sequences alone. While HIV preferably integrates into gene promotor regions,

it is not base specific. Therefore the probability of identical integration sites occurring from

two unique integration events is infinitesimally small (Maldarelli et al., 2014; Schröder et al.,

2002). As such, identical integration sites in two sequences is an indicator of clonal expansion.

Approaches that sequence integration sites are important as presence of identical provirus se-

quences is not necessarily indicative of clonal expansion. For example, it is possible that highly

identical sequences seed the latent reservoir early on in an infection, as in the case of SIV (Spira

et al., 1996). In addition, it is difficult to identify viability of proviral sequences from just in-

tegration sites. Most viability analyses are limited to detecting obvious issues such as frame
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shifting mutations (Carrillo et al., 1998; Domingo and Holland, 1997; Maldarelli et al., 2014;

Schröder et al., 2002). These defective or non-viable pro-viral sequences are not part of the la-

tent reservoir, as the latent reservoir only includes replication competent virus. There are new

methods that combine full length sequencing with integration site sequencing, completeness

and replication competency analysis (Patro et al., 2019). This method is a powerful technique

as it allows a previously impossible task - linking integration sites to their source proviral se-

quences. However, this method is time and resource intensive, and is not suited for large-scale

studies. Regardless of sequencing technique, sequencing errors increase the variation observed

in the viral population, and thereby inflate estimates of the size or the diversity of the latent

reservoir.

The gold standard method for quantifying the latent reservoir is the Viral Outgrowth Assay

(VOA). Sequential serial dilutions and outgrowth stages amplify low levels of infection to

detectable levels. By diluting samples, each ’well’ in the assay receives on average less than

one provirus. In outgrowth stages, samples in wells are cultured with HIV susceptible cells.

Once HIV RNA is amplified to detectable levels, HIV RNA present in outgrowth assays are

sequenced, allowing for quantification of genetic diversity. VOAs allows estimation of number

of infected cells in the latent reservoir, as the dilution factor is known from the serial dilution

step. VOAs are limited by their expensive and time-intensive nature. However, this method

is the only method that can filter cells that contain replication incompetent proviral sequences

(Siliciano et al., 2003; Taswell, 1984).

Regardless of the method used for measuring the viral diversity in the latent reservoir,

summary statistics are needed to report the clonality. Clonality is a measure of the occurrence

of identical genetic sequences in a population (Ferreira et al., 2021; Hosmane et al., 2017;

Joos et al., 2008). A variant (v) in a population is an unique sequence. In literature, there

are two widely used methods of quantifying latent reservoir clonality. First is to calculate

the proportion of sequences that have at least one other identical sequence in the population,

shown in Eq.1.1 (von Stockenstrom et al., 2015; Wagner et al., 2014). For a population with S
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sequences, where each variant has ni individuals, and I(x) is an indicator function that returns

1 if true (i.e. when there is more than one individual in a variant), otherwise 0.

p1 =
ΣviϵPniI(ni > 1)

∥S ∥
(1.1)

Second is to calculate the proportion of variants in a population that are non unique (Mal-

darelli et al., 2014). For a population partitioned by variant, with P partitions.

p2 =
ΣviϵP I(ni > 1)
∥P∥

(1.2)

In the second method, the clonality score does not report the membership size of a variant

group - it only reports the comparisons between membership groups. To illustrate the difference

between these measures, consider a population with 3 individuals with sequence 1 (variant

1), 2 individuals with sequence 2 (variant 2); and 1 individual with sequence 3 (variant 3)

(S: {v 1: 3, v 2: 2, v 3: 1 }). Depending on which proportional clonality score is used (1.1 or

1.2), the clonality score is effected as the denominators are widely different. p1 (1.1) would

give a clonality score of 5/6, or 0.83; and p2 (1.2)) would give a clonality score of 2/3, or 0.66.

The current methods for describing clonality are not up to the task of accurately describing the

underlying dynamics of the latent reservoir. Among these issues are: existing methods do not

evaluate statistical significance of group membership (Ferreira et al., 2021); and under-estimate

extent of clonality due to under-sampling (Reeves et al., 2017).

1.4 Viral Evolution Within Hosts

Phylogenetics is a wide ranging field of study that attempts to draw biological insights by study-

ing the evolutionary relationships between individuals and populations – a subset of phyloge-
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netics is phylodynamics (Yang and Rannala, 2012). Phylodynamics is the study of epidemio-

logical, immunological, and evolutionary processes that shape viral phylogenies (E. Holmes et

al., 1995). Genetic sequence data is used to infer the underlying process at play – especially in

processes that are hard to study. Transmission dynamics, both within-hosts and between-hosts

can be studied using these methods.

For example, phylogenetics is used to study the discordance between among-host (between

individuals) and within-host (within a single individual) rates of HIV evolution. An order of

magnitude separates the the two types classes of HIV evolution (Lemey, 2005). In a chron-

ically infected individual with uncontrolled HIV, the HIV population is genetically diverse.

The molecular driver for this diversity is Reverse Transcriptase (RT). RT lacks a proofreading

mechanism, and therefore introduces relatively large numbers of mutations, as compared to

DNA/RNA replication (Carr et al., 1996; Hu and Hughes, 2012; Kudesia and Wreghitt, 2009).

A small number or even just an individual virus establishes an infection in an individual. The

sharp decrease in viral diversity between individuals in a transmission pair has been termed

the ”transmission bottleneck” (Bergstrom et al., 1999). To date the causes of this genetic

bottleneck have not been identified. Studies have suggested that the immunological and phys-

iological environment of viral entry points are part of the selection process (Bergstrom et al.,

1999; Boeras et al., 2011). There is a strong selective filter during the transmission bottleneck,

reflected in the high number of exposure events that are required for successful transmission

(E. Holmes et al., 1995; Keele et al., 2008; Rieder et al., 2011; Salazar-Gonzalez et al., 2009;

Shaw and Hunter, 2012). Transmitted/Founder studies have found that shortly after infection

the viral population of a recipient is genetically homogenous regardless of the viral diversity

of the founder individual (Boeras et al., 2011; Gnanakaran et al., 2011).

Within-host evolutionary dynamics are typically thought to be governed by selective forces

and competitive fitness. Whereas between-host evolution is typically thought to be governed by

neutral forces (evolution occurs due to random genetic drift), as multiple types of HIV (i.e. A,

B, D) co-exist on population level. In the context of within-host evolution of viruses, neutral
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mutations are ones that do not effect an the viruses’ potential to transmit. The neutral the-

ory of molecular evolution posits that most mutations are either neutral or slightly deleterious

(Kimura, 1968). Neutral forces are thought to govern within-host evolutionary dynamics due

to lack of evidence of selection (Frost et al., 2018; Frost and Volz, 2013). There is a trade-off

between within-host fitness and population-level (epidemiological) fitness - for example, traits

that confer selective advantage to the virus within a host (e.g. immune adaptation) may reduce

transmission potential (Alizon and Fraser, 2013; Lemey, 2005; Pybus and Rambaut, 2009;

Vrancken et al., 2014). This trade-off has been shown in transmission studies - successful

variants are most often not the predominant variant within the host donor (Joseph et al., 2015;

Shaw and Hunter, 2012). In contrast with other viruses, such as hepatitis C, within-host and

among-host HIV evolution does not differ significantly across the genome (Alizon and Fraser,

2013). For example, hepatitis C has higher rates of evolution in the the envelope genome (Gray

et al., 2011). There are several hypotheses to why there is discordance between the two rates

of HIV evolution. One such hypothesis is that selection pressures differs between stages of in-

fection, with selection pressures and therefore evolution rate reduced in early infection. In this

model, HIV evolves at much quicker rate during the later chronic infection stage. Slower evo-

lution in the initial stages of the infection has been suggested to result from insufficient immune

response (resulting in reduced selective pressures) (Berry et al., 2007). Transmission tends to

occur early in an infection, when viral loads are typically higher. Transmissions that occur

earlier in an infection would tend towards carrying fewer mutations, as each round of viral

replication results in a high number of mutations. Within-host evolution tends to be measured

over a long time horizon in individuals with unsuppressed HIV infections, during the chronic

infection stage. An increased rate of evolution during the chronic infection stage, would re-

sult in higher observed evolution rates within-host as compared to between hosts (Berry et al.,

2007; Lythgoe and Fraser, 2012).

The second model hypothesizes that the discordance between rates of evolution results

from HIV becoming adapted to the host’s immune response. However, these mutations only
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increase fitness in a particular host, and quickly revert after transmission. This model suggests

that a high proportion of mutations revert once the virus is transmitted to a new host. Once

again this would result in a mismatch of evolution rates, as only a small number of mutations

would accumulate at the population level (Matthews et al., 2008).

The final model for HIV evolution is the “store and retrieve” hypothesis. In this model,

HIV variants seed the latent reservoir early in the infection. Over time the latent reservoir is

maintained through clonal expansion. Upon reactivation, possibly months to years later, early

archived viral strains are able to circulate once again. It was suggested that these early variants

have higher transmission fitness or remain in anatomical compartments close to routes of trans-

mission - i.e. in the genital tract (Lythgoe and Fraser, 2012; Sagar et al., 2009). As such, these

early variants would be more likely to be transmitted than variants that seed the latent reservoir

later in infection (Lythgoe and Fraser, 2012). Evidence for this model of HIV evolution is

mixed. In support of this model, transmission pair studies have shown that ancestral sequences

are more closely related to actively reproducing/circulating virus in a newly infected individ-

ual, as opposed to actively reproducing/circulating virus in the originating individual (Herbeck

et al., 2011; Sagar et al., 2009).

Much about the latent reservoir remains unknown. The mechanism underlying the estab-

lishment and persistence of the latent reservoir is still not fully known. ART is able to control

active infection and taken proactively it is able to prevent the establishment of an HIV infection

(A. Okoye et al., 2007). However, current therapies do not address the latent reservoir. There-

fore, understanding mechanisms for persistence to prevent initial establishment of the latent

reservoir are important towards the pursuit of a HIV cure.

1.5 Scope of project

The following body of work is divided into three chapters. In Chapter 2, I describe the sim-

clone simulation pipeline I created. In this chapter I show how the HIV-1 within-host dynamics
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are captured using the simclone framework in an existing host-pathogen simulation program.

The methods used to explore the simulation parameter space are detailed. Further, I describe

the nucleotide evolution portion of the pipeline that follows population dynamics simulation. I

present sample inputs and outputs for each simulation step. The mechanism of HIV- 1 latent

reservoir establishment and persistence has previously been modelled using simulation meth-

ods (Perelson and Ribeiro, 2013). Modelling has provided insights into immune escape, viral

evolution, impact of treatment, and other topics of research in HIV research. In this chap-

ter I show that the host-pathogen simualtion program twt can be be used to simulate HIV-1

within-host dynamics.

In Chapter 3, I use the simclone simulation pipeline described in Chapter 2 to investigate

methods of calculating clonality. In biological systems, including the HIV-1 latent reservoir,

genetic identicality implies a particular biological mechanism. In the case of the latent reser-

voir, identicality implies clonal expansion contribrutes to latent reservoir persistence. The

degree to which clonal expansion is responsible for persitence is contested. There are many

ways of calculating the degree of identicality in a population (clonality). The means by which

clonality is calculated can affect downstream correlative analyses. In chapter 3 I attempt to

draw associations between clonaltiy scores and simulation parameters using three calculations

for clonality, two methods used in literature: proportional clonality; and the Gini Index, and a

method I propose ”pairwise clonality”.

In Chapter 4, I attempt to find non-linear associative trends between simclone parameters

and clonality scores. I use particle filtering, a statistical noise reduction technique, to estimate

parameter values from clonality scores. Particle filtering is a method whereby simulation sam-

ples (particles) that are poor representations of real values are systematically removed. In my

implementation of particle filtering, particles are given an RMSE score against target simula-

tions. I show that particle filtering cannot be used to predict parameter values for many of the

simclone parameters.

Finally in Chapter 5, I discuss limitations and implications of my research, in particular
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the findings of the clonality score chapter. I also propose future directions based on the work

completed in this thesis.



Chapter 2

Simulation Model (Simclone)

2.1 Introduction

Within host HIV evolution is difficult to study in-vivo for practical and economic reasons.

A non-exhaustive list of practical reasons include: it is difficult to sample tissues where the

latent reservoir resides (i.e. Lymph Nodes and Gut Associated Lymph Tissues (Ahlenstiel

et al., 2020); it is difficult to isolate productive latent reservoir cells due to lack of biomarker,

although recently advances have been made in detection (Darcis et al., 2019); and the relatively

low proportion of cells that constitute the latent reservoir in proportion to circulating non latent

reservoir cells (Siliciano et al., 2003). Expensive and invasive sampling techniques are required

to isolate cells in the latent reservoir due to the aformentioned issues. Simulations of the

dynamics of the latent reservoir has been used to address questions about immune escape,

CD4+ depletion, and viral evolution (D. D. Ho et al., 1995; Perelson and Ribeiro, 2013).

Previous work does not allow individual lineages to be tracked in an infection back to an index

case. Having the simulated transmission, latency, and reactivation events histories can provide

novel information that may motivate experimental or clinical studies. I created the simclone

simulation pipeline to address this gap in simulation programs. Simclone can simulate HIV

within host evolution while also allowing lineages to be tracked.

