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Abstract

The statistical study of dynamic treatment regimes (DTRs) focuses on estimating sequen-

tial treatment decision rules tailored to patient-level information across multiple stages of in-

tervention. Regression-based methods in DTR have been studied in the literature with a critical

assumption that all the observed variables are precisely measured. However, this assumption is

often violated in many applications. One example is the STAR*D study, in which the patient’s

depressive score is subject to measurement error. In this thesis, we explore problems in the

context of DTR with measurement error or misclassification considered in the observed data.

The first project deals with covariate measurement error in Q-learning with continuous

outcomes. The true covariate is not observable, but its replicate measurements are available in

each stage. We propose a modified Q-learning algorithm with regression calibration to handle

the measurement error. Given the replicate measurements, the proposed method obtains and

uses the estimates of the unobserved true covariate in each stage of Q-learning.

The second project explores covariate measurement error in dynamic weighted survival

modeling (DWSurv), a regression-based method dealing with survival outcomes in DTR. In-

ternal validation data are assumed to be available with true covariates only observed in a subset

of the data. Two correction methods are proposed to eliminate the effect of mismeasured co-

variate by obtaining the estimates of the missing true covariate in each stage of DWSurv. The

consistency of the proposed estimator is established.

The third project examines Q-learning with binary outcomes being subject to misclassi-

fication. We investigate the outcome misclassification effect for internal validation data and

develop a correction method to adjust for the effect in Q-learning. A probability relationship

is established between the true outcome and the misclassified outcome. The estimation proce-

dure in Q-learning is modified by including the derived probability relationship in the proposed

method.

Extensive simulation studies are conducted to assess the performance of the proposed meth-

ods and to compare them with the naive method. Real data are analyzed for illustration of the

proposed methods. The results showcase the importance of incorporating the errors in DTR

and the competency of the proposed methods in obtaining the optimal DTR.
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Summary for Lay Audience

Precision medicine is a new approach that recommends individualized treatment to a patient

by taking the patient’s information into account. It differs from the traditional ‘one-size-fits-

all’ clinical strategy, which ignores the patient’s heterogeneity in response to the treatment.

Dynamic treatment regimes (DTRs) realize this process by providing sequential treatment de-

cisions. However, in practice, a patient’s information that is used to infer a treatment decision

often contains error-corrupted covariates or misclassified outcomes, which can be viewed as

incorrect records of the patient’s characteristics or mislabeled clinical outcomes of the patient.

The contaminated information may misrepresent the health status of the patients and further

lead to inaccurate treatment decision-making. In this thesis, three situations are investigated in

the context of DTR with error-corrupted covariates or misclassified outcomes.

The first study focuses on the problem of error-corrupted covariates in a DTR method with

continuous outcomes, provided that the true covariate is not observed, but only its repeated

measurements are available. The regression calibration method is employed to correct the

error by using a new variable for the error-corrupted covariates, which are obtained from the

available repeated measurements in the data.

The second study deals with the error-corrupted covariates in a survival-based DTR, given

that the true covariate is partially observed in the data. Two correction methods are developed

to correct the error-corrupted covariates. The proposed methods create estimates for the unob-

served true covariate using the available error-corrupted covariate and use the created values

for modeling.

The third study addresses the misclassified outcome problem in a DTR method with binary

outcomes, assuming that the true outcome is only observed in a subset of data. A likelihood-

based approach is proposed, which incorporates the relationship between the true outcome and

misclassified outcome, through which the outcome misclassification can be corrected.

For each topic, simulation studies have demonstrated significant improvements in error cor-

rection and treatment decision-making. Real data applications have also shown the importance

of including the errors in the DTR context.
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Chapter 1

Introduction

It is a long history that clinicians have been using a ’one-size-fits-all’ strategy to treat patients

with chronic diseases over a multi-stage period. However, in practice, this treatment strategy

faces many challenges. As the disease and patients’ health conditions are constantly changing

over time, they may not respond to the treatments that used to be effective. It implies a new

treatment should be adopted. The financial concerns for both patients and hospitals may be

incurred when a costly but ineffective treatment has been constantly applied over multiple

stages. Moreover, the best treatment regarded at a given stage may yet lead to a suboptimal

clinical outcome in the long run (Chakraborty, 2013; Chakraborty and Murphy, 2014).

To tackle these challenges, the study of precision medicine has begun to arise, with the

objective of searching for optimal dynamic treatment regimes (DTRs) for patients. A dynamic

treatment regime is a sequence of treatment decision rules, one per stage of intervention, rec-

ommended to a patient by taking the individual’s characteristics and treatment history into

account. An optimal DTR is a sequence of treatment decision rules that yields optimal treat-

ments, with which the long-term clinical outcome is optimized. In recent years, there have

been a variety of case studies associated with the estimation of optimal DTR. However, the

observed data in studies are often assumed to be measured error-free, which may be violated

in practice. The following examples show that variables with measurement error often exist.

The first example is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D)

study, designed as a multisite, multistage randomized controlled trial. The STAR*D study

aimed to evaluate the effect of treatments for patients who suffered from a major depressive

1
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disorder (Rush et al., 2003,0). The entire study possessed four levels, and in each level, one or

a combination of treatments was assigned to the patients. The severity of depressive disorder

was measured by the Quick Inventory of Depressive Symptomatology (QIDS) score. If a pa-

tient who received treatment did not meet the requirement of remission (QIDS ≤ 5) at the end

of the level, this patient would have entered the next level with a different treatment assigned.

The QIDS score is used to derive the sequential optimal treatment rules for each patient, but

in the trial, the QIDS score was reported by both clinicians and patients. Due to unavoidable

human errors, these reported scores may be subject to measurement error. Thus, the estimated

optimal DTR may be problematic.

The second example comes from the Medical Information Mart for Intensive Care-III

(MIMIC-III) Clinical Database, comprising large-scale observational admission data collected

at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016,0). The

MIMIC-III dataset was used to study the association between the use of transthoracic echocar-

diography (TTEC) and mortality, conditional on the intensive care unit (ICU) patients’ charac-

teristics and lab test results (Feng et al., 2018; Chen et al., 2021). However, in the MIMIC-III

data, variables such as positive end-expiratory pressure are significantly associated with TTEC

but suffer considerable missingness. Without accounting for such missingness, the conclusions

may be misleading.

Another example is the National Health and Nutrition Examination Survey Data I Epi-

demiologic Follow-up Study (NHEFS), a national longitudinal study. It aimed to investigate

the relationships between clinical, nutritional, and behavioral factors and subsequent morbid-

ity, mortality, and operational factors with hospital utilization. The cohort NHEFS dataset

contains cigarette smokers with baseline variables collected from 1971 to 1975. They were

later followed up through personal interviews in 1982, in which their smoking status was col-

lected. Apparently, the answers from the cigarette smokers without confirmation are subject to

misclassification as they may not report the truth. A similar case is also found in a smoking

cessation program, which examined the effectiveness of a perioperative smoking cessation in-

tervention (Lee et al., 2013). The patients reported their status of quitting smoking, with lab

tests for confirmation. It has been discovered that 11 out of the 146 patients misreported their

smoking status in this program.
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Although these four examples were initiated with different objectives, they share a common

fact that the variables in the collected data might be contaminated with either measurement er-

ror or misclassification. As the primary goal of DTR is to identify sequential optimal treatment

rules, the resulting optimal DTR may be altered if the error in the observed data is taken into

account. Such considerations motivate us to investigate the measurement error and misclassi-

fication effects in the DTR context and develop correction methods to eliminate the effects.

1.1 Dynamic Treatment Regimes

Identifying an optimal DTR depends on the statistical approaches, given the structure of avail-

able data and research questions. The common approaches for estimating the optimal DTR can

be classified into two categories, regression-based and classification-based methods.

Regression-based methods also referred as indirect methods. They model and estimate the

conditionally expected outcome to yield an optimal DTR that maximizes the expected out-

come. The classical regression-based methods that are widely studied in the literature include

Q-learning (Watkins, 1989; Chakraborty and Murphy, 2014), G-estimation (Robins, 2004), A-

learning (Murphy, 2003; Schulte et al., 2014), and regret-regression (Henderson et al., 2010).

However, these methods assumed continuous outcomes in their approaches. Moodie et al.

(2014) made an attempt to extend the Q-learning to binary outcomes and count outcomes.

Ghosh and Chakraborty (2018) proposed a likelihood-based approach to estimate and com-

pare two embedded DTR with ordinal outcomes in a two-stage sequential multiple assignment

randomized trials. The Bayesian approach was proposed to estimate the optimal embedded

DTR with binary outcomes by Artman et al. (2020). The estimation of DTR with survival

outcomes is considered with the accelerated failure time (AFT) model in the Q-learning frame-

work (Goldberg and Kosorok, 2012; Huang and Ning, 2012; Huang et al., 2014). Although

statistical methods in the G-estimation framework have been proposed (Robins and Greenland,

1994; Hernán and Robins, 2020), they are not widely used because of the complexity in theory

and implementation due to the nature of G-estimation. Murray et al. (2018) and Klausch et al.

(2018) also developed Bayesian-based approaches to estimate the optimal treatment regimes.

Regression-based methods enjoy the advantages of being built on regression models and
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easily implemented. However, they suffer from a strict assumption of the correct specifica-

tion of the outcome model to yield consistent estimates of parameters (Chakraborty, 2013).

To overcome their weaknesses, Wallace and Moodie (2015) proposed a dynamic weighted

ordinary least squares (dWOLS), a doubly robust estimation method that integrates the imple-

mentation simplicity of Q-learning and double robustness property of G-estimation. Simoneau

et al. (2020b) further developed dynamic weighted survival modeling (DWSurv), a doubly ro-

bust regression-based method to deal with DTR with survival outcomes. Xiao et al. (2019)

examined loss-based robust regression estimators to accommodate baseline function misspec-

ification and skewed, heterogeneous, heavy-tailed errors or outliers.

In contrast, instead of requiring a specification of the outcome model beforehand, classification-

based methods, also referred to as direct methods or value search methods, directly estimate the

marginal mean outcome of a regime and identify an optimal DTR that maximizes the estimated

value over all possible DTRs (Laber et al., 2014). Some popular classification-based methods

utilize the inverse probability weighting (IPW) method to estimate the marginal mean of out-

come in DTR, but they are sensitive to the misspecification of the propensity score (Robins,

2000; van der Laan, 2006; van der Laan and Petersen, 2007). Zhang et al. (2012) and Zhang

et al. (2013) proposed a doubly robust method by introducing an augmented IPW estimator.

Marginal structural mean models were studied to construct DTRs (Robins et al., 2008; Orellana

et al., 2010).

Machine learning techniques are also introduced to make a class prediction to find the

optimal DTR across stages. For instance, Laber and Zhao (2015) introduced decision trees as a

new estimation method to obtain an optimal regime, and the intuitive value-based classification

meaning makes the resulting DTR more interpretable. Zhao et al. (2012) and Zhao et al.

(2015a) proposed outcome weighted learning (OWL) by borrowing the idea of the support

vector machine to redefine the DTR problem into a weighted classification problem. Zhou et al.

(2017) extended the OWL into a more generalized version, residual weighted learning (RWL),

to include variable selection and different classes of the outcome. Liu et al. (2018) developed

an augmented outcome weighted learning (AOL) that combines OWL and regression models

to estimate an optimal DTR. Fu et al. (2019) modified the loss function of the OWL to be

bounded and proposed a robust outcome weighted learning (ROWL), by which more stable
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optimal treatment rules were produced. For censored data, Zhao et al. (2015b) proposed a

doubly robust estimator for expected survival time and utilized outcome-weighted learning to

estimate sequential optimal treatment rules. Methods have also been developed using survival

probability as the outcome of interest (Bai et al., 2017; Jiang et al., 2017; Xue et al., 2022).

In this thesis, we will focus on the study of regression-based methods with the covariate

subject to measurement error or binary outcome with misclassification. Q-learning with con-

tinuous outcomes, Q-learning with binary outcomes, and dynamic weighted survival modeling

are explored.

1.1.1 Notations and Concepts

Before describing the methodology for DTR, we introduce some basic notations in the DTR

framework. Based on the outcome type, the data for DTR can be categorized into uncensored

data and censored data.

DTR with Uncensored Data

Let the uppercase letters represent random variables and lower-class letters represent the

realization of the random variables. A DTR data trajectory across a maximum of J stages

follows {X1, A1, Y1, X2, A2, Y2, ..., XJ , AJ, YJ}, where X1 is the baseline covariate vector,

measured at the beginning of stage 1 before initial treatment is applied and X j represents the

updated information about the patient, collected at the beginning of stage j (j = 2, ..., J). A j

denotes a binary treatment action taken at the beginning of stage j, where A j = 1 if the patient

received a treatment, and A j = 0 otherwise. A patient’s history H j with values taken as h j

is defined as the accumulative information collected up to jth stage before making treatment

decision A j: H j = (X1, A1, X2, ..., X j). In the data trajectory, Y j is the outcome observed at the

end of stage j, as a reward subsequent to the treatment A j. The outcome Y j can be of any type,

such as continuous outcome, survival time or discrete-valued outcome. In some circumstances,

only a single terminal outcome Y is observed at the end of the last stage. In a two-stage setting,

it can be viewed as a special case that Y1 ≡ 0 and Y2 = Y. A DTR a is defined as a sequence of

treatment decision rules such that a = {a1, a2, ..., aJ}, where a j = a j(h j) is the treatment assigned
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at stage j. An optimal DTR denoted as aopt is a sequence of treatment rules that maximizes

the conditional mean outcome Y (or mean sum of Y j’s), where aopt = {aopt
1 , aopt

2 , ..., aopt
J } and

aopt
j = aopt

j (h j) is the optimal treatment at stage j.

In DTR with observational studies, an important concept is the treatment model, which is

defined as the probability of assigning treatment a j conditional on patients’ history h j, denoted

as π(h j) = P(A j = a j|H j = h j). The treatment model is often used in the statistical approaches to

remove the confounding treatment effects on parameter estimation so that unbiased estimates

of the treatment effect can be obtained (Austin, 2011; Moodie et al., 2012; Chakraborty, 2013;

Tsiatis, 2019).

DTR with Censored Data

For censored data, DTR with survival outcomes follows a data trajectory across a maximum

of J stages {η1, X1, A1, Y1, η2, X2, A2, Y2, ..., ηJ, XJ , AJ, YJ, ∆}, where η j is an indicator of

whether the individuals entered the jth stage for treatment (η j = 1) or not (η j = 0). X j is the

covariates collected at the beginning of stage j. A j ∈ {1, 0} is the binary treatment received

at stage j. Let T j and T be the stage-j survival time and the overall survival time across all

the J stages with T =
∑J

j=1 η jT j. C j is the stage-j censoring time with C being the sum of the

censoring times C =
∑J

j=1 η jC j. Let ∆ be a censoring indicator such that ∆ = 1(T ≤ C) and δ be

the realization of ∆. The observed outcome Y j is defined as the minimum of the survival time

and censoring time at stage j, Y j = min(T j, C j). The history H j with values taken as h j is a

collection of all the covariates and the treatments prior to the time of making the jth treatment

decision A j: H j = (X1, A1, X2, ..., X j). Then, we can obtain a sequence of treatment decision

rules up to J stage a = {a1, a2, ..., aJ}, where a j = a j(h j) is the treatment assigned at stage j. An

optimal DTR aopt = {aopt
1 , aopt

2 , ..., aopt
J }, which is a sequence of treatment rules that maximizes

the expected overall survival time T, where aopt
j = aopt

j (h j) is the optimal treatment received at

stage j.

In DTR with survival data, a treatment model is defined as the probability of receiving

treatment a j conditional on a history of those who entered the jth stage, denoted as π(h j) = P(A j

= a j|H j = h j, η j = 1). A censoring model is also defined for those who entered the jth stage.
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It models the probability of experiencing the event of interest conditional on patients’ history

and treatment, denoted as g(a j, h j) = P(∆ = 1|H j = h j, A j = a j, η j = 1).

Basic Assumptions

The methodology in DTR is established on the following two assumptions (Chakraborty,

2013):

(A1) Stable unit treatment value: an individual’s outcome is not influenced by other indi-

viduals’ treatment allocation.

(A2) No unmeasured confounders: for any possible treatment rule, treatment A j received

in the jth stage is independent of any future (potential) covariate or outcome, {X j+1, Y j+1, ...,

XJ, YJ}, conditional on the history H j.

The first assumption ensures that the patients in the study are independent of each other re-

garding the treatment effects. The second assumption allows for no future covariate or outcome

to affect the current treatment decision-making.

1.1.2 Q-learning with Continuous Outcomes

Q-learning originates from reinforcement learning and has become one of the most popular

regression-based methods to estimate an optimal DTR (Watkins, 1989; Chakraborty and Mur-

phy, 2014). The Q-learning is modeled by stage-specific Q-functions, which measure the ex-

pected future reward conditional on the history of a patient’s characteristics and treatment

action. For a two-stage DTR, the Q-functions are defined as

Q2(H2, A2) = E[Y |H2, A2],

Q1(H1, A1) = E[max
a2

Q2(H2, a2)|H1, A1].

Since Q-functions are usually unknown, they need to be estimated from the data using a

backward recursive procedure (Chakraborty, 2013). At stage 2, the Q-function Q2(H2, A2) is

the expected terminal outcome Y conditional on the history H2 and treatment A2. Having

worked backward recursively, the first stage Q1(H1, A1) is modeled with a pseudo-outcome
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Ỹ1 constructed as max
a2

Q2(H2, a2), which would be the future reward had the patients received

the second stage optimal treatment aopt
2 . By using Ỹ1, it allows the first stage treatment effect

comparison to be reasonable.

To estimate the Q-functions, a common statistical approach is to parameterize Q j(H j, A j)

at stage j via regression models

Q j(H j, A j;β j,ψ j) = f (H j0;β j) + g(H j1, A j;ψ j), (1.1)

where the treatment-free component f(H j0;β j) is a function of H j0, a subset of history vector

H j without regard to A j, and the blip component g(H j1, A j;ψ j) is a function of A j and H j1,

a different subset of history vector H j. The covariates collected in H j1 are called tailoring

variables. The functions f(·) and g(·) can be specified in any form, such as splines, neural

network and regression trees (Chakraborty, 2013). The simplest case might be modeling the

Q-functions linearly as

Q j(H j, A j;β j,ψ j) = βT
j H j0 + A j

(
ψT

j H j1
)
. (1.2)

In the set of parameters (β j,ψ j) in the linear setting (1.2), we are generally interested in

estimating the blip parameter ψ j since it contains both the effect of treatment A j and the in-

teraction between treatment and tailoring variables in H j1, by which the optimal DTR is de-

termined. âopt
j , the estimated optimal treatment at stage j, is the treatment that maximizes

Q j(h j, a j; β̂ j, ψ̂ j). That is,

âopt
j = arg max

a j

Q j(h j, a j; β̂ j, ψ̂ j).

Given A j ∈ {1, 0} in the linear Q-function (1.2), âopt
j is further inferred to be âopt

j = 1
(
ψ̂T

j
h j1 >

0
)
, where 1(·) is the indicator function. It implies that âopt

j = 1 if ψ̂T
j
h j1 > 0, and âopt

j =

0, otherwise. Then, following this new expression for the estimated optimal treatment, the

pseudo-outcome Ỹ can be further written as

Ỹ1 = max
a2

Q2(H2, a2; β̂2, ψ̂2) = β̂T
2 H20 + (ψ̂T

2 H21)1
(
ψ̂T

2 H21 > 0
)
. (1.3)
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In (1.3), the term max
a2

Q2(H2, a2; β̂2, ψ̂2) is expanded into a combination of treatment-free com-

ponent and blip component, assuming that all the patients had received the optimal treatment

at stage 2. This pseudo-outcome (1.3) can then be used for the first stage estimation.

A two-stage linear Q-learning algorithm is summarized in the following steps:

1. Parameterize the stage 2 Q-function

Q2(H2, A2;β2,ψ2) = E[Y |H2, A2] = βT
2

H20 + A2

(
ψT

2
H21

)
.

