Regression-based Methods for Dynamic Treatment Regimes with Mismeasured Covariates or Misclassified Response

Dan Liu, The University of Western Ontario

Supervisor: He, Wenqing, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Statistics and Actuarial Sciences

© Dan Liu 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Biostatistics Commons, Statistical Methodology Commons, and the Statistical Models Commons

Recommended Citation

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlsadmin@uwo.ca.
Abstract

The statistical study of dynamic treatment regimes (DTRs) focuses on estimating sequential treatment decision rules tailored to patient-level information across multiple stages of intervention. Regression-based methods in DTR have been studied in the literature with a critical assumption that all the observed variables are precisely measured. However, this assumption is often violated in many applications. One example is the STAR*D study, in which the patient’s depressive score is subject to measurement error. In this thesis, we explore problems in the context of DTR with measurement error or misclassification considered in the observed data.

The first project deals with covariate measurement error in Q-learning with continuous outcomes. The true covariate is not observable, but its replicate measurements are available in each stage. We propose a modified Q-learning algorithm with regression calibration to handle the measurement error. Given the replicate measurements, the proposed method obtains and uses the estimates of the unobserved true covariate in each stage of Q-learning.

The second project explores covariate measurement error in dynamic weighted survival modeling (DWSurv), a regression-based method dealing with survival outcomes in DTR. Internal validation data are assumed to be available with true covariates only observed in a subset of the data. Two correction methods are proposed to eliminate the effect of mismeasured covariate by obtaining the estimates of the missing true covariate in each stage of DWSurv. The consistency of the proposed estimator is established.

The third project examines Q-learning with binary outcomes being subject to misclassification. We investigate the outcome misclassification effect for internal validation data and develop a correction method to adjust for the effect in Q-learning. A probability relationship is established between the true outcome and the misclassified outcome. The estimation procedure in Q-learning is modified by including the derived probability relationship in the proposed method.

Extensive simulation studies are conducted to assess the performance of the proposed methods and to compare them with the naive method. Real data are analyzed for illustration of the proposed methods. The results showcase the importance of incorporating the errors in DTR and the competency of the proposed methods in obtaining the optimal DTR.
Keywords: Precision medicine, dynamic treatment regimes, regression-based methods, Q-learning, dynamic weighted survival modeling, measurement error, misclassification, regression calibration, k-nearest neighbors, weighted least squares, maximum likelihood estimation
Summary for Lay Audience

Precision medicine is a new approach that recommends individualized treatment to a patient by taking the patient’s information into account. It differs from the traditional ‘one-size-fits-all’ clinical strategy, which ignores the patient’s heterogeneity in response to the treatment. Dynamic treatment regimes (DTRs) realize this process by providing sequential treatment decisions. However, in practice, a patient’s information that is used to infer a treatment decision often contains error-corrupted covariates or misclassified outcomes, which can be viewed as incorrect records of the patient’s characteristics or mislabeled clinical outcomes of the patient. The contaminated information may misrepresent the health status of the patients and further lead to inaccurate treatment decision-making. In this thesis, three situations are investigated in the context of DTR with error-corrupted covariates or misclassified outcomes.

The first study focuses on the problem of error-corrupted covariates in a DTR method with continuous outcomes, provided that the true covariate is not observed, but only its repeated measurements are available. The regression calibration method is employed to correct the error by using a new variable for the error-corrupted covariates, which are obtained from the available repeated measurements in the data.

The second study deals with the error-corrupted covariates in a survival-based DTR, given that the true covariate is partially observed in the data. Two correction methods are developed to correct the error-corrupted covariates. The proposed methods create estimates for the unobserved true covariate using the available error-corrupted covariate and use the created values for modeling.

The third study addresses the misclassified outcome problem in a DTR method with binary outcomes, assuming that the true outcome is only observed in a subset of data. A likelihood-based approach is proposed, which incorporates the relationship between the true outcome and misclassified outcome, through which the outcome misclassification can be corrected.

For each topic, simulation studies have demonstrated significant improvements in error correction and treatment decision-making. Real data applications have also shown the importance of including the errors in the DTR context.
Acknowledgments

First, I would like to express my gratitude to my advisor Dr. Wenqing He. This dissertation would not have been possible without his support and guidance. From Dr. He, I have learned to be attentive to details and have scientific thinking. He allowed me to have flexibility in the process of doing research and provided me with insightful advice when I was directionless. I would also like to thank Dr. Hao Yu, Dr. Hyukjun Gweon, Dr. Daniel Lizotte, and Dr. Michael Wallace for reviewing my thesis and providing invaluable comments.

Secondly, I want to thank Dr. Grace Y. Yi and all the members of the GW-DSRG (Grace-Wenqing Data Science Research Group). Dr. Yi’s deep knowledge, passion, and rigorous attitude toward research have influenced and encouraged me throughout my Ph.D. study. The discussions in the regular group meeting have enriched my knowledge in many research areas. Through the team, I also came to befriend many talented and diligent peers Jingyu Cui, Yasin Khadem Charvadeh, Chengqian Xian, Kexin Luo, Li-Pang Chen, Qihuang Zhang, Junhan Fang, etc. I would like to thank Chi-Kuang Yeh for his friendship over this journey. I would also like to acknowledge my friend Dr. Sarah Zheng, who generously shared the MIMIC-III data.

Personally, I want to express my deep gratitude to my parents for their unconditional love and sacrifice. They have encouraged and supported me unwaveringly in my academic journey. I would not be who I am today without my parents. I would also like to thank my husband for his dedicated love and encouragement through this journey. He has been very supportive and provides help when I need him the most.

I would like to thank my brothers and sisters in Christ for their prayers and love in carrying me over the years. Last but not least, I give my thanksgiving and all the glory to the everlasting God, my heavenly Father, for His love, grace, and faithfulness.
2.3 Simulation Studies
2.3.1 One-Stage Estimation
2.3.2 Two-Stage Estimation in Linear Case
2.3.3 Two-Stage Estimation in Nonlinear Case
2.3.4 Predicted Optimal DTR
2.3.5 Predicted Optimal Value Function
2.4 Application to STAR*D Study
2.5 Conclusion

3 Dynamic Treatment Regimes with Survival Response and Covariate Measurement Error
3.1 Introduction
3.2 Methodology
3.2.1 Notations and Model Framework
3.2.2 k-Nearest Neighbors Method
3.2.3 Weighted Least Squares Method
3.3 Simulation Studies
3.3.1 One-Stage Estimation
3.3.2 Two-Stage Estimation
3.3.3 Prediction of Optimal DTR
3.3.4 Prediction of the Expected Survival Time
3.4 Application to MIMIC-III Data
3.5 Conclusion
3.6 Appendix

4 Q-learning with Misclassified Binary Outcomes
4.1 Introduction
4.2 Methodology
4.2.1 Notations and Model Framework
4.2.2 Maximum Likelihood Estimation Method
4.3 Simulation Studies
List of Figures

2.1 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\sigma = 0.8\) (n = 500)

2.2 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\sigma = 0.8\) (n = 2000)

2.3 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.2)\)

2.4 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.5)\)

2.5 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

2.6 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with cubic term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

2.7 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with exponential term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

2.8 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with complex term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

2.9 Prediction accuracy of optimal DTR with \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

2.10 Predicted optimal value function with \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

3.1 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.2\) and 30\% independent censoring

3.2 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.5\) and 30\% independent censoring

3.3 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.8\) and 30\% independent censoring

3.4 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.2\) and 70\% independent censoring

3.5 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.5\) and 70\% independent censoring
3.6 One-stage estimates of \((\beta_z, \beta_s, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, \sigma = 0.8\) and 70\% independent censoring

3.7 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.2, 0.2)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

3.8 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.5, 0.5)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

3.9 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.8, 0.8)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

3.10 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.2, 0.2)\) and 70\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

3.11 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.5, 0.5)\) and 70\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified
3.12 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7\), \((\sigma_2, \sigma_1) = (0.8, 0.8)\) and 70% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

3.13 Prediction accuracy of optimal DTR with \(\rho = 0.7\) and 30% independent censoring

3.14 Prediction accuracy of optimal DTR with \(\rho = 0.7\) and 70% independent censoring

4.1 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 500\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.1, 0.1)\)

4.2 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 500\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.2, 0.2)\)

4.3 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 500\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.3, 0.3)\)

4.4 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 2000\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.1, 0.1)\)

4.5 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 2000\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.2, 0.2)\)

4.6 One-stage estimates of \((\beta_z, \beta_x, \psi_{10}, \psi_{11})\) for \(n = 2000\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.3, 0.3)\)

4.7 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.1, 0.1)\)

4.8 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.2, 0.2)\)

4.9 Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.3, 0.3)\)

4.10 Prediction accuracy of optimal DTR with \(\rho = 0.5\)

4.11 Predicted error rates, sensitivity, and specificity of the outcome with \(\rho = 0.3\)
4.12 Predicted error rates, sensitivity, and specificity of the outcome with $\rho = 0.5$
List of Tables

2.1 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) (n = 500)
2.2 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) (n = 2000)
2.3 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) in linear case
2.4 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) in nonlinear case
2.5 Prediction accuracy of optimal DTR (%)
2.6 Predicted optimal value function (standard deviations)
2.7 Analysis results of the STAR*D data for the blip parameters

3.1 Summary of the optimal k from 10-fold cross-validation
3.2 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) with 30% independent censoring
3.3 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) with 70% independent censoring
3.4 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.2, 0.2)$ and 30% independent censoring
3.5 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.5, 0.5)$ and 30% independent censoring
3.6 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.8, 0.8)$ and 30% independent censoring
3.7 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.2, 0.2)$ and 70% independent censoring
3.8 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.5, 0.5)$ and 70% independent censoring
3.9 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.8, 0.8)$ and 70% independent censoring

3.10 Prediction accuracy of optimal DTR (%)

3.11 Prediction of the expected optimal log-survival times (standard deviations)

3.12 Analysis results of the MIMIC-III data for the two-stage estimation of blip parameters

4.1 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) (n = 500)

4.2 One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) (n = 2000)

4.3 Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11}$)

4.4 Prediction accuracy of optimal DTR (%)

4.5 Predicted error rates, sensitivity, and specificity of the outcome (%)

4.6 Sensitivity analysis results of the NHEFS data for the blip estimators

4.7 Sensitivity analysis results of the smoking cessation data for the blip estimators
Chapter 1

Introduction

It is a long history that clinicians have been using a ’one-size-fits-all’ strategy to treat patients with chronic diseases over a multi-stage period. However, in practice, this treatment strategy faces many challenges. As the disease and patients’ health conditions are constantly changing over time, they may not respond to the treatments that used to be effective. It implies a new treatment should be adopted. The financial concerns for both patients and hospitals may be incurred when a costly but ineffective treatment has been constantly applied over multiple stages. Moreover, the best treatment regarded at a given stage may yet lead to a suboptimal clinical outcome in the long run (Chakraborty, 2013; Chakraborty and Murphy, 2014).

To tackle these challenges, the study of precision medicine has begun to arise, with the objective of searching for optimal dynamic treatment regimes (DTRs) for patients. A dynamic treatment regime is a sequence of treatment decision rules, one per stage of intervention, recommended to a patient by taking the individual’s characteristics and treatment history into account. An optimal DTR is a sequence of treatment decision rules that yields optimal treatments, with which the long-term clinical outcome is optimized. In recent years, there have been a variety of case studies associated with the estimation of optimal DTR. However, the observed data in studies are often assumed to be measured error-free, which may be violated in practice. The following examples show that variables with measurement error often exist.

The first example is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, designed as a multisite, multistage randomized controlled trial. The STAR*D study aimed to evaluate the effect of treatments for patients who suffered from a major depressive...
disorder (Rush et al., 2003). The entire study possessed four levels, and in each level, one or a combination of treatments was assigned to the patients. The severity of depressive disorder was measured by the Quick Inventory of Depressive Symptomatology (QIDS) score. If a patient who received treatment did not meet the requirement of remission (QIDS ≤ 5) at the end of the level, this patient would have entered the next level with a different treatment assigned. The QIDS score is used to derive the sequential optimal treatment rules for each patient, but in the trial, the QIDS score was reported by both clinicians and patients. Due to unavoidable human errors, these reported scores may be subject to measurement error. Thus, the estimated optimal DTR may be problematic.

The second example comes from the Medical Information Mart for Intensive Care-III (MIMIC-III) Clinical Database, comprising large-scale observational admission data collected at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016). The MIMIC-III dataset was used to study the association between the use of transthoracic echocardiography (TTEC) and mortality, conditional on the intensive care unit (ICU) patients’ characteristics and lab test results (Feng et al., 2018; Chen et al., 2021). However, in the MIMIC-III data, variables such as positive end-expiratory pressure are significantly associated with TTEC but suffer considerable missingness. Without accounting for such missingness, the conclusions may be misleading.

Another example is the National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study (NHEFS), a national longitudinal study. It aimed to investigate the relationships between clinical, nutritional, and behavioral factors and subsequent morbidity, mortality, and operational factors with hospital utilization. The cohort NHEFS dataset contains cigarette smokers with baseline variables collected from 1971 to 1975. They were later followed up through personal interviews in 1982, in which their smoking status was collected. Apparently, the answers from the cigarette smokers without confirmation are subject to misclassification as they may not report the truth. A similar case is also found in a smoking cessation program, which examined the effectiveness of a perioperative smoking cessation intervention (Lee et al., 2013). The patients reported their status of quitting smoking, with lab tests for confirmation. It has been discovered that 11 out of the 146 patients misreported their smoking status in this program.
Although these four examples were initiated with different objectives, they share a common fact that the variables in the collected data might be contaminated with either measurement error or misclassification. As the primary goal of DTR is to identify sequential optimal treatment rules, the resulting optimal DTR may be altered if the error in the observed data is taken into account. Such considerations motivate us to investigate the measurement error and misclassification effects in the DTR context and develop correction methods to eliminate the effects.

1.1 Dynamic Treatment Regimes

Identifying an optimal DTR depends on the statistical approaches, given the structure of available data and research questions. The common approaches for estimating the optimal DTR can be classified into two categories, regression-based and classification-based methods.

Regression-based methods also referred as indirect methods. They model and estimate the conditionally expected outcome to yield an optimal DTR that maximizes the expected outcome. The classical regression-based methods that are widely studied in the literature include Q-learning (Watkins, 1989; Chakraborty and Murphy, 2014), G-estimation (Robins, 2004), A-learning (Murphy, 2003; Schulte et al., 2014), and regret-regression (Henderson et al., 2010). However, these methods assumed continuous outcomes in their approaches. Moodie et al. (2014) made an attempt to extend the Q-learning to binary outcomes and count outcomes. Ghosh and Chakraborty (2018) proposed a likelihood-based approach to estimate and compare two embedded DTR with ordinal outcomes in a two-stage sequential multiple assignment randomized trials. The Bayesian approach was proposed to estimate the optimal embedded DTR with binary outcomes by Artman et al. (2020). The estimation of DTR with survival outcomes is considered with the accelerated failure time (AFT) model in the Q-learning framework (Goldberg and Kosorok, 2012; Huang and Ning, 2012; Huang et al., 2014). Although statistical methods in the G-estimation framework have been proposed (Robins and Greenland, 1994; Hernán and Robins, 2020), they are not widely used because of the complexity in theory and implementation due to the nature of G-estimation. Murray et al. (2018) and Klausch et al. (2018) also developed Bayesian-based approaches to estimate the optimal treatment regimes.

Regression-based methods enjoy the advantages of being built on regression models and
easily implemented. However, they suffer from a strict assumption of the correct specification of the outcome model to yield consistent estimates of parameters (Chakraborty, 2013). To overcome their weaknesses, Wallace and Moodie (2015) proposed a dynamic weighted ordinary least squares (dWOLS), a doubly robust estimation method that integrates the implementation simplicity of Q-learning and double robustness property of G-estimation. Simoneau et al. (2020b) further developed dynamic weighted survival modeling (DWSurv), a doubly robust regression-based method to deal with DTR with survival outcomes. Xiao et al. (2019) examined loss-based robust regression estimators to accommodate baseline function misspecification and skewed, heterogeneous, heavy-tailed errors or outliers.

In contrast, instead of requiring a specification of the outcome model beforehand, classification-based methods, also referred to as direct methods or value search methods, directly estimate the marginal mean outcome of a regime and identify an optimal DTR that maximizes the estimated value over all possible DTRs (Laber et al., 2014). Some popular classification-based methods utilize the inverse probability weighting (IPW) method to estimate the marginal mean of outcome in DTR, but they are sensitive to the misspecification of the propensity score (Robins, 2000; van der Laan, 2006; van der Laan and Petersen, 2007). Zhang et al. (2012) and Zhang et al. (2013) proposed a doubly robust method by introducing an augmented IPW estimator. Marginal structural mean models were studied to construct DTRs (Robins et al., 2008; Orellana et al., 2010).

Machine learning techniques are also introduced to make a class prediction to find the optimal DTR across stages. For instance, Laber and Zhao (2015) introduced decision trees as a new estimation method to obtain an optimal regime, and the intuitive value-based classification meaning makes the resulting DTR more interpretable. Zhao et al. (2012) and Zhao et al. (2015a) proposed outcome weighted learning (OWL) by borrowing the idea of the support vector machine to redefine the DTR problem into a weighted classification problem. Zhou et al. (2017) extended the OWL into a more generalized version, residual weighted learning (RWL), to include variable selection and different classes of the outcome. Liu et al. (2018) developed an augmented outcome weighted learning (AOL) that combines OWL and regression models to estimate an optimal DTR. Fu et al. (2019) modified the loss function of the OWL to be bounded and proposed a robust outcome weighted learning (ROWL), by which more stable
optimal treatment rules were produced. For censored data, Zhao et al. (2015b) proposed a doubly robust estimator for expected survival time and utilized outcome-weighted learning to estimate sequential optimal treatment rules. Methods have also been developed using survival probability as the outcome of interest (Bai et al., 2017; Jiang et al., 2017; Xue et al., 2022).

In this thesis, we will focus on the study of regression-based methods with the covariate subject to measurement error or binary outcome with misclassification. Q-learning with continuous outcomes, Q-learning with binary outcomes, and dynamic weighted survival modeling are explored.

1.1.1 Notations and Concepts

Before describing the methodology for DTR, we introduce some basic notations in the DTR framework. Based on the outcome type, the data for DTR can be categorized into uncensored data and censored data.

DTR with Uncensored Data

Let the uppercase letters represent random variables and lower-class letters represent the realization of the random variables. A DTR data trajectory across a maximum of \(J \) stages follows \(\{X_1, A_1, Y_1, X_2, A_2, Y_2, ..., X_J, A_J, Y_J\} \), where \(X_1 \) is the baseline covariate vector, measured at the beginning of stage 1 before initial treatment is applied and \(X_j \) represents the updated information about the patient, collected at the beginning of stage \(j \) (\(j = 2, ..., J \)). \(A_j \) denotes a binary treatment action taken at the beginning of stage \(j \), where \(A_j = 1 \) if the patient received a treatment, and \(A_j = 0 \) otherwise. A patient’s history \(H_j \) with values taken as \(h_j \) is defined as the accumulative information collected up to \(j^{th} \) stage before making treatment decision \(A_j \): \(H_j = (X_1, A_1, X_2, ..., X_j) \). In the data trajectory, \(Y_j \) is the outcome observed at the end of stage \(j \), as a reward subsequent to the treatment \(A_j \). The outcome \(Y_j \) can be of any type, such as continuous outcome, survival time or discrete-valued outcome. In some circumstances, only a single terminal outcome \(Y \) is observed at the end of the last stage. In a two-stage setting, it can be viewed as a special case that \(Y_1 \equiv 0 \) and \(Y_2 = Y \). A DTR \(a \) is defined as a sequence of treatment decision rules such that \(a = \{a_1, a_2, ..., a_J\} \), where \(a_j = a_j(h_j) \) is the treatment assigned
at stage \(j \). An optimal DTR denoted as \(a^{\text{opt}} \) is a sequence of treatment rules that maximizes the conditional mean outcome \(Y \) (or mean sum of \(Y_j \)’s), where \(a^{\text{opt}} = \{a_1^{\text{opt}}, a_2^{\text{opt}}, ..., a_J^{\text{opt}}\} \) and \(a_j^{\text{opt}} = a_j^{\text{opt}}(h_j) \) is the optimal treatment at stage \(j \).

In DTR with observational studies, an important concept is the treatment model, which is defined as the probability of assigning treatment \(a_j \) conditional on patients’ history \(h_j \), denoted as \(\pi(h_j) = P(A_j = a_j | H_j = h_j) \). The treatment model is often used in the statistical approaches to remove the confounding treatment effects on parameter estimation so that unbiased estimates of the treatment effect can be obtained (Austin, 2011; Moodie et al., 2012; Chakraborty, 2013; Tsiatis, 2019).

DTR with Censored Data

For censored data, DTR with survival outcomes follows a data trajectory across a maximum of \(J \) stages \(\{\eta_1, X_1, A_1, Y_1, \eta_2, X_2, A_2, Y_2, ..., \eta_J, X_J, A_J, Y_J, \Delta\} \), where \(\eta_j \) is an indicator of whether the individuals entered the \(j^{\text{th}} \) stage for treatment (\(\eta_j = 1 \)) or not (\(\eta_j = 0 \)). \(X_j \) is the covariates collected at the beginning of stage \(j \). \(A_j \in \{1,0\} \) is the binary treatment received at stage \(j \). Let \(T_j \) and \(T \) be the stage-\(j \) survival time and the overall survival time across all the \(J \) stages with \(T = \sum_{j=1}^{J} \eta_j T_j \). \(C_j \) is the stage-\(j \) censoring time with \(C \) being the sum of the censoring times \(C = \sum_{j=1}^{J} \eta_j C_j \). Let \(\Delta \) be a censoring indicator such that \(\Delta = 1(T \leq C) \) and \(\delta \) be the realization of \(\Delta \). The observed outcome \(Y_j \) is defined as the minimum of the survival time and censoring time at stage \(j \), \(Y_j = \min(T_j, C_j) \). The history \(H_j \) with values taken as \(h_j \) is a collection of all the covariates and the treatments prior to the time of making the \(j^{\text{th}} \) treatment decision \(A_j \): \(H_j = (X_1, A_1, X_2, ..., X_J) \). Then, we can obtain a sequence of treatment decision rules up to \(J \) stage \(a = \{a_1, a_2, ..., a_J\} \), where \(a_j = a_j(h_j) \) is the treatment assigned at stage \(j \). An optimal DTR \(a^{\text{opt}} = \{a_1^{\text{opt}}, a_2^{\text{opt}}, ..., a_J^{\text{opt}}\} \), which is a sequence of treatment rules that maximizes the expected overall survival time \(T \), where \(a_j^{\text{opt}} = a_j^{\text{opt}}(h_j) \) is the optimal treatment received at stage \(j \).

In DTR with survival data, a treatment model is defined as the probability of receiving treatment \(a_j \) conditional on a history of those who entered the \(j^{\text{th}} \) stage, denoted as \(\pi(h_j) = P(A_j = a_j | H_j = h_j, \eta_j = 1) \). A censoring model is also defined for those who entered the \(j^{\text{th}} \) stage.
It models the probability of experiencing the event of interest conditional on patients’ history and treatment, denoted as $g(a_j, h_j) = P(\Delta = 1 | H_j = h_j, A_j = a_j, \eta_j = 1)$.

Basic Assumptions

The methodology in DTR is established on the following two assumptions (Chakraborty, 2013):

(A1) *Stable unit treatment value:* an individual’s outcome is not influenced by other individuals’ treatment allocation.

(A2) *No unmeasured confounders:* for any possible treatment rule, treatment A_j received in the j^{th} stage is independent of any future (potential) covariate or outcome, $\{X_{j+1}, Y_{j+1}, ..., X_J, Y_J\}$, conditional on the history H_j.

The first assumption ensures that the patients in the study are independent of each other regarding the treatment effects. The second assumption allows for no future covariate or outcome to affect the current treatment decision-making.

1.1.2 Q-learning with Continuous Outcomes

Q-learning originates from reinforcement learning and has become one of the most popular regression-based methods to estimate an optimal DTR (Watkins, 1989; Chakraborty and Murphy, 2014). The Q-learning is modeled by stage-specific Q-functions, which measure the expected future reward conditional on the history of a patient’s characteristics and treatment action. For a two-stage DTR, the Q-functions are defined as

$$Q_2(H_2, A_2) = E[Y|H_2, A_2],$$

$$Q_1(H_1, A_1) = E[\max_{a_2} Q_2(H_2, a_2)|H_1, A_1].$$

Since Q-functions are usually unknown, they need to be estimated from the data using a backward recursive procedure (Chakraborty, 2013). At stage 2, the Q-function $Q_2(H_2, A_2)$ is the expected terminal outcome Y conditional on the history H_2 and treatment A_2. Having worked backward recursively, the first stage $Q_1(H_1, A_1)$ is modeled with a pseudo-outcome.
\(\bar{Y}_1 \) constructed as \(\max_{a_2} Q_2(H_2, a_2) \), which would be the future reward had the patients received the second stage optimal treatment \(a_2^{opt} \). By using \(\bar{Y}_1 \), it allows the first stage treatment effect comparison to be reasonable.

To estimate the Q-functions, a common statistical approach is to parameterize \(Q_j(H_j, A_j) \) at stage \(j \) via regression models

\[
Q_j(H_j, A_j; \beta_j, \psi_j) = f(H_{j0}; \beta_j) + g(H_{j1}, A_j; \psi_j),
\]

where the treatment-free component \(f(H_{j0}; \beta_j) \) is a function of \(H_{j0} \), a subset of history vector \(H_j \) without regard to \(A_j \), and the blip component \(g(H_{j1}, A_j; \psi_j) \) is a function of \(A_j \) and \(H_{j1} \), a different subset of history vector \(H_j \). The covariates collected in \(H_{j1} \) are called tailoring variables. The functions \(f(\cdot) \) and \(g(\cdot) \) can be specified in any form, such as splines, neural network and regression trees (Chakraborty, 2013). The simplest case might be modeling the Q-functions linearly as

\[
Q_j(H_j, A_j; \beta_j, \psi_j) = \beta_j^T H_{j0} + A_j(\psi_j^T H_{j1}).
\]

In the set of parameters \((\beta_j, \psi_j)\) in the linear setting (1.2), we are generally interested in estimating the blip parameter \(\psi_j \) since it contains both the effect of treatment \(A_j \) and the interaction between treatment and tailoring variables in \(H_{j1} \), by which the optimal DTR is determined. \(\hat{a}_j^{opt} \), the estimated optimal treatment at stage \(j \), is the treatment that maximizes \(Q_j(h_j, a_j; \hat{\beta}_j, \hat{\psi}_j) \). That is,

\[
\hat{a}_j^{opt} = \arg \max_{a_j} Q_j(h_j, a_j; \hat{\beta}_j, \hat{\psi}_j).
\]

Given \(A_j \in \{1, 0\} \) in the linear Q-function (1.2), \(\hat{a}_j^{opt} \) is further inferred to be \(\hat{a}_j^{opt} = 1(\hat{\psi}_j^T h_{j1} > 0) \), where \(1(\cdot) \) is the indicator function. It implies that \(\hat{a}_j^{opt} = 1 \) if \(\hat{\psi}_j^T h_{j1} > 0 \), and \(\hat{a}_j^{opt} = 0 \), otherwise. Then, following this new expression for the estimated optimal treatment, the pseudo-outcome \(\bar{Y} \) can be further written as

\[
\bar{Y}_1 = \max_{a_2} Q_2(H_2, a_2; \hat{\beta}_2, \hat{\psi}_2) = \hat{\beta}_2^T H_{20} + (\hat{\psi}_2^T H_{21})1(\hat{\psi}_2^T H_{21} > 0).
\]
In (1.3), the term $\max_{a_2} Q_2(H_2, a_2; \hat{\beta}_2, \hat{\psi}_2)$ is expanded into a combination of treatment-free component and blip component, assuming that all the patients had received the optimal treatment at stage 2. This pseudo-outcome (1.3) can then be used for the first stage estimation.

A two-stage linear Q-learning algorithm is summarized in the following steps:

1. Parameterize the stage 2 Q-function

$$Q_2(H_2, A_2; \beta_2, \psi_2) = E[Y|H_2, A_2] = \beta_2^T H_{20} + A_2 (\psi_2^T H_{21}).$$

2. Apply ordinary least squares (OLS) procedure to obtain the stage 2 estimator $(\hat{\beta}_2, \hat{\psi}_2)$

$$(\hat{\beta}_2, \hat{\psi}_2) = \arg \min_{(\beta_2, \psi_2)} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - Q_2(H_2, A_2; \beta_2, \psi_2) \right)^2.$$

3. Derive the stage 2 optimal treatment as $\hat{a}_{2}^{opt} = 1(\hat{\psi}_2^T h_{21} > 0)$.

4. Construct the pseudo-outcome for estimation at stage 1

$$\tilde{Y}_1 = \hat{\beta}_2^T H_{20} + (\hat{\psi}_2^T H_{21}) 1(\hat{\psi}_2^T H_{21} > 0).$$

5. Parameterize the stage 1 Q-function

$$Q_1(H_1, A_1; \beta_1, \psi_1) = \beta_1^T H_{10} + A_1 (\psi_1^T H_{11}).$$

6. Apply OLS procedure to obtain the stage 1 estimator $(\hat{\beta}_1, \hat{\psi}_1)$

$$(\hat{\beta}_1, \hat{\psi}_1) = \arg \min_{(\beta_1, \psi_1)} \frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_1 - Q_1(H_1, A_1; \beta_1, \psi_1) \right)^2.$$

7. Derive the stage 1 optimal treatment as $\hat{a}_{1}^{opt} = 1(\hat{\psi}_1^T h_{11} > 0)$.

Q-learning enjoys the advantage of simplicity in implementation. Following the procedures above, the regression parameters (β_j, ψ_j) are consistently estimated using the ordinary least squares method (Chakraborty, 2013). However, the validity of Q-learning requires a correct specification of the outcome model (1.2). If the outcome model is misspecified, it results in inconsistent estimates of parameters (Chakraborty, 2013).

1.1.3 Q-learning with Binary Outcomes

When the outcome of interest is binary, Moodie et al. (2014) presented a modified Q-function using the inverse-logit function at stage j.

$$Q_j(H_j, A_j; \beta_j, \psi_j) = E[Y_j|H_j, A_j] = \beta_j^T H_{j0} + A_j (\psi_j^T H_{j1}).$$

$$Q_{j+1}(H_{j+1}, A_{j+1}; \beta_{j+1}, \psi_{j+1}) = \beta_{j+1}^T H_{j+10} + A_{j+1} (\psi_{j+1}^T H_{j+11}).$$

$$Q_j(H_j, A_j; \beta_j, \psi_j) = E[Y_j|H_j, A_j] = \beta_j^T H_{j0} + A_j (\psi_j^T H_{j1}).$$

$$Q_{j+1}(H_{j+1}, A_{j+1}; \beta_{j+1}, \psi_{j+1}) = \beta_{j+1}^T H_{j+10} + A_{j+1} (\psi_{j+1}^T H_{j+11}).$$

Q-learning enjoys the advantage of simplicity in implementation. Following the procedures above, the regression parameters (β_j, ψ_j) are consistently estimated using the ordinary least squares method (Chakraborty, 2013). However, the validity of Q-learning requires a correct specification of the outcome model (1.2). If the outcome model is misspecified, it results in inconsistent estimates of parameters (Chakraborty, 2013).
\begin{equation}
Q_j(H_j, A_j; \beta_j, \psi_j) = \expit\left(\beta_j^T H_j \theta_0 + A_j(\psi_j^T H_{j1})\right),
\end{equation}

where \(\expit(x) = 1/(1 + \exp(-x))\), and \(Q_j(H_j, A_j)\) is bounded by \([0, 1]\). Then, the two-stage Q-functions are followed by

\begin{align*}
Q_2(H_2, A_2; \beta_2, \psi_2) &= E[Y \mid H_2, A_2] = \expit\left(\beta_2^T H_{20} + A_2(\psi_2^T H_{21})\right), \\
Q_1(H_1, A_1; \beta_1, \psi_1) &= \expit\left(\beta_1^T H_{10} + A_1(\psi_1^T H_{11})\right).
\end{align*}

(1.4)

In Q-learning with binary response, the pseudo-outcome \(\tilde{Y}_1\) is constructed as the logit of \(Q_2(H_2, A_2; \hat{\beta}_2, \hat{\psi}_2)\)

\begin{equation}
\tilde{Y}_1 = \max_{a_2} \logit Q_2(H_2, a_2; \hat{\beta}_2, \hat{\psi}_2),
\end{equation}

(1.5)

where (1.5) is essentially the logit of predicted probability had the patients received the second stage optimal treatment. In this way, \(\tilde{Y}_1\) is projected to values in the real line for the stage-1 estimation, which is performed using the OLS in a model for the logit of \(Q_1(H_{i1}, A_{i1}; \beta_1, \psi_1)\).

Once the stage-\(j\) estimator \((\hat{\beta}_j, \hat{\psi}_j)\) is obtained, the estimated optimal treatment \(\hat{a}_j^{opt}\) can be obtained by either directly maximizing \(Q_j(h_j, a_j; \hat{\beta}_j, \hat{\psi}_j)\) or only maximizing the blip component \(a_j(\hat{\psi}_j^T h_{j1})\), as the inverse-logit function is strictly increasing.

A two-stage linear Q-learning algorithm with binary outcomes is summarized in the following steps:

1. Parameterize the stage 2 Q-function

\begin{equation}
Q_2(H_2, A_2; \beta_2, \psi_2) = \expit\left(\beta_2^T H_{20} + A_2(\psi_2^T H_{21})\right).
\end{equation}

2. Apply logistic regression to obtain the stage 2 estimator \((\hat{\beta}_2, \hat{\psi}_2)\) of the conditional mean model for \(Y, Q_2(H_2, A_2; \beta_2, \psi_2)\).