19
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Figure 2.1: simclone Framework. Parameters are labelled with [n], with labels found in 2.1.
Some labels are used more than once (e.g. [4,5,6,7]). In the simclone framework transition
parameters are independent of infection status. Encapsulated virus under [1] represents an
HIV Virion.

2.2 Simulation Pipeline and Performance

2.2.1 Simulation Pipeline Overview

The simlone simulation pipeline consists of 3 distinct overarching steps: (1) Creating speci-

fication files; (2) Within-host simulation and phylogenetic tree generation; (3) Simulation of

nucleotide evolution. There are several bash and Python scripts that were used to manage the

simclone pipeline. The first step of the simclone pipeline is to create sets for the simulation

model. Parameter combinations were set by establishing bounds that resulted in within-host

dynamics that consistent with modelling in literature (D. D. Ho et al., 1995; Perelson and

Ribeiro, 2013; Wei et al., 1995). Parameter estimates from the peer-reviewed literature were
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used as a starting point, and adapted for the timescale of the simulation model set by com-

putational constraints in step (2). A Python script generates yaml specification files for the

simulation pipeline. The command-line interface can be used to specify options including: the

number of samples generated; and the number of replicates per samples. Optionally, a sample

name can be specified by the user to label an simulation run as desired. This Python script

generates all necessary specification files and directory structures for step (2). An unique spec-

ification file is generated for each sample, however replicates share a common specification

file. Next, using an R script, within-host interactions (e.g. transmission between cells) are sim-

ulated and transmission trees are generated for each replicate. The main output of interest from

the within host simulations are phylogentic trees that represent the evolutionary history of vi-

ral sequences sampled from simulated HIV-1 infections. Following phylogenetic tree creation,

guide trees generated in step (2) are used to simulate nucleotide evolution on a reference HIV-1

env sequence.

2.2.2 trees within trees (twt)

twt is an R package jointly developed and maintained by members of the Poon lab (www.

github.com/poonlab/twt). The program combines forward-time and reverse-time methods to

simulate host-pathogen trees. Forward-time simulations are used to simulate population dy-

namics, starting from an index case. In forward-time simulations, a Markov state process is

used to simulate the population dynamics of the infection. Markov state processes are random

processes where a future state is independent of past states, and only dependent on the present

state. The probability of an event (transmission and transitions) occuring is drawn from a

joint distribution of rates defined in specification files. The reverse-time simulation method

used in twt is the coalescent, it is used to resolve the transmission and transition history of viral

lineages in sampled cells back to the index case. The coalescent is a model that resolves the an-

cestral relationship between sampled individuals in a population. Coalescent theory estimates

the time between period between lineages and their ancestral states. Reverse-time methods are

www.github.com/poonlab/twt
www.github.com/poonlab/twt
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used for resolving transmission and transition history, as ‘unimportant’ events can be ignored,

thus saving computational effort. The basic unit of the twt framework is a cell. A cell can be

susceptible or infected. Each cell belongs to a class of cells and all cells in a class share a set of

user defined rates that govern its interactions with other cells in the framework, (i.e. infection

rate). In twt, compartments are containers for cells of a singular class, and can contain sus-

ceptible and infected cells. It is important to note that in twt a ‘compartment’ is not the same

as a compartment in a physiological sense – a compartment does not represent a spatially or

physically segregated group of cells. Rather, a ‘compartment’ in twt is termed as a group of

cells that share characteristics (to avoid confusion I term a compartment in twt as “cell types”).

There could be compartments in twt in the physiological sense (groups of physically or spa-

tially segregated cells), however these are not implemented in the simclone framework. There

are two type of events that occur at a given rate: transmission – infection of a susceptible cell

by another infected cell; and transition – the transition of a cell from one state to another, (e.g.

from active to latent). An infected cell is always involved in a transmission event. However

transition events do not require a cell to be infected. When a cell transitions between types,

it maintains its infected status. Transmission rates between cells of different classes can be

varied depending on the compartment of the cells in question. When a cell transitions be-

tween compartments, it assumes the dynamic characteristics of its new compartment. There

is no theoretical limit to the number of compartments that can be defined, only computational

(memory) limits. As the number of compartments, and the number of individuals within them

increase, computation costs increase as well. Within this program, a number of parameters can

be defined such as the number of compartments, compartment size, transmission rates between

and within compartments, and transition rates between compartments.

The first stage of the simulation process is the forward simulation of the population dy-

namics of the infection. This forward simulation process is a discrete Markov process. In a

discrete Markov process, the probability of events occuring are dependent on the current state

of a system – independent of previous events. Starting from an index case (i.e. infection starts
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with one cell), the random spread of infection and transition of cells between compartments is

simulated. An assumption of twt is that there can only ever be one cell infected at the start.

If seeded with multiple infected cells, there would not be a single lineage tree that could be

created relating all infected cells in the simulation. Each cell type is initialized with some

number of susceptible cells. For every step in the Markov Chain, transmission and transition

rates govern the movement of cells between cell types, and the infection of susceptible cells by

infected cells.

At user defined sampling times, ni cells are sampled from the ith compartment. It is im-

portant to note that Σni ≤ ΣNi; where Ni is the number of cells in ith compartment and can

vary over time. Using the transmission and transition events in the first step, a transmission

tree from the index case (source) is generated for the sampled cells. A transmission tree is

an hierarchal graph structure (where each node in the tree has only one parent, but may have

one or more children, except the root node which has no parents) that represents the infection

events between cells between the index case and all sampled cells. In this graph, internal nodes

(non tip and non root nodes) are not necessarily sampled, but can are inferred. This transmis-

sion tree relates the ancestry of sampled cells from the simulation, and may include unsampled

individuals where necessary. The transmission tree is also called the outer tree in the twt.

From these sampled cells, the Gillespie method (Gillespie, 1976) is used to simulate a trans-

mission tree backwards to the index case. The Gillespie algorithm is a process by which the

occurence of stochastic events is determined by drawing values from an exponentially distribu-

tion, scaled to probability rates. Reverse simulation makes it computationally feasible to model

many interactions in complex systems. Reverse simulation increases the computational feasi-

bility because the number of sampled cells is much lower than the number of total cells. Thus

the simulation algorithm does not need to consider as many individuals. Finally a pathogen

tree is simulated by coalescing the viral lineages in the sampled cells to resolve an ancestral

history of the viral lineages to the index case.

In summation, the existing twt program first simulates the population dynamics (how viral
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lineages spread through cell types); resolves the ancestral relationship between sampled cells;

and finally resolves the ancestral lineage of the viruses in the sampled cells.

Further details of how the population dynamics, transmission tree and pathogen tree are

simulated can be found on the twt github repository (see above for repository link).

twt was designed to simulate the dynamics of virus populations being transmitted between

hosts. I extended the twt framework for simulating the dynamics of cells within a single host,

which I call the simclone framework. In the simclone framework (Fig. 2.1) there are four unique

compartments; Active, Latent, Replenishment, and Death. To avoid confusion with “compart-

ment” in the physiological sense, I will now refer to these compartments as cell types. This

nomenclature will also make discussion regarding expansion of the simclone framework easier

to understand. The Active cell type contains cells that can infect other Active or Latent type

cells when infected. Active cell types can transition to the Latent cell type (modelling latency)

or Death cell type (modelling death). Latent cell types can be infected, but cannot infect other

cells. Latent cells can undergo clonal expansion, transition to the Active cell type (modelling

re-activation), or transition to a Death type cell (modelling death). Clonal expansion in the sim-

clone framework is modelled as a transmission event. I assume that “daughter” cells replace an

uninfected cell of the same cell type. The Replenishment type cells cannot be infected, but can

transition to become active or latent type cells. These transition processes mimic cell regen-

eration/ proliferation. Lastly death type cells can neither be infected nor transition to another

cell type. The death cell type is important for modelling the death of viral lineages in the twt

framework. Without the death cell type, viral lineages would continue to propagate.

Besides the parameters that define the interaction between cells, there are parameters that

govern the sampling time, and simulation length that can be defined as well. The simulation

length is the set period of time that the simulation runs for until sampling events, it is dimen-

sionless and not scaled to real-world equivalents. Epochs are a distinct period of time, within

an epoch transmission and transition rates and fixed. Multiple epochs can exist for a given

simulation. The goal of multiple epochs is to allow for different viral transmission environ-
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ments. For example, in the simclone framework, there are two epochs: an epoch where there

is uncontrolled active transmission; then a second epoch where there is no active transmission.

This is how the simclone framework mimics the initiation of successful ART. To model ART

in the simclone framework, I assume that the Active cells can no longer infect other cells (i.e.

AAbr = 0); in the simclone framework transmission events originating in Active cell types are

no longer allowed. To simplify the model, the simclone framework assumes that all active

infection is halted at the initiation point of ART.

Definable parameters within the simclone framework are described in Table (2.1). As dis-

cussed previously, the two epochs represent two phases of a typical HIV-1 patient that initiates

ART. In the first epoch, the 12 parameters in Table (2.1) are fixed to values generated in step

(1) of the simclone pipeline, based on models of the within-host dynamics system (D. D. Ho

et al., 1995; Perelson and Ribeiro, 2013; Wei et al., 1995). The generation of parameter com-

binations from the above distributions will be discussed further later. At the second epoch, the

transmission rates of Active type cells are set to zero (AA br and AL br). As cells ‘die’ by

transitioning to the death type, active and latent type cells take their virus lineages with them.

The end result is that there is a complete or near-complete removal of all viral lineages from the

Active compartment, which mimics the real-world suppression of HIV-1 replication through

ART. After initial parameter setting testing, some definable twt parameters were fixed to allow

for transmission characteristics parameter response testing. These parameters were: sampling

time (t=10); ART initiation time (t=5), and number of cells sampled per cell type (n=100).

Specification files for twt use the YAML markup language (Ingerson et al., n.d.). The

YAML markup language is a structured language much like XML or HTML, but with a much

simpler syntax. Data can be nested and labelled with the YAML format. The simclone frame-

work is saved as a template YAML file, with string markers (i.e. ”[AA br]”) for modifiable

parameter settings. The templates enable automated specification file generation. An example

YAML specification file can be found in the supplemental section A.1.
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2.2.3 Latin Hypercube Sampling

There are 11 parameters in the simclone framework that need to be varied in order to measure

the responsiveness of clonality statistics to changes in parameter settings. Incremental sam-

pling of parameter setting combinations (i.e. drawing n samples for each of the parameters)

would be an inefficient approach to exploring the simclone parameter space. There are simply

too many parameter combinations (N = n11) for robust parameter space testing in a computa-

tionally feasible manner. Hence, parameter selection was preformed through Latin Hypercube

Sampling (LHS).

LHS is a method for sampling a multi-dimensional space in a pseudo-random fashion.

Latin Squares in statistics are much like the Sudoku square, in that it is a descrete n by n

square in which a value is not repeated on a vertical nor horizontal axis. The “Hypercube”

portion of the LHS moniker refers to the multiple dimensions that the sampling method is

applied to. There is no theoretical limit to the number of dimensions that the LHS method can

be applied to - however there may be practical limits to this method. The LHS method was

described first by McKay et al., 1979 and expanded further by Iman and Conover, 1982. The

LHS method works by dividing each parameter into k intervals, with each interval of size x/k;

where (xmax− xmin) is the range of the parameter and k is also the number of samples. One value

is sampled from each of the k intervals. This is repeated n times, drawing k values for each

parameter value. The LHS algorithm then randomly combines the samples across parameters

such that there is a sample in each interval k for each parameter value. The benefits of the LHS

method is that it ensures uniform coverage across the parameter space. Unlike true random

sampling, a set of parameter combinations can be generated such that the entire parameter

space is covered. True random sampling could by chance miss regions of the parameter space.

This method was implemented in the simclone framework by creating a matrix of k number

of samples by 12 parameters with values (’lhsi’) normally distributed between 0 and 1. The

pyDOE (https://pythonhosted.org/pyDOE/) implementation of the LHS algorithm was used to

generate the matrix using the “maximin” option. This option maximizes the minimum distance
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between any two sampled points. This option was chosen to increase the coverage and evenness

of the parameter space. The matrix was transformed by linearly scaling the LHS generated

values by the parameter ranges shown in equation 2.1.

xi = lhsi ( xmax − xmin ) + xmin (2.1)

For example if a LHS generated value (lhsi) was 0.4 for a parameter range of xmin = 4,

xmax = 10, the parameter value used in the simulations would be xi = 6.4.

Parameters can also be considered along a logarithmic using the LHS method as well:

pi = 10−lhsi (2.2)

Parameter values for the logarithmic scaled values are bound by (10−8, 1). Values below

10−8 were found to be uninformative, in preliminary testing with values below 10−8, simu-

lations were unsuccesful due to lack of infected individuals to sample. The LHS values for

logarithmic scaled values are bound differently (0, 8) instead of (0, 1).

2.2.4 Clonal expansion in the simclone framework

As discussed previously, clonal expansion is the proliferation of cells, usually triggered as a

response to an antigen. As the name suggests, daughter cells from these divisions tend to be

clonal. There are some mutations introduced during cell division, however cellular prolifer-

ation has a negligible rate of mutation when mutations introduced by HIV-1 Reverse Tran-

scriptase. In the simclone framework we assume that clonal expansion does not introduce any

mutations. Clonal expansion is a parameter that can be controlled in the simclone framework

(ll br). In the simclone framework, it is coded as an transmission event between two latent-

infected cells.