2. Apply ordinary least squares (OLS) procedure to obtain the stage 2 estimator (β̂2, ψ̂2)

(β̂2, ψ̂2) = arg min
(β2,ψ2)

1
n

∑n
i=1

(
Yi − Q2(H2, A2;β2,ψ2)

)2
.

3. Derive the stage 2 optimal treatment as âopt
2 = 1

(
ψ̂T

2
h21 > 0

)
.

4. Construct the pseudo-outcome for estimation at stage 1

Ỹ1 = β̂T
2 H20 + (ψ̂T

2 H21)1
(
ψ̂T

2 H21 > 0
)
.

5. Parameterize the stage 1 Q-function

Q1(H1, A1;β1,ψ1) = βT
1

H10 + A1

(
ψT

1
H11

)
.

6. Apply OLS procedure to obtain the stage 1 estimator (β̂1, ψ̂1)

(β̂1, ψ̂1) = arg min
(β1,ψ1)

1
n

∑n
i=1

(
Ỹi1 − Q1(H1, A1;β1,ψ1)

)2
.

7. Derive the stage 1 optimal treatment as âopt
1 = 1

(
ψ̂T

1
h11 > 0

)
.

Q-learning enjoys the advantage of simplicity in implementation. Following the procedures

above, the regression parameters (β j, ψ j) are consistently estimated using the ordinary least

squares method (Chakraborty, 2013). However, the validity of Q-learning requires a correct

specification of the outcome model (1.2). If the outcome model is misspecified, it results in

inconsistent estimates of parameters (Chakraborty, 2013).

1.1.3 Q-learning with Binary Outcomes

When the outcome of interest is binary, Moodie et al. (2014) presented a modified Q-function

using the inverse-logit function at stage j
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Q j(H j, A j;β j,ψ j) = expit
(
βT

j
H j0 + A j(ψT

j
H j1)

)
,

where expit(x) = 1/(1 + exp(-x)), and Q j(H j, A j) is bounded by [0, 1]. Then, the two-stage

Q-functions are followed by

Q2(H2, A2;β2,ψ2) = E[Y |H2, A2] = expit
(
βT

2 H20 + A2(ψT
2 H21)

)
,

Q1(H1, A1;β1,ψ1) = expit
(
βT

1 H10 + A1(ψT
1 H11)

)
.

(1.4)

In Q-learning with binary response, the pseudo-outcome Ỹ1 is constructed as the logit of

Q2(H2, a2; β̂2, ψ̂2)

Ỹ1 = max
a2

logitQ2(H2, a2; β̂2, ψ̂2), (1.5)

where (1.5) is essentially the logit of predicted probability had the patients received the second

stage optimal treatment. In this way, Ỹ1 is projected to values in the real line for the stage-1

estimation, which is performed using the OLS in a model for the logit of Q1(Hi1, Ai1;β1,ψ1).

Once the stage-j estimator (β̂ j, ψ̂ j) is obtained, the estimated optimal treatment âopt
j can be

obtained by either directly maximizing Q j(h j, a j; β̂ j, ψ̂ j) or only maximizing the blip compo-

nent a j(ψ̂T
j
h j1), as the inverse-logit function is strictly increasing.

A two-stage linear Q-learning algorithm with binary outcomes is summarized in the fol-

lowing steps:

1. Parameterize the stage 2 Q-function

Q2(H2, A2;β2,ψ2) = expit
(
βT

2
H20 + A2(ψT

2
H21)

)
.

2. Apply logistic regression to obtain the stage 2 estimator (β̂2, ψ̂2) of the conditional mean

model for Y, Q2(H2, A2;β2,ψ2).

3. Derive the optimal treatment as âopt
2 = arg max

a2

Q2(h2, a2; β̂2, ψ̂2).

4. Construct the pseudo-outcome for estimation at stage 1

Ỹ1 = max
a2

logitQ2(H2, a2; β̂2, ψ̂2).

5. Apply OLS regression to obtain the stage 1 estimator (β̂1, ψ̂1)

(β̂1, ψ̂1) = arg min
(β1,ψ1)

1
n

∑n
i=1

(
Ỹi1 − Q1(Hi1, Ai1;β1,ψ1)

)2
.
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6. Derive the optimal treatment as âopt
1 = arg max

a1

Q1(h1, a1; β̂1, ψ̂1).

This modified Q-learning algorithm distinguishes itself from ordinary Q-learning in some

aspects. Firstly, instead of modeling the Q-functions linearly, Moodie et al. (2014) used the

inverse-logit function to model Q j(H j, A j), which is the probability of success at stage j. An-

other difference lies in the construction of the pseudo-outcome. In the ordinary Q-learning, Ỹ1

is constructed as an estimate of the expected outcome of all the patients who were optimally

treated at the second stage. However, in this method, Ỹ1 is the logit of predicted probability

had the patients received the second stage optimal treatment. This modification allows the

pseudo-outcome to be transformed from the probability to the values in the real line.

1.1.4 Dynamic Weighted Survival Modeling

When it comes to the DTR with survival outcomes, the estimation of optimal DTR is challeng-

ing because of the censoring. Censoring occurs when the patients withdraw from the study or

are lost of follow-up during the study period. A multi-stage treatment period complicates the

estimation as patients may experience the event of interest before the end of any stage.

To deal with the censored outcome in DTR, Simoneau et al. (2020b) proposed the dynamic

weighted survival modeling (DWSurv), a doubly robust method, to estimate an optimal DTR

with survival times being subject to right-censoring. To ensure the feasibility of DTR with

survival outcomes, Simoneau et al. (2020b) made two more assumptions in addition to the

assumptions (A1) and (A2) described in (1.1.1):

(A3) Coarsening at random: at the beginning of each stage, the probability of censoring

onward is independent of future outcomes, given accrued information.

(A4) Positivity: at any jth stage, P(A j = a j|H j, η j = 1) > 0 for all treatment options a j and

P(∆ = 1|H j, A j, η j = 1) > 0.

In a two-stage setting, the DWSurv method models the logarithm of survival times at stage

2 and stage 1 based on the accelerated failure time (AFT) models

logT2 = f (h20;β2) + g(h21, a2;ψ2) + ε2,

logT̃ = f (h10;β1) + g(h11, a1;ψ1) + ε1,
(1.6)
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where the error term ε j is independent and identically distributed with mean zero, and T̃ is

the overall pseudo-survival time had all the patients who entered the second stage received the

optimal treatment aopt
2 . f(h j0;β j) and g(h j1, a j;ψ j) are the treatment-free component and blip

component, respectively, with functions f(·) and g(·) specified in any form. The simplest case

is to consider log-survival times in linear form

logT2 = βT
2 h20 + a2

(
ψT

2 h21
)

+ ε2,

logT̃ = βT
1 h10 + a1

(
ψT

1 h11
)

+ ε1.
(1.7)

The pseudo-survival time T̃ is constructed as

T̃ = T1 + η2T2exp
{
ψT

2 h21[aopt
2 − a2]

}
. (1.8)

Intuitively, (1.8) reflects three possible situations. If patients did not enter the second stage,

T̃ is equal to T1, the survival time at the first stage. If patients entered the second stage and

received the optimal treatment aopt
2 , T̃ is equal to the observed overall survival time T = T1

+ T2. If patients entered the second stage but did not receive the optimal treatment aopt
2 , T̃ is

larger than T due to the non-zero term exp
{
ψT

2
h21[aopt

2 − a2]
}
.

The DWSurv method is designed for observational studies, where confounders may exist.

Thus, Simoneau et al. (2020b) introduced weights in the algorithm so that by including care-

fully chosen weights, any possible confounding effect on estimating the parameters could be

eliminated. The balancing property (1.9) is provided to find the appropriate weights

g(1, h j)π(h j)w j(1, 1, h j) = [1 − g(0, h j)][1 − π(h j)]w j(0, 0, h j), (1.9)

where π(h j) = P(A j = 1|H j = h j, η j = 1) is the treatment model, and g(a j, h j) = P(∆ =

1|H j = h j, A j = a j, η j = 1) is the censoring model. Simoneau et al. (2020b) demonstrates

that the DWSurv method yields consistent blip parameter estimates if the weights satisfy (1.9).

There is a broad class of weight choices that satisfy (1.9), and the use of weight (1.10) is

recommended

w j(δ, a j, h j) =
|a j − P(A j = 1|h j, η j = 1)|

P(∆ = δ|h j, a j, η j = 1)
. (1.10)
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A two-stage linear DWSurv algorithm is summarized in the following steps:

1. Propose parametric models for the probability of treatment P(A2 = 1|h2, η2 = 1;α2) and

the probability of censoring P(∆ = 0|h2, a2, η2 = 1; λ2) at stage 2 and find the estimated weight

ŵ2 from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 logT2 =

βT
2

h20 + a2

(
ψT

2
h21

)
+ ε2 and obtain the estimator (β̂2, ψ̂2) by solving

U2(β2,ψ2) =
∑n

i=1 δiηi2ŵi2

 hi20

ai2hi21

 (
logTi2 − β

T
2

hi20 − ai2ψ
T
2

hi21

)
= 0.

3. Derive the stage 2 optimal treatment as âopt
2 = 1

(
ψ̂T

2
h21 > 0

)
.

4. Construct the pseudo-survival time for estimation at stage 1

T̃ = T1 + η2T2exp
{
ψ̂T

2
h21[âopt

2 − a2]
}
.

5. Propose parametric models for the probability of treatment P(A1 = 1|h1, η1 = 1;α1) and

the probability of censoring P(∆ = 0|h1, a1, η1 = 1; λ1) and find the estimated weight ŵ1 from

(1.10).

6. Assume a linear AFT model for the pseudo-survival time at stage 1 logT̃ = βT
1

h10 +

a1

(
ψT

1
h11

)
+ ε1 and obtain the estimator (β̂1, ψ̂1) by solving

U1(β1,ψ1) =
∑n

i=1 δiηi1ŵi1

 hi10

ai1hi11

 (
logT̃i − β

T
1

hi10 − ai1ψ
T
1

hi11

)
= 0.

7. Derive the stage 1 optimal treatment as âopt
1 = 1

(
ψ̂T

1
h11 > 0

)
.

Like Q-learning, DWSurv is implemented backward recursively from the last stage to the

first stage. Moreover, DWSurv is a doubly robust method, which means that the consistency

of the estimators remains if either the treatment-free model or weight model (treatment model

and censoring model) is correctly specified. Thus, this double robustness property allows for

model misspecification to some extent.

Simoneau et al. (2020b) further developed a formula to estimate the asymptotic variance of

(β̂, ψ̂) in a single-stage, which is given by

Var(β̂, ψ̂) = E
[{

E
[

∂

∂(β,ψ)
Uadj(β,ψ)

]−1

Uadj(β,ψ)
}⊗2]

, (1.11)
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where E[Uadj(β,ψ)⊗2] = E[Uadj(β,ψ)Uadj(β,ψ)T ]. Uadj(β,ψ), the estimating equation adjusted

for the plug-in estimates of the nuisance parameters α and λ, is expressed as

Uadj(β,ψ) ≈ U(β,ψ) − E
[
∂

∂α
U(β,ψ)

]
E
[
∂

∂α
sα

]−1

sα − E
[
∂

∂λ
U(β,ψ)

]
E
[
∂

∂λ
sλ

]−1

sλ,

where sα and sλ are the score functions of the treatment and censoring models. With two or

more stages, (1.11) applies in the last stage but with an additional term added to the estimating

equations in the previous stages. Simoneau et al. (2020a) recommended the use of asymptotic

variance, which takes much less computation time than the bootstrap approaches.

1.2 Measurement Error and Misclassification

1.2.1 Measurement Error in Covariates

Measurement error models are the statistical models that reveal the underlying mechanism of

measurement error. It describes the relationship between the observed variable and the true

variables. This section focuses on the review of measurement error in covariates.

For i = 1, ..., n, let Xi be an error-prone covariate, Z i be an error-free covariate and Wi be a

surrogate, mismeasured measurement of Xi. We introduce three commonly used measurement

error models:

Classical Additive Model

Wi = Xi + ei, (1.12)

where the error term ei is independent of Xi with mean 0 and covariance Σee.

Berkson Model

Xi = Wi + ei,

where ei is independent of Wi with mean 0 and covariance Σee.
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Multiplicative Model

Wi = Xiei,

where ei is independent of Xi with mean 1.

An important concept in measurement error models is the non-differential error, which

means the error term e contains no extra information about the outcome Y. Otherwise, the error

is differential with respect to Y. The classical additive model is the most popular and widely

used model among the three measurement error models (Carroll et al., 2006; Yi, 2017).

1.2.2 Misclassification in Response

When an error-prone variable is discrete, it is often described as a misclassification problem.

We consider here a binary response Y that is subject to misclassification. Instead of fully ob-

serving the true response Y, a surrogate Y∗ is observed as a mismeasured version of Y. Similar

to the measurement error model, the misclassification modeling process is characterized by

a set of misclassification probabilities (γ10(X), γ01(X)), also called misclassification rates, to

associate Y∗ with Y such that

γ10(X) = P(Y∗ = 1|Y = 0, X), γ01(X) = P(Y∗ = 0|Y = 1, X). (1.13)

In (1.13), the error in Y is differential in that Y∗ is dependent on the covariate X, conditional

on Y. Otherwise, the error is non-differential if Y∗ is independent of X conditional on Y.

1.2.3 Methods for Measurement Error in Covariates

There has been substantial research in the measurement error literature for correcting the bias

caused by the measurement error in parameter estimation. It’s worth noting that the choice

of measurement error models and error correction methods largely depends on the nature of

the research question and the structure of the available data. In this thesis, we concentrate on

reviewing error correction methods for the classical additive model based on the data structure.
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Methods for Validation Data

In practice, clinicians are sometimes only able to collect a small subset of data, in which

all the variables {Xi,Wi, Z i,Yi} are observed, while the majority of data only have (Wi, Z i, Yi)

observed. Such data are called (internal) validation data and the data structure is viewed as

{Xi,Wi, Z i,Yi} if i ∈ V ,

{Wi, Z i,Yi} if i ∈ V ,

where the first group of data is the validation data denoted as V and the second group of

data is main study data, also called non-validation data, denoted as V . The main difference

between these two groups is whether or not the true covariate Xi is available. It has been well

documented that the covariate measurement error results in biased estimation of parameters

without any corrections (Carroll et al., 2006; Yi, 2017). Under this class of data structure, the

availability of a few Xi in V motivates researchers to develop methods to find the estimates X̂i

of the unobserved Xi in V by making use of the surrogates in the data. In the case of internal

validation data, it is also regarded as a missing data problem (Cole et al., 2006).

Regression calibration (RC) is a classical approach to find such estimates X̂i with two steps

(Carroll et al., 2006). In the first step, a linear model is assumed for X and (W, Z), and the

regression coefficients of the linear model are estimated using the OLS method based on the

small set of validation data. In the second step, given the values of (Wi, Z i) in V , the estimates

X̂i for the missing Xi are predicted using the regression coefficients obtained in the previous

step. This approach enjoys high popularity due to its simplicity in theory and implementation.

However, the RC method is known to yield unbiased estimates of parameters in linear models

and only approximately unbiased in nonlinear models (Carroll et al., 2006; Yi, 2017).

To overcome the limitation of the RC method in nonlinear models, Freedman et al. (2004)

proposed a moment reconstruction (MR) method to create ’adjusted values’ that have the same

first and second moments as the unobserved true covariates. The MR method yields not only

consistent estimators in linear models but also in nonlinear models. Thomas et al. (2011)

introduced a moment-adjusted imputation (MAI) method, extending the MR method to higher-

order moment matching. The MAI method is more advantageous than MR for non-normal
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distributed covariates. Similar to MR and MAI, a multiple imputation (MI) method was pro-

posed as another imputation method that can handle differential measurement error (Cole et al.,

2006). The performances of the RC, MR, and MI methods were compared in linear and logistic

regressions, and the MR and MI outperformed in terms of bias reduction but tended to be less

efficient (Freedman et al., 2008).

In the survival data context, Jin et al. (2019) proposed a weighted least squares (WLS)

method for the accelerated failure time (AFT) model when the true covariate Xi is only avail-

able in the validation data. Instead of having a continuous surrogate, a categorical auxiliary

variable M is observed. Then, the structure of the data follows

{Xi, Mi, Zi,Yi,∆i} if i ∈ V ,

{Mi, Zi,Yi,∆i} if i ∈ V .

For i ∈ V , the Xi is estimated by

X̂i =

∑
j∈V 1(M j = Mi)X j∑

j∈V 1(M j = Mi)
. (1.14)

This method has a few advantages. It does not need to specify the measurement error model.

The consistency and asymptotic normality of the estimator were also established. However,

one limitation of this method is that the variable M must be discrete to produce the estimates

X̂i. For any continuous surrogate, Jin et al. (2019) suggested discretizing it into a categorical

variable first and then applying (1.14) to obtain the estimates X̂i.

Machine learning techniques have also been applied in recent years to handle the measure-

ment error for the use of survival data. Zhou and Wang (2000) introduced kernel smoothing to

the Cox model and explored asymptotic properties for the estimators. Similar work on the Cox

model can also be found in Hu and Lin (2002), Liu et al. (2009), Fan and Wang (2009) and Liu

et al. (2010). To study the impact on the AFT model, Granville and Fan (2012) applied kernel

smoothing to impute the X̂i in the main study data. Granville and Fan (2014) further utilized

local polynomial approximation to obtain a Buckley-James estimator of the AFT model.

Methods for Replicate Data
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The data with k multiple surrogates or measurements W = (W1,W2, ...,Wk) for the unob-

served X are called replicate data. For any patient i (i = 1, ..., n), the data structure is

{Wi1,Wi2, ...,Wiki , Z i,Yi},

where ki is the number of replicate surrogates for the ith subject. Let W i be the mean value of

(Wi1,Wi2, ...,Wiki). Simply using the replicate surrogates in the analysis may still yield biased

estimators. Thus, the question of interest is to search for a best linear approximation to Xi given

(W i, Z i), that is, E[Xi|W i, Z i] for Xi as a linear function of W i and Z i (Carroll and Stefanski,

1990; Gleser, 1990).

Regression calibration is an approach to provide the best linear approximation X̂i, which is

given by (Carroll et al., 2006)

X̂i = µ̂w +

[
Σ̂xx, Σ̂xz

]  Σ̂xx + Σ̂ee/ki Σ̂xz

Σ̂T
xz Σ̂zz


−1  W i − µ̂w

Z i − µ̂z

 , (1.15)

where

W i =
1
ki

ki∑
j=1

Wi j,

µ̂x = µ̂w =

n∑
i=1

kiW i

/ n∑
i=1

ki,

µ̂z = Z,

ν =

n∑
i=1

ki −

n∑
i=1

k2
i

/ n∑
i=1

ki,

Σ̂xx =

[{ n∑
i=1

ki(W i − µ̂w)(W i − µ̂w)T

}
− (n − 1)Σ̂ee

]/
ν,

Σ̂xz =

n∑
i=1

ki(W i − µ̂w)(Z i − Z)T
/
ν,

Σ̂zz = (n − 1)−1
n∑

i=1

(Z i − Z)(Z i − Z)T ,

Σ̂ee =

n∑
i=1

ki∑
j=1

(Wi j −W i)(Wi j −W i)T
/ n∑

i=1

(ki − 1).
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More recently, several other approaches have been developed as alternative methods for

replicate data. Bartlett et al. (2009) proposed an efficient likelihood-based method for the linear

and logistic outcome models applicable to replicate data. Keogh and White (2014) described

an approach using the idea of MI in a study with repeated measurements. Muff et al. (2015)

extended the integrated nested Laplace approximations method to correct classical measure-

ment error in exposure when a replicate study is available. Gray (2018) extended MI approach

suitable for the use with replicate data.

