Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

9-6-2022 3:00 PM

Regression-based Methods for Dynamic Treatment Regimes with
Mismeasured Covariates or Misclassified Response

Dan Liu, The University of Western Ontario

Supervisor: He, Wenqing, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree
in Statistics and Actuarial Sciences

© Dan Liu 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

b Part of the Biostatistics Commons, Statistical Methodology Commons, and the Statistical Models

Commons

Recommended Citation

Liu, Dan, "Regression-based Methods for Dynamic Treatment Regimes with Mismeasured Covariates or
Misclassified Response" (2022). Electronic Thesis and Dissertation Repository. 8878.
https://ir.lib.uwo.ca/etd/8878

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8878?utm_source=ir.lib.uwo.ca%2Fetd%2F8878&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The statistical study of dynamic treatment regimes (DTRs) focuses on estimating sequen-
tial treatment decision rules tailored to patient-level information across multiple stages of in-
tervention. Regression-based methods in DTR have been studied in the literature with a critical
assumption that all the observed variables are precisely measured. However, this assumption is
often violated in many applications. One example is the STAR*D study, in which the patient’s
depressive score is subject to measurement error. In this thesis, we explore problems in the
context of DTR with measurement error or misclassification considered in the observed data.

The first project deals with covariate measurement error in Q-learning with continuous
outcomes. The true covariate is not observable, but its replicate measurements are available in
each stage. We propose a modified Q-learning algorithm with regression calibration to handle
the measurement error. Given the replicate measurements, the proposed method obtains and
uses the estimates of the unobserved true covariate in each stage of Q-learning.

The second project explores covariate measurement error in dynamic weighted survival
modeling (DWSurv), a regression-based method dealing with survival outcomes in DTR. In-
ternal validation data are assumed to be available with true covariates only observed in a subset
of the data. Two correction methods are proposed to eliminate the effect of mismeasured co-
variate by obtaining the estimates of the missing true covariate in each stage of DWSurv. The
consistency of the proposed estimator is established.

The third project examines Q-learning with binary outcomes being subject to misclassi-
fication. We investigate the outcome misclassification effect for internal validation data and
develop a correction method to adjust for the effect in Q-learning. A probability relationship
is established between the true outcome and the misclassified outcome. The estimation proce-
dure in Q-learning is modified by including the derived probability relationship in the proposed
method.

Extensive simulation studies are conducted to assess the performance of the proposed meth-
ods and to compare them with the naive method. Real data are analyzed for illustration of the
proposed methods. The results showcase the importance of incorporating the errors in DTR

and the competency of the proposed methods in obtaining the optimal DTR.
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Summary for Lay Audience

Precision medicine is a new approach that recommends individualized treatment to a patient
by taking the patient’s information into account. It differs from the traditional ‘one-size-fits-
all’ clinical strategy, which ignores the patient’s heterogeneity in response to the treatment.
Dynamic treatment regimes (DTRs) realize this process by providing sequential treatment de-
cisions. However, in practice, a patient’s information that is used to infer a treatment decision
often contains error-corrupted covariates or misclassified outcomes, which can be viewed as
incorrect records of the patient’s characteristics or mislabeled clinical outcomes of the patient.
The contaminated information may misrepresent the health status of the patients and further
lead to inaccurate treatment decision-making. In this thesis, three situations are investigated in
the context of DTR with error-corrupted covariates or misclassified outcomes.

The first study focuses on the problem of error-corrupted covariates in a DTR method with
continuous outcomes, provided that the true covariate is not observed, but only its repeated
measurements are available. The regression calibration method is employed to correct the
error by using a new variable for the error-corrupted covariates, which are obtained from the
available repeated measurements in the data.

The second study deals with the error-corrupted covariates in a survival-based DTR, given
that the true covariate is partially observed in the data. Two correction methods are developed
to correct the error-corrupted covariates. The proposed methods create estimates for the unob-
served true covariate using the available error-corrupted covariate and use the created values
for modeling.

The third study addresses the misclassified outcome problem in a DTR method with binary
outcomes, assuming that the true outcome is only observed in a subset of data. A likelihood-
based approach is proposed, which incorporates the relationship between the true outcome and
misclassified outcome, through which the outcome misclassification can be corrected.

For each topic, simulation studies have demonstrated significant improvements in error cor-
rection and treatment decision-making. Real data applications have also shown the importance

of including the errors in the DTR context.
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Chapter 1

Introduction

It is a long history that clinicians have been using a *one-size-fits-all” strategy to treat patients
with chronic diseases over a multi-stage period. However, in practice, this treatment strategy
faces many challenges. As the disease and patients’ health conditions are constantly changing
over time, they may not respond to the treatments that used to be effective. It implies a new
treatment should be adopted. The financial concerns for both patients and hospitals may be
incurred when a costly but ineffective treatment has been constantly applied over multiple
stages. Moreover, the best treatment regarded at a given stage may yet lead to a suboptimal
clinical outcome in the long run (Chakraborty, 2013; Chakraborty and Murphy, 2014).

To tackle these challenges, the study of precision medicine has begun to arise, with the
objective of searching for optimal dynamic treatment regimes (DTRs) for patients. A dynamic
treatment regime is a sequence of treatment decision rules, one per stage of intervention, rec-
ommended to a patient by taking the individual’s characteristics and treatment history into
account. An optimal DTR is a sequence of treatment decision rules that yields optimal treat-
ments, with which the long-term clinical outcome is optimized. In recent years, there have
been a variety of case studies associated with the estimation of optimal DTR. However, the
observed data in studies are often assumed to be measured error-free, which may be violated
in practice. The following examples show that variables with measurement error often exist.

The first example is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
study, designed as a multisite, multistage randomized controlled trial. The STAR*D study

aimed to evaluate the effect of treatments for patients who suffered from a major depressive



disorder (Rush et al., 2003,0). The entire study possessed four levels, and in each level, one or
a combination of treatments was assigned to the patients. The severity of depressive disorder
was measured by the Quick Inventory of Depressive Symptomatology (QIDS) score. If a pa-
tient who received treatment did not meet the requirement of remission (QIDS < 5) at the end
of the level, this patient would have entered the next level with a different treatment assigned.
The QIDS score is used to derive the sequential optimal treatment rules for each patient, but
in the trial, the QIDS score was reported by both clinicians and patients. Due to unavoidable
human errors, these reported scores may be subject to measurement error. Thus, the estimated

optimal DTR may be problematic.

The second example comes from the Medical Information Mart for Intensive Care-III
(MIMIC-III) Clinical Database, comprising large-scale observational admission data collected
at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016,0). The
MIMIC-III dataset was used to study the association between the use of transthoracic echocar-
diography (TTEC) and mortality, conditional on the intensive care unit (ICU) patients’ charac-
teristics and lab test results (Feng et al., 2018; Chen et al., 2021). However, in the MIMIC-III
data, variables such as positive end-expiratory pressure are significantly associated with TTEC
but suffer considerable missingness. Without accounting for such missingness, the conclusions

may be misleading.

Another example is the National Health and Nutrition Examination Survey Data I Epi-
demiologic Follow-up Study (NHEFS), a national longitudinal study. It aimed to investigate
the relationships between clinical, nutritional, and behavioral factors and subsequent morbid-
ity, mortality, and operational factors with hospital utilization. The cohort NHEFS dataset
contains cigarette smokers with baseline variables collected from 1971 to 1975. They were
later followed up through personal interviews in 1982, in which their smoking status was col-
lected. Apparently, the answers from the cigarette smokers without confirmation are subject to
misclassification as they may not report the truth. A similar case is also found in a smoking
cessation program, which examined the effectiveness of a perioperative smoking cessation in-
tervention (Lee et al., 2013). The patients reported their status of quitting smoking, with lab
tests for confirmation. It has been discovered that 11 out of the 146 patients misreported their

smoking status in this program.



Although these four examples were initiated with different objectives, they share a common
fact that the variables in the collected data might be contaminated with either measurement er-
ror or misclassification. As the primary goal of DTR is to identify sequential optimal treatment
rules, the resulting optimal DTR may be altered if the error in the observed data is taken into
account. Such considerations motivate us to investigate the measurement error and misclassi-

fication effects in the DTR context and develop correction methods to eliminate the effects.

1.1 Dynamic Treatment Regimes

Identifying an optimal DTR depends on the statistical approaches, given the structure of avail-
able data and research questions. The common approaches for estimating the optimal DTR can
be classified into two categories, regression-based and classification-based methods.
Regression-based methods also referred as indirect methods. They model and estimate the
conditionally expected outcome to yield an optimal DTR that maximizes the expected out-
come. The classical regression-based methods that are widely studied in the literature include
Q-learning (Watkins, 1989; Chakraborty and Murphy, 2014), G-estimation (Robins, 2004), A-
learning (Murphy, 2003; Schulte et al., 2014), and regret-regression (Henderson et al., 2010).
However, these methods assumed continuous outcomes in their approaches. Moodie et al.
(2014) made an attempt to extend the Q-learning to binary outcomes and count outcomes.
Ghosh and Chakraborty (2018) proposed a likelihood-based approach to estimate and com-
pare two embedded DTR with ordinal outcomes in a two-stage sequential multiple assignment
randomized trials. The Bayesian approach was proposed to estimate the optimal embedded
DTR with binary outcomes by Artman et al. (2020). The estimation of DTR with survival
outcomes is considered with the accelerated failure time (AFT) model in the Q-learning frame-
work (Goldberg and Kosorok, 2012; Huang and Ning, 2012; Huang et al., 2014). Although
statistical methods in the G-estimation framework have been proposed (Robins and Greenland,
1994; Hernan and Robins, 2020), they are not widely used because of the complexity in theory
and implementation due to the nature of G-estimation. Murray et al. (2018) and Klausch et al.
(2018) also developed Bayesian-based approaches to estimate the optimal treatment regimes.

Regression-based methods enjoy the advantages of being built on regression models and



easily implemented. However, they suffer from a strict assumption of the correct specifica-
tion of the outcome model to yield consistent estimates of parameters (Chakraborty, 2013).
To overcome their weaknesses, Wallace and Moodie (2015) proposed a dynamic weighted
ordinary least squares (dAWOLS), a doubly robust estimation method that integrates the imple-
mentation simplicity of Q-learning and double robustness property of G-estimation. Simoneau
et al. (2020b) further developed dynamic weighted survival modeling (DWSurv), a doubly ro-
bust regression-based method to deal with DTR with survival outcomes. Xiao et al. (2019)
examined loss-based robust regression estimators to accommodate baseline function misspec-

ification and skewed, heterogeneous, heavy-tailed errors or outliers.

In contrast, instead of requiring a specification of the outcome model beforehand, classification-
based methods, also referred to as direct methods or value search methods, directly estimate the
marginal mean outcome of a regime and identify an optimal DTR that maximizes the estimated
value over all possible DTRs (Laber et al., 2014). Some popular classification-based methods
utilize the inverse probability weighting (IPW) method to estimate the marginal mean of out-
come in DTR, but they are sensitive to the misspecification of the propensity score (Robins,
2000; van der Laan, 2006; van der Laan and Petersen, 2007). Zhang et al. (2012) and Zhang
et al. (2013) proposed a doubly robust method by introducing an augmented IPW estimator.
Marginal structural mean models were studied to construct DTRs (Robins et al., 2008; Orellana

et al., 2010).

Machine learning techniques are also introduced to make a class prediction to find the
optimal DTR across stages. For instance, Laber and Zhao (2015) introduced decision trees as a
new estimation method to obtain an optimal regime, and the intuitive value-based classification
meaning makes the resulting DTR more interpretable. Zhao et al. (2012) and Zhao et al.
(2015a) proposed outcome weighted learning (OWL) by borrowing the idea of the support
vector machine to redefine the DTR problem into a weighted classification problem. Zhou et al.
(2017) extended the OWL into a more generalized version, residual weighted learning (RWL),
to include variable selection and different classes of the outcome. Liu et al. (2018) developed
an augmented outcome weighted learning (AOL) that combines OWL and regression models
to estimate an optimal DTR. Fu et al. (2019) modified the loss function of the OWL to be

bounded and proposed a robust outcome weighted learning (ROWL), by which more stable



optimal treatment rules were produced. For censored data, Zhao et al. (2015b) proposed a
doubly robust estimator for expected survival time and utilized outcome-weighted learning to
estimate sequential optimal treatment rules. Methods have also been developed using survival
probability as the outcome of interest (Bai et al., 2017; Jiang et al., 2017; Xue et al., 2022).

In this thesis, we will focus on the study of regression-based methods with the covariate
subject to measurement error or binary outcome with misclassification. Q-learning with con-
tinuous outcomes, Q-learning with binary outcomes, and dynamic weighted survival modeling

are explored.

1.1.1 Notations and Concepts

Before describing the methodology for DTR, we introduce some basic notations in the DTR
framework. Based on the outcome type, the data for DTR can be categorized into uncensored

data and censored data.

DTR with Uncensored Data

Let the uppercase letters represent random variables and lower-class letters represent the
realization of the random variables. A DTR data trajectory across a maximum of J stages
follows {X;y, Ay, Y1, X3, Az, Yo, ..., Xy, Ay, Y}, where X is the baseline covariate vector,
measured at the beginning of stage 1 before initial treatment is applied and X represents the
updated information about the patient, collected at the beginning of stage j (j = 2, ..., J). A;
denotes a binary treatment action taken at the beginning of stage j, where A; = 1 if the patient
received a treatment, and A; = O otherwise. A patient’s history H; with values taken as h;
is defined as the accumulative information collected up to j stage before making treatment
decision A;: H; = (X1, Ay, X3, ..., Xj). In the data trajectory, Y is the outcome observed at the
end of stage j, as a reward subsequent to the treatment A ;. The outcome Y ; can be of any type,
such as continuous outcome, survival time or discrete-valued outcome. In some circumstances,
only a single terminal outcome Y is observed at the end of the last stage. In a two-stage setting,
it can be viewed as a special case that Y; =0 and Y, = Y. A DTR a is defined as a sequence of

treatment decision rules such that @ = {ay, as, ..., a;}, where a; = a;(h;) is the treatment assigned



at stage j. An optimal DTR denoted as a®” is a sequence of treatment rules that maximizes

.. t t t
the conditional mean outcome Y (or mean sum of Y;’s), where a®”* = {a]",a3", ...,a’""} and

al’ ' = al’ '(h;) is the optimal treatment at stage j.

In DTR with observational studies, an important concept is the treatment model, which is
defined as the probability of assigning treatment a; conditional on patients’ history h;, denoted
as(hj) =P(A; = aj|H; = h;). The treatment model is often used in the statistical approaches to
remove the confounding treatment effects on parameter estimation so that unbiased estimates
of the treatment effect can be obtained (Austin, 2011; Moodie et al., 2012; Chakraborty, 2013;

Tsiatis, 2019).

DTR with Censored Data

For censored data, DTR with survival outcomes follows a data trajectory across a maximum
of J stages {n:, X1, A1, Y1, m, X3, A2, Yo, ..., 1y, Xy, Ay, Yy, A}, where n; 1s an indicator of
whether the individuals entered the j* stage for treatment (1 ; = D) ornot (n; =0). X;is the
covariates collected at the beginning of stage j. A; € {1,0} is the binary treatment received
at stage j. Let T; and T be the stage-j survival time and the overall survival time across all
the J stages with T = 2521 n;T;. C; is the stage-j censoring time with C being the sum of the
censoring times C = ZLI n;C;. Let A be a censoring indicator such that A = 1(T < C) and 6 be
the realization of A. The observed outcome Y; is defined as the minimum of the survival time
and censoring time at stage j, Y; = min(T;, C;). The history H; with values taken as h; is a
collection of all the covariates and the treatments prior to the time of making the j”* treatment
decision A;: H; = (X1, Ay, X, ..., Xj). Then, we can obtain a sequence of treatment decision
rules up to J stage a = {ay, as, ..., a,;}, where a; = a;(h;) is the treatment assigned at stage j. An
optimal DTR a®” = {a” ' as’ L ay’ '}, which is a sequence of treatment rules that maximizes
the expected overall survival time T, where @ = al’ '(h;) is the optimal treatment received at
stage j.

In DTR with survival data, a treatment model is defined as the probability of receiving
treatment a; conditional on a history of those who entered the j” stage, denoted as (k) = P(A;

=aj|H; = hj, n; = 1). A censoring model is also defined for those who entered the j” stage.



It models the probability of experiencing the event of interest conditional on patients’ history

and treatment, denoted as g(a;, hj) = P(A = 1|H; = hj,A; =a;,n; = 1).
Basic Assumptions

The methodology in DTR is established on the following two assumptions (Chakraborty,
2013):

(A1) Stable unit treatment value: an individual’s outcome is not influenced by other indi-
viduals’ treatment allocation.

(A2) No unmeasured confounders: for any possible treatment rule, treatment A ; received
in the j’h stage is independent of any future (potential) covariate or outcome, {X .1, Y1, ...,
X7, Y}, conditional on the history H;.

The first assumption ensures that the patients in the study are independent of each other re-
garding the treatment effects. The second assumption allows for no future covariate or outcome

to affect the current treatment decision-making.

1.1.2 Q-learning with Continuous Outcomes

Q-learning originates from reinforcement learning and has become one of the most popular
regression-based methods to estimate an optimal DTR (Watkins, 1989; Chakraborty and Mur-
phy, 2014). The Q-learning is modeled by stage-specific Q-functions, which measure the ex-
pected future reward conditional on the history of a patient’s characteristics and treatment

action. For a two-stage DTR, the Q-functions are defined as

0,(H3,A) = E[Y|H;,As],

O1(Hy,Ay) = E[H}gXQz(Hza ar)|Hy, Al

Since Q-functions are usually unknown, they need to be estimated from the data using a
backward recursive procedure (Chakraborty, 2013). At stage 2, the Q-function Q,(H>, A,) is
the expected terminal outcome Y conditional on the history H, and treatment A,. Having

worked backward recursively, the first stage Q;(H;,A;) is modeled with a pseudo-outcome



71 constructed as n}z?XQZ(HZ’ a,), which would be the future reward had the patients received
the second stage optimal treatment a;” ’. By using Y1, it allows the first stage treatment effect
comparison to be reasonable.

To estimate the Q-functions, a common statistical approach is to parameterize Q;(Hj, A))

at stage j via regression models
Qi(H;,A;;Bj.¥;) = f(Hjo, Bj) + g(Hj1,Ajs ¢), (1.1)

where the treatment-free component f(H jo; ;) is a function of Hjy, a subset of history vector
H; without regard to A;, and the blip component g(H i, A;j; ;) is a function of A; and H,
a different subset of history vector H;. The covariates collected in Hj; are called tailoring
variables. The functions f(-) and g(-) can be specified in any form, such as splines, neural
network and regression trees (Chakraborty, 2013). The simplest case might be modeling the

Q-functions linearly as
O(H;, A;:Bjs W) = BT Hjo + A" Hjy). (1.2)

In the set of parameters (8;,¥;) in the linear setting (1.2), we are generally interested in
estimating the blip parameter ¢; since it contains both the effect of treatment A; and the in-
teraction between treatment and tailoring variables in Hj;, by which the optimal DTR is de-

termined. &;” !, the estimated optimal treatment at stage j, is the treatment that maximizes

Qj(h;, aj;Bj, lﬁj) That is,

&;pt = argmax Qj(hj’aj;Bj’ '/Afj)-

aj
Given A; € {1,0} in the linear Q-function (1.2), &jp " is further inferred to be &?” = ]l(«ﬁjTh 1>
O), where 1(-) is the indicator function. It implies that &;{l” =1 if :ﬁJT hj; > 0, and &?m =

0, otherwise. Then, following this new expression for the estimated optimal treatment, the

pseudo-outcome Y can be further written as

Y, = I%?XQz(Hz,az;ﬁz,‘ﬁz) :BZTHZO + (&;Hn)]l('/'}ZTHn > 0)- (1.3)



In (1.3), the term n}laxQz(Hz, as; /§2, !ﬁz) is expanded into a combination of treatment-free com-
ponent and blip Corilponent, assuming that all the patients had received the optimal treatment
at stage 2. This pseudo-outcome (1.3) can then be used for the first stage estimation.

A two-stage linear Q-learning algorithm is summarized in the following steps:

1. Parameterize the stage 2 Q-function

Q2(H3,Az; B2, 2) = E[Y|H3,As] = ﬂszo + A2(¢§H21)~

2. Apply ordinary least squares (OLS) procedure to obtain the stage 2 estimator (B, t/Alz)
A a . . 2
(Ba, i) = argmin L $1L, (Vi = Qa(Ha, Ag; B, ¥2)) -
(B2:42)
3. Derive the stage 2 optimal treatment as a5 = ]1(!&5 hy > 0).

