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Abstract 
 

The thesis investigates by numerical simulation the flow characteristics of tornado like 

vortices produced by three types of vortex generators, namely, Ward-type Tornado 

Vortex Chamber (TVC), WinDEEE Dome and Atmospheric Vortex Engine (AVE). 

 

Laboratory scale (Ward-type TVC) tornado-like vortices were simulated for swirl 

ratios 0.1 to 2.0 using the CFD code Fluent 6.3. The simulations with Reynolds stress 

model compare well with past experimental results. Multiple vortices were observed for 

high swirl ratios in LES simulation. These simulations have generated a comprehensive 

benchmark data for future modelers and experimenters. 

 

The effects of translation and surface roughness on laboratory scale tornado-like 

vortices have been investigated. The simulated results show that the effect of translation 

is not uniform over the range of swirl ratios. For lower swirl ratios the translation reduces 

the maximum mean tangential velocity and for high swirl ratios it causes a slight increase 

in the maximum mean tangential velocity. The introduction of roughness reduces the 

mean tangential velocity at all swirl ratios, in other words the roughness causes an effect 

similar to reducing the swirl ratio. 

 

Numerical simulations for the WindEEE dome, a novel hexagonal wind tunnel, 

were performed. Suitable inlet and outlet configurations were identified.  The study 

shows the feasibility for generating axi-symmetric (tornado-like and downburst-like) and 

straight flow wind profiles in the dome. Also presented are the results of numerical 

simulation of Atmospheric Vortex Engine (AVE), which is intended to generate a 

tornado-like vortex to capture the mechanical energy produced during upward heat 

convection. The results show that the prototype design of AVE is capable of generating a 

vortex flow in the atmosphere much above the AVE and the vortex acts as a physical 

chimney limiting the mixing of surrounding air into the rising plume of hot air. The 

geometrical parameters considered in the simulations provide a good starting point for 

future designs. 
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Chapter 1: Introduction 

 
1.1 General introduction: 

 

Tornadoes occur in many parts of the world. In Canada they occur in southern Alberta, 

Manitoba, Saskatchewan, southern Ontario, southern Quebec, interior of British 

Columbia and western New Brunswick. The risk of tornadoes is the highest in southern 

Ontario and seven F4 tornadoes have been recorded in the region (Natural Resources 

Canada). It has also been assessed that on an average a F3 category tornado occurs in 

southwestern Ontario every five years (Newark 1984).  Tornadoes generally last for an 

hour or more producing wind speeds exceeding 100 m/s close to the ground surface and 

generally leaving behind a trail of tremendous destruction a mile or more wide. Studying 

and understating these violent flows are necessary to reduce and prevent material and 

human losses. 

 

A tornado is defined as a violently rotating column of air extending from a 

thunderstorm to the ground. Significant advances in understanding tornadoes were made 

in the 1970’s with the pioneering work of T.T. Fujita. Prime means of measurement for 

deducing the vortex structure of tornadoes in nature are photogrammetry, local and aerial 

surveys of damage. A notable outcome from the aerial surveys has been the development 

of the Fujita scale (F-scale) for classifying a tornado according to its damage potential 

(Fujita, 1981). In recent years mobile Doppler radars have been used to capture the 

velocity fields of real tornadoes for studying its flow features (Zrnic et.al 1985, Wurman 

et.al 1996, Wurman 2002, Bluestein et. al 2004, Lee and Wurman 2005). The availability 

of a combination of physical observation techniques and mobile radar techniques has 

paved way for better understating of tornadoes.  

 

There is a need to reproduce these uncontrollable vortices into more controllable 

laboratory-scale model vortices in order to gain a more comprehensive understanding of 

their flow dynamics. As it happens, the simulation of tornadoes in the laboratories started 

even prior to the studies on real scale tornadoes and a review of these laboratory models 
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are presented in detail by Davies-Jones (1976). Ward (1972) was the first to build a 

Tornado Vortex Chamber (TVC) with geometric and dynamic similarity to real scale 

tornadoes. The TVC was able to capture all the flow features observed in a real tornado 

including the evolution of multiple vortices starting from a single, primary tornado vortex 

(Ward 1972, Church et. al. 1979, Church and Snow 1979).   

 

The observational studies in real tornadoes and laboratory simulated tornadoes 

have been complemented by fluid dynamic modeling studies. Numerical simulations 

provide a cost effective means to analyze the vortex flows. The objective of the 

simulations could be varied, some attempt to capture the parent super cell storm (Klemp 

and Wilhelmson, 1978, Wicker and Wilhelmson, 1995, Grasso and Cotton, 1995) and 

others like the tornado scale simulation models focus on the lower part of the tornado 

vortex with emphasis on the interaction between the tornado vortex and the ground 

surface (Rotunno 1977, 1979, 1984, Lewellen et.al 1997, Lewellen et.al 2000, Hangan 

and Kim 2008). The region close to the ground surface is of interest for engineering 

applications and is the topic of interest in the present thesis. 

 

The progress made with experimental and computational modeling has been 

extensively and critically reviewed by Church and Snow (1993). A brief outline of some 

of the relevant works is included in the latter chapters of this thesis. 

 

1.2 Scope and objective of the thesis: 

 

The objective of the thesis is to carry out numerical simulation for investigating the flow 

characteristics of tornado like vortices produced by different types of laboratory scale 

vortex generators.  In particular, three types of generators are considered: Ward-type 

TVC, WinDEEE Dome and Atmospheric Vortex Engine (AVE).  The objectives of each 

case are presented below.  

 

Past numerical simulations of tornado-like vortices have been fairly successful in 

reproducing the laboratory scale and real scale tornadoes. The non-dimensional swirl 
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ratio has been recognized as the main fluid mechanics parameter for a tornado-like 

laboratory vortex (Lewellen 1962 and Davies-Jones 1973). The swirl ratios ranging from 

0.1 to 2.0 are considered to be relevant for simulating the entire range of phenomena 

associated with different stages of evolution of the vortex. Past simulations have been 

limited to some select ranges of swirl ratios. Also, the observable parameters considered 

have not been consistent. Therefore, there is a need to generate consistent data over the 

exhaustive range of swirl ratios. Such data could serve as a database for both modelers 

and experimenters. 

 

 While the laboratory scale vortex simulations are characterized by the swirl ratio, 

the real scale tornado vortices are characterized by the Fujita scale. For purposes of 

comparison of the laboratory scale measurements with the real scale ones, correlation 

between the swirl ratio and Fujita scale need to be established. One such exploratory 

relation was proposed by Hangan and Kim (2008), in which F4 scale is found to 

correspond with the swirl ratio of 2. The availability of benchmarked data over a 

comprehensive range would be helpful while seeking further relations of this kind. 

 

A numerical simulation of vortex in Ward-type TVC has been carried out with the 

objective of generating such benchmarked data. The simulations have been carried out 

using Fluent 6.3 code. Initial simulation was done for a swirl ratio of 0.28 for which good 

experimental data are available. The favorable comparison between the model results and 

the experiment indicated the validity of the modeling. Subsequently, computations were 

extended for other values of swirl ratios. Considering the inability of Reynolds Stress 

Model (RSM) to capture the formation of multiple vortices in the case of large swirl 

ratios, Large Eddy Simulation (LES) scheme was employed. 

 

The dataset generated is later used in the thesis to study how the flow pattern in 

vortex close to the ground surface is affected by surface roughness and translation. An 

important objective of the study is to examine how the effects of surface roughness and 

translation vary as a function of the swirl ratio. Consistent data for a set of swirl ratios 
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representing different stages of evolution of the vortex flow are generated. These 

computations employ LES model. The above topics form the subject of Chapters 2 and 3. 

 

The Wind Engineering, Energy and Environment (WindEEE) Dome is a novel, 

multipurpose wind research facility proposed and conceptually designed by Dr. Horia 

Hangan, which is being built at the University of Western Ontario, funded by the 

Canadian Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). It can 

produce tornado-like, downburst-like and synoptic wind profile in a single chamber by 

modifying the inlet and outlet boundary conditions. When constructed and 

commissioned, the dome would allow wind testing of large scale models of buildings and 

structures in complex terrain under sheared/straight and axi-symmetric flows. The 

purpose of the numerical simulation is to identify the optimum inlet and outlet 

configurations for generating each of the wind profiles, and assess the design adequacy of 

the dome for the intended applications. The desirable flow characteristics to meet the 

targeted applications are identified and are used as acceptance criteria to decide the 

adequacy of the design. The simulated results are compared with available real scale and 

laboratory scale tornadoes and downbursts. The simulation work and results for 

WinDEEE dome are described in Chapter 4. 

 

The atmospheric vortex engine (AVE) uses an artificially created vortex to 

capture the mechanical energy produced during upward heat convection. The heat source 

can be solar energy, warm seawater or waste industrial heat. The mechanical energy is 

produced in peripheral turbo-generators. The AVE has the same thermodynamic basis as 

a solar chimney (Schlaich et.al, 2005, Haff et.al, 1983 and Haaf, 1984). The latter have 

been studied and their energy conversion efficiency has been shown to be a function of 

the height of the chimney. Louis Michaud proposed a possible way of eliminating the 

impractically tall chimneys by exploiting a characteristic of tornado like vortices 

(Michaud 1977, 1995, 1996, 1999). The centrifugal force of the vortex arrests the mixing 

of air, thus acting as a virtual wall obviating the need for a tall chimney. Numerical 

simulation of a preliminary design of the AVE was done to study the effectiveness of 

AVE in generating tornado-like vortices. The effects due to changing geometrical and 
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physical parameters were considered with a view to facilitate future design optimization. 

The influence of cross wind flow is also examined. The results of simulation for AVE are 

presented in Chapter 5.  

 

1.3 Thesis format: 

 

This thesis is written in the ‘Integrated Article Thesis’ format specified by the Faculty of 

Graduate Studies of the University of Western Ontario. Each chapter except the first and 

last chapters is presented as a technical paper without an abstract but with its own 

references. Tables and Figures for each chapter are presented at the end of each chapter. 

The symbols and abbreviations for each chapter are listed in the prefatory pages. 
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Chapter 2: Numerical Simulation of Laboratory Scale Tornado-like 

Flows 

 
2.1 Introduction: 

 

Tornadoes are violent vortex flows in nature, with wind speeds exceeding 100 m/s near 

the surface. Studying the flow dynamics of tornadoes necessitates the reproduction of 

these uncontrollable vortices into more controllable laboratory-scale model vortices. For 

a tornado-like laboratory vortex, Lewellen (1962) and Davies-Jones (1973) have shown 

that the main governing non-dimensional parameters are aspect ratio (A), Swirl ratio (S), 

Reynolds number and Froude number ( ( )0.5z2gΔΔPFr ρ= ; ΔP = pressure drop, Δρ = 

density change within the flow, g = acceleration due to gravity and z = height above the 

ground). The aspect ratio and swirl ratio are defined below. 

 

00 /RHA =               (2.1) 

 

00 2AUVS =               (2.2) 

 

Where R0 is the radius of the updraft and H0 is the depth of inflow in a tornado 

vortex chamber (see Figure 2.5b). U0 and V0 are the radial and axial velocities at R0. 

Ward (1972), Rotunno (1977), and Church et. al. (1979) have identified the Swirl ratio as 

the dominant governing parameter and observed that the flow pattern in a laboratory 

scale vortices varies with swirl ratio as shown in Figure 2.1. With increasing swirl ratio 

the tornado vortex develops from a jet-like flow to a one-cell laminar vortex (Figure 

2.1a), further increase in swirl ratio results in a stagnation point and vortex break down 

(VBD) aloft (Figure 2.1b). The VBD moves upstream touches the surface with increase 

in swirl ratio resulting in the formation of turbulent two-cell vortex (Figure 2.1c). At very 

high swirl ratio multiple vortices appear around the main vortex core (Figure 2.1d). 

Tornado sightings (Maxworthy 1973, Fujita 1981, Lugt 1989) and Doppler radar 

observations (Wurman et.al 1996, Wurman 2002, Bluestein et. al 2004, Lee and Wurman 
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2005) have confirmed the occurrence of these flow patterns in real scale tornadoes. 

Therefore laboratory scale models are effective tools to study tornado-like flows.  

 

This chapter focuses on the numerical simulation of a tornado-like laboratory 

scale vortex. Numerical simulations, while introducing approximations, have the 

advantage of describing the overall structure of the flow. These numerical models are 

therefore a useful tool for investigation. The objective of the study is to simulate the 

tornado vortex for the full range of swirl ratios (0.1-2.0) which can be later used as a base 

case to study the changes in the flow pattern due to the effects of translation and surface 

roughness. Before describing the present work, a brief outline of the past laboratory and 

numerical models are presented below as background. 

 

2.1.1 Laboratory models: 

 

Many experimental models for tornado generation are available. Davies-Jones (1976) 

presents a detailed review of these laboratory models and concludes that the Ward-type 

Tornado Vortex Chamber (TVC) (Ward, 1972) demonstrates both geometric and 

dynamic similarity to natural vortices. Figure 2.2 shows a sketch of the Ward-type TVC. 

It has two stacked cylindrical chambers separated by a partition having a circular hole for 

updrafts. The lower chamber side-wall has a rotating screen to provide angular 

momentum to inlet flow. The roof of the upper cylindrical chamber has flow 

straightening baffles and a suction fan above it.  By controlling the volume flow through 

the suction fan and angular momentum through the rotating screen, a wide range of swirl 

ratios can be generated. The model produces tornadoes with one-cell, vortex break down, 

two-cell and multiple vortex configurations. 

 

  Experiments by Ward (1972), Davies-Jones (1973) showed that the core size is 

primarily a function of swirl ratio. Snow et.al (1980), Pauley et.al (1982), Church and 

Snow (1985) and Pauley (1989) present surface pressure profiles as a function swirl ratio 

for the Ward-type TVC. Snow and Lund (1988) improved the Ward-type TVC by 

replacing the rotating screen with adjustable vanes and adding non-intrusive velocity 
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measurement instrumentation like Laser Doppler Velocimeter (LDV). Preliminary LDV 

results are presented in Lund and Snow (1993). 

 

Haan Jr et al. (2007) present a TVC (Iowa-TVC) with translation ability. The 

TVC is as shown in Figure 2.3. It consists of two concentric cylinders forming a duct 

with a fan in the center. The air circulates between base surface and the duct. The swirl 

component is added through vanes in the roof of the inner cylinder. The Iowa-TVC 

produces one-celled turbulent vortices but does not produce the multiple vortex flows. 

Hashemi-Tari (2007) presents a TVC similar to the Iowa-TVC without the translation 

feature and presents an exhaustive set of PIV measurements for a range of swirl ratios 

less than 1. These results are essentially the first complete set of PIV measurements in a 

TVC characterizing both the mean and the turbulent flow fields. These experiments are 

nevertheless limited by the size of the apparatus and by the range of possible swirl ratios 

(Hashemi-Tari et al. 2010). 

 

2.1.2 Numerical models: 

 

Numerical models are cost effective ways of analyzing the vortex flows. The 

numerical models can be divided into two broad categories: thunderstorm scale 

simulation and tornado scale simulation (Nolan and Farrell, 1999).  The thunderstorm 

scale simulations are essentially meteorological models that tend to reproduce the parent 

super-cell storm with sufficient resolution to resolve tornado vortices spawned during the 

simulation (Klemp and Wilhelmson, 1978, Wicker and Wilhelmson, 1995, Grasso and 

Cotton, 1995). Tornado-genesis (formation of tornado) can also be studied using these 

models. The tornado scale simulation models the lower part of the tornado vortex with 

emphasis on the interaction between the tornado vortex and the ground surface. These 

engineering models provide the flow structure and the wind fields of tornado-like vortices 

close to the surface, a region of interest for engineering applications. Further discussions 

in this chapter are limited to the tornado scale models. 

 



12 

 

Harlow and Stein (1974) developed the first numerical model to simulate tornado-

like vortices in a Ward-type TVC. The two dimensional axisymmetric model produced 

the one-celled and two-celled vortices using a free-slip lower boundary condition. 

Rotunno (1977, 1979) was able to capture the VBD using a no-slip lower boundary 

condition. The simulations also showed the vortex core size to be a function of swirl ratio 

and nearly independent of Reynolds number thereby confirming the experimental results 

of Ward (1972), and Davies-Jones (1973). Rotunno (1984) simulated multiple vortices by 

introducing random noise to a three dimensional model of Ward-type TVC and observed 

secondary vortices with 20-30% more tangential velocity than the mean flow. Wilson and 

Rotunno (1986) simulated a low swirl ratio (S = 0.28) laminar vortex and matched the 

experimental results of Baker (1981). Their work identified four principal regions in the 

low swirl ratio single-cell vortex flow as shown in Figure 2.4. The vortex was found to be 

mostly inviscid and rotational with a small viscous sub-layer whose depth decreased 

towards the central axis and a thin viscous region in the core along the central axis. 

 

Fiedler (1994, 1995, 1997, and 1998) used an axisymmetric model to study 

vortices that form within a domain with rigid boundaries by introducing buoyancy in a 

rotating cylinder of fluid. The results showed that the vortex touch down produces wind 

speeds that exceed the thermodynamic speed limit by a factor of 5 and at higher swirl 

ratios produced multiple vortices with addition of random fluctuations. When the fluid is 

considered compressible, their simulations showed that even at subsonic flow, 

compressibility only slightly decreases the extremes in the wind speeds, as compared 

with a corresponding incompressible numerical simulation. Nolan and Farrell (1999) 

further modified the model and observed that a non-dimensional parameter Vortex-

Reynolds number (Ratio of far field circulation to eddy viscosity) was more effective 

than the conventional swirl ratio in predicting the structure of a vortex. 