SIMEX-based Methods

Another class of methods directly deals with the naive estimators to correct the bias. Ste-

fanski and Cook (1995) proposed Simulation-Extrapolation (SIMEX), a simulation-based ap-

proach to adjust for the covariate measurement error effect. The key idea is to first model the

trend of estimators with different strengths of measurement errors through simulation. Then

given the trend, the estimates are extrapolated back to the situation without measurement error.

The main advantage of the SIMEX method is that it requires no specification of the distribution

of true covariate, which makes SIMEX robust.

There are several applications and extensions of the SIMEX method in the literature. The

R package simex implements the SIMEX method with a range of extrapolation functions pro-

vided (Lederer and Küchenhoff, 2006). Ronning and Rosemann (2008) took into account the

correlation of error terms and proposed generalized SIMEX to accommodate the correlation.

In the context of survival data, He et al. (2007) applied the SIMEX method to the AFT model

when true covariates are error-prone and not restricted to a specific distribution. He et al. (2012)

also developed an easy-to-implement R package simexaft for the use of the SIMEX method

in the AFT model. Yi et al. (2015b) extended the SIMEX method to accommodate the effect

of missingness in response and measurement error in covariates. Yi et al. (2015a) generalized

the usual SIMEX method to treat measurement error and misclassification in covariates simul-

taneously. Zhang and Yi (2019) further developed an R package augSIMEX for the use of the

generalized SIMEX method proposed in Yi et al. (2015a).
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1.2.4 Methods for Misclassification in Response

The misclassification problem has been increasingly discussed in the literature. Statistical

analysis with misclassified responses may result in severely biased estimators. Its negative

impact is likely to be greater than the covariate measurement error because the misclassification

can alter the structure of the response model (Zhu and Wu, 2004; Carroll et al., 2006; Yi, 2017).

Neuhaus (1999) and Yi (2017) pointed out that ignoring the misclassification in the response

during the analysis process is equivalent to modeling the data with a misspecified link function.

Moreover, it may also incur a loss of efficiency of the estimators (Neuhaus, 1999).

Classical methods dealing with misclassification in the response can be found in the litera-

ture. If the distribution of the binary data can be specified, Hausman et al. (1998) and Neuhaus

(1999) derived a relationship of models for observed surrogate Y∗ and true response Y as

P(Y∗ = 1|X) = γ10 + (1 − γ10 − γ01)P(Y = 1|X). (1.16)

By equation (1.16), the maximum likelihood estimation (MLE) method can be used for the

estimation of parameters by maximizing the log-likelihood of the data (1.17)

l =

n∑
i=1

P(Y∗i = y∗i |Xi = xi) =

n∑
i=1

1∑
yi=0

P(Y∗i = y∗i |Yi = yi, Xi = xi)P(Yi = yi|Xi = xi). (1.17)

Neuhaus (2002) extended the likelihood method to clustered and longitudinal binary data with

responses being subject to misclassification. Lyles and Lin (2010) utilized the direct MLE

method to handle the outcome misclassification and proposed a predictive value weighting

approach to correct the covariate misclassification. Lyles et al. (2011) further illustrated the

likelihood-based method with the use of internal validation data in case-control studies to ad-

dress the outcome misclassification.

Since the likelihood-based methods could be computationally intensive, the mean score

method has been proposed as an alternative choice (Pepe, 1992; Pepe et al., 1994). Yi (2017)

further elaborated it to be a semiparametric approach. In addition to these methods, an EM

algorithm was introduced by Magder and Hughes (1997) to handle the misclassified outcome,

which is also applicable to the differential misclassification. Edwards et al. (2013) developed a



21

multiple imputation approach when validation data are available. Bayesian methods have also

been established using prior distributions to correct the misclassified binary response (Prescott

and Garthwaite, 2002,0; Daniel Paulino et al., 2003; Gerlach and Stamey, 2007).

Machine learning approaches have received increasing attention over the years to accom-

modate the misclassification effect. Xu et al. (2006) proposed a robust support vector machine

(SVM) to account for the misclassification in the response using a robust loss function. Yang

et al. (2007) developed a weighted SVM to improve the outlier sensitivity problem in standard

SVM. Random forest was demonstrated to be the most robust classifier compared with the

other ten classifiers in noisy data with a misclassified response (Folleco et al., 2008).

The effect of misclassification in response in other applications has also been explored.

Mwalili et al. (2008) described an approach to correct the misclassification in a zero-inflated

negative binomial regression model. Chen et al. (2014) introduced a marginal method for longi-

tudinal ordinal data with misclassification in both response and covariates. Shu and Yi (2019a)

studied the misclassified outcome with missingness in causal inference and proposed methods

to correct misclassification and missingness effects simultaneously. An R package ipwErrorY

was developed by Shu and Yi (2019b) for the corrected estimation of average treatment effect

in causal inference with a misclassified response. In genetics studies, Zhang and Yi (2020) ex-

plored bivariate mixed responses with measurement error and misclassification, and used the

likelihood-based methods to correct the measurement error and misclassification effects simul-

taneously. Zhang and Yi (2021) further proposed estimating equation approaches to deal with

measurement error and misclassification in bivariate responses.

1.3 Objectives and Organizations

Although there is extensive literature on dynamic treatment regimes and measurement er-

ror/misclassification, to the best of our knowledge, the study of the measurement error or mis-

classification effect on dynamic treatment regimes is scarce. Most existing methods in DTR

literature ignore the fact that the patient’s characteristics and the outcome may be contami-

nated with measurement error or misclassification. Consequently, the estimation of optimal

DTR that relies on a collection of error-prone variables may be severely biased if those errors
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are not addressed. Spicker and Wallace (2020) demonstrated the substantial impact of mea-

surement error on dynamic weighted ordinary least squares. In this thesis, we extend to study

and accommodate the effect of covariate measurement error and outcome misclassification in

the contexts of DTR approaches, including Q-learning with continuous outcomes, Q-learning

with binary outcomes, and dynamic weighted survival modeling.

The remainder of this thesis is organized as follows. In Chapter 2, we consider Q-learning

with continuous outcomes, in which the covariates are considered mismeasured with repeated

measurements. The regression calibration method is employed to correct the measurement er-

ror in Q-learning. In Chapter 3, we consider the situation of DTR with survival outcomes based

on the DWSurv method for internal validation data with covariates being contaminated. Two

correction methods, the k-nearest neighbors method and the weighted least squares method,

are developed to eliminate the effect of error-prone covariates. In Chapter 4, we consider Q-

learning with misclassified binary outcomes and internal validation data. The maximum likeli-

hood estimation method is proposed to accommodate the misclassification effect in Q-learning.

A summary of findings and future work is presented in Chapter 5.



Chapter 2

Dynamic Treatment Regimes with

Measurement Error in Covariates: a

Q-learning Approach

2.1 Introduction

In this chapter, we study the effect of covariate measurement error on Q-learning, a DTR

method with continuous outcomes. The existing research work in the study of Q-learning as-

sumes that the collected covariates are free from measurement error. However, this assumption

is commonly violated in clinical practice. To date, it remains unclear whether and how much

the covariate measurement error plays a role in affecting the performance of Q-learning. This

chapter aims to study the effect of measurement error in covariates on Q-learning. Specifically,

the impact of covariate measurement error in Q-learning will be examined, and regression cal-

ibration will be explored to adjust for the measurement error effect.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the

Q-learning with mismeasured covariates and the use of the regression calibration method in

Q-learning to correct the covariate measurement error. Simulation studies are carried out to

examine the performance of the RC method in Section 2.3. In Section 2.4, we apply the

proposed method to the STAR*D study. The conclusions are summarized in Section 2.5.

23
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2.2 Methodology

2.2.1 Notations and Model Framework

We restrict the notations and framework set-up to DTR with two decision points. The data

trajectory follows {X1, Z1, A1, X2, Z2, A2, Y}, where X j and Z j are error-prone covariate vector

and error-free covariate vector (j = 1, 2). We consider a situation where the true covariate X j

is not observable at stage j. Instead, there are up to k j unbiased replicate surrogates observed

for W j = (W j1, ...,W jk j), where W jl (l = 1, ..., k j) denotes a surrogate or mismeasured version

of X j. The classical additive model is assumed to describe the relationship of W jl and X j, that

is W jl = X j + e jl, where the e jl follow a normal distribution with mean 0 and covariance Σee

and are independent of each other and of all other variables. The binary treatment A j ∈ {1, 0}

is assigned at stage j. Y is a continuous outcome observed at the end of the second stage.

In the presence of measurement error, the true covariate X j is absent but only the replicate

surrogates W j are observed at stage j. Then, the data trajectory is replaced by

{W1, Z1, A1,W2, Z2, A2,Y}.

In this case, the naive histories are formed as Hn
1

= (W1, Z1) and Hn
2

= (W1, Z1, A1, W2,

Z2). As a result, the Q-functions that use the naive histories are called naive Q-functions,

which contain the replicate surrogates only rather than the true covariates. Then, the naive

Q-functions are given by

Q2(Hn
2
, A2;βn

2
,ψn

2
) = f (W1, Z1, A1,W2, Z2;βn

2
) + g(W1, Z1, A1,W2, Z2, A2;ψn

2
),

Q1(Hn
1
, A1;βn

1
,ψn

1
) = f (W1, Z1;βn

1
) + g(W1, Z1, A1;ψn

1
).

Using the naive histories Hn
1

and Hn
2
, the naive Q-functions can be further summarized as

Q2(Hn
2
, A2;βn

2
,ψn

2
) = f (Hn

20
;βn

2
) + g(Hn

21
, A2;ψn

2
),

Q1(Hn
1
, A1;βn

1
,ψn

1
) = f (Hn

10
;βn

1
) + g(Hn

11
, A1;ψn

1
).

(2.1)

If the functions f(·) and g(·) are modeled linearly, then the naive Q-function at stage j is
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given by

Q j(Hn
j , A j;βn

j ,ψ
n
j ) = βnT

j Hn
j0

+ A j

(
ψnT

j Hn
j1

)
. (2.2)

The naive Q-functions (2.1) and (2.2) are different from (1.1) and (1.2) in the sense that

the original history is replaced with the naive history. By applying the ordinary least squares

(OLS), the naive estimator (β̂n
j
, ψ̂n

j
) can be obtained. According to Carroll et al. (2006) and

Yi (2017), it is reasonable to believe that the naive estimator (β̂n
j
, ψ̂n

j
) may be biased from

(β j, ψ j). Let the blip parameter ψ = (ψ2, ψ1), which is the parameter of primary interest for

estimation. Then the naive blip estimator ψ̂n = (ψ̂n
2
, ψ̂n

1
) may be biased from ψ. Consequently,

we are motivated to assess the degree of biases in the parameter estimation and search for a

good approximation X̂ j to X j using the available replicate surrogates in the data.

2.2.2 Regression Calibration

Prentice (1982) pioneered the regression calibration method to address covariate measurement

error in a survival data context. It has now become a widely used error correction method,

which can tackle the measurement error problems for both validation data and replicate data

(Carroll et al., 2006). In this chapter, we focus on the study with replicate data. The key idea

of regression calibration is to find the estimates X̂ of X using the available replicate surrogates

and proceed with the analysis using the estimates X̂ so that the bias caused by the measurement

error is reduced.

For any stage j, we can obtain the RC estimates X̂ j using the replicate surrogates W j accord-

ing to the formula (1.15). Then, by replacing the unobserved X j with the corrected estimates

X̂ j, the data trajectory is updated to be

{X̂1, Z1, A1, X̂2, Z2, A2,Y}.

The corresponding Q-functions using the corrected estimates X̂ j are followed by

Q2(Hrc
2
, A2;βrc

2
,ψrc

2
) = f (X̂1, Z1, A1, X̂2, Z2;βrc

2
) + g(X̂1, Z1, A1, X̂2, Z2, A2;ψrc

2
),

Q1(Hrc
1
, A1;βrc

1
,ψrc

1
) = f (X̂1, Z1;βrc

1
) + g(X̂1, Z1, A1;ψrc

1
).

From the new data trajectory, we can obtain the RC histories in a form Hrc
1

= (X̂1, Z1) and
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Hrc
2

= (X̂1, Z1, A1, X̂2, Z2). The Q-functions based on the RC histories are given by

Q2(Hrc
2
, A2;βrc

2
,ψrc

2
) = f (Hrc

20
;βrc

2
) + g(Hrc

21
, A2;ψrc

2
),

Q1(Hrc
1
, A1;βrc

1
,ψrc

1
) = f (Hrc

10
;βrc

1
) + g(Hrc

11
, A1;ψrc

1
).

(2.3)

If each Q-function in (2.3) is modeled linearly, then it can be expressed as

Q j(Hrc
j , A j;βrc

j ,ψ
rc
j ) = βrcT

j Hrc
j0

+ A j

(
ψrcT

j Hrc
j1

)
. (2.4)

The modified Q-functions (2.3) and (2.4) are formalized based on the RC histories, which

consist of the corrected estimates for the error-prone covariates and other variables. Then, the

estimator (β̂rc
j

, ψ̂rc
j

) obtained from the Q-functions (2.3) is the RC estimator. It is discussed that

the RC method yields consistent estimators in linear models but is approximately consistent in

nonlinear models (Carroll et al., 2006; Yi, 2017). Thus, if the Q-function is in a form of (2.4),

(β̂rc
j

, ψ̂rc
j

) is a consistent estimator of (β j, ψ j) and ψ̂rc = (ψ̂rc
2

, ψ̂rc
1

) consistently estimates the

blip parameter ψ. However, if the Q-function is in a nonlinear form, regression calibration can

still provide a considerable bias reduction in the parameter estimation in Q-learning.

Modified Q-learning Algorithm with Regression Calibration:

The following modified Q-learning algorithm with regression calibration details the esti-

mation procedure:

1. Parameterize the stage 2 Q-function

Q2(Hrc
2
, A2;βrc

2
,ψrc

2
) = βrcT

2
Hrc

20
+ A2

(
ψrcT

2
Hrc

21

)
.

2. Apply OLS procedure to obtain the stage 2 estimator (β̂rc
2
, ψ̂rc

2
)

(β̂rc
2
, ψ̂rc

2
) = arg min

(βrc
2
,ψrc

2
)

1
n

∑n
i=1

(
Yi − Q2(Hrc

i2
, Ai2;βrc

2
,ψrc

2
)
)2

.

3. Derive the stage 2 optimal treatment as âopt
2 = 1

(
ψ̂rcT

2
hrc

21
> 0

)
.

4. Construct the pseudo-outcome for estimation at stage 1

Ỹ1 = β̂rcT
2

Hrc
20

+
(
ψ̂rcT

2
Hrc

21

)
1
(
ψ̂rcT

2
Hrc

21
> 0

)
.
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5. Parameterize the stage 1 Q-function

Q1(Hrc
1
, A1;βrc

1
,ψrc

1
) = βrcT

1
Hrc

10
+ A1

(
ψrcT

1
Hrc

11

)
.

6. Apply OLS procedure to obtain the stage 1 estimator (β̂rc
1
, ψ̂rc

1
)

(β̂rc
1
, ψ̂rc

1
) = arg min

(βrc
1
,ψrc

1
)

1
n

∑n
i=1

(
Ỹi1 − Q1(Hrc

i1
, Ai1;βrc

1
,ψrc

1
)
)2

.

7. Derive the stage 1 optimal treatment as âopt
1 = 1

(
ψ̂rcT

1
hrc

11
> 0

)
.

This modified Q-learning algorithm distinguishes itself from the original Q-learning in Sec-

tion (1.1.2) in the sense that the history used for the parameter estimation is only an approxi-

mation of the true underlying history.

2.3 Simulation Studies

In this section, we conduct a series of simulation studies to assess the measurement error effect

on estimating the parameters and predicting the optimal treatment decision rules and optimal

value function in Q-learning. The performance of the regression calibration method is exam-

ined and compared with the naive method in one-stage and two-stage Q-learning.

2.3.1 One-Stage Estimation

We begin with one-stage parameter estimation in Q-learning. Let X and Z be the error-prone

and error-free covariates, respectively, which are generated from N(1, 1). Instead of observing

X, two replicate surrogates W1, W2 are observed as mismeasured version for X, modeled by

Wl = X + el (l = 1, 2), where el ∼ N(0, σ2). W is an average value of W1 and W2, given by W =

(W1 + W2)/2. Treatment A ∈ {1, 0} is generated from a Bernoulli distribution with probability

P(A = 1) = 1/2. The outcome Y is generated by Y = 0.5 + βzZ + βxX + A(ψ10 + ψ11X) + ε,

where (β, ψ) = (βz, βx, ψ10, ψ11) = (0.5, 1, 0.5, 1) and ε ∼ N(0, 1), independent of each other

and all the other variables.

Four estimators are considered and compared in each round of 500 simulations: (1) true

estimator ψ̂t obtained using the true covariate X, (2) naive estimator ψ̂n obtained using a sin-

gle surrogate W1, (3) naive estimator ψ̂nb obtained using the averaged surrogate W, (4) RC
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estimator ψ̂rc obtained using the RC estimates X̂. Analyses are conducted under two different

sample sizes of n = 500 and n = 2000. In each setting, the bias, empirical standard error (SE),

root mean square error (RMSE) and 95% coverage probability (CP%) of the estimators are

calculated using the standard bootstrap. The measurement error mechanism is assumed with

σ ∈ {0.2, 0.5, 0.8}, which reflects a small, moderate or large measurement error on the true

covariate X. Numerical results of n = 500 and n = 2000 are reported in Table 2.1 and Table 2.2,

respectively. The estimates of (β, ψ) under σ = 0.8 are visualized in Figure 2.1 for n = 500 and

Figure 2.2 for n = 2000, respectively.

Tables 2.1 and 2.2 show that ignoring the covariate measurement error leads to biased

results with noticeable biases, and the coverage probabilities are below the nominal level of

95%. As the degree of measurement error increases, the biases are more severe. In contrast,

the RC estimator presents a satisfactory performance in correcting for the effect with small

biases and coverage probabilities around 95%. Its performance also seems robust against the

various magnitude of measurement error. Moreover, we also see that the sample size affects

the performance of the methods. As the sample size becomes larger, the associated variability

decreases in all the scenarios.

2.3.2 Two-Stage Estimation in Linear Case

This simulation study aims to investigate the effect of measurement error on the parameter

estimation in DTR with two decision points. Let X j ∼ N(1, 1) and Z j ∼ N(0.5, 1) be the error-

prone and error-free covariates at stage j (j = 1, 2), respectively. A treatment A j ∈ {1, 0} is

assigned with probability P(A j = 1) = 1/2. In practice, the number of replicate surrogates may

vary from person to person. To mimic this situation, we consider a scenario with 3 replicate

surrogates W j1, W j2, W j3, generated by W jl = X j + e jl (l = 1, 2, 3), where e jl ∼ N(0, σ2
j).

The degree of measurement error at stage j is reflected by σ j, which is assumed to be known

or estimated from a pilot study. Each patient is assumed to possess at least W j1 and W j2 as

primary proxies while W j3 may not be available. The degree of missingness in W j3 is set to

be 80%. Let W j be an average value of W j1, W j2 and W j3, W j = (W j1 + W j2 + W j3)/3. The

outcome is modeled linearly in the treatment-free component as Y = X1 + Z1 + X2 + Z2 +
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A1(ψ10 + ψ11X1) + A2(ψ20 + ψ21X2) + ε, where ψ = (ψ20, ψ21, ψ10, ψ11) = (0.5, -1, 0.5, -1)

and ε ∼ N(0, 1), independent of each other and of all other variables. In each round of 500

simulations, a dataset with the size of 2000 patients is generated.

Four estimators are compared in each stage to evaluate the performance of the RC method:

(1) true estimator ψ̂t obtained using the true covariate X j, (2) naive estimator ψ̂n obtained using

a single surrogate W j1, (3) naive estimator ψ̂nb obtained using the averaged surrogate W j, (4)

RC estimator ψ̂rc obtained using the RC estimates X̂ j. The degree of measurement error σ j is

specified as 0.2, 0.5 and 0.8. Results for the bias, SE, RMSE and CP% of ψ̂ computed using

the standard bootstrap are reported in Table 2.3. Figures 2.3, 2.4 and 2.5 provide the visualized

parameter estimates under σ2 = 0.8.