A phylogenetic tree is a graph structure that represents the evolutionary relationships be-
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tween sequences or individuals. Fig. 2.2 is an example of a rooted tree. In this structured graph,

the nodes at the end of a tree (also called leaves) represent the observed sequences. These are

labeled A, B, C, D and E in Fig. 2.2. In a rooted tree, all the tips are eventually joined until the

branches collapse to a singular node called the root (R). In between the tips and the root nodes,

there are internal nodes and edges. Internal nodes can represent sampled or unsampled individ-

uals. The structure of the internal nodes and edges (i.e. how nodes and edges are arranged) can

vary as it is dependent upon the relationships between the tips and preceding internal nodes.

The length of the edge between two nodes can represent the genetic similarity between the two

nodes; this is a weighted edge in graph theory. Two nodes connected by a shorter arc are more

genetically similar than two nodes connected by a longer arc. Arcs are drawn proportional to

their weight. In the tree depicted in Fig. 2.2, A and D are the same distance from the root (R),

thus these two samples are equally divergent from the root sequence. It is important to note

that the A and D are not necessarily identical, rather they differ from the root (R) in the same

magnitude. For example if the root had the sequence “AAAA”, tip A could have the sequence

“AAGG” whereas tip D could have the sequence “AATT”. Tip E is closer to the root than any

other sequence, and is therefore the least different from the root. Two identical nodes will be

connected by an edge with a length of zero. These are also known as polytomies.

Weighted edges representing evolutionary distance can be exploited to approximate the

“store and retrieve” hypothesis in the simclone framework. Under the “store and retrieve” hy-

pothesis of latent reservoir maintenance, ancestral HIV sequences are “stored” through latency

then reactivated months, or possibly years later (Lythgoe and Fraser, 2012). To capture clonal

expansion in this framework, evolution needs to be halted as soon as sequences enter the latent

reservoir. Since twt provides transmission history, edge lengths can be replaced with zero as

soon as the viral lineage is recognized in a latent type cell (through transmission or transition).

As edge lengths represent evolutionary distance, setting edge lengths with 0 when sequences

enter the latent reservoir in effect halts evolution. The following tree pruning algorithm (Alg.

1) was implemented in R. It recursively considers all pairs of nodes in the tree in order from
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Figure 2.2: Simple Phylogenetic Tree. R represents the root node of the tree. Tips are labeled
A - E, and represent observed sequences. In a phylogenetic tree, horizontal distance represents
genetic similarity (distance) between two points. Internal nodes (non labelled nodes) represent
unobserved, inferred ancestors between the tips and the root.

the root node to Ni; where as i is the total number of nodes in the tree. If the node represents

an active type cell, the edge is tagged as ‘Active’. Otherwise, if the parent node is a latent type

cell, the length of the edge is set to 0, and the edge is tagged as ‘Latent’.

Algorithm 1 Tree Branch Shortening Pseudo-code
while Remaining Nodes do

if Parent Node is Active then
Edge Type← Active

else if Parent Node is Latent then
EdgeLength← 0
Edge Type← Latent

Next Node

The effect of shortening branches in the phylogenetic tree is scaled back evolution over

parts of the original phylogenetic tree. As an example, consider the tree in Fig. 2.2. Sequence

B and sequence C enter the latent reservoir at the parent node of the two sequences. Fig. 2.3

shows the tree that results from the branch shortening process. Sequence B and C are now a

polytomy. These scaled trees are now ready for simulating nucleotide evolution.
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Figure 2.3: Pruned phylogenetic tree created by modifying tree found in Fig. 2.2. There is no
horizontal distance between tips B and C. These two sequences are a polytomy; and would be
interpreted as a clonal expansion event in the simclone framework.

Parameter Types Parameter Description Parameter Name Label
Transmission Rates Active - Active Transmission Rate AA br 1

Active - Latent Transmission Rate AL br 2
Clonal Expansion Rate LL br 3

Transition Rates Active - Latent Transition (Latency) AL tr 4
Latent - Active Transition (Reactivation) LA tr 5

Death Rates Active Death Rate A dr 6
Latent Death Rate L dr 7

Replenishment Rates Active Replenishment Rate RA tr 8
Latent Replenishment Rate RL tr 9

Initial Compartment Size Active Compartment Size Active size 10
Latent Compartment Size Latent size 11
Replenishment Compartment Size Replenish size 12

Table 2.1: simclone parameters. Parameter suffixes denote type of event or cell type parameter.
Prefixes denote involved compartments. First letter is source/origin, second letter (if applica-
ble) is recipient. Label column refers to label in 2.1
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2.2.5 INDELible

The software INDELible (W. Fletcher and Yang, 2009) is used for simulating nucleotide evo-

lution. INDELible is a software that can simulate insertions, deletions, and substitutions over

a variety of evolutionary models. A key feature of INDELible is that it allows for heterogene-

ity of substitution rates among sites, as well as along different parts of the phylogenetic tree.

INDELible utilizes a Markov Chain process to simulate evolution along the entirety of the se-

quence. Null-order Markov Chain are processes whereby the probability of an event occurring

is only related to the current state of a system (i.e. it is independent of states preceding the cur-

rent state) (Gagniuc, 2017). To illustrate the Markov Chain process, consider the game Snakes

and Ladders. It is a game where each player takes turns rolling die in sequence. The num-

ber rolled on the die is the number of spaces an individual can move forward on a numbered

grid. The outcome (i.e. the new position of an individual) of each die roll is only dependent on

the state of the player when the die are rolled. Gillespie’s algorithm is used to implement the

simulation process. In brief: there is a probability distribution for substitution (S), deletions

(D), and insertion events (I); where as the total rates for all event types is lambda (λ) (λ= S

+ D + I). Depending on the model of evolution selected, the substitution rate can vary per

site. At a given time point si, sampled from an exponential distribution (s ∼ λ exp(−λt)), the

type of event is randomly selected based on the model of evolution. If the chosen event is a

substitution event, the site of evolution is randomly selected, but the evolution model defines

the probability of the substitution type. The next sampling time for a branch is given derived

through λ. Further discussion can be found in the publication. INDELible simulations are

managed through control files. There are three items of note in the control files generated for

INDELible: the evolution model; the phylogenetic tree; and the template for the evolution. In

the simclone framework, the simplest model of nucleotide simulation is the default. The Jukes

Cantor model of nucleotide substitution (JC69) assumes equal base swapping frequencies, as

well as equal base frequencies. Other models of nucleotide evolution can be chosen as well.

Thus, any model that INDELible supports can be implemented within the simclone framework.
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A Python script I wrote inserts the modified phylogenetic trees (with pruned branches) from

the twt simulation step into the control file templates. This Python script has command line op-

tions that grants flexibility when creating INDELible control files. The phylogenetic trees are

in the Newick format. A representative HIV-1 env sequence retrieved from NCBI (Reference

Sequence: NC 001802.1) was used as a the template sequence for evolution. NC 001802.1 is a

9181 basepair ssRNA (single strand RNA). The env gene was chosen as a candidate simulation

gene because of its widespread study in literature. This gene is under strong selective pressure

due to its role in immune evasion, consequently there is high variability in this sequence (Aloia

et al., 1993; Zanetti et al., 2006; Zhu et al., 2006). Finally, a seed is included in the control

file to ensure the experiment can be replicated, seeds are randomly generated so they differ

between replicates. A sample control file is attached in the supplementary section. The input

and output genetic sequence for INDELible are in the FASTA format. The FASTA format is

a text-based format for storing nucleotide or amino acid sequences. In the FASTA format,

sequence headers contain information about the following sequence. Headers are denoted by

the ‘>’ symbol. The line that immediately follows the header sequence contains the sequence.

Each letter in the sequence line represents a nucleotide (A, C, G, or T) or amino acid (A, R, N,

...).

2.3 Parallel Computing

Relatively long simulation times due to high replicate and sample numbers necessitated the

implementation of parallel computing. The longest and most computationally intensive step

is typically the twt simulation stage. While each twt simulation was not computationally ex-

pensive, the high number of replicates per experiment resulted in a high total cost. Since each

twt simulation were independent from each other, simulations could be run in parallel. Par-

allel computing was implemented through the mpi4py library in Python (https://github.com/

mpi4py/mpi4py). Parallel computing is not strictly necessary to run this pipeline. However,

https://github.com/mpi4py/mpi4py
https://github.com/mpi4py/mpi4py
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it can greatly increase the overall speed of a set of simulations by removing the need for each

simulation to wait for the completion of the previous simulation. Due to the low compute cost

of the nucleotide evolution simulation step, only the population dynamics simulation step was

refactored for parallel computing. It is possible to run the nucleotide evolution step on cluster

computing, however.

MPI and Parallel Computing

Message Passing Interface (MPI) is a protocol for passing commands between distributed com-

puting resources. It is a structured protocol that allows processes to be aware of the status of

other ongoing processes. The mpi4py library provides methods for making use of MPI classes

such as communicators. To enable MPI methods in a Python script, the mpi4py module in

Python and the MPI module on the cluster must be enabled – this is specific to the RHEL dis-

tributions of Linux. Generally, there are two ways of using MPI for parallel computing. First

is to distribute tasks equally over the available nodes and processing threads on initialization.

This is the simplest method to implement, and does not require an active listener to assign new

tasks to idle processes. For each process, a queue is initialized with an equal number of tasks to

run. If these tasks do not require the same amount of time, or there is excessive variation in the

time to complete different tasks, this method of task distribution can result in idle nodes. twt

simulations do not necessarily take the same amount of time to complete. There are scenarios

where the simulation will stochastically fail on the extreme ends of parameter combinations.

For example, at the extreme end of parameter settings the number of infected cells can fall

below the number of cells needed to be sampled, therefore resulting in a failed simulation. twt

will re-attempt the simulation n times (default n= 3) before marking a simulation as unfeasible.

The task distribution method can be modified for this behaviour. On initialization, a listening

process is created with a task queue. Upon receiving a ‘completed’ signal from the worker

thread, the listening process assigns the next task in the queue to the idle worker thread. This

continues until all the tasks are completed.
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2.4 Performance

There were two computing resources used in the performing simulation and analysis. The

“workstation” is a custom built desktop computer used for bioinformatics work. Most work

preformed on the workstation was conducted through (secure shell) ssh/command-line access

due to the restrictions imposed by the COVID-19 pandemic. The computing cluster “BEVi –

Bio-informatics and Evolution of Viruses” is a shared computing resource used among mem-

bers of the lab group. BEVi in the Western University Data Centre, and was also accessed

through ssh/command-line. Technical specifications for the computing resources can be found

in Table 2.2. Performance estimates were based on default settings of the simulation pipeline:

1000 samples taken from some parameter distribution, with 10 replicates per sample.

Computing Resource Specifications
Name Node Name CPU Cores RAM OS

Workstation (Langley) N/A Intel Xeon E5-1650v4 6 16 GB Ubuntu 18.04.5
Computing Cluster (BEVi) Head Node 2 x Intel Xeon E5-2667v4 16 64 GB CentOS 7.9

Compute Node 0 2 x Intel Xeon E5-2667v4 28 56 GB
Compute Node 1 2 x Intel Xeon E5-2667v4 28 112 GB
Compute Node 2 2 x Intel Xeon E5-2667v4 28 112 GB
Compute Node 3 2 x Intel Xeon Gold 6248 40 192 GB

Table 2.2: Technical specifications of computing resources

The three distinct sections of the simulation pipeline are: parameter combination genera-

tion; population dynamics simulation and tree generation (twt); and nucleotide evolution simu-

lation. On BEVi, the computation time estimate for a simulation experiment of 1000 samples,

of 10 replicates each was approximately 2 days. On the workstation, the same simulation ex-

periment would take over 7 days. The parameter and control file generation, and nucleotide

evolution simulation stages were relatively quick (2 minutes, and 30 minutes respectively)-

thus implementing these two stages into the cluster computing pipeline was not done. In addi-

tion, the parameter and control file generation stage is not a good fit for cluster computing, as

LHS generation and control file generation is not easily broken down into smaller tasks.
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2.5 Simulation outputs

Simulations are an important tool for understanding processes that are not easily measured in

vivo for practical or for financial reasons. Simulations can reveal underlying mechanisms be-

hind processes that can then be applied to real-world analyses. For example, simclone pipeline

captures cell level transmission and transition, data that could never be captured when studying

the latent reservoir in vivo. The parameters can also be tweaked to study hypotheses that would

be unpractical or unethical in vivo. Samples of the outputs mentioned in this section can be

found in supplementary materials.

2.5.1 Parameter Combination Generation

The output of the parameter combination generation is a directory that contains all the neces-

sary files and sub-directories for the entire pipeline. Two key outputs are the comma-separated

values file (csv) that contains all parameter combinations, and the control files for the next

step: population dynamics simulation and tree generation. In this stage the Latin Hypercube

Sampling method from the pyDOE Python library is used to generated a 12 by n matrix. This

matrix is scaled to the parameter distributions defined by the user. The naming scheme for each

sample/replicate is “{n} {sample/rep}”. The parameters for each replicate is stored as a CSV for

further downstream analyses.