 

Lewellen et.al (1997) and Lewellen et.al (2000) model real scale tornadic flow in 

a 1km * 1km * 2km domain using LES simulations and analyze the flow dynamics close 

to the surface. The results showed the influence of turbulence in generating high wind 

speeds near the ground and production of multiple vortices at high swirl ratio. The time 
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averaged maximum velocity was observed to occur at very close proximity to the surface 

at less than 50 m from the ground. Xia et.al (2003) extended the simulation to include 

compressibility and observed similar to Fiedler (1997) that compressibility effects are 

unlikely to change the basic dynamics of vortex flows near the surface. 

 

Hangan and Kim (2008) used Reynolds Stress Model (RSM) for Ward-type 

laboratory scale tornado to match the Doppler radar data for real scale tornado and 

thereby tentatively related the swirl ratio with the Fujita scale. Their work inferred that 

F4 Fujita scale tornado approximately corresponds to a swirl ratio of S = 2.0. Also 

recently Kuai et.al (2008) have simulated the Iowa-type TVC using the RNG k-ε model 

and compared the results with real scale tornado. 

 

Numerical simulations of tornado-like vortices have been successful in producing 

both laboratory-scale and full-scale flow patterns. However, there was no consistent 

attempt to simulate these vortices over an exhaustive range of swirl ratios. As the work of 

Hangan and Kim (2008) pointed out, there is an exploratory relation between the fluid 

mechanics parameter swirl ratio (S = 2.0) and the forensic Fujita scale parameter (F4). To 

extend this kind of relation to other Fujita scales, there is a need for benchmarked 

laboratory scale data for a wide range of swirl ratios. Herein we attempt to generate such 

data using numerical simulations.  

 

For the current simulations, a Ward-type TVC model was chosen, as it is known 

to produce all the observed flow patterns across the full range of swirl ratios (S = 0.1-2.0) 

including the complex multiple vortices at high swirl ratio. In section 2.2 the Reynolds 

Stress Model (RSM) simulations are presented and the mean velocity, pressure profiles 

and vortex core sizes are compared with past observations. The RSM model fails to 

generate multiple vortices at high swirl ratios; so Large Eddy Simulations (LES) were 

performed. These simulations captured the multiple vortices and are presented in section 

2.3 along with the turbulence characteristics for selected swirl ratios (S = 0.28, 0.5, 1.0, 

2.0). 
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2.2 RSM simulations: 

 

2.2.1 Numerical Setup: 

 

The Computational Fluid Dynamics software, Fluent 6.3 was used for the current 

three-dimensional numerical simulation of laboratory scale tornado-like vortices. 

Unsteady Reynolds Averaged Navier-Stokes (RANS) equations were solved on 

structured grids and a quasi-steady state solution was reached. The simulations were 

performed for swirl ratios S = 0.1, 0.2, 0.28, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, and 2.0. 

An initial grid with boundary layer at the base and Hex/Wedge mesh elements with 

around 150,000 cells was developed using the commercial software ‘Gambit’. 

Subsequent grid adaptations were performed using the ‘Velocity-Gradient-adaptation’, 

‘Region-adaptation’ and ‘Wall-Y+-adaptation’ features in Fluent (Fluent 2006). Since the 

study was focused on the surface-layer wind profiles, the grid adaptations were also 

focused near the base surface. Following grid convergence criterion of less than 2% 

variation in maximum velocity near the base, a maximum of around 1,000,000 cells were 

used in the simulations. Based on the previous results obtained by Hangan and Kim 

(2008) the Reynolds Stress Model (RSM) was used for modeling turbulence. The basic 

equations defining this model are presented in Appendix A. The segregated implicit 

solver, SIMPLEC pressure velocity coupling and second order discretization for pressure, 

momentum, turbulent kinetic energy and specific dissipation rate were used. 

 

Figure 2.5a shows the schematic diagram of the Purdue TVC (Church et al., 1977) 

which was used as a basis for the present simulation. The TVC is a modification of the 

Ward type TVC (Ward 1972). As mentioned in section 2.1.2 the flow volume is 

controlled by the suction fan above the flow straightening baffles and angular momentum 

is added at the air inlet using a rotating screen. The air enters the confluence region 

through the rotating screen and has weakly coupled radial and tangential velocity. Axial 

velocity is negligible. This region models the sub-cloud region surrounding a tornado and 

the upper wall (at height H from base) in the region is an analogy to the layer of stable air 

in the environment, which restricts the inflow to a low level in a tornado. The flow 
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converges in the convergence region and has significant tangential and axial velocity and 

the region contains the vortex. This region models the sub-cloud region containing a 

tornado. The air exits the system through the convection region and the increase in 

diameter of the region acts as a distributed sink (Church et al., 1977). 

 

In the current simulation, the blue shaded region of the Purdue TVC shown in 

Figure 2.5a is modeled. This region includes the convergence region which contains the 

tornado vortex close to the center. The details of the domain geometry are shown in 

Figure 2.5b. Table 2.1a lists the types of boundary conditions and Table 2.1b lists the 

domain dimensions used in the simulations. The selected radius of the domain R0 = 0.4 m 

represents the typical size of experimental geometries. This value is adequate considering 

the fact that tornado forms close to the centerline. Moreover, simulations with a larger 

radius of R0 = 0.6 m have not led to any noticeable differences in the flow profile. 

 

The inlet surface has a velocity-inlet boundary condition, wherein the radial and 

tangential velocities on the inlet surface are specified using a User Defined Function 

(UDF) and the axial velocity is assumed to be zero. The boundary layer type velocity 

profiles used in the UDF are given below. 

 

( ) ( ) 71
11R zz*UzU

0
=                                                                                                    (2.3) 

 

( ) ( ) ( )zU*S*R2HzV
00 R00R =                                                                                      (2.4) 

 

Where UR0 and VR0 are the radial and tangential velocity at inlet, S is the swirl 

ratio, U1 is the reference velocity and z1 is the reference height. By matching the velocity 

profile at the inlet with the experimental results of Baker (1981) the values of U1 and z1 

are set to 0.3 m/s and 0.025 m respectively. The Baker (1981) results do not state the 

turbulence characteristics at the inlet. In the current simulations turbulence is specified at 

the inlet with turbulence intensity TI = 1% and turbulence viscosity ratio TVR = 10. For a 

converged solution the turbulence specified at the inlet does not affect the flow pattern 

(Fluent 6.3, 2006), nevertheless simulations with different turbulence at the inlet like TI = 
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1% and TVR = 1 were performed and it was observed that they did not produce any 

significant change in the results. 

 

At the base, wall boundary condition with the ‘Enhanced wall treatment’ option in 

Fluent is used. In this near-wall modeling technique the viscous sub-layer is also resolved 

and requires very fine meshing near the wall. It requires the value of z+ ( ν/*zuz =+  

where u* is the friction velocity, z is the distance to the wall and υ is the kinematic 

viscosity of air) at the wall–adjacent cell to be of the order of 1 (Fluent 2006). In this 

study the z+ values were below 1.5. 

 

Numerical analysis of Smith (1987) show that the choice of side wall boundary 

condition in the convection region does not affect the vortex development in the 

convergence region (flow measurements are made in this region) even for large values of 

swirl ratio where the vortex core approaches this boundary in the convection region. 

Therefore, a free-slip wall boundary condition was chosen for the side wall. In the 

experimental setup the outlet has a flow-straightening baffle and its function is to prevent 

the contamination of the vortex by the swirling flow from the exhaust fan which is used 

to drive the flow (see Figure 2.2 for the experimental setup). The numerical simulation 

does not model the exhaust fan and is driven by the inlet velocities specified at the inlet 

surface, so a boundary condition representative of the ‘flow–straightening baffle’ need 

not be specified at the outlet surface. At the same time, an outflow boundary condition at 

the outlet surface is more representative of the actual atmospheric phenomena as argued 

by Smith (1987). Therefore, at the outlet surface an outflow boundary condition was used 

in the current simulation which assumes a zero normal gradient for all flow variables 

except pressure. (Fluent 2006) 

 

2.2.2 Benchmarking: 

 

The results from the present simulations are compared with the experimental results of 

Baker (1981) for S = 0.28.  The experiments were conducted in a Ward-type TVC similar 

to the one shown in Figure 2.5a and the velocity profiles were measured using hot-wire 
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anemometry. Figures 2.6, 2.7 and 2.8 compare respectively the radial, tangential and 

axial mean velocity profiles of the experiment with those of the numerical simulation for 

radial locations R/R0 = 0.1025 and R/R0 = 0.2125, where measurements are available. 

The velocities are normalized with the average radial velocity U0 at inlet and the height is 

normalized using R0. Considering the facts that the inlet boundary conditions are not 

identical and the Baker experiment used intrusive hot-wire anemometry the numerical 

simulations compare reasonably well with the experimental results. These comparisons 

show that the domain geometry and the boundary conditions considered in the simulation 

are able to reproduce the main flow in the TVC for S = 0.28. Therefore, simulations for 

other swirl ratios were performed using the same domain geometry along with suitable 

modification of the inlet boundary condition. 

 

2.2.3 Mean flow field: 

 

It is known that the flows with no swirl i.e. S = 0, are similar to a flow in a corner as 

shown in Figure 2.9.  The decelerating radial inflow causes a negative pressure gradient 

and flow separation occurs with a stagnation region near the centerline (Church et al 

1979). When the swirl ratio is increased (S < 0.1), initially the separated flow region 

prevents low level angular momentum approaching the region close to the centre line. As 

a result a core develops aloft and builds downward and around S = 0.1, the swirl induced 

positive pressure gradient overcomes the above described negative pressure gradient and 

a concentrated core makes contact with the surface and the inflow boundary layer 

reattaches to the surface (Church et al 1979). Since flows with S < 0.1 are of little interest 

in the context of the present studies, simulations were done for S = 0.1 onwards. The 

evolution of the vortex profile as the swirl ratio S increases from 0.1 to 2.0 is described in 

this section in terms of the mean velocity profiles.   

 

One-celled vortex (S = 0.1-0.4): 

At low swirl ratios like 0.1-0.2, a flow with a thin jet like laminar vortex is observed as 

shown in the contour plot of velocity for S = 0.2 (Figure 2.10a). For further increase in 

swirl ratio the laminar vortex transitions to a turbulent vortex downstream. The region 
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where the transition occurs is called the vortex break down (VBD) and around the VBD 

the vortex expands and forms a bulb like structure as shown in Figure 2.8b for S =0.28. 

The VBD moves upstream closer to the surface at S =0.4. The VBD is considered to be 

an axisymmetric analog to the hydraulic jump phenomenon observed in channel flows 

(Benjamin 1962) and other theories consider it to be a type of flow separation 

phenomenon (Hall 1967, 1972).   

 

Figure 2.11a shows the radial profile of the azimuthally averaged mean velocity 

components namely axial, radial and tangential velocities at the height Zmax (height of 

maximum tangential velocity) for S =0.28. Figure 2.11b shows the velocity components 

as a function of height at radial locations both inside (R < Rmax) and outside (R > Rmax) 

the core of the vortex.  (Core radius Rmax is the radius at which the maximum tangential 

velocity occurs) In both the plots the velocities are normalized with U0 and distance is 

normalized with R0. From these plots it can be observed that the axial velocity increases 

along the radial inward direction and reaches a maximum at the centerline. Also the axial 

velocity is in the upward direction both inside and outside the core. The tangential 

velocity along the radial direction varies as in a Rankine vortex. Along the height the 

tangential velocity gradually increases from zero at the base to a maximum value at Z/R0 

= 0.08 for R < Rmax and Z/R0 = 0.05 for R > Rmax and reaches a constant value at further 

heights. The radial velocity along the height shows that the convergence is limited to low 

levels (Z/R0 = 0-0.1). Near the ground a nose like profile is observed with peak velocities 

around Z/R0 = 0.02. 

 

The vortex flows in this range of swirl ratios have been known and are seen here 

as well to exhibit one-celled structure. These vortex flows are called end wall vortex 

because axial velocity is in the upward direction both inside and outside the core and 

maximum axial velocity occurs with in the core. 
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Vortex-touch-down (S = 0.5): 

For swirl ratio 0.5, VBD touches the base surface. This stage is called the vortex touch 

down (VTD) and Figure 2.10c shows the contour of velocity at VTD at S = 0.5. 

Figures 2.12a and 2.12b are similar to the Figures 2.11a and 2.11b and are plotted for 

swirl ratio S = 0.5. It can be observed from Figure 2.12a that unlike the low swirl case 

(Figure 2.10a) the tangential velocity is greater than the axial velocity at Rmax. The 

tangential velocity along the radial direction follows the same Rankine vortex profile. 

The radial velocity profile along the height is similar to the low swirl case outside the 

core, but inside the core the height of convergent flow is reduced to Z/R0 = 0.04. The 

axial velocity is in the upward direction along the height outside the core and inside the 

core it is initially upward (till Z/R0 = 0.04) and then becomes downward as the height 

increases. The axial velocity along the centerline in the flow is observed to be downward 

all along the height (a feature not shown in Figure 2.12b). 

 

 Past simulations have observed that the maximum tangential velocity in a laminar 

end-wall vortex (S < 0.4) exceeds the maximum tangential velocity associated with 

‘thermodynamic speed limit’ (Fiedler and Rotunno 1986, Fiedler 1994, Nolan and Farrell 

1999). Fiedler (1994) observed that the maximum tangential velocity at VBD is greater 

than the laminar end wall vortex and is five times the thermodynamic speed limit. This 

trend is observed in the current simulation too; at S = 0.5 the maximum tangential 

velocity is six times the maximum tangential velocity calculated using the artificial 

Convective Available Potential Energy (CAPE) equation (Eq.10, Fiedler and Rotunno 

1986).  

 

Two-celled vortex (S = 0.6–0.9): 

At these swirl ratios the VBD penetrates the base and the vortex develops into a two 

celled vortex. The vortex has a core with axial velocity in the downward direction and an 

outer region with axial velocity in the upward direction. Figure 2.10d shows a two celled 

vortex for S = 0.8. 
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Figures 13a and 13b are again similar to the Figures 2.11a and 2.11b and are 

plotted for swirl ratio S = 0.8. The velocity profiles along the radial direction (Figure 

2.13a) are similar to the case of swirl ratio S=0.5 outside the core but differ significantly 

inside the core. This can be seen better in Figure 2.13b. The tangential velocity is very 

less inside the core compared to outside the core and remains constant along the height. 

The radial velocity is negligible inside the core and the nose like profile observed in the 

low swirl cases is absent. Outside the core the profile of the radial velocity still retains the 

nose shaped profile but convergence is limited to Z/Ro = 0.7 and for further increase in 

height the radial velocity diverges till Z/R0 = 1.7 before reaching a constant value. The 

axial velocity is in the downward direction all along the height inside the core and in the 

upward direction outside the core, in accordance with the nature of the two-celled vortex 

flow. 

 

Multiple vortices (S = 1.0-2.0): 

At such high swirl ratios, one expects the core to expand and the upward flow to be 

concentrated in the narrow annulus region around the core. The instabilities of the 

cylindrical shear layer associated with the radial variation of tangential velocity would 

then lead to the formation of multiple vortices around the core vortex (Ward 1972, Snow 

1978 and Rotunno 1983). Laboratory experiments (Church et al. 1979) have also 

confirmed the formation of multiple vortices. However, the current simulation based on 

RSM is unable to capture these multiple vortices. While Figures 2.10e and 2.10f display 

the flow profile for S = 1.0 and S = 2.0, Figures 2.14a and 2.14b show velocity 

components for swirl ratio S = 2.0 in the same fashion as Figures 2.11a and 2.11b. Since 

the multiple vortices are not captured the profiles are similar to the two-celled profile of S 

=0.8. 

 

2.2.4 Pressure deficit: 

 

For flow with swirl ratio S = 0, the deceleration of the radial velocity establishes a high 

pressure region at the centerline. As the swirl is added to the flow, the conservation of 

angular momentum induces a low pressure at the centerline countering the high pressure. 
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As the swirl ratio increases the pressure profiles are further influenced by the VBD, 

formation of double-cell and multiple vortices (Snow et.al 1980, Pauley et.al 1982). 

Pressure deficit with respect to ambient pressure is another convenient measurable 

parameter while describing the vortex structure. This section describes the changes in the 

pressure deficit profiles with increase in swirl ratio. In this context, we define the static 

pressure coefficient Cp as  

 

2
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Where P0 and U0 are the static pressure and average radial velocity at R0, and ρ is 

the density of air.  

 

Figure 2.15 presents the static pressure coefficient (Cp) along the radial distance at 

the base for different swirl ratios and Figure 2.16 shows the variation of maximum base 

pressure deficit for a range of swirl ratios (S = 0.1-2.0). Figure 2.17 shows the variation 

of the pressure coefficient (Cp) along the height at the centerline. 

 

Low swirl ratios:  

In the results presented earlier, it has been seen that a single cell-vortex occurs for swirl 

ratios 0.1-0.4, a VTD occurs around S = 0.5 and the single-cell vortex begins to evolve 

into a double-cell vortex at S = 0.6. In this range of swirl ratios the base pressure deficit 

increases with increase in swirl ratio i.e. increase in tangential velocity and reaches a 

maximum around VTD (Figures 2.15a and 2.16). The radial pressure gradient at the base 

also increases with swirl ratio and maximum base pressure deficit is in a narrow region 

around the center (R/R0 = 0). It is observed from Figure 2.17 that the VBD influences the 

pressure deficit profile along the height. For S = 0.1 with no VBD, the pressure deficit 

gradually increases from close to zero at the surface to a maximum along the height and 

remains constant thereafter. At S = 0.28 the pressure deficit increases along the height 

and reaches a maximum at Z/R0 = 0.08 where VBD appears in the flow and reduces 



22 

 

further along the height. The VBD touches the surface around S ~ 0.5 and here the 

maximum pressure deficit is very close to the surface and reduces along the height. 