Similar to the findings in one-stage estimation, both naive blip estimators ψ̂n and ψ̂nb are

biased due to the ignorance of the covariate measurement error. As the degree of measurement

error increases, the biases of the naive estimators exacerbate. On the contrary, the RC estimator

ψ̂rc yields small biases, and the coverage probabilities are close to the nominal level of 95%.

Moreover, the performance of the RC estimator is also shown to be robust against the different

magnitude of measurement error across the two stages.

2.3.3 Two-Stage Estimation in Nonlinear Case

In this section, we explore the measurement error effect on the estimation of blip parameters

and optimal DTR in a nonlinear outcome model with two decision points. The data generation

mechanism is the same with the one in (2.3.2) except that the outcome model is given by Y =

f(X1) + Z1 + f(X2) + Z2 + A1(ψ10 + ψ11X1) + A2(ψ20 + ψ21X2) + ε, where ψ = (ψ20, ψ21, ψ10,

ψ11) = (0.5, -1, 0.5, -1) and ε ∼ N(0, 1), independent of everything else. In the outcome model,

three nonlinear functions are considered for X j: (1) f(X j) = X j + X3
j (cubic), (2) f(X j) = X j +

eX j (exponential), (3) f(X j) = X j + sin(X2
j) + cos(X2

j ) (complex).

We continue the analysis with four estimators ψ̂t , ψ̂n, ψ̂nb and ψ̂rc. The measurement

error σ j is chosen from a range of {0.2, 0.5, 0.8}. Table 2.4 displays the results for the bias,

SE, RMSE and CP% of ψ̂ over various measurement errors in each nonlinear case. The blip

estimates for three nonlinear examples under σ = (σ2, σ1) = (0.8, 0.8) are visualized in Figures
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2.6, 2.7 and 2.8. We repeat the set of simulations 500 times.

In general, the results in Table 2.4 reveal a larger measurement error effect with bigger

biases and standard errors in the nonlinear case than those in the linear case. In comparison,

the RC method remains effective and robust, though it produces slightly less reduced biases

in this setting compared with that in (2.3.2), especially for the estimation of ψ1. Moreover, in

the three scenarios, the models containing the cubic function and exponential function in the

treatment-free component are sensitive to measurement error.

2.3.4 Predicted Optimal DTR

In this section, we explore the effect of measurement error on the predicted optimal treatment

decision rules by evaluating the proportion of optimally treated patients across two stages.

In Carroll et al. (2006), there is an argument about the necessity of modeling measurement

error in a predictive setting. However, considering the importance of correctly identifying

and recommending the optimal treatments to the patients, it’s worth looking into the role of

measurement error in predicting the optimal DTR in Q-learning.

The analysis follows the simulation design (2.3.2) and is done with the training data of

2000 patients and test data of 5000 patients. We first use the training data to produce three

estimators (ψ̂n, ψ̂nb, ψ̂rc) with a single surrogate W j1, averaged surrogate W j, and RC estimates

X̂ j, respectively. Then, we use the test data to find the prediction accuracy of optimal DTR,

which is measured by the proportion of the patients whose optimal treatments are correctly

identified in the test data at stage 2 and/or stage 1.

In each stage, six scenarios are considered to predict the optimal DTR using (1) naive

estimator ψ̂n and true covariate X j (nt), (2) naive estimator ψ̂nb and true covariate X j (nbt), (3)

RC estimator ψ̂rc and true covariate X j (ct), (4) naive estimator ψ̂n and a single surrogate W j1

(nn), (5) naive estimator ψ̂nb and averaged surrogate W j (nbnb), (6) RC estimator ψ̂rc and RC

estimates X̂ j (cc), respectively. The first three scenarios aim to examine the measurement error

effect on the prediction accuracy using the true covariates in the test data, while the last three

evaluate the measurement error effect using the surrogates and corrected estimates in the test

data. A total of 500 runs are simulated for each scenario. Numerical results are summarized in
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Table 2.5. The prediction accuracy results under (σ2, σ1) = (0.8, 0.8) are shown in Figure 2.9.

Table 2.5 shows that the existence of measurement error leads to a remarkable degradation

of the prediction accuracy of optimal DTR, and it achieves the lowest prediction accuracy

when a single surrogate is used. However, the RC method outperforms the naive method and

significantly improves the prediction accuracy in all the scenarios. In the last two scenarios

(nbnb and cc), the RC method yields similar accuracy results to the naive method, indicating

that the worst scenario of using the RC method is comparable to that of using the naive method.

2.3.5 Predicted Optimal Value Function

In this study, we evaluate the measurement error effect on the predicted optimal value func-

tion, which is the expected outcome under the optimal treatment regimes. The data generation

mechanism follows (2.3.4), and we continue with the three estimators (ψ̂n, ψ̂nb, ψ̂rc) obtained

from the training data. We use the test data to predict the value functions under the (1) true

optimal DTR (opt), (2) optimal DTR estimated using ψ̂n and X j (nt), (3) optimal DTR esti-

mated using ψ̂nb and X j (nbt), (4) optimal DTR estimated using ψ̂rc and X j (ct), (5) optimal

DTR estimated using ψ̂n and W j1 (nn), (6) optimal DTR estimated using ψ̂nb and W j (nbnb),

(7) optimal DTR estimated using ψ̂rc and X̂ j (cc). Simulations are repeated 500 times. For

each scenario, the average value function is computed and reported in Table 2.6, along with its

standard deviations. Figure 2.10 also displayed the predicted optimal value function under (σ2,

σ1) = (0.8, 0.8).

In Table 2.6, we see that the measurement error effect is pronounced in terms of value

function estimation under the optimal DTR. By comparison, the naive method generally yields

lower value function estimates, and the optimal value function achieves the lowest value with

a single surrogate being used, as expected. The RC method, however, improves the estimated

optimal value function, even comparable to the true optimal value function when the true co-

variate is used.
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2.4 Application to STAR*D Study

To illustrate the proposed correction method, we analyze the data arising from the Sequenced

Treatment Alternatives to Relieve Depression study (Rush et al., 2003,0). The STAR*D study

was designed as a multisite, multistage randomized controlled trial. It aimed to evaluate the

effect of treatments for patients who suffered from major depressive disorder. The severity

of depressive disorder was measured by the Quick Inventory of Depressive Symptomatology

score, which was assessed by both patients (QIDS-S) and clinicians (QIDS-C). The entire

study possessed four levels, in which one or a combination of treatments was assigned to the

patients. At level 1, all of the patients were prescribed citalopram (CIT). At the end of level 1,

if patients had QIDS ≤ 5, they achieved remission and were removed from the study but those

who otherwise entered level 2. They were again randomized into one of the seven treatment

options: either switching from CIT to one of four other treatment options (venlafaxine[VEN],

sertraline[SER], bupropion[BUP], and cognitive therapy[CT]) or augmenting CIT with one

of three treatments (BUP, CT and buspirone[BUS]). Then, at the end of level 2, they were

again assessed with the QIDS score, and those who failed to achieve remission (QIDS ≤ 5)

entered level 3. In level 3, they were randomized to receive either one of two new treatments

(lithium[Li] or thyroid hormone[THY]) or one of two augmented treatment options (mirtaza-

pine[MIRT], nortriptyline[NTP]). The QIDS score for remission was evaluated at the end of

level 3.

In the literature, depression is found to be significantly associated with functional impair-

ment (Greer et al., 2010). Patients with major depressive disorder were shown to have consider-

able deficits in the physical and social functioning (Lin et al., 2014; Trivedi et al., 2013). IsHak

et al. (2016) analyzed the STAR*D data and pointed out the importance of developing indi-

vidualized treatments for patients with a major depressive disorder to improve their long-term

functioning. The perceived functional impairment is measured at each level of the STAR*D

study by the Work and Social Adjustment Scale (WSAS) score, which reflects the functioning

aspects of the work, home management, social activities, private activities, and relationships

with others.

We follow the criteria in the literature (Chakraborty, 2013; Chakraborty et al., 2013; Wal-
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lace et al., 2019) to select the data, where the two-stage DTR is considered by combining level

2 and level 2A as the first stage and treating level 3 as the second stage. The stage j treatment

A j is coded based on whether the treatment involves selective serotonin reuptake inhibitor (A j

= 1) or not (A j = 0). Three tailoring variables are considered, Q j: the QIDS-C score measured

at the beginning of each level j, S j: the QIDS slope, the change in QIDS-C divided by the time

in the previous level, and P j: the patients’ preference indicating whether they wished to switch

previous treatment (P j = 1), to augment previous treatment or have no preference (P j = 0). The

outcome of interest is defined as the negative WSAS score across two stages

Y = R1 · Y1 + (1 − R1) · 1
2 (Y1 + Y2),

where Y1 and Y2 are the negative WSAS scores observed at the end of stage 1 and stage 2, and

R1 is an indicator of whether the patients achieved remission (R1 = 1) or not (R1 = 0) at the

end of stage 1. The selected data contain 1438 patients at stage 1, of whom 377 patients have

entered the stage 2.

The previous analyses of the STAR*D data often assume that the QIDS-C score is error-

free, which is usually not the case in practice. Spicker and Wallace (2020) studied the mea-

surement error effect on sequential optimal treatment rules, assuming that the true QIDS score

was unknown and both the QIDS-C score and QIDS-S score were considered as the repeated

measurements of the true underlying QIDS score. In this work, we are interested in estimat-

ing the optimal treatment decision rules using Q-learning that maximize the negative WASA

score, provided that the QIDS score is subject to measurement error. We compare three estima-

tors, including two naive estimators using the QIDS-C score or QIDS-S score as the tailoring

variable and the RC estimator using the corrected estimates computed by (QIDS-C, QIDS-S).

The analysis results of the parameter estimates, bootstrap standard error, and 95% confidence

interval are summarized in Table 2.7.

In Table 2.7, the parameter estimates of each stage vary remarkably between the naive

method and the RC method, leading to different optimal treatment decision rules. More impor-

tantly, the results show that the significance of the tailoring variable differs between these two

methods. The patients’ preference to switch treatment and QIDS score have significant treat-

ment effects in the interaction with the second stage treatment when the QIDS-S score is used.
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However, by using the RC estimates, no significant term is observed across the two stages. It

emphasizes that the measurement error effect is not negligible in an error-prone setting since

it is possible to alter the estimation of optimal treatment decision rules and the significance of

the tailoring variable.

2.5 Conclusion

This study aims to build a bridge between Q-learning with continuous outcomes and covariate

measurement error where there exist replicated measurements for the error-prone covariates. It

is demonstrated in both simulation studies and data analysis that ignoring measurement error

in covariates will lead to severely biased results. To adjust for the measurement error effect,

we apply the regression calibration method in Q-learning and present a modified Q-learning

algorithm. On average, the RC method shows superior performance over the naive method in

all the scenarios in terms of bias-reduction and coverage probability, especially in the linear

Q-learning setting. Moreover, the RC method is generally robust against the magnitude of

measurement error.

Another important topic discussed in the study is evaluating the performance of the pro-

posed method from a predictive perspective. We predict the future optimal treatment decision

rules by finding the proportion of patients whose optimal treatments are correctly identified

across two stages. It turns out that using a single mismeasured covariate leads to the worst

performance among all methods. In contrast, the RC method improves the prediction accuracy

even when the degree of measurement error is high. Moreover, we also compare the naive

method and RC method in terms of value function estimation. The optimal value function

estimated from the naive method is generally lower, but the RC method enhances the optimal

value function comparable to the true optimal value function.
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Table 2.1: One-stage estimates of blip parameters (ψ10, ψ11) (n = 500)

ψ10 ψ11

σ ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

ψ̂t 0.002 0.133 0.133 96.8 -0.002 0.095 0.095 95.2

0.2 ψ̂n 0.043 0.137 0.143 94.4 -0.043 0.096 0.106 93.6

ψ̂nb 0.022 0.134 0.136 95.4 -0.023 0.095 0.098 95.0

ψ̂rc 0.002 0.137 0.137 96.2 -0.003 0.097 0.097 95.8

0.5 ψ̂n 0.209 0.149 0.257 70.4 -0.208 0.100 0.231 46.8

ψ̂nb 0.118 0.143 0.185 86.4 -0.117 0.098 0.153 74.8

ψ̂rc 0.008 0.151 0.152 94.4 -0.007 0.110 0.110 95.6

0.8 ψ̂n 0.406 0.160 0.436 29.6 -0.403 0.099 0.414 2.4

ψ̂nb 0.254 0.152 0.296 59.8 -0.254 0.100 0.273 27.6

ψ̂rc 0.012 0.176 0.176 94.8 -0.012 0.132 0.133 94.8
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Table 2.2: One-stage estimates of blip parameters (ψ10, ψ11) (n = 2000)

ψ10 ψ11

σ ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

ψ̂t -0.002 0.066 0.066 95.4 0.004 0.047 0.047 96.6

0.2 ψ̂n 0.035 0.068 0.077 93.4 -0.034 0.048 0.059 88.6

ψ̂nb 0.016 0.068 0.070 94.6 -0.015 0.048 0.05 95.4

ψ̂rc -0.003 0.068 0.068 94.8 0.004 0.048 0.049 96.4

0.5 ψ̂n 0.203 0.075 0.216 21.0 -0.200 0.050 0.206 2.2

ψ̂nb 0.115 0.072 0.135 65.8 -0.112 0.049 0.122 38.6

ψ̂rc 0.004 0.076 0.076 94.0 -0.001 0.055 0.055 95.6

0.8 ψ̂n 0.388 0.080 0.396 0.2 -0.389 0.049 0.392 0.0

ψ̂nb 0.241 0.076 0.252 11.8 -0.241 0.050 0.246 0.0

ψ̂rc -0.002 0.088 0.088 94.4 0.002 0.066 0.066 93.0
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Figure 2.1: One-stage estimates of (βz, βx, ψ10, ψ11) with σ = 0.8 (n = 500)

Figure 2.2: One-stage estimates of (βz, βx, ψ10, ψ11) with σ = 0.8 (n = 2000)
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Figure 2.3: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with (σ2, σ1) = (0.8, 0.2)

Figure 2.4: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with (σ2, σ1) = (0.8, 0.5)
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Figure 2.5: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with (σ2, σ1) = (0.8, 0.8)

Figure 2.6: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with cubic term and (σ2, σ1) = (0.8,
0.8)
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Figure 2.7: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with exponential term and (σ2, σ1) =

(0.8, 0.8)

Figure 2.8: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with complex term and (σ2, σ1) = (0.8,
0.8)
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Chapter 3

Dynamic Treatment Regimes with

Survival Response and Covariate

Measurement Error

3.1 Introduction

In the last chapter, we explore the effect of measurement error in covariates on DTR with con-

tinuous outcomes. This chapter examines the covariate measurement error effect on DTR with

survival outcomes. In particular, the error-prone covariates are incorporated in the dynamic

weighted survival modeling proposed by Simoneau et al. (2020b), given that internal valida-

tion data are available in each stage. The validation data contain both the true observations

and continuous auxiliary variables/surrogates for the covariates. Two correction methods are

proposed in DWSurv to handle the mismeasured and incomplete covariates. The first method is

the k-nearest neighbors (kNN) method, which directly deals with the continuous surrogates to

eliminate the measurement error effect in DWSurv. The second method is an extension of the

weighted least squares method developed by Jin et al. (2019). The extended version requires

the transformation of a continuous surrogate into a discrete variable for the use of the WLS

method in DWSurv.

The remainder of the chapter is organized as follows. Section 3.2 describes the basic no-
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tations and the framework of the kNN and WLS methods in DWSurv. Simulation studies are

conducted in Section 3.3 to assess the performance of the proposed methods in DWSurv. In

Section 3.4, the proposed correction methods are applied to the ICU data from the MIMIC-III

database. Concluding remarks are summarized in Section 3.5.

3.2 Methodology

3.2.1 Notations and Model Framework

For simplicity, the notations and framework set-up are restricted to two decision points in DTR.

Let X j and Z j be the error-prone covariate and error-free covariate vector at stage j (j = 1, 2).

W j denotes an auxiliary covariate, a surrogate to X j with a classical additive relationship.

We consider a situation with the data trajectory (ηi1, Xi1, Wi1, Z i1, Ai1, Yi1, ηi2, Xi2, Wi2, Z i2,

Ai2, Yi2, ∆i), where the true covariate X j is only observed in a subset of the data, but W j is fully

observed. In other words, at any stage j, the data with η j = 1 are partitioned into validation data

V and main study data V

{Xi j,Wi j, Z i j, Ai j,Yi j,∆i} if i ∈ V ,

{Wi j, Z i j, Ai j,Yi j,∆i} if i ∈ V .

Given the data structure, let X̄i j = E[Xi j|Wi j, Z i j, Ai j] in place of the unobserved Xi j in the

AFT models. Define X∗i j as a variable such that

X∗i j = τi jXi j + (1 − τi j)X̄i j,

where τi j is an indicator to denote whether the patient i is in the validation at stage j (τi j = 1)

or not (τi j = 0).

If measurement error is ignored, by replacing X j with W j, we obtain naive histories as Hn
1

=

(W1, Z1), Hn
2

= (W1, Z1, A1, W2, Z2). Then, the naive AFT models based on the naive histories

in DWSurv are given by

logT2 = βnT
2

hn
20

+ a2
(
ψnT

2
hn

21

)
+ ε2,

logT̃ = βnT
1

hn
10

+ a1
(
ψnT

1
hn

11

)
+ ε1.

(3.1)
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He et al. (2007) demonstrated that the naive estimator is biased in the AFT models with

covariate measurement error. Thus, it is reasonable to believe that applying the naive AFT

models (3.1) into the DWSurv algorithm may yield a biased blip estimator ψ̂n
j
. Then, the naive

blip estimators ψ̂n = (ψ̂n
2
, ψ̂n

1
) may be biased from ψ = (ψ2, ψ1), which can further affect the

estimation of the optimal DTR. Such concerns motivate us to explore effective approaches to

find the estimates for the missing X j in V and replace X j with the new substitute values in the

AFT models, and in turn, to adjust for the estimation of the optimal DTR.

3.2.2 k-Nearest Neighbors Method

k-nearest neighbors (kNN) is a non-parametric statistical learning method. It is known as a

lazy learning method because it assumes no distribution of the data specified (Aha, 1997).

kNN method can be used for both regression problems and classification problems. The key

idea of the kNN method is to find the nearest k neighbors in the training data for the test objects

in the testing data. Once the k neighbors are identified, the value or label for the object in the

testing data can be determined (Biau and Devroye, 2015). In the case of unobservable values

of Xi j in the main study in DWSurv, we may borrow this idea to develop a method to find the

estimates from the validation data in place of Xi j in the main study in DWSurv.

Recall that the data structure of DWSurv at stage j follows

{Xi j,Wi j, Z i j, Ai j,Yi j,∆i} if i ∈ V ,

{Wi j, Z i j, Ai j,Yi j,∆i} if i ∈ V .

The true covariate Xi j is only observed in the validation data V but is unobservable in the main

study data V . Let X̂k
i j be the estimates of the unobserved Xi j in V . We denote by W(s)

i j the sth

nearest neighbor of Wi j ∈ V among Wi j ∈ V , s = 1, ..., k, and X(s)
i j the corresponding data

point among Xi j ∈ V . We obtain X̂k
i j by first locating the nearest k data points W(s)

i j ∈ V around

Wi j ∈ V and averaging the associated X(s)
i j ∈ V . Mathematically, X̂k

i j in V is given by

X̂k
i j =

1
k

k∑
s=1

1(W (s)
i j is near Wi j) X(s)

i j , (3.2)
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where k is a given positive integer. Let X̃k
i j be defined as a random variable at stage j such that

X̃k
i j = τi jXi j + (1 − τi j)X̂k

i j. (3.3)

Using X̃k
j obtained from (3.3) leads to kNN histories Hk

1
= (X̃k

1, Z1) and Hk
2

= (X̃k
1, Z1, A1,

X̃k
2, Z2). Thus, the AFT models based on the kNN histories at two stages are given by

logT2 = βkT
2

hk
20

+ a2

(
ψkT

2
hk

21

)
+ ε2,

logT̃ = βkT
1

hk
10

+ a1

(
ψkT

1
hk

11

)
+ ε1.