2.5.2 Population dynamics simulation and tree generation

As discussed, the first step of the twt simulation stage is modelling the growth of the infection in

the cell types. The output of the population dynamics simulation is an R6 object that contains

all transmission and transition events that occurred during the simulation. Fig. 2.4 shows a

single representative outcome of a stochastic population dynamics simulation process. It is

a non deterministic process (i.e. there is a different outcome for the same parameter values).

This graph shows the changes in population sizes for a representative simulation. The index
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case always starts in an active cell. Depending on the parameter combinations being tested,

this population dynamic graph will appear differently. Blue lines in this figure represent the

susceptible population for a cell type. Red lines represent the infected population. The graph is

plotted on reverse simulation time axis, where the x-axis starts at the maximum simulation time

(10 in Fig. 2.4) and ends at zero. This is the effect of cells moving from the replenishment cell

type. As time passes, the number of infected active type cells rapidly increases exponentially.

Latent type cells are infected much slower, but still at a steady rate (9.92 × 10−6 transition

events / Unit Time). ART initialization happens at t = 5. At this point, infection between active

type cells no longer occurs, the infected active type population starts to decrease. In addition,

the number of susceptible active type cells start to slowly reappear. Outputs of the population

dynamics simulation are saved to various folders in the experiment directory. The transmission

and transition events are extracted and saved as a CSV file. A line plot displaying the trajectory

of population changes (e.g. Fig. 2.4) is saved for visual inspection. In addition the outer plot

showing the transmission tree for sampled individuals is saved for the same reason.

Figure 2.4: Line graph showing changes in susceptible (labelled with ”S” prefix) and infected
(labelled with ”I” prefix) populations in all cell types during initial population dynamics simu-
lation.

As discussed previously, the transmission ‘outer’ tree is used to simulate the phylogenetic
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(a) Sample phylogenetic tree without branch
shortening

(b) Sample phylogenetic tree in (a) with
branches shortened when lineages enter latent
type cells

Figure 2.5: Phylogenetic trees generated by twt simulation. Branches are coloured based on
the cell type. Branches that are red are when viral lineages are in active type cell. Branches
that are blue are when viral lineages are in latent type cell

‘inner’ tree. The are modified using the branch shortening method described previously. The

phylogenetic tree is then saved as a Newick file for the nucleotide evolution simulation. A

coloured version of the phylogenetic tree is saved as well (see Fig. 2.5b). In addition, the

Newick file is modified to remove artifacts that INDELible cannot process. The tree structure

does not change, only the interior node names are removed.

2.5.3 INDELible

The modified phylogenetic trees generated by the previous stage are inserted into a control file

template for INDELible. See supplementary section for an example INDELible input. The rest

of the control file is constructed as per the specified nucleotide evolution model. These control

files are saved to tree specific directories. INDELible is then directed to these directories on

a replicate-by-replicate basis. INDELible outputs two FASTA files that contain a number of

evolved HIV env sequences. The number of sequences in the INDELible output FASTA file

depends on the number of samples specified within the twt simulation. This number is the

number of cells that are sampled from the active and latent cell types respectively.
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Summary statistics

3.1 Background

3.1.1 Measures of Clonality

Replication of the HIV genome is highly error prone, due to the lack of a proof reading mecha-

nism in RT (Boeras et al., 2011; Cavarelli and Scarlatti, 2009; Hu and Hughes, 2012; Telesnit-

sky, 2010). As such, the presence of identical integrated HIV-1 DNA sequences, is taken as an

indication that clonal expansion is the underlying cause of HIV persistence in the latent reser-

voir (Chavez et al., 2015; Crooks et al., 2015; Siliciano et al., 2003; Yeh et al., 2021). However,

it is difficult to quantify the size and diversity of the latent reservoir, reasons include: relative

abundance of the latent reservoir is low; assays are insensitive; and different quantification

techniques systematically over or underestimate the diversity and size of the latent reservoir

(Ferreira et al., 2021; Massanella and Richman, 2016).

Clonality is a measure of the occurrence of identical genetic sequences in a population

(Ferreira et al., 2021; Hosmane et al., 2017; Joos et al., 2008). Clonality of the latent reser-

voir is used to infer the mechanism of latent reservoir maintenance. Higher levels of clonality

are taken as evidence that clonal proliferation is the method for latent reservoir maintenance.

(Hosmane et al., 2017). Tracking the genetic drift of a population, and the speed at which

38
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mutations become fixed in the latent reservoir can address conflicting establishment and main-

tenance hypotheses. The latent reservoir has been shown to become increasingly clonal over

time, suggesting cellular proliferation to be the mechanism of maintenance (Cohn et al., 2015).

In the “store and retrieve” hypothesis, HIV-1 variants seed the latent reservoir early in the in-

fection, and is maintained through cellular proliferation. In support of the “store and retrieve”

hypothesis, it has been reported that the vast majority of integration events occurs near the start

of ART (Chavez et al., 2015, Abrahams et al., 2019; Brodin et al., 2016). Another possibility

is that the latent reservoir could be seeded continuously during active infection (B. R. Jones

et al., 2018). The latent reservoir could also be maintained through low level HIV activity

in drug sanctuaries or environments otherwise permissive of viral replication. HIV activity in

these sites results in ongoing infection and then latency of the reservoir (C. V. Fletcher et al.,

2014). However it should be noted that apparent clonality can occur for reasons other than

clonal proliferation. For example, ineffective ART can provide a strong selective force for a

particular set of drug-resistant mutations. A ‘hard sweep’ event can occur, limiting the genetic

diversity. Hard sweeps are selection events that result in fixation of mutations in a population

(e.g. selection of antibiotic drug resistance genes in a population of bacteria after exposure

to antibiotics). After this sweep, the population would appear to be less heterogeneous, even

without clonal expansion (Feder et al., 2016).

There are clonality metrics that report clonality by quantifying the genetic diversity of the

latent reservoir from observed quantities of genetic variation in the sequences.

3.1.2 Proportional Clonality

A proportional clonality score is the most frequently used method of calculating identicality

in latent reservoir research (Wagner et al., 2014, von Stockenstrom et al., 2015). It can be

calculated as the proportion of sequences that are identical to one other sequence in a sample

(Eq. 3.1). In Figure 3.1., there are 5 individuals that share at least one identical sequence: a

clonality score of 5/6 = 0.83 (von Stockenstrom et al., 2015; Wagner et al., 2014).
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Figure 3.1: Circles that share the same border pattern are identical. Edges that connect two
identical circles are dashed. Solid edges are non-identical comparisons.

The proportional clonality metric has limitations. In particular, proportional clonality statis-

tics are biased as a result of incomplete sampling (Reeves et al., 2017), resulting in systematic

underestimates of the size of the latent reservoir. This is because latent reservoir has a skewed

distribution, where a small number of unique variants constitute a large proportion of the in-

dividuals in the reservoir (Hoehn et al., 2015). Therefore, there is an equal probability of

sampling an unique sequence as sampling proportion increases. In particular, as sampling pro-

portion increases, more is revealed about the genetic structure. Lower sampling proportion

However, with the proportional clonality score, information about the underlying structure,

such as number and size of polytomies are lost. Notably, in the proportional clonality metric,

information about sequences are collapsed into a binary “singleton” vs. “not-singleton” count

(Ferreira et al., 2021).

Proportional Clonality =
ΣiniI(ni > 1)
Σini

(3.1)
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3.1.3 Gini coefficient

There are clear limitations to the proportional clonality scores. Therefore a score that takes

into account the genetic diversity and structure of a sample is necessary. The Gini coefficient

(G) is a method for measuring the distribution of some resource over of groups (Gini, 1936).

It is typically used in economics, to estimate the distribution of wealth over the population. It

has also been used in ecology and immunology research to measure the distribution of genetic

variability over some distribution of individuals (Thapa et al., 2015, Sadras and Bongiovanni,

2004). The Gini co-efficient has been use to varied effects by (Bashford-Rogers et al., 2013;

Hoehn et al., 2015) to estimate within host HIV genomic diversity. The Gini co-efficient ranges

from 0 to 1 where populations with Gini coefficients closer to 0 have the most homogeneous

distribution (most evenly dispersed genetic variation among individuals); populations with val-

ues closer to 1 have the most skewed distribution. G is calculated by taking the proportion of

the space between the two curves in Fig. 3.2 ( i
(i+ii) ). In 3.2, the area under the dotted line (i

+ ii) represents perfect equality - where each sequence contributes an equal amount of genetic

diversity in a population. The solid line curve separating areas i and ii is the Lorenz curve. The

Lorenz curve describes inequality of genetic diversity in a population. For calculating genetic

variablity, the cumulative share of individuals is plotted on the x axis, and the cumliative share

of diversity is plotted on the y axis. Unlike the proportional clonality score, G is able to dif-

ferentiate between a completely identical population, and a population that has two groups of

identical sequences. For example, G for a population with the distribution [1,2,3] (G = 0.222)

is lower than G for a population with the distribution [1,5] (G = 0.333). For both of these

populations, the proportional clonality score would have been 0.833.

An approximation for the G can be found in Eq. 3.2 for population with n groups of y indi-

viduals, with values yi to yn, that are indexed in monotonically increasing order (yi ≤ yi+1). This

formula approximates the area of ii) in Fig. 3.2 instead of fitting a curve. G does not behave

optimally as the number of unique sequences decreases, especially as it approaches 1. This is a

result of the G approximation for discrete values. For a population that is completely identical,
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Figure 3.2: Graphical representation of the Gini co-efficient calculation. The Gini co-efficient
is calculated by dividing area i by areas i + ii. For the approximation of the Gini co-efficient, ii
is approximated by step wise discrete values.

G = 0. In general, as the number of unique sequences decreases the Gini coefficient starts to

fluctuate wildly. G is dependent on the number of groups in the sample. For example consider

two populations; one with the distribution [0,100] (G = 0.500); and the other [0,0,0,100] (G =

0.750). There is higher in-equality in the second population because there are a greater number

of groups with 0, as compared to the one group with 100. This property of G is one reason that

may not be ideal for calculating genetic diversity for a population that can be highly clonal. It

is impossible for there to be a group with ‘0’ members when using the G to measure sequence

diversity.

G =
1
n

(n + 1 − 2
∑n

i=1(n + 1 − i)yi∑n
i=1 yi

) (3.2)
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3.1.4 Pairwise Clonality

Due to the drawbacks of proportional clonality and the Gini coefficient, I propose the pairwise

clonality measure. The pairwise clonality calculation is shown in Eq. 3.3.

Pairwise =
∑n

i=1
∑

j>i I(i, j)(
n
2

) (3.3)

where I(i,j) = 1 if sequence i == sequence j, otherwise 0

Plainly, the pairwise clonality statistic is the proportion of pairwise comparisons between

sequences that are identical. It addresses some of the shortcomings identified with the previous

clonality scores. The pairwise clonality score is a linear score. Unlike the Gini co-efficient,

as a population becomes more homogeneous, the pairwise clonality score increases in value.

The inverse is true - as a population becomes more heterogeneous, the pairwise clonality score

decreases in value. The rationale behind this measure is that identity is not a attribute of a single

individual. The comparison between two observations can be identical. A single observation

cannot be identical in-itself. In addition, the pairwise clonality statistic has nice statistical

characteristic. Each identity comparison - that is each comparison between two individuals –

is an independent event from other comparisons. This provides a more reasonable statistical

framework for evaluating clonality results.

3.2 Methods

3.2.1 Calculating Clonality

The FASTA files from the INDELible simulation stage were processed to calculate each afore-

mentioned clonality metric (proportional clonality, Gini coefficient and pairwise clonality). For

each FASTA file, the number of each unique sequence was counted. To automate sequence pro-

cessing, FASTA files were processed in Python. Hashing is a deterministic algorithmic method
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that transforms data into a set length value. The Python implementation of the hash function

(https://docs.python.org/3/library/ hashlib.html) transforms any input into a fixed length inte-

ger. The hash function implemented in Python ensures there is low chance of collision (two

objects generating the same hash). Thus, hashing is a vastly superior alternative than an ex-

haustive linear comparison of two sequences. Each simulated sequence was hashed once, and a

dictionary was created with the name of the first sequence processed for each unique sequence;

the hashed value keyed by the unique sequence; and a count of how many times the hash was

observed. The dictionary was used to calculate the proportional clonality score (Eq. 3.1) and

the Gini co-efficient (Eq. 3.2). For the pairwise clonality score, a recursive function was writ-

ten that considered every comparison possible between all sequences. For a population with n

individuals, there are
(

n
2

)
possible unique comparisons. After the pairwise comparison between

individuals i0 and i1 has been considered, the comparison between individuals i1 and i0 does

not need to be considered. The recursive function I wrote in Python considers all comparisons

for an individual ix indexed on x (where 0 < x < n), then moves on to consider ix+1, removing

individual ix from consideration. The function recursively considers all individuals until none

are left. As shown in Eq. 3.3, the pairwise clonality score is the proportion of all pairwise

comparisons that are identical.