 

High swirl ratios:  

Recall that for swirl ratio S = 0.7-0.9, the VBD has fully penetrated the surface and a 

double cell vortex with the re-circulating flow in the core region was observed. In this 

range of swirl ratios the surface pressure deficit decreases with increase in swirl ratio and 

the profile of the pressure deficit flattens in the core region (Figures 2.15b and 2.16). The 

variation of the pressure deficit profile along the height, shown in Figure 2.17 for S = 0.8, 

indicates the pressure deficit to be maximum along the ground and having a decreasing 

trend with height. 

 

For swirl ratio in the range S = 1.0-2.0, multiple vortices expected to occur around 

the main vortex was not captured in the present simulation. In this range of swirl ratios 

the surface pressure deficit again increases with the increase in swirl ratio (Figures 2.15b 

and 2.16) and the variation along the height is similar to the S0.7-S0.9 range of swirl 

ratios as shown in Figure 2.17 for S = 1.0. 

 

The pressure deficit profiles presented here are similar to the experimental results 

of Snow et.al (1980), Pauley et.al (1982), Church and Snow (1985) and Pauley (1989). 

The base pressure deficit is also qualitatively similar to the surface pressure deficit (low 

resolution micro-barograph traces) of a real tornado presented in Ward (1972). 

 

2.2.5 Core radius:  

 

Core radius (Rmax) defined as the radius at which the maximum tangential velocity (Vmax) 

occurs is a salient characteristic of a tornado, and the height at which Vmax occurs is 

denoted by Zmax. Experimental results of Davies-Jones (1973) and numerical simulations 

of Rotunno (1977) establish that the core radius is mainly a function of swirl ratio and is 

nearly independent of Reynolds number. Figure 2.18 shows the plot of normalized core 

radius (Rmax/R0) as a function of swirl ratio (S = 0.1-2.0) and it can be seen that the core 
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radius generally increases with increase in swirl ratio. This is in agreement with the 

experimental results of Ward (1972), Davies-Jones (1973), Hashemi-Tari et al. (2010) 

and numerical results of Rotunno (1977). Figure 2.18 also shows Zmax/R0 as a function of 

swirl ratios (S0.2-S2.0), the Zmax/R0 for S = 0.1 is not shown in the plot as it occurs 

higher than the plot limits (S0.1: Zmax/R0 = 0.09). The Zmax initially decreases with 

increase in swirl ratio (S = 0.1-0.5) and remains constant after S = 0.5. At low swirl ratio 

S = 0.1, the vortex is stronger aloft, so the Zmax   is high. As the swirl ratio increases from 

0.2-0.4, VBD occurs aloft and moves upstream towards the base, the maximum tangential 

velocity occurs at the annular region that surrounds the VBD therefore Zmax decreases. 

Around S~0.5 the VBD touches the base and the Zmax remains constant for further 

increase in swirl ratio. The occurrence of maximum tangential velocity very close to the 

surface is in agreement with the results of Lewellen et.al (1997). 

 

In real tornadoes the core is made visible by the presence of condensed water 

vapor, dust and debris. In a laboratory simulation the core can be made visible by 

introducing dry-ice or saw dust. In numerical simulations, an alternate definition of the 

core is used namely the locus of radial points along the height at which the maximum 

tangential velocity occurs at each height. Even though Jischke and Parang (1978) have 

shown that the core based on maximum tangential velocity differs from the observed 

visible core of a real tornado, it still can be used to visualize the changes in profiles of the 

tornado-like cores. Figure 2.19 shows the tangential velocity contours for swirl ratios S = 

0.2, 0.5, 0.8, 1.0, 2.0 and the maximum tangential velocity contour represents the core. It 

can be seen that shape of the core varies with height for each swirl ratio. For low swirl 

ratio S =0.2, a thin narrow core is observed, the core increases in diameter and bulges 

near the base when VBD touches the surface at S = 0.5. This is similar to the 

observations made by Hashemi-Tari et al. (2010). For higher swirl ratios with two cell 

structure like S = 0.8, the core takes a conical shape near the surface and changes to an 

expanding cylindrical shape with increasing height. The vortex cores observed for S = 

1.0, 2.0 mainly resemble the S = 0.8 case with increased diameter, as the multiple 

vortices generally expected in this range of swirl ratios is not captured in the current 

simulation. 
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The current core profiles (except for S = 1.0 and S = 2.0) match well with the 

experimental visualization results of Ward (1972), Church et.al (1979) and the 

observation of real tornadoes by Kuehnast and Haines (1971) and Lugt (1989). 

 

2.3 LES simulations: 

 

2.3.1 Numerical setup: 

 

The computational software Fluent 6.3 was again used for the simulations. The domain 

and boundary condition are same as for the RSM simulation. Large Eddy Simulation 

(LES) was used for modeling turbulence with Dynamic Smagorinsky-Lilly subgrid 

model. The brief presentation of this model is provided in Appendix B. The segregated 

implicit solver, SIMPLEC pressure velocity coupling and bounded central difference 

discretization scheme for momentum equations were used. A time step of Δt = 0.0001 

was used. Grid convergence tests (2-3% variation in the maximum velocity near the base) 

were performed and a maximum of around 1,750,000 cells were used in the simulation 

 

Considering the fact that LES simulations are computationally expensive, the 

simulations were not performed for the entire range of swirl ratios. Instead LES was 

performed for four important swirl ratios S = 0.28, 0.5, 1.0, 2.0. These swirl ratios were 

chosen because at S = 0.28 the VBD starts to appear, at S = 0.5 the VTD occurs and for S 

= 1.0, 2.0 multiple vortices are expected.  

 

2.3.2 Multiple vortices: 

 

The LES simulation produces multiple vortices at swirl ratios S = 1.0 and S = 2.0. 

Figures 2.20 and 2.21 show the time averaged velocity magnitude, instantaneous velocity 

magnitude, instantaneous tangential velocity at height Z/R0 = 0.02 from the base for swirl 

ratios S = 1.0 and S = 2.0 respectively. For both the swirl ratios the instantaneous velocity 

contours show secondary vortices rotating about the main vortex. The instantaneous 

velocity at these secondary vortices exceeds the time averaged maximum velocities by 
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around 36 percent. The results are in sound agreement with the tornado-scale simulations 

of Lewellen et.al (1997) which produced secondary vortices having instantaneous 

velocities one-third more than the maximum time average velocities.  

 

2.3.3 Turbulence characteristics: 

 

Figures 2.22 and 2.23 show the root mean square (r.m.s) of the fluctuating axial (Wrms), 

radial (Urms) and tangential (Vrms) velocity and the Reynolds stresses <u’v’>, <u’w’> and 

<v’w’> along the height for swirl ratios 0.28 and 0.5 respectively. The profiles are plotted 

at radial locations inside the core (R < Rmax) and outside the core (R > Rmax). The r.m.s 

velocities are normalized with time averaged maximum tangential velocity (Vmax) and the 

Reynolds stresses are normalized with square of the Vmax at each swirl ratio. 

 

For S = 0.28, around Z/R0 = 0.1 there is a sudden increase in r.m.s velocities and 

Reynolds stresses inside the core. This is due to the presence of VBD around this height 

(Note that in Figure 2.17 for S = 0.28, the highest pressure deficit occurs around Z/R0 = 

0.1 indicating the presence of VBD). Outside the core the r.m.s velocity and Reynolds 

stresses are negligible along the height. As the swirl ratio increases to S = 0.5, the height 

at which the maximum r.m.s velocities and Reynolds stresses occur moves closer to the 

ground around Z/R0 < 0.04 inside the core indicating downward movement of VBD.  

 

Figures 2.24 and 2.25 plot the contours of r.m.s velocities and Reynolds stress 

<u’v’> for S = 1.0 and S = 2.0 respectively and are normalized the same way as in 

Figures 2.22 and 2.23. As shown in section 2.3.2, multiple vortices exist at swirl ratios S 

= 1.0, 2.0 and the vortex is not axisymmetric so the profiles are plotted as contours at 

height Z/R0 = 0.02 (Figures 2.24c, 2.24d, 2.25c and 2.25d) and in the XZ plane (Figures 

2.24a, 2.24b, 2.25a and 2.25b). Unlike the low swirl ratio flows (S = 0.28, 0.5) the r.m.s 

velocities and Reynolds stresses are negligible inside the core. The maximum occurs in 

an annular region around the core close to where the multiple vortices occur. 

 

\ 
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2.4 Conclusions: 

 

Numerical simulations of laboratory scale tornado-like vortices were performed using 

RSM and LES turbulence models. For swirl ratios S < 1.0, the RSM model captures all 

flow features but for S ≥ 1 the flow is expected to produce transient multiple vortices but 

are not captured in the RSM model as it reaches a quasi steady state. So LES simulations 

were performed and multiple vortices were observed at high swirl ratios. Unlike the past 

laboratory scale simulations the multiple vortices were observed without adding any 

external random noise. The observed flow features are in agreement with the past 

experimental and numerical simulations. 

 

As the swirl ratio increases the expected profiles like one-celled vortex, VBD, 

two-celled vortex and multiple vortices are observed in the simulated vortex. The 

tangential velocity increases with increase in swirl ratios. A peak in the mean tangential 

velocity is observed at both S = 0.5 (VBD touches the surface around this swirl ratio) and 

S = 2.0. The peaks occur very close to the surface (Z/R0 ≤ 0.04). Also at S = 2.0, multiple 

vortices with transient velocities 36% greater than the mean velocities are observed. So 

the tornado is most destructive during the vortex touch down and multiple vortex stage. 

 

The core radius increases with increase in swirl ratio. The maximum surface 

pressure deficit occurs during the one-celled vortex configuration around S = 0.5 and at S 

= 2.0. 

 

The turbulent flow characteristics show that for low swirl ratios the r.m.s 

velocities and shear stresses are concentrated within the core near the VBD and follows 

the VBD as it moves closer to the base surface as the swirl ratio increases. For higher 

swirl ratios the stresses are concentrated in an annular region around the core. For all 

swirl ratios the peak r.m.s velocities and shear stresses occur at heights and radial 

distances close to the height and radius at which the maximum tangential velocity occurs. 

Since the observed maximum tangential velocities are greater than the theoretic 
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thermodynamic speed limit, it is very likely that close to the surface the velocities are 

influenced by the turbulent interaction of the vortex with the surface.  
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Surface Name Boundary Conditions
 

Name Dimensions (m) 

Base No-slip wall R0 0.4 
Side wall Free-slip wall H0 0.41 

Inlet Velocity inlet L 1.66 

(a) 

Outlet Outflow 

(b)

  
 
Table 2.1: (a) Boundary conditions and (b) domain dimensions used in the current 
simulations 
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(a) S ~ 0.1 
 

 
(b) S ~ 0.4 

 
(c) S ~ 0.8 

 
(d) S ~ 2.0 

 
Figure 2.1: Sketch of the pathlines of the flow observed at various swirl ratios. Lugt 
(1989), Davies-Jones (1986) 
 
 

 
 

Figure 2.2: Sketch of a Ward-type TVC (Church et.al. 1979) 
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Figure 2.3: Sketch of an Iowa-type TVC (Haan Jr, 2007) 
 
 

 
 

Figure 2.4: Sketch of the four regions of the low swirl vortex flow. (Wilson and Rotunno 
1986) 
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Figure 2.5a: Schematic diagram of the cross section of Ward type Purdue TVC with blue 
region showing domain modeled in the current simulations. (Adapted from Church et.al. 

1979) 
 
 

                                   
 

Figure 2.5b: Schematic diagram of the domain modeled in the current simulations. 
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Figure 2.6: Plots comparing the radial velocity of the current CFD simulation and Baker 
(1981) experimental results. (a) S = 0.28, R/R0 = 0.1025 (b) S = 0.28, R/R0 = 0.2125. 
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Figure 2.7: Plots comparing the tangential velocity of the current CFD simulation and 
Baker (1981) experimental results. (a) S = 0.28, R/R0 = 0.1025 (b) S = 0.28, R/R0 = 
0.2125. 
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Figure 2.8: Plots comparing the axial velocity of the current CFD simulation and Baker 
(1981) experimental results. (a) S = 0.28, R/R0 = 0.1025 (b) S = 0.28, R/R0 = 0.2125. 
 
 
 
 
 

 
 

Figure 2.9: Sketch of the flow observed in no-swirl S = 0 case. (Church et.al 1979) 
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Figure 2.10: Contour plot of the velocity for Swirl ratios S = 0.2, 0.28, 0.5, 0.8, 1.0, 2.0. 
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Figure 2.11: Velocity profile for Swirl ratio S = 0.28 (a) Azimuthally averaged axial, 
radial and tangential velocity along the radial distance at height Zmax (Height of 
maximum tangential velocity) (b) Azimuthally averaged axial, radial and tangential 
velocity along the height at radial locations inside and outside the core of the tornado. 
The continuous line represents velocities inside the core at R/R0 = 0.016 and dots 
represent the velocities outside the core at R/R0 = 0.08.  
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Figure 2.12: Velocity profile for Swirl ratio S = 0.5 (a) Azimuthally averaged axial, radial 
and tangential velocity along the radial distance at height Zmax (Height of maximum 
tangential velocity) (b) Azimuthally averaged axial, radial and tangential velocity along 
the height at radial locations inside and outside the core of the tornado. The continuous 
line represents velocities inside the core at R/R0 = 0.02 and dots represent the velocities 
outside the core at R/R0 = 0.14.  
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Figure 2.13: Velocity profile for Swirl ratio S = 0.8 (a) Azimuthally averaged axial, radial 
and tangential velocity along the radial distance at height Zmax (Height of maximum 
tangential velocity) (b) Azimuthally averaged axial, radial and tangential velocity along 
the height at radial locations inside and outside the core of the tornado. The continuous 
line represents velocities inside the core at R/R0 = 0.025 and dots represent the velocities 
outside the core at R/R0 = 0.23.  
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Figure 2.14: Velocity profile for Swirl ratio S = 2.0 (a) Azimuthally averaged axial, radial 
and tangential velocity along the radial distance at height Zmax (Height of maximum 
tangential velocity) (b) Azimuthally averaged axial, radial and tangential velocity along 
the height at radial locations inside and outside the core of the tornado. The continuous 
line represents velocities inside the core at R/R0 = 0.2 and dots represent the velocities 
outside the core at R/R0 = 0.45. 
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Figure 2.15: Surface pressure deficit along the radial distance for different swirl ratios (a) 
S = 0.1, 0.2, 0.28, 0.4, 0.5, and 0.6 (b) S = 0.7, 0.8, 0.9, 1.0, 1.5, and 2.0 
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Figure 16: The plot of maximum central pressure deficit vs. swirl ratio 
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Figure 2.17: The plot of maximum pressure deficit at R/R0 = 0 along the normalized 
height for swirl ratios S = 0.1, 0.2, 0.28, 0.5, 0.8, 1.0. 
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Figure 2.18: The plot of normalized core radius (Rmax/R0) and the normalized height from 

the base at which the radius is measured (Zmax/R0) for various Swirl ratios (0.2-2.0) 
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Figure 2.19: Contour plot of tangential velocity for Swirl ratio S = 0.2, 0.5, 0.8, 1.0, 2.0 
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Figure 2.20: LES velocity contours for S = 1.0 at Z/R0 = 0.02 
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Figure 2.21: LES velocity contours for S = 2.0 at Z/R0 = 0.02 
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Figure 2.22: The plot of RMS velocities and Reynolds shear stress along the height for 
Swirl ratio S = 0.28 at radial locations inside the core (R < Rmax) at R/R0 = 0.016 and 
outside the core (R > Rmax) at R/R0 = 0.08. 
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Figure 2.23: The plot of RMS velocities and Reynolds shear stress along the height for 
Swirl ratio S = 0.5 at radial locations inside the core (R < Rmax) at R/R0 = 0.02 and 
outside the core (R > Rmax) at R/R0 = 0.14. 
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Figure 2.24: Turbulence characteristics for S = 1.0  
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Figure 2.25: Turbulence characteristics for S = 2.0  
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Chapter 3: Effects of translation and surface roughness on tornado-like 

vortices 

 
3.1 Introduction: 

 

Chapter 2 has presented the results of numerical simulations of laboratory scale tornado 

for a comprehensive range of swirl ratios between 0.1 and 2.0. The validity of the results 

was proven by comparing them with those of past studies for certain select 

scenarios/conditions.  Typically, tornadoes produce very high velocities close to the 

surface and in this region the flow is sensitive to the interaction of the vortex with the 

base surface (Lewellen 1993, Lewellen et al. 1997). In this context, it has been 

recognized that translation of the vortex and surface roughness are two important factors 

that affect tornadic flow. This chapter investigates how the characteristics of the 

laboratory scale tornadic flow are modified as a result of translation and surface 

roughness. Since swirl ratio S is known to be the dominant governing parameter for 

tornado-like flows, (Church et. al. 1979, Ward 1972, and Rotunno 1977), it is important 

that the study is carried out for a range of relevant swirl ratios.  

 

Literature review shows that while past studies have investigated these effects, 

their scope is usually confined to specific observable or specific values of swirl ratio. 

Dessens (1972) and Leslie (1977) have studied the effects of surface roughness on 

tornadic flows in laboratory simulations. Their studies have shown that the increase in 

surface roughness causes the radial and axial velocities to increase and tangential 

velocities to decrease. Church and Snow (1993) argued that in these earlier experimental 

studies, roughness elements used in the simulations were extreme when compared to 

atmospheric roughness. Consequently, the effect of roughness may have been over stated 

in some of the results. Rostek and Snow (1985) used properly scaled surface roughness 

elements in a laboratory simulation, but only studied the roughness effect on radial 

surface pressure deficit for different swirl ratios. 
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Lewellen and Sheng (1979) have analyzed the effect of surface roughness 

numerically and arrived at conclusions similar to that of laboratory simulations. 