4. Construct the pseudo-outcome for estimation at stage 1
Y1 = B Ha + (7, Hoo) 1 () Hot > 0).

5. Parameterize the stage 1 Q-function

Qi(H, A B1,¥1) = ,31TH10 + Al(‘/’lel)-

6. Apply OLS procedure to obtain the stage 1 estimator (B, J1)
(B1.41) = argmin L 77| (711 - Q1(H1,A1;ﬂ1,‘ﬁ1))2~
BrY1)

7. Derive the stage 1 optimal treatment as &7 = ]l(lﬁf hy > O).

Q-learning enjoys the advantage of simplicity in implementation. Following the procedures
above, the regression parameters (B;, ¥;) are consistently estimated using the ordinary least
squares method (Chakraborty, 2013). However, the validity of Q-learning requires a correct
specification of the outcome model (1.2). If the outcome model is misspecified, it results in

inconsistent estimates of parameters (Chakraborty, 2013).

1.1.3 Q-learning with Binary Outcomes

When the outcome of interest is binary, Moodie et al. (2014) presented a modified Q-function

using the inverse-logit function at stage j
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Q;(Hj Ay B W) = expit(BTHjo + A6 H ),

where expit(x) = 1/(1 + exp(-x)), and Q;(Hj,A;) is bounded by [0, 1]. Then, the two-stage

Q-functions are followed by

Oa(H, Ay: B2.42) = E[Y|H3, Ay) = expit(BL Hy + Ayx(ys Hy)).

(1.4)
Qi(Hy, Ar; B, 91) = expit(B] Hyg + A (¢] Huy)).

In Q-learning with binary response, the pseudo-outcome Y, is constructed as the logit of
Qu(H3, ax; B, 1)
Y, = max logitQ,(H, az; B, ), (L.5)
az

where (1.5) is essentially the logit of predicted probability had the patients received the second
stage optimal treatment. In this way, Y is projected to values in the real line for the stage-1
estimation, which is performed using the OLS in a model for the logit of Q|(H;1,A;1; B1, ¥1).

Once the stage-j estimator (ﬁ s lﬁj) is obtained, the estimated optimal treatment &;p " can be
obtained by either directly maximizing Q;(h;,a;; ﬁ s tﬁj) or only maximizing the blip compo-
nent a j(«/A/fh j1), as the inverse-logit function is strictly increasing.

A two-stage linear Q-learning algorithm with binary outcomes is summarized in the fol-
lowing steps:

1. Parameterize the stage 2 Q-function

Qx(H3, Az B2, Y2) = eXPit(.Bszo + A2(¢2TH21))-

2. Apply logistic regression to obtain the stage 2 estimator (B,, ) of the conditional mean
model for Y, Qa(H3, Az; B2, ¥2).
3. Derive the optimal treatment as a," " = argmax Qs(ha, as; Ba, ¥2).

as
4. Construct the pseudo-outcome for estimation at stage 1

71 = max logitQ,(H,, az;ﬁz, ‘/Afz)-
az

5. Apply OLS regression to obtain the stage 1 estimator (ﬁl, l/,}l)

A n . L= 2
(B1, Y1) = argmin + 37| (Yil - Ql(Hil,Ail;ﬁl,lh)) :
B1:¥1)
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6. Derive the optimal treatment as a]”" = arg max Q;(hy, ar; B, Un).

This modified Q-learning algorithm distinglfilshes itself from ordinary Q-learning in some
aspects. Firstly, instead of modeling the Q-functions linearly, Moodie et al. (2014) used the
inverse-logit function to model Q;(Hj, A;), which is the probability of success at stage j. An-
other difference lies in the construction of the pseudo-outcome. In the ordinary Q-learning, Y,
is constructed as an estimate of the expected outcome of all the patients who were optimally
treated at the second stage. However, in this method, Y, is the logit of predicted probability

had the patients received the second stage optimal treatment. This modification allows the

pseudo-outcome to be transformed from the probability to the values in the real line.

1.1.4 Dynamic Weighted Survival Modeling

When it comes to the DTR with survival outcomes, the estimation of optimal DTR is challeng-
ing because of the censoring. Censoring occurs when the patients withdraw from the study or
are lost of follow-up during the study period. A multi-stage treatment period complicates the
estimation as patients may experience the event of interest before the end of any stage.

To deal with the censored outcome in DTR, Simoneau et al. (2020b) proposed the dynamic
weighted survival modeling (DWSurv), a doubly robust method, to estimate an optimal DTR
with survival times being subject to right-censoring. To ensure the feasibility of DTR with
survival outcomes, Simoneau et al. (2020b) made two more assumptions in addition to the
assumptions (A1) and (A2) described in (1.1.1):

(A3) Coarsening at random: at the beginning of each stage, the probability of censoring
onward is independent of future outcomes, given accrued information.

(A4) Positivity: at any j™" stage, P(A; = a;|H;,n; = 1) > 0 for all treatment options a; and
P(A=1|H;,A;,n;=1)>0.

In a two-stage setting, the DWSurv method models the logarithm of survival times at stage

2 and stage 1 based on the accelerated failure time (AFT) models

logT, = f(ha; B2) + g(ha1, az; ¥2) + €,

logT = f(ho; B1) + g(hur, ar; ¥n) + €,

(1.6)
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where the error term ¢; is independent and identically distributed with mean zero, and T is
the overall pseudo-survival time had all the patients who entered the second stage received the
optimal treatment a;p " f(h josBj) and g(hjy, a;; ¢;) are the treatment-free component and blip
component, respectively, with functions f(-) and g(-) specified in any form. The simplest case

is to consider log-survival times in linear form

l0gT, = B} hao + ay(Y3 ha) + €,

_ (1.7)
logT = BTh1g + a\(Y] hn) + €.
The pseudo-survival time T is constructed as
T =Ty + mTaexp{ys hulay” - ar)). (1.8)

Intuitively, (1.8) reflects three possible situations. If patients did not enter the second stage,
T is equal to Ty, the survival time at the first stage. If patients entered the second stage and
received the optimal treatment a;” T is equal to the observed overall survival time T = T,
+ T,. If patients entered the second stage but did not receive the optimal treatment a;” " Tis

larger than T due to the non-zero term exp{!//ZThZI [a)” r— az]}.

The DWSurv method is designed for observational studies, where confounders may exist.
Thus, Simoneau et al. (2020b) introduced weights in the algorithm so that by including care-
fully chosen weights, any possible confounding effect on estimating the parameters could be

eliminated. The balancing property (1.9) is provided to find the appropriate weights
gL, hpr(hpwi(1,1,hj) = [1 = g0, hpI[1 - 7(h;)]Iw;(0,0, hy), (1.9)

where n(h;) = P(A; = 1|Hj = hj,n; = 1) is the treatment model, and g(a;, h;) = P(A =
1|H; = hj,A; = a;,n; = 1) is the censoring model. Simoneau et al. (2020b) demonstrates
that the DWSurv method yields consistent blip parameter estimates if the weights satisfy (1.9).
There is a broad class of weight choices that satisfy (1.9), and the use of weight (1.10) is

recommended
laj— P(Aj = 1lhj,n; = 1)|

.65 "h' =
wio.aj, ) P(A=olhj,a;,m; = 1)

(1.10)
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A two-stage linear DWSurv algorithm is summarized in the following steps:

1. Propose parametric models for the probability of treatment P(A;, = 1|h,, 17, = 1; ;) and
the probability of censoring P(A = 0|h,, a,, > = 1; A,) at stage 2 and find the estimated weight
W, from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 log7, =
ﬂzT hay + az(:p;hn) + & and obtain the estimator (B,, ) by solving

h i20

Us(B2, ¥2) = Y| SiminWin [ ] (logT,-z —ﬂghizo - aizlﬁzThizl) =0.

aphin

3. Derive the stage 2 optimal treatment as &5 = ﬂ(l/'}ghn > 0).

4. Construct the pseudo-survival time for estimation at stage 1
T=T + UZTZexp{‘ﬁthl [a"" — az]}-

5. Propose parametric models for the probability of treatment P(A; = 1|hy,n; = 1; @) and
the probability of censoring P(A = O|hy,a;,m; = 1; A1) and find the estimated weight W, from
(1.10).

6. Assume a linear AFT model for the pseudo-survival time at stage 1 logf = ﬁfhlo +
a 1(l//f hn) + €; and obtain the estimator (ﬁl, 12/1) by solving

aiphin

7. Derive the stage 1 optimal treatment as &;”" = ]l(!/AllThll > 0).

Like Q-learning, DWSurv is implemented backward recursively from the last stage to the
first stage. Moreover, DWSurv is a doubly robust method, which means that the consistency
of the estimators remains if either the treatment-free model or weight model (treatment model
and censoring model) is correctly specified. Thus, this double robustness property allows for
model misspecification to some extent.

Simoneau et al. (2020b) further developed a formula to estimate the asymptotic variance of
(B, ¥)ina single-stage, which is given by

Var(B, ) = E[{E[ U8, a,b)]_l Uss(B, ¢)}®2], (1.11)

0B, ¥)
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where E[U,q(B, ¥)**] = E[U.gj(B: ¥)Uogj(B- )" 1. U.gi(B, ), the estimating equation adjusted
for the plug-in estimates of the nuisance parameters @ and A, is expressed as
-1

U(Bo ) ~ UB, Y1) E[% U, «/f)]E[%sa]_lsa - E[%U(ﬁ, «/z)]E[%sA] S

where s, and s, are the score functions of the treatment and censoring models. With two or
more stages, (1.11) applies in the last stage but with an additional term added to the estimating
equations in the previous stages. Simoneau et al. (2020a) recommended the use of asymptotic

variance, which takes much less computation time than the bootstrap approaches.

1.2 Measurement Error and Misclassification

1.2.1 Measurement Error in Covariates

Measurement error models are the statistical models that reveal the underlying mechanism of
measurement error. It describes the relationship between the observed variable and the true

variables. This section focuses on the review of measurement error in covariates.

Fori=1, ..., n, let X; be an error-prone covariate, Z; be an error-free covariate and W; be a
surrogate, mismeasured measurement of X;. We introduce three commonly used measurement

error models:

Classical Additive Model
W, =X;+e;, (112)

where the error term e; is independent of X; with mean 0 and covariance X,,.

Berkson Model
X,' = Wi + e;,

where e; is independent of W; with mean 0 and covariance X,,.
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Multiplicative Model

W; = Xie;,

where e; is independent of X; with mean 1.

An important concept in measurement error models is the non-differential error, which
means the error term e contains no extra information about the outcome Y. Otherwise, the error
is differential with respect to Y. The classical additive model is the most popular and widely

used model among the three measurement error models (Carroll et al., 2006; Yi, 2017).

1.2.2 Misclassification in Response

When an error-prone variable is discrete, it is often described as a misclassification problem.
We consider here a binary response Y that is subject to misclassification. Instead of fully ob-
serving the true response Y, a surrogate Y* is observed as a mismeasured version of Y. Similar
to the measurement error model, the misclassification modeling process is characterized by
a set of misclassification probabilities (y;o(X), v01(X)), also called misclassification rates, to

associate Y* with Y such that

vi0(X) = P(Y* = 11Y =0,X), yo1(X) = P(Y* =0]Y = 1, X). (1.13)

In (1.13), the error in Y is differential in that Y* is dependent on the covariate X, conditional

on Y. Otherwise, the error is non-differential if Y* is independent of X conditional on Y.

1.2.3 Methods for Measurement Error in Covariates

There has been substantial research in the measurement error literature for correcting the bias
caused by the measurement error in parameter estimation. It’s worth noting that the choice
of measurement error models and error correction methods largely depends on the nature of
the research question and the structure of the available data. In this thesis, we concentrate on

reviewing error correction methods for the classical additive model based on the data structure.
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Methods for Validation Data

In practice, clinicians are sometimes only able to collect a small subset of data, in which
all the variables {X;, W;, Z;, Y;} are observed, while the majority of data only have (W;,Z;, Y;)

observed. Such data are called (internal) validation data and the data structure is viewed as

{(Xi,W;,Z,,Y;} ifieV,
Wi, Z,Y)}) ifieV,

where the first group of data is the validation data denoted as V and the second group of
data is main study data, also called non-validation data, denoted as V. The main difference
between these two groups is whether or not the true covariate X; is available. It has been well
documented that the covariate measurement error results in biased estimation of parameters
without any corrections (Carroll et al., 2006; Yi, 2017). Under this class of data structure, the
availability of a few X; in V motivates researchers to develop methods to find the estimates X;
of the unobserved X; in V by making use of the surrogates in the data. In the case of internal
validation data, it is also regarded as a missing data problem (Cole et al., 2006).

Regression calibration (RC) is a classical approach to find such estimates X; with two steps
(Carroll et al., 2006). In the first step, a linear model is assumed for X and (W, Z), and the
regression coefficients of the linear model are estimated using the OLS method based on the
small set of validation data. In the second step, given the values of (W;, Z;) in V, the estimates
X; for the missing X; are predicted using the regression coeflicients obtained in the previous
step. This approach enjoys high popularity due to its simplicity in theory and implementation.
However, the RC method is known to yield unbiased estimates of parameters in linear models
and only approximately unbiased in nonlinear models (Carroll et al., 2006; Yi, 2017).

To overcome the limitation of the RC method in nonlinear models, Freedman et al. (2004)
proposed a moment reconstruction (MR) method to create *adjusted values’ that have the same
first and second moments as the unobserved true covariates. The MR method yields not only
consistent estimators in linear models but also in nonlinear models. Thomas et al. (2011)
introduced a moment-adjusted imputation (MAI) method, extending the MR method to higher-

order moment matching. The MAI method is more advantageous than MR for non-normal
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distributed covariates. Similar to MR and MAI, a multiple imputation (MI) method was pro-
posed as another imputation method that can handle differential measurement error (Cole et al.,
2006). The performances of the RC, MR, and MI methods were compared in linear and logistic
regressions, and the MR and MI outperformed in terms of bias reduction but tended to be less
efficient (Freedman et al., 2008).

In the survival data context, Jin et al. (2019) proposed a weighted least squares (WLS)
method for the accelerated failure time (AFT) model when the true covariate Xj is only avail-
able in the validation data. Instead of having a continuous surrogate, a categorical auxiliary

variable M is observed. Then, the structure of the data follows

{Xi’ Mi’ Zi’ Yi’ Al} ifie V’
{MhZi’ Yi9Ai} lfle‘_/'

Fori € V, the X; is estimated by

. 2jev L(M; = M)X;;
Y Y LM = M)

(1.14)

This method has a few advantages. It does not need to specify the measurement error model.
The consistency and asymptotic normality of the estimator were also established. However,
one limitation of this method is that the variable M must be discrete to produce the estimates
X;. For any continuous surrogate, Jin et al. (2019) suggested discretizing it into a categorical
variable first and then applying (1.14) to obtain the estimates X;.

Machine learning techniques have also been applied in recent years to handle the measure-
ment error for the use of survival data. Zhou and Wang (2000) introduced kernel smoothing to
the Cox model and explored asymptotic properties for the estimators. Similar work on the Cox
model can also be found in Hu and Lin (2002), Liu et al. (2009), Fan and Wang (2009) and Liu
et al. (2010). To study the impact on the AFT model, Granville and Fan (2012) applied kernel
smoothing to impute the X; in the main study data. Granville and Fan (2014) further utilized

local polynomial approximation to obtain a Buckley-James estimator of the AFT model.

Methods for Replicate Data



18

The data with k multiple surrogates or measurements W = (Wy, W5, ..., W) for the unob-

served X are called replicate data. For any patienti (i = 1, ..., n), the data structure is
{Wil’ WiZ’ (123} Wik,'? Zi’ Yi}’

where ; is the number of replicate surrogates for the i subject. Let W; be the mean value of
(Wi1, Wi, ..., Wix,). Simply using the replicate surrogates in the analysis may still yield biased
estimators. Thus, the question of interest is to search for a best linear approximation to X; given
(Wi, Z;), that is, E [XiIV_Vi, Z;] for X; as a linear function of W; and Z; (Carroll and Stefanski,
1990; Gleser, 1990).

Regression calibration is an approach to provide the best linear approximation X;, which is

given by (Carroll et al., 2006)

-1,
A N A ixx + 266 kl ix Wi - Aw
b'é :uw+[ S0 S ] . / - “ , (1.15)
sz zzz Zi — M
where
1 &
W= T Wi,
()
A = fhy = kiWi/Zkl»
i=1 i=1
a. = 2»
v=k- k?/ k.
i=1 i=1 i=1
ixx = [{ ki(Wi - Iaw)(Wl - /jW)T} - (I’l - 1)Z€€:|/va
i=1
£ = D kWi - p)Zi -2 v

So=(-D" Y (Zi-Z)Zi-Z),
i=1

n

ki n
S = 0 2 Wiy = WayWoy =W | > ki = 1.

i=1 j=1 i=1
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More recently, several other approaches have been developed as alternative methods for
replicate data. Bartlett et al. (2009) proposed an efficient likelihood-based method for the linear
and logistic outcome models applicable to replicate data. Keogh and White (2014) described
an approach using the idea of MI in a study with repeated measurements. Muff et al. (2015)
extended the integrated nested Laplace approximations method to correct classical measure-
ment error in exposure when a replicate study is available. Gray (2018) extended MI approach

suitable for the use with replicate data.

SIMEX-based Methods

Another class of methods directly deals with the naive estimators to correct the bias. Ste-
fanski and Cook (1995) proposed Simulation-Extrapolation (SIMEX), a simulation-based ap-
proach to adjust for the covariate measurement error effect. The key idea is to first model the
trend of estimators with different strengths of measurement errors through simulation. Then
given the trend, the estimates are extrapolated back to the situation without measurement error.
The main advantage of the SIMEX method is that it requires no specification of the distribution

of true covariate, which makes SIMEX robust.

There are several applications and extensions of the SIMEX method in the literature. The
R package simex implements the SIMEX method with a range of extrapolation functions pro-
vided (Lederer and Kiichenhoff, 2006). Ronning and Rosemann (2008) took into account the
correlation of error terms and proposed generalized SIMEX to accommodate the correlation.
In the context of survival data, He et al. (2007) applied the SIMEX method to the AFT model
when true covariates are error-prone and not restricted to a specific distribution. He et al. (2012)
also developed an easy-to-implement R package simexaft for the use of the SIMEX method
in the AFT model. Yi et al. (2015b) extended the SIMEX method to accommodate the effect
of missingness in response and measurement error in covariates. Yi et al. (2015a) generalized
the usual SIMEX method to treat measurement error and misclassification in covariates simul-
taneously. Zhang and Yi (2019) further developed an R package augSIMEX for the use of the
generalized SIMEX method proposed in Yi et al. (2015a).



20

1.2.4 Methods for Misclassification in Response

The misclassification problem has been increasingly discussed in the literature. Statistical
analysis with misclassified responses may result in severely biased estimators. Its negative
impact is likely to be greater than the covariate measurement error because the misclassification
can alter the structure of the response model (Zhu and Wu, 2004; Carroll et al., 2006; Yi, 2017).
Neuhaus (1999) and Yi (2017) pointed out that ignoring the misclassification in the response
during the analysis process is equivalent to modeling the data with a misspecified link function.
Moreover, it may also incur a loss of efficiency of the estimators (Neuhaus, 1999).

Classical methods dealing with misclassification in the response can be found in the litera-
ture. If the distribution of the binary data can be specified, Hausman et al. (1998) and Neuhaus

(1999) derived a relationship of models for observed surrogate Y* and true response Y as
P(Y" = 11X) = y10 + (1 = y10 — Yo ) P(Y = 1|X). (1.16)

By equation (1.16), the maximum likelihood estimation (MLE) method can be used for the

estimation of parameters by maximizing the log-likelihood of the data (1.17)

n no 1
[= ) P =yilXi=x)= ) > P(¥; =yl¥; =y, Xi = x)P(Y; = y|Xi = x).  (L.17)
P i=1 y=0

Neuhaus (2002) extended the likelihood method to clustered and longitudinal binary data with
responses being subject to misclassification. Lyles and Lin (2010) utilized the direct MLE
method to handle the outcome misclassification and proposed a predictive value weighting
approach to correct the covariate misclassification. Lyles et al. (2011) further illustrated the
likelihood-based method with the use of internal validation data in case-control studies to ad-

dress the outcome misclassification.

Since the likelihood-based methods could be computationally intensive, the mean score
method has been proposed as an alternative choice (Pepe, 1992; Pepe et al., 1994). Yi (2017)
further elaborated it to be a semiparametric approach. In addition to these methods, an EM
algorithm was introduced by Magder and Hughes (1997) to handle the misclassified outcome,

which is also applicable to the differential misclassification. Edwards et al. (2013) developed a
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multiple imputation approach when validation data are available. Bayesian methods have also
been established using prior distributions to correct the misclassified binary response (Prescott
and Garthwaite, 2002,0; Daniel Paulino et al., 2003; Gerlach and Stamey, 2007).

Machine learning approaches have received increasing attention over the years to accom-
modate the misclassification effect. Xu et al. (2006) proposed a robust support vector machine
(SVM) to account for the misclassification in the response using a robust loss function. Yang
et al. (2007) developed a weighted SVM to improve the outlier sensitivity problem in standard
SVM. Random forest was demonstrated to be the most robust classifier compared with the
other ten classifiers in noisy data with a misclassified response (Folleco et al., 2008).