3. Derive the optimal treatment as \(\hat{a}_2^{opt} = \arg \max_{a_2} Q_2(h_2, a_2; \hat{\beta}_2, \hat{\psi}_2)\).

4. Construct the pseudo-outcome for estimation at stage 1

\begin{equation}
\tilde{Y}_1 = \max_{a_2} \logit Q_2(H_2, a_2; \hat{\beta}_2, \hat{\psi}_2).
\end{equation}

5. Apply OLS regression to obtain the stage 1 estimator \((\hat{\beta}_1, \hat{\psi}_1)\)

\begin{equation}
(\hat{\beta}_1, \hat{\psi}_1) = \arg \min_{(\beta_1, \psi_1)} \frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_{i1} - Q_1(H_{i1}, A_{i1}; \beta_1, \psi_1)\right)^2.
\end{equation}
6. Derive the optimal treatment as $\hat{a}_1^{opt} = \arg \max_{a_1} Q_1(h_1, a_1; \hat{\beta}_1, \hat{\psi}_1)$.

This modified Q-learning algorithm distinguishes itself from ordinary Q-learning in some aspects. Firstly, instead of modeling the Q-functions linearly, Moodie et al. (2014) used the inverse-logit function to model $Q_j(H_j, A_j)$, which is the probability of success at stage j. Another difference lies in the construction of the pseudo-outcome. In the ordinary Q-learning, \bar{Y}_1 is constructed as an estimate of the expected outcome of all the patients who were optimally treated at the second stage. However, in this method, \bar{Y}_1 is the logit of predicted probability had the patients received the second stage optimal treatment. This modification allows the pseudo-outcome to be transformed from the probability to the values in the real line.

1.1.4 Dynamic Weighted Survival Modeling

When it comes to the DTR with survival outcomes, the estimation of optimal DTR is challenging because of the censoring. Censoring occurs when the patients withdraw from the study or are lost of follow-up during the study period. A multi-stage treatment period complicates the estimation as patients may experience the event of interest before the end of any stage.

To deal with the censored outcome in DTR, Simoneau et al. (2020b) proposed the dynamic weighted survival modeling (DWSurv), a doubly robust method, to estimate an optimal DTR with survival times being subject to right-censoring. To ensure the feasibility of DTR with survival outcomes, Simoneau et al. (2020b) made two more assumptions in addition to the assumptions (A1) and (A2) described in (1.1.1):

A3 Coarsening at random: at the beginning of each stage, the probability of censoring onward is independent of future outcomes, given accrued information.

A4 Positivity: at any j^{th} stage, $P(A_j = a_j|H_j, \eta_j = 1) > 0$ for all treatment options a_j and $P(\Delta = 1|H_j, A_j, \eta_j = 1) > 0$.

In a two-stage setting, the DWSurv method models the logarithm of survival times at stage 2 and stage 1 based on the accelerated failure time (AFT) models

$$
\log T_2 = f(h_{20}; \beta_2) + g(h_{21}, a_2; \psi_2) + \epsilon_2,
$$

$$
\log \bar{T} = f(h_{10}; \beta_1) + g(h_{11}, a_1; \psi_1) + \epsilon_1,
$$

(1.6)
where the error term ϵ_j is independent and identically distributed with mean zero, and \tilde{T} is the overall pseudo-survival time had all the patients who entered the second stage received the optimal treatment a^{opt}_2. $f(h_j; \beta_j)$ and $g(h_j, a_j; \psi_j)$ are the treatment-free component and blip component, respectively, with functions $f(\cdot)$ and $g(\cdot)$ specified in any form. The simplest case is to consider log-survival times in linear form

$$\log T = \beta T h_{20} + a_2(\psi h_{21}) + \epsilon,$$

(1.7)

The pseudo-survival time \tilde{T} is constructed as

$$\tilde{T} = T_1 + \eta_2 T_2 \exp\left[\psi^T h_{21}[a^{opt}_2 - a_2]\right].$$

(1.8)

Intuitively, (1.8) reflects three possible situations. If patients did not enter the second stage, \tilde{T} is equal to T_1, the survival time at the first stage. If patients entered the second stage and received the optimal treatment a^{opt}_2, \tilde{T} is equal to the observed overall survival time $T = T_1 + T_2$. If patients entered the second stage but did not receive the optimal treatment a^{opt}_2, \tilde{T} is larger than T due to the non-zero term $\exp\left[\psi^T h_{21}[a^{opt}_2 - a_2]\right]$.

The DWSurv method is designed for observational studies, where confounders may exist. Thus, Simoneau et al. (2020b) introduced weights in the algorithm so that by including carefully chosen weights, any possible confounding effect on estimating the parameters could be eliminated. The balancing property (1.9) is provided to find the appropriate weights

$$g(1, h_j)\pi(h_j)w_j(1, 1, h_j) = [1 - g(0, h_j)][1 - \pi(h_j)]w_j(0, 0, h_j),$$

(1.9)

where $\pi(h_j) = P(A_j = 1|H_j = h_j, \eta_j = 1)$ is the treatment model, and $g(a_j, h_j) = P(\Delta = 1|H_j = h_j, A_j = a_j, \eta_j = 1)$ is the censoring model. Simoneau et al. (2020b) demonstrates that the DWSurv method yields consistent blip parameter estimates if the weights satisfy (1.9). There is a broad class of weight choices that satisfy (1.9), and the use of weight (1.10) is recommended

$$w_j(\delta, a_j, h_j) = \frac{|a_j - P(A_j = 1|h_j, \eta_j = 1)|}{P(\Delta = \delta|h_j, a_j, \eta_j = 1)}.$$

(1.10)
A two-stage linear DWSurv algorithm is summarized in the following steps:

1. Propose parametric models for the probability of treatment \(P(A_2 = 1|h_2, \eta_2 = 1; \alpha_2) \) and the probability of censoring \(P(\Delta = 0|h_2, a_2, \eta_2 = 1; \lambda_2) \) at stage 2 and find the estimated weight \(\hat{w}_2 \) from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 \(\log T_2 = \beta^T h_{20} + a_2 (\psi^T h_{21}) + \epsilon_2 \) and obtain the estimator \((\hat{\beta}_2, \hat{\psi}_2) \) by solving

\[
U_2(\beta_2, \psi_2) = \sum_{i=1}^n \delta_i \eta_i \hat{w}_2 \begin{pmatrix} h_{i20} \\ a_i \hat{h}_{i21} \end{pmatrix} \begin{pmatrix} \log T_{i2} - \beta^T h_{i20} - a_2 \psi^T h_{i21} \end{pmatrix} = 0.
\]

3. Derive the stage 2 optimal treatment as \(\hat{a}_2^{opt} = 1(\hat{\psi}_2^T h_{21} > 0) \).

4. Construct the pseudo-survival time for estimation at stage 1

\[
\bar{T} = T_1 + \eta_2 T_2 \exp \left(\hat{\psi}_2^T h_{21} [\hat{a}_2^{opt} - a_2] \right).
\]

5. Propose parametric models for the probability of treatment \(P(A_1 = 1|h_1, \eta_1 = 1; \alpha_1) \) and the probability of censoring \(P(\Delta = 0|h_1, a_1, \eta_1 = 1; \lambda_1) \) and find the estimated weight \(\hat{w}_1 \) from (1.10).

6. Assume a linear AFT model for the pseudo-survival time at stage 1 \(\log \bar{T} = \beta^T h_{10} + a_1 (\psi^T h_{11}) + \epsilon_1 \) and obtain the estimator \((\hat{\beta}_1, \hat{\psi}_1) \) by solving

\[
U_1(\beta_1, \psi_1) = \sum_{i=1}^n \delta_i \eta_i \hat{w}_1 \begin{pmatrix} h_{i10} \\ a_i \hat{h}_{i11} \end{pmatrix} \begin{pmatrix} \log \bar{T}_i - \beta^T h_{i10} - a_1 \psi^T h_{i11} \end{pmatrix} = 0.
\]

7. Derive the stage 1 optimal treatment as \(\hat{a}_1^{opt} = 1(\hat{\psi}_1^T h_{11} > 0) \).

Like Q-learning, DWSurv is implemented backward recursively from the last stage to the first stage. Moreover, DWSurv is a doubly robust method, which means that the consistency of the estimators remains if either the treatment-free model or weight model (treatment model and censoring model) is correctly specified. Thus, this double robustness property allows for model misspecification to some extent.

Simoneau et al. (2020b) further developed a formula to estimate the asymptotic variance of \((\hat{\beta}, \hat{\psi}) \) in a single-stage, which is given by

\[
Var(\hat{\beta}, \hat{\psi}) = E \left[\left(E \left[\frac{\partial}{\partial (\beta, \psi)} U_{adj}(\beta, \psi) \right] \right)^{-1} U_{adj}(\beta, \psi) \right]^{\otimes 2}.
\]
where $E[U_{adj}(\beta, \psi)^{\otimes 2}] = E[U_{adj}(\beta, \psi)U_{adj}(\beta, \psi)^T]$. $U_{adj}(\beta, \psi)$, the estimating equation adjusted for the plug-in estimates of the nuisance parameters α and λ, is expressed as

$$U_{adj}(\beta, \psi) \approx U(\beta, \psi) - E\left[\frac{\partial}{\partial \alpha} U(\beta, \psi)\right]E\left[\frac{\partial}{\partial s_\alpha} s_\alpha\right]^{-1} s_\alpha - E\left[\frac{\partial}{\partial \lambda} U(\beta, \psi)\right]E\left[\frac{\partial}{\partial s_\lambda} s_\lambda\right]^{-1} s_\lambda,$$

where s_α and s_λ are the score functions of the treatment and censoring models. With two or more stages, (1.11) applies in the last stage but with an additional term added to the estimating equations in the previous stages. Simoneau et al. (2020a) recommended the use of asymptotic variance, which takes much less computation time than the bootstrap approaches.

1.2 Measurement Error and Misclassification

1.2.1 Measurement Error in Covariates

Measurement error models are the statistical models that reveal the underlying mechanism of measurement error. It describes the relationship between the observed variable and the true variables. This section focuses on the review of measurement error in covariates.

For $i = 1, \ldots, n$, let X_i be an error-prone covariate, Z_i be an error-free covariate and W_i be a surrogate, mismeasured measurement of X_i. We introduce three commonly used measurement error models:

Classical Additive Model

$$W_i = X_i + e_i,$$

(1.12)

where the error term e_i is independent of X_i with mean 0 and covariance Σ_{ee}.

Berkson Model

$$X_i = W_i + e_i,$$

where e_i is independent of W_i with mean 0 and covariance Σ_{ee}.

Multiplicative Model

\[W_i = X_i e_i, \]

where \(e_i \) is independent of \(X_i \) with mean 1.

An important concept in measurement error models is the non-differential error, which means the error term \(e \) contains no extra information about the outcome \(Y \). Otherwise, the error is differential with respect to \(Y \). The classical additive model is the most popular and widely used model among the three measurement error models (Carroll et al., 2006; Yi, 2017).

1.2.2 Misclassification in Response

When an error-prone variable is discrete, it is often described as a misclassification problem. We consider here a binary response \(Y \) that is subject to misclassification. Instead of fully observing the true response \(Y \), a surrogate \(Y^* \) is observed as a mismeasured version of \(Y \). Similar to the measurement error model, the misclassification modeling process is characterized by a set of misclassification probabilities \((\gamma_{10}(X), \gamma_{01}(X)) \), also called misclassification rates, to associate \(Y^* \) with \(Y \) such that

\[\gamma_{10}(X) = P(Y^* = 1|Y = 0, X), \quad \gamma_{01}(X) = P(Y^* = 0|Y = 1, X). \]

(1.13)

In (1.13), the error in \(Y \) is differential in that \(Y^* \) is dependent on the covariate \(X \), conditional on \(Y \). Otherwise, the error is non-differential if \(Y^* \) is independent of \(X \) conditional on \(Y \).

1.2.3 Methods for Measurement Error in Covariates

There has been substantial research in the measurement error literature for correcting the bias caused by the measurement error in parameter estimation. It’s worth noting that the choice of measurement error models and error correction methods largely depends on the nature of the research question and the structure of the available data. In this thesis, we concentrate on reviewing error correction methods for the classical additive model based on the data structure.
Methods for Validation Data

In practice, clinicians are sometimes only able to collect a small subset of data, in which all the variables \(\{X_i, W_i, Z_i, Y_i\}\) are observed, while the majority of data only have \((W_i, Z_i, Y_i)\) observed. Such data are called (internal) validation data and the data structure is viewed as

\[
\begin{align*}
\{X_i, W_i, Z_i, Y_i\} & \quad \text{if } i \in V, \\
\{W_i, Z_i, Y_i\} & \quad \text{if } i \in \overline{V},
\end{align*}
\]

where the first group of data is the validation data denoted as \(V\) and the second group of data is main study data, also called non-validation data, denoted as \(\overline{V}\). The main difference between these two groups is whether or not the true covariate \(X_i\) is available. It has been well documented that the covariate measurement error results in biased estimation of parameters without any corrections (Carroll et al., 2006; Yi, 2017). Under this class of data structure, the availability of a few \(X_i\) in \(V\) motivates researchers to develop methods to find the estimates \(\hat{X}_i\) of the unobserved \(X_i\) in \(\overline{V}\) by making use of the surrogates in the data. In the case of internal validation data, it is also regarded as a missing data problem (Cole et al., 2006).

Regression calibration (RC) is a classical approach to find such estimates \(\hat{X}_i\) with two steps (Carroll et al., 2006). In the first step, a linear model is assumed for \(X\) and \((W, Z)\), and the regression coefficients of the linear model are estimated using the OLS method based on the small set of validation data. In the second step, given the values of \((W_i, Z_i)\) in \(\overline{V}\), the estimates \(\hat{X}_i\) for the missing \(X_i\) are predicted using the regression coefficients obtained in the previous step. This approach enjoys high popularity due to its simplicity in theory and implementation. However, the RC method is known to yield unbiased estimates of parameters in linear models and only approximately unbiased in nonlinear models (Carroll et al., 2006; Yi, 2017).

To overcome the limitation of the RC method in nonlinear models, Freedman et al. (2004) proposed a moment reconstruction (MR) method to create ’adjusted values’ that have the same first and second moments as the unobserved true covariates. The MR method yields not only consistent estimators in linear models but also in nonlinear models. Thomas et al. (2011) introduced a moment-adjusted imputation (MAI) method, extending the MR method to higher-order moment matching. The MAI method is more advantageous than MR for non-normal
distributed covariates. Similar to MR and MAI, a multiple imputation (MI) method was proposed as another imputation method that can handle differential measurement error (Cole et al., 2006). The performances of the RC, MR, and MI methods were compared in linear and logistic regressions, and the MR and MI outperformed in terms of bias reduction but tended to be less efficient (Freedman et al., 2008).

In the survival data context, Jin et al. (2019) proposed a weighted least squares (WLS) method for the accelerated failure time (AFT) model when the true covariate \(X_i \) is only available in the validation data. Instead of having a continuous surrogate, a categorical auxiliary variable \(M \) is observed. Then, the structure of the data follows

\[
\begin{align*}
\{X_i, M_i, Z_i, Y_i, \Delta_i\} & \text{ if } i \in V, \\
\{M_i, Z_i, Y_i, \Delta_i\} & \text{ if } i \in \bar{V}.
\end{align*}
\]

For \(i \in \bar{V} \), the \(X_i \) is estimated by

\[
\hat{X}_i = \frac{\sum_{j \in V} 1(M_j = M_i)X_j}{\sum_{j \in V} 1(M_j = M_i)}. \tag{1.14}
\]

This method has a few advantages. It does not need to specify the measurement error model. The consistency and asymptotic normality of the estimator were also established. However, one limitation of this method is that the variable \(M \) must be discrete to produce the estimates \(\hat{X}_i \). For any continuous surrogate, Jin et al. (2019) suggested discretizing it into a categorical variable first and then applying (1.14) to obtain the estimates \(\hat{X}_i \).

Machine learning techniques have also been applied in recent years to handle the measurement error for the use of survival data. Zhou and Wang (2000) introduced kernel smoothing to the Cox model and explored asymptotic properties for the estimators. Similar work on the Cox model can also be found in Hu and Lin (2002), Liu et al. (2009), Fan and Wang (2009) and Liu et al. (2010). To study the impact on the AFT model, Granville and Fan (2012) applied kernel smoothing to impute the \(\hat{X}_i \) in the main study data. Granville and Fan (2014) further utilized local polynomial approximation to obtain a Buckley-James estimator of the AFT model.

Methods for Replicate Data
The data with \(k \) multiple surrogates or measurements \(W = (W_1, W_2, ..., W_k) \) for the unobserved \(X \) are called replicate data. For any patient \(i \) (\(i = 1, ..., n \)), the data structure is

\[
\{W_{i1}, W_{i2}, ..., W_{ik}, Z_i, Y_i\},
\]

where \(k_i \) is the number of replicate surrogates for the \(i^{th} \) subject. Let \(\bar{W}_i \) be the mean value of \((W_{i1}, W_{i2}, ..., W_{ik}) \). Simply using the replicate surrogates in the analysis may still yield biased estimators. Thus, the question of interest is to search for a best linear approximation to \(X_i \) given \((\bar{W}_i, Z_i) \), that is, \(E[X_i|\bar{W}_i, Z_i] \) for \(X_i \) as a linear function of \(\bar{W}_i \) and \(Z_i \) (Carroll and Stefanski, 1990; Gleser, 1990).

Regression calibration is an approach to provide the best linear approximation \(\hat{X}_i \), which is given by (Carroll et al., 2006)

\[
\hat{X}_i = \hat{\mu}_w + \left[\hat{\Sigma}_{xx}, \hat{\Sigma}_{xz} \right] \left[\hat{\Sigma}_{xx} + \hat{\Sigma}_{ee}/k_i \right]^{-1} \left(\begin{array}{c} \bar{W}_i - \hat{\mu}_w \\ Z_i - \hat{\mu}_z \end{array} \right),
\]

(1.15)

where

\[
\bar{W}_i = \frac{1}{k_i} \sum_{j=1}^{k_i} W_{ij},
\]

\[
\hat{\mu}_w = \hat{\mu}_w = \frac{1}{n} \sum_{i=1}^{n} k_i \bar{W}_i / \sum_{i=1}^{n} k_i,
\]

\[
\hat{\mu}_z = \bar{Z},
\]

\[
\nu = \sum_{i=1}^{n} k_i - \sum_{i=1}^{n} k_i^2 / \sum_{i=1}^{n} k_i,
\]

\[
\hat{\Sigma}_{xx} = \left(\left\{ \sum_{i=1}^{n} k_i(\bar{W}_i - \hat{\mu}_w)(\bar{W}_i - \hat{\mu}_w)^T \right\} - (n-1)\hat{\Sigma}_{ee} \right) / \nu,
\]

\[
\hat{\Sigma}_{xz} = \sum_{i=1}^{n} k_i(\bar{W}_i - \hat{\mu}_w)(Z_i - \bar{Z})^T / \nu,
\]

\[
\hat{\Sigma}_{zz} = (n-1)^{-1} \sum_{i=1}^{n} (Z_i - \bar{Z})(Z_i - \bar{Z})^T,
\]

\[
\hat{\Sigma}_{ee} = \sum_{i=1}^{n} \sum_{j=1}^{k_i} (W_{ij} - \bar{W}_i)(W_{ij} - \bar{W}_i)^T / \sum_{i=1}^{n} (k_i - 1).
\]
More recently, several other approaches have been developed as alternative methods for replicate data. Bartlett et al. (2009) proposed an efficient likelihood-based method for the linear and logistic outcome models applicable to replicate data. Keogh and White (2014) described an approach using the idea of MI in a study with repeated measurements. Muff et al. (2015) extended the integrated nested Laplace approximations method to correct classical measurement error in exposure when a replicate study is available. Gray (2018) extended MI approach suitable for the use with replicate data.

SIMEX-based Methods

Another class of methods directly deals with the naive estimators to correct the bias. Stefanski and Cook (1995) proposed Simulation-Extrapolation (SIMEX), a simulation-based approach to adjust for the covariate measurement error effect. The key idea is to first model the trend of estimators with different strengths of measurement errors through simulation. Then given the trend, the estimates are extrapolated back to the situation without measurement error. The main advantage of the SIMEX method is that it requires no specification of the distribution of true covariate, which makes SIMEX robust.

There are several applications and extensions of the SIMEX method in the literature. The R package simex implements the SIMEX method with a range of extrapolation functions provided (Lederer and Küchenhoff, 2006). Ronning and Rosemann (2008) took into account the correlation of error terms and proposed generalized SIMEX to accommodate the correlation. In the context of survival data, He et al. (2007) applied the SIMEX method to the AFT model when true covariates are error-prone and not restricted to a specific distribution. He et al. (2012) also developed an easy-to-implement R package simexaft for the use of the SIMEX method in the AFT model. Yi et al. (2015b) extended the SIMEX method to accommodate the effect of missingness in response and measurement error in covariates. Yi et al. (2015a) generalized the usual SIMEX method to treat measurement error and misclassification in covariates simultaneously. Zhang and Yi (2019) further developed an R package augSIMEX for the use of the generalized SIMEX method proposed in Yi et al. (2015a).
1.2.4 Methods for Misclassification in Response

The misclassification problem has been increasingly discussed in the literature. Statistical analysis with misclassified responses may result in severely biased estimators. Its negative impact is likely to be greater than the covariate measurement error because the misclassification can alter the structure of the response model (Zhu and Wu, 2004; Carroll et al., 2006; Yi, 2017). Neuhaus (1999) and Yi (2017) pointed out that ignoring the misclassification in the response during the analysis process is equivalent to modeling the data with a misspecified link function. Moreover, it may also incur a loss of efficiency of the estimators (Neuhaus, 1999).

Classical methods dealing with misclassification in the response can be found in the literature. If the distribution of the binary data can be specified, Hausman et al. (1998) and Neuhaus (1999) derived a relationship of models for observed surrogate Y^* and true response Y as

\[
P(Y^* = 1 | X) = \gamma_{10} + (1 - \gamma_{10} - \gamma_{01})P(Y = 1 | X).
\]

By equation (1.16), the maximum likelihood estimation (MLE) method can be used for the estimation of parameters by maximizing the log-likelihood of the data (1.17)

\[
l = \sum_{i=1}^{n} P(Y^*_i = y^*_i | X_i = x_i) = \sum_{i=1}^{n} \sum_{y_i=0}^{1} P(Y^*_i = y^*_i | Y_i = y_i, X_i = x_i)P(Y_i = y_i | X_i = x_i).
\]

Neuhaus (2002) extended the likelihood method to clustered and longitudinal binary data with responses being subject to misclassification. Lyles and Lin (2010) utilized the direct MLE method to handle the outcome misclassification and proposed a predictive value weighting approach to correct the covariate misclassification. Lyles et al. (2011) further illustrated the likelihood-based method with the use of internal validation data in case-control studies to address the outcome misclassification.

Since the likelihood-based methods could be computationally intensive, the mean score method has been proposed as an alternative choice (Pepe, 1992; Pepe et al., 1994). Yi (2017) further elaborated it to be a semiparametric approach. In addition to these methods, an EM algorithm was introduced by Magder and Hughes (1997) to handle the misclassified outcome, which is also applicable to the differential misclassification. Edwards et al. (2013) developed a
multiple imputation approach when validation data are available. Bayesian methods have also been established using prior distributions to correct the misclassified binary response (Prescott and Garthwaite, 2002; Daniel Paulino et al., 2003; Gerlach and Stamey, 2007).

Machine learning approaches have received increasing attention over the years to accommodate the misclassification effect. Xu et al. (2006) proposed a robust support vector machine (SVM) to account for the misclassification in the response using a robust loss function. Yang et al. (2007) developed a weighted SVM to improve the outlier sensitivity problem in standard SVM. Random forest was demonstrated to be the most robust classifier compared with the other ten classifiers in noisy data with a misclassified response (Folleco et al., 2008).

The effect of misclassification in response in other applications has also been explored. Mwalili et al. (2008) described an approach to correct the misclassification in a zero-inflated negative binomial regression model. Chen et al. (2014) introduced a marginal method for longitudinal ordinal data with misclassification in both response and covariates. Shu and Yi (2019a) studied the misclassified outcome with missingness in causal inference and proposed methods to correct misclassification and missingness effects simultaneously. An R package ipwErrorY was developed by Shu and Yi (2019b) for the corrected estimation of average treatment effect in causal inference with a misclassified response. In genetics studies, Zhang and Yi (2020) explored bivariate mixed responses with measurement error and misclassification, and used the likelihood-based methods to correct the measurement error and misclassification effects simultaneously. Zhang and Yi (2021) further proposed estimating equation approaches to deal with measurement error and misclassification in bivariate responses.

1.3 Objectives and Organizations

Although there is extensive literature on dynamic treatment regimes and measurement error/misclassification, to the best of our knowledge, the study of the measurement error or misclassification effect on dynamic treatment regimes is scarce. Most existing methods in DTR literature ignore the fact that the patient’s characteristics and the outcome may be contaminated with measurement error or misclassification. Consequently, the estimation of optimal DTR that relies on a collection of error-prone variables may be severely biased if those errors
are not addressed. Spicker and Wallace (2020) demonstrated the substantial impact of measurement error on dynamic weighted ordinary least squares. In this thesis, we extend to study and accommodate the effect of covariate measurement error and outcome misclassification in the contexts of DTR approaches, including Q-learning with continuous outcomes, Q-learning with binary outcomes, and dynamic weighted survival modeling.

The remainder of this thesis is organized as follows. In Chapter 2, we consider Q-learning with continuous outcomes, in which the covariates are considered mismeasured with repeated measurements. The regression calibration method is employed to correct the measurement error in Q-learning. In Chapter 3, we consider the situation of DTR with survival outcomes based on the DWSurv method for internal validation data with covariates being contaminated. Two correction methods, the k-nearest neighbors method and the weighted least squares method, are developed to eliminate the effect of error-prone covariates. In Chapter 4, we consider Q-learning with misclassified binary outcomes and internal validation data. The maximum likelihood estimation method is proposed to accommodate the misclassification effect in Q-learning. A summary of findings and future work is presented in Chapter 5.
Chapter 2

Dynamic Treatment Regimes with Measurement Error in Covariates: a Q-learning Approach

2.1 Introduction

In this chapter, we study the effect of covariate measurement error on Q-learning, a DTR method with continuous outcomes. The existing research work in the study of Q-learning assumes that the collected covariates are free from measurement error. However, this assumption is commonly violated in clinical practice. To date, it remains unclear whether and how much the covariate measurement error plays a role in affecting the performance of Q-learning. This chapter aims to study the effect of measurement error in covariates on Q-learning. Specifically, the impact of covariate measurement error in Q-learning will be examined, and regression calibration will be explored to adjust for the measurement error effect.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the Q-learning with mismeasured covariates and the use of the regression calibration method in Q-learning to correct the covariate measurement error. Simulation studies are carried out to examine the performance of the RC method in Section 2.3. In Section 2.4, we apply the proposed method to the STAR*D study. The conclusions are summarized in Section 2.5.
2.2 Methodology

2.2.1 Notations and Model Framework

We restrict the notations and framework set-up to DTR with two decision points. The data trajectory follows \(\{X_1, Z_1, A_1, X_2, Z_2, A_2, Y\} \), where \(X_j \) and \(Z_j \) are error-prone covariate vector and error-free covariate vector (\(j = 1, 2 \)). We consider a situation where the true covariate \(X_j \) is not observable at stage \(j \). Instead, there are up to \(k_j \) unbiased replicate surrogates observed for \(W_j = (W_{jl}, \ldots, W_{jk_j}) \), where \(W_{jl} \) (\(l = 1, \ldots, k_j \)) denotes a surrogate or mismeasured version of \(X_j \). The classical additive model is assumed to describe the relationship of \(W_{jl} \) and \(X_j \), that is \(W_{jl} = X_j + e_{jl} \), where the \(e_{jl} \) follow a normal distribution with mean 0 and covariance \(\Sigma_{ee} \) and are independent of each other and of all other variables. The binary treatment \(A_j \in \{1, 0\} \) is assigned at stage \(j \). \(Y \) is a continuous outcome observed at the end of the second stage.

In the presence of measurement error, the true covariate \(X_j \) is absent but only the replicate surrogates \(W_j \) are observed at stage \(j \). Then, the data trajectory is replaced by \(\{W_1, Z_1, A_1, W_2, Z_2, A_2, Y\} \).

In this case, the naive histories are formed as \(H^n_1 = (W_1, Z_1) \) and \(H^n_2 = (W_1, Z_1, A_1, W_2, Z_2) \). As a result, the Q-functions that use the naive histories are called naive Q-functions, which contain the replicate surrogates only rather than the true covariates. Then, the naive Q-functions are given by

\[
Q_2(H^n_2, A_2; \beta^n_2, \psi^n_2) = f(W_1, Z_1, A_1, W_2, Z_2; \beta^n_2) + g(W_1, Z_1, A_1, W_2, Z_2, A_2; \psi^n_2),
\]

\[
Q_1(H^n_1, A_1; \beta^n_1, \psi^n_1) = f(W_1, Z_1; \beta^n_1) + g(W_1, Z_1, A_1; \psi^n_1).
\]

Using the naive histories \(H^n_1 \) and \(H^n_2 \), the naive Q-functions can be further summarized as

\[
Q_2(H^n_2, A_2; \beta^n_2, \psi^n_2) = f(H^n_{20}; \beta^n_2) + g(H^n_{21}, A_2; \psi^n_2),
\]

\[
Q_1(H^n_1, A_1; \beta^n_1, \psi^n_1) = f(H^n_{10}; \beta^n_1) + g(H^n_{11}, A_1; \psi^n_1).
\]

If the functions \(f(\cdot) \) and \(g(\cdot) \) are modeled linearly, then the naive Q-function at stage \(j \) is
given by

\[Q_j(H^n_j, A_j; \beta^n_j, \psi^n_j) = \beta^n_j H^n_j + A_j(\psi^n_j H^n_a). \] \hspace{1cm} (2.2)

The naive Q-functions (2.1) and (2.2) are different from (1.1) and (1.2) in the sense that the original history is replaced with the naive history. By applying the ordinary least squares (OLS), the naive estimator \((\hat{\beta}^n_j, \hat{\psi}^n_j)\) can be obtained. According to Carroll et al. (2006) and Yi (2017), it is reasonable to believe that the naive estimator \((\hat{\beta}^n_j, \hat{\psi}^n_j)\) may be biased from \((\beta_j, \psi_j)\). Let the blip parameter \(\psi = (\psi_2, \psi_1)\), which is the parameter of primary interest for estimation. Then the naive blip estimator \(\hat{\psi}^n = (\hat{\psi}_2^n, \hat{\psi}_1^n)\) may be biased from \(\psi\). Consequently, we are motivated to assess the degree of biases in the parameter estimation and search for a good approximation \(\hat{X}_j\) to \(X_j\) using the available replicate surrogates in the data.

2.2.2 Regression Calibration

Prentice (1982) pioneered the regression calibration method to address covariate measurement error in a survival data context. It has now become a widely used error correction method, which can tackle the measurement error problems for both validation data and replicate data (Carroll et al., 2006). In this chapter, we focus on the study with replicate data. The key idea of regression calibration is to find the estimates \(\hat{X}\) of \(X\) using the available replicate surrogates and proceed with the analysis using the estimates \(\hat{X}\) so that the bias caused by the measurement error is reduced.

For any stage \(j\), we can obtain the RC estimates \(\hat{X}_j\) using the replicate surrogates \(W_j\) according to the formula (1.15). Then, by replacing the unobserved \(X_j\) with the corrected estimates \(\hat{X}_j\), the data trajectory is updated to be

\[\{\hat{X}_1, Z_1, A_1, \hat{X}_2, Z_2, A_2, Y\}. \]

The corresponding Q-functions using the corrected estimates \(\hat{X}_j\) are followed by

\[Q_2(H_2^{rc}, A_2; \beta_2^{rc}, \psi_2^{rc}) = f(\hat{X}_1, Z_1, A_1, \hat{X}_2, Z_2; \beta_2^{rc}) + g(\hat{X}_1, Z_1, A_1, \hat{X}_2, Z_2, A_2; \psi_2^{rc}), \]

\[Q_1(H_1^{rc}, A_1; \beta_1^{rc}, \psi_1^{rc}) = f(\hat{X}_1, Z_1; \beta_1^{rc}) + g(\hat{X}_1, Z_1, A_1; \psi_1^{rc}). \]

From the new data trajectory, we can obtain the RC histories in a form \(H_1^{rc} = (\hat{X}_1, Z_1)\) and
The Q-functions based on the RC histories are given by

\[
Q_2(H_{rc}^2, A_2; \beta_2^c, \psi_2^c) = f(H_{20}^{rc}, \beta_2^{rc}) + g(H_{21}^{rc}, A_2; \psi_2), \\
Q_1(H_1^{rc}, A_1; \beta_1^c, \psi_1^c) = f(H_{10}^{rc}, \beta_1^{rc}) + g(H_{11}^{rc}, A_1; \psi_1^c).
\]

(2.3)

If each Q-function in (2.3) is modeled linearly, then it can be expressed as

\[
Q_j(H_j^{rc}, A_j; \beta_j^c, \psi_j^c) = \beta_j^{rcT} H_j^{rc0} + A_j(\psi_j^{rcT} H_j^{rc1}).
\]

(2.4)

The modified Q-functions (2.3) and (2.4) are formalized based on the RC histories, which consist of the corrected estimates for the error-prone covariates and other variables. Then, the estimator \((\hat{\beta}_j^{rc}, \hat{\psi}_j^{rc})\) obtained from the Q-functions (2.3) is the RC estimator. It is discussed that the RC method yields consistent estimators in linear models but is approximately consistent in nonlinear models (Carroll et al., 2006; Yi, 2017). Thus, if the Q-function is in a form of (2.4), \((\hat{\beta}_j^{rc}, \hat{\psi}_j^{rc})\) is a consistent estimator of \((\beta_j, \psi_j)\) and \(\hat{\psi}^{rc} = (\hat{\psi}_2^{rc}, \hat{\psi}_1^{rc})\) consistently estimates the blip parameter \(\psi\). However, if the Q-function is in a nonlinear form, regression calibration can still provide a considerable bias reduction in the parameter estimation in Q-learning.