3.2.2 Regression Analysis

At its core, the purpose of linear regression is to predict a value y on the basis of another value

x. The variable x is the ‘predictor’ or ‘independent’ variable whereas the variable y is the

‘outcome’ or ‘dependent’ variable. Linear regressions can rely on one or more independent

variables to predict the value of the dependent variable. A linear regression is fit to the data by

estimating coefficients of the independent variable(s). Regression coefficients are estimates of

parameters, they quantify the relationship between the independent variable and the response

variable. These regressions can be compared to determine what coefficients result in the best

fit for the data. Eq. 3.4 shows the general formula for a multi-variable linear regression. To
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estimate “y”, the coefficient “b” is calculated for n independent variables (x) (“Simple linear

regression”, 2005).

y = b0 + Σibixi (3.4)

Generalized Linear Models (GLM) are an expansion of linear regression. A key component

of the GLM is the ’link function’ that allows response variables to vary in a non-linear fashion

(Nelder and Wedderburn, 1972). Another component of the GLM is allowing the distribution

of response variable to vary (i.e. binary response to a linear regression (0,1)). For example

using simple linear regression to predict a binary categorical response (i.e. clonal vs. singleton)

would return nonsensical results, as linear regression makes the assumption that y is a linear

function of x. Instead a binomial distribution link function can be used in a GLM. A variety of

link functions can be used in a GLM; Poison, Binomial, Bernoulli to name a few.

3.3 Results

3.3.1 Analyzing Clonality Scores

A benefit of simulations is the ability to control the input parameters. Unlike real-life experi-

ments, simulations can be tuned to test specific hypotheses. As discussed previously, transmis-

sion and transition rates can be controlled in the simclone framework. Identifying the strength

of relationship between transmission/transition rates and clonality scores is possible through

GLM analyses. Identifiability of parameter values from clonality scores (e.g. estimating the

levels of clonal expansion from the clonality score alone) can provide validation for analyses

that use clonality scores to infer the method of latent reservoir persistence.

Identifiability of parameter values using clonality metrics (proportional, Gini co-efficient,

pairwise coefficient) was tested by fitting GLM on simulation results. Increasing clonal ex-
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pansion the rate of clonal expansion should be correlated with increased number of identical

sequences (clones). Analysis of simulated sequences reveal that this is not the case for all

clonality measures.

A GLM was fit with the three clonality scores as the response variable with all simulation

parameter values as independent variables. The link function used to fit the GLM was the bi-

nomial family. Proportional Clonality was not significantly associated with increased clonal

expansion when all parameters were varied (p = 0.324) nor when only a subset of parameters

were varied [Active to Active infection rate, Active to Latent infection rate, Clonal Expansion]

(p = 0.846). The Gini coefficient was significantly associated with increased clonal expansion

when all parameters were varied (p = 1.0×10−4), but not when only the same subset of parame-

ters as above were varied (p = 0.242). The pairwise clonality score was significantly associated

with increased clonal expansion when all parameters were varied (p < 2e-16) and also when

only the same subset of the parameters were varied (p < 2e-16). Parameters that introduce or

propagate viral lineages to the latent reservoir were chosen for the subset. The subset was used

to reduce simulation noise to test associations. Other associations were tested using the GLM

method as well.

Figures 3.3, 3.4, and 3.5 show the three clonality scores (proportional, Gini and pairwise)

calculated for the same simulation run. All simulation parameters were varied. The number of

simulated sequences for each replicate is 100. Thus the possible range of clonality scores are:

proportional clonality (0 - 100); Gini co-efficient (0 - 1); and pairwise clonality (0 - 1). The

Gini co-efficient was significantly associated with Active to Active infection rate (p = 0.006),

and Latent to Latent infection rate (p = 0.0001) when all parameter values were varied. When

only a subset of simulation parameters were varied, only the Active to Active infection rate

was significant at the α = 0.05 level (p = 0.007).
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Figure 3.3: Proportional clonality score drifts upwards as clonal expansion rate was increased.
Clonal expansion parameter is on the x-axis, log-normal scaled between 0 and 1. X values
represent clonal expansion events per simulation unit time. Y-axis is proportional clonality
score, possible values range between 0 and 100. Each point represents one simulation replicate.
All simulation parameter values were varied for this simulation run. Proportional clonality was
not significantly associated with clonal expansion p = 0.324.

Figure 3.4: Gini coefficient is inversely correlated with clonal expansion. Clonal expansion
parameter is on the x-axis, log-normal scaled between 0 and 1. Y-axis is Gini coefficient score,
possible values range between 0 and 1. All simulation parameter values were varied for this
simulation run. Gini coefficient was significantly associated with clonal expansion when all
parameter values were varied p = 0.0001.
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Figure 3.5: Pairwise clonality is correlated with clonal expansion. Clonal expansion parameter
is on the x-axis, log-normal scaled between 0 and 1. Y-axis is pairwise clonality score, pos-
sible values range between 0 and 4950. All simulation parameter values were varied for this
simulation run. Pairwise clonality was significantly associated with clonal expansion when all
parameter values were varied p ¡ 2e-16

Adjusted Odds Ratio (95% CI)

Simulation Parameter
Proportional

Clonality Gini Coefficient Pairwise Clonality

(Intercept) 1.53e+01 ( 9.72e-02, 3.23+03 ) 1.95 ( 2.88e-01, 1.34e+01 ) 1.19e+01 ( 1.15e+01, 1.23e+01 )
Initial Active-type Population 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 )
Initial Latent-type Population 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 )
Initial Replenishment Population 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 ) 1.0 ( 1.0, 1.0 )
Active-to-Active Transmission Inf. ( 0, Inf. ) 0 ( 0, 0 ) Inf. ( Inf., Inf. )
Active-to-Latent Transmission 0 ( 0, Inf. ) Inf. ( 0, Inf. ) 0 ( 0, 0 )
Clonal Expansion 61.42 ( 4.39e-01, 1.543e+08 ) 9.62e-02 ( 2.72e-02, 3.08e-01 ) 134.20 ( 127.36, 141.08)
Active-to-Latent Transition 1.91e-01 ( 0 , Inf. ) 1.44e+221 ( 4.36e-113, Inf. ) 0 ( 0, 0 )
Latent-to-Active Transition Inf. ( 0, Inf. ) Inf. ( 0, Inf. ) 0 ( 0, 0 )
Active Death Rate 3.256e+05 ( 2.59e-85, 1.71e+94 ) 1.60e-21 ( 1.61e-54, 8.89e+11 ) 1.68e+19 ( 4.71e+18, 6.01e+19 )
Latent Death Rate 3.12e+11 ( 4.58e-79, 1.09e+102 ) 1.21e-06 ( 6.32e-40, 1.96e+27 ) 0 ( 0, 0 )
Active Replenishment Inf. ( 0, Inf. ) Inf. ( 0, Inf. ) 0 ( 0, 0 )
Latent Replenishment 0 ( 0, 0 ) 0 ( 0, 0 ) 0 ( 0, 0 )

Table 3.1: No parameters were significantly associated with clonality across all three clonality
measures. Bolded adjusted Odds Ratios indicate point estimates with 95% CI intervals that do
not overlap OR = 1. Adjusted odds ratios were calculated with GLM (binomial link function)
fitted to simulation data with all parameters varying with clonality measures as the response
variable.
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Adjusted Odds Ratio (95% CI)

Simulation Parameter
Proportional

Clonality Gini Coefficient Pairwise Clonality

(Intercept) 2.08e+02 ( 1.02e+01, 1.10e+04 ) 4.75-01 ( 3.01e-01, 7.90e-01 ) 3.89 ( 3.85, 3.92 )
Active-to-Active Transmission 7.48+03 ( 7.54e-02, NA ) 2.21e-1 ( 6.85-02, 6.25e-01 ) 1.62 ( 1.60, 1.65 )
Active-to-Latent Transmission 0 ( 0, Inf. ) Inf. ( 1.57e-87, Inf. ) 0 ( 0, 0 )
Clonal Expansion Inf. ( 0, Inf. ) 0 ( 0, 7.13e+154 ) Inf. ( Inf., Inf.)

Table 3.2: When only a subset of parameters were varied, none of the parameters avoided
overlapping AOR = 1 for all three clonality measures. Bolded adjusted Odds Ratios indicate
point estimates with 95% CI intervals that do not overlap OR = 1. Adjusted odds ratios were
calculated with GLM (binomial link function).

Adjusted odds ratios (AOR) were calculated for each simulation parameter value that was

varied for both of the above GLMs. Adjusting the odds ratios was necessary to adjust for

confounding variables. AOR 95% Confidence Intervals (95% CI) that do not span AOR = 1

indicate significant predictor variables. When all parameters were varied, no simulation pa-

rameter was significant for all three clonality measures ( Table 3.1). No parameter Confidence

Interval spanned the AOR = 1 for the proportional clonality score. For G, only the clonal ex-

pansion parameter was significant. The clonal expansion parameter was negatively associated

with the Gini coefficient. For the pairwise clonality score, both the clonal expansion parameter

and the Active Death Rate parameters were significantly associated with increases in pairwise

clonality.

The GLM analyses show clonality scores that take into account the population structure

(i.e. Gini coefficient and pairwise clonality) perform better at predicting changes in clonal ex-

pansion than clonality scores that do not (proportional clonality). The discrepancy maybe due

to the inability for the proportional clonality score to take into account the difference between

a completely identical sample and a sample where there are several groups of non-unique se-

quences. In Fig. 3.1, the proportional clonality score would give a clonality score of 0.83;

the Gini coefficient would give a clonality score of 0.22; and the pairwise clonality score is

0.27. The proportional clonality score, or any other proposed clonality measure that does not

consider the difference between groups of non-unique sequences, would lose vital informa-

tion about the genetic population structure. The empirical distribution of proportional clonality
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scores is extremely narrow. These clonality values range from 84 to 100, with a mean of 96.5

and an interquartile range of 94 - 99 in Fig. 3.3. Since proportional clonality is an integer

count value, only 5% of possible values contain 50% of the observations. The reduced gran-

ularity and inability to differentiate between common clonality scenarios severely limits the

effectiveness of the proportional clonality score.

3.4 Discussion

The Gini coefficient could differentiate between the ambiguous clonality scenario that the pro-

portional clonality score fails to address. Gini coefficient values ranged from 0 to 0.81, with

a mean of 0.57 and a standard deviation of 0.27. The IQR range of Gini coefficient values

was 0.49 to 0.773. As previously demonstrated, the Gini coefficient was able to differentiate

between the scenarios that the proportional clonality score failed to do. The GLM results show

that the Gini coefficient was significantly associated with the clonal expansion parameter. The

main flaw with the Gini coefficient stems from a property of identity: the number of unique

individuals in a population decreases as the population becomes more homogeneous. These

results mirror the findings of (Ferreira et al., 2021; Hoehn et al., 2015), who found noted that

as sampling fraction increased, the number of singletons likewise increased, resulting in higher

Gini coefficients. However, unlike Hoehn et al., 2015, there were significant associations be-

tween clonality scores and simulation parameter values - with the caveat that Hoehn et al. were

using attempting to fit clinical variables, not simulation parameters. The simclone parameters

may be more identifiable then clinical variables because of system complexity. It can be reason-

ably supposed that the simclone framework has less complexity, and opportunity for variability

than real-world data due to simplifying assumptions. The number of unique sequences has a

disproportionate effect on the G, especially as the number of unique individuals approaches 1.

For example consider the following 3 populations: population a with the distribution [98,1,1;

G = 0.647]; population b with the distribution [99,1; G = 0.490]; and population c with the
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distribution [79,16,5; G = 0.491]. The Gini coefficient would suggest that population a is more

unequal than populations b and c; and population b and c are approximately unequal to the

same extent. The Gini coefficient loses specificity as the number of unique sequences drops.

The Gini coefficient is a measure of inequality across unique groups, as the number of unique

groups decreases, the level of inequality decreases for remaining groups. In this way, it falls

into a similar trap as the proportional clonality score. There exists multiple population dis-

tributions with very different population structures that can be represented by the same Gini

coefficient. Beyond the collision of Gini coefficients for distinct distributions, as the number

of unique sequences decreases, the Gini score does not decrease in a linear fashion. The Gini

coefficient for a completely clonal population is 0; whereas as the population approaches com-

plete clonality, the Gini coefficient increases. The population is becomes more unequal as the

membership to unique sequence groups increases. These two issues significantly limit the use-

fulness of the Gini coefficient in situations where the a population starts at, or nears complete

clonality.