The effect of misclassification in response in other applications has also been explored.
Mwalili et al. (2008) described an approach to correct the misclassification in a zero-inflated
negative binomial regression model. Chen et al. (2014) introduced a marginal method for longi-
tudinal ordinal data with misclassification in both response and covariates. Shu and Yi (2019a)
studied the misclassified outcome with missingness in causal inference and proposed methods
to correct misclassification and missingness effects simultaneously. An R package ipwErrorY
was developed by Shu and Yi (2019b) for the corrected estimation of average treatment effect
in causal inference with a misclassified response. In genetics studies, Zhang and Yi (2020) ex-
plored bivariate mixed responses with measurement error and misclassification, and used the
likelihood-based methods to correct the measurement error and misclassification effects simul-
taneously. Zhang and Yi (2021) further proposed estimating equation approaches to deal with

measurement error and misclassification in bivariate responses.

1.3 Objectives and Organizations

Although there is extensive literature on dynamic treatment regimes and measurement er-
ror/misclassification, to the best of our knowledge, the study of the measurement error or mis-
classification effect on dynamic treatment regimes is scarce. Most existing methods in DTR
literature ignore the fact that the patient’s characteristics and the outcome may be contami-
nated with measurement error or misclassification. Consequently, the estimation of optimal

DTR that relies on a collection of error-prone variables may be severely biased if those errors
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are not addressed. Spicker and Wallace (2020) demonstrated the substantial impact of mea-
surement error on dynamic weighted ordinary least squares. In this thesis, we extend to study
and accommodate the effect of covariate measurement error and outcome misclassification in
the contexts of DTR approaches, including Q-learning with continuous outcomes, Q-learning
with binary outcomes, and dynamic weighted survival modeling.

The remainder of this thesis is organized as follows. In Chapter 2, we consider Q-learning
with continuous outcomes, in which the covariates are considered mismeasured with repeated
measurements. The regression calibration method is employed to correct the measurement er-
ror in Q-learning. In Chapter 3, we consider the situation of DTR with survival outcomes based
on the DWSurv method for internal validation data with covariates being contaminated. Two
correction methods, the k-nearest neighbors method and the weighted least squares method,
are developed to eliminate the effect of error-prone covariates. In Chapter 4, we consider Q-
learning with misclassified binary outcomes and internal validation data. The maximum likeli-
hood estimation method is proposed to accommodate the misclassification effect in Q-learning.

A summary of findings and future work is presented in Chapter 5.



Chapter 2

Dynamic Treatment Regimes with
Measurement Error in Covariates: a

Q-learning Approach

2.1 Introduction

In this chapter, we study the effect of covariate measurement error on Q-learning, a DTR
method with continuous outcomes. The existing research work in the study of Q-learning as-
sumes that the collected covariates are free from measurement error. However, this assumption
is commonly violated in clinical practice. To date, it remains unclear whether and how much
the covariate measurement error plays a role in affecting the performance of Q-learning. This
chapter aims to study the effect of measurement error in covariates on Q-learning. Specifically,
the impact of covariate measurement error in Q-learning will be examined, and regression cal-

ibration will be explored to adjust for the measurement error effect.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the
Q-learning with mismeasured covariates and the use of the regression calibration method in
Q-learning to correct the covariate measurement error. Simulation studies are carried out to
examine the performance of the RC method in Section 2.3. In Section 2.4, we apply the

proposed method to the STAR*D study. The conclusions are summarized in Section 2.5.

23
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2.2 Methodology

2.2.1 Notations and Model Framework

We restrict the notations and framework set-up to DTR with two decision points. The data
trajectory follows {X1, Z1, A1, X3, Z,, A>, Y}, where X; and Z ; are error-prone covariate vector
and error-free covariate vector (j = 1, 2). We consider a situation where the true covariate X;
is not observable at stage j. Instead, there are up to k; unbiased replicate surrogates observed
for W; = (Wjy, ..., Wik, where Wj; (I =1, ..., k;) denotes a surrogate or mismeasured version
of X;. The classical additive model is assumed to describe the relationship of Wj; and Xj, that
is Wj; = X; + ej;, where the ej; follow a normal distribution with mean 0 and covariance X,
and are independent of each other and of all other variables. The binary treatment A; € {1, 0}
is assigned at stage j. Y is a continuous outcome observed at the end of the second stage.

In the presence of measurement error, the true covariate X; is absent but only the replicate

surrogates W; are observed at stage j. Then, the data trajectory is replaced by
{Wl? ZlaAla WZ’ ZZ’AZ’ Y}

In this case, the naive histories are formed as H;’ =Wy, Zy) and H;’ =W, Z1, A, W,
Z5). As a result, the Q-functions that use the naive histories are called naive Q-functions,
which contain the replicate surrogates only rather than the true covariates. Then, the naive

Q-functions are given by

QZ(Hn,AZ; ;l’ w;l) = f(Wl’ ZI’AI’ WZ, Zz,ﬂ;l) + g(Wl’ Z19A1’ WZ’ ZZaAZ;‘p;)’

Qi(H!,Ay; ;l, W';) = f(Wy, Zl;ﬁ;l) +gWy,Z, Ay ‘V;)-
Using the naive histories H ;‘ and H ;’, the naive Q-functions can be further summarized as

Qu(H! Ay 1Y) = f(HE BY) + g(H? L Ay ),

Q(HY, A By ¥ = f(H [ BY) + g(H A ).

2.1)

If the functions f(-) and g(-) are modeled linearly, then the naive Q-function at stage j is
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given by
n . pn nN\ _ pnT gn nT gyn
Q(H!, A Bl = B HY, + A (W' HY,). (2.2)

J J

The naive Q-functions (2.1) and (2.2) are different from (1.1) and (1.2) in the sense that
the original history is replaced with the naive history. By applying the ordinary least squares
(OLS), the naive estimator (B}’ t/A/;’) can be obtained. According to Carroll et al. (2006) and
Yi (2017), it is reasonable to believe that the naive estimator (ﬂ;’, l/l;,’) may be biased from
(Bj, ¥j). Let the blip parameter ¥ = (Y3, ), which is the parameter of primary interest for
estimation. Then the naive blip estimator Y = (12/;’ ‘/;,11) may be biased from . Consequently,
we are motivated to assess the degree of biases in the parameter estimation and search for a

good approximation X j to X using the available replicate surrogates in the data.

2.2.2 Regression Calibration

Prentice (1982) pioneered the regression calibration method to address covariate measurement
error in a survival data context. It has now become a widely used error correction method,
which can tackle the measurement error problems for both validation data and replicate data
(Carroll et al., 2006). In this chapter, we focus on the study with replicate data. The key idea
of regression calibration is to find the estimates XofX using the available replicate surrogates
and proceed with the analysis using the estimates X so that the bias caused by the measurement
error is reduced.

For any stage j, we can obtain the RC estimates X ;j using the replicate surrogates W; accord-
ing to the formula (1.15). Then, by replacing the unobserved X; with the corrected estimates

X i, the data trajectory is updated to be
{XAvl’ ZlaAla XZ’ ZZ’AZ9 Y}

The corresponding Q-functions using the corrected estimates X ; are followed by

Ox(HY, Ag B W) = Ry, Z1,A1, K, 23 BY) + (K1, Z1, Av, Xa, Zo, Ags ),

QI(H ", A B Y °) = X, Zi:BO)+ g(X1, Z1,Ay; 2

From the new data trajectory, we can obtain the RC histories in a form H;C = (X1, Z,) and
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H;c = ()A( 1.21,A;, Xz, Z,). The Q-functions based on the RC histories are given by

Qu(HEY, Asi B W) = FUHILS: ) + gCHLS, Ax; ),
Q(HIS A e, W) = fUHIG: ) + g(HIS, vy,

If each Q-function in (2.3) is modeled linearly, then it can be expressed as

rc . prc reN _ prcT gyre rcT gyre

J J

(2.3)

(2.4)

The modified Q-functions (2.3) and (2.4) are formalized based on the RC histories, which

consist of the corrected estimates for the error-prone covariates and other variables. Then, the

estimator (B;c, l/A/;‘) obtained from the Q-functions (2.3) is the RC estimator. It is discussed that

the RC method yields consistent estimators in linear models but is approximately consistent in

nonlinear models (Carroll et al., 2006; Yi, 2017). Thus, if the Q-function is in a form of (2.4),

A’,c, A’,C) is a consistent estimator of (8;, ;) and jre = A”, A’C) consistently estimates the
iV j» Vi » ¥ y

blip parameter . However, if the Q-function is in a nonlinear form, regression calibration can

still provide a considerable bias reduction in the parameter estimation in Q-learning.

Modified Q-learning Algorithm with Regression Calibration:

The following modified Q-learning algorithm with regression calibration details the esti-

mation procedure:

1. Parameterize the stage 2 Q-function
Qu(H, As; B W) = BT HIG + As(WieTHEE ).
2. Apply OLS procedure to obtain the stage 2 estimator (ﬁ;c, l/;;”)

A A . 2
B,y = argmin L 27, (Y — Qu(H'E, An: B Y2°))
B

3. Derive the stage 2 optimal treatment as &5 = ]l(l/A/;”T b > O).

4. Construct the pseudo-outcome for estimation at stage 1

Vi = B Hz + (T HI W (§ T HE > 0)
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5. Parameterize the stage 1 Q-function
QUH, A B W) = B Hg + Ay THY).

6. Apply OLS procedure to obtain the stage 1 estimator (B;c, tﬁ;”)
nre 7, : n (y T r rev)
(Bre, ey = argmin L T, (Vi — Qu(HTE, Aus B, 97))
BEY)
7. Derive the stage | optimal treatment as a7 = ]l(lﬁ; ”h; ‘> O).
This modified Q-learning algorithm distinguishes itself from the original Q-learning in Sec-
tion (1.1.2) in the sense that the history used for the parameter estimation is only an approxi-

mation of the true underlying history.

2.3 Simulation Studies

In this section, we conduct a series of simulation studies to assess the measurement error effect
on estimating the parameters and predicting the optimal treatment decision rules and optimal
value function in Q-learning. The performance of the regression calibration method is exam-

ined and compared with the naive method in one-stage and two-stage Q-learning.

2.3.1 One-Stage Estimation

We begin with one-stage parameter estimation in Q-learning. Let X and Z be the error-prone
and error-free covariates, respectively, which are generated from N(1, 1). Instead of observing
X, two replicate surrogates Wy, W, are observed as mismeasured version for X, modeled by
W, =X +¢,(I=1,2), where e; ~ N(0, 0?). W is an average value of W, and W,, given by W=
(W1 + W,)/2. Treatment A € {1, 0} is generated from a Bernoulli distribution with probability
P(A = 1) = 1/2. The outcome Y is generated by Y = 0.5 + 5,Z + B, X + A(Y10 + Y11 X) + €,
where (B, ¥) = (8., B, Y10, ¥11) = (0.5, 1, 0.5, 1) and € ~ N(0, 1), independent of each other
and all the other variables.

Four estimators are considered and compared in each round of 500 simulations: (1) true
estimator f* obtained using the true covariate X, (2) naive estimator " obtained using a sin-

gle surrogate W1, (3) naive estimator ™ obtained using the averaged surrogate W, (4) RC
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estimator "¢ obtained using the RC estimates X. Analyses are conducted under two different
sample sizes of n = 500 and n = 2000. In each setting, the bias, empirical standard error (SE),
root mean square error (RMSE) and 95% coverage probability (CP%) of the estimators are
calculated using the standard bootstrap. The measurement error mechanism is assumed with
o € {0.2,0.5,0.8}, which reflects a small, moderate or large measurement error on the true
covariate X. Numerical results of n = 500 and n = 2000 are reported in Table 2.1 and Table 2.2,
respectively. The estimates of (8, ) under o = 0.8 are visualized in Figure 2.1 for n = 500 and
Figure 2.2 for n = 2000, respectively.

Tables 2.1 and 2.2 show that ignoring the covariate measurement error leads to biased
results with noticeable biases, and the coverage probabilities are below the nominal level of
95%. As the degree of measurement error increases, the biases are more severe. In contrast,
the RC estimator presents a satisfactory performance in correcting for the effect with small
biases and coverage probabilities around 95%. Its performance also seems robust against the
various magnitude of measurement error. Moreover, we also see that the sample size affects
the performance of the methods. As the sample size becomes larger, the associated variability

decreases in all the scenarios.

2.3.2 Two-Stage Estimation in Linear Case

This simulation study aims to investigate the effect of measurement error on the parameter
estimation in DTR with two decision points. Let X; ~ N(1, 1) and Z; ~ N(0.5, 1) be the error-
prone and error-free covariates at stage j (j = 1, 2), respectively. A treatment A; € {1,0} is
assigned with probability P(A; = 1) = 1/2. In practice, the number of replicate surrogates may
vary from person to person. To mimic this situation, we consider a scenario with 3 replicate
surrogates W;;, Wy, Wjs, generated by W; = X; + e; (I = 1, 2, 3), where e¢;; ~ N(0, 0'5).
The degree of measurement error at stage j is reflected by o, which is assumed to be known
or estimated from a pilot study. Each patient is assumed to possess at least W;; and W, as
primary proxies while W ;3 may not be available. The degree of missingness in W3 is set to
be 80%. Let W, be an average value of W;;, W, and W3, W; = (W, + Wj, + Wj3)/3. The

outcome is modeled linearly in the treatment-free component as Y = X; + Z; + X, + Z, +
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Ao + ¥ X)) + Ac(Woo + Y21Xo) + €, where Y = (Y0, Y21, Y10, Y11) = (0.5, -1, 0.5, -1)
and € ~ N(0, 1), independent of each other and of all other variables. In each round of 500
simulations, a dataset with the size of 2000 patients is generated.

Four estimators are compared in each stage to evaluate the performance of the RC method:
(1) true estimator (/A/’ obtained using the true covariate X, (2) naive estimator (/AJ” obtained using
a single surrogate W ;, (3) naive estimator Y™ obtained using the averaged surrogate W i (4)
RC estimator "¢ obtained using the RC estimates X ;. The degree of measurement error o is
specified as 0.2, 0.5 and 0.8. Results for the bias, SE, RMSE and CP% of 1/A/ computed using
the standard bootstrap are reported in Table 2.3. Figures 2.3, 2.4 and 2.5 provide the visualized

parameter estimates under o, = 0.8.

Similar to the findings in one-stage estimation, both naive blip estimators Y" and ¢ are
biased due to the ignorance of the covariate measurement error. As the degree of measurement
error increases, the biases of the naive estimators exacerbate. On the contrary, the RC estimator
1/'}’0 yields small biases, and the coverage probabilities are close to the nominal level of 95%.
Moreover, the performance of the RC estimator is also shown to be robust against the different

magnitude of measurement error across the two stages.

2.3.3 Two-Stage Estimation in Nonlinear Case

In this section, we explore the measurement error effect on the estimation of blip parameters
and optimal DTR in a nonlinear outcome model with two decision points. The data generation
mechanism is the same with the one in (2.3.2) except that the outcome model is given by Y =
f(X1) +Zy + f(X2) + Zo + Ai(@10 + Y1 X1) + Ax(Yao + Y21 X2) + €, where ¥ = (Y0, Y21, Y10,
Y1) =(0.5,-1,0.5, -1) and € ~ N(0, 1), independent of everything else. In the outcome model,
three nonlinear functions are considered for X;: (1) f(X;) = X + X? (cubic), (2) f(X;) = X; +
e’/ (exponential), (3) f(X;) = X; + sin(X?) + cos(ij.) (complex).

We continue the analysis with four estimators ti/‘, Q,Z", t}"” and t/'}’c. The measurement
error o is chosen from a range of {0.2, 0.5, 0.8}. Table 2.4 displays the results for the bias,
SE, RMSE and CP% of ¢ over various measurement errors in each nonlinear case. The blip

estimates for three nonlinear examples under o = (0, 01) = (0.8, 0.8) are visualized in Figures
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2.6, 2.7 and 2.8. We repeat the set of simulations 500 times.

In general, the results in Table 2.4 reveal a larger measurement error effect with bigger
biases and standard errors in the nonlinear case than those in the linear case. In comparison,
the RC method remains effective and robust, though it produces slightly less reduced biases
in this setting compared with that in (2.3.2), especially for the estimation of ¢;. Moreover, in
the three scenarios, the models containing the cubic function and exponential function in the

treatment-free component are sensitive to measurement error.

2.3.4 Predicted Optimal DTR

In this section, we explore the effect of measurement error on the predicted optimal treatment
decision rules by evaluating the proportion of optimally treated patients across two stages.
In Carroll et al. (2006), there is an argument about the necessity of modeling measurement
error in a predictive setting. However, considering the importance of correctly identifying
and recommending the optimal treatments to the patients, it’s worth looking into the role of
measurement error in predicting the optimal DTR in Q-learning.

The analysis follows the simulation design (2.3.2) and is done with the training data of
2000 patients and test data of 5000 patients. We first use the training data to produce three
estimators (a/'}”, «ﬁ”” , xﬁ"’) with a single surrogate W j;, averaged surrogate w j» and RC estimates
X j» respectively. Then, we use the test data to find the prediction accuracy of optimal DTR,
which is measured by the proportion of the patients whose optimal treatments are correctly
identified in the test data at stage 2 and/or stage 1.

In each stage, six scenarios are considered to predict the optimal DTR using (1) naive
estimator lil" and true covariate X (nt), (2) naive estimator a/AJ”” and true covariate X (nbt), (3)
RC estimator tﬁ’” and true covariate X; (ct), (4) naive estimator !/'}” and a single surrogate W j;
(nn), (5) naive estimator !ﬁ"” and averaged surrogate w j (nbnb), (6) RC estimator x/A/’” and RC
estimates X ; (cc), respectively. The first three scenarios aim to examine the measurement error
effect on the prediction accuracy using the true covariates in the test data, while the last three
evaluate the measurement error effect using the surrogates and corrected estimates in the test

data. A total of 500 runs are simulated for each scenario. Numerical results are summarized in
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Table 2.5. The prediction accuracy results under (0, o1) = (0.8, 0.8) are shown in Figure 2.9.

Table 2.5 shows that the existence of measurement error leads to a remarkable degradation
of the prediction accuracy of optimal DTR, and it achieves the lowest prediction accuracy
when a single surrogate is used. However, the RC method outperforms the naive method and
significantly improves the prediction accuracy in all the scenarios. In the last two scenarios
(nbnb and cc), the RC method yields similar accuracy results to the naive method, indicating

that the worst scenario of using the RC method is comparable to that of using the naive method.

2.3.5 Predicted Optimal Value Function

In this study, we evaluate the measurement error effect on the predicted optimal value func-
tion, which is the expected outcome under the optimal treatment regimes. The data generation
mechanism follows (2.3.4), and we continue with the three estimators (tﬁ", l/,}"b , tﬁ") obtained
from the training data. We use the test data to predict the value functions under the (1) true
optimal DTR (opt), (2) optimal DTR estimated using l/;" and X (nt), (3) optimal DTR esti-
mated using tﬁ”b and X; (nbt), (4) optimal DTR estimated using xi/’c and X; (ct), (5) optimal
DTR estimated using 1/'}” and W;; (nn), (6) optimal DTR estimated using t/A/”” and W ;j (nbnb),
(7) optimal DTR estimated using Y and X ; (cc). Simulations are repeated 500 times. For
each scenario, the average value function is computed and reported in Table 2.6, along with its
standard deviations. Figure 2.10 also displayed the predicted optimal value function under (o,

o) =(0.8,0.8).

In Table 2.6, we see that the measurement error effect is pronounced in terms of value
function estimation under the optimal DTR. By comparison, the naive method generally yields
lower value function estimates, and the optimal value function achieves the lowest value with
a single surrogate being used, as expected. The RC method, however, improves the estimated
optimal value function, even comparable to the true optimal value function when the true co-

variate is used.
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2.4 Application to STAR*D Study

To illustrate the proposed correction method, we analyze the data arising from the Sequenced
Treatment Alternatives to Relieve Depression study (Rush et al., 2003,0). The STAR*D study
was designed as a multisite, multistage randomized controlled trial. It aimed to evaluate the
effect of treatments for patients who suffered from major depressive disorder. The severity
of depressive disorder was measured by the Quick Inventory of Depressive Symptomatology
score, which was assessed by both patients (QIDS-S) and clinicians (QIDS-C). The entire
study possessed four levels, in which one or a combination of treatments was assigned to the
patients. At level 1, all of the patients were prescribed citalopram (CIT). At the end of level 1,
if patients had QIDS < 5, they achieved remission and were removed from the study but those
who otherwise entered level 2. They were again randomized into one of the seven treatment
options: either switching from CIT to one of four other treatment options (venlafaxine[ VEN],
sertraline[SER], bupropion[BUP], and cognitive therapy[CT]) or augmenting CIT with one
of three treatments (BUP, CT and buspirone[BUS]). Then, at the end of level 2, they were
again assessed with the QIDS score, and those who failed to achieve remission (QIDS < 5)
entered level 3. In level 3, they were randomized to receive either one of two new treatments
(lithium[Li] or thyroid hormone[THY]) or one of two augmented treatment options (mirtaza-
pine[MIRT], nortriptyline[NTP]). The QIDS score for remission was evaluated at the end of
level 3.