Modified Q-learning Algorithm with Regression Calibration:

The following modified Q-learning algorithm with regression calibration details the estimation procedure:

1. Parameterize the stage 2 Q-function

\[
Q_2(H_2^{rc}, A_2; \beta_2^c, \psi_2^c) = \beta_2^{rcT} H_2^{rc0} + A_2(\psi_2^{rcT} H_2^{rc1}).
\]

2. Apply OLS procedure to obtain the stage 2 estimator \((\hat{\beta}_2^{rc}, \hat{\psi}_2^{rc})\)

\[
(\hat{\beta}_2^{rc}, \hat{\psi}_2^{rc}) = \arg \min_{(\beta_2^{rc}, \psi_2^c)} \frac{1}{n} \sum_{i=1}^{n} (Y_i - Q_2(H_{i2}^{rc}, A_{i2}; \beta_2^{rc}, \psi_2^c))^2.
\]

3. Derive the stage 2 optimal treatment as \(\hat{a}_2^{opt} = I(\hat{\psi}_2^{rcT} H_{21}^{rc} > 0)\).

4. Construct the pseudo-outcome for estimation at stage 1

\[
\bar{Y}_1 = \hat{\beta}_2^{rcT} H_2^{rc0} + (\hat{\psi}_2^{rcT} H_2^{rc1})I(\hat{\psi}_2^{rcT} H_{21}^{rc} > 0).
\]
5. Parameterize the stage 1 Q-function

\[Q_1(H_{rc}^e, A_1; \beta_{rc}^e, \psi_{rc}^e) = \beta_{rc}^{eT} H_{10}^{re} + A_1(\psi_{rc}^{eT} H_{11}^{re}) . \]

6. Apply OLS procedure to obtain the stage 1 estimator \((\hat{\beta}_{rc}^{e}, \hat{\psi}_{rc}^{e})\)

\[(\hat{\beta}_{rc}^{e}, \hat{\psi}_{rc}^{e}) = \arg \min_{(\beta_{rc}^{e}, \psi_{rc}^{e})} \frac{1}{n} \sum_{i=1}^{n} (\tilde{Y}_{i1} - Q_i(H_{i1}^{rc}, A_{i1}; \beta_{rc}^{e}, \psi_{rc}^{e}))^2. \]

7. Derive the stage 1 optimal treatment as \(\hat{a}_{1}^{opt} = 1(\hat{\psi}_{rc}^{eT} H_{11}^{re} > 0)\).

This modified Q-learning algorithm distinguishes itself from the original Q-learning in Section (1.1.2) in the sense that the history used for the parameter estimation is only an approximation of the true underlying history.

2.3 Simulation Studies

In this section, we conduct a series of simulation studies to assess the measurement error effect on estimating the parameters and predicting the optimal treatment decision rules and optimal value function in Q-learning. The performance of the regression calibration method is examined and compared with the naive method in one-stage and two-stage Q-learning.

2.3.1 One-Stage Estimation

We begin with one-stage parameter estimation in Q-learning. Let \(X\) and \(Z\) be the error-prone and error-free covariates, respectively, which are generated from \(N(1, 1)\). Instead of observing \(X\), two replicate surrogates \(W_1, W_2\) are observed as mismeasured version for \(X\), modeled by \(W_l = X + e_l (l = 1, 2)\), where \(e_l \sim N(0, \sigma^2)\). \(\overline{W}\) is an average value of \(W_1\) and \(W_2\), given by \(\overline{W} = (W_1 + W_2)/2\). Treatment \(A \in \{1, 0\}\) is generated from a Bernoulli distribution with probability \(P(A = 1) = 1/2\). The outcome \(Y\) is generated by \(Y = 0.5 + \beta_z Z + \beta_x X + A(\psi_{10} + \psi_{11} X) + \epsilon\), where \((\beta, \psi) = (\beta_z, \beta_x, \psi_{10}, \psi_{11}) = (0.5, 1, 0.5, 1)\) and \(\epsilon \sim N(0, 1)\), independent of each other and all the other variables.

Four estimators are considered and compared in each round of 500 simulations: (1) true estimator \(\hat{\psi}^t\) obtained using the true covariate \(X\), (2) naive estimator \(\hat{\psi}^n\) obtained using a single surrogate \(W_1\), (3) naive estimator \(\hat{\psi}^{nb}\) obtained using the averaged surrogate \(\overline{W}\), (4) RC
estimator \(\hat{\psi}^{rc} \) obtained using the RC estimates \(\hat{X} \). Analyses are conducted under two different sample sizes of \(n = 500 \) and \(n = 2000 \). In each setting, the bias, empirical standard error (SE), root mean square error (RMSE) and 95% coverage probability (CP%) of the estimators are calculated using the standard bootstrap. The measurement error mechanism is assumed with \(\sigma \in \{0.2, 0.5, 0.8\} \), which reflects a small, moderate or large measurement error on the true covariate \(X \). Numerical results of \(n = 500 \) and \(n = 2000 \) are reported in Table 2.1 and Table 2.2, respectively. The estimates of \((\beta, \psi)\) under \(\sigma = 0.8 \) are visualized in Figure 2.1 for \(n = 500 \) and Figure 2.2 for \(n = 2000 \), respectively.

Tables 2.1 and 2.2 show that ignoring the covariate measurement error leads to biased results with noticeable biases, and the coverage probabilities are below the nominal level of 95%. As the degree of measurement error increases, the biases are more severe. In contrast, the RC estimator presents a satisfactory performance in correcting for the effect with small biases and coverage probabilities around 95%. Its performance also seems robust against the various magnitude of measurement error. Moreover, we also see that the sample size affects the performance of the methods. As the sample size becomes larger, the associated variability decreases in all the scenarios.

2.3.2 Two-Stage Estimation in Linear Case

This simulation study aims to investigate the effect of measurement error on the parameter estimation in DTR with two decision points. Let \(X_j \sim N(1, 1) \) and \(Z_j \sim N(0.5, 1) \) be the error-prone and error-free covariates at stage \(j \) \((j = 1, 2)\), respectively. A treatment \(A_j \in \{1, 0\} \) is assigned with probability \(P(A_j = 1) = 1/2 \). In practice, the number of replicate surrogates may vary from person to person. To mimic this situation, we consider a scenario with 3 replicate surrogates \(W_{j1}, W_{j2}, W_{j3} \), generated by \(W_{jl} = X_j + e_{jl} \) \((l = 1, 2, 3)\), where \(e_{jl} \sim N(0, \sigma_j^2) \). The degree of measurement error at stage \(j \) is reflected by \(\sigma_j \), which is assumed to be known or estimated from a pilot study. Each patient is assumed to possess at least \(W_{j1} \) and \(W_{j2} \) as primary proxies while \(W_{j3} \) may not be available. The degree of missingness in \(W_{j3} \) is set to be 80%. Let \(\bar{W}_j \) be an average value of \(W_{j1}, W_{j2} \) and \(W_{j3} \), \(\bar{W}_j = (W_{j1} + W_{j2} + W_{j3})/3 \). The outcome is modeled linearly in the treatment-free component as \(Y = X_1 + Z_1 + X_2 + Z_2 + \)
\[A_1(\psi_{10} + \psi_{11}X_1) + A_2(\psi_{20} + \psi_{21}X_2) + \epsilon, \]

where \(\psi = (\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}) = (0.5, -1, 0.5, -1) \) and \(\epsilon \sim N(0, 1) \), independent of each other and of all other variables. In each round of 500 simulations, a dataset with the size of 2000 patients is generated.

Four estimators are compared in each stage to evaluate the performance of the RC method: (1) true estimator \(\hat{\psi}^t \) obtained using the true covariate \(X_j \), (2) naive estimator \(\hat{\psi}^n \) obtained using a single surrogate \(W_{j1} \), (3) naive estimator \(\hat{\psi}^{nb} \) obtained using the averaged surrogate \(\bar{W}_j \), (4) RC estimator \(\hat{\psi}^{rc} \) obtained using the RC estimates \(\hat{X}_j \). The degree of measurement error \(\sigma_j \) is specified as 0.2, 0.5 and 0.8. Results for the bias, SE, RMSE and CP% of \(\hat{\psi} \) computed using the standard bootstrap are reported in Table 2.3. Figures 2.3, 2.4 and 2.5 provide the visualized parameter estimates under \(\sigma_2 = 0.8 \).

Similar to the findings in one-stage estimation, both naive blip estimators \(\hat{\psi}^n \) and \(\hat{\psi}^{nb} \) are biased due to the ignorance of the covariate measurement error. As the degree of measurement error increases, the biases of the naive estimators exacerbate. On the contrary, the RC estimator \(\hat{\psi}^{rc} \) yields small biases, and the coverage probabilities are close to the nominal level of 95%. Moreover, the performance of the RC estimator is also shown to be robust against the different magnitude of measurement error across the two stages.

2.3.3 Two-Stage Estimation in Nonlinear Case

In this section, we explore the measurement error effect on the estimation of blip parameters and optimal DTR in a nonlinear outcome model with two decision points. The data generation mechanism is the same with the one in (2.3.2) except that the outcome model is given by \(Y = f(X_1) + Z_1 + f(X_2) + Z_2 + A_1(\psi_{10} + \psi_{11}X_1) + A_2(\psi_{20} + \psi_{21}X_2) + \epsilon \), where \(\psi = (\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}) = (0.5, -1, 0.5, -1) \) and \(\epsilon \sim N(0, 1) \), independent of everything else. In the outcome model, three nonlinear functions are considered for \(X_j \): (1) \(f(X_j) = X_j + X_j^3 \) (cubic), (2) \(f(X_j) = X_j + e^{X_j} \) (exponential), (3) \(f(X_j) = X_j + \sin(X_j^2) + \cos(X_j^2) \) (complex).

We continue the analysis with four estimators \(\hat{\psi}', \hat{\psi}^n, \hat{\psi}^{nb} \) and \(\hat{\psi}^{rc} \). The measurement error \(\sigma_j \) is chosen from a range of \{0.2, 0.5, 0.8\}. Table 2.4 displays the results for the bias, SE, RMSE and CP% of \(\hat{\psi} \) over various measurement errors in each nonlinear case. The blip estimates for three nonlinear examples under \(\sigma = (\sigma_2, \sigma_1) = (0.8, 0.8) \) are visualized in Figures
2.6, 2.7 and 2.8. We repeat the set of simulations 500 times.

In general, the results in Table 2.4 reveal a larger measurement error effect with bigger biases and standard errors in the nonlinear case than those in the linear case. In comparison, the RC method remains effective and robust, though it produces slightly less reduced biases in this setting compared with that in (2.3.2), especially for the estimation of ψ_1. Moreover, in the three scenarios, the models containing the cubic function and exponential function in the treatment-free component are sensitive to measurement error.

2.3.4 Predicted Optimal DTR

In this section, we explore the effect of measurement error on the predicted optimal treatment decision rules by evaluating the proportion of optimally treated patients across two stages. In Carroll et al. (2006), there is an argument about the necessity of modeling measurement error in a predictive setting. However, considering the importance of correctly identifying and recommending the optimal treatments to the patients, it’s worth looking into the role of measurement error in predicting the optimal DTR in Q-learning.

The analysis follows the simulation design (2.3.2) and is done with the training data of 2000 patients and test data of 5000 patients. We first use the training data to produce three estimators ($\hat{\psi}_n$, $\hat{\psi}_{nb}$, $\hat{\psi}_{rc}$) with a single surrogate W_{j1}, averaged surrogate \overline{W}_j, and RC estimates \hat{X}_j, respectively. Then, we use the test data to find the prediction accuracy of optimal DTR, which is measured by the proportion of the patients whose optimal treatments are correctly identified in the test data at stage 2 and/or stage 1.

In each stage, six scenarios are considered to predict the optimal DTR using (1) naive estimator $\hat{\psi}^n$ and true covariate X_j (nt), (2) naive estimator $\hat{\psi}^{nb}$ and true covariate X_j (nbt), (3) RC estimator $\hat{\psi}^{rc}$ and true covariate X_j (ct), (4) naive estimator $\hat{\psi}^n$ and a single surrogate W_{j1} (nn), (5) naive estimator $\hat{\psi}^{nb}$ and averaged surrogate \overline{W}_j (nbnb), (6) RC estimator $\hat{\psi}^{rc}$ and RC estimates \hat{X}_j (cc), respectively. The first three scenarios aim to examine the measurement error effect on the prediction accuracy using the true covariates in the test data, while the last three evaluate the measurement error effect using the surrogates and corrected estimates in the test data. A total of 500 runs are simulated for each scenario. Numerical results are summarized in
Table 2.5. The prediction accuracy results under \((\sigma_2, \sigma_1) = (0.8, 0.8)\) are shown in Figure 2.9.

Table 2.5 shows that the existence of measurement error leads to a remarkable degradation of the prediction accuracy of optimal DTR, and it achieves the lowest prediction accuracy when a single surrogate is used. However, the RC method outperforms the naive method and significantly improves the prediction accuracy in all the scenarios. In the last two scenarios (nbnb and cc), the RC method yields similar accuracy results to the naive method, indicating that the worst scenario of using the RC method is comparable to that of using the naive method.

2.3.5 Predicted Optimal Value Function

In this study, we evaluate the measurement error effect on the predicted optimal value function, which is the expected outcome under the optimal treatment regimes. The data generation mechanism follows (2.3.4), and we continue with the three estimators \((\hat{\psi}^n, \hat{\psi}^{nb}, \hat{\psi}^{rc})\) obtained from the training data. We use the test data to predict the value functions under the (1) true optimal DTR (opt), (2) optimal DTR estimated using \(\hat{\psi}^n\) and \(X_j\) (nt), (3) optimal DTR estimated using \(\hat{\psi}^{nb}\) and \(X_j\) (nbt), (4) optimal DTR estimated using \(\hat{\psi}^{rc}\) and \(X_j\) (ct), (5) optimal DTR estimated using \(\hat{\psi}^n\) and \(W_{j1}\) (nn), (6) optimal DTR estimated using \(\hat{\psi}^{nb}\) and \(\hat{W}_j\) (nbnb), (7) optimal DTR estimated using \(\hat{\psi}^{rc}\) and \(\hat{X}_j\) (cc). Simulations are repeated 500 times. For each scenario, the average value function is computed and reported in Table 2.6, along with its standard deviations. Figure 2.10 also displayed the predicted optimal value function under \((\sigma_2, \sigma_1) = (0.8, 0.8)\).

In Table 2.6, we see that the measurement error effect is pronounced in terms of value function estimation under the optimal DTR. By comparison, the naive method generally yields lower value function estimates, and the optimal value function achieves the lowest value with a single surrogate being used, as expected. The RC method, however, improves the estimated optimal value function, even comparable to the true optimal value function when the true covariate is used.
2.4 Application to STAR*D Study

To illustrate the proposed correction method, we analyze the data arising from the Sequenced Treatment Alternatives to Relieve Depression study (Rush et al., 2003). The STAR*D study was designed as a multisite, multistage randomized controlled trial. It aimed to evaluate the effect of treatments for patients who suffered from major depressive disorder. The severity of depressive disorder was measured by the Quick Inventory of Depressive Symptomatology score, which was assessed by both patients (QIDS-S) and clinicians (QIDS-C). The entire study possessed four levels, in which one or a combination of treatments was assigned to the patients. At level 1, all of the patients were prescribed citalopram (CIT). At the end of level 1, if patients had QIDS ≤ 5, they achieved remission and were removed from the study but those who otherwise entered level 2. They were again randomized into one of the seven treatment options: either switching from CIT to one of four other treatment options (venlafaxine[VEN], sertraline[SER], bupropion[BUP], and cognitive therapy[CT]) or augmenting CIT with one of three treatments (BUP, CT and buspirone[BUS]). Then, at the end of level 2, they were again assessed with the QIDS score, and those who failed to achieve remission (QIDS ≤ 5) entered level 3. In level 3, they were randomized to receive either one of two new treatments (lithium[Li] or thyroid hormone[THY]) or one of two augmented treatment options (mirtazapine[MIRT], nortriptyline[NTP]). The QIDS score for remission was evaluated at the end of level 3.

In the literature, depression is found to be significantly associated with functional impairment (Greer et al., 2010). Patients with major depressive disorder were shown to have considerable deficits in the physical and social functioning (Lin et al., 2014; Trivedi et al., 2013). IsHak et al. (2016) analyzed the STAR*D data and pointed out the importance of developing individualized treatments for patients with a major depressive disorder to improve their long-term functioning. The perceived functional impairment is measured at each level of the STAR*D study by the Work and Social Adjustment Scale (WSAS) score, which reflects the functioning aspects of the work, home management, social activities, private activities, and relationships with others.

We follow the criteria in the literature (Chakraborty, 2013; Chakraborty et al., 2013; Wal-
lace et al., 2019) to select the data, where the two-stage DTR is considered by combining level 2 and level 2A as the first stage and treating level 3 as the second stage. The stage j treatment A_j is coded based on whether the treatment involves selective serotonin reuptake inhibitor ($A_j = 1$) or not ($A_j = 0$). Three tailoring variables are considered, Q_j: the QIDS-C score measured at the beginning of each level j, S_j: the QIDS slope, the change in QIDS-C divided by the time in the previous level, and P_j: the patients’ preference indicating whether they wished to switch previous treatment ($P_j = 1$), to augment previous treatment or have no preference ($P_j = 0$). The outcome of interest is defined as the negative WSAS score across two stages

$$Y = R_1 \cdot Y_1 + (1 - R_1) \cdot \frac{1}{2}(Y_1 + Y_2),$$

where Y_1 and Y_2 are the negative WSAS scores observed at the end of stage 1 and stage 2, and R_1 is an indicator of whether the patients achieved remission ($R_1 = 1$) or not ($R_1 = 0$) at the end of stage 1. The selected data contain 1438 patients at stage 1, of whom 377 patients have entered the stage 2.

The previous analyses of the STAR*D data often assume that the QIDS-C score is error-free, which is usually not the case in practice. Spicker and Wallace (2020) studied the measurement error effect on sequential optimal treatment rules, assuming that the true QIDS score was unknown and both the QIDS-C score and QIDS-S score were considered as the repeated measurements of the true underlying QIDS score. In this work, we are interested in estimating the optimal treatment decision rules using Q-learning that maximize the negative WSAS score, provided that the QIDS score is subject to measurement error. We compare three estimators, including two naive estimators using the QIDS-C score or QIDS-S score as the tailoring variable and the RC estimator using the corrected estimates computed by (QIDS-C, QIDS-S). The analysis results of the parameter estimates, bootstrap standard error, and 95% confidence interval are summarized in Table 2.7.

In Table 2.7, the parameter estimates of each stage vary remarkably between the naive method and the RC method, leading to different optimal treatment decision rules. More importantly, the results show that the significance of the tailoring variable differs between these two methods. The patients’ preference to switch treatment and QIDS score have significant treatment effects in the interaction with the second stage treatment when the QIDS-S score is used.
However, by using the RC estimates, no significant term is observed across the two stages. It emphasizes that the measurement error effect is not negligible in an error-prone setting since it is possible to alter the estimation of optimal treatment decision rules and the significance of the tailoring variable.

2.5 Conclusion

This study aims to build a bridge between Q-learning with continuous outcomes and covariate measurement error where there exist replicated measurements for the error-prone covariates. It is demonstrated in both simulation studies and data analysis that ignoring measurement error in covariates will lead to severely biased results. To adjust for the measurement error effect, we apply the regression calibration method in Q-learning and present a modified Q-learning algorithm. On average, the RC method shows superior performance over the naive method in all the scenarios in terms of bias-reduction and coverage probability, especially in the linear Q-learning setting. Moreover, the RC method is generally robust against the magnitude of measurement error.

Another important topic discussed in the study is evaluating the performance of the proposed method from a predictive perspective. We predict the future optimal treatment decision rules by finding the proportion of patients whose optimal treatments are correctly identified across two stages. It turns out that using a single mismeasured covariate leads to the worst performance among all methods. In contrast, the RC method improves the prediction accuracy even when the degree of measurement error is high. Moreover, we also compare the naive method and RC method in terms of value function estimation. The optimal value function estimated from the naive method is generally lower, but the RC method enhances the optimal value function comparable to the true optimal value function.
Table 2.1: One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) (n = 500)

<table>
<thead>
<tr>
<th>σ</th>
<th>$\hat{\psi}$</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>$\hat{\psi}_{11}$</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>$\hat{\psi}^t$</td>
<td></td>
<td>0.002</td>
<td>0.133</td>
<td>0.133</td>
<td>96.8</td>
<td>-0.002</td>
<td>0.095</td>
<td>0.095</td>
<td>95.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>0.043</td>
<td>0.137</td>
<td>0.143</td>
<td>94.4</td>
<td>-0.043</td>
<td>0.096</td>
<td>0.106</td>
<td>93.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{nb}$</td>
<td></td>
<td>0.022</td>
<td>0.134</td>
<td>0.136</td>
<td>95.4</td>
<td>-0.023</td>
<td>0.095</td>
<td>0.098</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td></td>
<td>0.002</td>
<td>0.137</td>
<td>0.137</td>
<td>96.2</td>
<td>-0.003</td>
<td>0.097</td>
<td>0.097</td>
<td>95.8</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>0.209</td>
<td>0.149</td>
<td>0.257</td>
<td>70.4</td>
<td>-0.208</td>
<td>0.100</td>
<td>0.231</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{nb}$</td>
<td></td>
<td>0.118</td>
<td>0.143</td>
<td>0.185</td>
<td>86.4</td>
<td>-0.117</td>
<td>0.098</td>
<td>0.153</td>
<td>74.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td></td>
<td>0.008</td>
<td>0.151</td>
<td>0.152</td>
<td>94.4</td>
<td>-0.007</td>
<td>0.110</td>
<td>0.110</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>0.406</td>
<td>0.160</td>
<td>0.436</td>
<td>29.6</td>
<td>-0.403</td>
<td>0.099</td>
<td>0.414</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{nb}$</td>
<td></td>
<td>0.254</td>
<td>0.152</td>
<td>0.296</td>
<td>59.8</td>
<td>-0.254</td>
<td>0.100</td>
<td>0.273</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td></td>
<td>0.012</td>
<td>0.176</td>
<td>0.176</td>
<td>94.8</td>
<td>-0.012</td>
<td>0.132</td>
<td>0.133</td>
<td>94.8</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2: One-stage estimates of blip parameters (ψ_0, ψ_1) ($n = 2000$)

<table>
<thead>
<tr>
<th>σ</th>
<th>$\hat{\psi}$</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{11}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ψ_{10}</td>
<td>Bias</td>
<td>SE</td>
<td>RMSE</td>
<td>CP%</td>
<td>ψ_{11}</td>
<td>Bias</td>
<td>SE</td>
<td>RMSE</td>
<td>CP%</td>
</tr>
<tr>
<td>0.2</td>
<td>$\hat{\psi}^t$</td>
<td>-0.002</td>
<td>0.066</td>
<td>0.066</td>
<td>95.4</td>
<td>0.004</td>
<td>0.047</td>
<td>0.047</td>
<td>96.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^a$</td>
<td>0.035</td>
<td>0.068</td>
<td>0.077</td>
<td>93.4</td>
<td>-0.034</td>
<td>0.048</td>
<td>0.059</td>
<td>88.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{ab}$</td>
<td>0.016</td>
<td>0.068</td>
<td>0.070</td>
<td>94.6</td>
<td>-0.015</td>
<td>0.048</td>
<td>0.05</td>
<td>95.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>94.8</td>
<td>0.004</td>
<td>0.048</td>
<td>0.049</td>
<td>96.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>$\hat{\psi}^a$</td>
<td>0.203</td>
<td>0.075</td>
<td>0.216</td>
<td>21.0</td>
<td>-0.200</td>
<td>0.050</td>
<td>0.206</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{ab}$</td>
<td>0.115</td>
<td>0.072</td>
<td>0.135</td>
<td>65.8</td>
<td>-0.112</td>
<td>0.049</td>
<td>0.122</td>
<td>38.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td>0.004</td>
<td>0.076</td>
<td>0.076</td>
<td>94.0</td>
<td>-0.001</td>
<td>0.055</td>
<td>0.055</td>
<td>95.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>$\hat{\psi}^a$</td>
<td>0.388</td>
<td>0.080</td>
<td>0.396</td>
<td>0.2</td>
<td>-0.389</td>
<td>0.049</td>
<td>0.392</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{ab}$</td>
<td>0.241</td>
<td>0.076</td>
<td>0.252</td>
<td>11.8</td>
<td>-0.241</td>
<td>0.050</td>
<td>0.246</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^{rc}$</td>
<td>-0.002</td>
<td>0.088</td>
<td>0.088</td>
<td>94.4</td>
<td>0.002</td>
<td>0.066</td>
<td>0.066</td>
<td>93.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3: Two-stage estimates of blip parameters (ψ_{20}, ψ_{21}, ψ_{10}, ψ_{11}) in linear case

<table>
<thead>
<tr>
<th>σ_2</th>
<th>σ_1</th>
<th>ψ</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ'</td>
<td>0.000</td>
<td>0.072</td>
<td>0.072</td>
<td>97.2</td>
<td>0.001</td>
<td>0.052</td>
<td>0.052</td>
<td>97.8</td>
<td>-0.007</td>
<td>0.105</td>
<td>0.105</td>
<td>96.2</td>
<td>0.003</td>
<td>0.075</td>
<td>0.075</td>
<td>96.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ'</td>
<td>0.000</td>
<td>0.072</td>
<td>0.072</td>
<td>97.2</td>
<td>0.001</td>
<td>0.052</td>
<td>0.052</td>
<td>97.8</td>
<td>-0.007</td>
<td>0.105</td>
<td>0.105</td>
<td>96.2</td>
<td>0.003</td>
<td>0.075</td>
<td>0.075</td>
<td>96.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ'</td>
<td>0.000</td>
<td>0.072</td>
<td>0.072</td>
<td>97.2</td>
<td>0.001</td>
<td>0.052</td>
<td>0.052</td>
<td>97.8</td>
<td>-0.007</td>
<td>0.105</td>
<td>0.105</td>
<td>96.2</td>
<td>0.003</td>
<td>0.075</td>
<td>0.075</td>
<td>96.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_n</td>
<td>-0.039</td>
<td>0.072</td>
<td>0.082</td>
<td>94.2</td>
<td>0.039</td>
<td>0.051</td>
<td>0.064</td>
<td>90.0</td>
<td>-0.045</td>
<td>0.104</td>
<td>0.114</td>
<td>91.8</td>
<td>0.041</td>
<td>0.073</td>
<td>0.084</td>
<td>93.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_n</td>
<td>-0.039</td>
<td>0.073</td>
<td>0.083</td>
<td>94.4</td>
<td>0.040</td>
<td>0.052</td>
<td>0.065</td>
<td>90.6</td>
<td>-0.206</td>
<td>0.101</td>
<td>0.229</td>
<td>45.8</td>
<td>0.202</td>
<td>0.067</td>
<td>0.213</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_n</td>
<td>-0.040</td>
<td>0.075</td>
<td>0.085</td>
<td>93.4</td>
<td>0.040</td>
<td>0.054</td>
<td>0.067</td>
<td>90.8</td>
<td>-0.396</td>
<td>0.096</td>
<td>0.407</td>
<td>0.8</td>
<td>0.392</td>
<td>0.059</td>
<td>0.396</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_{nb}</td>
<td>-0.018</td>
<td>0.072</td>
<td>0.074</td>
<td>96.4</td>
<td>0.019</td>
<td>0.051</td>
<td>0.055</td>
<td>95.8</td>
<td>-0.025</td>
<td>0.105</td>
<td>0.108</td>
<td>94.8</td>
<td>0.022</td>
<td>0.074</td>
<td>0.077</td>
<td>96.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_{nb}</td>
<td>-0.018</td>
<td>0.073</td>
<td>0.075</td>
<td>95.8</td>
<td>0.019</td>
<td>0.052</td>
<td>0.055</td>
<td>95.6</td>
<td>-0.111</td>
<td>0.103</td>
<td>0.151</td>
<td>79.8</td>
<td>0.108</td>
<td>0.071</td>
<td>0.129</td>
<td>68.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_{nb}</td>
<td>-0.018</td>
<td>0.074</td>
<td>0.077</td>
<td>95.6</td>
<td>0.019</td>
<td>0.053</td>
<td>0.056</td>
<td>96.0</td>
<td>-0.236</td>
<td>0.100</td>
<td>0.257</td>
<td>33.0</td>
<td>0.233</td>
<td>0.066</td>
<td>0.242</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_{rc}</td>
<td>0.000</td>
<td>0.072</td>
<td>0.072</td>
<td>97.0</td>
<td>0.000</td>
<td>0.052</td>
<td>0.052</td>
<td>97.8</td>
<td>-0.007</td>
<td>0.106</td>
<td>0.106</td>
<td>95.8</td>
<td>0.004</td>
<td>0.075</td>
<td>0.076</td>
<td>96.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_{rc}</td>
<td>0.000</td>
<td>0.073</td>
<td>0.073</td>
<td>96.4</td>
<td>0.000</td>
<td>0.053</td>
<td>0.053</td>
<td>97.8</td>
<td>-0.007</td>
<td>0.103</td>
<td>0.109</td>
<td>95.6</td>
<td>0.004</td>
<td>0.079</td>
<td>0.079</td>
<td>96.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_{rc}</td>
<td>0.000</td>
<td>0.075</td>
<td>0.075</td>
<td>96.4</td>
<td>0.000</td>
<td>0.054</td>
<td>0.054</td>
<td>97.6</td>
<td>-0.007</td>
<td>0.114</td>
<td>0.115</td>
<td>95.2</td>
<td>0.004</td>
<td>0.086</td>
<td>0.086</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_{nrc}</td>
<td>-0.203</td>
<td>0.070</td>
<td>0.214</td>
<td>17.2</td>
<td>0.201</td>
<td>0.047</td>
<td>0.206</td>
<td>0.4</td>
<td>-0.037</td>
<td>0.105</td>
<td>0.111</td>
<td>94.0</td>
<td>0.038</td>
<td>0.074</td>
<td>0.083</td>
<td>93.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_{nrc}</td>
<td>-0.203</td>
<td>0.072</td>
<td>0.216</td>
<td>18.2</td>
<td>0.201</td>
<td>0.048</td>
<td>0.207</td>
<td>0.4</td>
<td>-0.199</td>
<td>0.101</td>
<td>0.223</td>
<td>50.6</td>
<td>0.199</td>
<td>0.068</td>
<td>0.211</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_{nrc}</td>
<td>-0.204</td>
<td>0.074</td>
<td>0.217</td>
<td>20.0</td>
<td>0.201</td>
<td>0.050</td>
<td>0.207</td>
<td>0.6</td>
<td>-0.389</td>
<td>0.096</td>
<td>0.401</td>
<td>1.6</td>
<td>0.390</td>
<td>0.059</td>
<td>0.394</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_{nbnc}</td>
<td>-0.106</td>
<td>0.071</td>
<td>0.128</td>
<td>68.2</td>
<td>0.104</td>
<td>0.049</td>
<td>0.116</td>
<td>45.0</td>
<td>-0.016</td>
<td>0.105</td>
<td>0.107</td>
<td>95.6</td>
<td>0.017</td>
<td>0.075</td>
<td>0.077</td>
<td>95.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_{nbnc}</td>
<td>-0.107</td>
<td>0.072</td>
<td>0.128</td>
<td>68.4</td>
<td>0.105</td>
<td>0.050</td>
<td>0.116</td>
<td>45.8</td>
<td>-0.102</td>
<td>0.103</td>
<td>0.145</td>
<td>83.0</td>
<td>0.103</td>
<td>0.072</td>
<td>0.126</td>
<td>70.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_{nbnc}</td>
<td>-0.107</td>
<td>0.073</td>
<td>0.130</td>
<td>68.4</td>
<td>0.105</td>
<td>0.051</td>
<td>0.117</td>
<td>46.4</td>
<td>-0.228</td>
<td>0.100</td>
<td>0.249</td>
<td>36.8</td>
<td>0.229</td>
<td>0.067</td>
<td>0.238</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>ψ_{rcnc}</td>
<td>0.002</td>
<td>0.071</td>
<td>0.077</td>
<td>97.0</td>
<td>0.000</td>
<td>0.058</td>
<td>0.058</td>
<td>97.6</td>
<td>0.003</td>
<td>0.115</td>
<td>0.115</td>
<td>95.4</td>
<td>-0.002</td>
<td>0.086</td>
<td>0.086</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ψ_{rcnc}</td>
<td>0.002</td>
<td>0.072</td>
<td>0.079</td>
<td>97.0</td>
<td>0.000</td>
<td>0.058</td>
<td>0.058</td>
<td>97.6</td>
<td>0.003</td>
<td>0.115</td>
<td>0.115</td>
<td>95.4</td>
<td>0.002</td>
<td>0.086</td>
<td>0.086</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>ψ_{rcnc}</td>
<td>0.002</td>
<td>0.075</td>
<td>0.077</td>
<td>97.0</td>
<td>0.000</td>
<td>0.058</td>
<td>0.058</td>
<td>97.6</td>
<td>0.003</td>
<td>0.115</td>
<td>0.115</td>
<td>95.4</td>
<td>0.002</td>
<td>0.086</td>
<td>0.086</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.4: Two-stage estimates of blip parameters (ψ_20, ψ_21, ψ_10, ψ_11) in nonlinear case