Distance Measure

The performance of the kNN method is determined by two factors, the distance measure

and the choice of k (Biau and Devroye, 2015; Zhang, 2016). Distance measure calculates the

relative distance between two data points based on a choice of the distance functions, including

Euclidean, Manhattan, Minkowsky, Chebychev, and Chi-square distances, etc. It has been

studied in the literature that the distance measure has a significant influence on the performance

of the kNN algorithm (Alkasassbeh et al., 2015; Chomboon et al., 2015; Lopes and Ribeiro,

2015; Mulak and Talhar, 2015; Hu et al., 2016). In this study, we use the Euclidean distance to

measure the distance. Since Wi j is assumed to be a scalar, the resulting distance measure is the

absolute value of the difference between two points.

Choice of k

Tuning parameter k denotes the number of nearest neighbors to be selected. Similar to the

distance measure, the choice of k is empirical. It is often chosen by specific criteria defined in

the studies. Researchers have made efforts into developing methods to select the optimal k in

various situations (Sun and Huang, 2010; Gou et al., 2011; Cheng et al., 2014; Hassanat et al.,

2014; Zhang et al., 2018; Azadkia, 2019). Devroye et al. (1994) showed the consistency of the

kNN estimates if k was chosen under the conditions: limnv→∞ k = ∞ and limnv→∞ k/nv = 0,

where nv is the number of observations in the validation data. Such conditions cover a family
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of k that depends on nv. Practically, the rule of thumb for choosing the k is
√

nv (Hassanat

et al., 2014; Nadkarni, 2016). In this study, we adopt this idea to define a more general k that

satisfies the conditions in Devroye et al. (1994) and use the f -fold cross-validation, a data-

driven approach to select the optimal k.

In detail, let k be defined as k = nαv , where α ∈ (0, 1) is a real number. For 0 < αmin <

αmax < 1, a sequence of finite values for k (dnαmin
v e = kmin < k < kmax = dnαmax

v e) is selected, and

the validation data are randomly split into a number of f subsamples. For each k, we select

(f -1) subsamples and apply the proposed kNN method to obtain the predicted values X̂ f
i j(k) in

the remaining f th subsample denoted as V f . Then, we calculate the mean squared error (MSE)

of X̂ f
i j(k) by using the X f

i j in V f . This process is repeated f times with each of the subsamples

used only once. Then, the mean of fold-based MSE is obtained for that k. When all the values

in the sequence are evaluated, the optimal k denoted as kopt can be determined as the one that

has the lowest value of MSE

kopt = arg min
kmin<k<kmax

MSE(k), (3.4)

where MSE(k) is the mean of 1
nv f

∑
i∈V f

(
X̂ f

i j(k) − X f
i j
)2, and nv f is the number of observations in

V f . This adaptive approach is easy to implement and efficient to produce the optimal k.

Based on the distance measure and the choice of optimal k discussed above, we can estab-

lish the theoretical property of the proposed kNN method. The detailed conditions and proof

are given in the Appendix in Section 3.6.

Theorem 3.2.1 Under the conditions (C1) - (C3) in the Appendix, Section 3.6, the proposed

kNN method yields consistent estimates of ψ in DWSurv.

Modified Dynamic Weighted Survival Modeling Algorithm I:

Provided the chosen distance measure and empirical choice of k, the modified dynamic

weighted survival modeling algorithm I consists of the following steps:

1. Propose parametric models for the probability of treatment P(A2 = 1|hk
2
, η2 = 1) and the

probability of censoring P(∆ = 0|hk
2
, a2, η2 = 1) and find the estimated weight ŵ2 from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 logT2 =
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βkT
2

hk
20

+ a2

(
ψkT

2
hk

21

)
+ ε2 and obtain the estimator (β̂k

2
, ψ̂k

2
) by solving

U2(βk
2
,ψk

2
) =

∑n
i=1 δiηi2ŵi2

 hk
i20

ai2hk
i21

 (
logTi2 − β

kT
2

hk
i20
− ai2ψ

kT
2

hk
i21

)
= 0.

3. Derive the stage 2 optimal treatment as âopt
2 = 1

(
ψ̂kT

2
hk

21
> 0

)
.

4. Construct the pseudo-survival time for estimation at stage 1

T̃ = T1 + η2T2exp
{
ψ̂kT

2
hk

21
[âopt

2 − a2]
}
.

5. Propose parametric models for the probability of treatment P(A1 = 1|hk
1
, η1 = 1) and the

probability of censoring P(∆ = 0|hk
1
, a1, η1 = 1) and find the estimated weight ŵ1 from (1.10).

6. Assume a linear AFT model for the counterfactual logarithm of survival time at stage 1

logT̃ = βkT
1

hk
10

+ a1

(
ψkT

1
hk

11

)
+ ε1 and obtain the estimator (β̂k

1
, ψ̂k

1
) by solving

U1(βk
1
,ψk

1
) =

∑n
i=1 δiηi1ŵi1

 hk
i10

ai1hk
i11

 (
logT̃i − β

kT
1

hk
i10
− ai1ψ

kT
1

hk
i11

)
= 0.

7. Derive the stage 1 optimal treatment as âopt
1 = 1

(
ψ̂kT

1
hk

11
> 0

)
.

3.2.3 Weighted Least Squares Method

In this section, we extend the weighted least squares (WLS) method of Jin et al. (2019) to a

case with continuous surrogates in a multi-stage setting. Let M j be an auxiliary variable at

stage j, which takes the value of {1, 2, 3, 4}, according to the interval of (-∞, Q1], (Q1, Q2],

(Q2, Q3], (Q3, +∞) that W j lies in, where Q1, Q2 and Q3 denote the quartiles of W j. Then, we

have a new data structure

{Xi j,Wi j,Mi j, Z i j, Ai j,Yi j,∆i} if i ∈ V ,

{Wi j,Mi j, Z i j, Ai j,Yi j,∆i} if i ∈ V .

As M j is a discretized variable obtained from W j, we can use M j to assist us in finding the

estimates X̂w
i j of the unobserved Xi j in V . For any i ∈ V , we modify the equation (1.14) to be

applicable for estimating the Xi j at stage j, which is given by

X̂w
i j =

∑
s∈V 1(Ms j = Mi j)Xs j∑

s∈V 1(Ms j = Mi j)
. (3.5)
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With (3.5), we can obtain a substitute X̃w
i j for Xi j at stage j such that

X̃w
i j = τi jXi j + (1 − τi j)X̂w

i j. (3.6)

Then, using X̃w
j obtained from (3.6) yields WLS histories Hw

1
= (X̃w

1 , Z1) and Hw
2

= (X̃w
1 , Z1,

A1, X̃w
2 , Z2). Hence, the AFT models based on the WLS histories are given by

logT2 = βwT
2

hw
20

+ a2

(
ψwT

2
hw

21

)
+ ε2,

logT̃ = βwT
1

hw
10

+ a1

(
ψwT

1
hw

11

)
+ ε1.

The intuition behind the equation (3.5) is that we can find the estimates for the unobserved

Xi j in V by directly searching for the matched Mi j ∈ V and Mi j ∈ V at stage j and averaging the

corresponding true covariate Xi j in V . This method is similar to the kNN method, except that a

categorical variable M j is used for calculation, which is obtained from the surrogate W j. As a

result, we can use this method as an alternative to the kNN method.

Modified Dynamic Weighted Survival Modeling Algorithm II:

Provided the WLS equations in (3.5) and (3.6), the modified dynamic weighted survival

modeling algorithm II consists of the following steps:

1. Propose parametric models for the probability of treatment P(A2 = 1|hw
2
, η2 = 1) and the

probability of censoring P(∆ = 0|hw
2
, a2, η2 = 1) and find the estimated weight ŵ2 from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 logT2 =

βwT
2

hw
20

+ a2

(
ψwT

2
hw

21

)
+ ε2 and obtain the estimator (β̂w

2
, ψ̂w

2
) by solving

U2(βw
2
,ψw

2
) =

∑n
i=1 δiηi2ŵi2

 hw
i20

ai2hw
i21

 (
logTi2 − β

wT
2

hw
i20
− ai2ψ

wT
2

hw
i21

)
= 0.

3. Derive the stage 2 optimal treatment as âopt
2 = 1

(
ψ̂wT

2
hw

21
> 0

)
.

4. Construct the pseudo-survival time for estimation at stage 1

T̃ = T1 + η2T2exp
{
ψ̂wT

2
hw

21
[âopt

2 − a2]
}
.
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5. Propose parametric models for the probability of treatment P(A1 = 1|hw
1
, η1 = 1) and the

probability of censoring P(∆ = 0|hw
1
, a1, η1 = 1) and find the estimated weight ŵ1 from (1.10).

6. Assume a linear AFT model for the counterfactual logarithm of survival time at stage 1

logT̃ = βwT
1

hw
10

+ a1

(
ψwT

1
hw

11

)
+ ε1 and obtain the estimator (β̂w

1
, ψ̂w

1
) by solving

U1(βw
1
,ψw

1
) =

∑n
i=1 δiηi1ŵi1

 hw
i10

ai1hw
i11

 (
logT̃i − β

wT
1

hw
i10
− ai1ψ

wT
1

hw
i11

)
= 0.

7. Derive the stage 1 optimal treatment as âopt
1 = 1

(
ψ̂wT

1
hw

11
> 0

)
.

3.3 Simulation Studies

In this section, extensive simulation studies are conducted to assess the impact of measurement

error in covariates on the estimation of parameters, prediction of optimal DTR and optimal

overall survival time. The performance of the proposed kNN method and WLS method is

evaluated in one-stage and multi-stage settings. The validity of the double robustness property

in DWSurv is also examined in the presence of measurement error.

3.3.1 One-Stage Estimation

Let X be an error-prone covariate and Z be an error-free covariate, generated from a uniform

distribution U(0.1, 2). W is a mismeasured version for X, with the relationship W = X + e,

where e ∼ N(0, σ2) and σ reflects the degree of measurement error. The treatment A ∈ {1, 0}

is generated from a Bernoulli distribution with probability P(A = 1) = expit(0.5X + 0.5Z - 1),

where expit(x) = 1/(1 + exp(-x)) is the inverse-logit function. Censoring time C is generated

from an exponential distribution with a rate of 1/300. The log-survival time is generated as

logT = 2 + βzZ + βxX + A(ψ10 + ψ11X) + ε,

where (β, ψ) = (βz, βx, ψ10, ψ11) = (0.5, 0.5, 1, -1) and ε ∼ N(0, 0.52) is generated independent

of all other variables. A dataset of 2000 patients is simulated 500 times. In each simulation,

the dataset is randomly split into validation data and main study data with a validation ratio ρ,

where the validation data contain 100×ρ% of the observations. A sequence of k is generated
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with α ∈ {0.1, ..., 0.9} with a step size of 0.1. The primary interest is to evaluate the mea-

surement error effect on the estimation of blip parameters, but its impact on the estimation of

parameters for the main terms is also examined in the study.

Five estimators are considered to evaluate the performance of the proposed methods: (1)

validation estimator (β̂v, ψ̂v) obtained using the validation data, (2) complete estimator (β̂c,

ψ̂c) obtained using the complete data, (3) naive estimator (β̂n, ψ̂n) obtained using W, (4) kNN

estimator (β̂k, ψ̂k) obtained using X̃k according to the formula (3.3) with kopt chosen from the

10-fold cross-validation and the selected sequence of k, (5) WLS estimator (β̂w, ψ̂w) obtained

using X̃w according to the formula (3.6). In simulations, the validation ratio ρ is set to be 0.5

and 0.7. The degree of measurement error σ ∈ {0.2, 0.5, 0.8} is specified, and the degree of

independent censoring is set as 30% and 70%. A summary of kopt chosen in the simulations

is provided in Table 3.1. Table 3.2 and Table 3.3 report the bias, asymptotic standard error

(SE), root mean square error (RMSE) and 95% coverage probability (CP%) of ψ̂ under 30%

and 70% independent censoring, respectively. Figure 3.1 and Figure 3.6 provide the visualized

parameter estimates under ρ = 0.7.

In Table 3.1, we see that as ρ increases, the optimal k gets larger, indicating the relationship

of k with the size of the validation data. Moreover, the optimal k is positively related to σ,

reflecting that more data points are needed as the degree of measurement error increases. Tables

3.2 and 3.3 show that using the naive method causes considerable biases in the estimation of

all the parameters except βz due to the measurement error. The biases become larger as σ

increases. There is little impact on the estimation of βz, which corresponds to the error-free

covariate Z. In comparison, the proposed kNN and WLS methods significantly reduce biases

of parameter estimation and improve the coverage probabilities in all the scenarios. The size of

the validation data and the censoring rate also affect the performance of the proposed methods.

The empirical biases and standard errors of the proposed methods are reduced as ρ increases.

But with more censored patients, all the methods experience larger variation as a result of the

loss of information about the survival time.
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3.3.2 Two-Stage Estimation

In this section, we explore the effect of covariate measurement error on the parameter estima-

tion in a two-stage setting. The design of data generation mechanism in the multi-stage DTR

with survival outcomes is difficult and lacks of realism (Simoneau et al., 2020a). Therefore, our

two-stage simulation setting follows the idea of the data generation mechanism from Simoneau

et al. (2020b). Let X j and Z j be the error-prone covariate and error-free covariate at stage j (j

= 1, 2), which are generated from uniform distributions U(0.1, 1.29) at stage 1 and U(0.9, 2)

at stage 2, respectively. The surrogate W j is generated by the classical additive model W j =

X j + e j, where e j ∼ N(0, σ2
j). The treatment A j ∈ {1, 0} is assigned with P(A1 = 1) = expit(X1

+ Z1 - 1) and P(A2 = 1) = expit(-X2 - Z2 + 2.8), respectively. The censoring time is generated

from an exponential distribution with a rate of 1/300. Based on the AFT model, the observed

survival time at stage 2 is given by

T2 = exp
(
4 + 1.1X2 − 0.3X2

2 − 0.1Z2 − 0.1X1 + A2(ψ20 + ψ21X2) + ε2
)
,

where (ψ20, ψ21) = (-0.9, 0.6) and ε2 ∼ N(0, 0.32), independent of all other variables. The

optimal survival time had all the patients received the second stage optimal treatment is

T opt
2 = exp

(
logT2 + (Aopt

2 − A2)(ψ20 + ψ21X2)
)
.

The overall survival time under the optimal treatment at stage 2 is generated from the AFT

model as

T̃ = exp
(
6.3 + 1.5X1 − 0.8X2

1 + 0.1Z1 + A1(ψ10 + ψ11X1) + ε1
)
,

where (ψ10, ψ11) = (0.8, -0.9) and ε1 ∼ N(0, 0.32), independent of all other variables. We

assume that the total size of the simulated dataset is n = 2000, and 60% of the patients have

entered stage 2. In each stage, 70% of the data are randomly selected as the validation data.

The measurement error degree (σ2, σ1) is considered withσ j ∈ {0.2, 0.5, 0.8}. The independent

censoring rate is set to be 30% and 70%. A sequence of k is generated with α ∈ {0.1, ..., 0.9}

with a step size of 0.1. Simulations are run 500 times.

In the two-stage DWSurv, we are interested in estimating the blip parameters ψ = (ψ20, ψ21,

ψ10, ψ11). Five blip estimators are compared to evaluate the performance of the proposed meth-

ods: (1) validation estimator ψ̂v obtained using X j based on the validation data, (2) complete
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estimator ψ̂c obtained using X j based on the complete data, (3) naive estimator ψ̂n obtained

by using W j, (4) kNN estimator ψ̂k obtained using X̃k
j according to the formula (3.3) with kopt

chosen from the 10-fold cross-validation and the generated sequence of k, (5) WLS estimator

ψ̂w obtained using X̃w
j according to the formula (3.6).

We would like to examine the validity of the double robustness property of the DWSurv

method, whether it still holds in the presence of measurement error. Four scenarios are included

in each stage: (1) both the weight (treatment and censoring models) and the treatment-free

models are correctly specified, (2) the weight model is correctly specified, but the treatment-

free model is misspecified, (3) the weight model is misspecified, but the treatment-free model

is correctly specified, (4) both the weight and the treatment-free models are misspecified. The

bias, SE, RMSE and CP% of each blip estimator are summarized in Table 3.4 to Table 3.9,

accompanied by the parameter estimates of the four scenarios visualized in Figure 3.7 to Figure

3.12.

From the results, we see that the double robustness property fails with the naive estima-

tor ψ̂n, even in the case of both the weight and the treatment-free models correctly specified

(scenario 1). Moreover, the increase in the degree of measurement error exacerbates the biases

of ψ̂n. In contrast, the proposed estimators ψ̂k and ψ̂w perform satisfactorily with fairly small

biases and coverage probabilities are close to the nominal level under various combinations of

censoring rate and (σ2, σ1). The double robustness property is substantially restored using the

proposed estimators, when at least one of the weight model and treatment-free model is cor-

rectly specified (scenarios 1, 2 and 3). Moreover, a similar pattern is observed concerning the

censoring rate on the proposed estimators. As the censoring rate is higher, the variability of the

estimators increase due to more information lost about the survival time. In the last scenario

(scenario 4) where both models are misspecified, all the methods yield severely biased results.

3.3.3 Prediction of Optimal DTR

The previous simulation studies examine the measurement error effect on parameter estimation.

In this section, we investigate the measurement error effect on the accuracy of the predicted

optimal treatment rules. The simulation design follows (3.3.2) but with training and test data
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included, where the training data are used to fit models for parameter estimation, and the test

data are used to predict the optimal DTR across two stages.

The training data and test data are generated with sizes of 2000 and 5000 patients, respec-

tively. The training data of each stage are randomly split into validation data and main study

data with a validation ratio ρ ∈ {0.5, 0.7}. Five estimators ψ̂v, ψ̂c, ψ̂n, ψ̂k and ψ̂w are considered

and estimated from the training data. We use the test data to find the prediction accuracy of the

optimal DTR, which is measured by the proportion of patients whose optimal treatments are

correctly predicted at stage 2 and/or stage 1. For j = 1, 2, the degree of measurement error σ j

is specified as 0.2, 0.5 and 0.8, and the rate of independent censoring is considered to be 30%

and 70%. Simulations are repeated 500 times for each pair of ρ and (σ2, σ1), and the results are

displayed in Table 3.10. The prediction accuracy of optimal DTR under ρ = 0.7 are visualized

in Figure 3.13 and Figure 3.14.

The numerical results show that, in general, the prediction accuracy of optimal DTR is

adversely affected by the covariate measurement error. The naive estimator ψ̂n leads to a re-

markable degeneration in the prediction results in all the scenarios. The performance of ψ̂n

becomes worse as the measurement error gets larger. In contrast, the proposed estimators ψ̂k

and ψ̂w perform similarly in terms of the prediction accuracy of optimal DTR. Both proposed

estimators significantly improved the prediction accuracy, which is even higher than the pre-

diction accuracy obtained using the validation estimator ψ̂v, suggesting a favorable choice of

using the proposed methods to derive the sequential optimal treatment rules.

3.3.4 Prediction of the Expected Survival Time

In this section, we assess the prediction of the expected overall survival time under the optimal

DTR in contaminated data with covariates being subject to measurement error. The data gener-

ation mechanism follows the setting in (3.3.3) with one training data to estimate the parameters

and one test data to predict the expected overall survival time under the optimal DTR.