In the literature, depression is found to be significantly associated with functional impair-
ment (Greer et al., 2010). Patients with major depressive disorder were shown to have consider-
able deficits in the physical and social functioning (Lin et al., 2014; Trivedi et al., 2013). IsHak
et al. (2016) analyzed the STAR*D data and pointed out the importance of developing indi-
vidualized treatments for patients with a major depressive disorder to improve their long-term
functioning. The perceived functional impairment is measured at each level of the STAR*D
study by the Work and Social Adjustment Scale (WSAS) score, which reflects the functioning
aspects of the work, home management, social activities, private activities, and relationships

with others.

We follow the criteria in the literature (Chakraborty, 2013; Chakraborty et al., 2013; Wal-
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lace et al., 2019) to select the data, where the two-stage DTR is considered by combining level
2 and level 2A as the first stage and treating level 3 as the second stage. The stage j treatment
A is coded based on whether the treatment involves selective serotonin reuptake inhibitor (A ;
= 1) or not (A; = 0). Three tailoring variables are considered, Q;: the QIDS-C score measured
at the beginning of each level j, S;: the QIDS slope, the change in QIDS-C divided by the time
in the previous level, and P;: the patients’ preference indicating whether they wished to switch
previous treatment (P; = 1), to augment previous treatment or have no preference (P; = 0). The

outcome of interest is defined as the negative WSAS score across two stages
Y=R -V +(1-R)-3(Y; + Y2),

where Y, and Y, are the negative WSAS scores observed at the end of stage 1 and stage 2, and
R, is an indicator of whether the patients achieved remission (R; = 1) or not (R; = 0) at the
end of stage 1. The selected data contain 1438 patients at stage 1, of whom 377 patients have
entered the stage 2.

The previous analyses of the STAR*D data often assume that the QIDS-C score is error-
free, which is usually not the case in practice. Spicker and Wallace (2020) studied the mea-
surement error effect on sequential optimal treatment rules, assuming that the true QIDS score
was unknown and both the QIDS-C score and QIDS-S score were considered as the repeated
measurements of the true underlying QIDS score. In this work, we are interested in estimat-
ing the optimal treatment decision rules using Q-learning that maximize the negative WASA
score, provided that the QIDS score is subject to measurement error. We compare three estima-
tors, including two naive estimators using the QIDS-C score or QIDS-S score as the tailoring
variable and the RC estimator using the corrected estimates computed by (QIDS-C, QIDS-S).
The analysis results of the parameter estimates, bootstrap standard error, and 95% confidence
interval are summarized in Table 2.7.

In Table 2.7, the parameter estimates of each stage vary remarkably between the naive
method and the RC method, leading to different optimal treatment decision rules. More impor-
tantly, the results show that the significance of the tailoring variable differs between these two
methods. The patients’ preference to switch treatment and QIDS score have significant treat-

ment effects in the interaction with the second stage treatment when the QIDS-S score is used.
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However, by using the RC estimates, no significant term is observed across the two stages. It
emphasizes that the measurement error effect is not negligible in an error-prone setting since
it is possible to alter the estimation of optimal treatment decision rules and the significance of

the tailoring variable.

2.5 Conclusion

This study aims to build a bridge between Q-learning with continuous outcomes and covariate
measurement error where there exist replicated measurements for the error-prone covariates. It
is demonstrated in both simulation studies and data analysis that ignoring measurement error
in covariates will lead to severely biased results. To adjust for the measurement error effect,
we apply the regression calibration method in Q-learning and present a modified Q-learning
algorithm. On average, the RC method shows superior performance over the naive method in
all the scenarios in terms of bias-reduction and coverage probability, especially in the linear
Q-learning setting. Moreover, the RC method is generally robust against the magnitude of
measurement error.

Another important topic discussed in the study is evaluating the performance of the pro-
posed method from a predictive perspective. We predict the future optimal treatment decision
rules by finding the proportion of patients whose optimal treatments are correctly identified
across two stages. It turns out that using a single mismeasured covariate leads to the worst
performance among all methods. In contrast, the RC method improves the prediction accuracy
even when the degree of measurement error is high. Moreover, we also compare the naive
method and RC method in terms of value function estimation. The optimal value function
estimated from the naive method is generally lower, but the RC method enhances the optimal

value function comparable to the true optimal value function.



Table 2.1: One-stage estimates of blip parameters (Y19, ¥11) (n = 500)
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Yo Y
o !,Z Bias SE RMSE CP% Bias SE RMSE CP%
lﬁt 0.002 0.133 0.133 96.8 -0.002 0.095 0.095 95.2
0.2 l,@" 0.043 0.137 0.143 94 .4 -0.043 0.096 0.106 93.6
l/’}"b 0.022 0.134 0.136 95.4 -0.023 0.095 0.098 95.0
l/,}rc 0.002 0.137 0.137 96.2 -0.003 0.097 0.097 95.8
0.5 l}" 0.209 0.149 0.257 70.4 -0.208 0.100 0.231 46.8
l/;"b 0.118 0.143 0.185 86.4 -0.117 0.098 0.153 74.8
l/,}rc 0.008 0.151 0.152 94 .4 -0.007 0.110 0.110 95.6
0.8 l}" 0.406 0.160 0.436 29.6 -0.403 0.099 0.414 24
l/;"b 0.254 0.152 0.296 59.8 -0.254 0.100 0.273 27.6
l/A/rc 0.012 0.176 0.176 94.8 -0.012 0.132 0.133 94.8
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Table 2.2: One-stage estimates of blip parameters (19, ¥11) (n = 2000)

Yo Y
oy Bias SE RMSE CP%  Bias SE RMSE  CP%
' -0.002 0066  0.066 954  0.004 0047  0.047  96.6
02 " 0.035 0.068 0077 934 -0.034 0048  0.059 886
g™ 0016 0068 0070 946 -0.015 0.048 0.05 954
g© -0.003  0.068 0068 948  0.004 0.048  0.049  96.4
0.5 " 0203 0.075 0216 21.0 -0200 0.050  0.206 2.2
g™ 0115  0.072 0135 658 -0.112 0049  0.122 386
gc 0004 0076 0076 940 -0.001 0055  0.055 956
0.8 " 0.388  0.080  0.396 02 -0389 0.049  0.392 0.0
g™ 0241 0076 0252  11.8 -0241 0050  0.246 0.0
g©  -0.002 0.088 0088 944  0.002 0066  0.066  93.0
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Table 2.4: Two-stage estimates of blip parameters (0, ¥21, Y10, ¥11) in nonlinear case

Y20 0y Y10 Y
Scenario (0>, 071) .w Bias SE RMSE CP% Bias SE RMSE CP% Bias SE RMSE CP% Bias SE RMSE CP%
Cub %« -0.003 0.068 0.068 96.2 0.001 0.049 0.049 96.4 0.021 0.538 0.538 95.0 -0.002 0.381 0.381 93.6
0.2,0.2) %: -0.050 0.164 0.172 932 0.043 0.175 0.180 94.0 -0.013 0.542 0.542 954 0.033 0.403 0.404 94.6
.\wi -0.027 0.125 0.128 944 0.019 0.128 0.130 94.2 0.005 0.539 0.539 95.6 0.016 0.393 0.393 94.6
.w:. -0.009 0.125 0.125 95.8 0.000 0.130 0.130 94.4 0.023 0.545 0.546 95.8 -0.002 0.400 0.400 954
(0.5,0.5) %: -0.214 0.316 0.382 89.4 0.197 0.334 0.387 89.0 -0.197 0.538 0.572 94.0 0.226 0.445 0.499 91.2
%:@ -0.117 0.246 0.272 934 0.105 0.267 0.287 92.8 -0.098 0.544 0.553 95.6 0.128 0.429 0.447 942
%E -0.010 0.263 0.263 95.2 -0.001 0.296 0.296 93.2 0.005 0.574 0.574 952 0.025 0475 0475 954
(0.8,0.8) .N: -0.377 0.389 0.542 84.0 0.368 0.372 0.524 83.8 -0.401 0.522 0.659 874 0.388 0.432 0.581 83.2
~\w§ -0.234 0.333 0.407 89.6 0.216 0.347 0.409 90.4 -0.257 0.540 0.598 94.2 0.249 0.448 0.513 894
%R 0.007 0.394 0.394 94.8 -0.022 0.444 0.444 948 -0.029 0.625 0.626 96.4 0.022 0.575 0.575 954
Exp ~\w“ -0.003 0.068 0.068 96.0 0.001 0.049 0.049 96.6 0.016 0.420 0.420 95.8 -0.004 0.298 0.298 94.0
0.2,0.2) .w: -0.047 0.138 0.146 92.6 0.043 0.149 0.155 92.8 -0.018 0.424 0.425 954 0.031 0.319 0.321 95.0
%:w -0.025 0.108 0.111 95.0 0.018 0.110 0.112 93.8 0.000 0.422 0.422 952 0.013 0.310 0.310 94.2
%R -0.006 0.109 0.109 96.6 0.000 0.112 0.112 93.8 0.019 0426 0426 952 -0.006 0.315 0.315 94.0
(0.5,0.5) .\w= -0.210 0.253 0.329 84.8 0.202 0.277 0.342 85.6 -0.195 0423 0466 922 0.215 0.359 0.418 90.6
.wi» -0.115 0.200 0.230 90.6 0.109 0.223 0.248 90.6 -0.096 0.429 0.439 94.8 0.115 0.344 0.362 94.2
~\w§ -0.009 0.216 0.217 94.6 0.003 0.247 0.247 934 0.008 0.453 0.453 950 0.013 0.380 0.380 94.6
(0.8, 0.8) %: -0.382 0.302 0487 74.8 0.373 0.302 0479 73.6 -0.398 0.407 0.569 84.0 0.386 0.349 0.520 754
.\wi -0.228 0.264 0.349 86.8 0.213 0.285 0.356 87.6 -0.250 0.424 0.492 91.6 0.241 0.362 0.435 87.6
%R 0.009 0.321 0.321 95.8 -0.021 0.367 0.367 94.8 -0.021 0.496 0.497 96.6 0.014 0.466 0.466 95.2
Com %“ -0.004 0.070 0.07 97.0 0.001 0.051 0.051 97.2 0.000 0.103 0.103 96.2 0.002 0.074 0.074 954
0.2,0.2) %= -0.044 0.076 0.088 91.6 0.041 0.060 0.072 89.8 -0.036 0.104 0.110 94.8 0.037 0.078 0.086 92.6
.N:w -0.022 0.073 0.077 94.4 0.019 0.056 0.059 94.0 -0.017 0.104 0.105 95.8 0.019 0.076 0.079 95.0
%R -0.004 0.074 0.074 96.0 0.001 0.057 0.057 96.6 0.001 0.105 0.105 96.6 0.001 0.078 0.078 95.6
(0.5,0.5) %: -0.200 0.083 0.216 334 0.201 0.062 0.210 124 -0.207 0.104 0.232 482 0.204 0.075 0.217 21.0
%i -0.103 0.081 0.131 74.6 0.104 0.064 0.122 62.8 -0.113 0.104 0.153 84.0 0.109 0.078 0.134 71.6
.NR 0.001 0.085 0.085 954 -0.001 0.069 0.069 94.8 -0.009 0.110 0.110 96.0 0.006 0.086 0.086 95.4
(0.8,0.8) ~\>\= -0.391 0.083 0400 0.2 0.388 0.056 0.392 0.0 -0.396 0.101 0409 2.8 0.393 0.066 0.399 0.0
%:@ -0.231 0.083 0.245 21.4 0.228 0.062 0.236 3.0 -0.235 0.104 0.257 384 0.232 0.074 0.243 12.0
%‘a 0.001 0.095 0.095 944 -0.005 0.079 0.079 95.6 -0.005 0.118 0.118 95.6 0.003 0.095 0.095 952

Cub: cubic, exp: exponential, com: complex
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Table 2.6: Predicted optimal value function (standard deviations)

opt

nt

nbt

ct

nn

nbnb

CcC

0.2

0.2
0.5
0.8

3.393 (0.028)
3.393 (0.028)
3.393 (0.028)

3.366 (0.050)
3.312 (0.049)
3.255 (0.049)

3.380 (0.050)
3.351 (0.050)
3.310 (0.050)

3.393 (0.051)
3.393 (0.052)
3.393 (0.055)

3.380 (0.051)
3.350 (0.051)
3.313 (0.052)

3.387 (0.051)
3.371 (0.051)
3.348 (0.051)

3.387 (0.051)
3.371 (0.051)
3.348 (0.053)

0.5

0.2
0.5
0.8

3.392 (0.029)
3.392 (0.029)
3.392 (0.029)

3.313 (0.052)
3.258 (0.051)
3.200 (0.051)

3.352 (0.052)
3.322 (0.052)
3.281 (0.051)

3.395 (0.053)
3.395 (0.055)
3.395 (0.057)

3.351 (0.053)
3.321 (0.054)
3.284 (0.054)

3.373 (0.052)
3.357 (0.053)
3.334 (0.053)

3.373 (0.053)
3.357 (0.054)
3.334 (0.055)

0.8

0.2
0.5
0.8

3.396 (0.028)
3.396 (0.028)
3.396 (0.028)

3.256 (0.049)
3.202 (0.049)
3.145 (0.050)

3.311 (0.048)
3.282 (0.047)
3.241 (0.047)

3.396 (0.049)
3.396 (0.050)
3.396 (0.052)

3.315 (0.049)
3.286 (0.051)
3.250 (0.052)

3.351 (0.048)
3.335(0.048)
3.312 (0.049)

3.351 (0.049)
3.336 (0.050)
3.312 (0.051)
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Figure 2.1: One-stage estimates of (8., By, Y10, ¥11) with o = 0.8 (n = 500)
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Figure 2.2: One-stage estimates of (8;, B, ¥10, ¥11) with o = 0.8 (n = 2000)
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Chapter 3

Dynamic Treatment Regimes with
Survival Response and Covariate

Measurement Error

3.1 Introduction

In the last chapter, we explore the effect of measurement error in covariates on DTR with con-
tinuous outcomes. This chapter examines the covariate measurement error effect on DTR with
survival outcomes. In particular, the error-prone covariates are incorporated in the dynamic
weighted survival modeling proposed by Simoneau et al. (2020b), given that internal valida-
tion data are available in each stage. The validation data contain both the true observations
and continuous auxiliary variables/surrogates for the covariates. Two correction methods are
proposed in DWSurv to handle the mismeasured and incomplete covariates. The first method is
the k-nearest neighbors (kKNN) method, which directly deals with the continuous surrogates to
eliminate the measurement error effect in DWSurv. The second method is an extension of the
weighted least squares method developed by Jin et al. (2019). The extended version requires
the transformation of a continuous surrogate into a discrete variable for the use of the WLS

method in DWSurv.

The remainder of the chapter is organized as follows. Section 3.2 describes the basic no-
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tations and the framework of the kNN and WLS methods in DWSurv. Simulation studies are
conducted in Section 3.3 to assess the performance of the proposed methods in DWSurv. In
Section 3.4, the proposed correction methods are applied to the ICU data from the MIMIC-III

database. Concluding remarks are summarized in Section 3.5.

3.2 Methodology

3.2.1 Notations and Model Framework

For simplicity, the notations and framework set-up are restricted to two decision points in DTR.
Let X; and Z; be the error-prone covariate and error-free covariate vector at stage j j = 1, 2).
W, denotes an auxiliary covariate, a surrogate to X; with a classical additive relationship.

We consider a situation with the data trajectory (n;1, Xi1, Wi, Zi1, Ait, Yir, 12, Xio, Waa, Z 12,
Ap, Y, A;), where the true covariate X is only observed in a subset of the data, but W is fully
observed. In other words, at any stage j, the data with n7; = 1 are partitioned into validation data

V and main study data V

{Xij, Wi, Z;j, A, Yij, Aiy if1€V,
Wij, Zij, Aij, Yijs A ifi€ V.

Given the data structure, let X; i = B[X;jIW;j, Z;j, A;j] in place of the unobserved X;; in the

AFT models. Define X;Fj as a variable such that
X =1iXij+ (1 - i) Xij,

where 7;; is an indicator to denote whether the patient i is in the validation at stage j (7;; = 1)
or not (7;; = 0).

If measurement error is ignored, by replacing X; with W, we obtain naive histories as H ;’ =
W1, Zy), H;’ =W\, Z1, A, W>, Z,). Then, the naive AFT models based on the naive histories

in DWSurv are given by

logT, = By Wy +ax(Yy b)) + &, A
logT =B h" +a,(Yih!) + €.
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He et al. (2007) demonstrated that the naive estimator is biased in the AFT models with
covariate measurement error. Thus, it is reasonable to believe that applying the naive AFT
models (3.1) into the DWSurv algorithm may yield a biased blip estimator 1}7 Then, the naive
blip estimators " = («ﬁ’z', l/l;’) may be biased from ¥ = (Y, Y1), which can further affect the
estimation of the optimal DTR. Such concerns motivate us to explore effective approaches to
find the estimates for the missing X in V and replace X ; with the new substitute values in the

AFT models, and in turn, to adjust for the estimation of the optimal DTR.

3.2.2 k-Nearest Neighbors Method

k-nearest neighbors (KNN) is a non-parametric statistical learning method. It is known as a
lazy learning method because it assumes no distribution of the data specified (Aha, 1997).
kNN method can be used for both regression problems and classification problems. The key
idea of the kNN method is to find the nearest k neighbors in the training data for the test objects
in the testing data. Once the k neighbors are identified, the value or label for the object in the
testing data can be determined (Biau and Devroye, 2015). In the case of unobservable values
of Xj; in the main study in DWSurv, we may borrow this idea to develop a method to find the

estimates from the validation data in place of X;; in the main study in DWSurv.

Recall that the data structure of DWSurv at stage j follows

{Xij, Wij, Z;j, Aij, Yij, A} ifieV,

(Wi, Zij, Aij, Yij, A} ifie V.

The true covariate X;; is only observed in the validation data V but is unobservable in the main
study data V. Let )A(lkj be the estimates of the unobserved X;; in V. We denote by Wf;) the s
nearest neighbor of W;; € V among W, ;€ V,s=1, ..,k and ijs) the corresponding data
point among X;; € V. We obtain )A(lk] by first locating the nearest k data points WE‘;) € V around

W;; € V and averaging the associated XE;) € V. Mathematically, X{‘j in V is given by

k

1

X= - D TW is near W) X7, (3.2)
s=1
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where k is a given positive integer. Let )~(lk] be defined as a random variable at stage j such that
}ij = Tinij + (1 - le))?lk] (33)

Using )?f obtained from (3.3) leads to kNN histories Hi‘ = (X%, Z,) and H;‘ =X~ Z,, A,
Y’z‘, Z,). Thus, the AFT models based on the kNN histories at two stages are given by

logT, = ﬁ;‘Th;‘O + az(tp;‘Th;‘I) + 6,

logT = ﬁ’l‘Thll‘o + al((ﬁfThll‘l) + €.
Distance Measure

The performance of the kNN method is determined by two factors, the distance measure
and the choice of k (Biau and Devroye, 2015; Zhang, 2016). Distance measure calculates the
relative distance between two data points based on a choice of the distance functions, including
Euclidean, Manhattan, Minkowsky, Chebychev, and Chi-square distances, etc. It has been
studied in the literature that the distance measure has a significant influence on the performance
of the kNN algorithm (Alkasassbeh et al., 2015; Chomboon et al., 2015; Lopes and Ribeiro,
2015; Mulak and Talhar, 2015; Hu et al., 2016). In this study, we use the Euclidean distance to
measure the distance. Since W;; is assumed to be a scalar, the resulting distance measure is the

absolute value of the difference between two points.

Choice of k

Tuning parameter k denotes the number of nearest neighbors to be selected. Similar to the
distance measure, the choice of k is empirical. It is often chosen by specific criteria defined in
the studies. Researchers have made efforts into developing methods to select the optimal & in
various situations (Sun and Huang, 2010; Gou et al., 2011; Cheng et al., 2014; Hassanat et al.,
2014; Zhang et al., 2018; Azadkia, 2019). Devroye et al. (1994) showed the consistency of the
kNN estimates if k was chosen under the conditions: lim, .k = oo and lim, . k/n, = 0,

where n, is the number of observations in the validation data. Such conditions cover a family
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of k that depends on n,. Practically, the rule of thumb for choosing the k is 4/n, (Hassanat
et al., 2014; Nadkarni, 2016). In this study, we adopt this idea to define a more general k that
satisfies the conditions in Devroye et al. (1994) and use the f-fold cross-validation, a data-
driven approach to select the optimal k.