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$\hat{\psi}_t$</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cub</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>96.2</td>
<td>0.001</td>
<td>0.049</td>
<td>0.049</td>
<td>96.4</td>
<td>0.021</td>
<td>0.538</td>
<td>0.538</td>
<td>95.0</td>
<td>0.002</td>
<td>0.381</td>
<td>0.381</td>
<td>93.6</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>-0.047</td>
<td>0.138</td>
<td>0.146</td>
<td>92.6</td>
<td>0.043</td>
<td>0.149</td>
<td>0.155</td>
<td>92.8</td>
<td>-0.018</td>
<td>0.424</td>
<td>0.425</td>
<td>95.4</td>
<td>0.031</td>
<td>0.319</td>
<td>0.321</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>Com</td>
<td>-0.025</td>
<td>0.108</td>
<td>0.111</td>
<td>95.0</td>
<td>0.018</td>
<td>0.110</td>
<td>0.112</td>
<td>93.8</td>
<td>0.000</td>
<td>0.422</td>
<td>0.422</td>
<td>95.2</td>
<td>0.013</td>
<td>0.310</td>
<td>0.310</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td>Cub</td>
<td>0.007</td>
<td>0.394</td>
<td>0.394</td>
<td>94.8</td>
<td>-0.022</td>
<td>0.444</td>
<td>0.444</td>
<td>94.8</td>
<td>-0.029</td>
<td>0.625</td>
<td>0.626</td>
<td>96.4</td>
<td>0.022</td>
<td>0.575</td>
<td>0.575</td>
<td>95.4</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>-0.210</td>
<td>0.253</td>
<td>0.329</td>
<td>84.8</td>
<td>0.202</td>
<td>0.277</td>
<td>0.342</td>
<td>85.6</td>
<td>-0.195</td>
<td>0.423</td>
<td>0.466</td>
<td>92.2</td>
<td>0.215</td>
<td>0.359</td>
<td>0.418</td>
<td>90.6</td>
<td></td>
</tr>
<tr>
<td>Com</td>
<td>-0.382</td>
<td>0.302</td>
<td>0.487</td>
<td>74.8</td>
<td>0.373</td>
<td>0.302</td>
<td>0.479</td>
<td>73.6</td>
<td>-0.398</td>
<td>0.407</td>
<td>0.569</td>
<td>84.0</td>
<td>0.386</td>
<td>0.349</td>
<td>0.520</td>
<td>75.4</td>
<td></td>
</tr>
<tr>
<td>Cub</td>
<td>0.009</td>
<td>0.321</td>
<td>0.321</td>
<td>95.8</td>
<td>-0.021</td>
<td>0.367</td>
<td>0.367</td>
<td>94.8</td>
<td>-0.021</td>
<td>0.496</td>
<td>0.497</td>
<td>96.6</td>
<td>0.014</td>
<td>0.466</td>
<td>0.466</td>
<td>95.2</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>-0.228</td>
<td>0.264</td>
<td>0.349</td>
<td>86.8</td>
<td>0.213</td>
<td>0.285</td>
<td>0.356</td>
<td>87.6</td>
<td>-0.096</td>
<td>0.429</td>
<td>0.439</td>
<td>94.8</td>
<td>0.115</td>
<td>0.344</td>
<td>0.362</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td>Com</td>
<td>0.001</td>
<td>0.074</td>
<td>0.074</td>
<td>96.0</td>
<td>0.001</td>
<td>0.057</td>
<td>0.057</td>
<td>96.6</td>
<td>0.001</td>
<td>0.105</td>
<td>0.105</td>
<td>96.6</td>
<td>0.001</td>
<td>0.078</td>
<td>0.078</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>Cub</td>
<td>0.001</td>
<td>0.074</td>
<td>0.074</td>
<td>96.0</td>
<td>0.001</td>
<td>0.057</td>
<td>0.057</td>
<td>96.6</td>
<td>0.001</td>
<td>0.105</td>
<td>0.105</td>
<td>96.6</td>
<td>0.001</td>
<td>0.078</td>
<td>0.078</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>0.001</td>
<td>0.074</td>
<td>0.074</td>
<td>96.0</td>
<td>0.001</td>
<td>0.057</td>
<td>0.057</td>
<td>96.6</td>
<td>0.001</td>
<td>0.105</td>
<td>0.105</td>
<td>96.6</td>
<td>0.001</td>
<td>0.078</td>
<td>0.078</td>
<td>95.6</td>
<td></td>
</tr>
</tbody>
</table>

Cub: cubic, exp: exponential, com: complex

Legend
- $\hat{\psi}_t$: Two-stage estimate of ψ_t
- $\hat{\psi}_n$: Two-stage estimate of ψ_n
- $\hat{\psi}_{nb}$: Two-stage estimate of ψ_{nb}
- $\hat{\psi}_{rc}$: Two-stage estimate of ψ_{rc}

Scenario (0.2, 0.2): $\hat{\psi}_t$, $\hat{\psi}_n$, $\hat{\psi}_{nb}$, $\hat{\psi}_{rc}$

Scenario (0.5, 0.5): $\hat{\psi}_t$, $\hat{\psi}_n$, $\hat{\psi}_{nb}$, $\hat{\psi}_{rc}$

Scenario (0.8, 0.8): $\hat{\psi}_t$, $\hat{\psi}_n$, $\hat{\psi}_{nb}$, $\hat{\psi}_{rc}$

Notes:
- Bias: Bias of the estimate
- SE: Standard error of the estimate
- RMSE: Root mean square error of the estimate
- CP%: Coverage percentage of the confidence interval

(0.2, 0.2) refers to the scenario with $\sigma_2 = 0.2$ and $\sigma_1 = 0.2$
Table 2.5: Prediction accuracy of optimal DTR (%)

<table>
<thead>
<tr>
<th>σ_2</th>
<th>σ_1</th>
<th>nt</th>
<th>nbt</th>
<th>ct</th>
<th>nn</th>
<th>nbnb</th>
<th>cc</th>
<th>nt</th>
<th>nbt</th>
<th>ct</th>
<th>nn</th>
<th>nbnb</th>
<th>cc</th>
<th>nt</th>
<th>nbt</th>
<th>ct</th>
<th>nn</th>
<th>nbnb</th>
<th>cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>98.3</td>
<td>98.4</td>
<td>98.5</td>
<td>94.3</td>
<td>95.9</td>
<td>95.9</td>
<td>97.5</td>
<td>97.6</td>
<td>97.7</td>
<td>94.0</td>
<td>95.5</td>
<td>95.5</td>
<td>95.9</td>
<td>96.1</td>
<td>96.2</td>
<td>88.6</td>
<td>91.6</td>
<td>91.6</td>
</tr>
<tr>
<td>0.5</td>
<td>98.3</td>
<td>98.4</td>
<td>98.5</td>
<td>94.2</td>
<td>95.9</td>
<td>95.9</td>
<td>95.2</td>
<td>96.8</td>
<td>97.7</td>
<td>86.9</td>
<td>90.5</td>
<td>90.5</td>
<td>93.6</td>
<td>95.3</td>
<td>96.1</td>
<td>81.9</td>
<td>86.8</td>
<td>86.8</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>98.2</td>
<td>98.4</td>
<td>98.4</td>
<td>94.2</td>
<td>95.9</td>
<td>95.9</td>
<td>89.6</td>
<td>94.5</td>
<td>97.6</td>
<td>81.3</td>
<td>85.9</td>
<td>85.9</td>
<td>88.0</td>
<td>93.0</td>
<td>96.0</td>
<td>76.6</td>
<td>82.4</td>
<td>82.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2.0</td>
<td>95.6</td>
<td>97.5</td>
<td>98.4</td>
<td>87.0</td>
<td>90.7</td>
<td>90.7</td>
<td>97.6</td>
<td>97.6</td>
<td>97.7</td>
<td>94.0</td>
<td>95.5</td>
<td>95.5</td>
<td>93.3</td>
<td>95.2</td>
<td>96.1</td>
<td>81.8</td>
<td>86.6</td>
<td>86.6</td>
</tr>
<tr>
<td>0.5</td>
<td>95.6</td>
<td>97.5</td>
<td>98.4</td>
<td>87.0</td>
<td>90.7</td>
<td>90.7</td>
<td>95.4</td>
<td>97.0</td>
<td>97.6</td>
<td>86.9</td>
<td>90.5</td>
<td>90.5</td>
<td>91.2</td>
<td>94.6</td>
<td>96.1</td>
<td>75.6</td>
<td>82.1</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>95.5</td>
<td>97.5</td>
<td>98.4</td>
<td>87.0</td>
<td>90.7</td>
<td>90.7</td>
<td>89.9</td>
<td>94.8</td>
<td>97.6</td>
<td>81.3</td>
<td>85.9</td>
<td>85.9</td>
<td>85.9</td>
<td>92.4</td>
<td>96.0</td>
<td>70.7</td>
<td>77.9</td>
<td>77.9</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>2.0</td>
<td>89.9</td>
<td>95.0</td>
<td>98.5</td>
<td>81.4</td>
<td>86.1</td>
<td>86.1</td>
<td>97.6</td>
<td>97.6</td>
<td>97.7</td>
<td>94.0</td>
<td>95.5</td>
<td>95.5</td>
<td>87.7</td>
<td>92.8</td>
<td>96.2</td>
<td>76.5</td>
<td>82.2</td>
<td>82.2</td>
</tr>
<tr>
<td>0.5</td>
<td>89.8</td>
<td>95.0</td>
<td>98.5</td>
<td>81.4</td>
<td>86.1</td>
<td>86.1</td>
<td>95.3</td>
<td>96.9</td>
<td>97.6</td>
<td>86.8</td>
<td>90.5</td>
<td>90.5</td>
<td>85.7</td>
<td>92.0</td>
<td>96.2</td>
<td>70.7</td>
<td>77.9</td>
<td>77.9</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>89.8</td>
<td>94.9</td>
<td>98.4</td>
<td>81.4</td>
<td>86.0</td>
<td>86.0</td>
<td>89.7</td>
<td>94.6</td>
<td>97.6</td>
<td>81.2</td>
<td>85.9</td>
<td>85.9</td>
<td>80.6</td>
<td>89.8</td>
<td>96.0</td>
<td>66.1</td>
<td>73.9</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>nbt</td>
<td>nn</td>
<td>cc</td>
<td>mnb</td>
<td>c</td>
<td>opt</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.315</td>
<td>0.05</td>
<td>3.202</td>
<td>0.047</td>
<td>3.286</td>
<td>0.051</td>
<td>3.351</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>3.355</td>
<td>0.05</td>
<td>3.076</td>
<td>0.051</td>
<td>3.258</td>
<td>0.051</td>
<td>3.321</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>3.373</td>
<td>0.05</td>
<td>2.804</td>
<td>0.051</td>
<td>3.241</td>
<td>0.048</td>
<td>3.312</td>
<td>0.051</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: Predicted optimal value function (standard deviations)
Table 2.7: Analysis results of the STAR*D data for the blip parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>Clinicians</th>
<th></th>
<th></th>
<th>Patients</th>
<th></th>
<th></th>
<th>Corrected</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>SE</td>
<td>95%CI</td>
<td>Est</td>
<td>SE</td>
<td>95%CI</td>
<td>Est</td>
<td>SE</td>
<td>95%CI</td>
</tr>
<tr>
<td>A_2</td>
<td>-0.330</td>
<td>0.455</td>
<td>(-1.221, 0.561)</td>
<td>-0.436</td>
<td>0.367</td>
<td>(-1.155, 0.284)</td>
<td>-0.351</td>
<td>0.396</td>
<td>(-1.128, 0.426)</td>
</tr>
<tr>
<td>A_2P_2</td>
<td>0.243</td>
<td>0.436</td>
<td>(-0.611, 1.098)</td>
<td>0.620</td>
<td>0.252</td>
<td>(0.127, 1.113)</td>
<td>0.404</td>
<td>0.271</td>
<td>(-0.128, 0.935)</td>
</tr>
<tr>
<td>A_2S_2</td>
<td>-0.205</td>
<td>1.260</td>
<td>(-2.674, 2.264)</td>
<td>-1.011</td>
<td>0.979</td>
<td>(-2.931, 0.908)</td>
<td>-0.539</td>
<td>1.316</td>
<td>(-3.119, 2.041)</td>
</tr>
<tr>
<td>A_2Q_2</td>
<td>0.441</td>
<td>0.765</td>
<td>(-1.060, 1.941)</td>
<td>0.936</td>
<td>0.459</td>
<td>(0.036, 1.836)</td>
<td>0.702</td>
<td>0.644</td>
<td>(-0.561, 1.965)</td>
</tr>
<tr>
<td>A_1</td>
<td>-0.194</td>
<td>0.159</td>
<td>(-0.506, 0.117)</td>
<td>-0.084</td>
<td>0.167</td>
<td>(-0.411, 0.244)</td>
<td>-0.150</td>
<td>0.157</td>
<td>(-0.458, 0.159)</td>
</tr>
<tr>
<td>A_1P_1</td>
<td>0.186</td>
<td>0.183</td>
<td>(-0.173, 0.545)</td>
<td>0.089</td>
<td>0.187</td>
<td>(-0.278, 0.457)</td>
<td>0.148</td>
<td>0.178</td>
<td>(-0.201, 0.497)</td>
</tr>
<tr>
<td>A_1S_1</td>
<td>0.062</td>
<td>0.091</td>
<td>(-0.116, 0.241)</td>
<td>0.069</td>
<td>0.093</td>
<td>(-0.114, 0.252)</td>
<td>0.090</td>
<td>0.091</td>
<td>(-0.088, 0.268)</td>
</tr>
<tr>
<td>A_1Q_1</td>
<td>0.048</td>
<td>0.066</td>
<td>(-0.081, 0.178)</td>
<td>-0.064</td>
<td>0.084</td>
<td>(-0.229, 0.101)</td>
<td>-0.014</td>
<td>0.070</td>
<td>(-0.152, 0.124)</td>
</tr>
</tbody>
</table>

Est: estimates, SE: standard error, CI: confidence interval
Figure 2.1: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\sigma = 0.8$ (n = 500)

Figure 2.2: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\sigma = 0.8$ (n = 2000)
Figure 2.3: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.2)\)

Figure 2.4: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.5)\)
Figure 2.5: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

Figure 2.6: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with cubic term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)
Figure 2.7: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with exponential term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)

Figure 2.8: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with complex term and \((\sigma_2, \sigma_1) = (0.8, 0.8)\)
Figure 2.9: Prediction accuracy of optimal DTR with $(\sigma^2, \sigma^1) = (0.8, 0.8)$
Figure 2.10: Predicted optimal value function with \((\sigma_2, \sigma_1) = (0.8, 0.8)\)
Chapter 3

Dynamic Treatment Regimes with Survival Response and Covariate Measurement Error

3.1 Introduction

In the last chapter, we explore the effect of measurement error in covariates on DTR with continuous outcomes. This chapter examines the covariate measurement error effect on DTR with survival outcomes. In particular, the error-prone covariates are incorporated in the dynamic weighted survival modeling proposed by Simoneau et al. (2020b), given that internal validation data are available in each stage. The validation data contain both the true observations and continuous auxiliary variables/surrogates for the covariates. Two correction methods are proposed in DWSurv to handle the mismeasured and incomplete covariates. The first method is the k-nearest neighbors (kNN) method, which directly deals with the continuous surrogates to eliminate the measurement error effect in DWSurv. The second method is an extension of the weighted least squares method developed by Jin et al. (2019). The extended version requires the transformation of a continuous surrogate into a discrete variable for the use of the WLS method in DWSurv.

The remainder of the chapter is organized as follows. Section 3.2 describes the basic no-
tations and the framework of the kNN and WLS methods in DWSurv. Simulation studies are conducted in Section 3.3 to assess the performance of the proposed methods in DWSurv. In Section 3.4, the proposed correction methods are applied to the ICU data from the MIMIC-III database. Concluding remarks are summarized in Section 3.5.

3.2 Methodology

3.2.1 Notations and Model Framework

For simplicity, the notations and framework set-up are restricted to two decision points in DTR. Let X_j and Z_j be the error-prone covariate and error-free covariate vector at stage j ($j = 1, 2$). W_j denotes an auxiliary covariate, a surrogate to X_j with a classical additive relationship.

We consider a situation with the data trajectory $(\eta_{i1}, X_{i1}, W_{i1}, Z_{i1}, Y_{i1}, A_{i1}, \eta_{i2}, X_{i2}, W_{i2}, Z_{i2}, A_{i2}, Y_{i2}, \Delta_i)$, where the true covariate X_j is only observed in a subset of the data, but W_j is fully observed. In other words, at any stage j, the data with $\eta_j = 1$ are partitioned into validation data V and main study data \overline{V}

\[
\{X_{ij}, W_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in V,
\]

\[
\{W_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in \overline{V}.
\]

Given the data structure, let $\bar{X}_{ij} = E[X_{ij}|W_{ij}, Z_{ij}, A_{ij}]$ in place of the unobserved X_{ij} in the AFT models. Define X_{ij}^* as a variable such that

\[
X_{ij}^* = \tau_{ij}X_{ij} + (1 - \tau_{ij})\bar{X}_{ij},
\]

where τ_{ij} is an indicator to denote whether the patient i is in the validation at stage j ($\tau_{ij} = 1$) or not ($\tau_{ij} = 0$).

If measurement error is ignored, by replacing X_j with W_j, we obtain naive histories as $H^n_1 = (W_1, Z_1), H^n_2 = (W_1, Z_1, A_1, W_2, Z_2)$. Then, the naive AFT models based on the naive histories in DWSurv are given by

\[
\log T_2 = \beta^{nT}_2 h^n_{20} + a_2(\psi^{nT}_2 h^n_{21}) + \epsilon_2,
\]

\[
\log \tilde{T} = \beta^{nT}_1 h^n_{10} + a_1(\psi^{nT}_1 h^n_{11}) + \epsilon_1.
\] (3.1)
He et al. (2007) demonstrated that the naive estimator is biased in the AFT models with covariate measurement error. Thus, it is reasonable to believe that applying the naive AFT models (3.1) into the DWSurv algorithm may yield a biased blip estimator $\hat{\psi}^n_j$. Then, the naive blip estimators $\hat{\psi}^n = (\hat{\psi}^{n}_2, \hat{\psi}^{n}_1)$ may be biased from $\psi = (\psi_2, \psi_1)$, which can further affect the estimation of the optimal DTR. Such concerns motivate us to explore effective approaches to find the estimates for the missing X_j in \bar{V} and replace X_j with the new substitute values in the AFT models, and in turn, to adjust for the estimation of the optimal DTR.

3.2.2 k-Nearest Neighbors Method

k-nearest neighbors (kNN) is a non-parametric statistical learning method. It is known as a lazy learning method because it assumes no distribution of the data specified (Aha, 1997). kNN method can be used for both regression problems and classification problems. The key idea of the kNN method is to find the nearest k neighbors in the training data for the test objects in the testing data. Once the k neighbors are identified, the value or label for the object in the testing data can be determined (Biau and Devroye, 2015). In the case of unobservable values of X_{ij} in the main study in DWSurv, we may borrow this idea to develop a method to find the estimates from the validation data in place of X_{ij} in the main study in DWSurv.

Recall that the data structure of DWSurv at stage j follows

$$
\begin{align*}
\{X_{ij}, W_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} & \text{ if } i \in V, \\
\{W_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} & \text{ if } i \in \bar{V}.
\end{align*}
$$

The true covariate X_{ij} is only observed in the validation data V but is unobservable in the main study data \bar{V}. Let \hat{X}_{ij}^k be the estimates of the unobserved X_{ij} in \bar{V}. We denote by $W_{ij}^{(s)}$ the s^{th} nearest neighbor of $W_{ij} \in \bar{V}$ among $W_{ij} \in V$, $s = 1, ..., k$, and $X_{ij}^{(s)}$ the corresponding data point among $X_{ij} \in V$. We obtain \hat{X}_{ij}^k by first locating the nearest k data points $W_{ij}^{(s)} \in V$ around $W_{ij} \in \bar{V}$ and averaging the associated $X_{ij}^{(s)} \in V$. Mathematically, \hat{X}_{ij}^k in \bar{V} is given by

$$
\hat{X}_{ij}^k = \frac{1}{k} \sum_{s=1}^{k} 1(W_{ij}^{(s)} \text{ is near } W_{ij}) X_{ij}^{(s)},
$$

(3.2)
where k is a given positive integer. Let \tilde{X}^k_{ij} be defined as a random variable at stage j such that

$$
\tilde{X}^k_{ij} = \tau_{ij} X_{ij} + (1 - \tau_{ij}) \hat{X}^k_{ij}.
$$

(3.3)

Using \tilde{X}^k_j obtained from (3.3) leads to kNN histories $H^k_1 = (\tilde{X}^k_1, Z_1)$ and $H^k_2 = (\tilde{X}^k_1, Z_1, A_1, \tilde{X}^k_2, Z_2)$. Thus, the AFT models based on the kNN histories at two stages are given by

$$
\log T_2 = \beta^{kT} h_{20}^k + a_2(\psi^{kT} h_{21}^k) + \epsilon_2,
$$

$$
\log \tilde{T} = \beta^{kT} h_{10}^k + a_1(\psi^{kT} h_{11}^k) + \epsilon_1.
$$

Distance Measure

The performance of the kNN method is determined by two factors, the distance measure and the choice of k (Biau and Devroye, 2015; Zhang, 2016). Distance measure calculates the relative distance between two data points based on a choice of the distance functions, including Euclidean, Manhattan, Minkowsky, Chebychev, and Chi-square distances, etc. It has been studied in the literature that the distance measure has a significant influence on the performance of the kNN algorithm (Alkasassbeh et al., 2015; Chomboon et al., 2015; Lopes and Ribeiro, 2015; Mulak and Talhar, 2015; Hu et al., 2016). In this study, we use the Euclidean distance to measure the distance. Since W_{ij} is assumed to be a scalar, the resulting distance measure is the absolute value of the difference between two points.

Choice of k

Tuning parameter k denotes the number of nearest neighbors to be selected. Similar to the distance measure, the choice of k is empirical. It is often chosen by specific criteria defined in the studies. Researchers have made efforts into developing methods to select the optimal k in various situations (Sun and Huang, 2010; Gou et al., 2011; Cheng et al., 2014; Hassanat et al., 2014; Zhang et al., 2018; Azadkia, 2019). Devroye et al. (1994) showed the consistency of the kNN estimates if k was chosen under the conditions: $\lim_{n \to \infty} k = \infty$ and $\lim_{n \to \infty} k/n_v = 0$, where n_v is the number of observations in the validation data. Such conditions cover a family
of k that depends on n_v. Practically, the rule of thumb for choosing the k is $\sqrt{n_v}$ (Hassanat et al., 2014; Nadkarni, 2016). In this study, we adopt this idea to define a more general k that satisfies the conditions in Devroye et al. (1994) and use the f-fold cross-validation, a data-driven approach to select the optimal k.

In detail, let k be defined as $k = n_v^\alpha$, where $\alpha \in (0, 1)$ is a real number. For $0 < \alpha_{\text{min}} < \alpha_{\text{max}} < 1$, a sequence of finite values for k ($\lfloor n_v^{\alpha_{\text{min}}} \rfloor = k_{\text{min}} < k < k_{\text{max}} = \lfloor n_v^{\alpha_{\text{max}}} \rfloor$) is selected, and the validation data are randomly split into a number of f subsamples. For each k, we select $(f-1)$ subsamples and apply the proposed kNN method to obtain the predicted values $\hat{X}_{ij}^f(k)$ in the remaining f^{th} subsample denoted as V^f. Then, we calculate the mean squared error (MSE) of $\hat{X}_{ij}^f(k)$ by using the X_{ij}^f in V^f. This process is repeated f times with each of the subsamples used only once. Then, the mean of fold-based MSE is obtained for that k. When all the values in the sequence are evaluated, the optimal k denoted as k^{opt} can be determined as the one that has the lowest value of MSE

$$k^{\text{opt}} = \arg \min_{k_{\text{min}} < k < k_{\text{max}}} \text{MSE}(k), \quad (3.4)$$

where MSE(k) is the mean of $\frac{1}{n_{vf}} \sum_{i \in V^f} (\hat{X}_{ij}^f(k) - X_{ij}^f)^2$, and n_{vf} is the number of observations in V^f. This adaptive approach is easy to implement and efficient to produce the optimal k.

Based on the distance measure and the choice of optimal k discussed above, we can establish the theoretical property of the proposed kNN method. The detailed conditions and proof are given in the Appendix in Section 3.6.

Theorem 3.2.1 Under the conditions (C1) - (C3) in the Appendix, Section 3.6, the proposed kNN method yields consistent estimates of ψ in DWSurv.

Modified Dynamic Weighted Survival Modeling Algorithm I:

Provided the chosen distance measure and empirical choice of k, the modified dynamic weighted survival modeling algorithm I consists of the following steps:

1. Propose parametric models for the probability of treatment $P(A_2 = 1|h_2^k, \eta_2 = 1)$ and the probability of censoring $P(\Delta = 0|h_2^k, a_2, \eta_2 = 1)$ and find the estimated weight \hat{w}_2 from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 $\log T_2 =$
have a new data structure \(\{1, 2, 3, 4\} \), according to the interval of \((-\infty, Q_1]\), \([Q_1, Q_2]\),
\([Q_2, Q_3]\), \([Q_3, +\infty]\) that \(W_j\) lies in, where \(Q_1, Q_2\) and \(Q_3\) denote the quartiles of \(W_j\). Then, we have a new data structure

\[
\{X_{ij}, W_{ij}, M_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in V, \\
\{W_{ij}, M_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in \overline{V}.
\]

As \(M_j\) is a discretized variable obtained from \(W_j\), we can use \(M_j\) to assist us in finding the estimates \(\hat{X}_{ij}^w\) of the unobserved \(X_{ij}\) in \(\overline{V}\). For any \(i \in \overline{V}\), we modify the equation (1.14) to be applicable for estimating the \(X_{ij}\) at stage \(j\), which is given by

\[
\hat{X}_{ij}^w = \frac{\sum_{s \in \overline{V}} 1(M_{sj} = M_{ij}) X_{sj}}{\sum_{s \in \overline{V}} 1(M_{sj} = M_{ij})}.
\]

3.2.3 Weighted Least Squares Method

In this section, we extend the weighted least squares (WLS) method of Jin et al. (2019) to a case with continuous surrogates in a multi-stage setting. Let \(M_j\) be an auxiliary variable at stage \(j\), which takes the value of \(\{1, 2, 3, 4\}\), according to the interval of \((-\infty, Q_1]\), \([Q_1, Q_2]\),
\([Q_2, Q_3]\), \([Q_3, +\infty]\) that \(W_j\) lies in, where \(Q_1, Q_2\) and \(Q_3\) denote the quartiles of \(W_j\). Then, we have a new data structure

\[
\{X_{ij}, W_{ij}, M_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in V, \\
\{W_{ij}, M_{ij}, Z_{ij}, A_{ij}, Y_{ij}, \Delta_i\} \quad \text{if } i \in \overline{V}.
\]

As \(M_j\) is a discretized variable obtained from \(W_j\), we can use \(M_j\) to assist us in finding the estimates \(\hat{X}_{ij}^w\) of the unobserved \(X_{ij}\) in \(\overline{V}\). For any \(i \in \overline{V}\), we modify the equation (1.14) to be applicable for estimating the \(X_{ij}\) at stage \(j\), which is given by

\[
\hat{X}_{ij}^w = \frac{\sum_{s \in \overline{V}} 1(M_{sj} = M_{ij}) X_{sj}}{\sum_{s \in \overline{V}} 1(M_{sj} = M_{ij})}.
\]
With (3.5), we can obtain a substitute \(\tilde{X}_{ij}^w \) for \(X_{ij} \) at stage \(j \) such that

\[
\tilde{X}_{ij}^w = \tau_{ij}X_{ij} + (1 - \tau_{ij})\hat{X}_{ij}^w. \tag{3.6}
\]

Then, using \(\tilde{X}_{ij}^w \) obtained from (3.6) yields WLS histories \(\mathbf{H}_1^w = (\tilde{X}_{1j}^w, Z_1) \) and \(\mathbf{H}_2^w = (\tilde{X}_{ij}^w, Z_1, A_1, \tilde{X}_{ij}^w, Z_2) \). Hence, the AFT models based on the WLS histories are given by

\[
\begin{align*}
\log T_2 &= \beta_2^w h_{i20}^w + a_2(\psi_2^w h_{i21}^w) + \epsilon_2, \\
\log \tilde{T} &= \beta_1^w h_{i10}^w + a_1(\psi_1^w h_{i11}^w) + \epsilon_1.
\end{align*}
\]

The intuition behind the equation (3.5) is that we can find the estimates for the unobserved \(X_{ij} \) in \(\overline{V} \) by directly searching for the matched \(M_{ij} \in V \) and \(M_{ij} \in \overline{V} \) at stage \(j \) and averaging the corresponding true covariate \(X_{ij} \) in \(V \). This method is similar to the \(k \)NN method, except that a categorical variable \(M_j \) is used for calculation, which is obtained from the surrogate \(W_j \). As a result, we can use this method as an alternative to the \(k \)NN method.

Modified Dynamic Weighted Survival Modeling Algorithm II:

Provided the WLS equations in (3.5) and (3.6), the modified dynamic weighted survival modeling algorithm II consists of the following steps:

1. Propose parametric models for the probability of treatment \(P(A_2 = 1|h_{i2}^w, \eta_2 = 1) \) and the probability of censoring \(P(\Delta = 0|h_{i2}^w, a_2, \eta_2 = 1) \) and find the estimated weight \(\hat{w}_2 \) from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 \(\log T_2 = \beta_2^w h_{i20}^w + a_2(\psi_2^w h_{i21}^w) + \epsilon_2 \) and obtain the estimator \((\hat{\beta}_2^w, \hat{\psi}_2^w) \) by solving

\[
\sum_{i=1}^n \delta_i \eta_{i2} \hat{w}_2 \begin{pmatrix} h_{i20}^w \\ a_2 h_{i21}^w \end{pmatrix}(\log T_{i2} - \beta_2^w h_{i20}^w - a_2 \psi_2^w h_{i21}^w) = 0.
\]

3. Derive the stage 2 optimal treatment as \(\hat{a}_2^{opt} = 1(\hat{\psi}_2^w h_{21}^w > 0) \).

4. Construct the pseudo-survival time for estimation at stage 1

\[
\tilde{T} = T_1 + \eta_2 T_2 \exp\left[\hat{\psi}_2^w h_{21}^w(\hat{a}_2^{opt} - a_2)\right].
\]
5. Propose parametric models for the probability of treatment \(P(A_1 = 1|h^w_1, \eta_1 = 1) \) and the probability of censoring \(P(\Delta = 0|h^w_1, a_1, \eta_1 = 1) \) and find the estimated weight \(\hat{w}_1 \) from (1.10).

6. Assume a linear AFT model for the counterfactual logarithm of survival time at stage 1
\[
\log \tilde{T} = \beta_1^w h^w_{10} + a_1 (\psi^w_1 h^w_{11}) + \epsilon_1
\]
and obtain the estimator \((\hat{\beta}_1^w, \hat{\psi}_1^w)\) by solving
\[
U_1(\beta_1^w, \psi_1^w) = \sum^n_{i=1} \delta_i \eta_i \hat{w}_i \left(\frac{h^w_{i10}}{a_i h^w_{i11}} \right) \left(\log \tilde{T}_i - \beta_1^w h^w_{i10} - a_i \psi_1^w h^w_{i11} \right) = 0.
\]

7. Derive the stage 1 optimal treatment as \(\hat{a}_1^{opt} = 1(\hat{\psi}_1^w h^w_{11} > 0) \).

3.3 Simulation Studies

In this section, extensive simulation studies are conducted to assess the impact of measurement error in covariates on the estimation of parameters, prediction of optimal DTR and optimal overall survival time. The performance of the proposed \(k \)NN method and WLS method is evaluated in one-stage and multi-stage settings. The validity of the double robustness property in DWSurv is also examined in the presence of measurement error.

3.3.1 One-Stage Estimation

Let \(X \) be an error-prone covariate and \(Z \) be an error-free covariate, generated from a uniform distribution \(U(0.1, 2) \). \(W \) is a mismeasured version for \(X \), with the relationship \(W = X + e \), where \(e \sim N(0, \sigma^2) \) and \(\sigma \) reflects the degree of measurement error. The treatment \(A \in \{1, 0\} \) is generated from a Bernoulli distribution with probability \(P(A = 1) = \expit(0.5X + 0.5Z - 1) \), where \(\expit(x) = 1/(1 + \exp(-x)) \) is the inverse-logit function. Censoring time \(C \) is generated from an exponential distribution with a rate of \(1/300 \). The log-survival time is generated as
\[
\log T = 2 + \beta_z Z + \beta_x X + A(\psi_{10} + \psi_{11} X) + \epsilon,
\]
where \((\beta, \psi) = (\beta_z, \beta_x, \psi_{10}, \psi_{11}) = (0.5, 0.5, 1, -1) \) and \(\epsilon \sim N(0, 0.5^2) \) is generated independent of all other variables. A dataset of 2000 patients is simulated 500 times. In each simulation, the dataset is randomly split into validation data and main study data with a validation ratio \(\rho \), where the validation data contain \(100 \times \rho \% \) of the observations. A sequence of \(k \) is generated
with $\alpha \in \{0.1, \ldots, 0.9\}$ with a step size of 0.1. The primary interest is to evaluate the measurement error effect on the estimation of blip parameters, but its impact on the estimation of parameters for the main terms is also examined in the study.

Five estimators are considered to evaluate the performance of the proposed methods: (1) validation estimator ($\hat{\beta}^v, \hat{\psi}^v$) obtained using the validation data, (2) complete estimator ($\hat{\beta}^c, \hat{\psi}^c$) obtained using the complete data, (3) naive estimator ($\hat{\beta}^n, \hat{\psi}^n$) obtained using W, (4) kNN estimator ($\hat{\beta}^k, \hat{\psi}^k$) obtained using \tilde{X}^k according to the formula (3.3) with k^{opt} chosen from the 10-fold cross-validation and the selected sequence of k, (5) WLS estimator ($\hat{\beta}^w, \hat{\psi}^w$) obtained using \tilde{X}^w according to the formula (3.6). In simulations, the validation ratio ρ is set to be 0.5 and 0.7. The degree of measurement error $\sigma \in \{0.2, 0.5, 0.8\}$ is specified, and the degree of independent censoring is set as 30% and 70%. A summary of k^{opt} chosen in the simulations is provided in Table 3.1. Table 3.2 and Table 3.3 report the bias, asymptotic standard error (SE), root mean square error (RMSE) and 95% coverage probability (CP%) of $\hat{\psi}$ under 30% and 70% independent censoring, respectively. Figure 3.1 and Figure 3.6 provide the visualized parameter estimates under $\rho = 0.7$.