The pairwise clonality measure considers the genetic structure of a population, while main-

taining a stable denominator that does not vary with the homogeneity/heterogeneity of a pop-

ulation. The denominator of the pairwise clonality measure is set by the number of possible

pairwise comparisons between all individuals in a population
(

n
2

)
, where n is the size of the

population. The pairwise clonality measure can capture the changes as homogeneity increases,

and many small unique groups merge into larger unique groups. Considering the same 3 pop-

ulations as before: population a with the distribution [98,1,1; pairwise = 0.96]; population b

with the distribution [99,1; pairwise = 0.98]; and population c with the distribution [88,15,7];

pairwise = 0.80]. Population a and b have a much more similar population structure, and are

much closer to homogeneity than population c. As shown in this example, the pairwise clon-

ality score is able to capture the not-so-subtle differences in population structures that the Gini

coefficient and the proportional clonality scores cannot differentiate between. The pairwise

clonality score also has a nice statistical property. Identity is not a trait of one object – one
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object cannot be identical. Identity is a trait of the relationship between two objects. As such,

the pairwise clonality score is able to comment on identity in a internally-valid way. It has the

added bonus of ensuring each observation is a quasi independent measure. This provides statis-

tical robustness to following statistical analyses. The pairwise clonality measure also addresses

some of the short comings of the Gini coefficient identified by (Bashford-Rogers et al., 2013;

Ferreira et al., 2021; Hoehn et al., 2015). For the Gini coefficient, as the read depth increases,

the number of clones in the large clones increases, while the number of unique singletons also

increases. The skew of the clonal distribution increases; thus increasing the Gini coefficient

(Hoehn et al., 2015). However with the pairwise clonality statistic, the addition of individu-

als to large clonal groups, or as singletons does not cause as large variations in the clonality

statistic. These analyses suggest that clonality measures that consider the population structure

would be more robust in capturing changes in the rates of clonal expansion. Whereas the Gini

coefficient may still be a flawed measure, it may still provide usefulness when analysing het-

erogeneous in populations, as in ecology or immunology research (Sadras and Bongiovanni,

2004; Thapa et al., 2015). There may be situations where the Gini coefficient or the propor-

tional clonality score are a better fit for identifying trends in clonality. Therefore, the goal

of the analysis of the latent reservoir data ( i.e. sequence data ) should be considered when

choosing the best method of analyses.



Chapter 4

Particle Filtering

4.1 Background

General Linear Models are limited, because they require prior knowledge of the type of distri-

bution and relationship between independent and dependent variables to establish associations.

Due to complexity of the simclone model, it is difficult to establish these relationships, there-

fore I employed the particle filtering method. The particle filtering method is a simulation

based method of fitting a model to observed data using summary statistics. In the domain of

phylogenetics, this particle filtering method has been used to fit complex population dynamic

models to genealogies; and to infer phylodynamic parameters (e.g. reproductive number) from

genetic sequence data without fitting a phylogenetic tree (Park et al., 2021; Rasmussen et al.,

2011). The approach that I took to particle filtering mirrors the approach of the two aforemen-

tioned papers. However, calculating likelihood for this complex model is too difficult, as there

are too many parameters to consider. The particle filtering method approximates the posterior

distribution of a model given a noisy observation.

My implementation of the particle filtering method uses a truth simulation run and an exper-

iment dataset simulated using samples drawn from the same distribution that the truth sample

was drawn from (see 4.2 for the experimental design). The clonality scores for the truth sample
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is taken as the true clonality values for each of the three clonality scores - [Proportional, Gini,

and pairwise]. These random simulation runs are taken as the ‘truth’, as we don’t have actual

outcome data with the ground truth. The truth samples are used as the target for the particle

filtering method. The experimental dataset consists of x replicates for each sample with each of

the three clonality values calculated for each replicate. Each replicate is considered a particle.

The Root Mean Squared Error (RMSE) is calculated using Eq. 4.1 for each of the particles;

where Exp are experimental clonality scores; and Targ is the target clonality score.

RMS E =

√
1
n
Σn

i=1

(Expi − Targ
σi

)2
(4.1)

The resulting RMSE scores can be interpreted as an objective (cost) function, where a

particle with a RMSE score of 0 against a target represents an identical comparison. Lower

RMSE scores represent a clonality score closer to the target simulation. Fig. 4.1 shows the

ideal scenario. In the ideal scenario, the RMSE is a quadratic curve, centered around the true

parameter value. Values that are further away from the target are penalized exponentially.

The exponential penalty should be beneficial to particle filtering. RMSE was also chosen for

proof-of-concept testing since the measure has a for its low computational cost, due to the

high number of comparisons involved. However, the cost function for particle filtering I have

implemented can be changed to a Bayesian framework as in Rasmussen et al., 2011 and Park

et al., 2021.

I treated each replicate in the experimental dataset as a particle. After a RMSE score is

calculated for each particle, the particles are filtered, removing the upper 50% of particles.

In the filtering step, the median RMSE score for all replicates in the experiment dataset is

calculated, and any value above the median RMSE score is removed. The particle filtering

method is outlined in Fig 4.2.
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Figure 4.1: Visualization of the RMSE particle filtering method. Each (+) represents a particle.
In the ideal scenario, the RMSE values decrease to a minima for particles close to the true
parameter value. The dotted line shows the median RMSE score; particles above the median
are filtered (removed) when estimating parameter scores.

4.2 Method

The target samples and the experiment samples are drawn from the same parameter distribution

using the LHS method discussed in chapter 2. The parameter values are normally distributed

across intervals initially drawn from literature (but adapted to the simclone framework). Target

and experiment samples were sampled using the LHS method to ensure that the chosen tar-

gets were representative of the overall parameter space. As described in chapter 2, the LHS

algorithm ensures sampling from the entire parameter range. This is important for the particle

filtering method, because of the possibility that discrete regions of parameter space could be in-
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Figure 4.2: The particle filtering method is an experimental design that sits on top of the
simclone simulation pipeline. The filtered particles are samples in the lower 50% of RMSE
values. Ten target samples were drawn (1 replicate per sample simulated), and 1000 experiment
samples were drawn (10 replicates per sample)

formative; multiple regions of the parameter space could have low RMSE values. Using varied

parameters is important for the target dataset, as portions of the parameter space could con-

ceivably have unique interactions. The experiment simulations were also drawn under varying

model parameter values to calculate a pseudo-likelihood surface based on the RMSE of clon-

ality measures between target and experimental samples. The RMSE surface approximates a

posterior probability, without needing to calculate the likelihood of the models. This surface

was considered for each parameter - i.e. were there regions of parameter space that had lower

RMSE values when considering RMSE against the parameter? The target sample and experi-

ment samples were simulated through the simclone simulation pipeline normally without any

additional modification: i) twt simulation specification files were generated; ii) twt simulations

were conducted on the computing cluster; iii) twt outputs (i.e. lineage tree) were modified to

shorten branch lengths in the latent reservoir; iv) INDELible was used to simulate nucleotide

evolution on twt outputs; and v) clonality scores (proportional clonality, Gini coefficient, pair-

wise clonality) were calculated using the method discussed in chapter 2. The RMSE values
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were calculated for each of the targets using Eq. 4.1. The filtering step did not necessarily

filter the same particles (replicate) for each target considered, nor for each clonality score.

The RMSE values were appended to the same dataframe with the parameter settings and the

clonality scores.

4.3 Results

There were ten targets considered with this method. These targets were drawn from the same

distribution as the experiment samples using the LHS method. The targets were equally dis-

tributed across all parameters. The RMSE values for each particle was calculated using the

described methods above. Each particle had 10 RMSE values for each clonality score: one

for each simulation against a target. Fig. 4.3 shows example histograms for the distribution of

clonality RMSE values for particles against the target.

Histograms show multi-modal distributions for RMSE values across all clonality measures.

However these distributions are highly varied, and are dependent on the target. Histograms are

included to highlight the difficulty of choosing a RMSE threshold. Static thresholds were

difficult to parameterize, as the range and distribution of RMSE values could greatly vary

between targets. The median RMSE value was chosen as the cutoff, to maintain the same

number of particles for each comparison across targets and clonality statistics.

As described previously, particles with an RMSE score above the median RMSE value are

filtered out. Table 4.1 shows the median particle RMSE value for each target, given its target

clonality score. Median value represents the maximum deviation of the filtered particles from

target clonality, as any particle with an RMSE below that value is filtered out. Proportional

clonality trends towards lower median particle RMSE when target proportional clonality score

is high (Fig. 4.4a). Median particle RMSE follows a quadratic trend as target pairwise clonality

and Gini coefficient increase (Fig. 4.4c and 4.4b, respectively).

Proportional clonality is an integer count value that is bounded by 0 - 100 for this ex-
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Proportional Clonality Gini Coefficient Pairwise Clonality

Target
Median

Particle RMSE
Target

Clonality
Median

Particle RMSE
Target

Clonality
Median

Particle RMSE
Target

Clonality
1 13.12 94 0.901 0.797 2444 4371
2 4.95 100 1.544 0.000 3334 4950
3 4.95 100 0.900 0.440 2449 4386
4 4.95 100 1.900 0.440 4278 2931
5 15.92 93 0.903 0.798 3182 3756
6 4.95 100 1.494 0.020 5479 2454
7 5.66 98 0.754 0.706 4308 2917
8 10.30 95 0.845 0.768 3716 3229
9 4.95 100 1.348 0.080 5322 2514
10 4.95 100 1.398 0.060 7776 1647

Table 4.1: Median RMSE values of particles against their target are presented for targets (n =
10) for proportional clonality, Gini coefficient and pairwise clonality. The same target is used
across the row, but differ between rows. The same particles are considered across all rows.

periment. There are fewer potential outcomes for proportional clonality scores than for Gini

coefficient and pairwise clonality. Proportional clonality collapses many population distribu-

tions into a single score (i.e. [(99, 1); (54, 45, 1); and (60, 30, 4, 3, 2, 1)] are all assigned the

proportional clonality score of 99). The reduction in variability, and thus lower RMSE score

may reflect this process. Therefore, comparing RMSE values between targets given a type of

clonality calculation (proportional, Gini, pairwise) is possible, but comparing RMSE values

between clonality measures for a single measure is not. RMSE values for different clonality

statistics cannot be compared because RMSE is a scaled measure; it is dependent on the magni-

tude of the target and particle clonality values (Expi and Targ). The clonality statistics operate

on different scales (proportional clonality from 0 - 100; Gini coefficient 0 - 1; and pairwise

clonality 0 - 4950), and therefore RMSE values are not comparable. However, comparing par-

ticle RMSE scores for various targets can be informative. Given that clonality metrics respond

in some fashion to simulation parameter(s), comparing RMSE values for particles can allow

estimation of the target parameter values from the particles. The median RMSE values does

not necessarily represent how identifiable parameters are, it simply represents the distribution

of the clonality score for the 50% of particles closest to a given target.



4.3. Results 59

(a) RMSE values for proportional clonality of particle against target 2

(b) RMSE values for Gini coefficient of particle against target 2

(c) RMSE values for pairwise coefficient of particle against target 2

Figure 4.3: Histogram of RMSE values for clonality scores of particles against the same target.
A,B, and C show the same particles measured against the same target. Dashed horizontal line
shows the median RMSE value of all particles. Red are particles with an RMSE value above
the median for this target. Blue are particles with an RMSE value below the median for this
target
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(a) Median RMSE value for all particles by target proportional clonality score, RMSE values calculated
for the proportional clonality score.

(b) Median RMSE value for all particles by target Gini coefficient, RMSE values calculated for the Gini
coefficient.

(c) Median RMSE value for all particles by target pairwise clonality score, RMSE values calculated for
the pairwise clonality score

Figure 4.4: Median RMSE decreases as the target clonality increases for proportional clonality
(a). Median RMSE generally decreases to an inflection point for (a) Gini coefficient and (b)
pairwise clonality. Scatters show Median RMSE score for each target particle, per clonality
statistic (a) Proportional Clonality (b) Gini coefficient (c) Pairwise clonality. Points are the
median RMSE value for a target, plotted against the target’s actual clonality value.
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To test parameter identifiability for a given target, I calculate the mean of the parameter of

interest for only filtered particles. This mean value is the estimate of the true parameter value.

The median RMSE value is calculated for each combination of target and clonality metric, and

a rank value is appended for each RMSE value (1 for below, 0 for above median). For the

filtered particles, the mean of each parameter is taken as the parameter estimate for the filtered

particles. Fig. 4.5 is a visualization for the process. Red points indicate a particle that have

been excluded, blue points indicate particles remaining. The vertical red line on a) and b) is

the actual parameter value. Fig. 4.5 shows the ideal scenario, where the true parameter value

is close to the parameter estimate (mean parameter value of filtered values). Particle filtering

visualizations for all targets are grouped by clonality statistic in the supplementary files.

Figure 4.5: A) RMSE values for all particles plotted against the Clonal Expansion (ll br) pa-
rameter. Particle colour indicates whether the particle has been filtered. Blue coloured particles
are the remaining particles, with RMSE values in the lower 50%. B) Distribution of the Clonal
Expansion parameter for the filtered particles in A. The red vertical lines show the target Clonal
Expansion parameter.
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Fig. 4.5 was the exception, rather than the rule for this method. The validity of the particle

filtering method was investigated by visual inspection. In most combinations of the target

and clonality measure, the parameter estimate was uninformative. Either the true parameter

value for the target simulation lay outside of even the IQR (Fig. 4.7a), or the distribution of

high RMSE and low RMSE values did not differ with respect to parameter of interest (Fig.

4.7b). Identifiability of the Clonal Expansion parameter was most thoroughly investigated.

Out of 10 targets particle filtering method was able to capture the true parameter value for: 2

of the targets using proportional clonality; 3 of the targets using the Gini coefficient; and 2

of the targets using pairwise clonality (See Table. 4.2 for estimates). Box-and-whisker plots

showing parameter estimates using each clonality metric, grouped by target are shown in the

supplementary section (Fig. A.31). Scatter plots showing point estimates for Clonal Expansion

against true parameter value for Clonal Expansion are shown in Figure (4.6. Dotted line on

the figures (with slope y = x ) represent the line of perfect prediction. Points closer to this

line are targets where predicted Clonal Expansion values were closer to the true (target) Clonal

Expansion value.