In detail, let k be defined as k = n, where @ € (0, 1) is a real number. For 0 < @, <
Amax < 1, a sequence of finite values for k ([n),""] = kpin < k < kyax = [15"7]) is selected, and
the validation data are randomly split into a number of f subsamples. For each k, we select
(f-1) subsamples and apply the proposed kNN method to obtain the predicted values )A(l.fj(k) in
the remaining f”* subsample denoted as V/. Then, we calculate the mean squared error (MSE)
of )A(fj(k) by using the X{J in V/. This process is repeated f times with each of the subsamples
used only once. Then, the mean of fold-based MSE is obtained for that k. When all the values
in the sequence are evaluated, the optimal k denoted as k°”" can be determined as the one that
has the lowest value of MSE

k°P" = arg min MSE(k), (3.4)

Konin <k <kmax
where MSE(k) is the mean of # Dievs ()?{;(k) - Xg)z, and n,s is the number of observations in
V/. This adaptive approach is easy to implement and efficient to produce the optimal k.

Based on the distance measure and the choice of optimal k discussed above, we can estab-
lish the theoretical property of the proposed kKNN method. The detailed conditions and proof

are given in the Appendix in Section 3.6.

Theorem 3.2.1 Under the conditions (Cl) - (C3) in the Appendix, Section 3.6, the proposed

kNN method yields consistent estimates of Y in DWSurv.

Modified Dynamic Weighted Survival Modeling Algorithm I:

Provided the chosen distance measure and empirical choice of k, the modified dynamic
weighted survival modeling algorithm I consists of the following steps:

1. Propose parametric models for the probability of treatment P(A, = 1|h;‘ ,12 = 1) and the
probability of censoring P(A = Olh’z‘ ,az,m> = 1) and find the estimated weight w, from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 log7, =



53

Bk + ag(tﬁ’z‘Th’z‘l) + € and obtain the estimator (/§’2‘ , «ﬁ;‘) by solving

h*
Uz(ﬁl;, ‘ﬁ;{) = im0 Wi '22 (10gTi2 —ﬁ’;Thfzo - ai2¢l;Th{€ ) =0.

aph
2001

3. Derive the stage 2 optimal treatment as a5 = ]1(!/;;‘Th;‘1 > 0).

4. Construct the pseudo-survival time for estimation at stage 1
T _ KT pk [AOPT _
T=T + 172T2(3Xp{xll2 h21[a2 a2]}.

5. Propose parametric models for the probability of treatment P(A; = 1|h’1‘ ,n1 = 1) and the
probability of censoring P(A = Olh* a,n; = 1) and find the estimated weight Wy from (1.10).

6. Assume a linear AFT model for the counterfactual logarithm of survival time at stage 1
logT = BhS +a 1(:/1’1‘Th’1‘1) + € and obtain the estimator (,@’1‘ , 1/}’1‘) by solving

h* _
Ul(ﬁf, ‘/111‘) = 2im1 OillinWin ’IZ (lOgTi —ﬂl;Thflo - ail‘ﬁ’fThfn) =0.

a.
1%m

7. Derive the stage 1 optimal treatment as &7 = ]l(lﬁ’l‘Th’l‘l > O).

3.2.3 Weighted Least Squares Method

In this section, we extend the weighted least squares (WLS) method of Jin et al. (2019) to a
case with continuous surrogates in a multi-stage setting. Let M; be an auxiliary variable at
stage j, which takes the value of {1, 2, 3, 4}, according to the interval of (-c0, Q;], (Q;, Q2],
(Q2, Qs], (Q3, + o) that W lies in, where Q, Q, and Q3 denote the quartiles of W;. Then, we

have a new data structure

{Xij, Wij, Mij, Zij, Aij, Yij, A} ifieV,

{(Wij, Mij, Z;;, A;j, Yij, A} ifi e V.

As M; is a discretized variable obtained from W, we can use M; to assist us in finding the

estimates )A(ZV; of the unobserved X;; in V. For any i € V, we modify the equation (1.14) to be

applicable for estimating the X;; at stage j, which is given by

ow ZSEV ]]-(MS] = Mlj)XS]
Y 2isev ]l(Msj = Mij) .

(3.5)
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With (3.5), we can obtain a substitute )?l‘j for Xj; at stage j such that
)?,v; =1;X;+ (1 - T,-j)ff}} (3.6)

Then, using )?;” obtained from (3.6) yields WLS histories H‘lv = ()?W, Z,) and H;” = ()N(W, VAR
A, f;v , Z»). Hence, the AFT models based on the WLS histories are given by

logT> = B3y, + ax(wy "y ) + e

logT = BT, + al(.p;”hfl) re.

The intuition behind the equation (3.5) is that we can find the estimates for the unobserved
X;;jin V by directly searching for the matched M; ;€VandM;; € V at stage j and averaging the
corresponding true covariate X;; in V. This method is similar to the kNN method, except that a
categorical variable M; is used for calculation, which is obtained from the surrogate W;. As a

result, we can use this method as an alternative to the ANN method.

Modified Dynamic Weighted Survival Modeling Algorithm II:

Provided the WLS equations in (3.5) and (3.6), the modified dynamic weighted survival
modeling algorithm II consists of the following steps:

1. Propose parametric models for the probability of treatment P(A, = llh‘zv, n, = 1) and the
probability of censoring P(A = ()|h‘2”, as,1n, = 1) and find the estimated weight W, from (1.10).

2. Assume a linear AFT model for the logarithm of survival time at stage 2 log7, =
B’ZVT hy, + aZ(«V;Th’;l) + & and obtain the estimator (f?’;, 1/72”) by solving

w

h"
Ux(BY, l/’;) = i1 0illiaWi i20 (10gTi2 —ﬁ:Th:vzo - aizll’;vTh;vzl) =0.
diz ;;1
13

3. Derive the stage 2 optimal treatment as &5 = ]l(:/;‘z’Th;l > O).

4. Construct the pseudo-survival time for estimation at stage 1

T=T, + nszexp{tﬁ:Thgl [ — az]}.
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5. Propose parametric models for the probability of treatment P(A; = 1|h‘1”, nm = 1) and the
probability of censoring P(A = ()Ih‘lv, ai,n; = 1) and find the estimated weight w, from (1.10).

6. Assume a linear AFT model for the counterfactual logarithm of survival time at stage 1
logf = ,[3‘1”Th‘1”0 + al(l//‘lvTh‘lvl) + ¢, and obtain the estimator (B‘;’, tﬁ‘l‘“) by solving

w

h" —
Ui(BY,¥7)) = 2z 6ima Wi . '1:: (lOgTi -Byhy - Clil'ﬁ‘fTh:-vn) =0.
1%

7. Derive the stage 1 optimal treatment as &;"" = ]l(:/A/‘IVTh‘l"1 > O).

3.3 Simulation Studies

In this section, extensive simulation studies are conducted to assess the impact of measurement
error in covariates on the estimation of parameters, prediction of optimal DTR and optimal
overall survival time. The performance of the proposed ANN method and WLS method is
evaluated in one-stage and multi-stage settings. The validity of the double robustness property

in DWSurv is also examined in the presence of measurement error.

3.3.1 One-Stage Estimation

Let X be an error-prone covariate and Z be an error-free covariate, generated from a uniform
distribution U(0.1, 2). W is a mismeasured version for X, with the relationship W = X + e,
where e ~ N(0, 0%) and o reflects the degree of measurement error. The treatment A € {1, 0}
is generated from a Bernoulli distribution with probability P(A = 1) = expit(0.5X + 0.5Z - 1),
where expit(x) = 1/(1 + exp(-x)) is the inverse-logit function. Censoring time C is generated

from an exponential distribution with a rate of 1/300. The log-survival time is generated as
logT' =2+ B.Z+B,X+AWi10 +yY11X) + ¢,

where (B, ¥) = (B, Bx, Y10, ¥11) = (0.5,0.5, 1, -1) and € ~ N(0, 0.5%) is generated independent
of all other variables. A dataset of 2000 patients is simulated 500 times. In each simulation,
the dataset is randomly split into validation data and main study data with a validation ratio p,

where the validation data contain 100xp% of the observations. A sequence of k is generated
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with @ € {0.1, ..., 0.9} with a step size of 0.1. The primary interest is to evaluate the mea-
surement error effect on the estimation of blip parameters, but its impact on the estimation of

parameters for the main terms is also examined in the study.

Five estimators are considered to evaluate the performance of the proposed methods: (1)
validation estimator (/3’”, lﬁ”) obtained using the validation data, (2) complete estimator (ﬁ“,
tﬁ”) obtained using the complete data, (3) naive estimator (B", aﬁ") obtained using W, (4) kNN
estimator (B" , %) obtained using Xk according to the formula (3.3) with k°”" chosen from the
10-fold cross-validation and the selected sequence of k, (5) WLS estimator ([Aiw, 1/A/W) obtained
using X" according to the formula (3.6). In simulations, the validation ratio p is set to be 0.5
and 0.7. The degree of measurement error o € {0.2,0.5,0.8} is specified, and the degree of
independent censoring is set as 30% and 70%. A summary of k’”' chosen in the simulations
is provided in Table 3.1. Table 3.2 and Table 3.3 report the bias, asymptotic standard error
(SE), root mean square error (RMSE) and 95% coverage probability (CP%) of tﬁ under 30%
and 70% independent censoring, respectively. Figure 3.1 and Figure 3.6 provide the visualized

parameter estimates under p = 0.7.

In Table 3.1, we see that as p increases, the optimal k gets larger, indicating the relationship
of k with the size of the validation data. Moreover, the optimal & is positively related to o,
reflecting that more data points are needed as the degree of measurement error increases. Tables
3.2 and 3.3 show that using the naive method causes considerable biases in the estimation of
all the parameters except S, due to the measurement error. The biases become larger as o
increases. There is little impact on the estimation of S,, which corresponds to the error-free
covariate Z. In comparison, the proposed kNN and WLS methods significantly reduce biases
of parameter estimation and improve the coverage probabilities in all the scenarios. The size of
the validation data and the censoring rate also affect the performance of the proposed methods.
The empirical biases and standard errors of the proposed methods are reduced as p increases.
But with more censored patients, all the methods experience larger variation as a result of the

loss of information about the survival time.
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3.3.2 Two-Stage Estimation

In this section, we explore the effect of covariate measurement error on the parameter estima-
tion in a two-stage setting. The design of data generation mechanism in the multi-stage DTR
with survival outcomes is difficult and lacks of realism (Simoneau et al., 2020a). Therefore, our
two-stage simulation setting follows the idea of the data generation mechanism from Simoneau
et al. (2020b). Let X; and Z; be the error-prone covariate and error-free covariate at stage j (j
=1, 2), which are generated from uniform distributions U(0.1, 1.29) at stage 1 and U(0.9, 2)
at stage 2, respectively. The surrogate W is generated by the classical additive model W; =
X; +e;j, where e; ~ N(0, 0%). The treatment A; € {1, 0} is assigned with P(A; = 1) = expit(X;
+7Z;-1)and P(A; = 1) = expit(-X; - Z, + 2.8), respectively. The censoring time is generated
from an exponential distribution with a rate of 1/300. Based on the AFT model, the observed

survival time at stage 2 is given by
T2 = exp(4 + 11X2 - 03X§ - 0122 - 01X1 + Az(lﬁzo + ¢21X2) + 62),

where (Y, Y1) = (-0.9, 0.6) and & ~ N(0, 0.3%), independent of all other variables. The

optimal survival time had all the patients received the second stage optimal treatment is
T;pt = exp(logT2 + (A;pt — Az)(lﬁzo + (//21X2)).

The overall survival time under the optimal treatment at stage 2 is generated from the AFT

model as
T = exp(63 + 1.5X; - 08X12 +0.1Z; + Ao+ Xq) + 61),

where (Y19, ¥11) = (0.8, -0.9) and € ~ N(0, 0.3%), independent of all other variables. We
assume that the total size of the simulated dataset is n = 2000, and 60% of the patients have
entered stage 2. In each stage, 70% of the data are randomly selected as the validation data.
The measurement error degree (0, 1) is considered with o-; € {0.2, 0.5, 0.8}. The independent
censoring rate is set to be 30% and 70%. A sequence of k is generated with a € {0.1, ..., 0.9}
with a step size of 0.1. Simulations are run 500 times.

In the two-stage DWSurv, we are interested in estimating the blip parameters ¥ = (29, Y21,
Y10, ¥11). Five blip estimators are compared to evaluate the performance of the proposed meth-

ods: (1) validation estimator 1}” obtained using X; based on the validation data, (2) complete
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estimator §¢ obtained using X ;j based on the complete data, (3) naive estimator Y™ obtained
by using W}, (4) kNN estimator J* obtained using ij‘ according to the formula (3.3) with k7'
chosen from the 10-fold cross-validation and the generated sequence of k, (5) WLS estimator
" obtained using )?;” according to the formula (3.6).

We would like to examine the validity of the double robustness property of the DWSurv
method, whether it still holds in the presence of measurement error. Four scenarios are included
in each stage: (1) both the weight (treatment and censoring models) and the treatment-free
models are correctly specified, (2) the weight model is correctly specified, but the treatment-
free model is misspecified, (3) the weight model is misspecified, but the treatment-free model
is correctly specified, (4) both the weight and the treatment-free models are misspecified. The
bias, SE, RMSE and CP% of each blip estimator are summarized in Table 3.4 to Table 3.9,
accompanied by the parameter estimates of the four scenarios visualized in Figure 3.7 to Figure

3.12.

From the results, we see that the double robustness property fails with the naive estima-
tor Y, even in the case of both the weight and the treatment-free models correctly specified
(scenario 1). Moreover, the increase in the degree of measurement error exacerbates the biases
of Y". In contrast, the proposed estimators Y* and §* perform satisfactorily with fairly small
biases and coverage probabilities are close to the nominal level under various combinations of
censoring rate and (05, 071). The double robustness property is substantially restored using the
proposed estimators, when at least one of the weight model and treatment-free model is cor-
rectly specified (scenarios 1, 2 and 3). Moreover, a similar pattern is observed concerning the
censoring rate on the proposed estimators. As the censoring rate is higher, the variability of the
estimators increase due to more information lost about the survival time. In the last scenario

(scenario 4) where both models are misspecified, all the methods yield severely biased results.

3.3.3 Prediction of Optimal DTR

The previous simulation studies examine the measurement error effect on parameter estimation.
In this section, we investigate the measurement error effect on the accuracy of the predicted

optimal treatment rules. The simulation design follows (3.3.2) but with training and test data
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included, where the training data are used to fit models for parameter estimation, and the test

data are used to predict the optimal DTR across two stages.

The training data and test data are generated with sizes of 2000 and 5000 patients, respec-
tively. The training data of each stage are randomly split into validation data and main study
data with a validation ratio p € {0.5,0.7}. Five estimators lilv, @”, ti/" 1/'}" and (/A/W are considered
and estimated from the training data. We use the test data to find the prediction accuracy of the
optimal DTR, which is measured by the proportion of patients whose optimal treatments are
correctly predicted at stage 2 and/or stage 1. For j = 1, 2, the degree of measurement error o ;
is specified as 0.2, 0.5 and 0.8, and the rate of independent censoring is considered to be 30%
and 70%. Simulations are repeated 500 times for each pair of p and (o, 01), and the results are
displayed in Table 3.10. The prediction accuracy of optimal DTR under p = 0.7 are visualized
in Figure 3.13 and Figure 3.14.

The numerical results show that, in general, the prediction accuracy of optimal DTR is
adversely affected by the covariate measurement error. The naive estimator (2/" leads to a re-
markable degeneration in the prediction results in all the scenarios. The performance of g"
becomes worse as the measurement error gets larger. In contrast, the proposed estimators §f*
and §* perform similarly in terms of the prediction accuracy of optimal DTR. Both proposed
estimators significantly improved the prediction accuracy, which is even higher than the pre-
diction accuracy obtained using the validation estimator P, suggesting a favorable choice of

using the proposed methods to derive the sequential optimal treatment rules.

3.3.4 Prediction of the Expected Survival Time

In this section, we assess the prediction of the expected overall survival time under the optimal
DTR in contaminated data with covariates being subject to measurement error. The data gener-
ation mechanism follows the setting in (3.3.3) with one training data to estimate the parameters
and one test data to predict the expected overall survival time under the optimal DTR.

In the first step, five estimators (8”, ¥*), (8%, ¥°), (B", ¥™), (B¥, Y*) and (B”, §*) are
estimated from the training data. We use the test data to obtain five predicted optimal DTR

based on the estimators and covariates. Then, for each scenario, the average value of the
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overall log-survival time is computed under the estimated optimal DTR. The validation ratio p
is set to be 0.5 and 0.7. The degree of measurement error o; € {0.2,0.5, 0.8} is considered, and
the censoring rate is set as 30% and 70%. Simulation is run 500 times. Numerical results for
the mean optimal log-survival times, along with standard deviations, are summarized in Table
3.11.

The results in Table 3.11 show that the naive method tends to yield shorter optimal overall
log-survival times. Moreover, the mean of the predicted optimal log-survival times using the
naive method decreases as the measurement error increases. By comparison, the proposed ANN
and WLS methods perform similarly and enhance the predicted optimal log-survival times in

all the scenarios.

3.4 Application to MIMIC-III Data

We apply the proposed correction methods to a cohort of ICU patients with sepsis. The study
data are taken from the MIMIC-III database, which contains the observational admission data
collected at Beth Israel Deaconess Medical Center from 2001 to 2012 (Johnson et al., 2016,0).
Feng et al. (2018) showed the significant association between the use of TTEC and improve-
ment in 28-day mortality. However, Cook et al. (2002) suggested that the use of TTEC in
all critically ill surgical patients was not cost-effective. Chen et al. (2021) revealed the het-
erogeneity in the treatment effects of TTEC and demonstrated the improvement in the 28-day
survival rate by customizing the use of TTEC for ICU patients. In this work, we are interested
in deriving the optimal treatment decision rules for the use of transthoracic echocardiography
that maximize the overall survival time of ICU patients with sepsis.

We follow the same criteria in Feng et al. (2018) to select the cohort data, except that the
information of patients whose second admission to ICU is also included. The outcome of
interest is the survival time of the patients with sepsis, which is calculated as the difference
between the death time and the first ICU admission time. The patients’ characteristics at first
and second admissions include age, gender, body mass index, simplified acute physiology score
(SAPS), sequential organ failure assessment score (SOFA), Elixhauser comorbidity score, heart

rate, lab test for cholesterol, positive end-expiratory pressure (PEEP) and the use of mechanical
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ventilation (VENT) during the first 24 hours of ICU admission. We select VENT and PEEP as

the tailoring variables as they are significantly associated with TTEC (Cook et al., 2002).

At the first ICU admission (stage 1), a total number of 6294 patients were admitted to ICU,
and the treatment was initiated as a recommendation of TTEC (A; = 1) or not (A; = 0). About
10% of the patients experienced re-admission (stage 2) into ICU with continuing the use of
TTEC (A, = 1) or dropping the use of TTEC (A, = 0). In the final cohort data, the variable
PEEP was found largely underreported with about 35.7% and 37.2% missingness at stage 1
and stage 2, respectively. Removing such an amount of missing values in the analysis may lead
to biased estimation. However, the heart rate, which is known to be positively associated with
PEEP (Zhou et al., 2019), is completely observed. For j = 1, 2, we treat the cohort data with
the observed PEEP; as the validation data and estimate the unobserved PEEP;, which forms

the main study data, by using the heart rate as the auxiliary covariate.

In the analysis, we consider three blip estimators to construct the optimal treatment decision
rules: (1) validation estimator obtained using the patients with observed PEEP; only, (2) kNN
estimator obtained using the imputed PEEP; according to the formula (3.3), (3) WLS estimator
obtained using the imputed PEEP; according to the formula (3.6). The optimal & is selected
by training the validation data using 10-fold cross-validation with a € {0.1, ..., 0.9} with a step
size of 0.5. Table 3.12 summarizes the estimation and associated inference results based on the

validation method and proposed kNN and WLS methods.

The results in Table 3.12 show that the proposed kNN and WLS methods perform similarly,
but the blip parameter estimates and the standard errors vary notably between the validation
method and the proposed methods, leading to different optimal treatment decision rules. The
variable VENT at stage 1 is statistically significant with respect to the treatment effect in all
the methods, reflecting its significant association with the use of TTEC and the overall survival
time of the patients. However, the significance of the coefficients for the treatments in two
stages is shown to differ between methods. These results emphasize the impact of omitting
the data with missing covariates is pronounced, which can result in different optimal treatment

decision rules.



62

3.5 Conclusion

This chapter studies the effect of covariate measurement error on DWSurv with internal val-
idation data provided. Two correction methods, the kNN method and the WLS method, are
developed to adjust for the measurement error effect in DWSurv. The first kNN method di-
rectly uses the available surrogates to find the estimates for the unobserved true covariates in
each stage of DWSurv. This method adopts the cross-validation method, a data-driven ap-
proach, with which the optimal number of nearest neighbors is identified. The second WLS
method extends the use of the original WLS method to a multi-stage setting with continuous
surrogates provided. In each stage, by transforming the continuous surrogate, the estimates of
the unobserved covariates can be estimated using the WLS method. One advantage both meth-
ods share is that they do not require the specification of the relationship between true covariate
and surrogate, making the modeling more robust.