In Table 3.1, we see that as ρ increases, the optimal k gets larger, indicating the relationship of k with the size of the validation data. Moreover, the optimal k is positively related to σ, reflecting that more data points are needed as the degree of measurement error increases. Tables 3.2 and 3.3 show that using the naive method causes considerable biases in the estimation of all the parameters except β_z due to the measurement error. The biases become larger as σ increases. There is little impact on the estimation of β_z, which corresponds to the error-free covariate Z. In comparison, the proposed kNN and WLS methods significantly reduce biases of parameter estimation and improve the coverage probabilities in all the scenarios. The size of the validation data and the censoring rate also affect the performance of the proposed methods. The empirical biases and standard errors of the proposed methods are reduced as ρ increases. But with more censored patients, all the methods experience larger variation as a result of the loss of information about the survival time.
3.3.2 Two-Stage Estimation

In this section, we explore the effect of covariate measurement error on the parameter estimation in a two-stage setting. The design of data generation mechanism in the multi-stage DTR with survival outcomes is difficult and lacks of realism (Simoneau et al., 2020a). Therefore, our two-stage simulation setting follows the idea of the data generation mechanism from Simoneau et al. (2020b). Let X_j and Z_j be the error-prone covariate and error-free covariate at stage j ($j = 1, 2$), which are generated from uniform distributions $U(0.1, 1.29)$ at stage 1 and $U(0.9, 2)$ at stage 2, respectively. The surrogate W_j is generated by the classical additive model $W_j = X_j + e_j$, where $e_j \sim N(0, \sigma^2_j)$. The treatment $A_j \in \{1, 0\}$ is assigned with $P(A_1 = 1) = \text{expit}(X_1 + Z_1 - 1)$ and $P(A_2 = 1) = \text{expit}(-X_2 - Z_2 + 2.8)$, respectively. The censoring time is generated from an exponential distribution with a rate of $1/300$. Based on the AFT model, the observed survival time at stage 2 is given by

$$T_2 = \exp(4 + 1.1X_2 - 0.3X_2^2 - 0.1Z_2 - 0.1X_1 + A_2(\psi_{20} + \psi_{21}X_2) + \epsilon_2),$$

where $(\psi_{20}, \psi_{21}) = (-0.9, 0.6)$ and $\epsilon_2 \sim N(0, 0.3^2)$, independent of all other variables. The optimal survival time had all the patients received the second stage optimal treatment is

$$T_2^{opt} = \exp(\log T_2 + (A_2^{opt} - A_2)(\psi_{20} + \psi_{21}X_2)).$$

The overall survival time under the optimal treatment at stage 2 is generated from the AFT model as

$$\bar{T} = \exp(6.3 + 1.5X_1 - 0.8X_1^2 + 0.1Z_1 + A_1(\psi_{10} + \psi_{11}X_1) + \epsilon_1),$$

where $(\psi_{10}, \psi_{11}) = (0.8, -0.9)$ and $\epsilon_1 \sim N(0, 0.3^2)$, independent of all other variables. We assume that the total size of the simulated dataset is $n = 2000$, and 60% of the patients have entered stage 2. In each stage, 70% of the data are randomly selected as the validation data. The measurement error degree (σ_2, σ_1) is considered with $\sigma_j \in \{0.2, 0.5, 0.8\}$. The independent censoring rate is set to be 30% and 70%. A sequence of k is generated with $\alpha \in \{0.1, \ldots, 0.9\}$ with a step size of 0.1. Simulations are run 500 times.

In the two-stage DWSurv, we are interested in estimating the blip parameters $\psi = (\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})$. Five blip estimators are compared to evaluate the performance of the proposed methods: (1) validation estimator $\hat{\psi}^v$ obtained using X_j based on the validation data, (2) complete
estimator $\hat{\psi}^c$ obtained using X_j based on the complete data, (3) naive estimator $\hat{\psi}^n$ obtained by using W_j, (4) kNN estimator $\hat{\psi}^k$ obtained using \tilde{X}_j^k according to the formula (3.3) with k_{opt} chosen from the 10-fold cross-validation and the generated sequence of k, (5) WLS estimator $\hat{\psi}^w$ obtained using \tilde{X}_j^w according to the formula (3.6).

We would like to examine the validity of the double robustness property of the DWSurv method, whether it still holds in the presence of measurement error. Four scenarios are included in each stage: (1) both the weight (treatment and censoring models) and the treatment-free models are correctly specified, (2) the weight model is correctly specified, but the treatment-free model is misspecified, (3) the weight model is misspecified, but the treatment-free model is correctly specified, (4) both the weight and the treatment-free models are misspecified. The bias, SE, RMSE and CP% of each blip estimator are summarized in Table 3 to Table 3.9, accompanied by the parameter estimates of the four scenarios visualized in Figure 3.7 to Figure 3.12.

From the results, we see that the double robustness property fails with the naive estimator $\hat{\psi}^n$, even in the case of both the weight and the treatment-free models correctly specified (scenario 1). Moreover, the increase in the degree of measurement error exacerbates the biases of $\hat{\psi}^n$. In contrast, the proposed estimators $\hat{\psi}^k$ and $\hat{\psi}^w$ perform satisfactorily with fairly small biases and coverage probabilities are close to the nominal level under various combinations of censoring rate and (σ_2, σ_1). The double robustness property is substantially restored using the proposed estimators, when at least one of the weight model and treatment-free model is correctly specified (scenarios 1, 2 and 3). Moreover, a similar pattern is observed concerning the censoring rate on the proposed estimators. As the censoring rate is higher, the variability of the estimators increase due to more information lost about the survival time. In the last scenario (scenario 4) where both models are misspecified, all the methods yield severely biased results.

3.3.3 Prediction of Optimal DTR

The previous simulation studies examine the measurement error effect on parameter estimation. In this section, we investigate the measurement error effect on the accuracy of the predicted optimal treatment rules. The simulation design follows (3.3.2) but with training and test data
included, where the training data are used to fit models for parameter estimation, and the test data are used to predict the optimal DTR across two stages.

The training data and test data are generated with sizes of 2000 and 5000 patients, respectively. The training data of each stage are randomly split into validation data and main study data with a validation ratio $\rho \in \{0.5, 0.7\}$. Five estimators $\hat{\psi}^v$, $\hat{\psi}^c$, $\hat{\psi}^n$, $\hat{\psi}^k$ and $\hat{\psi}^w$ are considered and estimated from the training data. We use the test data to find the prediction accuracy of the optimal DTR, which is measured by the proportion of patients whose optimal treatments are correctly predicted at stage 2 and/or stage 1. For $j = 1, 2$, the degree of measurement error σ_j is specified as 0.2, 0.5 and 0.8, and the rate of independent censoring is considered to be 30% and 70%. Simulations are repeated 500 times for each pair of ρ and (σ_2, σ_1), and the results are displayed in Table 3.10. The prediction accuracy of optimal DTR under $\rho = 0.7$ are visualized in Figure 3.13 and Figure 3.14.

The numerical results show that, in general, the prediction accuracy of optimal DTR is adversely affected by the covariate measurement error. The naive estimator $\hat{\psi}^n$ leads to a remarkable degeneration in the prediction results in all the scenarios. The performance of $\hat{\psi}^n$ becomes worse as the measurement error gets larger. In contrast, the proposed estimators $\hat{\psi}^k$ and $\hat{\psi}^w$ perform similarly in terms of the prediction accuracy of optimal DTR. Both proposed estimators significantly improved the prediction accuracy, which is even higher than the prediction accuracy obtained using the validation estimator $\hat{\psi}^v$, suggesting a favorable choice of using the proposed methods to derive the sequential optimal treatment rules.

3.3.4 Prediction of the Expected Survival Time

In this section, we assess the prediction of the expected overall survival time under the optimal DTR in contaminated data with covariates being subject to measurement error. The data generation mechanism follows the setting in (3.3.3) with one training data to estimate the parameters and one test data to predict the expected overall survival time under the optimal DTR.

In the first step, five estimators $(\hat{\beta}^v, \hat{\psi}^v)$, $(\hat{\beta}^c, \hat{\psi}^c)$, $(\hat{\beta}^n, \hat{\psi}^n)$, $(\hat{\beta}^k, \hat{\psi}^k)$ and $(\hat{\beta}^w, \hat{\psi}^w)$ are estimated from the training data. We use the test data to obtain five predicted optimal DTR based on the estimators and covariates. Then, for each scenario, the average value of the
overall log-survival time is computed under the estimated optimal DTR. The validation ratio ρ is set to be 0.5 and 0.7. The degree of measurement error $\sigma_j \in \{0.2, 0.5, 0.8\}$ is considered, and the censoring rate is set as 30% and 70%. Simulation is run 500 times. Numerical results for the mean optimal log-survival times, along with standard deviations, are summarized in Table 3.11.

The results in Table 3.11 show that the naive method tends to yield shorter optimal overall log-survival times. Moreover, the mean of the predicted optimal log-survival times using the naive method decreases as the measurement error increases. By comparison, the proposed kNN and WLS methods perform similarly and enhance the predicted optimal log-survival times in all the scenarios.

3.4 Application to MIMIC-III Data

We apply the proposed correction methods to a cohort of ICU patients with sepsis. The study data are taken from the MIMIC-III database, which contains the observational admission data collected at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016). Feng et al. (2018) showed the significant association between the use of TTEC and improvement in 28-day mortality. However, Cook et al. (2002) suggested that the use of TTEC in all critically ill surgical patients was not cost-effective. Chen et al. (2021) revealed the heterogeneity in the treatment effects of TTEC and demonstrated the improvement in the 28-day survival rate by customizing the use of TTEC for ICU patients. In this work, we are interested in deriving the optimal treatment decision rules for the use of transthoracic echocardiography that maximize the overall survival time of ICU patients with sepsis.

We follow the same criteria in Feng et al. (2018) to select the cohort data, except that the information of patients whose second admission to ICU is also included. The outcome of interest is the survival time of the patients with sepsis, which is calculated as the difference between the death time and the first ICU admission time. The patients' characteristics at first and second admissions include age, gender, body mass index, simplified acute physiology score (SAPS), sequential organ failure assessment score (SOFA), Elixhauser comorbidity score, heart rate, lab test for cholesterol, positive end-expiratory pressure (PEEP) and the use of mechanical
ventilation (VENT) during the first 24 hours of ICU admission. We select VENT and PEEP as the tailoring variables as they are significantly associated with TTEC (Cook et al., 2002).

At the first ICU admission (stage 1), a total number of 6294 patients were admitted to ICU, and the treatment was initiated as a recommendation of TTEC ($A_1 = 1$) or not ($A_1 = 0$). About 10% of the patients experienced re-admission (stage 2) into ICU with continuing the use of TTEC ($A_2 = 1$) or dropping the use of TTEC ($A_2 = 0$). In the final cohort data, the variable PEEP was found largely underreported with about 35.7% and 37.2% missingness at stage 1 and stage 2, respectively. Removing such an amount of missing values in the analysis may lead to biased estimation. However, the heart rate, which is known to be positively associated with PEEP (Zhou et al., 2019), is completely observed. For $j = 1, 2$, we treat the cohort data with the observed PEEP$_j$ as the validation data and estimate the unobserved PEEP$_j$, which forms the main study data, by using the heart rate as the auxiliary covariate.

In the analysis, we consider three blip estimators to construct the optimal treatment decision rules: (1) validation estimator obtained using the patients with observed PEEP$_j$ only, (2) kNN estimator obtained using the imputed PEEP$_j$ according to the formula (3.3), (3) WLS estimator obtained using the imputed PEEP$_j$ according to the formula (3.6). The optimal k is selected by training the validation data using 10-fold cross-validation with $\alpha \in \{0.1, ..., 0.9\}$ with a step size of 0.5. Table 3.12 summarizes the estimation and associated inference results based on the validation method and proposed kNN and WLS methods.

The results in Table 3.12 show that the proposed kNN and WLS methods perform similarly, but the blip parameter estimates and the standard errors vary notably between the validation method and the proposed methods, leading to different optimal treatment decision rules. The variable VENT at stage 1 is statistically significant with respect to the treatment effect in all the methods, reflecting its significant association with the use of TTEC and the overall survival time of the patients. However, the significance of the coefficients for the treatments in two stages is shown to differ between methods. These results emphasize the impact of omitting the data with missing covariates is pronounced, which can result in different optimal treatment decision rules.
3.5 Conclusion

This chapter studies the effect of covariate measurement error on DWSurv with internal validation data provided. Two correction methods, the kNN method and the WLS method, are developed to adjust for the measurement error effect in DWSurv. The first kNN method directly uses the available surrogates to find the estimates for the unobserved true covariates in each stage of DWSurv. This method adopts the cross-validation method, a data-driven approach, with which the optimal number of nearest neighbors is identified. The second WLS method extends the use of the original WLS method to a multi-stage setting with continuous surrogates provided. In each stage, by transforming the continuous surrogate, the estimates of the unobserved covariates can be estimated using the WLS method. One advantage both methods share is that they do not require the specification of the relationship between true covariate and surrogate, making the modeling more robust.

Simulation studies demonstrate the satisfactory performance of the proposed methods in one-stage and multi-stage settings. On average, the kNN and WLS methods provide significant bias reduction in parameter estimation and substantial restoration of the double robustness property in the original DWSurv, even when the magnitude of measurement error is large. Moreover, the proposed methods show their superior performance in a predictive setting with higher prediction accuracy of optimal DTR and longer optimal survival times. However, the proposed methods experience larger standard errors with a higher censoring rate, resulting from losing information about the survival time. The proposed methods are applied to the MIMIC-III data as an illustration to estimate optimal treatment decision rules. The data analysis shows that the estimated optimal treatment decision rules can be altered if the unavailable covariate is not addressed.
Table 3.1: Summary of the optimal k from 10-fold cross-validation

<table>
<thead>
<tr>
<th>% Censoring</th>
<th>ρ</th>
<th>σ</th>
<th>Min</th>
<th>Mean</th>
<th>Median</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>0.5</td>
<td>0.2</td>
<td>16</td>
<td>67</td>
<td>64</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>32</td>
<td>101</td>
<td>126</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>16</td>
<td>105</td>
<td>126</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.2</td>
<td>19</td>
<td>88</td>
<td>78</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>38</td>
<td>133</td>
<td>160</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>38</td>
<td>135</td>
<td>160</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>0.5</td>
<td>0.2</td>
<td>16</td>
<td>67</td>
<td>64</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>32</td>
<td>101</td>
<td>126</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>32</td>
<td>105</td>
<td>126</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.2</td>
<td>38</td>
<td>92</td>
<td>78</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>38</td>
<td>133</td>
<td>160</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>38</td>
<td>139</td>
<td>160</td>
<td>329</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2: One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) with 30% independent censoring

<table>
<thead>
<tr>
<th>ρ</th>
<th>σ</th>
<th>$\hat{\psi}$</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{11}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^c$</td>
<td></td>
<td>-0.002</td>
<td>0.059</td>
<td>0.059</td>
<td>93.6</td>
<td></td>
<td>0.001</td>
<td>0.050</td>
<td>0.050</td>
<td>93.4</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^v$</td>
<td></td>
<td>-0.002</td>
<td>0.084</td>
<td>0.084</td>
<td>96.0</td>
<td></td>
<td>0.002</td>
<td>0.071</td>
<td>0.071</td>
<td>94.6</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.125</td>
<td>0.057</td>
<td>0.137</td>
<td>42.8</td>
<td></td>
<td>0.119</td>
<td>0.048</td>
<td>0.128</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.002</td>
<td>0.061</td>
<td>0.061</td>
<td>94.4</td>
<td></td>
<td>-0.002</td>
<td>0.052</td>
<td>0.052</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.002</td>
<td>0.062</td>
<td>0.062</td>
<td>95.0</td>
<td></td>
<td>0.002</td>
<td>0.053</td>
<td>0.053</td>
<td>95.0</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.479</td>
<td>0.050</td>
<td>0.482</td>
<td>0.0</td>
<td></td>
<td>0.457</td>
<td>0.039</td>
<td>0.458</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.007</td>
<td>0.067</td>
<td>0.068</td>
<td>94.2</td>
<td></td>
<td>-0.006</td>
<td>0.058</td>
<td>0.058</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.067</td>
<td>0.068</td>
<td>95.2</td>
<td></td>
<td>0.005</td>
<td>0.058</td>
<td>0.058</td>
<td>95.8</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.717</td>
<td>0.043</td>
<td>0.719</td>
<td>0.0</td>
<td></td>
<td>0.684</td>
<td>0.030</td>
<td>0.684</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.005</td>
<td>0.072</td>
<td>0.072</td>
<td>94.8</td>
<td></td>
<td>-0.004</td>
<td>0.063</td>
<td>0.063</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.072</td>
<td>0.073</td>
<td>95.0</td>
<td></td>
<td>0.005</td>
<td>0.063</td>
<td>0.063</td>
<td>96.0</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>$\hat{\psi}^v$</td>
<td></td>
<td>-0.003</td>
<td>0.071</td>
<td>0.071</td>
<td>96.0</td>
<td></td>
<td>0.001</td>
<td>0.060</td>
<td>0.060</td>
<td>95.4</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.125</td>
<td>0.057</td>
<td>0.137</td>
<td>43.4</td>
<td></td>
<td>0.117</td>
<td>0.048</td>
<td>0.126</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.000</td>
<td>0.060</td>
<td>0.060</td>
<td>95.8</td>
<td></td>
<td>-0.002</td>
<td>0.051</td>
<td>0.051</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.003</td>
<td>0.061</td>
<td>0.061</td>
<td>95.8</td>
<td></td>
<td>0.001</td>
<td>0.052</td>
<td>0.052</td>
<td>95.4</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.479</td>
<td>0.050</td>
<td>0.482</td>
<td>0.0</td>
<td></td>
<td>0.455</td>
<td>0.039</td>
<td>0.457</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.003</td>
<td>0.063</td>
<td>0.064</td>
<td>95.0</td>
<td></td>
<td>-0.004</td>
<td>0.054</td>
<td>0.055</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.003</td>
<td>0.064</td>
<td>0.064</td>
<td>95.2</td>
<td></td>
<td>0.001</td>
<td>0.055</td>
<td>0.055</td>
<td>95.0</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.718</td>
<td>0.043</td>
<td>0.719</td>
<td>0.0</td>
<td></td>
<td>0.683</td>
<td>0.030</td>
<td>0.683</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.001</td>
<td>0.066</td>
<td>0.066</td>
<td>95.2</td>
<td></td>
<td>-0.002</td>
<td>0.057</td>
<td>0.057</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.066</td>
<td>0.066</td>
<td>94.8</td>
<td></td>
<td>0.002</td>
<td>0.057</td>
<td>0.057</td>
<td>95.8</td>
</tr>
</tbody>
</table>
Table 3.3: One-stage estimates of blip parameters (ψ_{10}, ψ_{11}) with 70% independent censoring

<table>
<thead>
<tr>
<th>ρ</th>
<th>σ</th>
<th>$\hat{\psi}$</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{11}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^c$</td>
<td></td>
<td>-0.002</td>
<td>0.091</td>
<td>0.091</td>
<td>96.2</td>
<td></td>
<td>0.003</td>
<td>0.077</td>
<td>0.077</td>
<td>95.8</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^v$</td>
<td></td>
<td>0.006</td>
<td>0.128</td>
<td>0.128</td>
<td>96.0</td>
<td></td>
<td>-0.004</td>
<td>0.108</td>
<td>0.108</td>
<td>97.0</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.125</td>
<td>0.087</td>
<td>0.153</td>
<td>70.0</td>
<td></td>
<td>0.120</td>
<td>0.073</td>
<td>0.140</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.002</td>
<td>0.093</td>
<td>0.093</td>
<td>95.8</td>
<td></td>
<td>-0.001</td>
<td>0.079</td>
<td>0.079</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.094</td>
<td>0.094</td>
<td>95.6</td>
<td></td>
<td>0.005</td>
<td>0.080</td>
<td>0.081</td>
<td>95.2</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.479</td>
<td>0.076</td>
<td>0.485</td>
<td>0.0</td>
<td></td>
<td>0.457</td>
<td>0.059</td>
<td>0.461</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.006</td>
<td>0.103</td>
<td>0.103</td>
<td>95.6</td>
<td></td>
<td>-0.004</td>
<td>0.089</td>
<td>0.089</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.103</td>
<td>0.103</td>
<td>95.4</td>
<td></td>
<td>0.005</td>
<td>0.089</td>
<td>0.089</td>
<td>94.6</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.716</td>
<td>0.066</td>
<td>0.719</td>
<td>0.0</td>
<td></td>
<td>0.684</td>
<td>0.046</td>
<td>0.685</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.006</td>
<td>0.111</td>
<td>0.111</td>
<td>95.6</td>
<td></td>
<td>-0.003</td>
<td>0.097</td>
<td>0.097</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.004</td>
<td>0.111</td>
<td>0.111</td>
<td>95.2</td>
<td></td>
<td>0.006</td>
<td>0.097</td>
<td>0.097</td>
<td>95.6</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>$\hat{\psi}^v$</td>
<td></td>
<td>0.004</td>
<td>0.108</td>
<td>0.108</td>
<td>94.2</td>
<td></td>
<td>0.000</td>
<td>0.091</td>
<td>0.091</td>
<td>92.2</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.121</td>
<td>0.087</td>
<td>0.149</td>
<td>70.6</td>
<td></td>
<td>0.116</td>
<td>0.073</td>
<td>0.137</td>
<td>63.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.003</td>
<td>0.092</td>
<td>0.092</td>
<td>95.6</td>
<td></td>
<td>-0.003</td>
<td>0.078</td>
<td>0.078</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>0.001</td>
<td>0.093</td>
<td>0.093</td>
<td>95.8</td>
<td></td>
<td>0.000</td>
<td>0.079</td>
<td>0.079</td>
<td>95.4</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.477</td>
<td>0.076</td>
<td>0.483</td>
<td>0.0</td>
<td></td>
<td>0.456</td>
<td>0.059</td>
<td>0.460</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.004</td>
<td>0.097</td>
<td>0.097</td>
<td>95.2</td>
<td></td>
<td>-0.004</td>
<td>0.083</td>
<td>0.083</td>
<td>93.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.002</td>
<td>0.097</td>
<td>0.097</td>
<td>95.0</td>
<td></td>
<td>0.002</td>
<td>0.083</td>
<td>0.083</td>
<td>93.8</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>$\hat{\psi}^n$</td>
<td></td>
<td>-0.716</td>
<td>0.066</td>
<td>0.719</td>
<td>0.0</td>
<td></td>
<td>0.685</td>
<td>0.046</td>
<td>0.686</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^k$</td>
<td></td>
<td>0.002</td>
<td>0.101</td>
<td>0.101</td>
<td>95.2</td>
<td></td>
<td>-0.002</td>
<td>0.087</td>
<td>0.087</td>
<td>92.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\psi}^w$</td>
<td></td>
<td>-0.002</td>
<td>0.101</td>
<td>0.101</td>
<td>96.0</td>
<td></td>
<td>0.002</td>
<td>0.087</td>
<td>0.087</td>
<td>92.8</td>
</tr>
</tbody>
</table>
Table 3.4: Two-stage estimates of blip parameters (ψ_{20}, ψ_{21}, ψ_{10}, ψ_{11}) with (σ^2, σ_1) = (0.2, 0.2) and 30% independent censoring

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.141</td>
<td>0.141</td>
<td>95.6</td>
<td>0.001</td>
<td>0.096</td>
<td>0.096</td>
<td>96.0</td>
<td>-0.004</td>
<td>0.049</td>
<td>0.049</td>
<td>94.8</td>
<td>0.006</td>
<td>0.064</td>
<td>0.064</td>
<td>96.0</td>
</tr>
<tr>
<td>2</td>
<td>-0.033</td>
<td>0.141</td>
<td>0.145</td>
<td>94.8</td>
<td>0.024</td>
<td>0.095</td>
<td>0.098</td>
<td>94.8</td>
<td>0.047</td>
<td>0.051</td>
<td>0.069</td>
<td>85.0</td>
<td>-0.067</td>
<td>0.067</td>
<td>0.095</td>
<td>83.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.100</td>
<td>0.100</td>
<td>95.4</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>95.4</td>
<td>-0.002</td>
<td>0.037</td>
<td>0.037</td>
<td>94.8</td>
<td>0.002</td>
<td>0.050</td>
<td>0.050</td>
<td>95.2</td>
</tr>
<tr>
<td>4</td>
<td>0.005</td>
<td>0.101</td>
<td>0.101</td>
<td>95.6</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>95.4</td>
<td>-0.002</td>
<td>0.039</td>
<td>0.039</td>
<td>94.2</td>
<td>0.002</td>
<td>0.053</td>
<td>0.053</td>
<td>95.8</td>
</tr>
<tr>
<td>5</td>
<td>0.007</td>
<td>0.099</td>
<td>0.099</td>
<td>95.8</td>
<td>-0.004</td>
<td>0.067</td>
<td>0.067</td>
<td>96.4</td>
<td>-0.002</td>
<td>0.037</td>
<td>0.037</td>
<td>94.2</td>
<td>0.002</td>
<td>0.049</td>
<td>0.049</td>
<td>94.6</td>
</tr>
<tr>
<td>6</td>
<td>-0.027</td>
<td>0.099</td>
<td>0.102</td>
<td>93.8</td>
<td>0.020</td>
<td>0.067</td>
<td>0.069</td>
<td>94.8</td>
<td>0.049</td>
<td>0.039</td>
<td>0.062</td>
<td>76.6</td>
<td>-0.072</td>
<td>0.051</td>
<td>0.088</td>
<td>72.0</td>
</tr>
<tr>
<td>7</td>
<td>0.227</td>
<td>0.090</td>
<td>0.244</td>
<td>25.2</td>
<td>-0.166</td>
<td>0.060</td>
<td>0.177</td>
<td>19.8</td>
<td>-0.143</td>
<td>0.035</td>
<td>0.148</td>
<td>1.8</td>
<td>0.208</td>
<td>0.046</td>
<td>0.213</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>0.230</td>
<td>0.090</td>
<td>0.247</td>
<td>24.8</td>
<td>-0.168</td>
<td>0.060</td>
<td>0.179</td>
<td>19.0</td>
<td>-0.148</td>
<td>0.036</td>
<td>0.153</td>
<td>1.6</td>
<td>0.215</td>
<td>0.047</td>
<td>0.220</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>0.228</td>
<td>0.088</td>
<td>0.244</td>
<td>24.4</td>
<td>-0.167</td>
<td>0.059</td>
<td>0.177</td>
<td>17.4</td>
<td>-0.143</td>
<td>0.034</td>
<td>0.148</td>
<td>1.6</td>
<td>0.208</td>
<td>0.044</td>
<td>0.212</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.217</td>
<td>0.088</td>
<td>0.234</td>
<td>29.0</td>
<td>-0.160</td>
<td>0.058</td>
<td>0.170</td>
<td>21.2</td>
<td>-0.123</td>
<td>0.035</td>
<td>0.128</td>
<td>5.8</td>
<td>0.178</td>
<td>0.045</td>
<td>0.184</td>
<td>3.2</td>
</tr>
<tr>
<td>11</td>
<td>-0.007</td>
<td>0.106</td>
<td>0.106</td>
<td>95.0</td>
<td>0.002</td>
<td>0.072</td>
<td>0.072</td>
<td>95.2</td>
<td>0.004</td>
<td>0.039</td>
<td>0.039</td>
<td>92.8</td>
<td>-0.006</td>
<td>0.053</td>
<td>0.053</td>
<td>94.6</td>
</tr>
<tr>
<td>12</td>
<td>-0.007</td>
<td>0.106</td>
<td>0.107</td>
<td>95.0</td>
<td>0.002</td>
<td>0.072</td>
<td>0.072</td>
<td>95.8</td>
<td>0.004</td>
<td>0.041</td>
<td>0.041</td>
<td>93.6</td>
<td>-0.006</td>
<td>0.055</td>
<td>0.055</td>
<td>94.8</td>
</tr>
<tr>
<td>13</td>
<td>-0.006</td>
<td>0.105</td>
<td>0.105</td>
<td>94.8</td>
<td>0.002</td>
<td>0.071</td>
<td>0.071</td>
<td>95.4</td>
<td>0.004</td>
<td>0.039</td>
<td>0.039</td>
<td>93.2</td>
<td>-0.006</td>
<td>0.051</td>
<td>0.052</td>
<td>94.6</td>
</tr>
<tr>
<td>14</td>
<td>-0.036</td>
<td>0.104</td>
<td>0.110</td>
<td>94.4</td>
<td>0.024</td>
<td>0.070</td>
<td>0.074</td>
<td>94.2</td>
<td>0.049</td>
<td>0.040</td>
<td>0.063</td>
<td>76.2</td>
<td>-0.067</td>
<td>0.053</td>
<td>0.089</td>
<td>74.6</td>
</tr>
<tr>
<td>15</td>
<td>-0.003</td>
<td>0.106</td>
<td>0.107</td>
<td>95.0</td>
<td>-0.001</td>
<td>0.072</td>
<td>0.072</td>
<td>95.4</td>
<td>0.002</td>
<td>0.039</td>
<td>0.039</td>
<td>93.0</td>
<td>-0.003</td>
<td>0.053</td>
<td>0.053</td>
<td>94.6</td>
</tr>
<tr>
<td>16</td>
<td>-0.004</td>
<td>0.107</td>
<td>0.107</td>
<td>95.0</td>
<td>0.000</td>
<td>0.072</td>
<td>0.072</td>
<td>95.4</td>
<td>0.003</td>
<td>0.041</td>
<td>0.041</td>
<td>94.8</td>
<td>-0.003</td>
<td>0.055</td>
<td>0.055</td>
<td>95.0</td>
</tr>
<tr>
<td>17</td>
<td>-0.002</td>
<td>0.105</td>
<td>0.105</td>
<td>95.0</td>
<td>-0.001</td>
<td>0.071</td>
<td>0.071</td>
<td>95.8</td>
<td>0.002</td>
<td>0.039</td>
<td>0.039</td>
<td>93.8</td>
<td>-0.003</td>
<td>0.051</td>
<td>0.052</td>
<td>95.0</td>
</tr>
<tr>
<td>18</td>
<td>-0.031</td>
<td>0.104</td>
<td>0.109</td>
<td>94.4</td>
<td>0.019</td>
<td>0.071</td>
<td>0.073</td>
<td>95.4</td>
<td>0.046</td>
<td>0.040</td>
<td>0.061</td>
<td>78.8</td>
<td>-0.066</td>
<td>0.053</td>
<td>0.085</td>
<td>76.4</td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: treatment-free model is correctly specified, but treatment-free model is misspecified, Scenario 3: both models are misspecified.
Table 3.5: Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with $(\sigma_2, \sigma_1) = (0.5, 0.5)$ and 30% independent censoring