Target True Target Clonal Expansion Particle Parameter Estimate (IQR)
Proportional Clonality Gini Coefficient Pairwise Clonality

1 2.45e-08 1.26e-01 (1.74e-03, 1.48e-01) 1.29e-01 (2.06e-03, 1.56e-01) 4.14e-04 (2.00e-07, 1.10e-04)
2 1.72e-01 1.32e-03 (1.40e-07, 4.06e-05) 9.08e-03 (2.00e-07, 7.73e-05) 3.66e-04 (1.80e-07, 9.99e-05)
3 1.98e-03 1.32e-03 (1.40e-07, 4.06e-05) 1.01e-01 (9.70e-06, 6.87e-02) 4.14e-04 (2.00e-07, 1.10e-04)
4 3.96e-04 1.32e-03 (1.40e-07, 4.06e-05) 1.01e-01 (2.06e-03, 6.87e-02) 1.25e-01 (1.52e-03, 1.46e-01)
5 2.24e-04 1.25e-01 (1.48e-03, 1.46e-01) 1.29e-01 (2.06e-03, 1.56e-01) 1.03e-01 (5.03e-05, 8.01e-02)
6 2.01e-03 1.32e-03 (1.40e-07, 4.06e-05) 9.08e-03 (2.00e-07, 7.73e-05) 1.25e-01 (1.48e-03, 1.46e-01)
7 8.45e-04 4.83e-02 (3.00e-07, 1.42e-02) 1.29e-01 (2.06e-03, 1.56e-01) 1.25e-01 (1.52e-03, 1.46e-01)
8 1.12e-08 1.26e-01 (1.75e-03, 1.47e-01) 1.29e-01 (2.06e-03, 1.56e-01) 1.25e-01 (1.53e-03, 1.46e-01)
9 6.91e-05 1.32e-03 (1.40e-07, 4.06e-05) 8.83e-03 (2.00e-07, 7.12e-05) 1.25e-01 (1.48e-03, 1.46e-01)
10 2.54e-02 1.32e-03 (1.40e-07, 4.06e-05) 8.83e-03 (2.00e-07, 7.12e-05) 1.25e-01 (1.03e-03, 1.46e-01)

Table 4.2: Clonal Expansion estimate for each each target is reported for each clonality statistic.
The true target Clonal Expansion parameter is reported as well. Bolded estimates represent
estimates where the true parameter fell within the IQR
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(a) Proportional Clonality

(b) Gini Coefficient

(c) Pairwise Clonality

Figure 4.6: True (Target) Clonal Expansion values are shown on the Y axis, with point es-
timates (mean Clonal Expansion value) for Clonal Expansion using particle filtering method
on the X axis. Dotted line is a reference ‘perfect prediction’ line (slope y = x). Each point
represents the prediction for a given target (labeled with target number), points closer to the
prediction line are better estimates
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(a) True Clonal Expansion falls squarely out-
side of the IQR range.

(b) No difference in particle distribution (be-
sides RMSE values)

Figure 4.7: Examples of uninformative particle filtering. Particle Filtering visualization using
same technique as 4.5. The target value for Clonal Expansion is denoted by the vertical red
line.
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4.4 Discussion

Particle filtering yielded poor results for identifying parameter settings of target simulations

when using RMSE as a scoring measure and the median RMSE value as the threshold for

simulation parameters other than Clonal Expansion. Uninformative particle filtering scenarios

could be classified into two types of scenarios. Targets where the parameter e Targets in the

former scenario could simply represent targets for which the method would not estimate well

(e.g. the targets were outside the reasonable range for parameter estimation). A lack of differ-

ence with respect to the parameter of interest (i.e. AA br in Figure 4.7b) would suggest that

the particle filtering step did not add value to the parameter estimation. Two possible reasons

for this are: i) there was no association between the parameter of interest and the clonality

measure; or ii) the RMSE cost function was ineffective at separating particles

However, I believe the RMSE threshold value was not the issue behind these poor results.

For many of the uninformative particle filtering comparisons (where the true parameter value

fell outside of the ITR range), the parameter estimate was within the outlier region of particles

(Fig. 4.7a). Thus, changing the cutoff threshold for RMSE values (i.e. reducing to lowest 25%

RMSE values instead of 50%) would not increase the precision of the estimate. Additionally,

for other uninformative particle filtering comparisons, there was no clear separation in the

distribution of particles that are filtered and unfiltered. Fig. 4.7b shows an example of this. In

figure 4.7b, there is no distinction between the distribution of red (removed) and blue particles

(retained) along the active to active infection rate in this figure other than the RMSE values.

It is unlikely that another error metric would fix either of these inherent imperfections in the

particle filtering method.

For the former issue (poor estimation), the results would suggest that: (i) the simulation

model parameter is not suitable for parameter estimation using any of the clonality measures;

(ii) that particle filtering is not an effective method for estimating parameters; or (iii) that the

RMSE cost function is not an appropriate cost function for this use case. However, further

investigation is required into which, if any, or if all of these three are the issue. Using a
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different error metric that is reliant on the same comparison between particle clonality metric

and target clonality metric would most likely yield the same result. Possible workarounds for

fixing the latter issue (uniform RMSE scores across parameter values) may be limited as well.

Particle filtering is a method that may be able to identify the Clonal Expansion parameter in

the simclone framework under certain conditions and for certain clonality measures. It may be

possible to use the particle filtering method to identify sets of within host data that exhibit high

Clonal Expansion. Classifying the type of within host dynamic that drives the proliferation

and maintenance of the latent reservoir for individual hosts may lead to personalized therapy

responses. However, caution must be advised for applying the particle filtering method to

estimating rates of infection and transition, especially in real world data. The particle filtering

method shown here is applied to a simplistic simulation framework with many assumptions.

There is a high amount of ‘noise’ in the data due to the complexity of the simulation pipeline.

There are many moving parts in the simulation pipeline, with the added difficulty that parameter

identification is a moving target. The particle filtering results here would suggest that the goal

of the particle filtering method should drive the choice for error metric and clonality metric.

For situations where there is a non-uniform distribution of RMSE values across a parameter

range, the RMSE error metric with the Gini clonality metric could be a good starting point for

tuning a specific particle filtering method.
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Concluding remarks

The simclone framework can be used to simulate various scenarios of within host pathogen

dynamics. It is a flexible pipeline that can be modified to test more complex scenarios. These

complex scenarios are difficult to study in vivo for ethical and practical reasons. Retaining a

study population for the timescale at which the latent reservoir changes at is difficult. Anatomic

compartments that provide location for low level HIV-1 replication, and/or proliferation of

the latent reservoir remain hard to sample. On the practical side, it is remains expensive to

extensively sample the latent reservoir. The half-life of cells in the latent reservoir is estimated

to be approximately 44 months, translating to a natural decay timeline of over 70 years (Crooks

et al., 2015; Finzi et al., 1997a; Siliciano et al., 2003). In addition, due to the relatively low

number circulating latent reservoir cells to uninfected cells, large blood draws are required

for participants. Combination of long blood draws and lengthy timelines, make longitudinal

studies impractical. Longitudinal studies that track the latent reservoir in vivo or in vitro are

able to capture informative stop-restart ART scenarios, but these analyses are typically done

retrospectively and have many caveats. Some examples of limitations to these longitudinal

studies include: distinct clinical experiments between studies used in meta-analyses (Borges et

al., 2018; Gwadz et al., 2021); recency bias for drug adherence or behavioural studies (Gwadz

et al., 2021); and lack of verifiable data, for example prescription data used as a stand-in for
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drug adherence (Reed et al., 2021). Therefore, simulations would remain a suitable alternative

method, or at least a useful supplement to study within host HIV-1 dynamics.

Simulations provide granular data, and in particular, unlimited snapshots in time. For ex-

ample, simclone pipeline captures cell level transmission and transition, data that could never

be captured when studying the latent reservoir in vivo. Simulations allow us to control rates

of transmission and transition, allowing us to understand the role each rate plays in creating

genetic diversity in the latent reservoir. An example hypothesis that could be tested is: what

effect does increasing rates of active to active transmission have on the clonality of latent reser-

voir; and what would happen if ART was started, then halted in this system. These can be

useful for modelling and understanding complex systems that are poorly understood, like the

HIV-1 latent reservoir. Simclone is a robust framework, however as with any other simulations,

there are limitations that can be addressed in future work. For one, the lack of anatomical

compartments (i.e. circulating CD4+ cells in peripheral blood vs. CD4+ cells in lymph nodes);

and different types of cells with unique rates of transmission and transition (i.e. Gut-Associated

Lymphoid Tissues that have low level HIV-1 replication (Thompson et al., 2017).

The simclone framework as described here is a starting point, and can already be used for

downstream analyses. Increasing the complexity of the system will only add to the usefulness

of this tool. It can be expanded to include multiple strain competition, anatomical compart-

ments with differing within host dynamic interactions, and different models of nucleotide evo-

lution can be selected. Increasing the complexity of the simclone framework would allow novel

hypotheses to be tested, as described previously. Some possible scenarios for future evaluation

using the simclone framework include: effect of ART cessation and restart after a viral rebound

on the latent reservoir (Borges et al., 2018); effect of low level HIV-1 replication and infection

in drug sanctuary sites (Thompson et al., 2017); and effect of HIV-1 ART initiation timing on

the latent reservoir (Brodin et al., 2016; Chavez et al., 2015). On the other hand, users should

be cautious about increasing the complexity of the tool. The simclone framework already has

a high number of parameters. Parameterizing the model to produce rational outcomes was
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already difficult for the simclone framework. Creating additional definable parameters to in-

crease model complexity will make this process more difficult. The trade-off for simulations

that could reveal novel insights may be a narrow range of simulation parameter values. In sum-

mary, the simclone framework provides a robust simulation pipeline for measuring the within

host dynamics of the HIV-1, and can be used as the foundational pieces for further simulation

work.

The analysis of clonality measures in Chapter 3 spoke to the shortcomings of the widely

used proportional clonality measure (von Stockenstrom et al., 2015; Wagner et al., 2014), and

the proposed Gini coefficient (Sadras and Bongiovanni, 2004; Thapa et al., 2015). As discussed

in Chapter 3, there were frequent collisions in clonality scores for differing genetic population

structures for the proportional clonality measure and the Gini coefficient. Collisions occur

when two population structures are given the same clonality score. This happened more fre-

quently when using the Gini Coefficient (due to the effect of diminishing unique groups), and

the proportional clonality score (due to low number of possible scores). Collisions are espe-

cially problematic when the distribution of genetic sequences are vastly different (i.e. pro-

portional clonality score for population a [3,2,1] = 0.83; and for population b [5,1] = 0.83.

Collisions are unideal when using clonality measures because it conflates scenarios in further

analyses. This compounds the loss of information caused by having low numbers of possible

clonality outcomes (as in the case of proportional clonality). The Gini coefficient in particular

was not effective for measuring clonality in diminishing groups. Gini coefficient did not re-

spond to increasing heterogeneity in a directional fashion - especially in situations where the

number of unique sequences are low. This limits the usefulness of the Gini Coefficient for

HIV-1 latent reservoir research. There are situations where there is high homogeneity in sam-

ples (Feder et al., 2016; Wolinsky et al., 1992; Yeh et al., 2021), especially when the sampling

fraction is low. Gini coefficient was flawed, and caution is advised when using Gini coefficient

to describe genetic diversity in populations with high homogeneity.

The presence of identical sequences has been interpreted in previous studies as an indication
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of clonal expansion (Bosque et al., 2011, Douek et al., 2002, Maldarelli et al., 2014). However,

my simulations showed high measures of clonality (regardless of clonality measure) are not

necessarily the result of clonal expansions. Two identical sequences that shared ancestry in

the simulation were not necessarily identical due to clonal expansion. Instead, these simulated

sequences could be identical if by chance if there was no mutations accumulated between the

two sequences since their descent from a common ancestor (prior to their respective integration

events). This mirrors research by various others (Lorenzi et al., 2016, Maldarelli et al., 2014)

who have shown that sequencing integration sites are better indicators of clonal expansion. The

findings shown here re-iterate this paradigm and support the use of sequencing integration sites

to measure clonal expansion in the latent reservoir.

Clonality has been used in other domains to characterize biological processes. For ex-

ample, in cancer research, clonality is used to identify driver mutations (Martincorena, 2019,

Biermann et al., 2018, McGranahan et al., 2015). Driver mutations are mutations that drive ab-

normal cellular proliferation, and thus tumourgenesis. These mutations are usually identified

by observing large numbers of identical cells with excessive mutations clustered around or in

a particular region. In McGranahan et al., 2015, the authors attempted to identify actionable

driver mutations using clonality metrics. In their research, the authors used the proportional

clonality metric to describe the distribution of mutations a pan-cancer dataset. The findings

here suggest that information about the presence and diversity of sub-clonal groups may be

lost. The pairwise clonality metric could be applied in research such as the above to provide

more information about the true genetic distribution of the population than the often using pro-

portional clonality score. Identifying driver mutations in cancers is just one avenue of research

where reductive clonality metrics are used. There are other research topics beyond driver muta-

tions in cancer and HIV-1 where clonality cited as an indicator for an underlying event. Others

include: immunology research - T-cell antigen response dynamics (Chiffelle et al., 2020);and

ecology research - organism genetic diversity (Hughes and Stachowicz, 2009), and the rela-

tionship between carbon cycling and clonality (Cornelissen et al., 2014). The results found
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here indicate more care needs to be taken when selecting the correct clonality measure for a

particular analysis.