Simulation studies demonstrate the satisfactory performance of the proposed methods in
one-stage and multi-stage settings. On average, the kNN and WLS methods provide significant
bias reduction in parameter estimation and substantial restoration of the double robustness
property in the original DWSurv, even when the magnitude of measurement error is large.
Moreover, the proposed methods show their superior performance in a predictive setting with
higher prediction accuracy of optimal DTR and longer optimal survival times. However, the
proposed methods experience larger standard errors with a higher censoring rate, resulting from
losing information about the survival time. The proposed methods are applied to the MIMIC-
III data as an illustration to estimate optimal treatment decision rules. The data analysis shows
that the estimated optimal treatment decision rules can be altered if the unavailable covariate is

not addressed.



Table 3.1: Summary of the optimal k from 10-fold cross-validation

% Censoring Jo, o Min Mean Median Max
30% 0.5 0.2 16 67 64 126
0.5 32 101 126 126

0.8 16 105 126 252

0.7 0.2 19 88 78 160

0.5 38 133 160 160

0.8 38 135 160 160

70% 0.5 0.2 16 67 64 126
0.5 32 101 126 126

0.8 32 105 126 252

0.7 0.2 38 92 78 160

0.5 38 133 160 160

0.8 38 139 160 329

63
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Table 3.2: One-stage estimates of blip parameters (Y19, ¥11) with 30% independent censoring

Yo Y

o o U Bias SE RMSE CP%  Bias SE  RMSE CP%
¢ -0.002 0059 0.059 936 0.001 0050 0.050 934

0.5 g’ -0.002 0084 0084 960 0.002 0.071 0071 946
02 " -0.125 0.057 0.137 428 0119 0048 0.128 318
g% 0002 0061 0061 944 -0.002 0052 0052 948

g  -0.002 0062 0062 950 0002 0.053 0.053 950

05 ¢" -0479 0050 0482 00 0457 0.039 0458 0.0
g* 0007 0067 0068 942 -0.006 0.058  0.058 958

¥  -0.004 0067 0.068 952 0005 0.058 0.058 962

08 " -0717 0043 0719 0.0 0684 0030 0684 0.0
g* 0005 0072 0072 948 -0.004 0.063 0063  95.6

g 0004 0072 0.073 950 0.005 0.063 0.063  96.0

0.7 g’ -0.003 0071 0071 960 0001 0060 0.060 954
02 " -0.125 0.057 0.137 434 0117 0048 0.126 328
g% 0000 0060 0060 958 -0.002 0051 0051 954

¥  -0.003 0061 0061 958 0001 0052 0052 954

05 ¢" -0479 0050 0482 00 0455 0.039 0457 0.0
g% 0003 0063 0064 950 -0.004 0054 0055 948

¥  -0.003 0064 0064 952 0001 0055 0055 950

08 " -0718 0043 0719 0.0 068 0030 0683 0.0
g* 0001 0066 0066 952 -0.002 0.057 0.057 9438

¥  -0.004 0066 0.066 948 0002 0057 0.057 958
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Table 3.3: One-stage estimates of blip parameters (Y1, ¥11) with 70% independent censoring

Yo Y

o o U Bias SE RMSE CP%  Bias SE  RMSE CP%
g¢  -0.002 0.091  0.091 962 0.003 0077 0077 958

0.5 Y’ 0006 0.128 0.128 960 -0.004 0.108 0.108 97.0
02 " -0.125 0.087 0.153 700 0120 0.073 0.140 62.0
g% 0002 0093 0.093 958 -0.001 0079 0079 952

g  -0.004 0094 0.094 956 0.005 0.080 0081 952

05 §" -0479 0076 0485 0.0 0457 0.059 0461 0.0
g* 0006 0.103  0.103 956 -0.004 0.8  0.089 958

g” -0.004 0.103  0.103 954  0.005 0.089 0.089 946

08 " -0716 0066 0719 0.0 0684 0046 0.685 0.0
g* 0006 0111 0111 956 -0.003 0.097 0.097  96.0

g* 0004 0.111 0111 952  0.006 0.097 0.097 956

0.7 g’ 0004 0.108 0.108 942  0.000 0.091 0091 922
02 " -0.121 0.087 0.149 706 0.116 0073 0.137 638
g 0003 0092 0.092 956 -0.003 0078 0.078 948

g 0001 0093 0.093 958 0.000 0079 0079 954

05 §" -0477 0076  0.483 0.0 0456 0059 0460 0.0
g* 0004 0097 0.097 952 -0.004 0083 0.083 938

g*  -0.002 0.097 0.097 950 0.002 0.083 0.083 938

08 " -0716 0066 0719 0.0 0685 0046 0.68 0.0
g 0002 0101 0101 952 -0.002 0.087 0.087 922

¥  -0.002 0.101  0.101 960 0.002 0087 0.087 928




66

Table 3.4: Two-stage estimates of blip parameters (Y, ¥21, Y10, ¥11) With (03, 01) = (0.2, 0.2) and 30% independent censoring

¥20 Y21 Y10 Y
.w Scenario  Bias SE RMSE CP% Bias SE RMSE CP% Bias SE RMSE CP% Bias SE  RMSE CP%
i 1 0.000 0.143 0.143 95.6 0.002 0.097 0.097 95.6 -0.004 0.049 0.050 95.0 0.007 0.066 0.067 95.8
2 0.000 0.144 0.144 954 0.001 0.098 0.098 96.0 -0.004 0.052 0.052 952 0.007 0.069 0.070 96.8
3 0.001 0.141 0.141 95.6 0.001 0.096 0.096 96.0 -0.004 0.049 0.049 948 0.006 0.064 0.064 96.0
4 -0.033 0.141 0.145 948 0.024 0.095 0.098 948 0.047 0.051 0.069 850 -0.067 0.067 0.095 83.0
e 1 0.006 0.100 0.100 954 -0.003 0.068 0.068 954 -0.002 0.037 0.037 94.8 0.002 0.050 0.050 95.2
2 0.005 0.101 0.101 95.6 -0.003 0.068 0.068 954 -0.002 0.039 0.039 942 0.002 0.053 0.053 95.8
3 0.007 0.099 0.099 958 -0.004 0.067 0.067 964 -0.002 0.037 0.037 942 0.002 0.049 0.049 94.6
4 -0.027 0.099 0.102 93.8 0.020 0.067 0.069 948 0.049 0.039 0.062 76.6 -0.072 0.051 0.088 72.0
P 1 0.227 0.090 0.244 252 -0.166 0.060 0.177 19.8 -0.143 0.035 0.148 1.8 0208 0.046 0.213 04
2 0.230 0.090 0.247 248 -0.168 0.060 0.179 19.0 -0.148 0.036 0.153 1.6 0215 0.047 0220 04
3 0.228 0.088 0.244 244 -0.167 0.059 0.177 174 -0.143 0.034 0.148 1.6 0208 0.044 0212 02
4 0.217 0.088 0.234 29.0 -0.160 0.058 0.170 21.2 -0.123 0.035 0.128 58 0.178 0.045 0.184 3.2
g 1 -0.007 0.106 0.106 95.0 0.002 0.072 0.072 952 0.004 0.039 0.039 92.8 -0.006 0.053 0.053 94.6
2 -0.007 0.106  0.107 95.0 0.002 0.072 0.072 958 0.004 0.041 0.041 93.6 -0.006 0.055 0.055 94.8
3 -0.006 0.105 0.105 94.8 0.002 0.071 0.071 954 0.004 0.039 0.039 932 -0.006 0.051 0.052 94.6
4 -0.036 0.104 0.110 944 0.022 0.070 0.074 942 0.049 0.040 0.063 762 -0.071 0.053 0.089 74.6
i 1 -0.003 0.106 0.107 95.0 -0.001 0.072 0.072 954 0.002 0.039 0.039 93.0 -0.003 0.053 0.053 946
2 -0.004 0.107 0.107 95.0 0.000 0.072 0.072 954 0.003 0.041 0.041 94.8 -0.003 0.055 0.055 950
3 -0.002 0.105 0.105 95.0 -0.001 0.071 0.071 958 0.002 0.039 0.039 93.8 -0.003 0.051 0.052 950
4 -0.031 0.104 0.109 94.4 0.019 0.071 0.073 954 0.046 0.040 0.061 78.8 -0.066 0.053 0.085 764

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario
3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
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Table 3.6: Two-stage estimates of blip parameters (Y, ¥21, Y10, ¥11) With (03, 01) = (0.8, 0.8) and 30% independent censoring

¥20 Y21 Y10 Y
.w Scenario  Bias SE RMSE CP% Bias SE RMSE CP% Bias SE RMSE CP% Bias SE  RMSE CP%
i 1 0.009 0.143 0.143 94.6 -0.008 0.097 0.097 93.8 -0.002 0.049 0.049 944 0.002 0.066 0.066 95.8
2 0.009 0.143 0.144 944 -0.007 0.097 0.097 94.6 -0.002 0.051 0.052 944 0.002 0.069 0.069 94.8
3 0.007 0.141 0.141 94.0 -0.007 0.095 0.095 93.6 -0.002 0.048 0.049 948 0.002 0.064 0.064 95.6
4 -0.028 0.140 0.143 92.8 0.018 0.095 0.097 94.0 0.050 0.051 0.071 84.6 -0.073 0.067 0.099 80.8
e 1 0.004 0.100 0.100 94.6 -0.003 0.068 0.068 944 0.000 0.037 0.037 95.6 0.000 0.050 0.050 95.6
2 0.004 0.101 0.101 94.8 -0.002 0.068 0.068 944 0.001 0.039 0.039 96.4 -0.001 0.053 0.053 95.6
3 0.003 0.099 0.099 94.0 -0.002 0.067 0.067 942 0.000 0.037 0.037 95.6 0.000 0.049 0.049 95.6
4 -0.032 0.098 0.103 932 0.022 0.066 0.070 92.0 0.052 0.039 0.064 754 -0.075 0.051 0.091 684
P 1 0.706 0.048 0.708 0.0 -0.519 0.028 0520 0.0 -0.521 0.024 0521 0.0 0.753 0.022 0.754 0.0
2 0.706 0.048 0.708 0.0 -0.519 0.028 0520 0.0 -0.521 0.024 0522 0.0 0.754 0.022 0.754 0.0
3 0.705 0.047 0.707 0.0 -0.519 0.028 0520 0.0 -0.521 0.024 0521 0.0 0.754 0.021 0.754 0.0
4 0.706 0.047 0.707 0.0 -0.519 0.028 0520 0.0 -0.520 0.024 0521 0.0 0.753 0.021 0.753 0.0
g 1 -0.011 0.117 0.118 94.6 -0.003 0.080 0.080 94.2 0.005 0.043 0.044 94.8 -0.005 0.059 0.059 950
2 -0.010 0.118 0.118 94.6 -0.003 0.080 0.080 94.6 0.005 0.045 0.045 952 -0.006 0.061 0.061 94.0
3 -0.011 0.116 0.116 95.0 -0.003 0.078 0.079 94.2 0.005 0.043 0.043 952 -0.005 0.057 0.057 952
4 -0.039 0.115 0.121 934 0.016 0.078 0.080 94.0 0.049 0.044 0.066 81.0 -0.070 0.059 0.092 77.6
i 1 -0.008 0.117 0.118 93.8 -0.005 0.080 0.080 94.6 0.003 0.043 0.043 942 -0.002 0.059 0.059 952
2 -0.007 0.118 0.118 93.4 -0.005 0.080 0.080 94.4 0.003 0.045 0.045 952 -0.003 0.061 0.061 94.8
3 -0.008 0.116 0.116 94.8 -0.005 0.078 0.079 94.0 0.003 0.043 0.043 942 -0.002 0.057 0.057 958
4 -0.036 0.115 0.120 934 0.014 0.078 0.079 94.0 0.047 0.044 0.065 814 -0.068 0.059 0.090 784

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario
3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
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Table 3.8: Two-stage estimates of blip parameters (Y2, ¥21, Y10, ¥11) With (03, 01) = (0.5, 0.5) and 70% independent censoring

¥20 Y21 Y10 Y
.w Scenario  Bias SE RMSE CP% Bias SE RMSE CP% Bias SE RMSE CP% Bias SE  RMSE CP%
i 1 -0.008 0.217 0.217 93.8 0.002 0.147 0.147 934 -0.001 0.075 0.075 932 -0.002 0.101 0.101 934
2 -0.011 0.218 0.219 934 0.004 0.148 0.148 93.8 -0.002 0.079 0.079 932 0.000 0.107 0.107 932
3 -0.006 0.215 0.215 932 0.000 0.145 0.145 932 0.000 0.074 0.074 92.6 -0.002 0.098 0.098 92.8
4 -0.042 0.214 0218 94.0 0.025 0.145 0.147 93.6 0.048 0.078 0.091 88.0 -0.073 0.103 0.126 874
e 1 0.003 0.152 0.152 95.8 -0.004 0.103 0.103 95.0 -0.002 0.057 0.057 93.6 0.001 0.076 0.076 94.2
2 0.002 0.153 0.153 95.6 -0.003 0.103 0.103 95.0 -0.003 0.060 0.060 93.4 0.002 0.081 0.081 93.8
3 0.004 0.150 0.150 954 -0.004 0.102 0.102 942 -0.002 0.056 0.056 932 0.000 0.074 0.074 93.0
4 -0.031 0.150 0.153 93.8 0.020 0.101 0.103 944 0.047 0.059 0.075 842 -0.072 0.078 0.106 84.6
P 1 0.576 0.096 0.583 0.0 -0426 0.061 0430 0.0 -0416 0.042 0418 0.0 0599 0.047 0.601 0.0
2 0.576 0.096 0.584 0.2 -0426 0.060 0430 0.0 -0416 0.043 0419 0.0 0.600 0.047 0.602 0.0
3 0.576 0.095 0.584 0.0 -0426 0.060 0430 0.0 -0416 0.042 0418 0.0 0.600 0.046 0.601 0.0
4 0.576 0.094 0583 0.0 -0426 0.060 0430 0.0 -0413 0.042 0415 0.0 0595 0046 0597 0.0
g 1 -0.008 0.175 0.175 95.8 -0.004 0.118 0.119 96.2 0.006 0.064 0.065 92.6 -0.010 0.087 0.088 94.6
2 -0.010 0.175 0.176 95.6 -0.002 0.119 0.119 96.2 0.005 0.067 0.067 932 -0.009 0.091 0.092 94.6
3 -0.009 0.173 0.173 96.4 -0.003 0.117 0.117 964 0.006 0.063 0.064 93.0 -0.011 0.085 0.086 934
4 -0.036 0.171 0.175 948 0.016 0.116 0.117 940 0.048 0.065 0.081 88.0 -0.072 0.088 0.113 86.2
i 1 -0.005 0.175 0.175 958 -0.006 0.119 0.119 956 0.004 0.065 0.065 942 -0.006 0.087 0.088 94.6
2 -0.007 0.175 0.175 95.6 -0.005 0.119 0.119 954 0.003 0.067 0.067 934 -0.005 0.091 0.091 944
3 -0.005 0.173 0.173 95.6 -0.006 0.117 0.117 96.2 0.004 0.063 0.063 92.8 -0.007 0.085 0.085 938
4 -0.033 0.171 0.175 950 0.013 0.116 0.117 942 0.045 0.065 0.079 884 -0.067 0.088 0.111 87.2

Scenario 1: both models are correctly specified, Scenario 2: weight model is correctly specified, but treatment-free model is misspecified, Scenario
3: weight model is misspecified, but treatment-free model is correctly specified, Scenario 4: both models are misspecified
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Table 3.10: Prediction accuracy of optimal DTR (%)

Stage 2 Stage 1 Stage 2 & Stage 1
%Censoring  p (02,071) v c n k w v C n k w \ c n k w

30% 05 (02,02) 943 974 943 972 971 974 98.6 949 985 985 91.8 96.0 895 957 956
(0.5,0.5) 941 97.1 695 960 959 974 985 69.5 983 983 91.7 957 484 944 942

(0.8,0.8) 945 974 562 956 956 974 985 663 982 982 920 960 373 939 938

0.7 (02,02) 965 974 943 973 972 981 98.6 949 985 985 946 96.0 895 958 958

(0.5,0.5) 964 97.1 69.6 967 966 981 985 695 984 983 945 957 483 951 950

(0.8,0.8) 96.1 974 562 96.6 966 980 985 663 983 983 942 959 372 949 949

70% 05 (0.2,02) 894 959 923 956 955 960 978 947 977 977 859 937 875 934 933
(0.5,0.5) 896 959 692 943 942 961 978 708 975 975 861 938 49.1 919 918

(0.8,0.8) 900 956 589 933 932 961 978 663 974 974 865 934 39.1 90.8 90.8

07 (0.2,02) 940 959 923 958 958 970 978 948 977 977 912 937 875 937 936

(05,05 939 959 693 953 953 970 978 708 976 976 91.1 938 49.1 93.1 93.0

(0.8,0.8) 932 956 589 947 947 971 978 663 976 976 905 934 39.0 924 924

v: validation estimator, c: complete estimator, n: naive estimator, k: kNN estimator, w: WLS estimator
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Table 3.12: Analysis results of the MIMIC-III data for the two-stage estimation of blip parameters

Validation kNN WLS

Variables Est SE 95%C1 Est SE 95%C1 Est SE 95%CI
A 1.890 0.675 (0.567, 3.212) 0.735 0.409 (-0.067, 1.537) 0.726 0.410 (-0.079, 1.530)
Ay A -0.703 0.564 (-1.809, 0.403) -0.271 0.356 (-0.968, 0.427) -0.263 0.358 (-0.964, 0.438)
A,VENT, -0.862 0.258 (-1.369, -0.356) -0.340 0.248 (-0.826, 0.145) -0.333 0.248 (-0.819, 0.152)
A,PEEP, 0.473 0.476 (-0.460, 1.406) 0.118 0.259 (-0.389, 0.626) 0.143 0.260 (-0.367, 0.652)
A 0.448 0.099 (0.255, 0.642) 0.158 0.090 (-0.017, 0.334) 0.159 0.090 (-0.017, 0.334)
A VENT, 0.241 0.052 (0.140, 0.342) 0.788 0.060 (0.670, 0.906) 0.789 0.060 (0.671, 0.907)
A,PEEP, 0.132 0.084 (-0.033, 0.297) 0.103 0.065 (-0.025, 0.231) 0.102 0.065 (-0.026, 0.229)

Est: estimates, SE: asymptotic standard error, CI: confidence interval
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Figure 3.1: One-stage estimates of (8., B, Y10, ¥11) With p = 0.7, o = 0.2 and 30% independent
censoring
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Figure 3.3: One-stage estimates of (8., 5, Y10, ¥11) with p = 0.7, oo = 0.8 and 30% independent
censoring
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(2) weight model correctly specified, but treatment-free model misspecified, (3) weight model
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3.6 Appendix

The proof of consistency in this section is based on a one-stage setting and it can be intuitively
extended to multiple stages. The conditions for the property of consistency in DWSurv include:

(C1) Assumptions (A1) - (A4) in Sections (1.1.1) and (1.1.4) hold.

(C2) The weights satisfy the balancing property (1.9).

(C3) E|X;| < oo, and the choice of k satisfies that lim,, _,., k = oo and lim,, _,., k/n, = 0.

The condition (C1) includes the assumptions that are necessary for the dynamic weighted
survival modeling. The condition (C2) contains the requirement for choosing the weights in
DWSuryv, as described in Section (1.1.4). The condition (C3) assumes that the covariate is

bounded, and the conditions the choice of k satisfies for the consistency of the kNN estimates.

Proof of Theorem 3.2.1:
For n; = 1, the original estimating equation is
hiﬂ
U(ﬂ, !ﬁ) = Z?:] 6l~v?/,- (IOng —ﬁThiB - ClilﬁThiw) =0.
aniy
Let G(-) be defined as a function such that

hiﬂ

G(X,, Zi, A Tis Boh) = [ ] (logTi —BThiy— ai:ﬁTh,-w).

aihitp

Then, the estimating equation can be further written as
UB.Y) = XL, 0WiG(X;, Zi, A, T B, y) = 0.