<table>
<thead>
<tr>
<th>$\hat{\psi}$</th>
<th>Scenario</th>
<th>ψ_{20}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{21}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{11}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\psi}_v$</td>
<td>1</td>
<td>0.000</td>
<td>0.144</td>
<td>0.144</td>
<td>93.2</td>
<td>0.000</td>
<td>0.097</td>
<td>0.097</td>
<td>94.0</td>
<td>-0.001</td>
<td>0.049</td>
<td>0.049</td>
<td>94.8</td>
<td>0.003</td>
<td>0.066</td>
<td>0.066</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.000</td>
<td>0.144</td>
<td>0.144</td>
<td>93.2</td>
<td>0.000</td>
<td>0.098</td>
<td>0.098</td>
<td>94.2</td>
<td>-0.002</td>
<td>0.052</td>
<td>0.052</td>
<td>95.8</td>
<td>0.004</td>
<td>0.069</td>
<td>0.069</td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.001</td>
<td>0.141</td>
<td>0.141</td>
<td>94.2</td>
<td>-0.001</td>
<td>0.095</td>
<td>0.095</td>
<td>94.2</td>
<td>-0.001</td>
<td>0.049</td>
<td>0.049</td>
<td>94.6</td>
<td>0.003</td>
<td>0.064</td>
<td>0.064</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.034</td>
<td>0.141</td>
<td>0.145</td>
<td>93.6</td>
<td>0.023</td>
<td>0.095</td>
<td>0.098</td>
<td>93.6</td>
<td>0.048</td>
<td>0.051</td>
<td>0.070</td>
<td>83.8</td>
<td>-0.069</td>
<td>0.067</td>
<td>0.096</td>
<td>80.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\psi}_c$</td>
<td>1</td>
<td>0.004</td>
<td>0.100</td>
<td>0.100</td>
<td>94.4</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>94.2</td>
<td>0.000</td>
<td>0.037</td>
<td>0.037</td>
<td>93.0</td>
<td>0.001</td>
<td>0.050</td>
<td>0.050</td>
<td>93.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.004</td>
<td>0.101</td>
<td>0.101</td>
<td>94.2</td>
<td>-0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>93.8</td>
<td>0.000</td>
<td>0.039</td>
<td>0.039</td>
<td>93.6</td>
<td>0.001</td>
<td>0.052</td>
<td>0.052</td>
<td>94.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.005</td>
<td>0.099</td>
<td>0.099</td>
<td>94.4</td>
<td>-0.003</td>
<td>0.067</td>
<td>0.067</td>
<td>94.8</td>
<td>0.000</td>
<td>0.037</td>
<td>0.037</td>
<td>94.2</td>
<td>0.001</td>
<td>0.049</td>
<td>0.049</td>
<td>94.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.029</td>
<td>0.099</td>
<td>0.103</td>
<td>94.0</td>
<td>0.020</td>
<td>0.066</td>
<td>0.069</td>
<td>94.0</td>
<td>0.050</td>
<td>0.039</td>
<td>0.063</td>
<td>76.0</td>
<td>-0.072</td>
<td>0.051</td>
<td>0.088</td>
<td>72.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\psi}_n$</td>
<td>1</td>
<td>0.577</td>
<td>0.063</td>
<td>0.581</td>
<td>0.0</td>
<td>-0.425</td>
<td>0.040</td>
<td>0.427</td>
<td>0.0</td>
<td>-0.411</td>
<td>0.028</td>
<td>0.411</td>
<td>0.0</td>
<td>0.596</td>
<td>0.031</td>
<td>0.597</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.578</td>
<td>0.063</td>
<td>0.581</td>
<td>0.0</td>
<td>-0.425</td>
<td>0.040</td>
<td>0.427</td>
<td>0.0</td>
<td>-0.411</td>
<td>0.028</td>
<td>0.412</td>
<td>0.0</td>
<td>0.597</td>
<td>0.031</td>
<td>0.598</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.577</td>
<td>0.062</td>
<td>0.581</td>
<td>0.0</td>
<td>-0.425</td>
<td>0.039</td>
<td>0.427</td>
<td>0.0</td>
<td>-0.410</td>
<td>0.027</td>
<td>0.411</td>
<td>0.0</td>
<td>0.596</td>
<td>0.030</td>
<td>0.597</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.577</td>
<td>0.062</td>
<td>0.580</td>
<td>0.0</td>
<td>-0.425</td>
<td>0.039</td>
<td>0.426</td>
<td>0.0</td>
<td>-0.408</td>
<td>0.028</td>
<td>0.409</td>
<td>0.0</td>
<td>0.592</td>
<td>0.030</td>
<td>0.593</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\psi}_k$</td>
<td>1</td>
<td>-0.013</td>
<td>0.115</td>
<td>0.116</td>
<td>94.2</td>
<td>0.001</td>
<td>0.078</td>
<td>0.078</td>
<td>94.8</td>
<td>0.007</td>
<td>0.042</td>
<td>0.043</td>
<td>94.0</td>
<td>-0.008</td>
<td>0.057</td>
<td>0.058</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.013</td>
<td>0.115</td>
<td>0.116</td>
<td>94.0</td>
<td>0.001</td>
<td>0.078</td>
<td>0.078</td>
<td>94.8</td>
<td>0.006</td>
<td>0.044</td>
<td>0.044</td>
<td>94.2</td>
<td>-0.007</td>
<td>0.059</td>
<td>0.060</td>
<td>93.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.012</td>
<td>0.113</td>
<td>0.114</td>
<td>93.8</td>
<td>0.000</td>
<td>0.077</td>
<td>0.077</td>
<td>94.4</td>
<td>0.007</td>
<td>0.041</td>
<td>0.042</td>
<td>93.6</td>
<td>-0.008</td>
<td>0.055</td>
<td>0.056</td>
<td>93.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.041</td>
<td>0.112</td>
<td>0.120</td>
<td>93.6</td>
<td>0.020</td>
<td>0.076</td>
<td>0.079</td>
<td>94.4</td>
<td>0.049</td>
<td>0.043</td>
<td>0.065</td>
<td>79.6</td>
<td>-0.070</td>
<td>0.057</td>
<td>0.090</td>
<td>75.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\psi}_w$</td>
<td>1</td>
<td>-0.009</td>
<td>0.115</td>
<td>0.115</td>
<td>95.0</td>
<td>-0.002</td>
<td>0.078</td>
<td>0.078</td>
<td>93.8</td>
<td>0.004</td>
<td>0.042</td>
<td>0.042</td>
<td>93.0</td>
<td>-0.004</td>
<td>0.057</td>
<td>0.057</td>
<td>93.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.010</td>
<td>0.115</td>
<td>0.116</td>
<td>94.2</td>
<td>-0.002</td>
<td>0.078</td>
<td>0.078</td>
<td>94.2</td>
<td>0.004</td>
<td>0.044</td>
<td>0.044</td>
<td>94.2</td>
<td>-0.004</td>
<td>0.059</td>
<td>0.060</td>
<td>93.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.008</td>
<td>0.113</td>
<td>0.114</td>
<td>94.0</td>
<td>-0.003</td>
<td>0.077</td>
<td>0.077</td>
<td>94.8</td>
<td>0.004</td>
<td>0.042</td>
<td>0.042</td>
<td>93.4</td>
<td>-0.004</td>
<td>0.056</td>
<td>0.056</td>
<td>94.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.037</td>
<td>0.112</td>
<td>0.118</td>
<td>94.2</td>
<td>0.017</td>
<td>0.076</td>
<td>0.078</td>
<td>94.8</td>
<td>0.046</td>
<td>0.043</td>
<td>0.063</td>
<td>80.4</td>
<td>-0.066</td>
<td>0.057</td>
<td>0.087</td>
<td>78.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario 3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
Table 3.6: Two-stage estimates of blip parameters (ψ_{20}, ψ_{21}, ψ_{10}, ψ_{11}) with (σ^2, σ_1) = (0.8, 0.8) and 30% independent censoring.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.009</td>
<td>0.143</td>
<td>0.143</td>
<td>94.6</td>
</tr>
<tr>
<td>2</td>
<td>0.007</td>
<td>0.141</td>
<td>0.141</td>
<td>94.0</td>
</tr>
<tr>
<td>3</td>
<td>-0.028</td>
<td>0.140</td>
<td>0.143</td>
<td>92.8</td>
</tr>
<tr>
<td>4</td>
<td>-0.032</td>
<td>0.098</td>
<td>0.103</td>
<td>93.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.004</td>
<td>0.100</td>
<td>0.100</td>
<td>94.6</td>
</tr>
<tr>
<td>2</td>
<td>0.004</td>
<td>0.101</td>
<td>0.101</td>
<td>94.8</td>
</tr>
<tr>
<td>3</td>
<td>0.003</td>
<td>0.099</td>
<td>0.099</td>
<td>94.0</td>
</tr>
<tr>
<td>4</td>
<td>-0.032</td>
<td>0.098</td>
<td>0.103</td>
<td>93.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.706</td>
<td>0.048</td>
<td>0.708</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.706</td>
<td>0.048</td>
<td>0.708</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.705</td>
<td>0.047</td>
<td>0.707</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.706</td>
<td>0.047</td>
<td>0.707</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: treatment-free model is correctly specified, but weight model is misspecified, Scenario 3: weight model is correctly specified, but treatment-free model is misspecified, Scenario 4: both models are misspecified.
Table 3.7: Two-stage estimates of blip parameters \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \((\sigma_2, \sigma_1) = (0.2, 0.2)\) and 70% independent censoring

<table>
<thead>
<tr>
<th>(\hat{\psi})</th>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\psi}_v)</td>
<td>1</td>
<td>0.005</td>
<td>0.216</td>
<td>0.216</td>
<td>94.2</td>
<td>-0.005</td>
<td>0.146</td>
<td>0.146</td>
<td>94.0</td>
<td>-0.007</td>
<td>0.076</td>
<td>0.076</td>
<td>95.4</td>
<td>0.007</td>
<td>0.101</td>
<td>0.101</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.005</td>
<td>0.217</td>
<td>0.217</td>
<td>93.8</td>
<td>-0.005</td>
<td>0.147</td>
<td>0.147</td>
<td>94.8</td>
<td>-0.006</td>
<td>0.079</td>
<td>0.080</td>
<td>93.4</td>
<td>0.005</td>
<td>0.106</td>
<td>0.106</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.004</td>
<td>0.214</td>
<td>0.214</td>
<td>93.4</td>
<td>-0.004</td>
<td>0.145</td>
<td>0.145</td>
<td>94.2</td>
<td>-0.006</td>
<td>0.074</td>
<td>0.075</td>
<td>95.4</td>
<td>0.005</td>
<td>0.098</td>
<td>0.098</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.031</td>
<td>0.214</td>
<td>0.216</td>
<td>94.2</td>
<td>0.020</td>
<td>0.144</td>
<td>0.146</td>
<td>93.8</td>
<td>0.044</td>
<td>0.078</td>
<td>0.090</td>
<td>91.6</td>
<td>-0.069</td>
<td>0.103</td>
<td>0.124</td>
<td>90.6</td>
</tr>
<tr>
<td>(\hat{\psi}_c)</td>
<td>1</td>
<td>0.003</td>
<td>0.152</td>
<td>0.152</td>
<td>94.2</td>
<td>-0.002</td>
<td>0.103</td>
<td>0.103</td>
<td>93.6</td>
<td>-0.006</td>
<td>0.058</td>
<td>0.058</td>
<td>95.4</td>
<td>0.005</td>
<td>0.077</td>
<td>0.077</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.003</td>
<td>0.153</td>
<td>0.153</td>
<td>94.6</td>
<td>-0.002</td>
<td>0.103</td>
<td>0.103</td>
<td>94.2</td>
<td>-0.005</td>
<td>0.060</td>
<td>0.061</td>
<td>94.6</td>
<td>0.004</td>
<td>0.081</td>
<td>0.081</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.000</td>
<td>0.150</td>
<td>0.150</td>
<td>93.8</td>
<td>0.000</td>
<td>0.101</td>
<td>0.101</td>
<td>93.0</td>
<td>-0.006</td>
<td>0.057</td>
<td>0.057</td>
<td>94.2</td>
<td>0.005</td>
<td>0.075</td>
<td>0.075</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.035</td>
<td>0.150</td>
<td>0.154</td>
<td>92.6</td>
<td>0.024</td>
<td>0.101</td>
<td>0.104</td>
<td>92.6</td>
<td>0.044</td>
<td>0.059</td>
<td>0.074</td>
<td>88.0</td>
<td>-0.069</td>
<td>0.078</td>
<td>0.104</td>
<td>85.4</td>
</tr>
<tr>
<td>(\hat{\psi}_n)</td>
<td>1</td>
<td>0.218</td>
<td>0.136</td>
<td>0.257</td>
<td>63.6</td>
<td>-0.162</td>
<td>0.090</td>
<td>0.185</td>
<td>57.4</td>
<td>-0.146</td>
<td>0.054</td>
<td>0.156</td>
<td>23.2</td>
<td>0.208</td>
<td>0.069</td>
<td>0.219</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.222</td>
<td>0.136</td>
<td>0.261</td>
<td>63.6</td>
<td>-0.164</td>
<td>0.091</td>
<td>0.188</td>
<td>56.8</td>
<td>-0.151</td>
<td>0.055</td>
<td>0.161</td>
<td>22.2</td>
<td>0.214</td>
<td>0.071</td>
<td>0.226</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.217</td>
<td>0.134</td>
<td>0.255</td>
<td>61.2</td>
<td>-0.161</td>
<td>0.090</td>
<td>0.184</td>
<td>56.2</td>
<td>-0.147</td>
<td>0.053</td>
<td>0.156</td>
<td>21.0</td>
<td>0.208</td>
<td>0.067</td>
<td>0.219</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.207</td>
<td>0.133</td>
<td>0.246</td>
<td>63.6</td>
<td>-0.154</td>
<td>0.089</td>
<td>0.178</td>
<td>60.8</td>
<td>-0.127</td>
<td>0.054</td>
<td>0.138</td>
<td>33.6</td>
<td>0.179</td>
<td>0.068</td>
<td>0.192</td>
<td>25.4</td>
</tr>
<tr>
<td>(\hat{\psi}_k)</td>
<td>1</td>
<td>-0.009</td>
<td>0.160</td>
<td>0.161</td>
<td>94.4</td>
<td>0.003</td>
<td>0.108</td>
<td>0.108</td>
<td>94.8</td>
<td>0.000</td>
<td>0.060</td>
<td>0.060</td>
<td>95.4</td>
<td>-0.004</td>
<td>0.081</td>
<td>0.081</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.009</td>
<td>0.161</td>
<td>0.162</td>
<td>94.6</td>
<td>0.003</td>
<td>0.109</td>
<td>0.109</td>
<td>93.8</td>
<td>0.001</td>
<td>0.063</td>
<td>0.063</td>
<td>94.2</td>
<td>-0.006</td>
<td>0.084</td>
<td>0.084</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.012</td>
<td>0.159</td>
<td>0.159</td>
<td>94.4</td>
<td>0.005</td>
<td>0.107</td>
<td>0.107</td>
<td>94.4</td>
<td>0.000</td>
<td>0.059</td>
<td>0.059</td>
<td>94.0</td>
<td>-0.004</td>
<td>0.078</td>
<td>0.079</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.042</td>
<td>0.158</td>
<td>0.164</td>
<td>93.4</td>
<td>0.026</td>
<td>0.107</td>
<td>0.110</td>
<td>93.0</td>
<td>0.045</td>
<td>0.061</td>
<td>0.076</td>
<td>89.2</td>
<td>-0.069</td>
<td>0.081</td>
<td>0.107</td>
<td>86.2</td>
</tr>
<tr>
<td>(\hat{\psi}_w)</td>
<td>1</td>
<td>-0.004</td>
<td>0.161</td>
<td>0.161</td>
<td>94.6</td>
<td>-0.001</td>
<td>0.109</td>
<td>0.109</td>
<td>94.4</td>
<td>-0.002</td>
<td>0.060</td>
<td>0.060</td>
<td>94.8</td>
<td>-0.001</td>
<td>0.081</td>
<td>0.081</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.004</td>
<td>0.162</td>
<td>0.162</td>
<td>94.4</td>
<td>-0.001</td>
<td>0.109</td>
<td>0.109</td>
<td>94.0</td>
<td>-0.001</td>
<td>0.063</td>
<td>0.063</td>
<td>94.8</td>
<td>-0.003</td>
<td>0.084</td>
<td>0.084</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.007</td>
<td>0.159</td>
<td>0.160</td>
<td>94.0</td>
<td>0.001</td>
<td>0.108</td>
<td>0.108</td>
<td>94.4</td>
<td>-0.002</td>
<td>0.059</td>
<td>0.059</td>
<td>94.6</td>
<td>-0.001</td>
<td>0.079</td>
<td>0.079</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.036</td>
<td>0.159</td>
<td>0.163</td>
<td>93.4</td>
<td>0.022</td>
<td>0.107</td>
<td>0.110</td>
<td>93.8</td>
<td>0.042</td>
<td>0.061</td>
<td>0.074</td>
<td>90.2</td>
<td>-0.065</td>
<td>0.082</td>
<td>0.104</td>
<td>88.0</td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario 3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
Table 3.8: Two-stage estimates of blip parameters ($\hat{\psi}_{20}, \hat{\psi}_{21}, \hat{\psi}_{10}, \hat{\psi}_{11}$) with ($\hat{\sigma}_{2}, \hat{\sigma}_{1}$) = (0.5, 0.5) and 70% independent censoring.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.008</td>
<td>0.217</td>
<td>0.217</td>
<td>93.8</td>
<td>0.002</td>
<td>0.147</td>
<td>0.147</td>
<td>93.4</td>
<td>-0.001</td>
<td>0.075</td>
<td>0.075</td>
<td>93.2</td>
<td>-0.002</td>
<td>0.101</td>
<td>0.101</td>
<td>93.4</td>
</tr>
<tr>
<td>2</td>
<td>-0.011</td>
<td>0.218</td>
<td>0.219</td>
<td>93.4</td>
<td>0.004</td>
<td>0.148</td>
<td>0.148</td>
<td>93.8</td>
<td>-0.002</td>
<td>0.079</td>
<td>0.079</td>
<td>93.2</td>
<td>0.000</td>
<td>0.107</td>
<td>0.107</td>
<td>93.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.006</td>
<td>0.215</td>
<td>0.215</td>
<td>93.2</td>
<td>0.000</td>
<td>0.145</td>
<td>0.145</td>
<td>93.2</td>
<td>0.000</td>
<td>0.074</td>
<td>0.074</td>
<td>92.6</td>
<td>-0.002</td>
<td>0.098</td>
<td>0.098</td>
<td>92.8</td>
</tr>
<tr>
<td>4</td>
<td>-0.042</td>
<td>0.214</td>
<td>0.218</td>
<td>94.0</td>
<td>0.025</td>
<td>0.145</td>
<td>0.147</td>
<td>93.6</td>
<td>0.048</td>
<td>0.078</td>
<td>0.091</td>
<td>88.0</td>
<td>-0.073</td>
<td>0.103</td>
<td>0.126</td>
<td>87.4</td>
</tr>
<tr>
<td>1</td>
<td>0.003</td>
<td>0.152</td>
<td>0.152</td>
<td>95.8</td>
<td>-0.004</td>
<td>0.103</td>
<td>0.103</td>
<td>95.0</td>
<td>-0.002</td>
<td>0.057</td>
<td>0.057</td>
<td>93.6</td>
<td>0.001</td>
<td>0.076</td>
<td>0.076</td>
<td>94.2</td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>0.153</td>
<td>0.153</td>
<td>95.6</td>
<td>-0.003</td>
<td>0.103</td>
<td>0.103</td>
<td>95.0</td>
<td>-0.003</td>
<td>0.060</td>
<td>0.060</td>
<td>93.4</td>
<td>0.002</td>
<td>0.081</td>
<td>0.081</td>
<td>93.8</td>
</tr>
<tr>
<td>3</td>
<td>0.004</td>
<td>0.150</td>
<td>0.150</td>
<td>95.4</td>
<td>-0.004</td>
<td>0.102</td>
<td>0.102</td>
<td>94.2</td>
<td>-0.002</td>
<td>0.056</td>
<td>0.056</td>
<td>93.2</td>
<td>0.000</td>
<td>0.074</td>
<td>0.074</td>
<td>93.0</td>
</tr>
<tr>
<td>4</td>
<td>-0.031</td>
<td>0.150</td>
<td>0.153</td>
<td>93.8</td>
<td>0.020</td>
<td>0.101</td>
<td>0.103</td>
<td>94.4</td>
<td>0.047</td>
<td>0.059</td>
<td>0.075</td>
<td>84.2</td>
<td>-0.072</td>
<td>0.078</td>
<td>0.106</td>
<td>84.6</td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario 3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified.
Table 3.9: Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11}$) with ($\sigma_2, \sigma_1$) = (0.8, 0.8) and 70% independent censoring

<table>
<thead>
<tr>
<th>$\hat{\psi}$</th>
<th>Scenario</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\psi}^r$</td>
<td>1</td>
<td>0.008</td>
<td>0.217</td>
<td>0.217</td>
<td>91.6</td>
<td>-0.008</td>
<td>0.147</td>
<td>0.147</td>
<td>91.4</td>
<td>0.004</td>
<td>0.076</td>
<td>0.076</td>
<td>95.6</td>
<td>-0.004</td>
<td>0.101</td>
<td>0.101</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.007</td>
<td>0.218</td>
<td>0.218</td>
<td>92.8</td>
<td>-0.007</td>
<td>0.147</td>
<td>0.148</td>
<td>92.0</td>
<td>0.004</td>
<td>0.079</td>
<td>0.079</td>
<td>95.0</td>
<td>-0.003</td>
<td>0.106</td>
<td>0.106</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.008</td>
<td>0.214</td>
<td>0.215</td>
<td>92.0</td>
<td>-0.008</td>
<td>0.145</td>
<td>0.145</td>
<td>91.8</td>
<td>0.005</td>
<td>0.074</td>
<td>0.074</td>
<td>95.8</td>
<td>-0.004</td>
<td>0.098</td>
<td>0.098</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.027</td>
<td>0.214</td>
<td>0.216</td>
<td>93.0</td>
<td>0.017</td>
<td>0.145</td>
<td>0.146</td>
<td>92.0</td>
<td>0.054</td>
<td>0.078</td>
<td>0.094</td>
<td>88.0</td>
<td>-0.076</td>
<td>0.103</td>
<td>0.128</td>
<td>88.4</td>
</tr>
<tr>
<td>$\hat{\psi}^c$</td>
<td>1</td>
<td>0.009</td>
<td>0.152</td>
<td>0.152</td>
<td>94.2</td>
<td>-0.007</td>
<td>0.103</td>
<td>0.103</td>
<td>94.6</td>
<td>0.002</td>
<td>0.057</td>
<td>0.057</td>
<td>94.8</td>
<td>0.001</td>
<td>0.076</td>
<td>0.076</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.008</td>
<td>0.153</td>
<td>0.153</td>
<td>94.6</td>
<td>-0.007</td>
<td>0.104</td>
<td>0.104</td>
<td>94.6</td>
<td>0.001</td>
<td>0.060</td>
<td>0.060</td>
<td>93.8</td>
<td>0.001</td>
<td>0.080</td>
<td>0.080</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.009</td>
<td>0.151</td>
<td>0.151</td>
<td>94.8</td>
<td>-0.007</td>
<td>0.102</td>
<td>0.102</td>
<td>95.0</td>
<td>0.002</td>
<td>0.056</td>
<td>0.056</td>
<td>95.0</td>
<td>0.000</td>
<td>0.074</td>
<td>0.074</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.025</td>
<td>0.150</td>
<td>0.152</td>
<td>95.0</td>
<td>0.016</td>
<td>0.101</td>
<td>0.103</td>
<td>94.6</td>
<td>0.052</td>
<td>0.059</td>
<td>0.079</td>
<td>83.2</td>
<td>-0.073</td>
<td>0.078</td>
<td>0.107</td>
<td>85.4</td>
</tr>
<tr>
<td>$\hat{\psi}^n$</td>
<td>1</td>
<td>0.703</td>
<td>0.073</td>
<td>0.707</td>
<td>0.0</td>
<td>-0.518</td>
<td>0.043</td>
<td>0.520</td>
<td>0.0</td>
<td>-0.517</td>
<td>0.037</td>
<td>0.518</td>
<td>0.0</td>
<td>0.752</td>
<td>0.034</td>
<td>0.752</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.703</td>
<td>0.073</td>
<td>0.707</td>
<td>0.0</td>
<td>-0.518</td>
<td>0.043</td>
<td>0.520</td>
<td>0.0</td>
<td>-0.517</td>
<td>0.037</td>
<td>0.518</td>
<td>0.0</td>
<td>0.752</td>
<td>0.033</td>
<td>0.753</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.703</td>
<td>0.072</td>
<td>0.707</td>
<td>0.0</td>
<td>-0.518</td>
<td>0.043</td>
<td>0.520</td>
<td>0.0</td>
<td>-0.517</td>
<td>0.037</td>
<td>0.518</td>
<td>0.0</td>
<td>0.752</td>
<td>0.032</td>
<td>0.752</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.703</td>
<td>0.072</td>
<td>0.707</td>
<td>0.0</td>
<td>-0.518</td>
<td>0.043</td>
<td>0.520</td>
<td>0.0</td>
<td>-0.516</td>
<td>0.037</td>
<td>0.517</td>
<td>0.0</td>
<td>0.751</td>
<td>0.033</td>
<td>0.751</td>
<td>0.0</td>
</tr>
<tr>
<td>$\hat{\psi}^k$</td>
<td>1</td>
<td>-0.006</td>
<td>0.178</td>
<td>0.178</td>
<td>94.0</td>
<td>-0.007</td>
<td>0.121</td>
<td>0.121</td>
<td>93.4</td>
<td>0.010</td>
<td>0.066</td>
<td>0.067</td>
<td>94.4</td>
<td>-0.009</td>
<td>0.090</td>
<td>0.090</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.006</td>
<td>0.179</td>
<td>0.179</td>
<td>94.6</td>
<td>-0.007</td>
<td>0.122</td>
<td>0.122</td>
<td>93.8</td>
<td>0.009</td>
<td>0.069</td>
<td>0.069</td>
<td>94.6</td>
<td>-0.009</td>
<td>0.094</td>
<td>0.094</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.006</td>
<td>0.176</td>
<td>0.176</td>
<td>94.8</td>
<td>-0.007</td>
<td>0.120</td>
<td>0.120</td>
<td>94.0</td>
<td>0.010</td>
<td>0.065</td>
<td>0.066</td>
<td>93.6</td>
<td>-0.009</td>
<td>0.087</td>
<td>0.088</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.035</td>
<td>0.175</td>
<td>0.178</td>
<td>94.4</td>
<td>0.013</td>
<td>0.119</td>
<td>0.120</td>
<td>94.4</td>
<td>0.053</td>
<td>0.067</td>
<td>0.085</td>
<td>84.2</td>
<td>-0.072</td>
<td>0.090</td>
<td>0.115</td>
<td>87.8</td>
</tr>
<tr>
<td>$\hat{\psi}^w$</td>
<td>1</td>
<td>-0.004</td>
<td>0.178</td>
<td>0.178</td>
<td>94.6</td>
<td>-0.008</td>
<td>0.121</td>
<td>0.121</td>
<td>93.2</td>
<td>0.008</td>
<td>0.066</td>
<td>0.067</td>
<td>94.6</td>
<td>-0.006</td>
<td>0.090</td>
<td>0.090</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.004</td>
<td>0.179</td>
<td>0.179</td>
<td>94.4</td>
<td>-0.008</td>
<td>0.122</td>
<td>0.122</td>
<td>93.8</td>
<td>0.007</td>
<td>0.069</td>
<td>0.069</td>
<td>93.8</td>
<td>-0.006</td>
<td>0.094</td>
<td>0.094</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.004</td>
<td>0.176</td>
<td>0.176</td>
<td>94.8</td>
<td>-0.008</td>
<td>0.120</td>
<td>0.120</td>
<td>94.0</td>
<td>0.008</td>
<td>0.065</td>
<td>0.066</td>
<td>94.2</td>
<td>-0.006</td>
<td>0.087</td>
<td>0.088</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.032</td>
<td>0.175</td>
<td>0.178</td>
<td>94.4</td>
<td>0.011</td>
<td>0.119</td>
<td>0.120</td>
<td>94.6</td>
<td>0.051</td>
<td>0.067</td>
<td>0.084</td>
<td>84.8</td>
<td>-0.069</td>
<td>0.090</td>
<td>0.113</td>
<td>88.6</td>
</tr>
</tbody>
</table>

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario 3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
Table 3.10: Prediction accuracy of optimal DTR (%)

<table>
<thead>
<tr>
<th>%Censoring</th>
<th>ρ (σ², σ₁)</th>
<th>v: validation estimator</th>
<th>c: complete estimator</th>
<th>n: naive estimator</th>
<th>k: kNN estimator</th>
<th>w: WLS estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>(0.5, 0.2)</td>
<td>94.3 97.4 94.3 97.2 97.1 97.4 98.6 94.9 98.5 98.5 91.8 96.0 89.5 95.7 95.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5)</td>
<td>94.1 97.1 69.5 96.0 95.9 97.4 98.5 69.5 98.3 98.3 91.7 95.7 48.4 94.4 94.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.8)</td>
<td>94.5 97.4 56.2 95.6 95.6 97.4 98.5 66.3 98.2 98.2 92.0 96.0 37.3 93.9 93.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>(0.2, 0.2)</td>
<td>96.5 97.4 94.3 97.3 97.2 98.1 98.6 94.9 98.5 98.5 94.6 96.0 89.5 95.8 95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5)</td>
<td>96.4 97.1 69.6 96.7 96.6 98.1 98.5 69.5 98.4 98.3 94.5 95.7 48.3 95.1 95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.8)</td>
<td>96.1 97.4 56.2 96.6 96.6 98.0 98.5 66.3 98.3 98.3 94.2 95.9 37.2 94.9 94.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>(0.5, 0.2)</td>
<td>89.4 95.9 92.3 95.6 95.5 96.0 97.8 94.7 97.7 97.7 85.9 93.7 87.5 93.4 93.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5)</td>
<td>89.6 95.9 69.2 94.3 94.2 96.1 97.8 70.8 97.5 97.5 86.1 93.8 49.1 91.9 91.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.8)</td>
<td>90.0 95.6 58.9 93.3 93.2 96.1 97.8 66.3 97.4 97.4 86.5 93.4 39.1 90.8 90.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>(0.2, 0.2)</td>
<td>94.0 95.9 92.3 95.8 95.8 97.0 97.8 94.8 97.7 97.7 91.2 93.7 87.5 93.7 93.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5)</td>
<td>93.9 95.9 69.3 95.3 95.3 97.0 97.8 70.8 97.6 97.6 91.1 93.8 49.1 93.1 93.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.8)</td>
<td>93.2 95.6 58.9 94.7 94.7 97.1 97.8 66.3 97.6 97.6 90.5 93.4 39.0 92.4 92.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>(0.5, 0.2)</td>
<td>96.4 97.4 94.3 97.3 97.2 98.1 98.6 94.9 98.5 98.5 94.6 96.0 89.5 95.8 95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5)</td>
<td>96.4 97.1 69.6 96.7 96.6 98.1 98.5 69.5 98.4 98.3 94.5 95.7 48.3 95.1 95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.8)</td>
<td>96.1 97.4 56.2 96.6 96.6 98.0 98.5 66.3 98.3 98.3 94.2 95.9 37.2 94.9 94.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

v: validation estimator, c: complete estimator, n: naive estimator, k: kNN estimator, w: WLS estimator
Table 3.11: Prediction of the expected optimal log-survival times (standard deviations)

<table>
<thead>
<tr>
<th>% Censoring</th>
<th>ρ</th>
<th>(σ_2, σ_1)</th>
<th>v</th>
<th>c</th>
<th>n</th>
<th>k</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>0.5</td>
<td>(0.2, 0.2)</td>
<td>7.166 (0.020)</td>
<td>7.166 (0.013)</td>
<td>7.143 (0.012)</td>
<td>7.154 (0.013)</td>
<td>7.152 (0.014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5, 0.5)</td>
<td>7.166 (0.020)</td>
<td>7.166 (0.013)</td>
<td>7.094 (0.014)</td>
<td>7.136 (0.015)</td>
<td>7.135 (0.015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.8, 0.8)</td>
<td>7.167 (0.019)</td>
<td>7.167 (0.012)</td>
<td>7.085 (0.015)</td>
<td>7.131 (0.016)</td>
<td>7.130 (0.016)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2</td>
<td>(0.2, 0.2)</td>
<td>7.166 (0.016)</td>
<td>7.166 (0.013)</td>
<td>7.143 (0.012)</td>
<td>7.158 (0.013)</td>
<td>7.157 (0.013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5, 0.5)</td>
<td>7.166 (0.015)</td>
<td>7.166 (0.013)</td>
<td>7.094 (0.014)</td>
<td>7.146 (0.013)</td>
<td>7.145 (0.013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.8, 0.8)</td>
<td>7.167 (0.016)</td>
<td>7.167 (0.012)</td>
<td>7.085 (0.015)</td>
<td>7.142 (0.013)</td>
<td>7.142 (0.013)</td>
</tr>
<tr>
<td>70%</td>
<td>0.5</td>
<td>(0.2, 0.2)</td>
<td>7.168 (0.031)</td>
<td>7.166 (0.019)</td>
<td>7.144 (0.017)</td>
<td>7.154 (0.019)</td>
<td>7.152 (0.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5, 0.5)</td>
<td>7.169 (0.029)</td>
<td>7.168 (0.017)</td>
<td>7.095 (0.020)</td>
<td>7.137 (0.021)</td>
<td>7.136 (0.021)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.8, 0.8)</td>
<td>7.169 (0.029)</td>
<td>7.168 (0.018)</td>
<td>7.088 (0.020)</td>
<td>7.134 (0.022)</td>
<td>7.133 (0.022)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2</td>
<td>(0.2, 0.2)</td>
<td>7.166 (0.024)</td>
<td>7.166 (0.018)</td>
<td>7.144 (0.017)</td>
<td>7.159 (0.019)</td>
<td>7.157 (0.018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5, 0.5)</td>
<td>7.168 (0.023)</td>
<td>7.168 (0.017)</td>
<td>7.095 (0.020)</td>
<td>7.148 (0.019)</td>
<td>7.147 (0.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.8, 0.8)</td>
<td>7.169 (0.022)</td>
<td>7.168 (0.017)</td>
<td>7.088 (0.020)</td>
<td>7.144 (0.020)</td>
<td>7.144 (0.020)</td>
</tr>
</tbody>
</table>

v: validation estimator, c: complete estimator, n: naive estimator, k: kNN estimator, w: WLS estimator
Table 3.12: Analysis results of the MIMIC-III data for the two-stage estimation of blip parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>Est</th>
<th>SE</th>
<th>95% CI</th>
<th>Est</th>
<th>SE</th>
<th>95% CI</th>
<th>Est</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 PEEP</td>
<td>-0.703</td>
<td>0.358</td>
<td>(-0.964, 0.438)</td>
<td>-0.271</td>
<td>0.356</td>
<td>(-0.968, 0.427)</td>
<td>-0.263</td>
<td>0.358</td>
<td>(-0.964, 0.438)</td>
</tr>
<tr>
<td>A1 VENT</td>
<td>0.448</td>
<td>0.048</td>
<td>(0.388, 0.608)</td>
<td>0.132</td>
<td>0.084</td>
<td>(-0.033, 0.297)</td>
<td>0.103</td>
<td>0.060</td>
<td>(0.035, 0.171)</td>
</tr>
<tr>
<td>A2 PEEP</td>
<td>0.473</td>
<td>0.476</td>
<td>(-0.460, 1.406)</td>
<td>0.132</td>
<td>0.084</td>
<td>(-0.033, 0.297)</td>
<td>0.103</td>
<td>0.060</td>
<td>(0.035, 0.171)</td>
</tr>
<tr>
<td>A2 VENT</td>
<td>-0.862</td>
<td>0.258</td>
<td>(-1.369, -0.356)</td>
<td>-0.340</td>
<td>0.248</td>
<td>(-0.826, 0.145)</td>
<td>-0.333</td>
<td>0.248</td>
<td>(-0.819, 0.152)</td>
</tr>
<tr>
<td>A1 PEEP</td>
<td>0.448</td>
<td>0.099</td>
<td>(0.255, 0.642)</td>
<td>0.158</td>
<td>0.090</td>
<td>(-0.017, 0.334)</td>
<td>0.159</td>
<td>0.090</td>
<td>(-0.017, 0.334)</td>
</tr>
<tr>
<td>A1 VENT</td>
<td>0.241</td>
<td>0.052</td>
<td>(0.140, 0.342)</td>
<td>0.788</td>
<td>0.060</td>
<td>(0.670, 0.906)</td>
<td>0.789</td>
<td>0.060</td>
<td>(0.671, 0.907)</td>
</tr>
<tr>
<td>A2 PEEP</td>
<td>-0.367</td>
<td>0.333</td>
<td>(-0.999, 0.265)</td>
<td>0.248</td>
<td>0.052</td>
<td>(0.145, 0.352)</td>
<td>0.241</td>
<td>0.052</td>
<td>(0.140, 0.342)</td>
</tr>
<tr>
<td>A2 VENT</td>
<td>-0.819</td>
<td>0.333</td>
<td>(-1.482, -0.156)</td>
<td>-0.356</td>
<td>0.248</td>
<td>(-0.926, 0.214)</td>
<td>-0.357</td>
<td>0.248</td>
<td>(-0.926, 0.214)</td>
</tr>
<tr>
<td>A1 WLS</td>
<td>0.448</td>
<td>0.099</td>
<td>(0.255, 0.642)</td>
<td>0.158</td>
<td>0.090</td>
<td>(-0.017, 0.334)</td>
<td>0.159</td>
<td>0.090</td>
<td>(-0.017, 0.334)</td>
</tr>
<tr>
<td>A2 WLS</td>
<td>0.241</td>
<td>0.052</td>
<td>(0.140, 0.342)</td>
<td>0.788</td>
<td>0.060</td>
<td>(0.670, 0.906)</td>
<td>0.789</td>
<td>0.060</td>
<td>(0.671, 0.907)</td>
</tr>
<tr>
<td>Validation</td>
<td>0.473</td>
<td>0.476</td>
<td>(-0.460, 1.406)</td>
<td>0.132</td>
<td>0.084</td>
<td>(-0.033, 0.297)</td>
<td>0.103</td>
<td>0.060</td>
<td>(0.035, 0.171)</td>
</tr>
</tbody>
</table>

Est: estimates, SE: asymptotic standard error, CI: confidence interval
Figure 3.1: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.2$ and 30% independent censoring

Figure 3.2: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.5$ and 30% independent censoring
Figure 3.3: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.8$ and 30% independent censoring.