In the first step, five estimators (β̂v, ψ̂v), (β̂c, ψ̂c), (β̂n, ψ̂n), (β̂k, ψ̂k) and (β̂w, ψ̂w) are

estimated from the training data. We use the test data to obtain five predicted optimal DTR

based on the estimators and covariates. Then, for each scenario, the average value of the
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overall log-survival time is computed under the estimated optimal DTR. The validation ratio ρ

is set to be 0.5 and 0.7. The degree of measurement error σ j ∈ {0.2, 0.5, 0.8} is considered, and

the censoring rate is set as 30% and 70%. Simulation is run 500 times. Numerical results for

the mean optimal log-survival times, along with standard deviations, are summarized in Table

3.11.

The results in Table 3.11 show that the naive method tends to yield shorter optimal overall

log-survival times. Moreover, the mean of the predicted optimal log-survival times using the

naive method decreases as the measurement error increases. By comparison, the proposed kNN

and WLS methods perform similarly and enhance the predicted optimal log-survival times in

all the scenarios.

3.4 Application to MIMIC-III Data

We apply the proposed correction methods to a cohort of ICU patients with sepsis. The study

data are taken from the MIMIC-III database, which contains the observational admission data

collected at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016,0).

Feng et al. (2018) showed the significant association between the use of TTEC and improve-

ment in 28-day mortality. However, Cook et al. (2002) suggested that the use of TTEC in

all critically ill surgical patients was not cost-effective. Chen et al. (2021) revealed the het-

erogeneity in the treatment effects of TTEC and demonstrated the improvement in the 28-day

survival rate by customizing the use of TTEC for ICU patients. In this work, we are interested

in deriving the optimal treatment decision rules for the use of transthoracic echocardiography

that maximize the overall survival time of ICU patients with sepsis.

We follow the same criteria in Feng et al. (2018) to select the cohort data, except that the

information of patients whose second admission to ICU is also included. The outcome of

interest is the survival time of the patients with sepsis, which is calculated as the difference

between the death time and the first ICU admission time. The patients’ characteristics at first

and second admissions include age, gender, body mass index, simplified acute physiology score

(SAPS), sequential organ failure assessment score (SOFA), Elixhauser comorbidity score, heart

rate, lab test for cholesterol, positive end-expiratory pressure (PEEP) and the use of mechanical



61

ventilation (VENT) during the first 24 hours of ICU admission. We select VENT and PEEP as

the tailoring variables as they are significantly associated with TTEC (Cook et al., 2002).

At the first ICU admission (stage 1), a total number of 6294 patients were admitted to ICU,

and the treatment was initiated as a recommendation of TTEC (A1 = 1) or not (A1 = 0). About

10% of the patients experienced re-admission (stage 2) into ICU with continuing the use of

TTEC (A2 = 1) or dropping the use of TTEC (A2 = 0). In the final cohort data, the variable

PEEP was found largely underreported with about 35.7% and 37.2% missingness at stage 1

and stage 2, respectively. Removing such an amount of missing values in the analysis may lead

to biased estimation. However, the heart rate, which is known to be positively associated with

PEEP (Zhou et al., 2019), is completely observed. For j = 1, 2, we treat the cohort data with

the observed PEEP j as the validation data and estimate the unobserved PEEP j, which forms

the main study data, by using the heart rate as the auxiliary covariate.

In the analysis, we consider three blip estimators to construct the optimal treatment decision

rules: (1) validation estimator obtained using the patients with observed PEEP j only, (2) kNN

estimator obtained using the imputed PEEP j according to the formula (3.3), (3) WLS estimator

obtained using the imputed PEEP j according to the formula (3.6). The optimal k is selected

by training the validation data using 10-fold cross-validation with α ∈ {0.1, ..., 0.9} with a step

size of 0.5. Table 3.12 summarizes the estimation and associated inference results based on the

validation method and proposed kNN and WLS methods.

The results in Table 3.12 show that the proposed kNN and WLS methods perform similarly,

but the blip parameter estimates and the standard errors vary notably between the validation

method and the proposed methods, leading to different optimal treatment decision rules. The

variable VENT at stage 1 is statistically significant with respect to the treatment effect in all

the methods, reflecting its significant association with the use of TTEC and the overall survival

time of the patients. However, the significance of the coefficients for the treatments in two

stages is shown to differ between methods. These results emphasize the impact of omitting

the data with missing covariates is pronounced, which can result in different optimal treatment

decision rules.
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3.5 Conclusion

This chapter studies the effect of covariate measurement error on DWSurv with internal val-

idation data provided. Two correction methods, the kNN method and the WLS method, are

developed to adjust for the measurement error effect in DWSurv. The first kNN method di-

rectly uses the available surrogates to find the estimates for the unobserved true covariates in

each stage of DWSurv. This method adopts the cross-validation method, a data-driven ap-

proach, with which the optimal number of nearest neighbors is identified. The second WLS

method extends the use of the original WLS method to a multi-stage setting with continuous

surrogates provided. In each stage, by transforming the continuous surrogate, the estimates of

the unobserved covariates can be estimated using the WLS method. One advantage both meth-

ods share is that they do not require the specification of the relationship between true covariate

and surrogate, making the modeling more robust.

Simulation studies demonstrate the satisfactory performance of the proposed methods in

one-stage and multi-stage settings. On average, the kNN and WLS methods provide significant

bias reduction in parameter estimation and substantial restoration of the double robustness

property in the original DWSurv, even when the magnitude of measurement error is large.

Moreover, the proposed methods show their superior performance in a predictive setting with

higher prediction accuracy of optimal DTR and longer optimal survival times. However, the

proposed methods experience larger standard errors with a higher censoring rate, resulting from

losing information about the survival time. The proposed methods are applied to the MIMIC-

III data as an illustration to estimate optimal treatment decision rules. The data analysis shows

that the estimated optimal treatment decision rules can be altered if the unavailable covariate is

not addressed.
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Table 3.1: Summary of the optimal k from 10-fold cross-validation

% Censoring ρ σ Min Mean Median Max

30% 0.5 0.2 16 67 64 126

0.5 32 101 126 126

0.8 16 105 126 252

0.7 0.2 19 88 78 160

0.5 38 133 160 160

0.8 38 135 160 160

70% 0.5 0.2 16 67 64 126

0.5 32 101 126 126

0.8 32 105 126 252

0.7 0.2 38 92 78 160

0.5 38 133 160 160

0.8 38 139 160 329
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Table 3.2: One-stage estimates of blip parameters (ψ10, ψ11) with 30% independent censoring

ψ10 ψ11

ρ σ ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

ψ̂c -0.002 0.059 0.059 93.6 0.001 0.050 0.050 93.4

0.5 ψ̂v -0.002 0.084 0.084 96.0 0.002 0.071 0.071 94.6

0.2 ψ̂n -0.125 0.057 0.137 42.8 0.119 0.048 0.128 31.8

ψ̂k 0.002 0.061 0.061 94.4 -0.002 0.052 0.052 94.8

ψ̂w -0.002 0.062 0.062 95.0 0.002 0.053 0.053 95.0

0.5 ψ̂n -0.479 0.050 0.482 0.0 0.457 0.039 0.458 0.0

ψ̂k 0.007 0.067 0.068 94.2 -0.006 0.058 0.058 95.8

ψ̂w -0.004 0.067 0.068 95.2 0.005 0.058 0.058 96.2

0.8 ψ̂n -0.717 0.043 0.719 0.0 0.684 0.030 0.684 0.0

ψ̂k 0.005 0.072 0.072 94.8 -0.004 0.063 0.063 95.6

ψ̂w -0.004 0.072 0.073 95.0 0.005 0.063 0.063 96.0

0.7 ψ̂v -0.003 0.071 0.071 96.0 0.001 0.060 0.060 95.4

0.2 ψ̂n -0.125 0.057 0.137 43.4 0.117 0.048 0.126 32.8

ψ̂k 0.000 0.060 0.060 95.8 -0.002 0.051 0.051 95.4

ψ̂w -0.003 0.061 0.061 95.8 0.001 0.052 0.052 95.4

0.5 ψ̂n -0.479 0.050 0.482 0.0 0.455 0.039 0.457 0.0

ψ̂k 0.003 0.063 0.064 95.0 -0.004 0.054 0.055 94.8

ψ̂w -0.003 0.064 0.064 95.2 0.001 0.055 0.055 95.0

0.8 ψ̂n -0.718 0.043 0.719 0.0 0.683 0.030 0.683 0.0

ψ̂k 0.001 0.066 0.066 95.2 -0.002 0.057 0.057 94.8

ψ̂w -0.004 0.066 0.066 94.8 0.002 0.057 0.057 95.8
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Table 3.3: One-stage estimates of blip parameters (ψ10, ψ11) with 70% independent censoring

ψ10 ψ11

ρ σ ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

ψ̂c -0.002 0.091 0.091 96.2 0.003 0.077 0.077 95.8

0.5 ψ̂v 0.006 0.128 0.128 96.0 -0.004 0.108 0.108 97.0

0.2 ψ̂n -0.125 0.087 0.153 70.0 0.120 0.073 0.140 62.0

ψ̂k 0.002 0.093 0.093 95.8 -0.001 0.079 0.079 95.2

ψ̂w -0.004 0.094 0.094 95.6 0.005 0.080 0.081 95.2

0.5 ψ̂n -0.479 0.076 0.485 0.0 0.457 0.059 0.461 0.0

ψ̂k 0.006 0.103 0.103 95.6 -0.004 0.089 0.089 95.8

ψ̂w -0.004 0.103 0.103 95.4 0.005 0.089 0.089 94.6

0.8 ψ̂n -0.716 0.066 0.719 0.0 0.684 0.046 0.685 0.0

ψ̂k 0.006 0.111 0.111 95.6 -0.003 0.097 0.097 96.0

ψ̂w -0.004 0.111 0.111 95.2 0.006 0.097 0.097 95.6

0.7 ψ̂v 0.004 0.108 0.108 94.2 0.000 0.091 0.091 92.2

0.2 ψ̂n -0.121 0.087 0.149 70.6 0.116 0.073 0.137 63.8

ψ̂k 0.003 0.092 0.092 95.6 -0.003 0.078 0.078 94.8

ψ̂w 0.001 0.093 0.093 95.8 0.000 0.079 0.079 95.4

0.5 ψ̂n -0.477 0.076 0.483 0.0 0.456 0.059 0.460 0.0

ψ̂k 0.004 0.097 0.097 95.2 -0.004 0.083 0.083 93.8

ψ̂w -0.002 0.097 0.097 95.0 0.002 0.083 0.083 93.8

0.8 ψ̂n -0.716 0.066 0.719 0.0 0.685 0.046 0.686 0.0

ψ̂k 0.002 0.101 0.101 95.2 -0.002 0.087 0.087 92.2

ψ̂w -0.002 0.101 0.101 96.0 0.002 0.087 0.087 92.8
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Figure 3.1: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.2 and 30% independent
censoring

Figure 3.2: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.5 and 30% independent
censoring
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Figure 3.3: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.8 and 30% independent
censoring

Figure 3.4: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.2 and 70% independent
censoring
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Figure 3.5: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.5 and 70% independent
censoring

Figure 3.6: One-stage estimates of (βz, βx, ψ10, ψ11) with ρ = 0.7, σ = 0.8 and 70% independent
censoring
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Figure 3.7: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.2, 0.2)
and 30% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified

Figure 3.8: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.5, 0.5)
and 30% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified
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Figure 3.9: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.8, 0.8)
and 30% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified

Figure 3.10: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.2, 0.2)
and 70% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified
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Figure 3.11: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.5, 0.5)
and 70% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified

Figure 3.12: Two-stage estimates of (ψ20, ψ21, ψ10, ψ11) with ρ = 0.7, (σ2, σ1) = (0.8, 0.8)
and 70% independent censoring under four scenarios: (1) both models correctly specified,
(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
misspecified, but treatment-free model correctly specified, (4) both models misspecified
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3.6 Appendix

The proof of consistency in this section is based on a one-stage setting and it can be intuitively

extended to multiple stages. The conditions for the property of consistency in DWSurv include:

(C1) Assumptions (A1) - (A4) in Sections (1.1.1) and (1.1.4) hold.

(C2) The weights satisfy the balancing property (1.9).

(C3) E|Xi| < ∞, and the choice of k satisfies that limnv→∞ k = ∞ and limnv→∞ k/nv = 0.

The condition (C1) includes the assumptions that are necessary for the dynamic weighted

survival modeling. The condition (C2) contains the requirement for choosing the weights in

DWSurv, as described in Section (1.1.4). The condition (C3) assumes that the covariate is

bounded, and the conditions the choice of k satisfies for the consistency of the kNN estimates.

Proof of Theorem 3.2.1:

For η1 = 1, the original estimating equation is

U(β,ψ) =
∑n

i=1 δiŵi

 hiβ

aihiψ

 (
logTi − β

T hiβ − aiψ
T hiψ

)
= 0.

Let G(·) be defined as a function such that

G(Xi, Z i, Ai,Ti;β,ψ) =

 hiβ

aihiψ

 (
logTi − β

T hiβ − aiψ
T hiψ

)
.

Then, the estimating equation can be further written as

U(β,ψ) =
∑n

i=1 δiŵiG(Xi, Z i, Ai,Ti;β,ψ) = 0.

Then, the estimating equation using the proposed kNN method is given by

Û(β,ψ) =

n∑
i=1

δiŵi G(X̃k
i , Z i, Ai,Ti;β,ψ)

=
∑
i∈V

δiŵi G(Xi, Z i, Ai,Ti;β,ψ) +
∑
i∈V

δiŵi G(X̂k
i , Z i, Ai,Ti;β,ψ)

=

n∑
i=1

δiŵi G(X∗i , Z i, Ai,Ti;β,ψ) +
∑
i∈V

δiŵi

[
G(X̄k

i , Z i, Ai,Ti;β,ψ) −G(X̄i, Z i, Ai,Ti;β,ψ)
]

= U(β,ψ) +
∑
i∈V

δiŵi

[
G(X̂k

i , Z i, Ai,Ti;β,ψ) −G(X̄i, Z i, Ai,Ti;β,ψ)
]
.
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By Cauchy-Schwarz inequality, for l = 1, 2, ..., L in V ,

∥∥∥∥∥ ∑
i∈V

δiŵi

[
G(X̂k

i , Z i, Ai,Ti;β,ψ) −G(X̄i, Z i, Ai,Ti;β,ψ)
] ∥∥∥∥∥ =

∥∥∥∥∥ L∑
l=1

[
G(X̂k

l , Z l, Al,Tl;β,ψ) −G(X̄l, Z l, Al,Tl;β,ψ)
]∑

i∈V

δiŵi1(Wl is near Wi)
∥∥∥∥∥

≤

L∑
l=1

∥∥∥∥∥ G(X̂k
l , Z l, Al,Tl;β,ψ) −G(X̄l, Z l, Al,Tl;β,ψ)

∥∥∥∥∥ · ∥∥∥∥∥ ∑
i∈V

δiŵi1(Wl is near Wi)
∥∥∥∥∥.

According to Devroye et al. (1994), for E|Xi| < ∞ and the choice of k satisfies limnv→∞ k = ∞

and limnv→∞ k/nv = 0, we have
∥∥∥X̂k

i − X̄i

∥∥∥ P
−→ 0 as n → ∞. By continuous mapping theorem,

we obtain ∥∥∥G(X̂k
l , Z l, Al,Tl;β,ψ) −G(X̄l, Z l, Al,Tl;β,ψ)

∥∥∥ P
−→ 0 as n→ ∞.

For some finite M,
∥∥∥∥∥ ∑

i∈V δiŵi1(Wl is near Wi)
∥∥∥∥∥ < M < ∞. Therefore,

∥∥∥∥∥ L∑
l=1

[
G(X̂k

l , Z l, Al,Tl;β,ψ) −G(X̄l, Z l, Al,Tl;β,ψ)
]∑

i∈V

δiŵi1(Wl is near Wi)
∥∥∥∥∥ P
−→ 0 as n→ ∞.

Equivalently,

∥∥∥∥∥ ∑
i∈V

δiŵi

[
G(X̂k

i , Z i, Ai,Ti;β,ψ) −G(X̄i, Z i, Ai,Ti;β,ψ)
] ∥∥∥∥∥ P
−→ 0 as n→ ∞.

Thus,

Û(β,ψ) = U(β,ψ) + op(1).

Since (β̂k, ψ̂k) is the solution to Û(β,ψ) = 0 and (β̂, ψ̂) is the solution to U(β,ψ) = 0, the blip

estimator ψ̂k converges to ψ̂ in probability. It is easy to prove that ψ̂ consistently estimates ψ.

Thus, ψ̂k is a consistent estimator of ψ.



Chapter 4

Q-learning with Misclassified Binary

Outcomes

4.1 Introduction

In the previous chapters, we investigate the scenarios with continuous outcomes and survival

outcomes in DTR, in which the covariates are subject to measurement error. In this chapter, we

study the DTR with discrete-valued outcomes. In particular, a binary response in Q-learning

(Moodie et al., 2014) is considered. We target our study on the misclassification effect on Q-

learning in binary regression with internal validation data provided. The maximum likelihood

estimation is proposed as an effective correction method to accommodate the misclassification

effect in Q-learning.

The remainder of the chapter is organized as follows. In Section 4.2, the Q-learning model

in binary regression is presented, and the misclassification process for the binary outcome is

introduced. The correction method to account for the misclassification effect in Q-learning

is described in Section 4.2. In Section 4.3, we conduct simulation studies to evaluate the

performance of the proposed method in one-stage and multi-stage settings. Data analysis is

conducted in Section 4.4 for illustration using two real data examples, the NHEFS data and

smoking cessation data, followed by conclusions in the last section.
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4.2 Methodology

4.2.1 Notations and Model Framework

The model framework is focused on a two-stage setting in Q-learning with a data trajectory

{X1, A1, X2, A2, Y}, where X j is a covariate vector precisely measured and collected prior to a

treatment A j ∈ {1,−1} assigned at stage j (j = 1, 2). Y ∈ {1, 0} is a binary outcome measured at

the end of second stage.

In the applications, the outcome Y may be subject to misclassification, and let Y∗ be a

surrogate outcome, the actually observed version of Y. We focus on a situation where the study

has both internal validation data V and main study data V available. That is,

{Xi1, Ai1, Xi2, Ai2,Yi,Y∗i } if i ∈ V ,

{Xi1, Ai1, Xi2, Ai2,Y∗i } if i ∈ V ,

where the surrogate outcome Y∗ is observed for all individuals, but the true outcome Y is only

observed for individuals in the validation data V .

We consider the case of non-differential misclassification mechanism, where the probability

of Y∗ depends only on Y. Then, the misclassification probabilities (γ10, γ01) are defined as

γ10 = P(Y∗ = 1|Y = 0), γ01 = P(Y∗ = 0|Y = 1). (4.1)

In order for the misclassification probabilities (γ10, γ01) and regression parameters (β j, ψ j)

to be identifiable, one additional assumption is imposed to the Q-learning

(A5) Monotonicity condition: γ10 + γ01 < 1.

This assumption (A5) guarantees that (γ10, γ01, β j, ψ j) are identifiable if E[X jXT
j
] exists

and is non-singular for j = 1, 2 (Hausman et al., 1998). Otherwise, if γ10 + γ01 ≥ 1, this set of

misclassification probabilities are deemed problematic and Y∗ is regarded not to be produced

by chance (Neuhaus, 1999).

In Q-learning, when the outcome misclassification is ignored, and we proceed to fit a model

by simply replacing Y with Y∗ in (1.4), we obtain a naive model

Q2(H2, A2;βn
2
,ψn

2
) = E[Y∗|H2, A2] = P(Y∗ = 1|H2, A2) = expit

(
βnT

2
H20 + A2

(
ψnT

2
H21

))
. (4.2)
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It has been discussed in the literature that ignoring the misclassification in the response

can result in attenuated covariate effects and a change in the model structure (Neuhaus, 1999;

Carroll et al., 2006; Yi, 2017). Thus, using the naive model (4.2) in logistic regression yields

a naive estimator (β̂n
2
, ψ̂n

2
), which may be biased for (β2, ψ2). Furthermore, a biased naive esti-

mator (β̂n
2
, ψ̂n

2
) may affect the first stage parameter estimation and the determination of optimal

DTR. Such potential issues motivate us to search for an effective approach to accommodate the

outcome misclassification effect in Q-learning.