Then, the estimating equation using the proposed kNN method is given by

0B ¥) = ) 6 GXL, Zi, A, Tis B, )
i=1

= 6 G(Xi, Zi, A, T Boy) + ) 6 GRE, Zi, AL T3 B 9)

eV eV
= 26 GG Zu A T o) + ) 6 | GRE Zis A T o) = G(Xe, Zis A T B )
i=1 icV

=UB.Y) + Z OiW; [G(Xf’ 2, A, Ti; B.y) — G(X;,Z;, A, T;; B, )|

i€V
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By Cauchy-Schwarz inequality, for /=1, 2, ..., L in v,
H Z OiW; [G(Xf, Z, AL T BW) —GX, 2, AL T B, ‘ﬁ)] ‘ =

L
> |G&E 2, AL T o) = G(Ri, 20, AL T3 )| D 6L (Wy is near W)

=1 iV

L
<)
=1

GX,Z1, AL T BW) — GX), Z1, AL Ty B) H : H Z 0;W;1(W, is near W;) ' .
eV

According to Devroye et al. (1994), for E|X;| < oo and the choice of k satisfies lim,, ., k = oo
and lim, _,., k/n, = 0, we have ||)A(lk — X,-” 5 0 as n — co. By continuous mapping theorem,

we obtain
IGRE, 21, A1, Ty B ) — G(Ri, Z1, AL Ti Bo)| = 0 asn— oo,

For some finite M, H 2y OwiL(W;is near W;) || < M < oo. Therefore,

L
> [GORE 21 AL TisB) =GR 21 A1 T o] Y it Wi s mear W | 550 as = oo

=1 i€V

Equivalently,

| > o6kt zi 4 g - G ZiA T | | S0 asno

i€V

Thus,

UB. W) = UB.Y) +0,(1).

Since (B, §*) is the solution to U(B,¥) = 0 and (B, ¥) is the solution to U(B, %) = 0, the blip
estimator g converges to W in probability. It is easy to prove that ¥ consistently estimates .

Thus, tﬁk is a consistent estimator of .



Chapter 4

Q-learning with Misclassified Binary

Outcomes

4.1 Introduction

In the previous chapters, we investigate the scenarios with continuous outcomes and survival
outcomes in DTR, in which the covariates are subject to measurement error. In this chapter, we
study the DTR with discrete-valued outcomes. In particular, a binary response in Q-learning
(Moodie et al., 2014) is considered. We target our study on the misclassification effect on Q-
learning in binary regression with internal validation data provided. The maximum likelihood
estimation is proposed as an effective correction method to accommodate the misclassification

effect in Q-learning.

The remainder of the chapter is organized as follows. In Section 4.2, the Q-learning model
in binary regression is presented, and the misclassification process for the binary outcome is
introduced. The correction method to account for the misclassification effect in Q-learning
1s described in Section 4.2. In Section 4.3, we conduct simulation studies to evaluate the
performance of the proposed method in one-stage and multi-stage settings. Data analysis is
conducted in Section 4.4 for illustration using two real data examples, the NHEFS data and

smoking cessation data, followed by conclusions in the last section.
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4.2 Methodology

4.2.1 Notations and Model Framework

The model framework is focused on a two-stage setting in Q-learning with a data trajectory
{X1, A1, X5, Ay, Y}, where X is a covariate vector precisely measured and collected prior to a
treatment A; € {1, -1} assigned at stage j (j = 1, 2). Y € {1, 0} is a binary outcome measured at
the end of second stage.

In the applications, the outcome Y may be subject to misclassification, and let Y* be a
surrogate outcome, the actually observed version of Y. We focus on a situation where the study

has both internal validation data V and main study data V available. That is,

{Xit, Ait, Xin, Ap, Y, YT} ifieV,
{(Xi1, Ait, Xio, A, Y7} ifi€V,
where the surrogate outcome Y™ is observed for all individuals, but the true outcome Y is only
observed for individuals in the validation data V.
We consider the case of non-differential misclassification mechanism, where the probability

of Y* depends only on Y. Then, the misclassification probabilities (1o, yo1) are defined as
vio = PY* = 1Y =0), yo1 = P(Y* =0]Y = 1). “4.1)

In order for the misclassification probabilities (yi¢, Y1) and regression parameters (8;, ¥;)
to be identifiable, one additional assumption is imposed to the Q-learning

(AS) Monotonicity condition: yyo + yo1 < 1.

This assumption (AS5) guarantees that (yi9, Y01, Bj, ¥;) are identifiable if E[X jXJT] exists
and is non-singular for j = 1, 2 (Hausman et al., 1998). Otherwise, if y19 + yo1 > 1, this set of
misclassification probabilities are deemed problematic and Y™ is regarded not to be produced
by chance (Neuhaus, 1999).

In Q-learning, when the outcome misclassification is ignored, and we proceed to fit a model

by simply replacing Y with Y* in (1.4), we obtain a naive model

Qx(Hy, Ay B 4%) = E[Y'|Hp, Ay] = P(Y" = 1|Hy, Ay) = expit(ﬂ;THzo + Az(«/f;'THn)). (4.2)
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It has been discussed in the literature that ignoring the misclassification in the response
can result in attenuated covariate effects and a change in the model structure (Neuhaus, 1999;
Carroll et al., 2006; Yi, 2017). Thus, using the naive model (4.2) in logistic regression yields
a naive estimator (B;’, «ﬁ’z'), which may be biased for (8,, ¥,). Furthermore, a biased naive esti-
mator (ﬁ;’, 1/;;‘) may affect the first stage parameter estimation and the determination of optimal
DTR. Such potential issues motivate us to search for an effective approach to accommodate the

outcome misclassification effect in Q-learning.

4.2.2 Maximum Likelihood Estimation Method

When the outcome is subject to misclassification, the original Q-learning in (1.1.3) needs mod-
ifications to produce consistent estimates of parameters. Carroll et al. (2006) and Yi (2017)
described the general use of the maximum likelihood estimation method in the logistic regres-
sion model to deal with the outcome misclassification. We borrow their ideas and extend the
MLE approach to Q-learning in the internal validation/main study data context.

The main idea of the MLE method in Q-learning is to derive likelihood functions for the
validation data and main study data and then combine them for a total likelihood for parameter
estimation. Given (H,, A;), we establish a relationship of the conditional probability of the

surrogate outcome with the conditional probability of the true outcome as

P(Y* = 1|Hy, A)) = P(Y* = 1,Y = 1|Hy, Ay) + P(Y* = 1,Y = 0|H,, A»)
= P(Y" = 1|Y = 1, Hy, A))P(Y = 1|Hp, As) + P(Y* = 1|Y = 0, Hy, A))P(Y = O|Ha, A5)
= P(Y* = 1|Y = DP(Y = 1|H, A)) + P(Y* = 1Y = 0)P(Y = O|Ha, A>)
=1 - P(r" =0y = D|P(Y = 1|Hy, A) + P(Y* = 1]Y = 0)|1 = P(Y = 1|H,,A))|
= (1= yo)P(Y = 1|Ha, A7) + yio|1 = P(Y = 1|Hp, Ay)]

=vi0+ (1 = vio —y01)P(Y = 1|H3, A,).
4.3)

Based on (4.3), we first derive the likelihood function for patients in the main study data V,

where only Y* is observed. Thus, for any i’ patient (i € V), the corresponding likelihood L; is
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given by

L =P(Y; =y/|Hp,Ap) = P(Y; =y.,Y; = l|Hp,Ap) + P(Y =y;,Y; = 0|Hp, Ap)
=P(Y; =y/lY;=1,Hp,Ap)P(Y; = 1|Hp,Apn) + P(Y] =y;1Y; = 0, Hp, Ap)P(Y; = 0|H», Ap)

= P(Y; =y{lY; = )P(Y; = 1|Hpp,Ap) + P(Y] = y/|Y; = 0)P(Y; = 0|H, Ap).

Then, the likelihood L is the product of the likelihoods across ny patients from V

L; = ﬁL,. =
i=1

= [ 1{P07 = 1% = DPOG = 11 A2 + PO = 1Y, = OP(Y; = OlH, An)
i=1

{P(Y,-* = 0)Y, = DP(Y, = 1|Hp, An) + P(Y" = 0Y, = 0)P(Y, = 0|H,-2,A,-2>}

[[{PO = ¥il¥i = DPO = 1B, Aw) + PO = ¥i1Ys = OP(Y; = O01Hi An)
i=1

ny

Yi
= [ T{( = 700 P(Fs = 11z, 42) + 710P(Ys = OHiz, A

i=1
l—yz‘
{ymP(Yl- = 1|Hi An) + (1 — y10)P(Y; = 0|Hiz,Ai2>}

ny

Yi
= T T{( = vo0P(Y: = 11Hiz, A2 + o1 = POY; = 11z, 4]}

i=1
1-y7
{yorPCY; = 1Hi2, Aw) + (1= yio)[1 = P(Y; = 11Hiz, 42|

ny

i
= H {710 + (1 =vio—y0)PY; = llHiZ’Aiz)} X {(1 = v10) — (I =vio = y0)P(Y; = llHiZ’Aiz)}
i=1

1-y?

For any i patient in the validation data (i € V), the likelihood involves both Y! and Y;,

which is expressed as

Li=PY; =y.Y =yilHpn,Ap)
= P(Y; =y|Y; = yi, Hi, Ap)P(Y; = yi|Hp3, Ain)

= P(Y] = y/IY; = y)P(Y; = yi|Hp, Ap).
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Then, the likelihood L, across n, patients in V follows

L, = l—[ L= l_l P(Y] =y|Y; = y)P(Y; = yilHp, Ap)
i=1

i=1
1y yi=1yi=1 vi=1
=11 {[P(Y,-* = 1Y, = DP(Y; = 1|Hp, Ap)| X |P(Y; = 11Y; = 0)P(Y; = 0|Hp, Ap)|
i=1

,yi=0

]>~7=o,y,-=

1 £=0,y,=0
[P(Y; = 01Y; = DP(Y; = 1|H. Ap) x [P(Y; = 01Y; = 0)P(Y; = 0|Hp. Ap)| "~ }

ny

= n {[(1 —yo)P(Y; = llHiZaAiZ)]y;yi X [VloP(Yi = 0|Hi2,Ai2)]

i=1

yi (1=yi)
X

(A=y7)yi

(1=-y)H(A=yi)
[701P(Yi = 1|Hi2aAi2)] X [(1 - v10)PY; = OlHiZaAiQ)] }

) l—[ {[(1 B 1|Hi2’Ai2)]y7yi X [710(1 - P(Y; = 1|Hi2,Ai2))]y7(l_yi)><

i=1

[VOIP(Yi = 1|Hi2,Ai2)](l_y7)yi X [(1 - 710)<1 - P(Y; = llHiz,Aiz))](]_y?)(l_yi)}.

Thus, the total likelihood function L across all the patients is given by

L=L,xL;= { ]_[ {[(1 —yo)P(Y; = 1Ha A" x [y1o1 = P(Y; = 1H AD)[ "'

i=1

[YOIP(Yi = 1|Hiz,Ai2)](l_y?)yi X [(1 - 710)(1 - P(Y; = llHiz,Aiz))](l_y;‘)(l_yi)}}x

e i 1=y
{l_[ {7’10 + (1 = vyi0 = yo)P(Y; = 1|Hi2,Ai2)} X {(1 = %Y10) — (1 =10 = yo)P(Y; = 1|Hi2,Ai2)} }

4.4)
From (4.4), we can obtain a total log-likelihood function that is to be maximized

logL = Z {y;fyilog[a = Yo)P(Y; = 1Hp, Ap)| + y; (1 = y)log|yio(1 = P(Y; = 1|Hz, An)) |+
i=1

(1 = y))yidog|yor P(Y; = 1Hi, An)| + (1 = y))(1 = ydlog|(1 = y10)(1 = P(¥; = 1|Hiz,Ai2))]}+

ny

Z {y}kll)g[)’lo + (I =10 —yo)P(Y; = 1|Hi2,Ai2)] +(1 —y}k)log[(l = 10) — (I =y10 = yo)P(Y; = 1|Hi2,Ai2)]}
P

4.5)
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Let 6 = (B2, Y2, Y10, Yo1)- Maximizing logL(6), the total log-likelihood function (4.5) with

respect to 6, results in a MLE estimator 6me Tt is equivalent to solving the score equation

S5i6)=0,
i=1

where S;(0) = %logL,-(G). Numerical methods such as Newton-Raphson method can be used

to find the MLE estimator §™.

Theorem 4.2.1 Under the conditions (C1) - (C5) in the Appendix, Section 4.6, the MLE esti-

mator @™ is a consistent estimator of 0. That is,

A D
0" S5 0 asn — oo.

As aresult, the stage 2 estimator (B;”’e, tﬁ;”’e) is consistent. Then, with the consistent estimation
of the pseudo-outcome, the stage 1 estimator (ﬁ;""’, l/A/;”le) is consistent by using the ordinary
least squares. Thus, the MLE method yields consistent estimates of blip parameter ¢ = (Y, Y1)

in Q-learning. The details are provided in the Appendix in Section 4.6.

Modified Q-learning Algorithm in Binary Regression:

The following two-stage Q-learning algorithm details the modified estimation procedures:

1. Parameterize the stage 2 Q-function

Qu(Hy, A3 B, ye) = expit(B” Hay + As(™e Hyy)).

2. Apply maximum likelihood estimation method to obtain the stage 2 estimator (B;"’e,
xi/;”"') by maximizing the log-likelihood function (4.5).
3. Derive the stage 2 optimal treatment as &;p ' = argmax Q,(hy, as; ﬁ;"’e, l/'};"’”).

az
4. Construct the pseudo-outcome for estimation at stage 1

Y, = max logitQ,(H,, az;ﬁ;nle’ ‘2’;”[9)‘
a
5. Apply OLS regression to obtain the stage 1 estimator (B, i)

~ ~ . —~ 2
(Brrte,gmiey = argmint 3, (Yir — Q1(Hir, Aus B, y™))
(ﬂ;nlf"/l;nle)
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6. Derive the stage 1 optimal treatment as &;” = argmax Q;(hy, a;; ﬁ;"’e, «ﬁ;”’e).
aj
This modified Q-learning algorithm distinguishes itself from the original Q-learning algo-
rithm in Section (1.1.3) in Step 2, which replaces the application of logistic regression with the

maximum likelihood estimation method.

4.3 Simulation Studies

4.3.1 One-Stage Estimation

We begin with the one-stage estimation in Q-learning. Let X be a continuous covariate and
Z be a binary covariate, where X ~ N(1, 1) and Z € {1, -1} is generated with probability of
0.5. The treatment A € {1, —1} that depends on X is drawn from a Bernoulli distribution with
probability P(A = 1) = expit(1 - X), where expit(x) = 1/(1 + exp(-x)). The true outcome Y is
drawn from a Bernoulli distribution with probability expit(1 + 8.Z + 8, X + A0 + ¥11X)),
where (8, ¥) = (B;,Bx Y10, ¥11) = (0.5, -1, 0.5, -0.5). Misclassified outcome Y™ is simulated
from a Bernoulli distribution based on the misclassification probabilities (y19, Yo1)-

The generated dataset is randomly divided into validation data and main study data with a
validation ratio p, where the validation data contain 100xp0% of the observations. We consider
three estimators to evaluate the performance of the proposed MLE method: (1) validation
estimator (ﬁv, ") obtained using the validation data only, (2) naive estimator (ﬁ”, ™) obtained
using the surrogate outcome Y*, (3) MLE estimator (ﬁ’”"’, t}”’"’) obtained from the modified
algorithm (4.2.2).

We compare results under two sample sizes of n = 500 and n = 2000. The validation ratio
p 1s specified as 0.3 and 0.5. The set of (y10,7%01) 1s considered to be (0.1, 0.1), (0.2, 0.2)
and (0.3, 0.3), which can be estimated from the validation data. Simulations are repeated 500
times for each pair of p and (yy9,¥o1). The bias, empirical standard error (SE), and root mean
square error (RMSE) of Q,Z are calculated and assessed. The percentile bootstrap confidence
intervals are used with 200 bootstrap samples to derive the coverage probability (CP%) of 95%
confidence intervals. Numerical results for n = 500 and n = 2000 under various p and (19, Yo1)

are provided in Table 4.1 and Table 4.2, respectively. The parameter estimates (ﬁ, ) under p
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= 0.5 are visualized in Figure 4.1 to Figure 4.6.

Table 4.1 and Table 4.2 show that ignoring the outcome misclassification, the naive esti-
mator " produces severely biased results. The results are more biased as the misclassification
rate increases. On the contrary, the MLE estimator yields small biases and coverage probabil-
ities close to the nominal level of 95%. Moreover, the proposed MLE method is numerically
stable and robust against various p and (19, yo1). The sample size also plays an important role
in the performance of methods. As p or n increases, the biases and variability of the estimators

are reduced.

4.3.2 Two-Stage Estimation

In this section, we extend the study to evaluate the performance of the proposed methods with
two decision points. For simplicity, we follow the same simulation design in Moodie et al.
(2014), where the confounding variables are present.

A dataset with 2000 patients forms the data trajectory (X, Z;, A, X2, 725,A5,Y). Forj=1,
2, X 1s a continuous confounding covariate at stage j, where X; ~ N(0, 1) and X, ~ N(170 +
mXi, 1) for gy = =0.5,17; = 0.5. The treatment A; € {1, —1} is assigned depending on X; with
probability P(A; = 1) = expit({y + {1 X;) for {, = —0.8 and {; = 1.25. Two binary covariates
Z; € {1, -1} are generated as P(Z, = 1) = 0.5 and P(Z, = 1|Z,, A,) = expit(§,Z; + 6,A;). Given
the data trajectory, the history at each stage is Hy; = (X1, Z;) and H, = (X,7Z,,A1,X>,2,). The

outcome model is given by
E[Y|H3, Ay, y] = expit(yo + viXi + Y221 + v3A1 + yaZiAy +ysXo + YeAs + v12,A5 + y3A1A)).

In this example, we consider a complete regular scenario that sets y = (0, 1, 0, -0.5, 0,
1, 0.25, 0.5, 0.5) and (61, 62) = (0.1, 0.1). While the stage 2 blip parameter can be easily
identified as ¥, = (Ys, Y7, ¥sg), the true values for the stage 1 blip parameter Y1 = (Y10, ¥11)
need to be calculated based on the data-generating parameters. Moodie et al. (2014) derived a
formula to quantify the true values for ¢ in this setting, which are given by ;o = -0.3688, ¢/,
= 0.0187. Once true outcome model is specified, the observed surrogate Y* is generated from
a Bernoulli distribution based on the misclassification model (4.1), where the misclassification

probabilities (y9,Y01) are set to be (0.1, 0.1), (0.2, 0.2) and (0.3, 0.3). Once the dataset is



93

generated, the validation data are randomly separated with a ratio p € {0.3, 0.5}. We continue
with the three estimators described in Section (4.3.1). A total of 500 simulations are run for
each pair of p and (0, yo1). Numerical results for the bias, SE, RMSE and CP% of tﬁ = (tﬁz,
«/A/l) using the percentile bootstrap with 200 bootstrap samples are reported in Table 4.3. The

parameter estimates 4 under p = 0.5 are presented in Figure 4.7 to Figure 4.9.

Similar to the one-stage setting, Table 4.3 shows that the naive estimator " leads to broadly
biased results. However, the proposed estimator §™ outperforms the naive estimator with
small biases in all the scenarios, and the coverage probabilities of ti/'”’e are close to 95%. It
may result from the full log-likelihood function the MLE method relies on for estimation,
which accurately describes the relationship with the true model. Moreover, the results show
that for the set of first stage estimators, /o is generally more vulnerable to bias compared with
1/711, which agrees with the findings in Chakraborty et al. (2010), Moodie et al. (2014) and Song
et al. (2015).

4.3.3 Prediction of Optimal DTR

In this section, we explore the misclassification effect in a linear Q-learning response model
from a prediction perspective. We are particularly interested in assessing the prediction accu-
racy of optimal DTR in a two-stage setting.

The simulation design follows (4.3.2), but the simulated data consist of training data with
2000 patients and test data with 5000 patients. The training data are randomly split into valida-
tion data and main study data with p € {0.3, 0.5}, by which the misclassification probabilities
and the regression parameters are estimated. To evaluate the performance of the proposed cor-
rection method in a predictive setting, we continue the previous three estimators (,@”, ¥, (B”,
l/'}”), (f?’"’e, J/’”’e). The test data are used to compute the prediction accuracy of optimal DTR,
which is measured by the proportion of patients whose optimal treatments are correctly pre-
dicted at stage 2 and/or stage 1. Simulations are run 500 times. Table 4.4, along with Figure
4.10, summarizes the simulation results under a variety of p and (19, Yo1)-

Table 4.4 shows that the prediction accuracy of optimal DTR is adversely affected by mis-

classification. The naive estimator leads to a pronounced degeneration in the accuracy of pre-
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dicted optimal DTR, and its performance is worsened as the misclassification rate increases.
In comparison, the proposed MLE estimator considerably improves the prediction accuracy,
especially when the optimal treatments in both stages are evaluated. The performance of the
MLE estimator is also robust against the various magnitudes of p and (y;¢, ¥o1). It substantially
restores the precision to a level that is even superior to the validation estimator, suggesting a

favorable choice to derive the sequential optimal treatment rules.

4.3.4 Prediction of the Outcome

In this study, we examine the performance of the proposed correction method in terms of the

predicted error rates, sensitivity, and specificity of the outcome under the optimal DTR.