Figure 3.4: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.2$ and 70% independent censoring.
Figure 3.5: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.5$ and 70% independent censoring

Figure 3.6: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $\sigma = 0.8$ and 70% independent censoring
Figure 3.7: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.2, 0.2)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified.

Figure 3.8: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7, (\sigma_2, \sigma_1) = (0.5, 0.5)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified.
Figure 3.9: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7\), \((\sigma_2, \sigma_1) = (0.8, 0.8)\) and 30\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

Figure 3.10: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})\) with \(\rho = 0.7\), \((\sigma_2, \sigma_1) = (0.2, 0.2)\) and 70\% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified
Figure 3.11: Two-stage estimates of $(\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $(\sigma_2, \sigma_1) = (0.5, 0.5)$ and 70% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified

Figure 3.12: Two-stage estimates of $(\psi_{20}, \psi_{21}, \psi_{10}, \psi_{11})$ with $\rho = 0.7$, $(\sigma_2, \sigma_1) = (0.8, 0.8)$ and 70% independent censoring under four scenarios: (1) both models correctly specified, (2) weight model correctly specified, but treatment-free model misspecified, (3) weight model misspecified, but treatment-free model correctly specified, (4) both models misspecified
Figure 3.13: Prediction accuracy of optimal DTR with $\rho = 0.7$ and 30% independent censoring
Figure 3.14: Prediction accuracy of optimal DTR with $\rho = 0.7$ and 70% independent censoring.
3.6 Appendix

The proof of consistency in this section is based on a one-stage setting and it can be intuitively extended to multiple stages. The conditions for the property of consistency in DWSurv include:

(C1) Assumptions (A1) - (A4) in Sections (1.1.1) and (1.1.4) hold.

(C2) The weights satisfy the balancing property (1.9).

(C3) \(E[X_i] < \infty \), and the choice of \(k \) satisfies that \(\lim_{n \to \infty} k = \infty \) and \(\lim_{n \to \infty} k/n = 0 \).

The condition (C1) includes the assumptions that are necessary for the dynamic weighted survival modeling. The condition (C2) contains the requirement for choosing the weights in DWSurv, as described in Section (1.1.4). The condition (C3) assumes that the covariate is bounded, and the conditions the choice of \(k \) satisfies for the consistency of the \(k \)NN estimates.

Proof of Theorem 3.2.1:

For \(\eta_1 = 1 \), the original estimating equation is

\[
U(\beta, \psi) = \sum_{i=1}^{n} \delta_i \hat{w}_i \left(\frac{h_{i\beta}}{a_i h_{i\phi}} \right) \left(\log T_i - \beta^T h_{i\beta} - a_i \psi^T h_{i\phi} \right) = 0.
\]

Let \(G(\cdot) \) be defined as a function such that

\[
G(X_i, Z_i, A_i, T_i; \beta, \psi) = \left(\frac{h_{i\beta}}{a_i h_{i\phi}} \right) \left(\log T_i - \beta^T h_{i\beta} - a_i \psi^T h_{i\phi} \right).
\]

Then, the estimating equation can be further written as

\[
U(\beta, \psi) = \sum_{i=1}^{n} \delta_i \hat{w}_i G(X_i, Z_i, A_i, T_i; \beta, \psi) = 0.
\]

Then, the estimating equation using the proposed \(k \)NN method is given by

\[
\hat{U}(\beta, \psi) = \sum_{i=1}^{n} \delta_i \hat{w}_i G(\bar{X}_i^k, Z_i, A_i, T_i; \beta, \psi)
\]

\[
= \sum_{i \in V} \delta_i \hat{w}_i G(X_i, Z_i, A_i, T_i; \beta, \psi) + \sum_{i \in \overline{V}} \delta_i \hat{w}_i G(\bar{X}_i^k, Z_i, A_i, T_i; \beta, \psi)
\]

\[
= \sum_{i=1}^{n} \delta_i \hat{w}_i G(X_i, Z_i, A_i, T_i; \beta, \psi) + \sum_{i \in \overline{V}} \delta_i \hat{w}_i \left[G(\bar{X}_i^k, Z_i, A_i, T_i; \beta, \psi) - G(\bar{X}_i, Z_i, A_i, T_i; \beta, \psi) \right]
\]

\[
= U(\beta, \psi) + \sum_{i \in \overline{V}} \delta_i \hat{w}_i \left[G(\bar{X}_i^k, Z_i, A_i, T_i; \beta, \psi) - G(\bar{X}_i, Z_i, A_i, T_i; \beta, \psi) \right].
\]
By Cauchy-Schwarz inequality, for \(l = 1, 2, ..., L \) in \(V \),

\[
\left\| \sum_{i \in V} \delta_i \hat{w}_i \left[G(\hat{X}_i^k, Z_i, A_i, T_i; \beta, \psi) - G(\bar{X}_i, Z_i, A_i, T_i; \beta, \psi) \right] \right\| = \\
\left\| \sum_{l=1}^{L} \left[G(\hat{X}_i^k, Z_l, A_l, T_l; \beta, \psi) - G(\bar{X}_i, Z_l, A_l, T_l; \beta, \psi) \right] \sum_{i \in V} \delta_i \hat{w}_i \mathbb{1}(W_i \text{ is near } W_l) \right\| \\
\leq \sum_{l=1}^{L} \left\| G(\hat{X}_i^k, Z_l, A_l, T_l; \beta, \psi) - G(\bar{X}_i, Z_l, A_l, T_l; \beta, \psi) \right\| \sum_{i \in V} \delta_i \hat{w}_i \mathbb{1}(W_i \text{ is near } W_l) .
\]

According to Devroye et al. (1994), for \(E|X_i| < \infty \) and the choice of \(k \) satisfies \(\lim_{n \to \infty} k = \infty \) and \(\lim_{n \to \infty} k/n = 0 \), we have \(\| \hat{X}_i^k - \bar{X}_i \| \xrightarrow{P} 0 \) as \(n \to \infty \). By continuous mapping theorem, we obtain

\[
\left\| G(\hat{X}_i^k, Z_l, A_l, T_l; \beta, \psi) - G(\bar{X}_i, Z_l, A_l, T_l; \beta, \psi) \right\| \xrightarrow{P} 0 \quad \text{as } n \to \infty .
\]

For some finite \(M, \left\| \sum_{i \in V} \delta_i \hat{w}_i \mathbb{1}(W_i \text{ is near } W_l) \right\| < M < \infty \). Therefore,

\[
\left\| \sum_{l=1}^{L} \left[G(\hat{X}_i^k, Z_l, A_l, T_l; \beta, \psi) - G(\bar{X}_i, Z_l, A_l, T_l; \beta, \psi) \right] \sum_{i \in V} \delta_i \hat{w}_i \mathbb{1}(W_i \text{ is near } W_l) \right\| \xrightarrow{P} 0 \quad \text{as } n \to \infty .
\]

Equivalently,

\[
\left\| \sum_{i \in V} \delta_i \hat{w}_i \left[G(\hat{X}_i^k, Z_i, A_i, T_i; \beta, \psi) - G(\bar{X}_i, Z_i, A_i, T_i; \beta, \psi) \right] \right\| \xrightarrow{P} 0 \quad \text{as } n \to \infty .
\]

Thus,

\[
\hat{U}(\beta, \psi) = U(\beta, \psi) + o_P(1).
\]

Since \((\hat{\beta}^k, \hat{\psi}^k)\) is the solution to \(\hat{U}(\beta, \psi) = 0 \) and \((\hat{\beta}, \hat{\psi})\) is the solution to \(U(\beta, \psi) = 0 \), the blip estimator \(\hat{\psi}^k \) converges to \(\hat{\psi} \) in probability. It is easy to prove that \(\hat{\psi} \) consistently estimates \(\psi \). Thus, \(\hat{\psi}^k \) is a consistent estimator of \(\psi \).
Chapter 4

Q-learning with Misclassified Binary Outcomes

4.1 Introduction

In the previous chapters, we investigate the scenarios with continuous outcomes and survival outcomes in DTR, in which the covariates are subject to measurement error. In this chapter, we study the DTR with discrete-valued outcomes. In particular, a binary response in Q-learning (Moodie et al., 2014) is considered. We target our study on the misclassification effect on Q-learning in binary regression with internal validation data provided. The maximum likelihood estimation is proposed as an effective correction method to accommodate the misclassification effect in Q-learning.

The remainder of the chapter is organized as follows. In Section 4.2, the Q-learning model in binary regression is presented, and the misclassification process for the binary outcome is introduced. The correction method to account for the misclassification effect in Q-learning is described in Section 4.2. In Section 4.3, we conduct simulation studies to evaluate the performance of the proposed method in one-stage and multi-stage settings. Data analysis is conducted in Section 4.4 for illustration using two real data examples, the NHEFS data and smoking cessation data, followed by conclusions in the last section.
4.2 Methodology

4.2.1 Notations and Model Framework

The model framework is focused on a two-stage setting in Q-learning with a data trajectory \(\{X_1, A_1, X_2, A_2, Y\} \), where \(X_j \) is a covariate vector precisely measured and collected prior to a treatment \(A_j \in \{1, -1\} \) assigned at stage \(j \) (\(j = 1, 2 \)). \(Y \in \{1, 0\} \) is a binary outcome measured at the end of second stage.

In the applications, the outcome \(Y \) may be subject to misclassification, and let \(Y^* \) be a surrogate outcome, the actually observed version of \(Y \). We focus on a situation where the study has both internal validation data \(V \) and main study data \(V \) available. That is,

\[
\begin{align*}
\{X_{i1}, A_{i1}, X_{i2}, A_{i2}, Y_i, Y_i^*\} & \text{ if } i \in V, \\
\{X_{i1}, A_{i1}, X_{i2}, A_{i2}, Y_i^*\} & \text{ if } i \in \bar{V},
\end{align*}
\]

where the surrogate outcome \(Y^* \) is observed for all individuals, but the true outcome \(Y \) is only observed for individuals in the validation data \(V \).

We consider the case of non-differential misclassification mechanism, where the probability of \(Y^* \) depends only on \(Y \). Then, the misclassification probabilities \((\gamma_{10}, \gamma_{01})\) are defined as

\[
\gamma_{10} = P(Y^* = 1|Y = 0), \quad \gamma_{01} = P(Y^* = 0|Y = 1). \tag{4.1}
\]

In order for the misclassification probabilities \((\gamma_{10}, \gamma_{01})\) and regression parameters \((\beta_j, \psi_j)\) to be identifiable, one additional assumption is imposed to the Q-learning

Monotonicity condition: \(\gamma_{10} + \gamma_{01} < 1 \).

This assumption (A5) guarantees that \((\gamma_{10}, \gamma_{01}, \beta_j, \psi_j)\) are identifiable if \(E[X_jX_j^T] \) exists and is non-singular for \(j = 1, 2 \) (Hausman et al., 1998). Otherwise, if \(\gamma_{10} + \gamma_{01} \geq 1 \), this set of misclassification probabilities are deemed problematic and \(Y^* \) is regarded not to be produced by chance (Neuhaus, 1999).

In Q-learning, when the outcome misclassification is ignored, and we proceed to fit a model by simply replacing \(Y \) with \(Y^* \) in (1.4), we obtain a naive model

\[
Q_2(H_2, A_2; \beta_2^n, \psi_2^n) = E[Y^*|H_2, A_2] = P(Y^* = 1|H_2, A_2) = \expit(\beta_2^T H_20 + A_2(\psi_2^n T H_21)). \tag{4.2}
\]
It has been discussed in the literature that ignoring the misclassification in the response can result in attenuated covariate effects and a change in the model structure (Neuhaus, 1999; Carroll et al., 2006; Yi, 2017). Thus, using the naive model (4.2) in logistic regression yields a naive estimator $\hat{\beta}_2^n, \hat{\psi}_2^n$, which may be biased for (β_2, ψ_2). Furthermore, a biased naive estimator $(\hat{\beta}_2^n, \hat{\psi}_2^n)$ may affect the first stage parameter estimation and the determination of optimal DTR. Such potential issues motivate us to search for an effective approach to accommodate the outcome misclassification effect in Q-learning.

4.2.2 Maximum Likelihood Estimation Method

When the outcome is subject to misclassification, the original Q-learning in (1.1.3) needs modifications to produce consistent estimates of parameters. Carroll et al. (2006) and Yi (2017) described the general use of the maximum likelihood estimation method in the logistic regression model to deal with the outcome misclassification. We borrow their ideas and extend the MLE approach to Q-learning in the internal validation/main study data context.

The main idea of the MLE method in Q-learning is to derive likelihood functions for the validation data and main study data and then combine them for a total likelihood for parameter estimation. Given (H_2, A_2), we establish a relationship of the conditional probability of the surrogate outcome with the conditional probability of the true outcome as

$$
P(Y^* = 1 | H_2, A_2) = P(Y^* = 1, Y = 1 | H_2, A_2) + P(Y^* = 1, Y = 0 | H_2, A_2)
= P(Y^* = 1 | Y = 1, H_2, A_2)P(Y = 1 | H_2, A_2) + P(Y^* = 1 | Y = 0, H_2, A_2)P(Y = 0 | H_2, A_2)
= P(Y^* = 1 | Y = 1)P(Y = 1 | H_2, A_2) + P(Y^* = 1 | Y = 0)P(Y = 0 | H_2, A_2)
= \left[1 - P(Y^* = 0 | Y = 1)\right]P(Y = 1 | H_2, A_2) + P(Y^* = 1 | Y = 0)\left[1 - P(Y = 1 | H_2, A_2)\right]
= (1 - \gamma_{01})P(Y = 1 | H_2, A_2) + \gamma_{10}\left[1 - P(Y = 1 | H_2, A_2)\right]
= \gamma_{10} + (1 - \gamma_{10} - \gamma_{01})P(Y = 1 | H_2, A_2).
$$

(4.3)

Based on (4.3), we first derive the likelihood function for patients in the main study data V, where only Y^* is observed. Thus, for any i^{th} patient ($i \in V$), the corresponding likelihood L_i is
which is expressed as

\[L_i = P(Y_i^* = y_i^* | H_{i2}, A_{i2}) = P(Y_i^* = y_i^*, Y_i = 1 | H_{i2}, A_{i2}) + P(Y_i^* = y_i^*, Y_i = 0 | H_{i2}, A_{i2}) \]

\[= P(Y_i^* = y_i^* | Y_i = 1, H_{i2}, A_{i2}) P(Y_i = 1 | H_{i2}, A_{i2}) + P(Y_i^* = y_i^* | Y_i = 0, H_{i2}, A_{i2}) P(Y_i = 0 | H_{i2}, A_{i2}) \]

\[= P(Y_i^* = y_i^* | Y_i = 1) P(Y_i = 1 | H_{i2}, A_{i2}) + P(Y_i^* = y_i^* | Y_i = 0) P(Y_i = 0 | H_{i2}, A_{i2}). \]

Then, the likelihood \(L_{\bar{V}} \) is the product of the likelihoods across \(n_{\bar{V}} \) patients from \(\bar{V} \)

\[L_{\bar{V}} = \prod_{i=1}^{n_{\bar{V}}} L_i = \prod_{i=1}^{n_{\bar{V}}} \left\{ P(Y_i^* = y_i^* | Y_i = 1) P(Y_i = 1 | H_{i2}, A_{i2}) + P(Y_i^* = y_i^* | Y_i = 0) P(Y_i = 0 | H_{i2}, A_{i2}) \right\} \]

\[= \prod_{i=1}^{n_{\bar{V}}} \left\{ P(Y_i^* = 0 | Y_i = 1) P(Y_i = 1 | H_{i2}, A_{i2}) + P(Y_i^* = 0 | Y_i = 0) P(Y_i = 0 | H_{i2}, A_{i2}) \right\} \times \]

\[\left\{ (1 - \gamma_{01}) P(Y_i = 1 | H_{i2}, A_{i2}) + \gamma_{10} P(Y_i = 0 | H_{i2}, A_{i2}) \right\}^{y_i^*} \times \]

\[\left\{ \gamma_{01} P(Y_i = 1 | H_{i2}, A_{i2}) + (1 - \gamma_{10}) P(Y_i = 0 | H_{i2}, A_{i2}) \right\}^{1 - y_i^*} \]

\[= \prod_{i=1}^{n_{\bar{V}}} \left\{ (1 - \gamma_{01}) P(Y_i = 1 | H_{i2}, A_{i2}) + \gamma_{10} \left[1 - P(Y_i = 1 | H_{i2}, A_{i2}) \right] \right\}^{y_i^*} \times \]

\[\left\{ \gamma_{01} P(Y_i = 1 | H_{i2}, A_{i2}) + (1 - \gamma_{10}) \left[1 - P(Y_i = 1 | H_{i2}, A_{i2}) \right] \right\}^{1 - y_i^*} \]

\[= \prod_{i=1}^{n_{\bar{V}}} \left\{ \gamma_{10} + (1 - \gamma_{10} - \gamma_{01}) P(Y_i = 1 | H_{i2}, A_{i2}) \right\}^{y_i^*} \times \left\{ (1 - \gamma_{10}) + (1 - \gamma_{10} - \gamma_{01}) P(Y_i = 1 | H_{i2}, A_{i2}) \right\}^{1 - y_i^*}. \]

For any \(i^{th} \) patient in the validation data \((i \in V)\), the likelihood involves both \(Y_i^* \) and \(Y_i \), which is expressed as

\[L_i = P(Y_i^* = y_i^* | H_{i2}, A_{i2}) \]

\[= P(Y_i^* = y_i^* | Y_i = y_i, H_{i2}, A_{i2}) P(Y_i = y_i | H_{i2}, A_{i2}) \]

\[= P(Y_i^* = y_i^* | Y_i = y_i) P(Y_i = y_i | H_{i2}, A_{i2}). \]
Then, the likelihood L_v across n_v patients in V follows

$$
L_v = \prod_{i=1}^{n_v} L_i = \prod_{i=1}^{n_v} P(Y_i^* = y_i^*|Y_i = y_i)P(Y_i = y_i|H_{i2}, A_{i2})
$$

$$
= \prod_{i=1}^{n_v} \left\{ \left[P(Y_i^* = 1|Y_i = 1)P(Y_i = 1|H_{i2}, A_{i2}) \right]^{y_i^*} \times \left[P(Y_i^* = 1|Y_i = 0)P(Y_i = 0|H_{i2}, A_{i2}) \right]^{y_i^*} \times \left[P(Y_i^* = 0|Y_i = 1)P(Y_i = 0|H_{i2}, A_{i2}) \right]^{y_i^*} \times \left[P(Y_i^* = 0|Y_i = 0)P(Y_i = 0|H_{i2}, A_{i2}) \right]^{y_i^*} \right\}
$$

$$
= \prod_{i=1}^{n_v} \left\{ \left[(1 - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right]^{y_i^*} \times \left[\gamma_{10}P(Y_i = 0|H_{i2}, A_{i2}) \right]^{y_i^*(1-\gamma)} \times \left[(1 - \gamma_{10})P(Y_i = 0|H_{i2}, A_{i2}) \right]^{y_i^*(1-\gamma)} \times \left[(1 - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right]^{y_i^*(1-\gamma)} \right\}
$$

Thus, the total likelihood function L across all the patients is given by

$$
L = L_v \times L_\bar{v} = \left\{ \prod_{i=1}^{n_v} \left\{ \left[(1 - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right]^{y_i^*} \times \left[\gamma_{10}(1 - P(Y_i = 1|H_{i2}, A_{i2})) \right]^{y_i^*(1-\gamma)} \times \left[(1 - \gamma_{10})(1 - P(Y_i = 1|H_{i2}, A_{i2})) \right]^{y_i^*(1-\gamma)} \right\} \times \left\{ \prod_{i=1}^{n_\bar{v}} \left\{ \gamma_{10} + (1 - \gamma_{10} - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right\}^{y_i^*} \times \left\{ (1 - \gamma_{10} - (1 - \gamma_{10} - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right\}^{1-y_i^*} \right\} \right\}
$$

(4.4)

From (4.4), we can obtain a total log-likelihood function that is to be maximized

$$
logL = \sum_{i=1}^{n_v} \left\{ y_i^* \gamma_{10} \log(1 - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right\} + \left\{ y_i^*(1 - y_i) \log \gamma_{10}(1 - P(Y_i = 1|H_{i2}, A_{i2})) \right\} + \left\{ (1 - y_i^*)y_i \log \gamma_{10}P(Y_i = 1|H_{i2}, A_{i2}) \right\} + \left\{ (1 - y_i^*)(1 - y_i) \log \gamma_{10}(1 - P(Y_i = 1|H_{i2}, A_{i2})) \right\} + \sum_{i=1}^{n_\bar{v}} \left\{ y_i^* \log \gamma_{10} + (1 - \gamma_{10} - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right\} + \left\{ (1 - y_i^*) \log (1 - \gamma_{10} - (1 - \gamma_{10} - \gamma_{01})P(Y_i = 1|H_{i2}, A_{i2}) \right\}
$$

(4.5)
Let $\theta = (\beta, \psi, \gamma_0, \gamma_1)$. Maximizing $\log L(\theta)$, the total log-likelihood function (4.5) with respect to θ, results in a MLE estimator $\hat{\theta}^{\text{mle}}$. It is equivalent to solving the score equation

$$\sum_{i=1}^{n} S_i(\theta) = 0,$$

where $S_i(\theta) = \frac{\partial}{\partial \theta} \log L_i(\theta)$. Numerical methods such as Newton-Raphson method can be used to find the MLE estimator $\hat{\theta}^{\text{mle}}$.

Theorem 4.2.1 Under the conditions (C1) - (C5) in the Appendix, Section 4.6, the MLE estimator $\hat{\theta}^{\text{mle}}$ is a consistent estimator of θ. That is,

$$\hat{\theta}^{\text{mle}} \xrightarrow{p} \theta \quad \text{as } n \to \infty.$$

As a result, the stage 2 estimator $(\hat{\beta}^{\text{mle}}_2, \hat{\psi}^{\text{mle}}_2)$ is consistent. Then, with the consistent estimation of the pseudo-outcome, the stage 1 estimator $(\hat{\beta}^{\text{mle}}_1, \hat{\psi}^{\text{mle}}_1)$ is consistent by using the ordinary least squares. Thus, the MLE method yields consistent estimates of blip parameter $\psi = (\psi_2, \psi_1)$ in Q-learning. The details are provided in the Appendix in Section 4.6.

Modified Q-learning Algorithm in Binary Regression:

The following two-stage Q-learning algorithm details the modified estimation procedures:

1. Parameterize the stage 2 Q-function

$$Q_2(H_2, A_2; \beta^{\text{mle}}_2, \psi^{\text{mle}}_2) = \expit(\beta^{\text{mle}}_2^T H_{20} + A_2 (\psi^{\text{mle}}_2^T H_{21})).$$

2. Apply maximum likelihood estimation method to obtain the stage 2 estimator $(\hat{\beta}^{\text{mle}}_2, \hat{\psi}^{\text{mle}}_2)$ by maximizing the log-likelihood function (4.5).

3. Derive the stage 2 optimal treatment as $\hat{a}^{\text{opt}}_2 = \arg \max_{a_2} Q_2(H_2, a_2; \hat{\beta}^{\text{mle}}_2, \hat{\psi}^{\text{mle}}_2)$.

4. Construct the pseudo-outcome for estimation at stage 1

$$\tilde{Y}_1 = \max_{a_2} \logit Q_2(H_2, a_2; \hat{\beta}^{\text{mle}}_2, \hat{\psi}^{\text{mle}}_2).$$

5. Apply OLS regression to obtain the stage 1 estimator $(\hat{\beta}^{\text{mle}}_1, \hat{\psi}^{\text{mle}}_1)$

$$(\hat{\beta}^{\text{mle}}_1, \hat{\psi}^{\text{mle}}_1) = \arg \min_{(\beta^{\text{mle}}_1, \psi^{\text{mle}}_1)} \frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_{i1} - Q_1(H_{i1}, A_{i1}; \beta^{\text{mle}}_1, \psi^{\text{mle}}_1) \right)^2.$$
6. Derive the stage 1 optimal treatment as $\hat{a}_{opt}^1 = \arg \max_{a_1} Q_1(h_1, a_1; \hat{\beta}_{mle}^1, \hat{\psi}_{mle}^1)$.

This modified Q-learning algorithm distinguishes itself from the original Q-learning algorithm in Section (1.1.3) in Step 2, which replaces the application of logistic regression with the maximum likelihood estimation method.

4.3 Simulation Studies

4.3.1 One-Stage Estimation

We begin with the one-stage estimation in Q-learning. Let X be a continuous covariate and Z be a binary covariate, where $X \sim N(1, 1)$ and $Z \in \{1, -1\}$ is generated with probability of 0.5. The treatment $A \in \{1, -1\}$ that depends on X is drawn from a Bernoulli distribution with probability $P(A = 1) = \expit(1 - X)$, where $\expit(x) = 1/(1 + \exp(-x))$. The true outcome Y is drawn from a Bernoulli distribution with probability $\expit(1 + \beta_z Z + \beta_x X + A(\psi_{10} + \psi_{11}X))$, where $(\beta, \psi) = (\beta_z, \beta_x, \psi_{10}, \psi_{11}) = (0.5, -1, 0.5, -0.5)$. Misclassified outcome Y^* is simulated from a Bernoulli distribution based on the misclassification probabilities $(\gamma_{10}, \gamma_{01})$.

The generated dataset is randomly divided into validation data and main study data with a validation ratio ρ, where the validation data contain $100\times\rho\%$ of the observations. We consider three estimators to evaluate the performance of the proposed MLE method: (1) validation estimator $(\hat{\beta}^v, \hat{\psi}^v)$ obtained using the validation data only, (2) naive estimator $(\hat{\beta}^n, \hat{\psi}^n)$ obtained using the surrogate outcome Y^*, (3) MLE estimator $(\hat{\beta}_{mle}^1, \hat{\psi}_{mle}^1)$ obtained from the modified algorithm (4.2.2).

We compare results under two sample sizes of $n = 500$ and $n = 2000$. The validation ratio ρ is specified as 0.3 and 0.5. The set of $(\gamma_{10}, \gamma_{01})$ is considered to be $(0.1, 0.1), (0.2, 0.2)$ and $(0.3, 0.3)$, which can be estimated from the validation data. Simulations are repeated 500 times for each pair of ρ and $(\gamma_{10}, \gamma_{01})$. The bias, empirical standard error (SE), and root mean square error (RMSE) of $\hat{\psi}$ are calculated and assessed. The percentile bootstrap confidence intervals are used with 200 bootstrap samples to derive the coverage probability (CP%) of 95% confidence intervals. Numerical results for $n = 500$ and $n = 2000$ under various ρ and $(\gamma_{10}, \gamma_{01})$ are provided in Table 4.1 and Table 4.2, respectively. The parameter estimates $(\hat{\beta}, \hat{\psi})$ under ρ
Table 4.1 and Table 4.2 show that ignoring the outcome misclassification, the naive estimator $\hat{\psi}^n$ produces severely biased results. The results are more biased as the misclassification rate increases. On the contrary, the MLE estimator yields small biases and coverage probabilities close to the nominal level of 95%. Moreover, the proposed MLE method is numerically stable and robust against various ρ and (γ_0, γ_1). The sample size also plays an important role in the performance of methods. As ρ or n increases, the biases and variability of the estimators are reduced.

4.3.2 Two-Stage Estimation

In this section, we extend the study to evaluate the performance of the proposed methods with two decision points. For simplicity, we follow the same simulation design in Moodie et al. (2014), where the confounding variables are present.

A dataset with 2000 patients forms the data trajectory $(X_1, Z_1, A_1, X_2, Z_2, A_2, Y)$. For $j = 1, 2$, X_j is a continuous confounding covariate at stage j, where $X_1 \sim N(0, 1)$ and $X_2 \sim N(\eta_0 + \eta_1 X_1, 1)$ for $\eta_0 = -0.5, \eta_1 = 0.5$. The treatment $A_j \in \{1, -1\}$ is assigned depending on X_j with probability $P(A_j = 1) = \expit(\zeta_0 + \zeta_1 X_j)$ for $\zeta_0 = -0.8$ and $\zeta_1 = 1.25$. Two binary covariates $Z_j \in \{1, -1\}$ are generated as $P(Z_1 = 1) = 0.5$ and $P(Z_2 = 1|Z_1, A_1) = \expit(\delta_1 Z_1 + \delta_2 A_1)$. Given the data trajectory, the history at each stage is $H_1 = (X_1, Z_1)$ and $H_2 = (X_1, Z_1, A_1, X_2, Z_2)$. The outcome model is given by

$$E[Y|H_2, A_2; \gamma] = \expit(\gamma_0 + \gamma_1 X_1 + \gamma_2 Z_1 + \gamma_3 A_1 + \gamma_4 Z_1 A_1 + \gamma_5 X_2 + \gamma_6 A_2 + \gamma_7 Z_2 A_2 + \gamma_8 A_1 A_2).$$

In this example, we consider a complete regular scenario that sets $\gamma = (0, 1, 0, -0.5, 0, 1, 0.25, 0.5, 0.5)$ and $(\delta_1, \delta_2) = (0.1, 0.1)$. While the stage 2 blip parameter can be easily identified as $\psi_2 = (\psi_6, \psi_7, \psi_8)$, the true values for the stage 1 blip parameter $\psi_1 = (\psi_{10}, \psi_{11})$ need to be calculated based on the data-generating parameters. Moodie et al. (2014) derived a formula to quantify the true values for ψ_1 in this setting, which are given by $\psi_{10} = -0.3688, \psi_{11} = 0.0187$. Once true outcome model is specified, the observed surrogate Y^* is generated from a Bernoulli distribution based on the misclassification model (4.1), where the misclassification probabilities (γ_0, γ_1) are set to be $(0.1, 0.1), (0.2, 0.2)$ and $(0.3, 0.3)$. Once the dataset is
generated, the validation data are randomly separated with a ratio $\rho \in \{0.3, 0.5\}$. We continue with the three estimators described in Section (4.3.1). A total of 500 simulations are run for each pair of ρ and $(\gamma_{10}, \gamma_{01})$. Numerical results for the bias, SE, RMSE and CP% of $\hat{\psi} = (\hat{\psi}_2, \hat{\psi}_1)$ using the percentile bootstrap with 200 bootstrap samples are reported in Table 4.3. The parameter estimates $\hat{\psi}$ under $\rho = 0.5$ are presented in Figure 4.7 to Figure 4.9.

Similar to the one-stage setting, Table 4.3 shows that the naive estimator $\hat{\psi}^n$ leads to broadly biased results. However, the proposed estimator $\hat{\psi}^{mle}$ outperforms the naive estimator with small biases in all the scenarios, and the coverage probabilities of $\hat{\psi}^{mle}$ are close to 95%. It may result from the full log-likelihood function the MLE method relies on for estimation, which accurately describes the relationship with the true model. Moreover, the results show that for the set of first stage estimators, $\hat{\psi}_{10}$ is generally more vulnerable to bias compared with $\hat{\psi}_{11}$, which agrees with the findings in Chakraborty et al. (2010), Moodie et al. (2014) and Song et al. (2015).

4.3.3 Prediction of Optimal DTR

In this section, we explore the misclassification effect in a linear Q-learning response model from a prediction perspective. We are particularly interested in assessing the prediction accuracy of optimal DTR in a two-stage setting.

The simulation design follows (4.3.2), but the simulated data consist of training data with 2000 patients and test data with 5000 patients. The training data are randomly split into validation data and main study data with $\rho \in \{0.3, 0.5\}$, by which the misclassification probabilities and the regression parameters are estimated. To evaluate the performance of the proposed correction method in a predictive setting, we continue the previous three estimators $(\hat{\beta}^v, \hat{\psi}^v), (\hat{\beta}^n, \hat{\psi}^n), (\hat{\beta}^{mle}, \hat{\psi}^{mle})$. The test data are used to compute the prediction accuracy of optimal DTR, which is measured by the proportion of patients whose optimal treatments are correctly predicted at stage 2 and/or stage 1. Simulations are run 500 times. Table 4.4, along with Figure 4.10, summarizes the simulation results under a variety of ρ and $(\gamma_{10}, \gamma_{01})$.

Table 4.4 shows that the prediction accuracy of optimal DTR is adversely affected by misclassification. The naive estimator leads to a pronounced degeneration in the accuracy of pre-
dicted optimal DTR, and its performance is worsened as the misclassification rate increases. In comparison, the proposed MLE estimator considerably improves the prediction accuracy, especially when the optimal treatments in both stages are evaluated. The performance of the MLE estimator is also robust against the various magnitudes of ρ and $(\gamma_{10}, \gamma_{01})$. It substantially restores the precision to a level that is even superior to the validation estimator, suggesting a favorable choice to derive the sequential optimal treatment rules.

4.3.4 Prediction of the Outcome

In this study, we examine the performance of the proposed correction method in terms of the predicted error rates, sensitivity, and specificity of the outcome under the optimal DTR.

The predictive simulation setting follows (4.3.3) with three estimators $(\hat{\beta}^v, \hat{\psi}^v)$, $(\hat{\beta}^n, \hat{\psi}^n)$, $(\hat{\beta}^{mle}, \hat{\psi}^{mle})$ obtained from the training data. We use the test data to estimate the corresponding optimal DTR using each estimator and then calculate the (1) predicted error rates of the outcome, which is measured by the proportion of patients whose outcomes are incorrectly predicted under the estimated optimal DTR, (2) predicted sensitivity of the outcome, which is measured by the proportion of patients whose positive outcomes ($Y = 1$) are correctly predicted under the estimated optimal DTR, (3) predicted specificity of the outcome, which is measured by the proportion of patients whose negative outcomes ($Y = 0$) are correctly predicted under the estimated optimal DTR. For the training data, the validation ratio ρ is specified as 0.3 and 0.5, and the misclassification probabilities $(\gamma_{10}, \gamma_{01})$ are set to be (0.1, 0.1), (0.2, 0.2) and (0.3, 0.3). Simulations are repeated 500 times. Results are summarized in Table 4.5 and displayed in Figure 4.11 and Figure 4.12.