4.2.2 Maximum Likelihood Estimation Method

When the outcome is subject to misclassification, the original Q-learning in (1.1.3) needs mod-

ifications to produce consistent estimates of parameters. Carroll et al. (2006) and Yi (2017)

described the general use of the maximum likelihood estimation method in the logistic regres-

sion model to deal with the outcome misclassification. We borrow their ideas and extend the

MLE approach to Q-learning in the internal validation/main study data context.

The main idea of the MLE method in Q-learning is to derive likelihood functions for the

validation data and main study data and then combine them for a total likelihood for parameter

estimation. Given (H2, A2), we establish a relationship of the conditional probability of the

surrogate outcome with the conditional probability of the true outcome as

P(Y∗ = 1|H2, A2) = P(Y∗ = 1,Y = 1|H2, A2) + P(Y∗ = 1,Y = 0|H2, A2)

= P(Y∗ = 1|Y = 1,H2, A2)P(Y = 1|H2, A2) + P(Y∗ = 1|Y = 0,H2, A2)P(Y = 0|H2, A2)

= P(Y∗ = 1|Y = 1)P(Y = 1|H2, A2) + P(Y∗ = 1|Y = 0)P(Y = 0|H2, A2)

=
[
1 − P(Y∗ = 0|Y = 1)

]
P(Y = 1|H2, A2) + P(Y∗ = 1|Y = 0)

[
1 − P(Y = 1|H2, A2)

]
= (1 − γ01)P(Y = 1|H2, A2) + γ10

[
1 − P(Y = 1|H2, A2)

]
= γ10 + (1 − γ10 − γ01)P(Y = 1|H2, A2).

(4.3)

Based on (4.3), we first derive the likelihood function for patients in the main study data V ,

where only Y∗ is observed. Thus, for any ith patient (i ∈ V), the corresponding likelihood Li is
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given by

Li = P(Y∗i = y∗i |Hi2, Ai2) = P(Y∗i = y∗i ,Yi = 1|Hi2, Ai2) + P(Y∗i = y∗i ,Yi = 0|Hi2, Ai2)

= P(Y∗i = y∗i |Yi = 1,Hi2, Ai2)P(Yi = 1|Hi2, Ai2) + P(Y∗i = y∗i |Yi = 0,Hi2, Ai2)P(Yi = 0|Hi2, Ai2)

= P(Y∗i = y∗i |Yi = 1)P(Yi = 1|Hi2, Ai2) + P(Y∗i = y∗i |Yi = 0)P(Yi = 0|Hi2, Ai2).

Then, the likelihood Lv is the product of the likelihoods across nv patients from V

Lv =

nv∏
i=1

Li =

nv∏
i=1

{
P(Y∗i = y∗i |Yi = 1)P(Yi = 1|Hi2, Ai2) + P(Y∗i = y∗i |Yi = 0)P(Yi = 0|Hi2, Ai2)

}
=

nv∏
i=1

{
P(Y∗i = 1|Yi = 1)P(Yi = 1|Hi2, Ai2) + P(Y∗i = 1|Yi = 0)P(Yi = 0|Hi2, Ai2)

}
×{

P(Y∗i = 0|Yi = 1)P(Yi = 1|Hi2, Ai2) + P(Y∗i = 0|Yi = 0)P(Yi = 0|Hi2, Ai2)
}

=

nv∏
i=1

{
(1 − γ01)P(Yi = 1|Hi2, Ai2) + γ10P(Yi = 0|Hi2, Ai2)

}y∗i
×

{
γ01P(Yi = 1|Hi2, Ai2) + (1 − γ10)P(Yi = 0|Hi2, Ai2)

}1−y∗i

=

nv∏
i=1

{
(1 − γ01)P(Yi = 1|Hi2, Ai2) + γ10

[
1 − P(Yi = 1|Hi2, Ai2)

]}y∗i
×

{
γ01P(Yi = 1|Hi2, Ai2) + (1 − γ10)

[
1 − P(Yi = 1|Hi2, Ai2)

]}1−y∗i

=

nv∏
i=1

{
γ10 + (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

}y∗i
×

{
(1 − γ10) − (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

}1−y∗i
.

For any ith patient in the validation data (i ∈ V), the likelihood involves both Y∗i and Yi,

which is expressed as

Li = P(Y∗i = y∗i ,Yi = yi|Hi2, Ai2)

= P(Y∗i = y∗i |Yi = yi,Hi2, Ai2)P(Yi = yi|Hi2, Ai2)

= P(Y∗i = y∗i |Yi = yi)P(Yi = yi|Hi2, Ai2).
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Then, the likelihood Lv across nv patients in V follows

Lv =

nv∏
i=1

Li =

nv∏
i=1

P(Y∗i = y∗i |Yi = yi)P(Yi = yi|Hi2, Ai2)

=

nv∏
i=1

{[
P(Y∗i = 1|Yi = 1)P(Yi = 1|Hi2, Ai2)

]y∗i =1,yi=1
×

[
P(Y∗i = 1|Yi = 0)P(Yi = 0|Hi2, Ai2)

]y∗i =1,yi=0
×

[
P(Y∗i = 0|Yi = 1)P(Yi = 1|Hi2, Ai2)

]y∗i =0,yi=1
×

[
P(Y∗i = 0|Yi = 0)P(Yi = 0|Hi2, Ai2)

]y∗i =0,yi=0
}

=

nv∏
i=1

{[
(1 − γ01)P(Yi = 1|Hi2, Ai2)

]y∗i yi
×

[
γ10P(Yi = 0|Hi2, Ai2)

]y∗i (1−yi)
×

[
γ01P(Yi = 1|Hi2, Ai2)

](1−y∗i )yi
×

[
(1 − γ10)P(Yi = 0|Hi2, Ai2)

](1−y∗i )(1−yi)
}

=

nv∏
i=1

{[
(1 − γ01)P(Yi = 1|Hi2, Ai2)

]y∗i yi
×

[
γ10

(
1 − P(Yi = 1|Hi2, Ai2)

)]y∗i (1−yi)
×

[
γ01P(Yi = 1|Hi2, Ai2)

](1−y∗i )yi
×

[
(1 − γ10)

(
1 − P(Yi = 1|Hi2, Ai2)

)](1−y∗i )(1−yi)
}
.

Thus, the total likelihood function L across all the patients is given by

L = Lv × Lv =

{ nv∏
i=1

{[
(1 − γ01)P(Yi = 1|Hi2, Ai2)

]y∗i yi
×

[
γ10

(
1 − P(Yi = 1|Hi2, Ai2)

)]y∗i (1−yi)
×

[
γ01P(Yi = 1|Hi2, Ai2)

](1−y∗i )yi
×

[
(1 − γ10)

(
1 − P(Yi = 1|Hi2, Ai2)

)](1−y∗i )(1−yi)
}}
×{ nv∏

i=1

{
γ10 + (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

}y∗i
×

{
(1 − γ10) − (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

}1−y∗i
}
.

(4.4)

From (4.4), we can obtain a total log-likelihood function that is to be maximized

logL =

nv∑
i=1

{
y∗i yilog

[
(1 − γ01)P(Yi = 1|Hi2, Ai2)

]
+ y∗i (1 − yi)log

[
γ10

(
1 − P(Yi = 1|Hi2, Ai2)

)]
+

(1 − y∗i )yilog
[
γ01P(Yi = 1|Hi2, Ai2)

]
+ (1 − y∗i )(1 − yi)log

[
(1 − γ10)

(
1 − P(Yi = 1|Hi2, Ai2)

)]}
+

nv∑
i=1

{
y∗i log

[
γ10 + (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

]
+ (1 − y∗i )log

[
(1 − γ10) − (1 − γ10 − γ01)P(Yi = 1|Hi2, Ai2)

]}
.

(4.5)
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Let θ = (β2, ψ2, γ10, γ01). Maximizing logL(θ), the total log-likelihood function (4.5) with

respect to θ, results in a MLE estimator θ̂mle. It is equivalent to solving the score equation

n∑
i=1

S i(θ) = 0,

where Si(θ) = ∂
∂θ

logLi(θ). Numerical methods such as Newton-Raphson method can be used

to find the MLE estimator θ̂mle.

Theorem 4.2.1 Under the conditions (C1) - (C5) in the Appendix, Section 4.6, the MLE esti-

mator θ̂mle is a consistent estimator of θ. That is,

θ̂mle p
→ θ as n→ ∞.

As a result, the stage 2 estimator (β̂mle
2

, ψ̂mle
2

) is consistent. Then, with the consistent estimation

of the pseudo-outcome, the stage 1 estimator (β̂mle
1

, ψ̂mle
1

) is consistent by using the ordinary

least squares. Thus, the MLE method yields consistent estimates of blip parameter ψ = (ψ2,ψ1)

in Q-learning. The details are provided in the Appendix in Section 4.6.

Modified Q-learning Algorithm in Binary Regression:

The following two-stage Q-learning algorithm details the modified estimation procedures:

1. Parameterize the stage 2 Q-function

Q2(H2, A2;βmle
2
,ψmle

2
) = expit

(
βmleT

2
H20 + A2(ψmleT

2
H21)

)
.

2. Apply maximum likelihood estimation method to obtain the stage 2 estimator (β̂mle
2

,

ψ̂mle
2

) by maximizing the log-likelihood function (4.5).

3. Derive the stage 2 optimal treatment as âopt
2 = arg max

a2

Q2(h2, a2; β̂mle
2
, ψ̂mle

2
).

4. Construct the pseudo-outcome for estimation at stage 1

Ỹ1 = max
a2

logitQ2(H2, a2; β̂mle
2
, ψ̂mle

2
).

5. Apply OLS regression to obtain the stage 1 estimator (β̂mle
1

, ψ̂mle
1

)

(β̂mle
1
, ψ̂mle

1
) = arg min

(βmle
1

,ψmle
1

)

1
n

∑n
i=1

(
Ỹi1 − Q1(Hi1, Ai1;βmle

1
,ψmle

1
)
)2

.
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6. Derive the stage 1 optimal treatment as âopt
1 = arg max

a1

Q1(h1, a1; β̂mle
1
, ψ̂mle

1
).

This modified Q-learning algorithm distinguishes itself from the original Q-learning algo-

rithm in Section (1.1.3) in Step 2, which replaces the application of logistic regression with the

maximum likelihood estimation method.

4.3 Simulation Studies

4.3.1 One-Stage Estimation

We begin with the one-stage estimation in Q-learning. Let X be a continuous covariate and

Z be a binary covariate, where X ∼ N(1, 1) and Z ∈ {1,−1} is generated with probability of

0.5. The treatment A ∈ {1,−1} that depends on X is drawn from a Bernoulli distribution with

probability P(A = 1) = expit(1 - X), where expit(x) = 1/(1 + exp(-x)). The true outcome Y is

drawn from a Bernoulli distribution with probability expit
(
1 + βzZ + βxX + A(ψ10 + ψ11X)

)
,

where (β, ψ) = (βz, βx, ψ10, ψ11) = (0.5, -1, 0.5, -0.5). Misclassified outcome Y∗ is simulated

from a Bernoulli distribution based on the misclassification probabilities (γ10, γ01).

The generated dataset is randomly divided into validation data and main study data with a

validation ratio ρ, where the validation data contain 100×ρ% of the observations. We consider

three estimators to evaluate the performance of the proposed MLE method: (1) validation

estimator (β̂v, ψ̂v) obtained using the validation data only, (2) naive estimator (β̂n, ψ̂n) obtained

using the surrogate outcome Y∗, (3) MLE estimator (β̂mle, ψ̂mle) obtained from the modified

algorithm (4.2.2).

We compare results under two sample sizes of n = 500 and n = 2000. The validation ratio

ρ is specified as 0.3 and 0.5. The set of (γ10, γ01) is considered to be (0.1, 0.1), (0.2, 0.2)

and (0.3, 0.3), which can be estimated from the validation data. Simulations are repeated 500

times for each pair of ρ and (γ10, γ01). The bias, empirical standard error (SE), and root mean

square error (RMSE) of ψ̂ are calculated and assessed. The percentile bootstrap confidence

intervals are used with 200 bootstrap samples to derive the coverage probability (CP%) of 95%

confidence intervals. Numerical results for n = 500 and n = 2000 under various ρ and (γ10, γ01)

are provided in Table 4.1 and Table 4.2, respectively. The parameter estimates (β̂, ψ̂) under ρ
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= 0.5 are visualized in Figure 4.1 to Figure 4.6.

Table 4.1 and Table 4.2 show that ignoring the outcome misclassification, the naive esti-

mator ψ̂n produces severely biased results. The results are more biased as the misclassification

rate increases. On the contrary, the MLE estimator yields small biases and coverage probabil-

ities close to the nominal level of 95%. Moreover, the proposed MLE method is numerically

stable and robust against various ρ and (γ10, γ01). The sample size also plays an important role

in the performance of methods. As ρ or n increases, the biases and variability of the estimators

are reduced.

4.3.2 Two-Stage Estimation

In this section, we extend the study to evaluate the performance of the proposed methods with

two decision points. For simplicity, we follow the same simulation design in Moodie et al.

(2014), where the confounding variables are present.

A dataset with 2000 patients forms the data trajectory (X1,Z1, A1, X2,Z2, A2,Y). For j = 1,

2, X j is a continuous confounding covariate at stage j, where X1 ∼ N(0, 1) and X2 ∼ N(η0 +

η1X1, 1) for η0 = −0.5, η1 = 0.5. The treatment A j ∈ {1,−1} is assigned depending on X j with

probability P(A j = 1) = expit(ζ0 + ζ1X j) for ζ0 = −0.8 and ζ1 = 1.25. Two binary covariates

Z j ∈ {1,−1} are generated as P(Z1 = 1) = 0.5 and P(Z2 = 1|Z1, A1) = expit
(
δ1Z1 + δ2A1

)
. Given

the data trajectory, the history at each stage is H1 = (X1,Z1) and H2 = (X1,Z1, A1, X2,Z2). The

outcome model is given by

E[Y |H2, A2;γ] = expit(γ0 + γ1X1 + γ2Z1 + γ3A1 + γ4Z1A1 + γ5X2 + γ6A2 + γ7Z2A2 + γ8A1A2).

In this example, we consider a complete regular scenario that sets γ = (0, 1, 0, -0.5, 0,

1, 0.25, 0.5, 0.5) and (δ1, δ2) = (0.1, 0.1). While the stage 2 blip parameter can be easily

identified as ψ2 = (ψ6, ψ7, ψ8), the true values for the stage 1 blip parameter ψ1 = (ψ10, ψ11)

need to be calculated based on the data-generating parameters. Moodie et al. (2014) derived a

formula to quantify the true values for ψ1 in this setting, which are given by ψ10 = -0.3688, ψ11

= 0.0187. Once true outcome model is specified, the observed surrogate Y∗ is generated from

a Bernoulli distribution based on the misclassification model (4.1), where the misclassification

probabilities (γ10, γ01) are set to be (0.1, 0.1), (0.2, 0.2) and (0.3, 0.3). Once the dataset is
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generated, the validation data are randomly separated with a ratio ρ ∈ {0.3, 0.5}. We continue

with the three estimators described in Section (4.3.1). A total of 500 simulations are run for

each pair of ρ and (γ10, γ01). Numerical results for the bias, SE, RMSE and CP% of ψ̂ = (ψ̂2,

ψ̂1) using the percentile bootstrap with 200 bootstrap samples are reported in Table 4.3. The

parameter estimates ψ̂ under ρ = 0.5 are presented in Figure 4.7 to Figure 4.9.

Similar to the one-stage setting, Table 4.3 shows that the naive estimator ψ̂n leads to broadly

biased results. However, the proposed estimator ψ̂mle outperforms the naive estimator with

small biases in all the scenarios, and the coverage probabilities of ψ̂mle are close to 95%. It

may result from the full log-likelihood function the MLE method relies on for estimation,

which accurately describes the relationship with the true model. Moreover, the results show

that for the set of first stage estimators, ψ̂10 is generally more vulnerable to bias compared with

ψ̂11, which agrees with the findings in Chakraborty et al. (2010), Moodie et al. (2014) and Song

et al. (2015).

4.3.3 Prediction of Optimal DTR

In this section, we explore the misclassification effect in a linear Q-learning response model

from a prediction perspective. We are particularly interested in assessing the prediction accu-

racy of optimal DTR in a two-stage setting.

The simulation design follows (4.3.2), but the simulated data consist of training data with

2000 patients and test data with 5000 patients. The training data are randomly split into valida-

tion data and main study data with ρ ∈ {0.3, 0.5}, by which the misclassification probabilities

and the regression parameters are estimated. To evaluate the performance of the proposed cor-

rection method in a predictive setting, we continue the previous three estimators (β̂v, ψ̂v), (β̂n,

ψ̂n), (β̂mle, ψ̂mle). The test data are used to compute the prediction accuracy of optimal DTR,

which is measured by the proportion of patients whose optimal treatments are correctly pre-

dicted at stage 2 and/or stage 1. Simulations are run 500 times. Table 4.4, along with Figure

4.10, summarizes the simulation results under a variety of ρ and (γ10, γ01).

Table 4.4 shows that the prediction accuracy of optimal DTR is adversely affected by mis-

classification. The naive estimator leads to a pronounced degeneration in the accuracy of pre-
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dicted optimal DTR, and its performance is worsened as the misclassification rate increases.

In comparison, the proposed MLE estimator considerably improves the prediction accuracy,

especially when the optimal treatments in both stages are evaluated. The performance of the

MLE estimator is also robust against the various magnitudes of ρ and (γ10, γ01). It substantially

restores the precision to a level that is even superior to the validation estimator, suggesting a

favorable choice to derive the sequential optimal treatment rules.

4.3.4 Prediction of the Outcome

In this study, we examine the performance of the proposed correction method in terms of the

predicted error rates, sensitivity, and specificity of the outcome under the optimal DTR.

The predictive simulation setting follows (4.3.3) with three estimators (β̂v, ψ̂v), (β̂n, ψ̂n),

(β̂mle, ψ̂mle) obtained from the training data. We use the test data to estimate the correspond-

ing optimal DTR using each estimator and then calculate the (1) predicted error rates of the

outcome, which is measured by the proportion of patients whose outcomes are incorrectly

predicted under the estimated optimal DTR, (2) predicted sensitivity of the outcome, which is

measured by the proportion of patients whose positive outcomes (Y = 1) are correctly predicted

under the estimated optimal DTR, (3) predicted specificity of the outcome, which is measured

by the proportion of patients whose negative outcomes (Y = 0) are correctly predicted under

the estimated optimal DTR. For the training data, the validation ratio ρ is specified as 0.3 and

0.5, and the misclassification probabilities (γ10, γ01) are set to be (0.1, 0.1), (0.2, 0.2) and (0.3,

0.3). Simulations are repeated 500 times. Results are summarized in Table 4.5 and displayed

in Figure 4.11 and Figure 4.12.