The predictive simulation setting follows (4.3.3) with three estimators (Bv, tﬁv), (ﬁ'", x/A/”),
(f?’”’“, ™€) obtained from the training data. We use the test data to estimate the correspond-
ing optimal DTR using each estimator and then calculate the (1) predicted error rates of the
outcome, which is measured by the proportion of patients whose outcomes are incorrectly
predicted under the estimated optimal DTR, (2) predicted sensitivity of the outcome, which is
measured by the proportion of patients whose positive outcomes (Y = 1) are correctly predicted
under the estimated optimal DTR, (3) predicted specificity of the outcome, which is measured
by the proportion of patients whose negative outcomes (Y = 0) are correctly predicted under
the estimated optimal DTR. For the training data, the validation ratio p is specified as 0.3 and
0.5, and the misclassification probabilities (y;¢, yo1) are set to be (0.1, 0.1), (0.2, 0.2) and (0.3,
0.3). Simulations are repeated 500 times. Results are summarized in Table 4.5 and displayed

in Figure 4.11 and Figure 4.12.

Table 4.5 shows that the naive method leads to the worst results in terms of the predicted
error rates, sensitivity, and specificity of the outcome in most scenarios. Moreover, compared
with the specificity, sensitivity is generally more sensitive to outcome misclassification. In
contrast, the proposed MLE method produces the best performance with the lowest error rates
and highest sensitivity and specificity results in all the scenarios. As p increases, the predicted
error rates of the proposed method are lower, and the predicted sensitivity and specificity of the

proposed method are higher.
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4.4 Data Analysis

4.4.1 Application to NHEFS Data

In this example, we apply the proposed methods to the NHEFS data, which was collected by
the National Center for Health Statistics and the National Institute on Aging in collaboration
with other agencies of the Public Health Service. A detailed description of the NHEFS is
available at https://wwwn.cdc.gov/nchs/nhanes/nhefs/. The NHEFS study aimed to
investigate the relationships between clinical, nutritional, and behavioral factors assessed in the
first National Health and Nutrition Examination Survey NHANES I and subsequent morbidity,
mortality, and operational factors with hospital utilization. In this work, we are interested in
estimating an optimal treatment decision rule using the cohort NHEFS dataset in Hernan and
Robins (2020). The dataset consists of 1566 cigarette smokers aged 25-74 years, with a number
of baseline variables collected from 1971 to 1975. They were followed up through personal
interviews in 1982 and reported quitting smoking status, which is the outcome of interest in the
analysis. We consider a binary indicator for regular exercise as the treatment variable, with A
= 1 indicating those who had little or no exercise and A = -1 otherwise. The baseline variables
to be included are age, gender, race, body mass index, systolic blood pressure (SBP), physical
activity status, cholesterol, weight, diabetes, the number of years of smoking, and the number
of cigarettes smoked each day (Smokelntensity). Since the measured SBP is right-skewed
in the dataset, we take the logarithmic transformation of SBP to be log(SBP-50) following
Carroll et al. (2006). Diabetes and Smokelntensity are shown to be significantly associated
with the treatment variable from the treatment model. We regard these two variables as the
tailoring variables to derive the optimal treatment decision rule. All the continuous variables
are standardized in the analysis.

As described, the smoking status is reported by the patients and thus subject to misclassifi-
cation. In the dataset, there is no information available to infer the degree of misclassification
probabilities. Therefore, we specify a series of values for the misclassification probabilities
and conduct sensitivity analyses to evaluate how the misclassification rate affects the estimated
optimal treatment decision rule. In the work of Magder and Hughes (1997), it is discussed that

the smokers who have really quit smoking are unlikely to report they are still smoking, while


https://wwwn.cdc.gov/nchs/nhanes/nhefs/
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those who have not are very likely to misreport their smoking cessation status. Magder and
Hughes (1997) specified y;o = 10%, and Lee et al. (2013) provided an estimate for the mis-
classification rate to be y;p = 7.5% in another smoking cessation study. Thus, we consider 7y,
=0 and yy9 € (5%, 7.5%, 10%, 12.5%) in our analysis. Table 4.6 summarizes the associated
inference results, including the estimates, bootstrap standard error (SE), and 95% confidence

intervals (CI) for the blip parameters obtained from the naive method and the proposed method.

In Table 4.6, the estimated optimal treatment decision rule from the naive method is a°”" =
1 if -0.148 + 0.130Diabetes + 0.075Smokelntensity > 0, and a°”" = -1 otherwise. In general,
the proposed MLE method produces slightly larger estimates than the naive method, leading
to different optimal treatment decision rules. As 7o increases, the blip parameter estimates
and estimated SEs obtained from the proposed method become bigger. Moreover, the diabetes
variable is shown to have a significant treatment effect using the naive method, but the MLE
method displays different statistical significance for diabetes in all the scenarios. Therefore,
it reveals that the misclassification effect is not negligible in an error-prone setting, which can
alter the inference results, including the statistical significance, when the misclassification is

taken into account in the analysis.

4.4.2 Application to Smoking Cessation Data

In the second example, we explore the misclassification effect by analyzing the smoking ces-
sation data, which were collected at St. Joseph’s Hospital (Lee et al., 2013). The smoking
cessation study is a randomized controlled trial and aims to examine the effectiveness of a pe-
rioperative smoking cessation intervention with one decision point involved. We are interested
in using the smoking cessation data to estimate an optimal treatment decision rule. In this
trial, 168 patients were recruited and randomly assigned with the same probability to one of
the two treatment groups, the intervention group (A = 1) or the control group (A = 0). The
patients were followed up at the time of the 30-day postoperative phone call and self-reported
their smoking cessation status, which is the outcome of interest with Y = 1 indicating smoking

cessation.

In the study, the smoking cessation status reported by the smokers was examined with the
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exhaled carbon monoxide (CO) levels (ppm), where an exhaled CO of < 10 ppm confirmed
smoking quitting (Lee et al., 2013). It has been found that out of 146 patients with exhaled
CO greater than 10ppm, 11 patients misreported their smoking cessation status. We assume
a non-differential misclassification mechanism in this analysis. Then, the misclassification
probability can be estimated as y,o = 11/146 = 7.5%. For those who have already quit smoking,
Magder and Hughes (1997) pointed out that they were highly likely to report that they have
stopped smoking. Then, we assume that yy; = 0. It should be noted that these (¢, vo1) are just
the estimates of misclassification probabilities, while the true misclassification probabilities are
unknown. Thus, we specify a series of values for v,y € (2.5%,5%,7.5%, 8.5%) and conduct
sensitivity analyses to evaluate how the misclassification rate affects the optimal treatment
decision rule estimation. The baseline variables in the analysis include age, gender, body mass
index, diabetes status, hypertension, chronic obstructive pulmonary disease, cigarettes smoked
per day, and the number of years of smoking. The hypertension variable was found statistically
significant with respect to the treatment (Shu and Yi, 2019a). We consider hypertension (HTN)
and the number of years of smoking (YrsSmoke) as the tailoring variables to derive the optimal
treatment decision rule. All the continuous variables are standardized in the analysis. Table 4.7
summarizes the inference results obtained from the naive method and the proposed method.
The analysis results suggest that the misclassification effect is conspicuous. The naive
method leads to an optimal decision rule, which is determined by the values of (1.363 -
0.696HTN - 0.189YrsSmoke). In comparison, the proposed MLE method yields notably larger
parameter estimates and estimated standard errors than the naive method. As ¢ increases, we
observe that the MLE estimator is sensitive to the change in the misclassification rate. One
possible reason might be the limited size of the dataset. However, these results still reveal
a non-negligible impact of outcome misclassification on the optimal treatment decision rule

estimation for smoking cessation.

4.5 Conclusion

In this chapter, we discuss the outcome misclassification effect in Q-learning with binary out-

comes in the context of internal validation/main study data design. The MLE method is pro-
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posed to adjust for the misclassification effect in Q-learning. The correction method is estab-
lished based on a relationship between two conditional probabilities of the true outcome and
surrogate outcome. The likelihoods for both the validation data and main study data are derived
and combined to create a total likelihood for parameter estimation in Q-learning. The proposed
MLE method itself is straightforward, and under certain conditions, it yields consistent esti-
mates of blip parameters in Q-learning.

We compare the proposed correction method with the naive method in both simulation
studies and real data analysis. Ignoring the outcome misclassification leads to severely bi-
ased results in parameter estimation. By making use of the observed surrogate outcome and
validation data, the proposed method provides satisfactory performance in simulation studies.
We show that employing the proposed method in Q-learning considerably reduces the bias,
improves the prediction accuracy of optimal DTR, predicted sensitivity and specificity of the
outcome, and reduces the predicted error rates of the outcome. Moreover, the MLE method
is numerically stable and robust against various magnitudes of validation ratio and misclas-
sification rates. The proposed method is also applied to real data examples to estimate the
optimal treatment decision rule. The data analysis suggests that the misclassification effect is

not negligible in terms of parameter estimation and associated statistical significance.



Table 4.1: One-stage estimates of blip parameters (Y19, ¥11) (n = 500)
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Yo Y

o (yio,yo) W Biasa SE RMSE CP% Bias SE RMSE CP%
0.3 g’ -0.005 0722 0722 936 -0.014 0607 0.607 94.2
(0.1,0.1) ¢" -0.175 0.161 0238 852 0.175 0.124 0214 772
g™ 0016 0224 0225 954 -0016 0.186 0.187 93.0

(0.2,02) ¢" -0285 0.152 0323 658 028 0.114 0310 464
gm™e 0007 0267 0267 948 -0014 0222 0222 932

(0.3,03) ¢" -0362 0.148 0391 484 0366 0.108 0382 24.0
g™ 0.009 0307 0307 926 -0.020 0249 0250 94.6

0.5 g 0002 0262 0262 952 -0.014 0210 0210 944
(0.1,0.1) ¢" -0.177 0.161 0239 894 0.171 0.124 0211 87.6
g™ -0.003 0204 0204 942 -0.008 0.165 0.165 94.2

(02,02) ¢" -0285 0.152 0323 758 0288 0.114 0310 638
gm™e  0.001 0226 0226 950 -0.010 0.184 0.184 942

(03,03) ¢" -0367 0.147 0395 584 0370 0.107 0385 37.8
gm™e  0.005 0245 0245 948 -0.014 0.198 0.198 95.0
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Table 4.2: One-stage estimates of blip parameters (19, ¥11) (n = 2000)

Yo Y

o (uyn) W  Bias SE RMSE CP% Bias SE RMSE CP%
0.3 lzlv 0.008 0.158 0.158 942 -0.007 0.126 0.126 95.0
(0.1,0.1) l/'}" -0.170  0.078 0.187 55.6 0.171 0.061 0.182 348

lﬁmle 0.008 0.105 0.105 93.0 -0.008 0.086 0.086 93.2

0.2,0.2) lﬁ” -0.287 0.074 0296 11.0 0.288 0.055 0.293 1.0

lﬁmle 0.004 0.123  0.123 93.8 -0.007 0.100 0.100 93.4

(0.3,0.3) lﬁ" -0.374 0.072  0.381 1.6 0376 0.052 0.380 0.0

lﬁmle 0.000 0.139 0.139 926 -0.005 0.113 0.113 93.8

0.5 l/’}v 0.001 0.121 0.121 946 -0.005 0.096 0.096 94.6
(0.1, 0.1) l}” -0.176  0.078 0.193 63.8 0.177 0.060 0.187 47.8

l/’}mle 0.004 0.097 0.097 934 -0.005 0.078 0.078 95.0

0.2,0.2) (/’}” -0.287 0.074 0.296 242 0.288 0.055 0.293 5.0

(/’}mle 0.002 0.106 0.106 942 -0.005 0.085 0.085 93.6

(0.3,0.3) (/’}” -0.369 0.072  0.376 48 0374 0.052 0.378 0.4

l/’}mle 0.002 0.114 0.114 95.8 -0.002 0.091 0.091 96.0
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Table 4.4: Prediction accuracy of optimal DTR (%)

Stage 2 Stage 1 Stage 2 & Stage 1
P (Y10, Yo1) \% n mle \% n mle \% n mle
03 (0.1,0.1) 917 972 985 927 9777 988 88.1 96.1 97.9
0.2,0.2) 920 91.7 960 929 914 964 885 875 94.3
(03,03) 920 863 954 934 8.1 959 888 788 93.3
05 (0.1,0.1) 956 973 989 97.1 981 995 942 963 98.6
0.2,0.2) 963 912 980 973 927 988 949 875 97.4
(03,03) 964 848 97.1 973 8.5 980 951 779 96.2
v: validation estimator, n: naive estimator, mle: MLE estimator
Table 4.5: Predicted error rates, sensitivity, and specificity of the outcome (%)
Error Rates Sensitivity Specificity
P (Y10, Yo1) \% n mle \% n mle \% n mle
0.3 0.1,0.1) 55 4.0 34 927 945 956 957 971 97.2
0.2,02) 54 59 4.2 924 917 945 959 957  96.7
0.3,03) 54 85 4.5 926 8.6 940 959 946 964
0.5 0.1,0.1) 40 338 3.0 95.0 949  96.1 9.7 970 975
0.2,0.2) 39 59 34 95.0 922 958 969 953 97.1
03,03) 40 89 3.7 94.9 86.1 952 968 943 970

v: validation estimator, n: naive estimator, mle: MLE estimator
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Table 4.7: Sensitivity analysis results of the smoking cessation data for the blip estimators

A*HTN A*YrsSmoke
Method Y10 Est SE 95%CI Est SE 95%ClI Est SE 95%CI
Naive 1.363  0.895  (-0.391,3.118) -0.696  0.850  (-2.363,0.970) -0.189  0.896  (-1.945, 1.567)
MLE 25% 1.718 1355  (-0.938,4.374) -0.826  1.235  (-3.247,1.595) -0.228  1.558  (-3.281, 2.826)
5% 2675 1.716  (-0.688,6.039) -1.116  1.540  (-4.134,1.903) -0.893  1.792  (-4.406, 2.620)
7.5% 3274 1923  (-0.496,7.043) -1.338 1.725  (-4.720,2.044) -1.368 1.844  (-4.982,2.246)
85% 3583 2029 (-0.393,7.560) -1.418 1773  (-4.893,2.056) -1.671 1.830  (-5.257, 1.915)

Est: estimates, SE: standard error, Cl: confidence interval
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Figure 4.1: One-stage estimates of (5, By, V10, ¥11) for n = 500 with p = 0.5 and (y19,y01) =
(0.1, 0.1)
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4.6 Appendix

The proof of consistency in this section is based on a one-stage setting, and it can be intuitively
extended to multiple stages.

Let 8 = (B,¥,Y10,Y01) and 6™ be the MLE estimator. The conditions for the property of
consistency in Q-learning include:

(C1) Let Q be the parameter space with finite dimension for 8. Q is closed and compact.
The true parameter value of @ is interior to Q2.

(C2) The probability distributions with any two different values of 6 are distinct.

(C3) For an open subset w of Q that contains the true parameter value of 6, the first three
derivatives of the log-likelihood /(0) exist for # € w almost surely. There exists a function M
such that the n~! times the absolute value of the the third derivative is bounded by M for 8 € w
and E[M] < co.

(C4) The information matrix /(6) is finite and positive definite for 6 € w.

(C5) Assumptions (A1), (A2), (AS) in Sections (1.1.1) and (4.2.1) hold.

The conditions contain the regularity conditions (C1) - (C4) (Cox and Hinkley, 1979, p.281)
and the assumptions that are necessary for Q-learning. The condition (C5) guarantees the iden-
tifiability of the parameter 6 in Q-learning to estimate a dynamic treatment regime. According
to Pepe (1992), under the conditions (C1) - (C5), the MLE estimator @™ that solves the equa-

tion %logL(G) = 0 satisifies
@rmie N 0 asn — oo,

where L(0) is the likelihood stated in (4.4). Thus, tﬁ"”“ is a consistent estimator of blip param-

eter y.



Chapter 5

Summary and Future Work

The work presented in this thesis explores several statistical methods to address the issues in dy-
namic treatment regimes caused by covariate measurement error or outcome misclassification.
Several regression-based methods in DTR with different types of outcomes are considered, and
the effect of measurement error and misclassification on those methods is explored. Both sim-
ulation studies and data applications demonstrate the substantial impact of measurement error
or misclassification on the analysis without errors corrected and the usefulness of the proposed
correction methods to adjust for the effects.

Chapter 2 is motivated by the STAR*D study, in which the patients with a major depres-
sive disorder were randomized at each level of study to one of the treatment options. The
main objective of this study was to compare the effectiveness of different dynamic treatment
regimes across multiple levels based on the QIDS score, which both clinicians and patients
reported. In practice, the QIDS scores reported by patients and clinicians may be different
from the true underlying QIDS score and, therefore, subject to measurement error. Q-learning
is a widely used regression-based method to estimate optimal DTRs. This chapter explores
the application of regression calibration in Q-learning to accommodate the effect of covariate
measurement error with repeated measurements. Using the observed replicates, the RC esti-
mates are created for the unobserved true covariates. Then, the patient’s history is updated with
the RC estimates, and a modified Q-learning algorithm is proposed to estimate the parameters
and optimal DTR. Simulation studies demonstrate the significant improvements using the RC

method in Q-learning in terms of bias reduction, the prediction accuracy of the optimal DTR,
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and predicted optimal value function compared with the naive method in one-stage and multi-
stage settings. Lastly, the proposed method is applied to the STAR*D data and compares its
results with the naive method. The analysis results show that the statistical significance of the
tailoring variable differs if the correction is made using the RC method, which suggests that

the measurement error issue should not be ignored in an error-prone setting.

This work studies the measurement error effect with the classical additive model. It is of
interest to explore other measurement error models such as Berkson and multiplicative models
in Q-learning. Moreover, as regression calibration is known to perform well in linear models,

other correction methods are worth exploring for highly nonlinear models.

In Chapter 3, the covariate measurement error in dynamic weighted survival modeling is
studied. This DWSurv approach is practical but developed under the assumption that the co-
variates are free from mismeasurement. If this assumption is violated, it remains unclear what
the impact would be on the estimation of parameters and optimal DTR. Therefore, in this chap-
ter, we investigate the covariate measurement error effect on DWSurv for validation data and
develop two correction methods, the k-nearest neighbors method and the weighted least squares
method, to eliminate the effect. The proposed correction methods estimate the missing values
of the true covariates using the mismeasured variables that are completely observable in the
data. Both methods are easy to understand and fast to implement. The theoretical property of
the kNN estimator is also established. Both simulation studies and data analysis showcase the
competency of proposed methods in one-stage and multi-stage settings. The results show that
using the proposed kNN and WLS methods leads to significant improvements in bias-reduction
and restoration of the double robustness property in DWSurv. In the predictive scenarios, the
proposed methods enhance the prediction accuracy of optimal DTR and the predicted optimal
overall survival times. Lastly, the proposed methods are applied to the MIMIC-III data to es-
timate the optimal treatment decision rules. The analysis results reveal the significant impacts

of discarding some data with missing covariates in the estimated optimal DTR.

There are a few possible directions for future work. First of all, the proposed kNN method
uses Euclidean distance as the distance measure in this project. It is of interest to consider other
distance functions, such as Manhattan, Minkowsky, Chebychev, Chi-square distances, etc., for

the proposed method. Secondly, as k is defined in relation to the size of the validation data,
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one may also explore different choices of k to improve the performance of the kNN method.
Lastly, besides independent censoring, other types of censoring can be considered in the study,
such as the censoring that depends on covariates.

In Chapter 4, Q-learning with binary outcomes is explored, with the outcome being subject
to misclassification in the context of internal validation/main study data design. When the out-
come misclassification is ignored, the estimation in Q-learning is severely biased. Therefore,
the maximum likelihood estimation method is proposed to accommodate the misclassification
effect in Q-learning. The proposed MLE method is established based on the relationship be-
tween two conditional probabilities of the true outcome and the outcome observed with error.
Simulation studies are conducted to demonstrate the satisfactory performance of the proposed
method in both one-stage and multi-stage settings. In particular, the MLE method is shown to
be numerically stable and robust against various magnitudes of misclassification rates in the
outcome model. Sensitivity analyses are also conducted using the NHEFS data and smoking
cessation data to compare the optimal treatment decision rules estimated from the naive method
and the proposed method. By incorporating the misclassification in the analysis, the estimated
optimal treatment rules are shown to be different, and the statistical significance of the tailoring
variable is also altered. It reveals a non-negligible impact of misclassification in the NHEFS
and smoking cessation data.

In Chapter 4, a non-differential misclassification model is assumed for the proposed method,
in which the dependence on the covariates and/or treatment is suppressed. Therefore, it is in-
teresting to study other misclassification models, such as a differential one dependent on co-
variates and/or treatment. Secondly, one may also consider the misclassification problem with
replicate data. In other words, instead of observing the true outcome in a small subset of data,
the replicates of the outcome are observed. In such circumstances, it is necessary to explore
other approaches to correct the misclassification in Q-learning.

In summary, the errors-in-variables problem in dynamic treatment regimes is a new and
challenging topic. While the problems that have been studied in this thesis focus on mea-
surement error and misclassification in a few popular DTR approaches based on the class of
outcomes, many more complex situations remain unexplored. We anticipate the pursuit of

exploring these in the future.
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