However, their study only addressed two swirl ratios. Recently Kuai et al. (2008) have 

numerically studied the effect of surface roughness for swirl ratios less than 0.21. 

 

Diamond and Eugene (1984) performed laboratory simulations of translating 

vortices and observed secondary trailing vortices. Lewellen et al. (1997) numerically 

simulated a full scale tornado for high swirl ratio (S = 0.94) and observed that introducing 

translation resulted in a slight increase in the maximum mean velocity. The simulations 

do not discuss the effect of translation on low swirl ratios. 

 

The present work attempts to address the effects of translation and surface 

roughness on tornado-like flows for a set of swirl ratios (S = 0.28, 0.5, 1.0 and 2.0) 

representing the low and high swirl ranges. This set of ratios is chosen because distinct 

flow features like the initial appearance of vortex-break-down (VBD) (S = 0.28), vortex-

touch-down (VTD) (S = 0.5) and occurrence of multiple vortices (S = 1.0 and 2.0) take 

place at these swirl ratios, as discussed in chapter 2. Also maximum tangential velocities 

are observed during the VTD (S =0.5) and at multiple vortex stage (S = 2.0). Sections 3.2 

and 3.3 describe the effect of translation and surface roughness, respectively. Conclusions 

are presented in section 3.4. 

 

3.2 Translation Effects: 

 

3.2.1 Numerical Setup: 

 

The computational software Fluent 6.3 was used for the simulations. The domain is the 

same as described in section 2.2.1. Large Eddy Simulation (LES) was used with Dynamic 

Smagorinsky-Lilly subgrid model for all swirl ratios. The segregated implicit solver, 

SIMPLEC pressure velocity coupling and bounded central difference discretization 

scheme for momentum equations were used. A time step of Δt = 0.0001 was used for all 

simulation. Grid convergence test (2-3% variation in the maximum velocity near the 
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base) was performed and a maximum of around 1,500,000 cells were used in the 

simulations. 

 

In real life situation, translation of a vortex refers to the movement of the vortex 

relative to the fixed ground surface. To simulate this numerically, it is computationally 

convenient to keep the vortex stationery and instead move the base surface in a direction 

opposite to the direction of the vortex translation, thereby generating the equivalent 

relative motion. In Fluent this can be modeled by employing a moving-wall boundary 

condition at the base surface. This is implemented by adding a translating velocity to the 

stationary no-slip wall boundary condition (Fluent 6.3). In the current simulation a 

translation velocity of VT = 1.07 m/s is added to the base surface along the positive x-

direction (This corresponds to vortex translation in the negative x-direction relative to the 

ground with a velocity of VT = 1.07 m/s). Applying the tentative velocity scaling of 

Hangan and Kim (2008) for Ward-type TVC and real-scale tornado, this corresponds to a 

real-scale translation velocity of 14 m/s approximately. Tornadoes are generally found to 

have translation velocities of about 10-20 m/s, so the translation speed considered here is 

in the appropriate range. Based on a scoping study carried out using k-ε model (details 

not reported here), the effects seen with this value would be sufficiently representative 

over the full range of translation velocities of interest. All other boundary conditions are 

the same as those used in the simulation of stationary vortex given in section 2.2.1 (refer 

Table 2.1a). 

  

The simulations with translation effects were performed for four swirl ratios S = 

0.28, 0.5, 1.0, 2.0.  The results are compared with those of cases corresponding to LES 

simulations of stationary vortices (i.e. VT = 0). 

 

3.2.2 Results and Discussion:   

 

A key finding from the study is that the introduction of translation to the vortex flow has 

opposite effects for low swirl ratios (S = 0.28 and S = 0.5) and high swirl ratios (S = 1.0 

and S = 2.0): at low swirl ratios it adversely affects the formation of laminar end wall 
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vortex and the mean velocities are reduced compared to the stationary vortex.  At high 

swirl ratios the translation causes local vortex intensification and the mean velocities are 

higher compared to the stationary vortex. More specific details are presented below. 

 

3.2.2.1 Low swirl ratio: 

 

Figures 3.1a and 3.1b show the contour plots of the velocity magnitude in the XZ vertical 

plane for the translating vortices with swirl ratios S = 0.28 and S = 0.5 respectively. 

Translation is from the right to left in these figures. The figures show a slight tilt in the 

vortex near the base. Figures 3.2a and 3.2b, which compare the normalized mean 

tangential velocity along the radial distance for stationary (T0) and translating (T1.07) 

vortices, show a substantial reduction in tangential velocities for the translating vortices. 

The percentage reduction in the tangential velocity is higher for the S = 0.28 case 

compared to the S = 0.5 case.  Also note the shift in the centre of the translating vortex to 

the right of the stationary vortex. The base surface pressure deficit for the translating 

vortices (shown in Figures 3.3a and 3.3b) is also less compared to the stationary vortices 

for these swirl ratios. The prominent tilt towards the right in the base pressure deficit for 

S = 0.5 is similar to the tilt seen in real tornado pressure deficit measurements (refer 

Figure 12 of Ward 1972).  

 

The reduction in tangential velocity and surface pressure deficit suggests that at 

low swirl ratios the translation produces an effect similar to reducing the swirl ratio of the 

vortex.  Fiedler and Rotunno (1986) suggest that at low swirl ratios the supercritical flow 

in the laminar core (i.e. below VBD height) is responsible for the high velocities 

observed near the ground for a stationary vortex. Following that suggestion, one may 

explain the reduction in velocities as being sequel to a disruption of the laminar flow due 

to translation. 
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3.2.2.2 High swirl ratio: 

 

Figures 3.1c and 3.1d show the contour plots of the velocity magnitude in the XZ vertical 

plane for the translating vortices with swirl ratios S = 1.0 and S = 2.0 respectively. They 

show that the tilt in the vortex near the base is less compared to the low swirl ratio 

vortices. The translation of the vortex has resulted in increased tangential velocity 

(Figures 3.2c and 3.2d) and base surface pressure deficit (Figures 3.3c and 3.3d).  

Multiple vortices are observed at swirl ratios S = 1.0 and S = 2.0. Unlike the 

stationary vortex where the multiple vortices occur all around the main vortex (Figures 

2.20 and 2.21), for the translating vortex the multiple vortices are concentrated towards 

the leading side of the vortex. Figures 3.4 and 3.5 show the time averaged velocity 

magnitude, instantaneous velocity magnitude, instantaneous tangential velocity at height 

Z/R0 = 0.02 from the base for translating vortices with swirl ratios S = 1.0 and S = 2.0, 

respectively. The instantaneous velocity contours show secondary vortices at the leading 

side of the translation. The turbulence characteristics for the translating vortex for S = 2.0 

(Figure 3.6) show the velocity fluctuation to be again concentrated at the leading side of 

the vortex. This can be attributed to the more intense shear at the front side of the 

translating vortex and can be a possible reason for the concentration of multiple vortices 

on this side. 

 

3.3 Surface Roughness Effects: 

 

In Fluent 6.3 surface roughness can be modeled as equivalent sand grain roughness or by 

physical modeling of roughness element (blocks). Both methods were attempted; in the 

first model roughness is introduced in the base as an equivalent sand grain roughness as 

discussed in Blocken et al. (2007) and in the second model blocks are modeled in the 

base surface based on the experimental work of Rostek and Snow (1985). The detailed 

discussions of both the simulations are given below. 
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3.3.1 Equivalent sand grain roughness model: 

 

Roughness effects are introduced in CFD codes by modifying the wall function which is 

otherwise based on the universal near-wall velocity distribution (log law). In Fluent6.3, 

the modified wall function is given by   

 

ΔB
ν
yu

Eln
κ
1

ρτ
uU P

*

w

*
P −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                                (3.1) 

 

Where PU  and Py  are the velocity and height at the centre point P of the wall 

adjacent cell. E is an empirical constant for the smooth wall with a value 9.793, wτ  is the 

wall shear stress, ρ  is the fluid density and *u  the wall friction velocity defined as 

 
21

P
41

μ
* kCu =                                     (3.2) 

 

In the above equation, Pk  denotes the turbulent kinetic energy in the wall 

adjacent cell centre point P and μC  is a constant with default value 0.09. 

 

The basis for the modification of the wall function (Equation 3.1) comes from the 

experiments of Nikuradse (1933) on roughness effects on flow in pipes roughened with 

sand grains. He showed that the mean velocity distribution near a rough wall is parallel to 

the log law distribution, i.e. with the same slope (1/ κ) but different intercept (ΔB). In 

Fluent 6.3, the roughness function (ΔB) is defined as a function of dimensionless sand 

grain roughness height +
SK . 

 

νKuK s
*

S =+                                     (3.3) 

 

Where SK  is the equivalent sand grain roughness height. Depending on the value 

of +
SK , the roughness is classified into three regimes: aerodynamically smooth 
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( 2.25KS <+ ), transitional ( 90K2.25 S <≤ + ) and fully rough ( 90KS >+ ). The formula for 

ΔB depends on the roughness regime and is given by Cebeci and Bradshaw (1977). The 

tornadic flow over rough terrain falls in the fully rough regime, and the formula 

corresponding to this regime is the following. 

 

( )++= SSKC1ln
κ
1ΔB                                    (3.4) 

 

  SC  is the roughness constant with a range of 0-1. In Fluent6.3 the roughness is 

introduced by specifying the values for the sand grain roughness height SK  and the 

roughness constant SC  in the wall boundary condition. 

 

As Fluent introduces roughness as sand-grain roughness height, a relationship 

between the aerodynamic roughness lengths 0y  and the equivalent sand-grain roughness 

heights SK  is needed to numerically simulate the effect of surface roughness in tornadic 

flow. Based on the first order continuity fitting of the atmospheric boundary layer (ABL) 

log law and the modified wall-function log law (Equation 3.1) at height Py , Cebeci and 

Bradshaw (1977) arrived at the relationship: 

 

0
S

S y
C

9.793K =                                    (3.5) 

 

For a default value of 0.5CS = , the Equation 3.5 simplifies to 0S 20yK ≈ . This 

equivalent sand-grain roughness is used in this chapter. However, implementing 

roughness as equivalent sand-grain roughness creates a limitation that needs to be 

considered. The height of the centre point P of the wall-adjacent cell to the ground 

surface Py  needs to be larger than the physical roughness height SK  (i.e. SP Ky > ). For 

modeling roughness in a city-centre where the 0y  value is around 2 m, the SK  is around 

40 m and the first cell height has to be greater than twice the SK  at 80 m. In tornadic flow 
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where the velocity profile for a height of 100 m is studied, this is not acceptable, so this 

method can only be applied to study low roughness terrains with smaller 0y , 

corresponding to open country, forested and thinly populated suburban terrains.  

 

3.3.1.1 Numerical setup: 

 

Hangan and Kim (2008) matched a Doppler radar data for real scale tornado with a CFD 

simulation of a laboratory scale tornado with a cylindrical domain of radius 0.6m and 

height 0.6 m. By comparing the highest wind speed (and the height at which the highest 

wind speed occurs) in the CFD model and full scale data they proposed a length scale of 

3700 and velocity scale of 13 between the CFD model and the real scale tornado. 

 

A full scale tornado simulation (CFD model scaled up with the length and 

velocity scale) is computationally very expensive as the number of grid points required to 

maintain the non-dimensional wall unit +y  between 30 and 500 is very high. On the other 

hand in a laboratory scale tornado, when the aerodynamic roughness lengths 0y  is scaled 

down using the above length scale and introduced as equivalent sand grain roughness 

height, the wall roughness falls in the aerodynamically smooth regime. In the current 

simulations an optimal domain of 1/20th the scale of full scale tornado was chosen so that 

the wall roughness falls in the fully rough regime and the non-dimensional wall unit +y  

is maintained between 30 and 500 making it computationally less expensive. The 

cylindrical domain used in the current simulations is as shown in Figure 3.7 with radius 

0R  equal to 112.68 m and height 0H  equal to 112.68 m.  

 

Fluent6.3 software is used for the finite volume analysis and steady state 

Reynolds Averaged Navier-Stokes (RANS) equations are solved on structured grids. The 

second order standard KE turbulence model with SIMPLEC pressure-velocity coupling is 

used.  

The boundary conditions are as shown in Figure 3.7. The velocity inlet boundary 

condition is specified on the cylindrical surface, using the radial and axial velocity 
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profiles shown in Equations 3.6 and 3.7, along with the turbulent kinetic energy k  and 

dissipation rate ε  profiles for ABL modeled by Richards and Hoxey (1993) (Equations 

3.8 and 3.9). 

 

( ) ( ) 71
hh zz*UzU =                                    (3.6) 

 

( ) ( )zU*S*2zV =                                    (3.7) 
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C
uzk =                                     (3.8) 

 

( )
κz

uzε
3*

ABL=                                     (3.9) 

 

Where U and V are radial and tangential velocities, hU  and hz  are the reference 

velocity and height (0.192 m/s, 4.695m), S is the swirl ratio, *
ABLu  is the ABL friction 

velocity and κ  is the von Karman constant (~ 0.41). The bottom surface is defined as 

wall and standard wall function is used. For the zero roughness case (Y0), SK = 0 is used, 

and for the mild roughness case (Y1) with 0y = 0.1m, scaled down with length-scale of 

1/20 and converted to equivalent sand-grain roughness, SK = 0.1m and 0.5CS =  is used. 

The top of the cylinder is defined as outflow boundary condition.  

 

The initial structured grid was developed using the commercial software Gambit 

and subsequent grid adaptation was done using the ‘Region-adaptation’ feature in Fluent. 

The flow in the central near surface region is only of interest, so finer grids were adapted 

in the central near surface region. Following grid convergence, grids comprising upwards 

of 300,000 were used for simulations. Keeping in mind the limitation stated in the 

previous section, the wall adjacent cell centre point height is maintained at 0.125m 

and +y is around 300. The numerical simulations were performed for swirl ratios ranging 
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from 0.1 to 2.0. Results for two select values of S are highlighted here for the purpose of 

discussion. 

 

3.3.1.2 Results and Discussions: 

 

For all the swirl ratios, the velocity vectors along the Z-axis (height) were compared for 

the smooth and rough-wall cases at different radial locations. For a given swirl ratio, the 

radial location where maximum tangential velocity (Vmax) was observed in smooth-wall 

flow is termed Rmax and region between the centre and Rmax called the core. For the 

smallest swirl ratio S = 0.1 (Figures 3.8 and 3.9), introducing roughness resulted in a mild 

increase in the radial and axial velocities at radial locations inside the core (R/R0 < 

Rmax/R0 ~ 0.05), closer to the centre. As the swirl ratio increased, the increasing trend in 

the radial and axial velocities  was more pronounced, as shown in Figures 3.11 and 3.12 

for the highest swirl ratio S = 2.0. Moreover there is increase in radial velocity at radial 

locations even away from the core (R/R0 > Rmax/R0 ~ 0.23). Also, the increase in axial 

velocity inside the core is very large. Lewellen and Sheng (1979), Dessens (1972) and 

Leslie (1977) have reported increase in radial and axial velocities and decrease in 

maximum tangential velocity. In the current simulations, the variation in tangential 

velocity does not completely match their results. While the introduction of roughness 

causes a decrease in tangential velocity at radial locations outside the core, there is an 

increase at locations inside the core. A possible explanation for this could be vortex 

stretching due to the increase in axial velocity inside the core. Two cases are illustrated in 

Figures 3.10 (S = 0.1) and 3.13 (S = 2.0) in support of this explanation. For swirl ratio 

0.1; the increase in axial velocity (Figure 3.8) inside the core is less and a 

correspondingly small increase in tangential velocity (Figure 3.10) is observed. On the 

other hand for swirl ratio 2.0; there is a substantial increase in the axial velocity (Figure 

3.11) inside the core and therefore greater increase in tangential velocity (Figure 3.13).  

 

However, certain limitations related to numerical damping and the averaging 

nature of RANS model adopted should be recognized. Also to be noted is the inability of 

this steady state simulation to simulate multiple vortices at high swirl ratios (S ≥ 1.0). For 
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the domain size considered in the current simulation, adopting LES turbulence model 

would be computationally very expensive. This along with the fact that only low 

roughness case can be simulated using the current model, points to the need for a more 

robust model to be used. Hence, the physical modeling of roughness elements was 

attempted and is discussed in the sequel. 

 

3.3.2 Physical modeling of roughness blocks: 

 

Experimental studies by Rostek and Snow (1985) have shown that for a Ward-Type TVC 

roughness introduced by mounting cylindrical wooden pegs (0.64 cm diameter and 0.64 

cm height) on the base board of the TVC with a peg density of 190 pegs/m2 produced an 

equivalent aerodynamic roughness length Y0 = 1.9m. (City centre roughness). This 

configuration was therefore adapted in the current simulation.  

 

3.3.2.1 Numerical Setup: 

 

The computational software Fluent 6.3 was used for the simulations. Large Eddy 

Simulation (LES) was used for modeling turbulence and the details of the numerical 

schemes used are the same as those describes in section 2.2.1. The grid convergence test 

(2-3% variation in the maximum velocity near the base) indicated that a maximum of 

around 2,500,000 cells were sufficient for the simulations. 

 

 The domain described in section 2.2.1 is modified at the base surface by modeling 

conical pegs (1.28 cm diameter and 0.64 cm height) with 190 pegs/m2 peg density to 

simulate the effects of high surface roughness of a city centre. Figure 3.14 shows the 

modified base surface of the domain with the roughness blocks (conical pegs). The 

boundary conditions are also the same as given in section 2.2.1 (refer Table 2.1a).  

 

The simulations with roughness effects (denoted as Y2) were performed for four 

swirl ratios S = 0.28, 0.5, 1.0, 2.0.  The results are compared with those of cases 

corresponding to LES simulations of vortices with smooth surface (denoted as Y0). 
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3.3.2.2 Results and discussion: 

 

Figure 3.15 plots the time averaged maximum base pressure deficit coefficient as a 

function of swirl ratio for both smooth (Y0) and rough surface (Y2) for all the swirl 

ratios. A trend can be observed from the graph that the roughness causes an effect similar 

to reducing the swirl ratio. Figure 3.16 plots the maximum mean tangential velocity as 

function of swirl ratio for smooth and rough surface and the trend is similar. This is in 

agreement with past experimental and numerical results (Dessens 1972, Leslie 1977, 

Lewellen and Sheng 1979, Rostek and Snow 1985, and Church and Snow 1993) where it 

has been argued that the increase in roughness causes an increased frictional dissipation 

in the surface layer causing transition to a lower swirl configuration.   

 

Besides the trend discussed above, the present study also leads to other interesting 

observations. The core radius along the height for the smooth and rough surface cases are 

compared for all the swirl ratios and shown in Figure 3.17. There is a significant increase 

in core radius for the lower swirl ratios (S = 0.28, 0.5) and none too significant changes 

for the higher swirl ratios (S = 1.0 and 2.0). Also the changes in pressure deficit (Figure 

3.15) and tangential velocity (Figure 3.16) are more pronounced for low swirl ratios (S = 

0.28, 0.5) than for the high swirl ratios (S = 1.0, 2.0). For low swirl ratios, the 

introduction of surface roughness disrupts the formation of laminar end wall vortex 

resulting in increased core radius and significant reduction in pressure deficit and 

tangential velocity (This reasoning is similar to the one given for explaining the effects of 

translation at low swirl ratios). At high swirl ratios it can be argued that the intense vortex 

stretching associated with the formation of multiple vortices counters the effects of 

surface roughness resulting in less pronounced changes in core radius, pressure deficit 

and tangential velocity.   

 

3.4 Conclusion: 

 

The effects of translation on a laboratory scale vortex using proper scaling for the 

translation velocity based on Hangan and Kim (2008) velocity-scale for Ward-type and 
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real–scale tornado were studied using LES simulations. The results show a key finding 

that the effect of translation is not uniform across the swirl ratios. For lower swirl ratios 

the translation reduces the maximum mean tangential velocity whereas for high swirl 

ratios it causes a slight increase in the maximum mean tangential velocity. 

 

A preliminary study on the effects of surface roughness for low roughness case was 

performed by properly scaling the atmospheric roughness length for Ward-type TVC and 

using the equivalent sand-grain roughness option in Fluent. Limitations in Fluent 

software, limits this study to only low roughness case and emphasizes the need for a more 

robust method. Subsequent studies using physical modeling of roughness elements were 

done and the results are closely in line with the past experimental studies. The adoption 

of proper scaling has not led to any significant differences compared to past studies. The 

introduction of roughness reduces the mean tangential velocity at all swirl ratios in other 

words the roughness causes an effect similar to reducing the swirl ratio. 
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Figure 3.1: Contour plots of velocity magnitude in the XZ plane for tornadic flow with 
translation. (VT = 1.07 m/s) 
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Figure 3.2: Normalized tangential velocity along the normalized radial distance for 
various swirl ratios of stationary (T0) and translating (T2) tornado-like vortices at height 
Z/R0 = 0.02. 
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Figure 3.3: Base surface pressure coefficients for various swirl ratios of stationary (T0) 
and translating (T2) tornado-like vortices. 
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Figure 3.4: LES velocity contours for S = 1.0 with translation velocity VT = 1.07 m/s, at 
height Z/R0 = 0.02 
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Figure 3.5: LES velocity contours for S = 2.0 with translation velocity VT = 1.07 m/s, at 
height Z/R0 = 0.02 
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Figure 3.6: Turbulence characteristics for S = 2.0 with translation VT = 1.07 m/s 
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Figure 3.7: Computational domain for simulating the effects of surface roughness using 
equivalent sand grain roughness model. 
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Figure 3.8: Normalized axial velocity along the normalized height for different radial 
location for swirl ratio 0.1 
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Figure 3.9: Normalized radial velocity along the normalized height for different radial 
location for swirl ratio 0.1 
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Figure 3.10: Normalized tangential velocity along the normalized height for different 
radial location for swirl ratio 0.1 



77 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 2 4

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

-0.5 0.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30
                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 1 2

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 2 4

0.00

0.05

0.10

0.15

0.20

0.25

0.30
                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 2 4

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

-0.4 0.0 0.4

R/Ro = 0.311

Normalized Axial Velocity V/Uo

 Y0
 Y1

R/Ro = 0.089

N
or

m
al

iz
ed

 H
ei

gh
t Z

/R
o

R/Ro = 0.177

R/Ro = 0.222

N
or

m
al

iz
ed

 H
ei

gh
t Z

/R
o

Normalized Axial Velocity V/Uo

R/Ro = 0.266

Normalized Axial Velocity V/Uo

R/Ro = 0.133

 
 

Figure 3.11: Normalized axial velocity along the normalized height for different radial 
location for swirl ratio 2.0 
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Figure 3.12: Normalized radial velocity along the normalized height for different radial 
location for swirl ratio 2.0 
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Figure 3.13: Normalized tangential velocity along the normalized height for different 
radial location for swirl ratio 2.0 
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Figure 3.14: Sketch showing the physically modeled rough surface. (a) The base wall of 
the domain with the roughness blocks. (b) The roughness block. 
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Figure 3.15: Maximum time-averaged central base pressure deficit vs. swirl ratio smooth 
(Y0) and rough surface (Y2). 
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Figure 3.16: Maximum time-averaged tangential velocity vs. swirl ratio for smooth (Y0) 
and rough surface (Y2). 
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Figure 3.17: Core radius along the height for various swirl ratios of smooth (Y0) and 
rough (Y2) surface tornadoes. 
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Chapter 4: Numerical Simulation of WindEEE Dome Facility 

 
4.1 Introduction: 

 

The Wind Engineering, Energy and Environment (WindEEE) Dome is a novel wind 

research facility planned to be built at the University of Western Ontario, funded by the 

Canadian Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). The 

WindEEE concept was developed by Dr Horia Hangan and forms the basis of the funded 

CFI proposal. During the conceptual phase both in-house (UWO) and consultant 

(AIOLOS) CFD simulations were employed to optimize and solidify the implied concept. 

This chapter shows a combination of CFD simulations developed both in house (UWO) 

through this thesis and collaboration with the AIOLOS consultant. WindEEE is meant for 

wind testing of large scale models of buildings and structures in complex terrain under 

sheared/straight and axi-symmetric flows (tornado and downburst-like winds). It also 

allows for testing of complete wind or solar farms at large scales and high resolution.  

 

The Downburst and Tornado mean velocity profiles vary significantly with 

synoptic wind mean velocity profiles, with the peak velocity occurring less than 50 m 

from the surface for the former flows (Kim and Hangan, 2007, Lewellen et al., 1997). 

Conventional straight flow wind tunnels cannot produce those wind profiles, only 

specialized wind tunnels like Tornado Vortex Chambers (Ward, 1972, Haan et al., 2007) 

and Downburst simulators (Chay and Letchford, 2002, Wood et al., 2001) can simulate 

their flow pattern. The proposed WindEEE Dome can produce tornado-like, downburst-

like and synoptic wind profile in a single chamber by modifying the inlet and outlet 

boundary conditions. 

 

This chapter presents the numerical simulations conducted to assess the dome’s 

capacity to generate the various wind profiles. In section 2, for a preliminary dome design 

it is demonstrated that tornado-like and downburst-like flows can be generated in the 

WindEEE dome. Further design optimizations are presented in section 3 to improve the 

dome design and enable the straight-flow mode wind field. The primary objective of the 
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study is to assess the number, dimension and distribution of fans as well as their inlet 

wind speeds and vector angles to produce various flow patterns. Also, the wind fields 

simulated in the WindEEE dome are compared with available real scale and laboratory 

scale tornadoes and downbursts. 

 

4.2 Preliminary Design:  

 

The preliminary WindEEE dome configuration consists of a hexagonal inner chamber 

with arrays of fans on all six walls and the ceiling surrounded by an outer, return air flow 

dome. The inner hexagonal test chamber has a diameter of DHex = 25 m and a maximum 

base to roof height of H = 7 m. All the side walls of the chamber have an uniformly 

spaced array of 8 columns by 2 rows of fans (0.5 m in diameter) and the roof has a 

closely packed hexagonal array of 19 fans (1m diameter). During the downburst mode of 

operation the roof fans acts as air inlet and the array on the side walls act as outlets. This 

is reversed for tornado simulation where the array on the side walls act as inlets and the 

roof fans act as outlets.  

 

4.2.1 Numerical Setup: 

 

In the current simulations, the computational domain is limited to the inner chamber as 

shown in Figure 4.1. The array of fans in the roof is replaced by a D = 5m diameter 

circular opening (Roof opening) and the fans on the side walls are replaced by d = 0.5m 

diameter circular opening (Side wall opening). The preliminary boundary conditions for 

tornado and downburst simulations are detailed in Table 4.1. 

 

The Computational Fluid Dynamics software, Fluent 6.3 was used for solving the 

steady-state Reynolds Averaged Navier-Stokes (RANS) equations. As this was a 

preliminary study, the shear-stress transport (SST) K-W model was used for modeling 

turbulence. The model effectively blends the robust and accurate formulation of the K-W 

model in the near wall region with the free-stream independence of the K-E model in the 

far field (Fluent 6.3, 2006). A brief description of the (SST) K-W model is presented in 
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Appendix A. An initial unstructured grid was developed using the software ‘Pointwise’. 

Grid convergence was performed and an unstructured grid of close to 2 million cells was 

deemed to provide grid convergence for both the tornado and downburst simulations. The 

wall Y+ was maintained in the range 30 to 300, corresponding to a standard wall function 

modeling (i.e. viscous sub-layer and buffer layers are not resolved) in the near-wall 

region based on the proposal of Launder and Spalding (1972). The segregated implicit 

solver, SIMPLEC pressure velocity coupling and second order discretization for pressure, 

momentum, turbulent kinetic energy and specific dissipation rate were used. 

 

4.2.2 Downburst: 

 

Kim and Hangan (2007) show that laboratory simulations of downburst-like flow need to 

consider the following: (1) The maximum mean velocities for downburst occur at heights 

of less than 5% of the initial jet diameter D. In order to obtain at least a couple of 

measurement points in this region the jet diameter has to be 0.2 m or larger. (2) The 

height at which the maximum mean velocity is encountered decreases with increasing 

Reynolds number (Re) and this dependency is more pronounced for Re < 200,000, so 

Reynolds numbers greater than 200,000 are preferred. (3) The distance between the jet 

and base surface H is not a critical parameter as long as it allows for the formation of the 

main vortex rings, which based on convective velocity argument, corresponds to H ≥ D. 

 

The following cases are considered in the current simulations. D = 1.75 m, D = 

3.5 m (based on the availability of benchmarking data) and D = 5 m (the maximum 

possible diameter). For all the cases, the inlet jet velocity VJet is 20m/s and height H is 

7m. The Reynolds number (Re) is defined in Equation 4.1 below.  

νDJetVRe =               (4.1) 

Table 4.2 lists the H/D ratios and Reynolds numbers for the three cases. The selected 

parameter values are such that they meet the above requirements. 
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The current numerical results are compared with numerical result of Kim and 

Hangan (2007) for impinging jets corresponding to Re = 2,000,000, H/D = 4 and R/D = 1 

shown in Figure 4.2. The mean radial velocity profiles match well, the maximum mean 

velocity occurs within 0.05D from the base and Reynolds number dependency is 

negligible as the Re > 200,000. Figure 4.3 compares the mean radial velocities at R/D 

between 1 and 2.5 for the current simulation with H/D = 4, Re = 2,317,881 and 

experimental results of Hangan and Xu (2005) for impinging jets with H/D = 4 and Re = 

27000. The matching with experiments is encouraging considering the fact that this is a 

preliminary K-W (SST) model simulation and the Reynolds numbers are different. 

 

4.2.3 Tornado: 

 

Past studies show that the flow pattern of a tornado is chiefly influenced by the non-

dimensional parameter swirl ratio (Davies-Jones, 1973, Church et al., 1979). For a Ward 

type laboratory Tornado Vortex Chamber (TVC), this ratio is defined as in Equation 4.2. 

00 2AUVS =          (4.2) 

 Where U0 and V0 are the radial and tangential velocities at R0 and A is the aspect 

ratio which is equal to H0/R0 (where R0 is the radius of updraft and H0 is the depth of 

inflow). 

 

The classification of real scale tornadoes is done using the forensic Fujita scale 

based on the observed maximum wind speed. Hangan and Kim (2008) have tentatively 

related the swirl ratio with the Fujita scale by matching Doppler radar data for real scale 

tornado with CFD simulations of Ward-type laboratory scale tornado and inferred that F4 

Fujita scale tornado approximately corresponds to a swirl ratio of  S = 2.0. Whenever lab 

scale tornadoes are compared with real scale ones, this inferred equivalence serves as a 

useful basis. 

 

In the current simulations attempts have been made to simulate an S = 2.0 (F4 

equivalent) tornado in the preliminary WindEEE dome configuration. Tornadoes can be 
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generated in the WindEEE dome by two methods namely; guide louver method and 

horizontal shear method as illustrated conceptually in Figure 4.4. In the first method, 

guide louvers are provided at the inlet fans in the side walls such that air enters at a 

constant speed (UFan) at a select angle θ with respect to the normal to the side wall. This 

helps achieve a constant normal and tangential velocity (Uin, Vin) at the inlet. In this 

method the swirl ratio is controlled by varying the speed of the fan (UFan) and the angle θ. 

In the horizontal shear method, the air entry is always normal to the side wall but the 

speed is varied uniformly from one end of the row of fans to the other end (say from Vin-

min – Vin-max) on each of the six side walls. Different swirl ratios are obtained by varying 

the fan velocity and the velocity gradient across the row of fans on each side wall. 

 

Inlet configurations corresponding to both the guide louver method and the 

horizontal shear method are considered in the current simulations. Several inlet 

conditions (i.e. Uin, Vin for guide louver method and Vin-min – Vin-max for horizontal shear 

method) of both methods were simulated and the conditions which produced a tornado 

with swirl ratio close to 2 by both methods were selected and the results of those 

corresponding cases are presented here.  

 

In case 1, which corresponds to the guide louver type inlet, the constant normal 

and tangential velocities of the inlet air are Uin = 9.66 m/s and Vin = 2.59 m/s at all the 

side wall openings.  This is equivalent to a fan velocity of UFan = 10 m/s with guide 

louver angle θ = 15°. In case 2, which corresponds to the horizontal shear type inlet, the 

normal velocity of inlet air is varied from 0 – 20 m/s at each of the six sides. The swirl 

ratio as defined in Equation 4.2 for a Ward type TVC cannot be directly applied with 

WindEEE dome simulations. However, an appropriate swirl ratio can be obtained by 

choosing a cylindrical region within the WindEEE dome inner chamber that is similar to 

the convergence region of the Ward type TVC. This cylindrical domain is chosen such 

that at its boundary the tangential velocity is uniform along the height and the axial 

velocity is negligible along the height. The size of the cylindrical domain that meets this 

requirement for case 1 is R0 = 7 m and H0 = 3.5 m and for case 2 is R0 = 8 m and H0 = 4 

m. The average radial and tangential velocity at R0 is used to calculate the swirl ratio and 
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an approximate swirl ratio of 2 was obtained for both cases. For such a swirl ratio, a two-

celled tornado with multiple vortices is expected (Church et al., 1979) i.e. the tornado has 

an inner core with downdraft and an outer core with updraft surrounded by secondary 

vortices. Since the current preliminary simulation is based on K-W (SST) model it does 

not capture the multiple vortices, but generates a two-celled tornado as shown in Figure 

4.5.  

 

Figures 4.6 and 4.7 compare the plot of normalized tangential velocity as a 

function of normalized radial distance for cases 1 and 2 respectively with the normalized 

full scale tangential velocity data from a F4 Spencer, South Dakota tornado of May 30, 

1998 (Sarkar, et al. 2005). Here, the tangential velocity is normalized with the maximum 

tangential velocity and radial distances are normalized with the radius at which the 

maximum tangential velocity occurs. The velocities are compared at various heights 

normalized with the height at which the maximum tangential velocity occurs. The plot 

shows that the tangential velocity along the radial direction varies as a in a Rankine 

vortex, which was also observed in section 2.2.3 for Ward-type TVC tornado-like flow 

simulations. The comparison shows an encouraging match and establishes that the current 

WindEEE dome configuration is able to generate an equivalent F4 tornado. 

 

4.3 Design optimization: 

 

The numerical simulations discussed above for the preliminary WindEEE dome 

configuration established the feasibility for generating tornado-like and downburst-like 

wind profiles in the facility. An array of 8 by 2 fans in the side walls combined with an 

array of roof fans of an equivalent diameter of 5 m were found to be adequate to produce 

satisfactory results. However, certain design modifications in the preliminary 

configuration are required to incorporate an additional feature in the WindEEE dome 

facility, namely, generating straight/sheared wind flow as in a conventional straight flow 

wind tunnel. Moreover, modifications in the configuration are called for to improve the 

characteristics of the downburst-like wind profiles. The preliminary design uses fans in 

the roof to produce a continuous impinging jet of air to simulate the downburst wind 
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profiles. In typical real life downbursts, a mass of cold and moist air descends suddenly 

from the thunderstorm cloud base, impinges on the ground surface and afterwards is 

convected radially, thus producing high wind speeds near the ground for a short period of 

time (Fujita, 1985). In order to closely imitate the natural phenomena, it is proposed to 

release a stored mass of air suddenly from the roof instead of a continuous jet of air. In 

the simulations carried out so for, both the horizontal shear method and guide louver 

method were considered for producing tornado-like flows. It may be noted that far more 

elaborate controls (i.e. the velocity of each fan needs to be controlled individually) are 

required to operate the horizontal shear method as against the simpler control (the fan 

speed and guide louver angle is same for all the fans) of the guided louver method. So the 

latter method alone was adopted for the modified design. 

 

 The design of the WindEEE dome was modified to meet the above requirements. 

While doing so, practical engineering considerations were kept in mind. Figure 4.8 shows 

this modified domain of the inner dome of the WindEEE dome. Four specific aspects 

have undergone changes and all other aspects remain the same. (1) One pair of parallel 

walls (2 sides) with a uniformly spaced array of 15 columns by 4 row of fans (diameter 

d1 = 0.8 m) has been introduced to facilitate the straight flow mode of operation. (2) On 

the remaining side walls of the dome, 8 columns by 1 row of fans (diameter d1 = 0.8 m) 

was introduced in place of 8 columns by 2 rows of fans (0.5 m diameter). (3) The vaulted 

roof was replaced with a flat roof in order to allow translation and the modified base to 

roof height H = 4 m. ( Also simulations with vaulted roof for straight flow showed that 

large re-circulating flows were produced in the vaulted region of the roof and caused non-

uniform straight flow. To avoid this flat roof was used.)  (4) The roof has a circular 

opening of diameter D = 4 m with an automated open-close shutter. Above the roof 

opening there is a hexagonal top plenum with 3 fans each (diameter d2 = 1 m) on all the 

six sides. The hexagonal top plenum has a diameter Dp = 12 m and height h = 7 m and 

also has six rectangular air outlets with shutters. This was introduced to improve the 

downburst flow. 
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To operate the WindEEE dome in the straight-flow mode, the roof opening is 

closed. Out of the pair of opposite side walls with 15 X 4 arrays of openings, one side is 

used as air inlet by connecting the fans and the other side is used as outlet. This creates a 

straight flow between them in the test chamber. The tornado mode of operation is enabled 

by using 8 X 1 arrays of fans on all the 6 side walls as air inlet and the shutter in the roof 

and on the rectangular air outlets in the plenum are opened to provide exit. While 

operating the dome in the downburst mode, the roof shutter and shutters on the 

rectangular air outlets in the plenum are closed initially, the fans in the plenum are used 

for pumping air into the plenum till a sufficient high pressure is built and then the air is 

suddenly released into the bottom test chamber by rapid opening of the automated roof 

shutter. The air flows down and exits through the 8 X 1 array of fan openings in all the 

six side walls.  

 

Numerical simulations were again performed on the modified design 

configuration to confirm that the changed configuration still produces the desired flow 

fields of straight, tornado-like and downburst-like flows.  

 

4.3.1 Numerical setup: 

 

The computational domain of the WindEEE dome used in the downburst-like flow, 

tornado-like flow and straight flow simulations are shown in Figures 4.9, 4.10 and 4.11, 

respectively. Like the simulations for the preliminary design described in section 4.2, in 

the following simulations also the fans and the roof shutter are not modeled and are 

replaced by flat circular openings. The boundary conditions used in the simulations are 

given in Table 4.3. 

The commercial CFD software CFX was used for analyzing the numerical 

solution. For the straight flow simulation shear-stress transport (SST) K-W model was 

used for modeling turbulence. Previous numerical studies on tornado and downburst 

(Kim and Hangan, 2007, Hangan and Kim, 2008) have indicated that out of all the RANS 

models the Reynolds stress model (RSM) is better in predicting the characteristics of 

such flows, so the current simulations use RSM for modeling turbulence in the tornado 
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and downburst simulations. Steady state simulations were performed for straight flow and 

tornado-like flow and unsteady simulations were performed for downburst-like flow. 

 

Grid convergence was done on an unstructured grid showing that a grid close to 5 

million cells was necessary for straight flow simulation and close to 4 million cells for 

both tornado and downburst simulations. The segregated implicit solver, SIMPLEC 

pressure velocity coupling and second order discretization for pressure, momentum, 

turbulent kinetic energy, specific dissipation rate and Reynolds stresses were used. 

 

4.3.2 Downburst: 

 

During the downburst mode of operation in the WindEEE dome, a mass of air at high 

pressure is released suddenly from the roof opening for a short period of time. This 

boundary condition is replaced in the current simulation by using a constant velocity inlet 

boundary condition at the roof opening and analyzing the time varying flow pattern using 

an unsteady simulation. This can be regarded as equivalent to a sudden-burst situation 

when considered over a time frame needed for the initial touch down of the jet and a few 

intervals immediately there after. The unsteady simulation for the modified inner domain 

(detailed description given in section 4.3.1) was performed for a roof shutter opening of 

diameter D = 4 m and an inlet jet velocity (VJet) of 30 m/s. As the base to roof height H is 

4m, the H/D ratio for the current simulation is 1. The Reynolds number (Re) as defined in 

equation 1 is calculated to be 8,000,000. The D, H/D ratio and Re satisfy the 

requirements mentioned in section 4.2.2 for downburst simulations.  

 

Figure 4.12 shows the velocity vector in the vertical plane for different non-

dimensional time steps ( )/DV*(tT Jet= ). These plots show the ring-vortices formed due 

to the Kelvin-Helmholtz instability caused by the shear between the jet flow and the 

ambient still air. The ring-vortex touches the surface at time T = 2.7 and is advected 

along the radial direction. Past simulations (Kim and Hangan, 2007) have shown that the 

vortex touch-down causes local accelerations near the wall which produce velocities of 

the same order of magnitude as the inlet jet velocity close to the surface. It can be seen 
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from the plots that in the current simulation also velocities near the ground following the 

vortex touch-down are nearly of the same order of magnitude as the inlet jet velocity. It 

was observed from the simulation that maximum radial velocity occurs around radial 

distance R/D = 1 and height Z/D = 0.02, the maximum radial velocity Vrad-max = 1.5Vjet 

and mean radial velocity Vrad-mean = Vjet. Kim and Hangan (2007) have also shown the 

formation of multiple vortices around the principal vortex after touch down. However, 

the current simulation does not capture the formation of multiple vortices. A possible 

reason for this is the fact that the opening in the peripheral wall for the WindEEE 

configuration tends to streamline the flow and therefore might impede the formation of 

consequent vortices.  

 

A comparison is also made between the semi-empirical model proposed by 

Holmes and Oliver (2000) and the current simulation shown in Figure 4.13. The figure 

compares the horizontal radial wind speed along the radial distance at time steps T = 1.8, 

2.7, 3.6 (Note: ring vortex touches the surface at T = 2.7). The results show a good match 

especially with the radial velocity profile after the touch down (T = 3.6) where the ring-

vortex has advected to r/D = 1 and the maximum radial velocities are observed.  These 

results show that the WindEEE dome configuration is able generate the flow features 

observed in downburst flows.  

 

4.3.3 Tornado: 

 

The current simulation is performed for the modified inner domain as described in 

section 4.3.1. The objective of the current simulation is to demonstrate that the modified 

configuration of WindEEE dome (more specifically the 8 X 1 array of fans (dia 0.8m) 

instead of the 8 X 2 array of fans (0.5m) on the side walls) would also produce an S = 2.0 

(F4) tornado. It was observed that normal and tangential velocities of Uin = 15.182 m/s 

and Vin = 5.05 m/s at the inlet (Equivalent fan velocity UFan = 16 m/s and guide louver 

angle θ = 18.4°) produce a tornado around S = 2.   
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The simulation results were again compared with the full scale data from the F4 

Spencer, South Dakota tornado in the same manner as was done for the simulation of the 

preliminary design described in section 4.2.3 and the comparison is shown in Figure 4.14. 

The plot shows an encouraging match outside the core radius. Following the method of 

Hangan and Kim (2008) a velocity-scale can be obtained by comparing the maximum 

tangential velocity Vmax between the WindEEE model scale tornado simulation and the 

Doppler data for the real scale tornado. Similarly, by comparing the radius Rmax and 

height Zmax at which the Vmax occurs in the WindEEE with respective real scale values, a 

length-scale can be arrived at. The length scale obtained by comparing Rmax and that 

obtained by comparing Zmax need to be of the same order. Based on these criteria the 

velocity-scale was found to be approximately 2 and the length-scale to be 130. 

 

 The results of the current simulation are further compared with the CFD 

simulation of an S = 2 tornado generated in a Ward-type TVC. (The Ward type TVC 

simulations were performed using Fluent 6.3 software. Similar to the current CFD 

simulation of the tornado-like flow in WindEEE dome, the RSM turbulence model, 

SIMPLEC pressure velocity coupling and second order discretization for pressure, 

momentum, turbulent kinetic energy, specific dissipation rate and Reynolds stresses were 

used.) Figure 4.15 compares the plot of the vertical profiles of the normalized tangential, 

radial and axial velocity at the core radius Rmax (i.e. the radius at which the maximum 

tangential velocity Vmax occurs). The velocities are normalized with maximum tangential 

velocity and height is normalized with core radius. In tornadic flows the convergence 

(radial velocity) is limited to the region close to the base surface and the tangential 

velocity increases from zero at the base to a maximum value along the height and 

remains nearly constant thereafter.  This characteristic feature is observed in the plot. It 

shows that overall the tornado produced in the WindEEE has similar flow characteristics 

with the tornado produced in a Ward type TVC. Differences seen may be attributed to the 

difference in the geometry and inlet conditions of the two systems. 
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4.3.4 Straight flow: 

 

To serve as a conventional straight flow wind tunnel, the WindEEE dome should be 

capable of generating a wind field inside the test chamber meeting the following 

stipulations. 1) A maximum wind speed of around 15m/s should be realized in the middle 

of the chamber. 2) The velocity profile over a span-wise distance of approximately 10m 

and height 3.5m should be uniform with variation, if any, not more than ±5%. 

 

The CFD simulation was performed for inlet fan speeds of 27 m/s. Though the 

maximum wind speed of around 15 m/s was achieved at the middle of the test chamber, 

the velocity profile did not remain flat over the full span distance of 14 m due to large 

regions of re-circulating flow on either side of the primary straight flow region. To set 

right this aspect, slotted removable walls were introduced along the length of the chamber 

on either side of the inlet and outlet wall. These walls have 33% open area with 360mm 

wide flat strips and 210 mm opening between strips. The simulations were again 

performed for the same inlet fan speed of 27 m/s. The domain used in the simulation is 

shown in Figure 4.16. 

 

  Figure 4.17 shows the plot of velocity across the span at a height of 2m above the 

ground (i.e. at half the height of the inner chamber) at different locations along the 

direction of the flow (X = 2.5 m, 7.5 m, and 12.5 m measured from the inlet wall). The 

figure shows that a uniform velocity profile with a velocity of 16 m/s is achieved across 

the span over a distance of close to 10m. Figure 4.18 shows the plot of velocity across the 

span at the middle of the chamber for different heights from the ground (X = 1 m, 2 m, 

and 3 m). It can be seen that uniform velocity profile are achieved at every height up to 

3.5 m over a transverse extent of approximately ± 4.5m. The variation in flow is in the 

±5% limits and this is considered satisfactory. There are clear acceleration of the flow 

towards the sidewalls probably due to the formation of Ekman vortices and lateral 

boundary layers. These accelerations can be further corrected by an adequate deceleration 

of the fans near the lateral walls.    
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4.4 Conclusions: 

 

Numerical simulations for the WindEEE dome axi-symmetric flow fields were conducted 

and the results show feasibility for generating tornado-like and downburst-like wind 

profiles using the preliminary design. Subsequently, design optimizations were 

introduced to enhance the capability of the dome with respect to straight flow and 

downburst modes of operations.  Analysis shows that an array of 8 by 1 fans in 4 side 

walls combined with an array of 15 by 4 fans on the remaining pair of opposite walls, a 

pair of removable slotted partition, and a top plenum fitted with automated shutter 

opening offer adequate choices of inlet and outlet boundary conditions to realize all the 

three desired flow fields.  

 

In the downburst simulations the maximum radial velocity is obtained at heights 

within 5% of the initial jet diameter, as desired. Also the simulations show the production 

of ring-vortices generally observed in downburst-like flows due to Kelvin-Helmholtz 

instability. In the tornado simulation, a tornado with swirl ratio of approximately S = 2 

was simulated and results compare well with observed data from a real tornado and 

numerically simulated results from a Ward type TVC. The straight flow simulations also 

produce a uniform velocity profile along the span-wise direction with variations within 

±5%.  

 

The WindEEE dome design would evolve further following engineering design 

implementations. Future plans include the construction of a laboratory scale model of the 

complete WindEEE dome and experimental analysis of its flow fields. This model will be 

used to validate (benchmark) the present CFD simulations and to further address issues 

related to the translation of both tornadoes and downbursts. 
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Boundary name 
 

BC for tornado-like flow BC for downburst-like flow 

Roof opening (Diameter D) Outflow Velocity inlet 
8 X 2 Side wall openings 

(Diameter d) 
Velocity inlet Outflow 

6 Side walls Free-slip wall Free-slip wall 
Roof Free slip wall Free slip wall 
Base No-slip wall No-slip wall 

 
Table 4.1: Boundary conditions for the preliminary WindEEE dome domain for the 
simulations of tornado-like and downburst-like flows 
 
 

Case Num 
 

Inlet jet Dia D (m) H/D Reynolds Number 

1 1.75 4 2,251,656 
2 3.5 2 4,635,762 
3 5 1.4 6,622,517 

 
Table 4.2: The H/D ratio and Reynolds number for the three downburst cases simulated 
using the preliminary WindEEE dome domain. 
 
 

Tornado-like flow 
 

Downburst-like flow Straight flow 

Boundary name Boundary 
condition 

 

Boundary name Boundary 
condition 

Boundary name Boundary 
condition 

8 X 1 Inlet 
opening 

Velocity 
inlet 

8 X 1 Outlet 
opening 

Outflow 15 X 4 Inlet 
opening 

Velocity 
inlet 

Roof opening Interior Roof opening Velocity 
inlet 

15 X 4 Outlet 
opening 

Outflow 

6 Side walls Free-slip 
wall 

6 Side walls Free-slip 
wall 

6 Side walls Free-slip 
wall 

Flat roof Free slip 
wall 

Flat roof Free-slip 
wall 

Flat roof Free-slip 
wall 

Base No-slip 
wall 

Base No-slip 
wall 

Base No-slip 
wall 

6 Plenum outlets Outflow     
Plenum Free slip 

wall 
    

 
Table 4.3: Boundary conditions for the tornado, downburst and straight flow simulations 
in the modified WindEEE dome domain 
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Figure 4.1: The computational domain: the inner chamber of WindEEE dome. 
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Figure 4.2: The plot of normalized radial velocity vs. normalized height at R/D = 1, the 
numerical result of Kim and Hangan (2007) was for a Re = 2,000,000, H/D = 4. 
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Figure 4.3: The plot of normalized radial velocity vs. normalized height at various R/D 
ratios, the experimental results of Hangan and Xu (2005) were for a Re = 27,000, H/D = 
4 and the current CFD results were for Re = 2,251,656, H/D = 4. 
 
 

  
 

 
Figure 4.4: Conceptual schematic of inlet condition for tornado-like flows (a) Guide 
louver method: (b) Horizontal shear method 
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Figure 4.5: The contour plot of the velocity magnitude (m/s) of the current CFD 
simulation of tornado in the WindEEE dome showing the two-celled tornado. 
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Figure 4.6: The plot of normalized tangential velocity vs. the normalized radial distance, 
comparing the current CFD simulation of tornado for the preliminary dome design 
(Case1: guide louver type input) and the real scale tornado velocities measured with 
Doppler radar. 
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Figure 4.7: The plot of normalized tangential velocity vs. the normalized radial distance, 
comparing the current CFD simulation of tornado for the preliminary dome design 
(Case2: horizontal shear type input) and the real scale tornado velocities measured with 
Doppler radar. 

 

 
 
Figure 4.8: The modified inner chamber of WindEEE dome. 
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Figure 4.9: The computational domain: Downburst-like flow simulation. 
 
 
 
 
 
 

 
 
Figure 4.10: The computational domain: Tornado-like flow simulation. 
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Figure 4.11: The computational domain: Straight flow simulation. 
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a)  

 
b)  

 
c)  

 
d)  

 
e)  

 
f)  

 
  

           
 
Figure 4.12: The velocity vectors in the vertical plane showing the ring vortex evolution 
in the downburst flow at different non-dimensional time frames )/DV*(tT Jet= a) T = 
0.9, b) T = 1.8, c) T = 2.7, d) T = 3.6, e) T = 4.5, f) T = 5.4 
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Figure 4.13: The plot of normalized radial velocity vs. the normalized radial distance, 
comparing the current CFD simulation of downburst flow for the modified domain and 
the semi-empirical model for downburst flow by Holmes and Oliver (2000). 
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Figure 4.14: The plot of normalized tangential velocity vs. the normalized radial distance, 
comparing the current CFD simulation of tornado for the modified domain and the real 
scale tornado velocities measured with Doppler radar. 
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Figure 4.15: The plot of normalized velocity vs. the normalized height at core radius 
Rmax, comparing the current CFD simulation of tornado in the WindEEE dome and the 
CFD simulation of tornado of a Ward type TVC. (TV: Tangential velocity, RV: Radial 
velocity, AV: Axial velocity) 

 

 

 
 
Figure 4.16: The computational domain: straight flow with side slotted walls.  
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Figure 4.17: The plot of velocity vs. span-wise horizontal distance at mid height (2 m) at 
different length-wise distances (X= 2.5m, 7.5m, and 12.5m) from the wall (with the array 
of fans) for the straight flow. 
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Figure 4.18: The plot of velocity vs. span-wise horizontal distance at mid-section (X = 
12.5 m) at different heights (Z= 1m, 2m, and 3m) from the base wall for the straight flow. 
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Chapter 5: Numerical Simulation of Atmospheric Vortex Engine 

 
5.1 Introduction: 

 

The atmospheric vortex engine (AVE) is a green carbon free technology to produce 

electricity developed by Louis Michaud (http://vortexengine.ca). It uses an artificially 

created vortex to capture the mechanical energy produced during upward heat 

convection. The vortex is created by admitting warm or humid air tangentially into the 

base of a circular wall. The heat source can be solar energy, warm seawater or waste 

industrial heat. The mechanical energy is produced in peripheral turbo-generators.  

 

The AVE has the same thermodynamic basis as the solar chimney (Schlaich et.al, 

2005, Haaf et.al, 1983 and Haaf, 1984). A solar chimney consists of a tall vertical tube, a 

transparent solar collector surrounding the base and a turbine located at the inlet of the 

tube. One of the factors influencing the heat to work conversion efficiency of a solar 

chimney is the height of the chimney. The efficiency is directly proportional to the 

height. For example the Manzanares solar chimney built in Spain in the 1980’s with a 

200m tall chimney, diameter of 10 m and solar collector of diameter 250m had a heat to 

work conversion efficiency of 0.2% and the proposed EnviroMission chimney in 

Australia has a 1000m tall chimney with a diameter of 130 m and a solar collector of area 

40 km2 has a heat to work conversion efficiency of 3%. The costs of building high 

chimneys limit their height and in turn their efficiency. 

 

Michaud (1975, 1977) suggested a possible way of eliminating the chimney by 

imitating naturally occurring tornado-like flows based on the observation that in tornado 

like vortex flows the convergence is limited to the bottom of the vortex close to the 

ground and the centrifugal force associated with the circular-velocity limits the 

convergence (i.e. mixing of ambient air) at other heights. In other words the centrifugal 

force in a vortex acts as the physical wall of a chimney. This typical convergence 

characteristic can be easily demonstrated in the case of a laboratory scale numerically 

simulated tornado. Figure 5.1 illustrates the results from such a study; it shows the 
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normalized radial and tangential velocity at the core radius along the height. It can be 

seen that the radial velocity is high close to the ground and reduces along the height 

whereas the tangential velocity increases along the height and reaches a constant value. 

The AVE uses the above characteristics of tornadic flow and the physical wall of a 

chimney is replaced by the centrifugal force of an artificially generated vortex, so the 

efficiency is not limited by the physical height of the chimney. Also power generation 

cost is lowered by saving the construction cost of the chimney. Further detailed 

thermodynamic basis for the AVE are presented in Michaud (1977), Michaud (1995) and 

Michaud (1996). 

 

In the current chapter numerical simulations of a prototype model-scale AVE are 

presented. The objective of the simulations is to study the overall flow field produced by 

the AVE. The effects of varying the geometric and physical parameters are also studied 

with a view to future design optimization. Further, the effect of cross wind flow is also 

studied, on a full-scale AVE. 

 

5.2 Numerical simulation: 

 

The prototype model scale AVE has an octagonal column with 8 tangential inlets for the 

air. The base of the AVE is heated and maintained at a constant temperature. At the roof 

of the AVE there is a circular opening through which air leaves the AVE and enters the 

atmosphere. Figures 5.2a and 5.2b show the elevation and plan view of the prototype 

AVE. The dimensions used in the current simulations for the model-scale geometry are 

given in Table 5.1. The full-scale geometry is 20 times the model scale and the 

dimensions are given in Table 5.2. 

 

The computational domain for the simulation is shown in Figure 5.3. It consists of 

an outer cubic domain 3m X 3m X 2m representing the ambient atmosphere and the AVE 

is modeled at the centre of the base of the outer cubic domain. The height of the domain 

chosen is five times the height of the AVE. This is adequate for the preliminary 

simulations performed here to test effectiveness of the AVE to generate tornado-like 
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vortex extending beyond its physical height.  The side faces of the outer cubic domain are 

set as inlet boundary conditions with atmospheric pressure and ambient temperature and 

the top face is set as outlet with atmospheric pressure and ambient temperature. The 

bottom face is set as wall. The base wall of the AVE is maintained at a constant 

temperature as a heated plate and the air enters the AVE through the tangential inlet at a 

higher temperature than the ambient atmosphere. The detailed boundary conditions used 

in the simulation are given in Table 5.3.  

 

The commercial Computational Fluid Dynamic software, Fluent6.3 was used for 

the 3D numerical simulation. The software uses Finite Volume Method (FVM) to 

discretize the equations of motion (Navier-Stokes equations, the continuity equation and 

the energy equation) and the segregated implicit solver option was employed to solve the 

equations. 

 

Fluent employs Boussinesq model to solve the buoyancy driven natural convection flow 

problems. This model assumes density (ρ ) as a constant value in all solved equations, 

except the buoyancy term in the momentum equation. The Boussinesq approximation 

( )βΔT1ρρ 0 −=  is used to replace the density from the buoyancy term, where 0ρ  is the 

constant density, β  is the thermal expansion coefficient and ( )0TTΔT −=  is the 

temperature difference between actual and ambient temperature (Fluent 6.3, 2006). This 

model was used in the current AVE simulations.  The Boussinesq approximation is only 

valid when ( ) 1TTβ 0 <<− , and in the current simulations ( ) 0.067TTβ 0 ≈− . Details of this 

value and the other physical parameters of relevance are presented in Appendix C. 

 

In buoyancy driven flows Rayleigh number Ra < 108 indicates a buoyancy–induced 

laminar flow and transition to turbulence occurs over the range of 108 < Ra < 1010. In the 

current simulations Ra = 2.06 X 109 for the model-scale AVE. Even though the Rayleigh 

number for the flow in AVE indicate a transitional turbulence induced buoyancy flow, a 

pilot study was carried out using laminar simulations on the model-scale AVE to do an 

initial assessment of the flow field. Further simulations were carried out using the second 
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order unsteady k-ε turbulence model. An unstructured grid was used and further grid 

convergence was done and grid sizes were considered to be sufficient to cover the 

domain in its relevant details. For the model-scale AVE, around 200,000 cells were used 

for laminar simulations and 400,000 cells were used for turbulent simulations. Around 

800,000 cells were used for the full-scale simulations. The interaction of the vortex flow 

with the base of the AVE was not the focus of the study, so a standard wall function 

model was used in the near-wall region. The SIMPLEC pressure velocity coupling and 

second order discretization for pressure, momentum, energy, turbulent kinetic energy and 

specific dissipation rate were employed. 

 

5.2.1 Preliminary laminar simulations on model-scale AVE: 

 

A preliminary laminar simulation was performed for a temperature difference of ΔT = 20 

K between the inlet air and ambient air. Figures 5.4 and 5.5 show the contour plot of the 

tangential velocity in the YZ plane and the vector plot of velocity magnitude at Z =0.4m 

plane (at the exit of AVE). It can be seen from these plots that a tornado like vortex flow 

was generated inside the AVE and the flow extended into the atmosphere till the top of 

the domain. Figure 5.6 shows the contour plot of temperature in the YZ plane. It can be 

seen that the warm plume does not get dissipated and the high temperature is maintained 

till the top of the domain, confirming the earlier statement that the vortex acts like a 

physical chimney and arrests the dissipation of heat at heights above the AVE. Figure 5.7 

shows the contour plot of the velocity magnitude in the YZ plane. It shows the two-celled 

structure characteristic of high swirl ratio tornadic flows. The maximum velocity of 1.15 

m/s was obtained near the top of the domain and the velocity of the air as it exits the 

vortex generator was around 0.687 m/s. Figure 5.8 shows the contour plot of static 

pressure in the YZ plane and the pressure drop in the region around the center is also 

characteristic of the tornadic flow as discussed in section 2.2.4. 

 

 All these observations namely, tangential velocity, temperature, velocity 

magnitude and static pressure taken together signify that the AVE is able to generate a 

tornado-like vortex  flow sustaining the high temperature till the top of the domain. 
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5.2.2 k-ε simulations on model-scale AVE: 

 

The above simulation was performed again using k-ε turbulence model for the same 

temperature difference of ΔT = 20 K between the inlet air and ambient air. Figures 5.9 

and 5.10 show the contour plot of the tangential velocity and velocity magnitude in the 

YZ plane respectively. These figures again confirm that the AVE produces vortex like 

flow and it extends into the atmosphere. The maximum velocity magnitude and the 

tangential velocity of the turbulent simulations are smaller than the laminar case because 

of the energy dispersion due to turbulence. 

 

5.2.3 Design optimization:  

 

The CFD simulations indicate that the current model-scale AVE geometry can produce a 

spiraling upward flow extending well above the AVE. The current dimensions of the key 

geometric parameters like deflector gap ‘g1’ (5% of deflector diameter ring ‘d1’), 

tangential entry height ‘h1’ (20% of deflector diameter ring ‘d1’), octagonal cylinder 

height ‘h2’ (20% of deflector diameter ring ‘d1’), roof opening ‘D3’ (30% of deflector 

diameter ring ‘d1’) have produced satisfactory results and is a good starting point for 

future designs. Further design optimization of AVE can be achieved by studying the 

effects of changes in physical and geometric parameters in the model-scale AVE.  The 

changes in geometric parameters like increased roof opening (D3), and increased domain 

height (Z), and changes in physical parameters like increased temperature difference 

between inlet air and ambient temperature (ΔT) were studied here. Both laminar and 

turbulent k-ε simulations were performed for all the three cases.  

 

The contour plot of static pressure (Figure 5.8) shows that there is build up of 

pressure near the roof of the AVE. To reduce the area of the roof, the roof opening (D3) 

diameter was increased from 300mm to 600mm. The increase in roof opening did not 

affect the vortex other than causing an increase on the diameter of vortex formed. Figure 

5.11 shows the contour plot velocity magnitude of the vortex in the YZ plane for the 
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increased roof opening. It was inferred that the roof opening diameter is not a critical 

parameter and future designs should adopt the smaller diameter (30% of deflector 

diameter ring ‘d1’) to produce a tight vortex and avoid the straight octagonal cylinder 

with roof by replacing it with a convergent octagonal cylinder. 

 

The vertical domain height was increased from 2000 mm to 6000 mm. Figures 

5.12 and 5.13 show the contour plot velocity magnitude and temperature of the vortex in 

the YZ plane for the extended domain. The increase in the height does not dissipate the 

temperature much and plume extends till the top of the domain.  

 

The key physical parameter, temperature difference between the inlet air and 

ambient air (ΔT) was increased from 20 K to 30 K. The increase produced a much 

stronger vortex. Figure 5.14 shows the contour plot of velocity magnitude of the vortex in 

the YZ plane for ΔT = 30 K case and the maximum velocity is approximately 20% higher 

than the ΔT = 20 K case (Figure 5.9). It can be concluded that for a given geometric 

configuration of AVE, the vortex strength and in turn the power output is mainly 

controlled by temperature difference between the inlet air and ambient air (ΔT). 

 

5.2.4 Full-scale AVE simulations with cross wind: 

 

The results presented so far pertain to a lab scale model which will be studied indoors and 

atmospheric wind plays no roll in this situation. Full-scale AVE will be located outdoors 

and will be subject to the influence of atmospheric wind. A full-scale AVE with 

geometry 20 times the model-scale AVE has been proposed to be built. Simulation of a 

full-scale AVE was done to study the effect of cross wind on the vortex generated. 

Detailed domain dimensions used in the simulation are given in Table 5.2. For the full-

scale dimensions considered here the Rayleigh number Ra = 1.648 X 1013. This indicates 

that the flow will be turbulent in nature, so k-ε turbulent model simulations were 

performed. 
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An initial simulation without cross wind was performed as base case for 

comparison with the cross wind case. Figure 5.15 shows the contour plot velocity 

magnitude of the vortex in the YZ plane and Figure 5.16 shows the static pressure in the 

YZ plane. The features observed in these figures are similar to those observed in the 

model scale simulations, confirming the formation of tornado-like flows in the full-scale 

AVE also. The simulation was repeated with the inclusion of horizontal cross wind in the 

positive X direction. The horizontal wind has a power law mean velocity profile 

corresponding to an open terrain (with a velocity of 1.2 m/s at 10 m height).  

 

Figures 5.17 and 5.18 show the contour plot of velocity and temperature in the XZ 

plane for the full scale geometry with cross flow of wind. As expected the column of 

vortex gets tilted in the direction of the wind. The pressure contours shown in Figure 5.19 

indicate that even though the plume gets tilted, the changes in pressure drop at the base of 

the AVE is negligible when compared to that of the no cross wind case (Figure 5.16). The 

pressure drop at the base of the AVE is responsible for drawing the air inside the AVE 

and driving the turbo-generators located at the inlets, so even though the cross wind tilts 

the vortex, it does not greatly affect the power generation capacity of the AVE. 

 

5.3 Conclusion: 

 

The CFD analysis of a model-scale Atmospheric Vortex Engine (AVE) was performed. 

The results show that the AVE can generate a vortex flow in the atmosphere much above 

the AVE and the vortex acts as a physical chimney limiting the mixing of surrounding air 

into the raising plume of hot air. A parametric study was conducted and provides a good 

starting point for future designs. For a given geometry, the physical parameter ΔT 

(temperature difference between the inlet air to AVE and ambient air) is the main 

parameter that controls the strength of the vortex and in turn the power output. The full 

scale simulations subjected to cross wind show that the power generation capacity is not 

affected by the cross winds.  
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The current full scale simulations do not consider actual temperature gradient 

present in the atmosphere. Future studies should include the effect of various atmospheric 

stratifications: stable, unstable and neutral for further accurate results. 
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Parameter 
Name 

Parameter 
Description 

Base Value 
(mm) 

 
d1 Inner octagonal cylinder  

diameter 
1000 

d2 Outer octagonal cylinder 
diameter 

1050 

d3 Roof opening diameter 300 
d4 Floor opening diameter 0 
d5 Upper circular cylinder diameter 800 
g1 Gap between deflectors 50 
h1 Tangential entry height 200 
h2 Octagonal cylinder height 200 
h3 Upper cylinder height 0 
Z Domain height 2000 

 
Table 5.1: Dimensional specifications for prototype model-scale AVE 

 
 

Parameter 
Name 

Parameter 
Description 

Base Value 
(m) 

 
d1 Inner octagonal cylinder  

diameter 
20 

d2 Outer octagonal cylinder 
diameter 

21 

d3 Roof opening diameter 6 
d4 Floor opening diameter 0 
d5 Upper circular cylinder diameter 16 
g1 Gap between deflectors 1 
h1 Tangential entry height 4 
h2 Octagonal cylinder height 4 
h3 Upper cylinder height 0 
Z Domain height 120 

 
Table 5.2: Dimensional specifications for prototype full-scale AVE 
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Boundary name Boundary condition 
 

Cubic domain side wall (4) Pressure Inlet (Atm Pr, Ambient Temp T) 
Cubic domain roof Pressure outlet (Atm Pr, Ambient Temp 

T) 
Cubic domain base Free-slip wall 

Tangential air inlet (8) Pressure inlet (Atm Pr, Ambient Temp T 
+ ΔT) 

AVE base  No-slip wall (Temp T + ΔT) 
AVE roof opening Interior 

AVE deflectors No-slip wall 
AVE octagonal cylindrical wall No slip wall 

AVE roof No slip wall 
 

Table 5.3: Boundary conditions for both model-scale and full-scale AVE simulations 
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Figure 5.1: The radial and tangential velocity along the height at the core radius of a 
typical numerically simulated laboratory scale tornado. 
 

 
 
Figure 5.2a: Geometry of the prototype AVE used in the current simulations (Elevation) 
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Figure 5.2b: Geometry of the prototype AVE used in the current simulations (Plan view) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3: The computational domain 
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Figure 5.4: The contour plot of tangential velocity (m/s) in the YZ plane for model-scale 
AVE (Laminar Simulations) 
 
 

 
 
Figure 5.5: The vector plot of velocity magnitude (m/s) in the Z =0.4m plane for model-
scale AVE (Laminar Simulations) 
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Figure 5.6: The contour plot of temperature (K) in the YZ plane for model-scale AVE 
(Laminar Simulations) 
 
 

 
 
Figure 5.7: The contour plot of velocity magnitude (m/s) in the YZ plane for model-scale 
AVE (Laminar Simulations) 
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Figure 5.8: The contour plot of static pressure (Pa) in the YZ plane for model-scale AVE 
(Laminar Simulations) 
 
 

 
 
Figure 5.9: The contour plot of velocity magnitude (m/s) in the YZ plane for model-scale 
AVE (Turbulent Simulations) 
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Figure 5.10: The contour plot of tangential velocity (m/s) in the YZ plane for model-scale 
AVE (Turbulent Simulations) 
 
 

 
 
Figure 5.11: The contour plot of velocity magnitude (m/s) in the YZ plane for model-
scale AVE with increased roof opening diameter D3 (Turbulent Simulations) 
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Figure 5.12: The contour plot of velocity magnitude (m/s) in the YZ plane for the 
extended domain (Z = 6000mm) model-scale AVE (Turbulent Simulations) 
 
 

 
 
Figure 5.13: The contour plot of temperature (K) in the YZ plane for the extended 
domain (Z = 6000mm) model-scale AVE (Turbulent Simulations) 
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Figure 5.14: The contour plot of velocity magnitude (m/s) in the YZ plane for model-
scale AVE with increased temperature difference between the inlet air and ambient air 
(ΔT = 30 K) (Turbulent Simulations) 
 
 

 
 
Figure 5.15: The contour plot of velocity magnitude (m/s) in the YZ plane for the full-
scale AVE  
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Figure 5.16: The contour plot of static pressure (Pa) in the YZ plane for the full-scale 
AVE  
 
 

 
 
Figure 5.17: The contour plot of velocity magnitude (m/s) in the YZ plane for the full-
scale AVE with cross wind 
 



127 

 

 
 
Figure 5.18: The contour plot of temperature (K) in the YZ plane for the full-scale AVE 
with cross wind 
 
 

 
 
Figure 5.19: The contour plot of static pressure (Pa) in the YZ plane for the full-scale 
AVE with cross wind  
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Chapter 6: Conclusion 
 

The thesis has presented the results of numerical simulation of the flow characteristics of 

tornado like vortices produced by vortex generators. Three systems were investigated: 

Ward type Tornado Vortex Chamber (TVC), WinDEEE Dome and Atmospheric Vortex 

Engine (AVE).  

 

The Computational Fluid Dynamics (CFD) software, Fluent 6.3 was used for the 

numerical simulations of laboratory scale Ward-type TVC. Reynolds Stress Model 

(RSM) and Large Eddy Simulation (LES) were used for modeling turbulence. The 

simulations were done for swirl ratios 0.1 to 2.0. The main observations are given below. 

 

o For swirl ratios S < 1.0, the RSM model captures all flow features associated 

with different stages of evolution of the vortex, such as vortex break down 

(VBD) at S=0.28, vortex touch down (VTD) at S = 0.5 and two celled vortex 

for S = 0.8.  However, for S ≥ 1 the flow does not capture the transient 

multiple vortices as the simulation reaches a quasi steady state. 

 

o LES model simulations capture the transient multiple vortices for S ≥ 1. 

Unlike the past laboratory scale simulations the multiple vortices were 

observed without adding any external random noise. 

 

o A peak in the mean tangential velocity is observed at S ~ 0.5 when VBD 

touches the surface. A peak is also observed for S = 2.0 corresponding to 

occurrence of transient multiple vortices. Also at S = 2.0, multiple vortices 

with transient velocities 36% greater than the mean velocities are observed. So 

the tornado is most destructive during the vortex touch down and multiple 

vortex stage. 

 

o The height at which maximum tangential velocity occurs decreases initially 

with increase in swirl ratio (S = 0.1-0.5). After VTD occurs for S ~ 0.5, peaks 

occur very close to the surface (Z/R0 ≤ 0.04).  
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o The turbulent flow characteristics show that for low swirl ratios the r.m.s. 

velocities and shear stresses are concentrated within the core near the VBD 

and follow the VBD as it moves closer to the base surface as the swirl ratio 

increases. For higher swirl ratios the stresses are concentrated in an annular 

region around the core. 

 

o For all swirl ratios the peak r.m.s velocities and shear stresses occur at heights 

and radial distances close to the height and radius at which the maximum 

tangential velocity occurs. Since the observed maximum tangential velocities 

are greater than the theoretic thermodynamic speed limit, it is very likely that 

close to the surface the velocities are influenced by the turbulent interaction of 

the vortex with the surface.  

 

o The numerical simulation of tornado-like vortex in Ward-type TVC for a 

complete range of swirl ratios (S = 0.1 to 2.0) has generated a comprehensive 

validated data which could serve as database for both modelers and 

experimenters. 

 

LES simulations using the commercial CFD software Fluent 6.3 was performed to study 

the effects of translation and surface roughness on laboratory scale vortices in Ward-type 

TVC. 

 

o The results show a key finding that the effect of translation is not uniform 

across the swirl ratios. For lower swirl ratios the translation adversely affects 

the formation of laminar end wall vortex and hence reduces the maximum 

mean tangential velocity. At high swirl ratios the translation causes local 

vortex intensification, resulting in a slight increase in the maximum mean 

tangential velocity. 
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o A preliminary study on the effects of surface roughness for low roughness 

case was performed by properly scaling the atmospheric roughness length for 

Ward-type TVC and using the equivalent sand-grain roughness option in 

Fluent. Limitations in Fluent software limit this study to only low roughness 

case and emphasizes the need for a more robust method. 

 

o Effects of surface roughness were studied by modeling physical roughness 

elements representing a high roughness case (City-centre roughness). The 

results are closely in line with the past experimental studies. The adoption of 

proper scaling has not led to any significant differences compared to past 

studies. The introduction of roughness reduces the mean tangential velocity at 

all swirl ratios, in other words the roughness causes an effect similar to 

reducing the swirl ratio. 

 

Numerical simulations for the WindEEE dome were performed and the results show the 

feasibility for generating axi-symmetric (tornado-like and downburst-like) and straight 

flow wind profiles.  

 

o Initial simulations on a preliminary design using (SST) KW models show that 

an array of 8 by 2 fans (0.5 m dia) in the side walls combined with a roof 

opening of an equivalent diameter of 5m were found to be adequate to 

produce tornado-like and downburst-like wind profiles.  

 

o Subsequently, design optimizations were introduced to enhance the capability 

of the dome with respect to straight flow and downburst modes of operations.  

Numerical analysis using RSM model shows that an array of 8 by 1 fans (0.8 

m dia) in 4 side walls combined with an array of 15 by 4 fans (0.8 m dia) on 

the remaining pair of opposite walls, a pair of removable slotted partition and 

a top plenum fitted with automated shutter opening (4 m dia) offer adequate 

choices of inlet and outlet boundary conditions to realize all the three desired 

flow fields namely tornado-like, downburst-like and straight flow.  
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o In the downburst simulations the maximum radial velocity is obtained at 

heights within 5% of the initial jet diameter, as desired. Also the simulations 

show the production of ring-vortices generally observed in downburst-like 

flows due to Kelvin-Helmholtz instability.  

 

o In the tornado simulation, a tornado with swirl ratio of approximately S = 2 

was simulated and results compare well with observed data from a real 

tornado and numerically simulated results from a Ward type TVC.  

 

o The WindEEE dome design would evolve further following engineering 

design implementations. Future plans include the construction of a laboratory 

scale model of the complete WindEEE dome and experimental analysis of its 

flow fields. This model will be used to validate (benchmark) the present CFD 

simulations and to further address issues related to the translation of both 

tornadoes and downbursts. 

 

The CFD analysis of a model-scale Atmospheric Vortex Engine (AVE) was performed 

using Fluent 6.3. The results show that the AVE can generate a vortex flow in the 

atmosphere much above the AVE and the vortex acts as a physical chimney limiting the 

mixing of surrounding air into the rising plume of hot air. 

 

o For a given geometry, the physical parameter ΔT (temperature difference 

between the inlet air to AVE and ambient air) is the main parameter that 

controls the strength of the vortex and in turn the power output.  

o Increasing the roof opening does not affect the vortex other than causing an 

increase in the diameter of vortex formed. Future designs may adopt the 

smaller diameter (30% of deflector diameter ring ‘d1’) to produce a tight 

vortex and avoid the straight octagonal cylinder with roof by replacing it with 

a convergent octagonal cylinder. 
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o Increasing the domain height does not dissipate the temperature much, and the 

plume extends till the top of the domain. 

o The full scale simulations subjected to cross wind show that the cross wind 

causes the plume to tilt slightly, but has no adverse impact on the power 

generation capacity.  

o The current full scale simulations do not consider actual temperature gradient 

present in the atmosphere. Future studies should include the effect of various 

atmospheric stratifications: stable, unstable and neutral for further accurate 

results. 
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Appendix A: RANS turbulence modeling 

 
In 1895 Reynolds proposed a statistical approach to treat turbulence in fluid flow. 

According to that the flow variables can be expressed as a sum of mean (time-averaged) 

and fluctuating parts. 

 
'
iii uuu +=                      (A1) 

 
'φφφ +=                (A2) 

 

Where iu and 'u i denote the mean and fluctuating velocity components of 

instantaneous velocity ui and φ denotes scalars such as pressure, energy etc. Substituting 

the above forms of equations for flow variables in instantaneous continuity and 

momentum equations and taking a time average gives the Reynolds Averaged Navier-

Stokes (RANS) equations: 
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The term '
j

'
iuρu is called Reynolds stress tensor. In the above set of equations we 

have ten unknown variables (four unknown mean flow properties (p, u1, u2, and u3) and 

six Reynolds stress components) and only four sets of equation, so the system of 

equations is not closed. In order to close the system of equations of motion, we require 

additional equations. Different closure models are available and brief descriptions of the 

models used in this thesis are given below. Detailed descriptions are given in Fluent, 

2006. 
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εk  Model: 

 

In kε model the Reynolds stresses are related to the velocity gradients using the 

Boussinesq hypothesis shown in Equation A5. 
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(In the above equations as well as the following ones, the bar over mean components has 

been omitted) The eddy viscosity μt is computed using turbulent kinetic energy k and 

dissipation rate ε as shown in Equation A6. Two additional transport equations shown in 

Equations A7 and A8 are solved to calculate k and ε. 

 

 
ε

kρCμ
2

μt =                (A6) 

 

( ) ( ) ρε
σ
μ

μρρ −+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

k
jk

t
i G

x
kkuk

ji xxt
          (A7) 

 

( ) ( )
k

CG
k

C
x

u k
j

t
i

2

21
ji xxt

ερεε
σ
μ

μρερε εε
ε

−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂         (A8) 

 

In the above equations Gk is the generation of turbulence kinetic energy due to the mean 

velocity gradients, C1ε = 1.44, C2ε = 1.92 and Cμ = 0.09 are constants. σk = 1.0 and σε = 

1.3 are the turbulent Prandtl numbers for k and ε.  
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(SST) kω Model: 

 

(SST) kω model also uses the Boussinesq hypothesis and is a combination of both kω and 

kε models. It uses a blending function to activate kω model in the near-wall region and kε 

model in the far field. The eddy viscosity is calculated as a function of turbulence kinetic 

energy (k) and specific dissipation rate (ω), which are solved using transport equations 

given below 
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Where Gk is the generation of turbulence kinetic energy due to mean velocity gradient, 

Gω represents the generation of ω, Yk and Yω represents the dissipation of k and ω due to 

turbulence. Dω is the cross-diffusion term introduced due to the transformation of the kε 

model into equations based on k and ω. Γk and Γω are the effective diffusivity and 

calculated as given in Equations A11 and A12. 
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Where μt is the eddy viscosity, σk and σω are the turbulent Prandtl numbers for k and ε. 

These are calculated as function of k, ω and blending functions. 

 

Reynolds Stress Model: 
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Reynolds Stress Model (RSM) closes the system of equations by using transport 

equations for each of the six terms in the Reynolds stress tensor and a scale-determining 

equation (transport equation for dissipation rate ε). So the RSM models is also called 

seven equation model. 

 

Reynolds Stress Transport Equation: 

 

The Equation A13 gives the transport equation of Reynolds stresses where Cij, DT,ij, DL,ij, 

Pij, Gij, φij, εij, Fij and Suser are convection, turbulent diffusion, molecular diffusion, stress 

production, buoyancy production, pressure strain, dissipation, production by system 

rotation and user-defined source terms, respectively (Equations A14-A21). Among these 

DT,ij, Gij, φij and εij  require modeling to close the equations. The current simulations do 

not consider temperature gradient in the flow so the modeling of buoyancy production 

term (Gij) is not presented here. 
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Modeling Turbulent Diffusive Transport: 

 

The turbulent diffusion term (DT,ij) given in Equation A15 is modeled as shown in 

Equation A22 and the constant σk = 0.82. The eddy viscosity μt is modeled as shown in 

Equation A23, where Cμ = 0.09. 
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2

μt =                  (A23) 

 

Modeling the Pressure-Strain Term: 

 

‘Linear Pressure-Strain model’ option in Fluent is used in the current simulations. This 

model is used to model the pressure-strain term (φij) given in Equation A19. The 

pressure-strain term is decomposed into a slow pressure-strain term, rapid pressure-strain 

term and a wall-reflection term as shown in Equation A24. The slow pressure-strain term 
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is modeled as shown in Equation A25 with constant C1 = 1.8. The rapid pressure-strain 

term is modeled as shown in Equation A26, where C2 = 0.6, Cij, Pij, Gij and Fij are as 

defined in Equations A14, A17, A18 and A21, P = ½ Pkk, G = ½ Gkk, C = ½ Ckk  (Note 

Gij, Gkk: effects of buoyancy are not considered in the current simulations). The wall-

reflection term is modeled as shown in Equation A27, where C1’ = 0.5, C2’ = 0.3, nk is 

the xk component of the unit normal to the wall, d is the normal distance to the wall 

and /κCC 43
μl = , where Cμ = 0.09 and the von Karman constant κ = 0.4187. 
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Modeling the Turbulent Kinetic Energy: 

 

The turbulent kinetic energy (k) needed for modeling in the above equations (Equations 

A15 and A17) is obtained from Equation A28.  

 

''

2
1k iiuu=              (A28) 

 

Modeling the Dissipation Rate: 
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The dissipation tensor (εij) is modeled as shown in Equation A29. The current simulations 

are for incompressible flows, so the ‘dilatation dissipation’ term YM included to account 

for compressibility effect on turbulence is neglected. The scalar dissipation rate (ε) in 

Equation A29 is computed with transport equation shown in Equation A30 with constants 

σε = 1.0, Cε1 = 1.44, Cε2 = 1.92 and the buoyancy effects on turbulence (Gii) is neglected 

in the current simulations. 
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Reference: 

 

FLUENT 6.3 User’s guide, 2006. Fluent Inc, Lebanon, USA 
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Appendix B: LES turbulence modeling 

 
In turbulent flows the large eddies are generally dependent on the geometry and small 

scale eddies tend to be more isotropic and less dependent on the geometry. Large Eddy 

Simulation (LES) is based on the above observation, so in LES the large eddies are 

resolved directly and only the small eddies are modeled. In the current thesis the CFD 

software Fluent 6.3 was used for LES simulation and a brief description of the model is 

given here. Detailed descriptions are given in Fluent, 2006. 

 

The filtering used in separating the large scale and small scale motions in LES is 

shown in Equation B1. 

 

( ) ( ) ( )∫ ′′′=
D

XdXX,GXφXφ               (B1) 

 

Where G is the filter function and D is the fluid domain. Every filter has an 

associated length scaleΔ . In rough sense, eddies of size larger than Δ  are large eddies 

and are resolved directly while those smaller than Δ are small eddies and are modeled. In 

Fluent the finite-volume discretization is used as filter and the filter function is as shown 

in Equation B2 where V is the volume of the computational cell. 
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Applying the filtering to the continuity and Navier-Stokes equation results in the 

following equations 
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Where Tij is the subgrid scale stress and expanded in Equation B5. Fluent 

employs Boussinesq hypothesis to model subgrid scale stress and computes it from 

Equation B6. Where Sij is the rate-of-strain tensor and μt is the subgrid scale turbulent 

viscosity. 
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The current simulations use the ‘Dynamic Smagorinsky-Lilly model’ option in 

Fluent to model the eddy viscosity and modeling is shown in Equation B7. Where Ls is 

the mixing length for the subgrid scales and is computed using Equation B8. In Equation 

B8, κ is the Von Karman constant, d is the distance to the closest wall and Cs is a 

dynamically calculated constant. 

 

ijijst SSL 22ρμ =                (B7) 

 

( )31,min VCdL Sκ=               (B8) 

 

Reference: 

 

FLUENT 6.3 User’s guide, 2006. Fluent Inc, Lebanon, USA 
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Appendix C: Rayleigh number calculation for AVE simulations 

 
Rayleigh number (Ra): 

 

( )
να

xTTgβ
Ra

3
S ∞−

=  

 

Variables Model-scale AVE Full-scale AVE 

 

AVE base diameter: X (m) 1 20 

Inlet air temperature: TS (K) 308.16 308.16 

Ambient temperature: T∞ (K) 288.16 288.16 

Film Temp: 
2

TT
T S

f
∞+

=  
298.16 298.16 

Thermal expansion coefficient (1/K):
fT

1β =  
3.35 X 10-3 3.35 X 10-3 

Kinematic viscosity at fT : ν (m2/s) 1.5 X 10-5 1.5 X 10-5 

Thermal diffusivity at fT : α (m2/s) 2.112 X 10-3 2.112 X 10-3 

Ra 2.06 X 109 1.648 X 1013 

 

 

Boussinesq model:  

 

The Boussinesq approximation is only valid when ( ) 1TTβ 0 <<− . In the current 

simulations the temperature difference between actual and ambient temperature 

( ) ( ) 20K288.16308.16TTΔT 0 =−=−=  and the thermal expansion coefficient 

33.35X10β −=  1/K, therefore ( ) .0.067TTβ 0 =−  

 



143 

 

Curriculum Vitae 

 
Name: Diwakar Natarajan 

 

  

Education: Bachelor of Technology - Jun 02 

Pondicherry University, Pondicherry, India 

 

 Master of Engineering - Dec 05 

Birla Institute of Technology and Science – Pilani, Rajasthan, 

India 

 

 Doctor of Philosophy - Jan 11 

University of Western Ontario, London, ON, Canada 

 

  

Awards: Govt. of Pondicherry prize for academic excellence: 

undergraduate studies, Pondicherry, India, 2002. 

 

  

Related Work 

Experience: 

Teaching Assistant - Jan 07 – May 10 

University of Western Ontario, London, ON, Canada 

 

  

Publication: Natarajan, D., and Hangan, H., “Preliminary numerical 

simulation of axi-symmetric flows in WindEEE dome facility”, 

The Firth International Symposium on Computational Wind 

Engineering (CWE2010), Chapel Hill, North Carolina, USA 

May 23-27, 2010.  

 



144 

 

 Natarajan, D., and Hangan, H., “Numerical study on the effects 

of surface roughness on tornado-like flows”, 11th Americas 

Conference on Wind Engineering (11ACWE), San Juan, Puerto 

Rico, June 22-26, 2009.  

 

 Natarajan, D., Kim, J., and Hangan, H.,”A CFD study of 

artificial atmospheric vortex generator”, Boundary Layer Wind 

Tunnel Report ‘BLWT-SS22-2007’, London, ON, Canada, Jun 

2007. 

 

 

 


	Numerical Simulation of Tornado-like Vortices
	Recommended Citation

	Numerical Simulation of Tornado-like Vortices