Table 4.5 shows that the naive method leads to the worst results in terms of the predicted

error rates, sensitivity, and specificity of the outcome in most scenarios. Moreover, compared

with the specificity, sensitivity is generally more sensitive to outcome misclassification. In

contrast, the proposed MLE method produces the best performance with the lowest error rates

and highest sensitivity and specificity results in all the scenarios. As ρ increases, the predicted

error rates of the proposed method are lower, and the predicted sensitivity and specificity of the

proposed method are higher.
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4.4 Data Analysis

4.4.1 Application to NHEFS Data

In this example, we apply the proposed methods to the NHEFS data, which was collected by

the National Center for Health Statistics and the National Institute on Aging in collaboration

with other agencies of the Public Health Service. A detailed description of the NHEFS is

available at https://wwwn.cdc.gov/nchs/nhanes/nhefs/. The NHEFS study aimed to

investigate the relationships between clinical, nutritional, and behavioral factors assessed in the

first National Health and Nutrition Examination Survey NHANES I and subsequent morbidity,

mortality, and operational factors with hospital utilization. In this work, we are interested in

estimating an optimal treatment decision rule using the cohort NHEFS dataset in Hernán and

Robins (2020). The dataset consists of 1566 cigarette smokers aged 25-74 years, with a number

of baseline variables collected from 1971 to 1975. They were followed up through personal

interviews in 1982 and reported quitting smoking status, which is the outcome of interest in the

analysis. We consider a binary indicator for regular exercise as the treatment variable, with A

= 1 indicating those who had little or no exercise and A = -1 otherwise. The baseline variables

to be included are age, gender, race, body mass index, systolic blood pressure (SBP), physical

activity status, cholesterol, weight, diabetes, the number of years of smoking, and the number

of cigarettes smoked each day (SmokeIntensity). Since the measured SBP is right-skewed

in the dataset, we take the logarithmic transformation of SBP to be log(SBP-50) following

Carroll et al. (2006). Diabetes and SmokeIntensity are shown to be significantly associated

with the treatment variable from the treatment model. We regard these two variables as the

tailoring variables to derive the optimal treatment decision rule. All the continuous variables

are standardized in the analysis.

As described, the smoking status is reported by the patients and thus subject to misclassifi-

cation. In the dataset, there is no information available to infer the degree of misclassification

probabilities. Therefore, we specify a series of values for the misclassification probabilities

and conduct sensitivity analyses to evaluate how the misclassification rate affects the estimated

optimal treatment decision rule. In the work of Magder and Hughes (1997), it is discussed that

the smokers who have really quit smoking are unlikely to report they are still smoking, while

https://wwwn.cdc.gov/nchs/nhanes/nhefs/
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those who have not are very likely to misreport their smoking cessation status. Magder and

Hughes (1997) specified γ10 = 10%, and Lee et al. (2013) provided an estimate for the mis-

classification rate to be γ10 = 7.5% in another smoking cessation study. Thus, we consider γ01

= 0 and γ10 ∈ (5%, 7.5%, 10%, 12.5%) in our analysis. Table 4.6 summarizes the associated

inference results, including the estimates, bootstrap standard error (SE), and 95% confidence

intervals (CI) for the blip parameters obtained from the naive method and the proposed method.

In Table 4.6, the estimated optimal treatment decision rule from the naive method is âopt =

1 if -0.148 + 0.130Diabetes + 0.075SmokeIntensity > 0, and âopt = -1 otherwise. In general,

the proposed MLE method produces slightly larger estimates than the naive method, leading

to different optimal treatment decision rules. As γ10 increases, the blip parameter estimates

and estimated SEs obtained from the proposed method become bigger. Moreover, the diabetes

variable is shown to have a significant treatment effect using the naive method, but the MLE

method displays different statistical significance for diabetes in all the scenarios. Therefore,

it reveals that the misclassification effect is not negligible in an error-prone setting, which can

alter the inference results, including the statistical significance, when the misclassification is

taken into account in the analysis.

4.4.2 Application to Smoking Cessation Data

In the second example, we explore the misclassification effect by analyzing the smoking ces-

sation data, which were collected at St. Joseph’s Hospital (Lee et al., 2013). The smoking

cessation study is a randomized controlled trial and aims to examine the effectiveness of a pe-

rioperative smoking cessation intervention with one decision point involved. We are interested

in using the smoking cessation data to estimate an optimal treatment decision rule. In this

trial, 168 patients were recruited and randomly assigned with the same probability to one of

the two treatment groups, the intervention group (A = 1) or the control group (A = 0). The

patients were followed up at the time of the 30-day postoperative phone call and self-reported

their smoking cessation status, which is the outcome of interest with Y = 1 indicating smoking

cessation.

In the study, the smoking cessation status reported by the smokers was examined with the
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exhaled carbon monoxide (CO) levels (ppm), where an exhaled CO of ≤ 10 ppm confirmed

smoking quitting (Lee et al., 2013). It has been found that out of 146 patients with exhaled

CO greater than 10ppm, 11 patients misreported their smoking cessation status. We assume

a non-differential misclassification mechanism in this analysis. Then, the misclassification

probability can be estimated as γ10 = 11/146 = 7.5%. For those who have already quit smoking,

Magder and Hughes (1997) pointed out that they were highly likely to report that they have

stopped smoking. Then, we assume that γ01 = 0. It should be noted that these (γ10, γ01) are just

the estimates of misclassification probabilities, while the true misclassification probabilities are

unknown. Thus, we specify a series of values for γ10 ∈ (2.5%, 5%, 7.5%, 8.5%) and conduct

sensitivity analyses to evaluate how the misclassification rate affects the optimal treatment

decision rule estimation. The baseline variables in the analysis include age, gender, body mass

index, diabetes status, hypertension, chronic obstructive pulmonary disease, cigarettes smoked

per day, and the number of years of smoking. The hypertension variable was found statistically

significant with respect to the treatment (Shu and Yi, 2019a). We consider hypertension (HTN)

and the number of years of smoking (YrsSmoke) as the tailoring variables to derive the optimal

treatment decision rule. All the continuous variables are standardized in the analysis. Table 4.7

summarizes the inference results obtained from the naive method and the proposed method.

The analysis results suggest that the misclassification effect is conspicuous. The naive

method leads to an optimal decision rule, which is determined by the values of (1.363 -

0.696HTN - 0.189YrsSmoke). In comparison, the proposed MLE method yields notably larger

parameter estimates and estimated standard errors than the naive method. As γ10 increases, we

observe that the MLE estimator is sensitive to the change in the misclassification rate. One

possible reason might be the limited size of the dataset. However, these results still reveal

a non-negligible impact of outcome misclassification on the optimal treatment decision rule

estimation for smoking cessation.

4.5 Conclusion

In this chapter, we discuss the outcome misclassification effect in Q-learning with binary out-

comes in the context of internal validation/main study data design. The MLE method is pro-
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posed to adjust for the misclassification effect in Q-learning. The correction method is estab-

lished based on a relationship between two conditional probabilities of the true outcome and

surrogate outcome. The likelihoods for both the validation data and main study data are derived

and combined to create a total likelihood for parameter estimation in Q-learning. The proposed

MLE method itself is straightforward, and under certain conditions, it yields consistent esti-

mates of blip parameters in Q-learning.

We compare the proposed correction method with the naive method in both simulation

studies and real data analysis. Ignoring the outcome misclassification leads to severely bi-

ased results in parameter estimation. By making use of the observed surrogate outcome and

validation data, the proposed method provides satisfactory performance in simulation studies.

We show that employing the proposed method in Q-learning considerably reduces the bias,

improves the prediction accuracy of optimal DTR, predicted sensitivity and specificity of the

outcome, and reduces the predicted error rates of the outcome. Moreover, the MLE method

is numerically stable and robust against various magnitudes of validation ratio and misclas-

sification rates. The proposed method is also applied to real data examples to estimate the

optimal treatment decision rule. The data analysis suggests that the misclassification effect is

not negligible in terms of parameter estimation and associated statistical significance.
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Table 4.1: One-stage estimates of blip parameters (ψ10, ψ11) (n = 500)

ψ10 ψ11

ρ (γ10, γ01) ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

0.3 ψ̂v -0.005 0.722 0.722 93.6 -0.014 0.607 0.607 94.2

(0.1, 0.1) ψ̂n -0.175 0.161 0.238 85.2 0.175 0.124 0.214 77.2

ψ̂mle 0.016 0.224 0.225 95.4 -0.016 0.186 0.187 93.0

(0.2, 0.2) ψ̂n -0.285 0.152 0.323 65.8 0.288 0.114 0.310 46.4

ψ̂mle 0.007 0.267 0.267 94.8 -0.014 0.222 0.222 93.2

(0.3, 0.3) ψ̂n -0.362 0.148 0.391 48.4 0.366 0.108 0.382 24.0

ψ̂mle 0.009 0.307 0.307 92.6 -0.020 0.249 0.250 94.6

0.5 ψ̂v 0.002 0.262 0.262 95.2 -0.014 0.210 0.210 94.4

(0.1, 0.1) ψ̂n -0.177 0.161 0.239 89.4 0.171 0.124 0.211 87.6

ψ̂mle -0.003 0.204 0.204 94.2 -0.008 0.165 0.165 94.2

(0.2, 0.2) ψ̂n -0.285 0.152 0.323 75.8 0.288 0.114 0.310 63.8

ψ̂mle 0.001 0.226 0.226 95.0 -0.010 0.184 0.184 94.2

(0.3, 0.3) ψ̂n -0.367 0.147 0.395 58.4 0.370 0.107 0.385 37.8

ψ̂mle 0.005 0.245 0.245 94.8 -0.014 0.198 0.198 95.0
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Table 4.2: One-stage estimates of blip parameters (ψ10, ψ11) (n = 2000)

ψ10 ψ11

ρ (γ10, γ01) ψ̂ Bias SE RMSE CP% Bias SE RMSE CP%

0.3 ψ̂v 0.008 0.158 0.158 94.2 -0.007 0.126 0.126 95.0

(0.1, 0.1) ψ̂n -0.170 0.078 0.187 55.6 0.171 0.061 0.182 34.8

ψ̂mle 0.008 0.105 0.105 93.0 -0.008 0.086 0.086 93.2

(0.2, 0.2) ψ̂n -0.287 0.074 0.296 11.0 0.288 0.055 0.293 1.0

ψ̂mle 0.004 0.123 0.123 93.8 -0.007 0.100 0.100 93.4

(0.3, 0.3) ψ̂n -0.374 0.072 0.381 1.6 0.376 0.052 0.380 0.0

ψ̂mle 0.000 0.139 0.139 92.6 -0.005 0.113 0.113 93.8

0.5 ψ̂v 0.001 0.121 0.121 94.6 -0.005 0.096 0.096 94.6

(0.1, 0.1) ψ̂n -0.176 0.078 0.193 63.8 0.177 0.060 0.187 47.8

ψ̂mle 0.004 0.097 0.097 93.4 -0.005 0.078 0.078 95.0

(0.2, 0.2) ψ̂n -0.287 0.074 0.296 24.2 0.288 0.055 0.293 5.0

ψ̂mle 0.002 0.106 0.106 94.2 -0.005 0.085 0.085 93.6

(0.3, 0.3) ψ̂n -0.369 0.072 0.376 4.8 0.374 0.052 0.378 0.4

ψ̂mle 0.002 0.114 0.114 95.8 -0.002 0.091 0.091 96.0
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Table 4.4: Prediction accuracy of optimal DTR (%)

Stage 2 Stage 1 Stage 2 & Stage 1

ρ (γ10, γ01) v n mle v n mle v n mle

0.3 (0.1, 0.1) 91.7 97.2 98.5 92.7 97.7 98.8 88.1 96.1 97.9

(0.2, 0.2) 92.0 91.7 96.0 92.9 91.4 96.4 88.5 87.5 94.3

(0.3, 0.3) 92.0 86.3 95.4 93.4 85.1 95.9 88.8 78.8 93.3

0.5 (0.1, 0.1) 95.6 97.3 98.9 97.1 98.1 99.5 94.2 96.3 98.6

(0.2, 0.2) 96.3 91.2 98.0 97.3 92.7 98.8 94.9 87.5 97.4

(0.3, 0.3) 96.4 84.8 97.1 97.3 86.5 98.0 95.1 77.9 96.2

v: validation estimator, n: naive estimator, mle: MLE estimator

Table 4.5: Predicted error rates, sensitivity, and specificity of the outcome (%)

Error Rates Sensitivity Specificity

ρ (γ10, γ01) v n mle v n mle v n mle

0.3 (0.1, 0.1) 5.5 4.0 3.4 92.7 94.5 95.6 95.7 97.1 97.2

(0.2, 0.2) 5.4 5.9 4.2 92.4 91.7 94.5 95.9 95.7 96.7

(0.3, 0.3) 5.4 8.5 4.5 92.6 86.6 94.0 95.9 94.6 96.4

0.5 (0.1, 0.1) 4.0 3.8 3.0 95.0 94.9 96.1 96.7 97.0 97.5

(0.2, 0.2) 3.9 5.9 3.4 95.0 92.2 95.8 96.9 95.3 97.1

(0.3, 0.3) 4.0 8.9 3.7 94.9 86.1 95.2 96.8 94.3 97.0

v: validation estimator, n: naive estimator, mle: MLE estimator
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T
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Figure 4.1: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 500 with ρ = 0.5 and (γ10, γ01) =

(0.1, 0.1)

Figure 4.2: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 500 with ρ = 0.5 and (γ10, γ01) =

(0.2, 0.2)
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Figure 4.3: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 500 with ρ = 0.5 and (γ10, γ01) =

(0.3, 0.3)

Figure 4.4: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 2000 with ρ = 0.5 and (γ10, γ01) =

(0.1, 0.1)
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Figure 4.5: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 2000 with ρ = 0.5 and (γ10, γ01) =

(0.2, 0.2)

Figure 4.6: One-stage estimates of (βz, βx, ψ10, ψ11) for n = 2000 with ρ = 0.5 and (γ10, γ01) =

(0.3, 0.3)
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4.6 Appendix

The proof of consistency in this section is based on a one-stage setting, and it can be intuitively

extended to multiple stages.

Let θ = (β,ψ, γ10, γ01) and θ̂mle be the MLE estimator. The conditions for the property of

consistency in Q-learning include:

(C1) Let Ω be the parameter space with finite dimension for θ. Ω is closed and compact.

The true parameter value of θ is interior to Ω.

(C2) The probability distributions with any two different values of θ are distinct.

(C3) For an open subset ω of Ω that contains the true parameter value of θ, the first three

derivatives of the log-likelihood l(θ) exist for θ ∈ ω almost surely. There exists a function M

such that the n−1 times the absolute value of the the third derivative is bounded by M for θ ∈ ω

and E[M] < ∞.

(C4) The information matrix I(θ) is finite and positive definite for θ ∈ ω.

(C5) Assumptions (A1), (A2), (A5) in Sections (1.1.1) and (4.2.1) hold.

The conditions contain the regularity conditions (C1) - (C4) (Cox and Hinkley, 1979, p.281)

and the assumptions that are necessary for Q-learning. The condition (C5) guarantees the iden-

tifiability of the parameter θ in Q-learning to estimate a dynamic treatment regime. According

to Pepe (1992), under the conditions (C1) - (C5), the MLE estimator θ̂mle that solves the equa-

tion ∂
∂θ

logL(θ) = 0 satisifies

θ̂mle p
→ θ as n→ ∞,

where L(θ) is the likelihood stated in (4.4). Thus, ψ̂mle is a consistent estimator of blip param-

eter ψ.



Chapter 5

Summary and Future Work

The work presented in this thesis explores several statistical methods to address the issues in dy-

namic treatment regimes caused by covariate measurement error or outcome misclassification.

Several regression-based methods in DTR with different types of outcomes are considered, and

the effect of measurement error and misclassification on those methods is explored. Both sim-

ulation studies and data applications demonstrate the substantial impact of measurement error

or misclassification on the analysis without errors corrected and the usefulness of the proposed

correction methods to adjust for the effects.

Chapter 2 is motivated by the STAR*D study, in which the patients with a major depres-

sive disorder were randomized at each level of study to one of the treatment options. The

main objective of this study was to compare the effectiveness of different dynamic treatment

regimes across multiple levels based on the QIDS score, which both clinicians and patients

reported. In practice, the QIDS scores reported by patients and clinicians may be different

from the true underlying QIDS score and, therefore, subject to measurement error. Q-learning

is a widely used regression-based method to estimate optimal DTRs. This chapter explores

the application of regression calibration in Q-learning to accommodate the effect of covariate

measurement error with repeated measurements. Using the observed replicates, the RC esti-

mates are created for the unobserved true covariates. Then, the patient’s history is updated with

the RC estimates, and a modified Q-learning algorithm is proposed to estimate the parameters

and optimal DTR. Simulation studies demonstrate the significant improvements using the RC

method in Q-learning in terms of bias reduction, the prediction accuracy of the optimal DTR,
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and predicted optimal value function compared with the naive method in one-stage and multi-

stage settings. Lastly, the proposed method is applied to the STAR*D data and compares its

results with the naive method. The analysis results show that the statistical significance of the

tailoring variable differs if the correction is made using the RC method, which suggests that

the measurement error issue should not be ignored in an error-prone setting.

This work studies the measurement error effect with the classical additive model. It is of

interest to explore other measurement error models such as Berkson and multiplicative models

in Q-learning. Moreover, as regression calibration is known to perform well in linear models,

other correction methods are worth exploring for highly nonlinear models.

In Chapter 3, the covariate measurement error in dynamic weighted survival modeling is

studied. This DWSurv approach is practical but developed under the assumption that the co-

variates are free from mismeasurement. If this assumption is violated, it remains unclear what

the impact would be on the estimation of parameters and optimal DTR. Therefore, in this chap-

ter, we investigate the covariate measurement error effect on DWSurv for validation data and

develop two correction methods, the k-nearest neighbors method and the weighted least squares

method, to eliminate the effect. The proposed correction methods estimate the missing values

of the true covariates using the mismeasured variables that are completely observable in the

data. Both methods are easy to understand and fast to implement. The theoretical property of

the kNN estimator is also established. Both simulation studies and data analysis showcase the

competency of proposed methods in one-stage and multi-stage settings. The results show that

using the proposed kNN and WLS methods leads to significant improvements in bias-reduction

and restoration of the double robustness property in DWSurv. In the predictive scenarios, the

proposed methods enhance the prediction accuracy of optimal DTR and the predicted optimal

overall survival times. Lastly, the proposed methods are applied to the MIMIC-III data to es-

timate the optimal treatment decision rules. The analysis results reveal the significant impacts

of discarding some data with missing covariates in the estimated optimal DTR.

There are a few possible directions for future work. First of all, the proposed kNN method

uses Euclidean distance as the distance measure in this project. It is of interest to consider other

distance functions, such as Manhattan, Minkowsky, Chebychev, Chi-square distances, etc., for

the proposed method. Secondly, as k is defined in relation to the size of the validation data,
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one may also explore different choices of k to improve the performance of the kNN method.

Lastly, besides independent censoring, other types of censoring can be considered in the study,

such as the censoring that depends on covariates.

In Chapter 4, Q-learning with binary outcomes is explored, with the outcome being subject

to misclassification in the context of internal validation/main study data design. When the out-

come misclassification is ignored, the estimation in Q-learning is severely biased. Therefore,

the maximum likelihood estimation method is proposed to accommodate the misclassification

effect in Q-learning. The proposed MLE method is established based on the relationship be-

tween two conditional probabilities of the true outcome and the outcome observed with error.

Simulation studies are conducted to demonstrate the satisfactory performance of the proposed

method in both one-stage and multi-stage settings. In particular, the MLE method is shown to

be numerically stable and robust against various magnitudes of misclassification rates in the

outcome model. Sensitivity analyses are also conducted using the NHEFS data and smoking

cessation data to compare the optimal treatment decision rules estimated from the naive method

and the proposed method. By incorporating the misclassification in the analysis, the estimated

optimal treatment rules are shown to be different, and the statistical significance of the tailoring

variable is also altered. It reveals a non-negligible impact of misclassification in the NHEFS

and smoking cessation data.

In Chapter 4, a non-differential misclassification model is assumed for the proposed method,

in which the dependence on the covariates and/or treatment is suppressed. Therefore, it is in-

teresting to study other misclassification models, such as a differential one dependent on co-

variates and/or treatment. Secondly, one may also consider the misclassification problem with

replicate data. In other words, instead of observing the true outcome in a small subset of data,

the replicates of the outcome are observed. In such circumstances, it is necessary to explore

other approaches to correct the misclassification in Q-learning.

In summary, the errors-in-variables problem in dynamic treatment regimes is a new and

challenging topic. While the problems that have been studied in this thesis focus on mea-

surement error and misclassification in a few popular DTR approaches based on the class of

outcomes, many more complex situations remain unexplored. We anticipate the pursuit of

exploring these in the future.
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