There is potential for the particle filtering method described in this work to be applied with

a narrow scope. The particle filtering method for parameter estimation can only be applied

to parameter-target combinations that have a non-uniform distribution with regard to RMSE

values. Estimating the true value of the clonal expansion parameter may be possible with this

technique. The RMSE cost function may not have been an appropriate cost function for this

technique. The RMSE cost function was only able to predict clonal expansion in a small subset

of cases for clonal expansion (3/10 targets). When visually inspecting the filtered particles

using the median RMSE score as a threshold, there did not appear to be a significance difference

for most parameters based on filtered status. This suggests two possibilities; i) the parameters

(excluding clonal expansion) were unresponsive to changes in clonality metric - unlikely, as

multivariate GLM results showed significance; or ii) the RMSE cost function did not accurately

penalize uninformative particles. A different approach to establishing likelihood functions can

be pursued, including incorporating the Bayesian likelihood framework to the particle filtering

(Park et al., 2021; Rasmussen et al., 2011). In future work, this parameter estimation technique

could be used to estimate the degree to which clonal expansion is responsible for an individual’s

latent reservoir. Clonality metrics would be extracted from an individual’s latent reservoir

sequence data. Simclone simulations would be created, using the real-world clonality metrics

as the target. Parameter estimates would be calculated using parameters that were most similar

to the target. These parameter estimates could provide information about about an individual’s

HIV-1 infection, and would add to our understanding of the latent reservoir as a whole. This

knowledge could help in many active areas of HIV-1 research including therapy and prevention.

In addition, there is potential to use this particle filtering method to identify parameters that are

non-linearly associated with clonality measures. Visualizing these trends, while reducing the

amount of variation by filtering the particles could provide insights into responsive variables.

This would be particularly useful if the simclone framework is expanded to test more complex
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scenarios. Particle filtering as described here is not ineffective, however opens the door to many

more possibilities.

Using the simclone framework I have created, I have shown pitfalls of the proportional

clonality measure that is widely used; the Gini coefficient that has been suggested for describ-

ing genetic population diversity; and have proposed a new pairwise clonality statistic with more

desirable statistical properties. Analysis of the clonality measures could apply to other research

domains, including cancer research. Further, I have described a particle filtering technique that

could be used to visually identify non-linear trends, and further used under stringent conditions

to estimate parameter values.
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Supplementary

Proportional Clonality Gini Coefficient Pairwise Clonality
Simulation Parameter Coefficient Estimate p Coefficient Estimate p Coefficient Estimate p

(Intercept) 2.73 0.299 6.70e-01 0.494 2.48 <2e-16
Initial Active-type Population 6.46e-06 0.612 4.45e-07 0.917 -2.70e-06 <2e-16
Initial Latent-type Population 1.64e-06 0.986 -5.35e-05 0.169 -6.22e-06 <2e-16
Initial Replenishment Population -8.63e-05 0.685 5.28e-05 0.539 -1.77e-04 <2e-16
Active-to-Active Transmission 1.55e+04 0.262 -1.27e+04 0.006 9.53e+03 <2e-16
Active-to-Latent Transmission -6.57e+04 0.537 2.40e+04 0.518 -5.87e+04 <2e-16
Clonal Expansion 4.12 0.324 -2.34 0.0001 4.89 <2e-16
Active-to-Latent Transition -1.66 0.999 5.09e+02 0.195 -7.98e+02 <2e-16
Latent-to-Active Transition 8.25e+03 0.930 2.11e+04 0.544 -1.32e+03 <2e-16
Active Death Rate 1.27 0.903 -4.79e+01 0.214 4.27e+01 <2e-16
Latent Death Rate 2.65e+01 0.800 -1.36e+01 0.727 -1.31e+01 <2e-16
Active Replenishment -2.22e+04 0.857 2.84e+04 0.548 -8.40e+03 <2e-16
Latent Replenishment 3.60e+04 0.690 2.42e+03 0.945 -3.39e+04 <2e-16

Table A.1: Coefficient estimates and p scores are reported for GLM results. All parameters
were varied. The 3 clonality statistics were calculated from the same set of genetic sequences.
Bolded Coefficient values denote p ≤ 0.05
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I n i t i a l C o n d i t i o n s :

o r i g i n T i m e : 10

s i z e :

A c t i v e t y p e : 7500

L a t e n t t y p e : 5000

R e p l e n i s h t y p e : 20000

D e a t h t y p e : 0

indexType : A c t i v e t y p e

CompartmentTypes :

’ A c t i v e t y p e ’ :

b r a n c h i n g . r a t e s :

1 0 : ( A c t i v e t y p e =0 .00043 , L a t e n t t y p e =2.57 e−05 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

# No i n f e c t i o n o f D e a t h t y p e compar tment

5 : ( A c t i v e t y p e = 0 . 0 , L a t e n t t y p e= 0 . 0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

#No more a c t i v e i n f e c t i o n

t r a n s i t i o n . r a t e s : ( A c t i v e t y p e =0 .0 , L a t e n t t y p e= 5e−05 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e = 0 . 0 1 )

c o a l e s c e n t . r a t e : 1 . 5

’ L a t e n t t y p e ’ :

b r a n c h i n g . r a t e s : ( A c t i v e t y p e =0 , L a t e n t t y p e =1.66 e−06 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e = 0 . 0 )

# c o n s t a n t re − i n f e c t i o n

t r a n s i t i o n . r a t e s : ( A c t i v e t y p e=5e−05 , L a t e n t t y p e= 0 . 0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e = 0 . 0 1 )

c o a l e s c e n t . r a t e : 1 . 5

’ R e p l e n i s h t y p e ’ :

b r a n c h i n g . r a t e s : ( A c t i v e t y p e =0 , L a t e n t t y p e =0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

t r a n s i t i o n . r a t e s :

1 0 : ( A c t i v e t y p e =0 , L a t e n t t y p e =0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

5 : ( A c t i v e t y p e =1.25 e−02 , L a t e n t t y p e= 1 . 2 5 e−02 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e =0 . 0 )

’ D e a t h t y p e ’ :

b r a n c h i n g . r a t e s : ( A c t i v e t y p e =0 , L a t e n t t y p e =0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

t r a n s i t i o n . r a t e s : ( A c t i v e t y p e =0 , L a t e n t t y p e =0 , R e p l e n i s h t y p e= 0 . 0 , D e a t h t y p e= 0 . 0 )

Compartments :

’ Activecomp ’ :

t y p e : A c t i v e t y p e

r e p l i c a t e s : 20

’ Latentcomp ’ :

t y p e : L a t e n t t y p e

r e p l i c a t e s : 20

L i n e a g e s :

’A’ :

s a m p l i n g . t ime : 0

l o c a t i o n : Act ivecomp

r e p l i c a t e s : 1

’B ’ :

s a m p l i n g . t ime : 0

l o c a t i o n : Laten tcomp

r e p l i c a t e s : 1

Listing A.1: Sample YAML simclone specification file
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Figure A.1: Particle filtering parameter estimation for clonal expansion for target 1 using pro-
portional clonality

Figure A.2: Particle filtering parameter estimation for clonal expansion for target 2 using pro-
portional clonality

Figure A.3: Particle filtering parameter estimation for clonal expansion for target 3 using pro-
portional clonality
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Figure A.4: Particle filtering parameter estimation for clonal expansion for target 4 using pro-
portional clonality

Figure A.5: Particle filtering parameter estimation for clonal expansion for target 5 using pro-
portional clonality

Figure A.6: Particle filtering parameter estimation for clonal expansion for target 6 using pro-
portional clonality
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Figure A.7: Particle filtering parameter estimation for clonal expansion for target 7 using pro-
portional clonality

Figure A.8: Particle filtering parameter estimation for clonal expansion for target 8 using pro-
portional clonality

Figure A.9: Particle filtering parameter estimation for clonal expansion for target 9 using pro-
portional clonality
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Figure A.10: Particle filtering parameter estimation for clonal expansion for target 10 using
proportional clonality

Figure A.11: Particle filtering parameter estimation for clonal expansion for target 1 using Gini
Coefficient

Figure A.12: Particle filtering parameter estimation for clonal expansion for target 2 using Gini
Coefficient
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Figure A.13: Particle filtering parameter estimation for clonal expansion for target 3 using Gini
Coefficient

Figure A.14: Particle filtering parameter estimation for clonal expansion for target 4 using Gini
Coefficient

Figure A.15: Particle filtering parameter estimation for clonal expansion for target 5 using Gini
Coefficient
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Figure A.16: Particle filtering parameter estimation for clonal expansion for target 6 using Gini
Coefficient

Figure A.17: Particle filtering parameter estimation for clonal expansion for target 7 using Gini
Coefficient

Figure A.18: Particle filtering parameter estimation for clonal expansion for target 8 using Gini
Coefficient
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Figure A.19: Particle filtering parameter estimation for clonal expansion for target 9 using Gini
Coefficient

Figure A.20: Particle filtering parameter estimation for clonal expansion for target 10 using
Gini Coefficient

Figure A.21: Particle filtering parameter estimation for clonal expansion for target 1 using
pairwise clonality
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Figure A.22: Particle filtering parameter estimation for clonal expansion for target 2 using
pairwise clonality

Figure A.23: Particle filtering parameter estimation for clonal expansion for target 3 using
pairwise clonality

Figure A.24: Particle filtering parameter estimation for clonal expansion for target 4 using
pairwise clonality
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Figure A.25: Particle filtering parameter estimation for clonal expansion for target 5 using
pairwise clonality

Figure A.26: Particle filtering parameter estimation for clonal expansion for target 6 using
pairwise clonality

Figure A.27: Particle filtering parameter estimation for clonal expansion for target 7 using
pairwise clonality
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Figure A.28: Particle filtering parameter estimation for clonal expansion for target 8 using
pairwise clonality

Figure A.29: Particle filtering parameter estimation for clonal expansion for target 9 using
pairwise clonality

Figure A.30: Particle filtering parameter estimation for clonal expansion for target 10 using
pairwise clonality
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(a) Clonal Expansion Estimates for Target 1 (b) Clonal Expansion Estimates for Target 2

(c) Clonal Expansion Estimates for Target 3 (d) Clonal Expansion Estimates for Target 4

(e) Clonal Expansion Estimates for Target 5 (f) Clonal Expansion Estimates for Target 6

(g) Clonal Expansion Estimates for Target 7 (h) Clonal Expansion Estimates for Target 8
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(i) Clonal Expansion Estimates for Target 9 (j) Clonal Expansion Estimates for Target 10

Figure A.31: Clonal expansion estimates for all targets by clonality statistic used. Dashed
vertical line represents true clonal expansion value. Parameter estimate lands within IQR using
the Gini Coefficient for Targets 4, 6, and 10 (d, f, and j respectively). Parameter lands within
IQR using proportional and pairwise clonality for Targets 7, and 10 (g, and j respectively)
(cont.)
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[TYPE] NUCLEOTIDE 1

[MODEL] modelname

[ submodel ] JC

[TREE] t r e e n a m e ( ( ( ( ( ( L a t e n t c o m p 8 3 B 1 : 0 . 0 ) : 0 . 0 ) : 4 . 9 e10 − 6 ) : 1 . 1 e10 −6 ) : 1 . 2 6 e10 −8 ,

( ( ( ( ( ( ( ( L a t e n t c o m p 9 1 B 1 : 0 . 0 ) : 0 . 0 ) : 3 . 2 e10 − 5 ) : 1 . 4 e10 −9 ) : e10 − 3 ) : 2 . 5 e10 −6 ,

( ( ( ( ( ( ( ( ( ( ( ( L a t e n t c o m p 1 1 B 1 : 0 . 0 ) : 0 . 0 ) : 7 . 2 e10 − 8 ) : 4 . 7 e10 − 6 ) : 8 . 3 e10 −6 ,

( ( ( L a t e n t c o m p 9 2 B 1 : 0 . 0 ) : 0 . 0 ) : 4 . 5 e10 − 7 ) : 4 . 4 e10 − 9 ) : 0 . 0 ) : 2 . 0 e10 −8)

: 1 . 0 e10 − 9 ) : 7 . 8 e10 −6 ,

( ( ( Ac t ivecomp 99 A 1 : 1 . 9 e10 − 3 ) : 4 . 2 e10 − 3 ) : 4 . 4 e10 − 8 ) : 4 . 8 e10 − 8 ) : 0 . 0 ) : 7 . 8 e10 − 6 ) : 4 . 7 e10 −4)

: 3 . 6 e10 − 9 ) : 0 . 0 ) : 3 . 8 e10 − 6 , ( ( ( ( ( L a t e n t c o m p 8 1 B 1 : 0 . 0 ) : 0 . 0 ) : 3 . 6 e10 −5)

: 5 . 8 e10 −1 0 ) : 7 . 2 e10 − 6 ) ) ) ) ) ;

[ PARTITIONS ] p a r t i t i o n n a m e

[ t r e e n a m e modelname / s i m c l o n e / NC 001802 . 1 . f a ]

[EVOLVE] p a r t i t i o n n a m e 1 outpu tname

Listing A.2: Sample INDELible control file
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