Table 4.5 shows that the naive method leads to the worst results in terms of the predicted error rates, sensitivity, and specificity of the outcome in most scenarios. Moreover, compared with the specificity, sensitivity is generally more sensitive to outcome misclassification. In contrast, the proposed MLE method produces the best performance with the lowest error rates and highest sensitivity and specificity results in all the scenarios. As ρ increases, the predicted error rates of the proposed method are lower, and the predicted sensitivity and specificity of the proposed method are higher.
4.4 Data Analysis

4.4.1 Application to NHEFS Data

In this example, we apply the proposed methods to the NHEFS data, which was collected by the National Center for Health Statistics and the National Institute on Aging in collaboration with other agencies of the Public Health Service. A detailed description of the NHEFS is available at https://wwwn.cdc.gov/nchs/nhanes/nhefs/. The NHEFS study aimed to investigate the relationships between clinical, nutritional, and behavioral factors assessed in the first National Health and Nutrition Examination Survey NHANES I and subsequent morbidity, mortality, and operational factors with hospital utilization. In this work, we are interested in estimating an optimal treatment decision rule using the cohort NHEFS dataset in Hernán and Robins (2020). The dataset consists of 1566 cigarette smokers aged 25-74 years, with a number of baseline variables collected from 1971 to 1975. They were followed up through personal interviews in 1982 and reported quitting smoking status, which is the outcome of interest in the analysis. We consider a binary indicator for regular exercise as the treatment variable, with \(A = 1 \) indicating those who had little or no exercise and \(A = -1 \) otherwise. The baseline variables to be included are age, gender, race, body mass index, systolic blood pressure (SBP), physical activity status, cholesterol, weight, diabetes, the number of years of smoking, and the number of cigarettes smoked each day (SmokeIntensity). Since the measured SBP is right-skewed in the dataset, we take the logarithmic transformation of SBP to be \(\log(\text{SBP}-50) \) following Carroll et al. (2006). Diabetes and SmokeIntensity are shown to be significantly associated with the treatment variable from the treatment model. We regard these two variables as the tailoring variables to derive the optimal treatment decision rule. All the continuous variables are standardized in the analysis.

As described, the smoking status is reported by the patients and thus subject to misclassification. In the dataset, there is no information available to infer the degree of misclassification probabilities. Therefore, we specify a series of values for the misclassification probabilities and conduct sensitivity analyses to evaluate how the misclassification rate affects the estimated optimal treatment decision rule. In the work of Magder and Hughes (1997), it is discussed that the smokers who have really quit smoking are unlikely to report they are still smoking, while
those who have not are very likely to misreport their smoking cessation status. Magder and Hughes (1997) specified $\gamma_{10} = 10\%$, and Lee et al. (2013) provided an estimate for the misclassification rate to be $\gamma_{10} = 7.5\%$ in another smoking cessation study. Thus, we consider $\gamma_{01} = 0$ and $\gamma_{10} \in (5\%, 7.5\%, 10\%, 12.5\%)$ in our analysis. Table 4.6 summarizes the associated inference results, including the estimates, bootstrap standard error (SE), and 95% confidence intervals (CI) for the blip parameters obtained from the naive method and the proposed method.

In Table 4.6, the estimated optimal treatment decision rule from the naive method is $\hat{a}_{opt}^1 = 1$ if $-0.148 + 0.130$Diabetes $+ 0.075$SmokeIntensity > 0, and $\hat{a}_{opt}^0 = -1$ otherwise. In general, the proposed MLE method produces slightly larger estimates than the naive method, leading to different optimal treatment decision rules. As γ_{10} increases, the blip parameter estimates and estimated SEs obtained from the proposed method become bigger. Moreover, the diabetes variable is shown to have a significant treatment effect using the naive method, but the MLE method displays different statistical significance for diabetes in all the scenarios. Therefore, it reveals that the misclassification effect is not negligible in an error-prone setting, which can alter the inference results, including the statistical significance, when the misclassification is taken into account in the analysis.

4.4.2 Application to Smoking Cessation Data

In the second example, we explore the misclassification effect by analyzing the smoking cessation data, which were collected at St. Joseph’s Hospital (Lee et al., 2013). The smoking cessation study is a randomized controlled trial and aims to examine the effectiveness of a perioperative smoking cessation intervention with one decision point involved. We are interested in using the smoking cessation data to estimate an optimal treatment decision rule. In this trial, 168 patients were recruited and randomly assigned with the same probability to one of the two treatment groups, the intervention group ($A = 1$) or the control group ($A = 0$). The patients were followed up at the time of the 30-day postoperative phone call and self-reported their smoking cessation status, which is the outcome of interest with $Y = 1$ indicating smoking cessation.

In the study, the smoking cessation status reported by the smokers was examined with the
exhaled carbon monoxide (CO) levels (ppm), where an exhaled CO of ≤ 10 ppm confirmed smoking quitting (Lee et al., 2013). It has been found that out of 146 patients with exhaled CO greater than 10ppm, 11 patients misreported their smoking cessation status. We assume a non-differential misclassification mechanism in this analysis. Then, the misclassification probability can be estimated as $\gamma_{10} = 11/146 = 7.5\%$. For those who have already quit smoking, Magder and Hughes (1997) pointed out that they were highly likely to report that they have stopped smoking. Then, we assume that $\gamma_{01} = 0$. It should be noted that these (γ_{10}, γ_{01}) are just the estimates of misclassification probabilities, while the true misclassification probabilities are unknown. Thus, we specify a series of values for $\gamma_{10} \in (2.5\%, 5\%, 7.5\%, 8.5\%)$ and conduct sensitivity analyses to evaluate how the misclassification rate affects the optimal treatment decision rule estimation. The baseline variables in the analysis include age, gender, body mass index, diabetes status, hypertension, chronic obstructive pulmonary disease, cigarettes smoked per day, and the number of years of smoking. The hypertension variable was found statistically significant with respect to the treatment (Shu and Yi, 2019a). We consider hypertension (HTN) and the number of years of smoking (YrsSmoke) as the tailoring variables to derive the optimal treatment decision rule. All the continuous variables are standardized in the analysis. Table 4.7 summarizes the inference results obtained from the naive method and the proposed method.

The analysis results suggest that the misclassification effect is conspicuous. The naive method leads to an optimal decision rule, which is determined by the values of $(1.363 - 0.696HTN - 0.189YrsSmoke)$. In comparison, the proposed MLE method yields notably larger parameter estimates and estimated standard errors than the naive method. As γ_{10} increases, we observe that the MLE estimator is sensitive to the change in the misclassification rate. One possible reason might be the limited size of the dataset. However, these results still reveal a non-negligible impact of outcome misclassification on the optimal treatment decision rule estimation for smoking cessation.

4.5 Conclusion

In this chapter, we discuss the outcome misclassification effect in Q-learning with binary outcomes in the context of internal validation/main study data design. The MLE method is pro-
posed to adjust for the misclassification effect in Q-learning. The correction method is established based on a relationship between two conditional probabilities of the true outcome and surrogate outcome. The likelihoods for both the validation data and main study data are derived and combined to create a total likelihood for parameter estimation in Q-learning. The proposed MLE method itself is straightforward, and under certain conditions, it yields consistent estimates of blip parameters in Q-learning.

We compare the proposed correction method with the naive method in both simulation studies and real data analysis. Ignoring the outcome misclassification leads to severely biased results in parameter estimation. By making use of the observed surrogate outcome and validation data, the proposed method provides satisfactory performance in simulation studies. We show that employing the proposed method in Q-learning considerably reduces the bias, improves the prediction accuracy of optimal DTR, predicted sensitivity and specificity of the outcome, and reduces the predicted error rates of the outcome. Moreover, the MLE method is numerically stable and robust against various magnitudes of validation ratio and misclassification rates. The proposed method is also applied to real data examples to estimate the optimal treatment decision rule. The data analysis suggests that the misclassification effect is not negligible in terms of parameter estimation and associated statistical significance.
Table 4.1: One-stage estimates of blip parameters \((\psi_{10}, \psi_{11})\) \((n = 500)\)

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>((\gamma_{10}, \gamma_{01}))</th>
<th>(\hat{\psi})</th>
<th>(\hat{\psi}_{n})</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>(\hat{\psi}_{mle})</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>((0.1, 0.1))</td>
<td>(\hat{\psi}_{v})</td>
<td>-0.005</td>
<td>0.722</td>
<td>0.722</td>
<td>93.6</td>
<td>-0.014</td>
<td>0.607</td>
<td>0.607</td>
<td>94.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{n})</td>
<td>-0.175</td>
<td>0.161</td>
<td>0.238</td>
<td>85.2</td>
<td>0.175</td>
<td>0.124</td>
<td>0.214</td>
<td>77.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>0.016</td>
<td>0.224</td>
<td>0.225</td>
<td>95.4</td>
<td>-0.016</td>
<td>0.186</td>
<td>0.187</td>
<td>93.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.2, 0.2))</td>
<td>(\hat{\psi}_{n})</td>
<td>-0.285</td>
<td>0.152</td>
<td>0.323</td>
<td>65.8</td>
<td>0.288</td>
<td>0.114</td>
<td>0.310</td>
<td>46.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>0.007</td>
<td>0.267</td>
<td>0.267</td>
<td>94.8</td>
<td>-0.014</td>
<td>0.222</td>
<td>0.222</td>
<td>93.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.3, 0.3))</td>
<td>(\hat{\psi}_{n})</td>
<td>-0.362</td>
<td>0.148</td>
<td>0.391</td>
<td>48.4</td>
<td>0.366</td>
<td>0.108</td>
<td>0.382</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>0.009</td>
<td>0.307</td>
<td>0.307</td>
<td>92.6</td>
<td>-0.020</td>
<td>0.249</td>
<td>0.250</td>
<td>94.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>((0.1, 0.1))</td>
<td>(\hat{\psi}_{v})</td>
<td>0.002</td>
<td>0.262</td>
<td>0.262</td>
<td>95.2</td>
<td>-0.014</td>
<td>0.210</td>
<td>0.210</td>
<td>94.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{n})</td>
<td>-0.177</td>
<td>0.161</td>
<td>0.239</td>
<td>89.4</td>
<td>0.171</td>
<td>0.124</td>
<td>0.211</td>
<td>87.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>-0.003</td>
<td>0.204</td>
<td>0.204</td>
<td>94.2</td>
<td>-0.008</td>
<td>0.165</td>
<td>0.165</td>
<td>94.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.2, 0.2))</td>
<td>(\hat{\psi}_{n})</td>
<td>-0.285</td>
<td>0.152</td>
<td>0.323</td>
<td>75.8</td>
<td>0.288</td>
<td>0.114</td>
<td>0.310</td>
<td>63.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>0.001</td>
<td>0.226</td>
<td>0.226</td>
<td>95.0</td>
<td>-0.010</td>
<td>0.184</td>
<td>0.184</td>
<td>94.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.3, 0.3))</td>
<td>(\hat{\psi}_{n})</td>
<td>-0.367</td>
<td>0.147</td>
<td>0.395</td>
<td>58.4</td>
<td>0.370</td>
<td>0.107</td>
<td>0.385</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{\psi}_{mle})</td>
<td>0.005</td>
<td>0.245</td>
<td>0.245</td>
<td>94.8</td>
<td>-0.014</td>
<td>0.198</td>
<td>0.198</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>((\gamma_{10}, \gamma_{01}))</td>
<td>(\hat{\psi})</td>
<td>Bias</td>
<td>SE</td>
<td>RMSE</td>
<td>CP%</td>
<td>Bias</td>
<td>SE</td>
<td>RMSE</td>
<td>CP%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>((0.1, 0.1))</td>
<td>(\hat{\psi}^v)</td>
<td>0.008</td>
<td>0.158</td>
<td>0.158</td>
<td>94.2</td>
<td>-0.007</td>
<td>0.126</td>
<td>0.126</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.008</td>
<td>0.105</td>
<td>0.105</td>
<td>93.0</td>
<td>-0.008</td>
<td>0.086</td>
<td>0.086</td>
<td>93.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.2, 0.2))</td>
<td>(\hat{\psi}^v)</td>
<td>-0.170</td>
<td>0.078</td>
<td>0.187</td>
<td>55.6</td>
<td>0.171</td>
<td>0.061</td>
<td>0.182</td>
<td>34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.004</td>
<td>0.123</td>
<td>0.123</td>
<td>93.8</td>
<td>-0.007</td>
<td>0.100</td>
<td>0.100</td>
<td>93.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.3, 0.3))</td>
<td>(\hat{\psi}^v)</td>
<td>-0.374</td>
<td>0.072</td>
<td>0.381</td>
<td>1.6</td>
<td>0.376</td>
<td>0.052</td>
<td>0.380</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.000</td>
<td>0.139</td>
<td>0.139</td>
<td>92.6</td>
<td>-0.005</td>
<td>0.113</td>
<td>0.113</td>
<td>93.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>((0.1, 0.1))</td>
<td>(\hat{\psi}^v)</td>
<td>0.001</td>
<td>0.121</td>
<td>0.121</td>
<td>94.6</td>
<td>-0.005</td>
<td>0.096</td>
<td>0.096</td>
<td>94.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.004</td>
<td>0.097</td>
<td>0.097</td>
<td>93.4</td>
<td>-0.005</td>
<td>0.078</td>
<td>0.078</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.2, 0.2))</td>
<td>(\hat{\psi}^v)</td>
<td>-0.287</td>
<td>0.074</td>
<td>0.296</td>
<td>11.0</td>
<td>0.288</td>
<td>0.055</td>
<td>0.293</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.002</td>
<td>0.106</td>
<td>0.106</td>
<td>94.2</td>
<td>-0.005</td>
<td>0.085</td>
<td>0.085</td>
<td>93.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((0.3, 0.3))</td>
<td>(\hat{\psi}^v)</td>
<td>-0.369</td>
<td>0.072</td>
<td>0.376</td>
<td>4.8</td>
<td>0.374</td>
<td>0.052</td>
<td>0.378</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{\psi}^mle)</td>
<td>0.002</td>
<td>0.114</td>
<td>0.114</td>
<td>95.8</td>
<td>-0.002</td>
<td>0.091</td>
<td>0.091</td>
<td>96.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: One-stage estimates of blip parameters \((\psi_{10}, \psi_{11})\) \((n = 2000)\)
Table 4.3: Two-stage estimates of blip parameters ($\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11}$)

<table>
<thead>
<tr>
<th>ρ $(\gamma_{10}, \gamma_{01})$</th>
<th>$\hat{\psi}$</th>
<th>ψ_{20}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{21}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{22}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{10}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
<th>ψ_{11}</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>CP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>$\hat{\psi}^*$</td>
<td>0.005</td>
<td>0.143</td>
<td>0.143</td>
<td>93.2</td>
<td>0.004</td>
<td>0.111</td>
<td>0.111</td>
<td>95.4</td>
<td>0.001</td>
<td>0.139</td>
<td>0.139</td>
<td>93.8</td>
<td>-0.007</td>
<td>0.053</td>
<td>0.053</td>
<td>93.6</td>
<td>-0.004</td>
<td>0.047</td>
<td>0.047</td>
<td>92.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^a$</td>
<td>-0.076</td>
<td>0.066</td>
<td>0.101</td>
<td>86.2</td>
<td>-0.169</td>
<td>0.052</td>
<td>0.177</td>
<td>25.4</td>
<td>-0.171</td>
<td>0.063</td>
<td>0.182</td>
<td>39.4</td>
<td>0.127</td>
<td>0.019</td>
<td>0.128</td>
<td>76.6</td>
<td>-0.012</td>
<td>0.017</td>
<td>0.021</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}_{mle}$</td>
<td>0.003</td>
<td>0.090</td>
<td>0.090</td>
<td>92.4</td>
<td>0.000</td>
<td>0.073</td>
<td>0.073</td>
<td>94.4</td>
<td>0.007</td>
<td>0.089</td>
<td>0.089</td>
<td>93.2</td>
<td>-0.001</td>
<td>0.029</td>
<td>0.029</td>
<td>92.8</td>
<td>-0.009</td>
<td>0.026</td>
<td>0.028</td>
<td>93.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>$\hat{\psi}^*$</td>
<td>0.002</td>
<td>0.107</td>
<td>0.107</td>
<td>94.0</td>
<td>0.004</td>
<td>0.085</td>
<td>0.085</td>
<td>93.8</td>
<td>0.013</td>
<td>0.103</td>
<td>0.104</td>
<td>92.4</td>
<td>-0.003</td>
<td>0.041</td>
<td>0.041</td>
<td>93.8</td>
<td>0.004</td>
<td>0.037</td>
<td>0.037</td>
<td>94.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^a$</td>
<td>-0.077</td>
<td>0.066</td>
<td>0.101</td>
<td>86.0</td>
<td>-0.170</td>
<td>0.052</td>
<td>0.178</td>
<td>39.4</td>
<td>-0.171</td>
<td>0.063</td>
<td>0.182</td>
<td>52.8</td>
<td>0.127</td>
<td>0.019</td>
<td>0.128</td>
<td>81.2</td>
<td>-0.005</td>
<td>0.017</td>
<td>0.018</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}_{mle}$</td>
<td>0.001</td>
<td>0.085</td>
<td>0.085</td>
<td>93.8</td>
<td>0.003</td>
<td>0.068</td>
<td>0.068</td>
<td>94.6</td>
<td>0.008</td>
<td>0.082</td>
<td>0.082</td>
<td>93.8</td>
<td>-0.003</td>
<td>0.029</td>
<td>0.029</td>
<td>94.2</td>
<td>0.004</td>
<td>0.026</td>
<td>0.026</td>
<td>93.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^a$</td>
<td>-0.134</td>
<td>0.063</td>
<td>0.148</td>
<td>67.4</td>
<td>-0.282</td>
<td>0.048</td>
<td>0.286</td>
<td>3.6</td>
<td>-0.283</td>
<td>0.058</td>
<td>0.289</td>
<td>8.8</td>
<td>0.210</td>
<td>0.012</td>
<td>0.210</td>
<td>54.6</td>
<td>-0.008</td>
<td>0.011</td>
<td>0.014</td>
<td>93.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}_{mle}$</td>
<td>0.000</td>
<td>0.094</td>
<td>0.094</td>
<td>94.6</td>
<td>0.003</td>
<td>0.075</td>
<td>0.075</td>
<td>94.8</td>
<td>0.011</td>
<td>0.090</td>
<td>0.091</td>
<td>93.0</td>
<td>-0.003</td>
<td>0.029</td>
<td>0.029</td>
<td>94.4</td>
<td>0.005</td>
<td>0.026</td>
<td>0.026</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}^a$</td>
<td>-0.176</td>
<td>0.061</td>
<td>0.186</td>
<td>46.4</td>
<td>-0.366</td>
<td>0.046</td>
<td>0.369</td>
<td>0.0</td>
<td>-0.365</td>
<td>0.055</td>
<td>0.369</td>
<td>0.2</td>
<td>0.279</td>
<td>0.008</td>
<td>0.279</td>
<td>25.6</td>
<td>-0.014</td>
<td>0.007</td>
<td>0.016</td>
<td>93.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{\psi}_{mle}$</td>
<td>0.000</td>
<td>0.100</td>
<td>0.100</td>
<td>93.8</td>
<td>0.003</td>
<td>0.080</td>
<td>0.080</td>
<td>93.4</td>
<td>0.007</td>
<td>0.097</td>
<td>0.097</td>
<td>95.6</td>
<td>-0.002</td>
<td>0.029</td>
<td>0.029</td>
<td>91.6</td>
<td>0.003</td>
<td>0.026</td>
<td>0.026</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.4: Prediction accuracy of optimal DTR (%)

<table>
<thead>
<tr>
<th>ρ</th>
<th>$(\gamma_{10}, \gamma_{01})$</th>
<th>Stage 2</th>
<th></th>
<th>Stage 1</th>
<th></th>
<th>Stage 2 & Stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
<td>n</td>
<td>mle</td>
<td>v</td>
<td>n</td>
<td>mle</td>
<td>v</td>
</tr>
<tr>
<td>0.3</td>
<td>(0.1, 0.1)</td>
<td>91.7</td>
<td>97.2</td>
<td>98.5</td>
<td>92.7</td>
<td>97.7</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>(0.2, 0.2)</td>
<td>92.0</td>
<td>91.7</td>
<td>96.0</td>
<td>92.9</td>
<td>91.4</td>
<td>96.4</td>
</tr>
<tr>
<td></td>
<td>(0.3, 0.3)</td>
<td>92.0</td>
<td>86.3</td>
<td>95.4</td>
<td>93.4</td>
<td>85.1</td>
<td>95.9</td>
</tr>
<tr>
<td>0.5</td>
<td>(0.1, 0.1)</td>
<td>95.6</td>
<td>97.3</td>
<td>98.9</td>
<td>97.1</td>
<td>98.1</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>(0.2, 0.2)</td>
<td>96.3</td>
<td>91.2</td>
<td>98.0</td>
<td>97.3</td>
<td>92.7</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>(0.3, 0.3)</td>
<td>96.4</td>
<td>84.8</td>
<td>97.1</td>
<td>97.3</td>
<td>86.5</td>
<td>98.0</td>
</tr>
</tbody>
</table>

v: validation estimator, n: naive estimator, mle: MLE estimator

Table 4.5: Predicted error rates, sensitivity, and specificity of the outcome (%)

ρ	$(\gamma_{10}, \gamma_{01})$	Error Rates		Sensitivity		Specificity				
	v	n	mle	v	n	mle	v	n	mle	
0.3	(0.1, 0.1)	5.5	4.0	3.4	92.7	94.5	95.6	95.7	97.1	97.2
	(0.2, 0.2)	5.4	5.9	4.2	92.4	91.7	94.5	95.9	95.7	96.7
	(0.3, 0.3)	5.4	8.5	4.5	92.6	86.6	94.0	95.9	94.6	96.4
0.5	(0.1, 0.1)	4.0	3.8	3.0	95.0	94.9	96.1	96.7	97.0	97.5
	(0.2, 0.2)	3.9	5.9	3.4	95.0	92.2	95.8	96.9	95.3	97.1
	(0.3, 0.3)	4.0	8.9	3.7	94.9	86.1	95.2	96.8	94.3	97.0

v: validation estimator, n: naive estimator, mle: MLE estimator
Table 4.6: Sensitivity analysis results of the NHEFS data for the blip estimators

<table>
<thead>
<tr>
<th>Method</th>
<th>(\gamma_{10})</th>
<th>A</th>
<th>A*Diabetes</th>
<th>A*SmokeIntensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>SE</td>
<td>95%CI</td>
<td>Est</td>
</tr>
<tr>
<td>Naive</td>
<td>-0.148</td>
<td>0.091</td>
<td>(-0.300, 0.027)</td>
<td>0.130</td>
</tr>
<tr>
<td>MLE</td>
<td>5%</td>
<td>-0.179</td>
<td>0.113</td>
<td>(-0.376, 0.034)</td>
</tr>
<tr>
<td></td>
<td>7.5%</td>
<td>-0.201</td>
<td>0.129</td>
<td>(-0.433, 0.039)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>-0.231</td>
<td>0.151</td>
<td>(-0.514, 0.047)</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>-0.270</td>
<td>0.186</td>
<td>(-0.618, 0.077)</td>
</tr>
</tbody>
</table>

Est: estimates, SE: standard error, CI: confidence interval
<table>
<thead>
<tr>
<th>Method</th>
<th>γ Est</th>
<th>SE</th>
<th>95% CI</th>
<th>γ Est</th>
<th>SE</th>
<th>95% CI</th>
<th>γ Est</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>1.303</td>
<td>2.007</td>
<td>(-0.202, 4.808)</td>
<td>1.920</td>
<td>2.890</td>
<td>(-0.737, 4.577)</td>
<td>0.783</td>
<td>1.983</td>
<td>(-2.033, 3.600)</td>
</tr>
<tr>
<td>MLE</td>
<td>2.034</td>
<td>2.061</td>
<td>(-0.128, 4.196)</td>
<td>1.685</td>
<td>2.140</td>
<td>(-0.191, 4.551)</td>
<td>1.553</td>
<td>2.121</td>
<td>(-0.173, 3.279)</td>
</tr>
<tr>
<td>5%</td>
<td>2.024</td>
<td>2.033</td>
<td>(-0.025, 4.073)</td>
<td>1.680</td>
<td>2.124</td>
<td>(-0.099, 4.059)</td>
<td>1.534</td>
<td>2.105</td>
<td>(-0.079, 3.147)</td>
</tr>
<tr>
<td>7.5%</td>
<td>2.004</td>
<td>2.006</td>
<td>(-0.005, 4.013)</td>
<td>1.670</td>
<td>2.115</td>
<td>(-0.006, 4.017)</td>
<td>1.513</td>
<td>2.096</td>
<td>(-0.006, 3.022)</td>
</tr>
<tr>
<td>8.5%</td>
<td>1.984</td>
<td>2.002</td>
<td>(-0.005, 4.003)</td>
<td>1.660</td>
<td>2.105</td>
<td>(-0.006, 4.012)</td>
<td>1.493</td>
<td>2.086</td>
<td>(-0.007, 3.016)</td>
</tr>
</tbody>
</table>

Table 4.7: Sensitivity analysis results of the smoking cessation data for the blip estimators

Est: estimates, SE: standard error, CI: confidence interval
Figure 4.1: One-stage estimates of ($\beta_z, \beta_x, \psi_{10}, \psi_{11}$) for $n = 500$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.1, 0.1)$

Figure 4.2: One-stage estimates of ($\beta_z, \beta_x, \psi_{10}, \psi_{11}$) for $n = 500$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.2, 0.2)$
Figure 4.3: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ for $n = 500$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.3, 0.3)$

Figure 4.4: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ for $n = 2000$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.1, 0.1)$
Figure 4.5: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ for $n = 2000$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.2, 0.2)$

Figure 4.6: One-stage estimates of $(\beta_z, \beta_x, \psi_{10}, \psi_{11})$ for $n = 2000$ with $\rho = 0.5$ and $(\gamma_{10}, \gamma_{01}) = (0.3, 0.3)$
Figure 4.7: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.1, 0.1)\).
Figure 4.8: Two-stage estimates of $(\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})$ with $\rho = 0.5$ and $(\gamma_{01}, \gamma_{10}) = (0.2, 0.2)$
Figure 4.9: Two-stage estimates of \((\psi_{20}, \psi_{21}, \psi_{22}, \psi_{10}, \psi_{11})\) with \(\rho = 0.5\) and \((\gamma_{10}, \gamma_{01}) = (0.3, 0.3)\)
Figure 4.10: Prediction accuracy of optimal DTR with $\rho = 0.5$
Figure 4.11: Predicted error rates, sensitivity, and specificity of the outcome when $p = 0.3$.
Figure 4.12: Predicted error rates, sensitivity, and specificity of the outcome with $\rho = 0.5$
4.6 Appendix

The proof of consistency in this section is based on a one-stage setting, and it can be intuitively extended to multiple stages.

Let $\theta = (\beta, \psi, \gamma_{10}, \gamma_{01})$ and $\hat{\theta}_{mle}$ be the MLE estimator. The conditions for the property of consistency in Q-learning include:

(C1) Let Ω be the parameter space with finite dimension for θ. Ω is closed and compact. The true parameter value of θ is interior to Ω.

(C2) The probability distributions with any two different values of θ are distinct.

(C3) For an open subset ω of Ω that contains the true parameter value of θ, the first three derivatives of the log-likelihood $l(\theta)$ exist for $\theta \in \omega$ almost surely. There exists a function M such that the n^{-1} times the absolute value of the the third derivative is bounded by M for $\theta \in \omega$ and $E[M] < \infty$.

(C4) The information matrix $I(\theta)$ is finite and positive definite for $\theta \in \omega$.

(C5) Assumptions (A1), (A2), (A5) in Sections (1.1.1) and (4.2.1) hold.

The conditions contain the regularity conditions (C1) - (C4) (Cox and Hinkley, 1979, p.281) and the assumptions that are necessary for Q-learning. The condition (C5) guarantees the identifiability of the parameter θ in Q-learning to estimate a dynamic treatment regime. According to Pepe (1992), under the conditions (C1) - (C5), the MLE estimator $\hat{\theta}_{mle}$ that solves the equation $\frac{\partial}{\partial \theta} \log L(\theta) = 0$ satisfies

$$\hat{\theta}_{mle} \xrightarrow{p} \theta \quad \text{as} \ n \to \infty,$$

where $L(\theta)$ is the likelihood stated in (4.4). Thus, $\hat{\theta}_{mle}$ is a consistent estimator of blip parameter ψ.
Chapter 5

Summary and Future Work

The work presented in this thesis explores several statistical methods to address the issues in dynamic treatment regimes caused by covariate measurement error or outcome misclassification. Several regression-based methods in DTR with different types of outcomes are considered, and the effect of measurement error and misclassification on those methods is explored. Both simulation studies and data applications demonstrate the substantial impact of measurement error or misclassification on the analysis without errors corrected and the usefulness of the proposed correction methods to adjust for the effects.

Chapter 2 is motivated by the STAR*D study, in which the patients with a major depressive disorder were randomized at each level of study to one of the treatment options. The main objective of this study was to compare the effectiveness of different dynamic treatment regimes across multiple levels based on the QIDS score, which both clinicians and patients reported. In practice, the QIDS scores reported by patients and clinicians may be different from the true underlying QIDS score and, therefore, subject to measurement error. Q-learning is a widely used regression-based method to estimate optimal DTRs. This chapter explores the application of regression calibration in Q-learning to accommodate the effect of covariate measurement error with repeated measurements. Using the observed replicates, the RC estimates are created for the unobserved true covariates. Then, the patient’s history is updated with the RC estimates, and a modified Q-learning algorithm is proposed to estimate the parameters and optimal DTR. Simulation studies demonstrate the significant improvements using the RC method in Q-learning in terms of bias reduction, the prediction accuracy of the optimal DTR,
and predicted optimal value function compared with the naive method in one-stage and multi-stage settings. Lastly, the proposed method is applied to the STAR*D data and compares its results with the naive method. The analysis results show that the statistical significance of the tailoring variable differs if the correction is made using the RC method, which suggests that the measurement error issue should not be ignored in an error-prone setting.

This work studies the measurement error effect with the classical additive model. It is of interest to explore other measurement error models such as Berkson and multiplicative models in Q-learning. Moreover, as regression calibration is known to perform well in linear models, other correction methods are worth exploring for highly nonlinear models.

In Chapter 3, the covariate measurement error in dynamic weighted survival modeling is studied. This DWSurv approach is practical but developed under the assumption that the covariates are free from mismeasurement. If this assumption is violated, it remains unclear what the impact would be on the estimation of parameters and optimal DTR. Therefore, in this chapter, we investigate the covariate measurement error effect on DWSurv for validation data and develop two correction methods, the \(k \)-nearest neighbors method and the weighted least squares method, to eliminate the effect. The proposed correction methods estimate the missing values of the true covariates using the mismeasured variables that are completely observable in the data. Both methods are easy to understand and fast to implement. The theoretical property of the \(k \)NN estimator is also established. Both simulation studies and data analysis showcase the competency of proposed methods in one-stage and multi-stage settings. The results show that using the proposed \(k \)NN and WLS methods leads to significant improvements in bias-reduction and restoration of the double robustness property in DWSurv. In the predictive scenarios, the proposed methods enhance the prediction accuracy of optimal DTR and the predicted optimal overall survival times. Lastly, the proposed methods are applied to the MIMIC-III data to estimate the optimal treatment decision rules. The analysis results reveal the significant impacts of discarding some data with missing covariates in the estimated optimal DTR.

There are a few possible directions for future work. First of all, the proposed \(k \)NN method uses Euclidean distance as the distance measure in this project. It is of interest to consider other distance functions, such as Manhattan, Minkowsky, Chebychev, Chi-square distances, etc., for the proposed method. Secondly, as \(k \) is defined in relation to the size of the validation data,
one may also explore different choices of k to improve the performance of the kNN method. Lastly, besides independent censoring, other types of censoring can be considered in the study, such as the censoring that depends on covariates.

In Chapter 4, Q-learning with binary outcomes is explored, with the outcome being subject to misclassification in the context of internal validation/main study data design. When the outcome misclassification is ignored, the estimation in Q-learning is severely biased. Therefore, the maximum likelihood estimation method is proposed to accommodate the misclassification effect in Q-learning. The proposed MLE method is established based on the relationship between two conditional probabilities of the true outcome and the outcome observed with error. Simulation studies are conducted to demonstrate the satisfactory performance of the proposed method in both one-stage and multi-stage settings. In particular, the MLE method is shown to be numerically stable and robust against various magnitudes of misclassification rates in the outcome model. Sensitivity analyses are also conducted using the NHEFS data and smoking cessation data to compare the optimal treatment decision rules estimated from the naive method and the proposed method. By incorporating the misclassification in the analysis, the estimated optimal treatment rules are shown to be different, and the statistical significance of the tailoring variable is also altered. It reveals a non-negligible impact of misclassification in the NHEFS and smoking cessation data.

In Chapter 4, a non-differential misclassification model is assumed for the proposed method, in which the dependence on the covariates and/or treatment is suppressed. Therefore, it is interesting to study other misclassification models, such as a differential one dependent on covariates and/or treatment. Secondly, one may also consider the misclassification problem with replicate data. In other words, instead of observing the true outcome in a small subset of data, the replicates of the outcome are observed. In such circumstances, it is necessary to explore other approaches to correct the misclassification in Q-learning.

In summary, the errors-in-variables problem in dynamic treatment regimes is a new and challenging topic. While the problems that have been studied in this thesis focus on measurement error and misclassification in a few popular DTR approaches based on the class of outcomes, many more complex situations remain unexplored. We anticipate the pursuit of exploring these in the future.
Bibliography

Curriculum Vitae

Name: Dan Liu

Post-Secondary Education
Western University, London, ON, Canada
Ph.D. in Statistics, 2018 - 2022

Boston University, Boston, MA, USA
M.S. in Management Studies, 2013 - 2015
M.S. in Systems Engineering, 2011 - 2013

Wuhan University, Wuhan, Hubei, China
B.Eng. in Electrical Engineering, 2007 - 2011

Honours and Awards:
Western Graduate Research Scholarship, 2018 - 2022
Western Graduate Teaching Assistantship, 2018 - 2022
Statistical Society of Canada Student Travel Award, 2021
Vector Institute Deep Learning and Reinforcement Learning Summer School Certificate, 2019

Related Work Experience:
Western University, 2018 - 2022
Teaching Assistant and Research Assistant

Publications:

3. Liu, D. and He. W. Dynamic Treatment Regimes with Survival Response and Covariate

Conference Presentations:
