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ABSTRACT 

Axillary lymph nodes (ALNs) are the primary site of metastasis in breast cancer, and their 

involvement has implications in disease staging, prognostication, and treatment decisions. A 

non-invasive modality of assessing the risk of ALN metastasis can improve care in patients with 

early-stage breast cancer by omitting the morbidity and costs associated with axillary surgery. 

This thesis explores the molecular landscape of early-stage breast cancers with ALN 

metastasis and shows the potential of tumour molecular signatures in predicting ALN 

involvement. After a systematic review of the literature, we use data from The Cancer Genome 

Atlas (TCGA) to develop molecular signatures associated with ALN metastasis. We then use 

machine-learning to develop predictive models. We show that the predictive performance of 

models may be improved by accounting for the intrinsic molecular subtype of breast cancer. If 

validated externally, these models have the potential to reduce the rates of axillary surgery in 

patients with early-stage breast cancer.  
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SUMMARY FOR LAY AUDIENCE 

The lymph nodes underneath the armpit are the most common site of spread in breast 

cancer. In each patient, it is important to determine if these lymph nodes contain cancer as this 

information helps clinicians assign a stage to the cancer and suggest appropriate treatments. 

Clinical examination is not enough to rule out the presence of cancer in these lymph nodes. 

Most patients require surgery to remove several representative lymph nodes from the armpit 

area, so that these lymph nodes can be examined by a pathologist underneath a microscope for 

the presence of breast cancer. There is an opportunity to improve care, as surgery has risks for 

patients and costs for healthcare system. A solution to this problem could be a computer-

generated predictive model that uses the genetic information from the cancer biopsy sample 

and provides an estimation for risk of cancer spread to lymph nodes for each patient.  

We first searched the literature for available evidence on the topic of lymph node spread 

prediction in early-stage breast cancers. We included 59 articles and discussed the various 

patient and tumour factors studied in connection to the lymph node spread of breast cancer. 

We then used the publicly available genetic databases from The Cancer Genome Atlas (TCGA) 

collaborative to find the differences in the genetic information of early-stage breast tumours 

with lymph node spread, compared to those without. Our study also highlights that the genetic 

differences seen in cancers with lymph node spread are not consistent between the four 

previously established subgroups of breast cancer, known as the “intrinsic molecular subtypes”, 

and emphasizes the heterogeneity in the genetic information of breast cancers.  

Based on the discovered molecular differences, we use computer-generated predictive 

models of lymph node spread in early-stage breast cancer. We show that the accuracy of these 
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predictive models can be improved using a new approach that takes into account the intrinsic 

molecular subtype of the cancer. If validated in other populations, these models can be useful 

in reducing the rates of lymph node surgery and improve care in early-stage breast cancer.    
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CHAPTER 1 
 
 

INTRODUCTION 
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CHAPTER 1: INTRODUCTION 

1.1 BREAST CANCER: EPIDEMIOLOGY AND PROGNOSIS 

Breast cancer has become the most commonly diagnosed cancer worldwide with over 2.2 

million new cases per year(1). Globally, higher incidence rates are seen in high-income regions 

such as North America, Northern/Western Europe and Australia/New Zealand compared to Asia 

and sub-Saharan Africa(2). This trend is attributed to risk factors associated with urbanization 

and economic development including obesity, higher fat intake and physical inactivity(3,4).   

 Breast cancer remains as the leading cause of cancer death in women worldwide(5). 

While advancement in screening and systemic therapies have improved survival from breast 

cancer in developed countries, the rates of mortality has been increasing along with the 

incidence of the disease in developing countries(6). Mortality and recurrence risk depends on 

disease stage(7). The 8th-edition of the American Joint Committee on Cancer’s Staging System 

for breast cancer includes two staging systems(8). Firstly, the clinical stage is determined based 

on the pre-operative tumour size, nodal status, and presence of distant metastasis. Secondly, 

the pathological stage includes the results of post-operative pathology findings including the 

derived tumour size, nodal involvement, tumour grade, hormone and oncogene expression 

profiles and the results of multi-gene panel testing, and this stage is more accurate in predicting 

individualized outcomes(9).  

1.2 AXILLARY LYMPH NODES: SIGNIFICANCE AND ROLE OF SURGERY 

Axillary surgery in breast cancer has been evolving for centuries(10). In the 19th century, a 

German pathologist, Rudolf Virchow, noted the presence of ipsilateral axillary lymph node 

(ALN) involvement in the autopsy of women who died of metastatic breast cancer(11). Virchow 
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suspected that ALNs were a nidus for distant metastatic disease. In line with Virchow’s 

hypothesis, William Halsted, an American Surgeon in the 19th century, advocated for complete 

removal of the ALNs to improve outcomes in all breast cancer patients(12). The radical 

mastectomy, which included the removal of breast, pectoralis muscle and ipsilateral lymph 

nodes became the standard of care for decades to come.  

The concept that ALN metastasis was simply an indicator of tumour chronology was 

questioned by several observations(13). First was the emergence of distant metastasis in 

patients without axillary involvement after radical mastectomy, which contradicted the idea 

that the ALNs served as a nidus for all distant metastases.  Second were several studies 

including the National Surgical Adjuvant Breast and Bowel Project (NSABP)-04 which 

systematically showed no overall survival advantage to early ALN clearance in patients without 

clinically palpable disease(14,15). This suggested that the presence of ALN metastasis was 

perhaps a marker of aggressive tumour biology and not just chronology(16). In line with this 

philosophy, was the finding that even in patients with breast cancer recurrence, lymph node 

involvement in the primary cancer presentation predicted unfavourable outcomes(17). 

Although the mechanisms behind lymph node and distant metastasis continue to be studied, 

ALN involvement remains as one of the most important prognostic factors in breast 

cancer(7,18).  

Clinical examination is inadequate in determining ALN involvement(19). In the NSABP B-

04 trial, up to 40% of patients with clinically negative axilla who were randomized to receive an 

axillary lymph node dissection (ALND) had evidence of lymph node metastasis on final 

pathology(14). ALND however is accompanied by a high risk of post-operative morbidity for the 
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patients. Studies have shown that over 70% of patients may experience symptoms such as arm 

and shoulder pain/weakness, numbness, tingling and lymphedema (20,21).  

The need for a less morbid modality of axillary staging led to the introduction of sentinel 

lymph node biopsy (SLNB) as an alternative to ALND. The sentinel lymph nodes (SLN) are the 

first nodes in the chain that drain lymph from an organ. SLNB was introduced in breast cancer 

following reassuring results in parotid, melanoma, and penile cancers(22). Guiliano et al. 

published on a series of SLNBs in 1994 and showed SLNB to accurately predict axillary nodal 

status in breast cancer(23).  

The NSABP B-32 trial compared overall survival (OS) and disease-free survival (DFS) 

between 5,611 clinically node-negative breast cancer patients receiving SLNB+ALND or SLNB 

alone with ALND only if sentinel lymph nodes were positive(24). After 10-years, no differences 

in OS or DFS were reported between the two groups (25). This suggested that SLNB was a viable 

alternative to staging the axilla in patients with clinically negative axilla.  

ALN involvement can be as infrequent as 20% in early-stage breast cancer patients 

without palpable lymphadenopathy(26). Yet, due to the essential role of an accurate nodal 

stage in clinical decision-making and prognosis, major guidelines continue to recommend SLNB 

in this patient group(27,28). The establishment of SLNB as standard of care reduced post-

operative morbidity and improved quality of life metrics for patients compared to ALND(21,29). 

Still, significant rates of residual morbidity were reported in up to 1 in 6 patients after SLNB in 

the NSABP B-32 trial(30). These included residual shoulder abduction deficit in 13.2% of 

patients at 6 months, arm volume differences in 16.7%, arm numbness in 7.5% and tingling in 

6.7% of patients at 36 months follow up.  
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Identification of patients at low risk of axillary involvement therefore presents the 

potential for omitting axillary surgery in this group and sparing these patients from the 

associated risks. SLNB omission has public-health benefits arising from reduced operative 

time(31). This highlights a clinical gap in our ability to stratify early-stage breast cancer patients 

based on their risk for ALN involvement.  

Accurate recognition of patients at high-risk of axillary metastasis would also contribute 

to decisions regarding pre-operative systemic therapy. Neoadjuvant chemotherapy has been 

shown to be effective at downstaging the axilla in patients with biopsy-proven axillary 

metastases(32). In a retrospective study of 630 biospy-proven node-positive breast cancer 

patients from Memorial Sloan Kettering who received neoadjuvant chemotherapy, 91% 

converted to clinically negative axilla and 46% achieved complete pathologic response(33). 

SLNB can appropriately stage the axilla after neoadjuvant chemotherapy but cannot be done 

twice (before and after neoadjuvant chemotherapy) due the low detection rate (60.8%, 95% CI 

55.6-65.9) and high false-negative rate (51.6%, 95% CI 38.7-64.2) as shown in the SENTINA 

trial(34). Hence, non-invasive classification of early-stage breast cancer patients with high risk 

of axillary metastases, but no palpable lymphadenopathy, can enable clinicians to identify 

candidates for neoadjuvant chemotherapy administration, potentially sparing them of further 

ALND or irradiation. Gene expression-based assays such as the Oncotype DX™(35)  have been 

established within care pathways in informing treatment decisions for adjuvant 

chemotherapy(36). Similar molecular-based risk assessment tools may help select optimal 

patients for systemic treatment in the pre-operative setting.  

1.3 CLINICAL AND MOLECULAR SUBTYPES OF BREAST CANCER 
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The discovery of the importance of hormone receptors (HRs) in breast cancer and the 

development of antibodies against estrogen receptor (ER) allowed immune histochemistry 

(IHC)-based classification of breast cancer based on HRs(37–39). Identification of the human 

epidermal growth factor receptor 2 (Her2) gene activation in the 1980s and its significance in 

predicting poor prognosis in affected patients led to further categorization of breast cancer 

based on this oncogene(40). The more aggressive Her2-positive breast cancers became a target 

for the therapeutic anti-Her2 molecule monoclonal antibody, trastuzumab, in 1998(40). These 

discoveries led to the establishment of clinical subtypes based the expression levels of hormone 

receptors such as ER, progesterone receptor (PR) and Her2 on immune histochemistry (IHC).  

These classifications allowed for subtype-based approaches to treatment decisions such as 

hormone therapy for ER/PR-positive patients and Her2-directed treatments in those with Her2-

positive disease (36).  

Since then, molecular techniques such as RNA-seq and microarray gene expression 

analyses have advanced our knowledge of heterogeneity within breast cancer. In 2000, Perou 

and Sorlie classified breast cancer into 4 distinct molecular subtypes including luminal A, 

luminal B, basal-like and Her2-enriched subtypes (Table 1.1)(41).  This classification was based 

on a 50-gene expression signature (known as the PAM50 signature). A “normal-like” subtype 

was also proposed but the presence of this subtype is questioned from attribution of results to 

artifact from normal breast tissue(42). The 4 intrinsic subtypes have shown value in disease 

prognostication(43). Luminal tumours are associated with IHC-based HR-positive tumours, and 

the Ki-67 level on IHC was used to distinguish between Luminal A and Luminal B tumours on 

pathology(37,44). HER2-enriched subtype mapped to HER2-positive, ER/PR-negative disease 
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and Basal-like to triple-negative cancers. Notably, the clinical IHC-based subtypes and intrinsic 

molecular subtypes do not completely overlap (Table 1.2)(45), and several projects have 

attempted to increase concordance between these two sets of classifications(46,47).  Due to 

the better accuracy and reproducibility of gene expression-based subtypes, the St. Gallen 

international expert consensus panel have advocated for the use these molecular subtypes in 

developing therapy concepts for early-stage breast cancer(48). The intrinsic molecular subtypes 

have utility beyond the pathology-based classifications and have shown value in improving 

predictions regarding response to neoadjuvant systemic therapy and prognosis(45).   

Growing evidence suggests that the different molecular subtypes of breast cancer have 

distinct metastatic behaviour as well(49). While luminal subtypes of breast cancer metastasize 

to ALNs more frequently, systemic spread have been associated with the HER2 and basal 

subtypes(50). As such, it is imperative to explore the performance of any predictive model in 

breast cancer in the different disease subtypes. Understanding the molecular differences that 

are seen in the presence or absence of nodal metastasis in each subtype independently can 

potentially reduce the confounding effects of inter-subtype heterogeneity which may ultimately 

improve model performance.  

1.4 THE APPLICATION OF MACHINE LEARNING IN PREDICTION OF CANCER PROGNOSIS 

 Advancements in our understanding of tumour biology has fueled a push towards cancer 

care that is tailored to each individual patient(51). Improved technologies in genomics, 

transcriptomics, proteomics and epigenomics can generate complex sets of data on individual 

tumours, but achieving clinical utility with this data requires advanced statistical techniques 

that can facilitate the interpretation process. Machine learning algorithms which adopt a 
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myriad of statistical and optimization techniques have been utilized to interpret the growing 

body of cancer data to generate clinically relevant information such as risk of cancer recurrence 

and survival(52). Reviews of available machine learning models in cancer suggest a 15-20% 

improvement in the ability of these algorithms to predict cancer susceptibility, recurrence and 

mortality compared to traditional statistical methods such as logistic regression analyses(53). 

1.5 OBJECTIVES AND OVERVIEW OF CHAPTERS 

The objective of this thesis is to develop a predictive model of axillary metastasis based 

on molecular data that is specific to patients with early-stage breast cancers (size ≤5 cm and no 

clinical lymphadenopathy). My approach will be to explore the available evidence, analyze the 

molecular signatures associated with nodal metastasis, and finally, to develop predictive 

algorithms.  

To date, several models have been developed aimed at predicting the presence of nodal 

metastasis without invasive axillary procedures. In the following chapter of this thesis, I will 

discuss the available evidence on this topic. My literature search will explore various clinical, 

pathological, radiological, and molecular factors associated with axillary status,  and the 

performance of the developed predictive models.  

The third chapter will focus on a molecular analysis of differences contributing to axillary 

involvement in early-stage breast cancer using genomic data. As tumour size is the primary 

factor associated with lymph node involvement, we will focus our analysis on early-stage 

tumours (patients with size ≤ 5cm) to reduce the impact of large tumour size as a confounder. 

Our analysis will account for the previously established intrinsic molecular subtypes.  
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In the fourth chapter we will utilize the identified molecular differences based on nodal 

involvement to construct predictive models of axillary metastasis in early-stage breast cancer. 

Considering the various molecular subtypes as separate diseases, I will develop predictive 

models for each subtype independently to assess if this approach improves performance. In the 

final chapter I will summarize my findings, integrate the individual conclusions, and discuss their 

impact in the context of the current literature. I will also describe potential ways that my work 

could be extended in the future. 
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1.5 TABLES 

Table 1.1 The four intrinsic molecular subtypes of breast cancer, and surrogate clinical and 

pathological markers. Table from Szymiczek et al. 2021(37). 

Intrinsic 
subtype 

Surrogate IHC definition Prevalence 
[%] 

Prognosis 

ER PR HER2 Ki-67 Level 

Luminal A + + − Low (<14%) 30–70 Good 

Luminal B + + or − + or − High (≥14%) 10–20 Intermediate 

HER2-
enriched 

− − + Any 5–15 Poor but improved with 
anti-HER2 treatment 

Basal-like − − − Any 15–20 Poor 
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Table 1.2 The consensus between PAM50 intrinsic molecular subtypes and IHC-based clinical 

subtypes. Table from Prat et al. 2015(45).  

IHC-based group N PAM50 intrinsic subtype distribution 

Luminal A Luminal B HER2-enriched Basal-like 

HR+/HER2− 4295 60.3% 31.9% 6.6% 1.2% 

Luminal A 637 62.2% 27.0% 10.2% 0.6% 

Luminal B 317 34.1% 51.1% 11.0% 3.8% 

HER2+ 831 17.6% 26.8% 44.6% 11.0% 

HER2+/HR+ 182 33.0% 46.2% 18.7% 2.2% 

HER2+/HR− 168 19.0% 4.2% 66.1% 10.7% 

TNBC 868 1.6% 3.2% 9.1% 86.1% 
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CHAPTER 2: PREDICTORS OF AXILLARY INVOLVEMENT IN EARLY-STAGE BREAST CANCER: 

SYSTEMATIC REVIEW 

2.1 INTRODUCTION 

The treatment of breast cancer and its lymph node basin in the axilla has evolved 

significantly over the past decades(1). In parallel to a shift towards breast conserving surgery, 

studies supporting de-intensification of surgery in the axilla have moved practice away from 

axillary lymph node dissections (ALNDs) in early-stage breast cancers. The National Surgical 

Adjuvant Breast and Bowel Project (NASBP) B-32 trial revealed that sampling sentinel lymph 

nodes (SLNs) can provide reliable staging of the axilla in patients without clinically evident 

lymphadenopathy(2), avoiding the significant morbidity associated with ALNDs(3,4).  

Axillary lymph node involvement can be as infrequent as 20% in early-stage breast cancer 

patients without palpable lymphadenopathy(5). Despite this, available major guidelines 

recommend SLN biopsy (SLNB) for staging of the axilla in this patient group(6,7). Although less 

morbid than an ALND, SLNB still exposes patients to risks of complication, including wound 

infections, seroma formations, hematoma, nerve injury and lymphedema(8,9). In addition, 

SLNB is a resource intensive operation often requiring pre-operative localization of the lymph 

nodes by radiology and extended time in the operating room. This identifies a clinical need for 

predictive models that would distinguish patients with low risk of axillary involvement in whom 

invasive axillary staging can be omitted. 

Recognition of patients at high risk of axillary involvement also has important value in 

pre-operative treatment decisions. Neoadjuvant chemotherapy has been shown to be effective 

at downstaging the axilla in patients with biopsy-proven axillary metastases(10). SLNB can 
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appropriately stage the axilla after neoadjuvant chemotherapy but is inaccurate if done twice 

due to the high false negative rates found in the SENTINA trial(11). Hence, non-invasive 

classification of early-stage breast cancer patients with high risk of axillary metastases, but no 

palpable lymphadenopathy, can enable clinicians to identify candidates for neoadjuvant 

chemotherapy administration, potentially sparing them of further ALND or irradiation.  

In this review we explored the literature to identify the various clinical, histopathological, 

radiological, and molecular factors that have been associated with axillary lymph node (ALN) 

involvement in patients with early-stage breast cancer and examine the models developed for 

predicting cancer metastasis in the ALNs .   

  



 19 

2.2 MATERIALS AND METHODS 

A comprehensive search of the literature was completed through PubMed and Web of 

Science to identify publications examining axillary metastases in early-stage breast cancers 

(search terms provided in Table 2.1). Inclusion criteria was set for primary research articles in 

English, with full text available, published before July 2021, patient population comprised of 

women with invasive breast carcinoma, no clinically palpable lymphadenopathy (or multivariate 

analysis conducted with clinical nodal stage), tumour size of ≤ 5cm (or multivariate analysis 

conducted with tumour size or T stage). Exclusion criteria included studies investigating 

patients receiving neoadjuvant chemotherapy, patient cohort with only micro-invasive disease 

or uncommon breast cancer subtypes (such as metaplastic carcinoma), or those employing 

invasive axillary sampling (such as fine needle aspiration). A manual search of the bibliographies 

of the selected articles was also conducted. Abstract and full-text review were completed by 

two authors independently. The Prediction model study Risk of Bias Assessment Tool 

(PROBAST) was used to assess for risk of bias and explore study quality(12).  
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2.3 RESULTS 

Of the 1809 studies that resulted from the literature search, 59 met the selection criteria 

(Figure 2.1). Figure 2.2 outlines the various clinical, histopathological, molecular and 

radiological variables considered in the included articles. Supplementary Table 2.1 provides a 

comprehensive description of cohort characteristics and the models derived in each of the 

studies. Below, we highlight some of these variables and models. 

 

2.3.1 Clinical patient and tumour factors 

Age 

Younger age has been associated with a statistically significant increased risk of ALN 

involvement in multiple studies (Figure 2.2). Age as a variable was treated differently in various 

cohorts, either as a continuous variable or as a categorical variable with inconsistent age 

groupings. Reyal et al. showed in their cohort of 1543 patients that age of diagnosis > 60 had an 

odds ratio (OR) of 0.56 (95% CI [0.4-0.7]) for axillary metastasis in the training model, and 

similar results were shown with two validation datasets(13). Ding et al. found that age < 40 was 

associated with a hazard ratio (HR) of 2.188 (95% CI [1.198–4.001])(14). Other studies such as 

Choi et al. and Dihge et al. treated age as a continuous variable and showed OR of 0.96 (95% CI 

[0.92–0.99]) and 0.98 (95% CI [0.96-1.00]) per year respectively(15,16). A bimodal effect, with a 

return of increasing risk of lymph node involvement in the older patients has also been 

suggested in other studies not specific to early-stage breast cancers(17). More aggressive 

tumour biology in younger patients, and a potential lack of appropriate immunologic response 



 21 

in the elderly have been proposed as potential explanations for a biphasic association with 

lymph node involvement.  

Menopause Status 

Menopausal status can relate to both age and hormone exposure. Post-menopausal 

women were found to have a reduced risk of sentinel lymph node metastasis in several studies 

(in Chen et al. OR=0.78, 95% CI [0.66-0.93])(18,19). In 2 other cohorts where age did not 

correlate with sentinel lymph node involvement, neither did menopausal status(20,21).  

Race 

The rate of ALN metastasis was found to be highest in black women under 50 years of age 

in a multivariate model based on age, tumour size and race(22), underlining the potential 

importance of racial differences in disease presentation. 

Diabetes and Obesity 

Diabetes may be associated with an elevated risk of breast cancer(23). Minami et al. 

investigated the correlation between impaired glucose tolerance (as defined by hemoglobin A1c 

>6.0%), and found it to be an independent predictor of axillary metastasis in multivariate model 

(OR 2.560, 95% CI[1.11–5.88])(20). Increased Body Mass Index (BMI) has not been shown to be 

a predictor of axillary involvement in several models of axillary involvement (studies outlined in 

Figure 2.2).      

Tumour Size 

Tumour size is the most widely utilized factor in predictive models. Like age, size of the 

tumour has been treated either as a continuous variable or a categorical variable (based on T 

staging). Furthermore, the size can be derived either from the pre-operative clinical information 
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or from the post-operative pathology specimen. Regardless of the methodology, most studies 

found an association between larger tumours and increased risk of ALN involvement. Martin et 

al. investigated the significance of clinically examined tumour size in 795 women with tumours 

≤ 4cm and clinically negative axilla, and found the clinical T stage to be a statistically significant 

factor for axillary metastasis in univariate and multivariate models (p=0.0003 and 0.0007 

respectively)(24). In a Chinese cohort of 1000 patients undergoing SLNB, tumour size on 

pathology specimen was treated as a continuous variable, and yielded an OR of 1.409 (per cm, 

95% CI [1.203-1.651], p<0.001) in their multivariate model (25). Other studies incorporating the 

tumour size in their models are outlined in Figure 2.2. Smaller breast size(24) and larger 

tumour-to-breast volume ratio(26) have also been proposed as predictive factors, although 

these have not been routinely utilized in most models.  

Tumour Location 

While the laterality of the tumour (left or right breast) has no correlation with axillary 

status(14,20,27), tumour location within the breast can change the likelihood of axillary 

metastasis. Zhang et al. showed central tumours to be associated with axillary involvement, 

noting the abundance of lymphatics in this area as a possible explanation(28).  In another 

multivariate model, upper-inner quadrant tumour location was an independent predictor of 

lower risk of SLN metastasis compared to upper-outer quadrant tumours (OR 0.563, 95%CI 

[0.397-0.895], p=0.002)(25). In the same study, no significance was noted between central and 

upper-outer quadrant tumours (p=0.377)(25). Martin et al.’s cohort of patients had axillary 

involvement in 30.2% of outer tumours, 21.3% of central tumours and 19.2% of inner tumours 

(chi-squared p=0.0041)(24). Minami et al. utilized nipple-to-tumour distance measurements to 
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quantify the tumour location, and found that increased nipple-to-tumour distance to be 

independently associated with a decreased risk of SLN metastasis in their multivariate model 

(OR=0.773 per 1 cm increase in distance, 95% CI [0.638-0.937], p=0.009)(20). Other studies did 

not find tumour location to be an independent variable in their multivariate models(29,30). 

Other clinical factors 

Notable factors in patient history such as gravidity and family history have not been found 

to be associated with sentinel lymph node status(20). Studies utilizing more infrequent patient 

and tumour characteristics, such as palpability of primary tumour, bilateral cancer, mode of 

cancer detection and mode of SLN detection are illustrated in Figure 2.2. Three groups in our 

included studies did not exclude patients with clinically positive axilla, and instead, integrated 

clinical nodal stage in their multivariate model. In 2 of these models, clinical nodal stage was 

independently associated with pathologically positive axilla (31,32). Yu et al. incorporated 

clinical nodal stage with other clinical variables and radiological factors to create their pre-

operative predictive model of axillary involvement(33).  

  

2.3.2 Histopathological factors 

Lymphovascular Invasion 

The presence of lymphovascular invasion (LVI) suggests tumour access to pathways for 

metastasis, and as such, has been a strong predictor of axillary involvement in many included 

models (Figure 2). In Chen et al.’s training cohort of 1000 patients undergoing SLNB, the 

presence of LVI had an OR of 8.856 (95% CI [6.112-12.833]) for SLN metastasis(25).  A 

multivariate model based on a Canadian cohort of 405 SLN biopsies showed LVI to be an 
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independent predictor of SLN involvement (OR 10.736, 95% CI [6.065-19.004])(34). In a model 

based on patients with T1c tumours from Croatia, LVI showed an OR of 3.681 (95% CI [1.393-

9.724])(26). In another study utilizing ultrasound findings with clinicopathological variables, LVI 

had an OR of 6.755 (95% CI [4.248–10.741]) in their final model(35). Vascular invasion 

specifically reduced the likelihood of node negative disease in other models(36–38). On the 

other hand, in the model developed in Fujii et al., only lymphatic invasion was an independent 

variable (HR 8.381; 95%CI 4.023-17.436, p<0.001) and the presence of vascular invasion was 

not statistically significant(39).  

Histologic Type 

The histologic type of the tumour was investigated as a variable within several studies 

(Figure 2.2), with some showing association with axillary status. Viale et al. noted that 

favourable histology (medullary, cribriform, tubular, mucinous tumours) had lower odds of 

axillary involvement compared to ductal carcinoma (OR=0.55 95%CI[0.39–0.78], p=0.007) in 

their multivariate logistic regression model(40). Special tumour types (defined as colloid, 

medullary or tubular) were independently associated with negative axilla in the Memorial Sloan 

Kettering Cancer Center (MSKCC) cohort(41). Similarly, tubular carcinomas had less axillary 

involvement in a multivariate model constructed from the Korean Breast Cancer Registry(42).  

Infiltrating lobular carcinoma was an independent predictor of lower rates of SLN involvement 

in a multivariate model of 1506 patients undergoing SLNB in Belgium (OR 0.49, p=0.003)(43). In 

contrast, histologic type of tumour as categorized into “invasive ductal carcinoma” and 

“others”, was not associated with SLN status in univariate or multivariate analyses in another 

study (20). 



 25 

Tumour Grade 

Nuclear grade was not associated with axillary involvement in most included studies 

(Figure 2.2). Histologic grade on the other hand was built into multiple multivariate models and 

showed statistical significance. In a cohort of 324 patients undergoing SLNB, advanced 

histologic grade was an independent predictor of axillary status in the final model with an OR of 

1.415 (95% CI [1.004-1.996], p=0.048)(44). The model from the cohort in Qiu et al. incorporated 

histologic grade with an OR of 1.696 (1.316-2.186)(30).  

Multifocality 

Tumour multifocality may signify higher tumour burden than suggested by the disease T 

stage, which only considers the diameter of the largest invasive focus. In an Italian study with 

4351 breast cancer patients undergoing SLNB, the presence of multifocality had an OR of 1.78 

(95% CI [1.41–2.24]) in the multivariate model of SLN involvement (40). Similarly, Qiu et al. 

showed multifocality to be an independent predictor of SLN positivity in their cohort of 1227 

patients with an OR of 6.578 (95% CI [1.787-24.219])(30). In a Swedish multivariate model 

based on 692 patients, unifocal disease was a favourable independent predictor for node 

negative disease (OR=1.72, 95% CI [1.11-2.65])(16). Multifocality is also one of the independent 

variables within the Bevilacqua et al.’s MSKCC nomogram(41). Other studies utilizing tumour 

multifocality in their analyses are outlined in Figure 2.2.   

Other Histopathological Factors  

Across the various studies, many other histopathological variables were inconsistently 

explored, including tumour margin characteristics, characteristics/extent of ductal carcinoma 

in-situ (DCIS) or lobular carcinoma in-situ (LCIS) within the tumour specimen, neuroinvasion, 
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microvascular density (MVD), lymphovascular density (LVD), host immune reaction/tumour 

infiltrating lymphocytes (TILs), presence of extensive intraductal carcinoma (EIC), breast 

glandular content percentage and calcifications (Figure 2.2).  

 

2.3.3 Molecular factors 

Hormone Receptors (HRs) 

The predictive value of HR positivity for lymph node involvement is controversial (Figure 

2.2).  In the MSKCC cohort, estrogen receptor (ER) and progesterone receptor (PR) positive 

status were both included in the final nomogram as independent predictors of SLN 

metastasis(41). The multivariate model based on the Korean Breast Cancer Registry also 

showed positive ER and PR status to be statistically notable variables with OR of 1.37 (95% CI 

[1.24-1.50]) and 1.16 (95% CI [1.06-1.26]) for axillary involvement, respectively(42). Qiu et al. 

also found ER and PR to be independent predictors in their model (ER OR 1.698, 95% CI [1.22-

2.335] and PR OR 1.517 95% CI [1.110-2.074])(30). Viale et al. found only PR status to be 

statistically significant in their multivariate model (PR negative had OR=0.73 95% CI [0.59-0.90] 

for SLN involvement)(40). In another cohort, the combined hormone receptor status (ER+ or 

PR+) was only significant in univariate analysis(45). In comparison, several other studies did not 

find ER or PR status to be associated with axillary involvement in their 

analyses(14,15,19,20,39,45–49).  

Her2 Receptor Status 

 Most included studies did not find the tumour Her2/neu status to be independently 

significant as a variable in their statistical models of SLN metastasis (Figure 2.2). The subtype of 
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the tumour, as determined by the status of ER, PR and Her2, has been utilized in several 

nomograms. Triple-negative tumour type (defined as negative for ER, PR and Her2) was a 

favourable factor in predicting node negative disease in the Dihge et al. cohort (OR 5.06, 95% CI 

[1.89-13.50])(16). Similarly, Mao et al.’s predictive model of SLN metastasis included triple-

negative subtype status as an associated variable with axillary metastasis, showing an OR of 

0.506 (95% CI [0.307–0.835])(44). Marrazzo et al. also found triple-negative status to be an 

independent negative predictor of SLN metastasis(38). Zhang et al. found tumors with the 

luminal subtype to exhibit an increased odds of axillary involvement in their multivariate model 

compared to triple-negative tumours (OR 1.380, 95% CI [1.059-1.799]), but Her2-enriched vs. 

triple-negative subtype was not statistically significant (OR 1.152, 95% CI [0.764-1.737])(28). 

Markers of Cell Proliferation 

 Several studies have investigated variables linked with tumour cell proliferation, such as 

S-phase fraction, Ki-67 index and mitotic index (Figure 2.2). The analysis of tumour cells by flow 

cytometry by Ahlgren et al. showed that samples with an S-phase fraction ≥ 10% was associated 

with increased axillary involvement in tumours < 5cm and clinically negative axilla (OR 1.68 

[95% CI 1.15-2.42], p=0.0073)(50). Similarly, Ki-67 expression was an independent predictor of 

axillary involvement in multivariate models when treated as a continuous variable (per 1% 

increase, OR=1.02, 95% CI [1.00-1.04])(51) or as a categorical variable (≥10% expression, 

OR=1.35, 95% CI [1.08-1.24])(42). In contrast, other studies incorporating Ki-67 expression did 

not find this variable to be an independent predictor within their models(20,40,48,52).  

Other Molecular Factors 
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 Britto et al. evaluated D2-40 and VEGF-A expression with immunohistochemistry (IHC) 

and did not find them to improve SLN status prediction in early breast cancer(19). Yoo et al. 

evaluated D2-40 and CD34 by IHC, and similarly did not find either variable to be independent 

predictors of axillary involvement in their model(48). P53 expression was evaluated with IHC in 

2 studies, and its expression level was not associated with axillary involvement(15,21).  

 IHC with CD31 antibodies can be used as markers of neovascularization, and previous 

work has shown its expression to correlate with tumour cell spreading within breast ductal 

systems(53).  Choi et al. found that CD31 staining was an independent predictor of ALN 

involvement (OR 2.90, 95%CI [1.04-8.92]) within their multivariate model, which included MRI 

features(15). Kiss-1, nm-23 and Cath-D expressions were evaluated by IHC, and only Kiss-1 

expression was found to have value in predicting lowered risk of ALN metastasis in the 

multivariate model (OR 0.114, 95%CI [0.019-0.693])(21).  

Okuno et al. investigated microRNA (miRNA) expression levels in cT1-3N0 ER+, Her2- 

tumours. Through microarray, they identified that miRNA-98, 22 and 223 were differentially 

expressed between SLN+ and SLN- patients(54). A multivariate model was constructed showing 

that miRNA-98 expression level was an independent predictor of SLN status (p=0.001)(54). In a 

separate study, the hypermethylation status of the RAR-b2 gene was an independent predictor 

in the multivariate model, with a greater risk for a macro-SLN metastasis compared with micro-

SLN or no SLN involvement (OR=1.595, 95%CI [1.16-1.93], and OR=3.86, 95% CI [1.65-9.00] 

respectively)(55). 

Predictive markers have also been sought in peripheral blood samples. In a multivariate 

logistic regression model that included tumour size, Ki67 index and molecular subtypes, 
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increased blood levels of CA153 (OR 1.165, 95% CI [1.061-1.279]), CEA (OR 3.440, 95% CI 

[1.859-6.366]) and white blood cells (OR 1.475, 95% CI [1.077-2.022]) were independent 

predictors of axillary involvement(52). Takada et al. found that a high peripheral blood platelet 

to lymphocyte ratio to be predictive of SLN metastasis in univariate and multivariate 

analyses(45).  

 

2.3.4 Radiological factors 

Imaging modalities such as mammography, lymphoscintigraphy, ultrasound (US) of the 

tumour and axilla, MRI of the tumour and axilla and fluorodeoxyglucose-positron emission 

tomography (FDG-PET) scans have been utilized to extract variables of value in predicting the 

status of the axilla (Figure 2.2). 

Mammography 

 On mammography, radiating spiculations was not an independent predictor of axillary 

involvement in a multivariate logistic regression model based on a Japanese cohort(31).  

US 

US characteristics derived from both tumour and ALNs can be important variables to 

consider. Jiang et al. looked at 130 early-stage breast cancer patients and found that on 

univariate analysis with the training group, tumour circularity, internal microcalcification and 

US-reported axillary status differed between patients with and without ALN involvement(56). 

The constructed multivariate model was only based on tumour circularity and US-ALN status 

(both factors independently significant, p<0.001). Hu et al. found indistinct tumour margins, 

calcifications, and tumour aspect ratio of ≥ 1 as seen on US to be independent variables in their 
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model(51). Yu et al. used radiomics to extract features from US images of the tumour and 

combined it with US-reported axillary status and clinicopathological variables to construct their 

model of axillary involvement(49). Other studies utilizing US images in their analyses are 

included in Figure 2.2.  

MRI 

An increasing number of studies have been incorporating MRI findings in their models of 

axillary involvement. Choi et al. combined findings from dynamic contrast-enhanced (DCE) and 

diffusion-weighted images (DWI) from MRI with clinicopathological variables in their study(15). 

Three other authors incorporated DWI images in their analyses(33,37,57). Others utilized MRI 

sequences include T1 images with contrast(33), fat-suppressed T2 images(58) and T2-weighted 

images(33,37,57). Characteristics extracted from MRI images of the axilla were also utilized 

(Figure 2). Irregularity of lymph node margins and lymph node asymmetry on MRI both reduced 

the odds of lymph node negative disease in 397 early-stage breast cancers, with OR of 0.17 

(95% CI [0.047-0.609]) and 0.258 (95% CI [0.114-0.585]) in their multivariate model(37).  

Lymphoscintigraphy and FDG-PET 

In the pre-operative lymphoscintigraphy, the presence of abnormal lymphatic pathways 

was associated with an increase in SLN metastasis(59). The authors discuss metastasis-related 

obstruction of lymphatic pathways and subsequent development of new lymphatic pathways as 

the result of increased hydro-pressure as a possible explanation. Noguchi et al. found sentinel 

lymph node count measures after lymphoscintigraphy in T1N0M0 breast cancers to be lower in 

patients with SLN metastasis(60). FDG PET/CT scans also provided radiologic variables included 
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in predictive models, namely the total lesion glycosis, metabolic tumour volume, and SUVmax 

measurements (Figure 2).  

 

2.3.5 Predictive models of axillary metastasis 

 The most frequently validated model was the MSKCC nomogram that developed based 

on a 3786-patient modeling cohort(41).  This model, which relies on tumour size, histologic 

type, location, age, multifocality, nuclear grade and ER/PR receptors, achieved an area under 

the curve (AUC) for Receiver-Operator Characteristics (ROC) curve of 0.754 in the validation 

cohort (n=1545). The MSKCC nomogram has been tested in independent Australian(61), 

Canadian(34), Chinese(25,30,62), German(63), Japanese(54) and Dutch (64) cohorts.   

Numerous other studies have utilized a combination of clinical and histopathological 

variables to construct their predictive models. In a Chinese study, multivariate logistic 

regression analysis with only 4 variables (age, tumour size, tumour location and LVI) from the 

modelling cohort (n=1000) led to a final model with an AUC of 0.7649 in the validation cohort 

(n=545)(25). By comparison, the MSKCC nomogram yielded an inferior AUC of 0.7105 in this 

modeling cohort. Elmadahm et al. validated this model in their cohort of 982 patients with an 

AUC of 0.71 (95% CI of 0.67-0.75) for the ROC curve(61).  

Datasets from the Korean Breast Cancer Registry yielded a clinicopathological model with 

an AUC of 0.750 in both training (n=29326) and validation (n=12569) datasets(42). In another 

study, Houvenaeghel et al. constructed multivariate logistic models of SLN status in 12572 

patients with small (≤ 30mm) invasive breast cancer and clinically negative axilla using 

clinicopathological variables(65). The resulting model had and AUC of 0.798 (95% CI 0.78-0.815) 
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for the ROC curve in the validation dataset. Given that the size of tumour on pathology and LVI 

are unavailable on biopsy specimens, they also constructed a “pre-operative” model 

substituting clinical T stage with size and removing LVI. This “pre-operative” model had a lower 

AUC of 0.727 (95% CI of 0.707-0.746). 

Another clinicopathological model developed from a large cohort of breast cancer 

patients from 7 centres across China led to a final nomogram based on age, clinical T stage, 

tumour location, local invasion, histologic and molecular subtypes (28). This model achieved an 

AUC of 0.7157 in the training (n=1869) and 0.7007 in the validation cohorts (n=642)(28).  

 Chen et al. utilized clinicopathological variables to develop a predictive model of axillary 

involvement in patients with no ALN involvement based on clinical and US examinations(18). 

Despite negative US results, 25.6% of patients had SLN metastasis, and their predictive model 

(based on tumour size, menstrual status, histologic grade, and ER status) had poor predictive 

value with an AUC of 0.658 for the ROC curve.  

The addition of molecular markers can improve the performance of predictive models. 

Okuno et al. investigated miRNA expression levels in clinically T1-3N0 ER+/Her2- tumours, and 

after stepwise analysis with multivariate logistic regression, the resulting model was based on 

tumour size, LVI and miRNA-98 expression. This model showed an AUC of 0.883 (0.807-0.958) in 

the validation cohort, and performed better than a model based on tumour size and LVI alone, 

and better than the MSKCC models in both training and validation cohorts. Xie et al. 

incorporated immunostaining for nm-23 and Kiss-1 proteins along with clinicopathological 

variables to achieve an AUC of 0.849 in the training (n=50) and 0.702 in the validation (n=20) 

cohorts of patients with pathological T1-2 disease and clinically negative ALNs(21). 
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Although most of the included studies used multivariate logistic regression to arrive at 

their predictive models, others utilized more complex machine learning techniques. Dihge et al. 

developed an artificial neural network model of axillary status based on clinicopathological 

factors in 800 breast cancer patients with clinically negative axilla(36). Their model had a better 

AUC (0.727, 95% CI [0.708-0.746]) in internal validation tests compared to linear multivariate 

logistic models, although the superiority of this model was not statistically significant (p=0.09). 

Liu et al. used Bagged-trees machine learning algorithms to create a model based on 12 

clinicopathological variables on early-stage breast cancer patients with an AUC of 0.801(27) for 

the ROC curve. This approach for predictive model development was better than the traditional 

logistic regression model, which showed an AUC of 0.660 and 0.580 for training and validation 

cohorts respectively.   

The inclusion of radiological variables can also improve the performance of predictive 

models. In a multivariate model constructed with clinicopathological and US findings in breast 

cancer patients, an AUC of 0.92 and 0.82 for ROC curves was achieved in internal and external 

validations cohorts(51). Another model based on tumour circularity and US-ALN status achieved 

an AUC of 0.89 (95% CI [0.84–0.94]) and 0.90 (95% CI [0.80–0.99]) on training and validation 

cohorts(56). Zong et al. developed a nomogram for predicting ALN involvement based on US 

features of tumour and axilla with an AUC of 0.873 (95% CI, 0.836-0.910) in the development 

(n=847), and 0.802 (95% CI, 0.740-0.865) in the validation cohort (n=481) (35). Interestingly, the 

inclusion of clinical factors did not improve the performance of their models.  

Recent studies have been utilizing machine-learning algorithms with radiomics feature 

extraction to derive predictive models of axillary involvement. Pre-operative US-based 
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radiomics analysis was shown to improve the performance of the MSKCC nomogram in cohort 

of 452 patients with breast cancer undergoing SLNB(62).  Zhou et al. trained various 

convolutional neural network algorithms to use US images in cT1-2N0 patients (n=680), and the 

best model achieved an AUC of 0.89 (95% CI, 0.83-0.95) in the independent validation cohort 

(n=78)(66). Notably, this model outperformed clinical interpretation by trained radiologists in 

predicting ALN involvement based on primary tumour’s US features. Yu et al. extracted a 

radiomics score from US images of the primary breast tumour in clinically T1-2N0 patients using 

the LASSO algorithm, and in combination with age, US reported tumour size, US reported ALN 

status, developed a model for ALN prediction with AUC of 0.84 (95% CI 0.71-0.82) in the 

primary (n=300) and 0.81 (95% CI 0.74-0.88) in the validation (n=126) cohorts(49). 

A clinicoradiomics model of ALN metastasis was developed using a combination of clinical 

(cT stage, cN stage, histologic grade, age and Her2 status) and radiomic (T1+C, T2WI, and DWI-

ADC sequences from MRI images of breast tumour and axilla) signatures and yielded an AUC for 

ROC curve of 0.92 in the development (n=849) and 0.90 in the validation (n=365) cohorts(33). 

Intravoxel incoherent motion MRI is a DWI technique, which in addition to T2 weighted-imaging 

features led to a multivariate model with AUC of 0.785 for prediction of ALN involvement a 

cohort of patients with T1-2 disease and clinically negative axilla(57).  In a separate study 

incorporating clinicopathological, MRI and US imaging factors in 397 early-stage breast cancer 

patients with clinically negative ALNs, Li et al. developed a model with an AUC of 0.809 (95% CI 

of 0.756-0.863). The addition of pathological variables including vascular invasion and Her2 

status did not improve the model. Ding et al. noted that optimization of peritumoral feature 

inclusion could improve model performance from an AUC of 0.704 to 0.796(67). 
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2.3.6 Quality assessment 

PROBAST was used to assess the risk of bias, with details provided in Supplementary 

Table 2.1. Most studies (33 of 59, 55.9%) only used one patient cohort, and did not validate 

their findings. 23 of 59 studies (39.0%) included both development and validation cohorts, and 

the remaining 3 studies (5.1%) validated previous models in independent cohorts. The lack of 

validation datasets was the main expressed concern regarding the risk of bias in the included 

papers. From the applicability perspective, LVI was frequently included in predictive models 

despite known low pre-operative accuracy when assessed on core biopsy specimens.  
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2.4 DISCUSSION 

Non-invasive determination of ALN metastasis in early-stage breast cancers can have an 

impact on clinical decision making. Patients with clinically occult axillary involvement can 

benefit from pre-operative chemotherapy, while still retaining the possibility of a SLN biopsy 

after their treatment. On the other hand, patients with a low risk of axillary involvement  may 

be spared an invasive sampling of their ALNs, and thus, be spared from the morbidity and 

operative resources required for these procedures.  

Despite the development of a multitude of nomograms and predictive models, SLN biopsy 

remains the standard of care for staging of the ALNs in most early-stage breast cancer patients. 

Recent guidelines support a discussion with older patients (70 years or older) and HR-positive 

tumours regarding omission of axillary surgery, citing no difference in terms of survival 

outcomes for these patients. The ongoing SOUND trial (Sentinel Node vs Observation After 

Axillary Ultra-souND, https://clinicaltrials.gov/ct2/show/NCT02167490) is investigating if SLNB 

can be safely avoided in patients with clinically T1N0 breast cancers and negative axilla on pre-

operative imaging. In another ongoing trial, the INSEMA trial (Comparison of Axillary Sentinel 

Lymph Node Biopsy Versus no Axillary Surgery, 

https://clinicaltrials.gov/ct2/show/NCT02466737), early-stage breast cancer patients with 

clinically negative axilla are randomized to axillary sampling or no axillary surgery, and the 

primary outcome of invasive disease-free survival is being investigated between these groups. 

The results of these ongoing trials may lead to a reduction in the rates of ALN surgery 

performed in this cohort of patients.  
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A limitation of this study is the notable number of papers that were excluded from this 

review due to failure to either restrict the population to tumours ≤ 5cm and clinically negative 

axilla, or to conduct multivariate analyses with these variables. Although we understand that 

there can be subjective bias in the examination of the axilla in breast cancer patients, inclusion 

of patients with large tumours or high metastatic burden in their axilla can introduce variability 

in the modelling populations, and hence, such models may not be readily applicable to the 

patient population under investigation in the current study.  

This review highlighted the various patient factors and the numerous resulting models 

that have been developed to predict axillary involvement in patients with early-stage breast 

cancer and clinically negative axilla. We expect that further development of these predictive 

models will have a consequential impact on the decision to undergo axillary surgery and the 

timing of these procedures for patients. Future prospective randomized-controlled trials are 

needed to confirm the clinical utility of pre-operative predictive models of axillary involvement.  
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2.5 FIGURES 

 

Figure 2.1 – PRISMA chart outlining the number of studies included and excluded in each step 

of the systematic review. 
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Figure 2.2 – Compilation of factors studied in relation to axillary involvement in early-stage breast cancers.  
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2.6 TABLES 

Table 2.1 – Search terms used to find articles in the databases for the systematic review. 

Database Search terms 

PubMed (predict*[Title] OR model*[Title] OR tool*[Title] OR 
nomogram*[Title] OR decide*[Title] OR decision*[Title] OR 
signature*[Title] OR profile*[Title] OR marker*[Title] OR 
biomarker*[Title] OR "risk factor"*[Title]) AND (axilla*[Title] OR 
lymph*[Title] OR node*[Title]) AND (breast[Title] OR Ductal[Title] OR 
Lobular[Title]) AND ("0001/01/01"[PDat] : "2021/07/01"[PDat]) AND 
English[lang] 

Web of 
Science 

(TI=(predict*  OR model*  OR tool*  OR nomogram*  OR decide*  O
R decision*  OR signature*  OR profile* OR marker* OR 
biomarker*)  AND TI=(axilla*  OR lymph  OR lymphatic*  OR node*)  AND 
TI=(breast  OR Ductal  OR Lobular)  NOT TI=pancrea*)  AND LANGUAGE: (
English) 

Refined by: DOCUMENT TYPES: ( ARTICLE ) 
Timespan: 1900-2021.  
Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI. 
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CHAPTER 3: THE MOLECULAR LANDSCAPE OF EARLY-STAGE BREAST CANCER WITH AXILLARY 

METASTASIS 

3.1 INTRODUCTION 

Breast cancer has become the most diagnosed cancer world-wide(1). Axillary lymph 

nodes (ALNs) are the primary site of metastasis for breast cancer, and the involvement of ALNs 

at the time of diagnosis relays necessary information about disease stage and prognosis(2). For 

that reason, current guidelines rely on the status of ALNs to recommend important clinical 

decisions regarding cancer treatment, including neoadjuvant and adjuvant chemoradiation and 

the extent of axillary surgery(3,4).  

Lack of palpable lymphadenopathy on clinical examination is an inaccurate predictor of 

axillary status(5,6). As such, invasive surgery to sample lymph-nodes in the form of sentinel 

lymph-node biopsy (SLNB) remains the standard of care for patients with early-stage breast 

cancer and clinically negative axilla(4). The consequences are far-reaching, including morbidity 

for patients(7) and expenditure of the limited operative time existing within the healthcare 

system.  

Characterization of differences in the genetic landscape of the early-stage breast cancers 

with nodal involvement is clinically important, as it may aid with risk stratification of tumours 

based on the pre-operative tissue biopsy. Expression-based nomograms, such as Oncotype DX™ 

(a commercial test developed by Genomic Health, Redwood City, CA, USA), have already proven 

useful in selecting patients that would benefit most from adjuvant systemic therapy, but none 

have been established to inform neoadjuvant therapy decisions(8). Additionally, an accurate 
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pre-operative model may spare low-risk patients from an invasive operation to stage their 

disease. 

Several molecular subtypes with divergent biology have been established in breast 

cancer, and growing evidence supports a subtype-specific approach to their diagnosis and 

treatment. As such, it would be important for an investigation of genetic differences that 

contribute to ALN metastasis to account for the heterogeneity that is inherently related to each 

established molecular subtype. A previously published exploration for a molecular signature of 

nodal metastasis in breast cancer was not successful, despite accounting for the molecular 

subtypes, with the authors concluding that factors outside of the primary tumour such as 

alterations in ALN microenvironment can lead to the establishment of metastatic deposits(9). In 

contrast, another study employing machine learning algorithms to RNA sequencing data led to 

predictive models of lymph-node involvement with improved performance compared to using 

clinical variables alone(10). It is notable however, that these models were not developed or 

validated specifically for the patient population that would most benefit from risk stratification, 

those with early-stage disease and no clinically evident lymphadenopathy. These analyses were 

also limited to data from RNA expression and did not account for potential differences in other 

molecular components, such as DNA mutations or microRNA (miRNA) profiles. 

To better understand the molecular changes associated with lymph node metastasis, the 

molecular profile of early-stage tumours for patients undergoing SLNB was analyzed in this 

study. To maximize chances of finding molecular signature associated with ALN-positive 

disease, our comparison accounted for the intrinsic subtype of cancer, and included multiple 
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platforms, including single-nucleotide variation (SNV), copy number alterations (CNA) in DNA, 

as well as messenger RNA (mRNA), miRNA, and protein quantification.  
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3.2 MATERIALS AND METHODS 

Clinical data analysis 

Survival data was downloaded from Liu et al. supplementary tables (11). PAM50 

molecular subtypes were downloaded from Berger et al. (12), and samples with subtype 

“normal” (normal breast-like) were excluded. Clinical datasets were downloaded from Broad 

Institute Firehose databases (Version 2016_01_28, firebrowse.org, n=1097) 13. All tables were 

merged, removing samples not included in all tables. Patients who received neoadjuvant 

chemotherapy were removed. 

Tumour size was restricted to T-stages of T1 and T2, and samples missing this information 

were excluded. TCGA data does not provide information regarding clinical stage of the axilla at 

the time of presentation. To select for patients without clinically palpable ALNs, we investigated 

the axillary staging method for the remaining patients and selected for patients who received 

SLNB +/- ALND (n=431). Patients with metaplastic carcinoma or unassigned histologic diagnosis 

were removed (n=414). To clarify the Her2 receptor status, assignment was based on IHC 

method, but if IHC results were equivocal or not available, then fluorescent in-situ hybridization 

results were included.  For the menopause state, pre was defined as <6 months since LMP 

without prior bilateral ovariectomy and not on estrogen replacement, peri as 6-12 months since 

last menstrual period, and post as prior bilateral ovariectomy or >12 months since last 

menstrual period (LMP), with no prior hysterectomy.  

Clinical characteristics were compared between node positive and negative patients. 

Mann-Whitney U test was used to compare age. Fisher’s exact test was used to compare 

histology, T stage, M stage, ER status, PR status and Her2 status. Pearson’s chi-squared test was 
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used to compare menopause status and molecular subtypes. The α threshold of significance 

was set at 0.05.  

 

DNA data analysis 

Level 3 oncotated SNV data and copy number alteration data were downloaded from Broad 

Institute firebrowse website(13). Samples not included in the previously created clinical 

datasets of early-stage patients were excluded. This left 220 breast cancer patients with 

negative and 143 patients with positive ALNs. Maftools package (version 2.6.05) was used in R 

Statistical Environment for DNA analysis(14). Duplicated and silent SNVs were removed.  The 

prevalence of mutation variants was compared by the status of ALNs using Mann–Whitney U 

tests, with a p value of 0.05 set as threshold of significance. Box plots were generated 

illustrating median, first and third quartiles, and minimum and maximum values within 1.5 

times the interquartile range below or above the first and third quartiles respectively. SNVs 

were compared between node-positive and negative early-stage tumours using Fisher’s test on 

2x2 contingency tables. A minimum mutation count was set at 5% of the smallest comparison 

group size to reduce noise from rarely mutated genes. Derived p-values were corrected for 

multiple testing using the Benjamini-Hochberg method and a false discovery rate (FDR) of 0.05 

was set as the threshold. 

Copy number alterations (CNA) were downloaded from Broad Institute’s GISTIC 2.0 

results(13). Deep amplifications and deletions were used. A total of 158 node-positive and 245 

node-negative early-stage samples met the clinical criteria. Fisher’s exact test were used to 

compare amplification counts per gene in the node-positive vs. node-negative groups. Genes 
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with total amplifications of less than 5% of the smallest cohort were removed. P values were 

then corrected for multiple-testing using Benjamini-Hochberg method. Similar process was 

repeated for deletions.  

 

miRNA data analysis 

Non-normalized miRNA count data was downloaded from the Broad Institute Firebrowse 

platform. A total of 407 patients (node status was negative in 248 and positive in 159) and 503 

miRNAs were analyzed. Differentially expressed miRNAs were derived using DESeq2 package 

(version 1.30)(15). miRNAs with sum of reads of less than 10 across the samples in the 

comparison were excluded. Log2 fold changes were reported comparing node positive vs. 

negative patients. Independent filtering was applied through the DESeq2 results function. 

Adjustment for multiple-testing was done through Benjamini-Hochberg method. FDR threshold 

of 0.05 was set. Analysis was repeated similar for each molecular subtype separately. Bar plots 

were generated using ggplot2 package (version 3.3.5)(16) in R Statistical Environment.  

 

Messenger RNA (mRNA) data analysis  

RNAseq counts were downloaded from the University of California Santa Cruz Xena 

platform(17). The available transcripts were filtered for protein-coding genes using the 

biomaRT package(18) in R (“hsapiens_gene_ensembl” dataset utilized). This reduced the total 

number of transcripts from 60483 to 19556 protein-coding mRNAs. Raw count reads were 

converted from the log2(counts+1) scale to integer. Clinical exclusion criteria were applied as 
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described above to yield a total of 250 node-negative and 162 node-positive early-stage 

samples.  

Differentially expressed mRNAs were analyzed using DESeq2 package (version 1.30)(15). 

Log2 fold changes were reported comparing node positive vs. negative patients. FDR threshold 

of 0.05 was set. Transcripts with sum of reads of less than 10 across the samples included in the 

comparison were excluded. Analysis was repeated for each molecular subtype separately.  

Pathway analysis was completed using the clusterProfiler package (version 3.18.1)(19), 

based on the Gene Ontology Biological Process(20) and Reactome(21) databases.  Statistically 

significant differentially expressed genes were assessed for enrichment within each pathway. p 

values were adjusted for multiple-testing using the Benjamini-Hochberg method and a 

threshold of 0.05 was set for the FDR. 

 

Protein data analysis  

Reverse Phase Protein Array (RPPA) data was downloaded from Xena platform(17). 

Retrieved data was Z-score normalized. Samples were filtered for primary tumours (removal of 

normal and metastatic tissue samples). After refining the dataset based on previously described 

clinical criteria, 128 node-positive and 201 node-negative early-stage samples remained. RPPA 

scores were compared using t-test with Welch’s correction. “NA” values were omitted in the 

calculations. False-discovery rates were calculated using Benjamini-Hochberg method, with FDR 

threshold value set at 0.05.  



 55 

3.3 RESULTS 

3.3.1 Clinical characteristics 

The clinical characteristics of the patient cohort is detailed in Table 3.1. After inclusion of 

only patients with T1 and T2 tumours undergoing SLNB, 251 did not have any nodal metastasis, 

while 163 patients did. Patients with axillary involvement were significantly younger (p=0.002), 

had larger tumours (p=0.004) and were ER-receptor positive (p=0.044) compared to those 

without. A significantly higher proportion of women with axillary involvement were pre-

menopausal (p=0.026). There were no statistically significant differences between histology, 

molecular subtype, PR status or HER2 status (p>0.05).  

 

3.3.2 Single Nucleotide Variations (SNVs) and copy-number alterations (CNAs) 

After exclusion of silent and duplicated variants, SNV data was available for 363 early-

stage tumours (n=143 and 220 for node-positive and negative patients respectively). Figure 3.1 

outlines the various variant classifications by nodal involvement. Total mutation load was 

higher in node-negative tumours compared to node-positive samples (median of 32 vs. 24 SNVs 

per sample respectively, p=0.0063). Frame-shift deletions and missense mutations were 

significantly more frequent in node-negative disease (p=0.00085 and 0.0072, Supplementary 

Table 3.1).   

In the subtype specific analysis, lower frame-shift deletion and missense mutation variant 

counts in node-positive disease was seen in Basal and Her2-enriched tumours (p=0.00063 and 

0.0496 in Basal; p=0.0301 and <0.0001 in Her2-enriched respectively, Figure 3.2). Luminal A and 

B cohorts on the other hand did not show significant differences in the frequency of different 
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classes of SNVs (p>0.05). Splice-site and nonsense mutation variants were more frequent in 

node-negative Her2-enriched tumours (p=0.0086 and <0.0001 respectively).  

A total of 58 genes met the minimum mutation count threshold and were included in the 

SNV comparison between patients with and without nodal involvement. After adjustment for 

the FDR, no genes showed SNV frequencies that had a statistically significant difference (Top 10 

differentially mutated genes are provided in Supplementary Table 3.2). Within subtypes as 

well, there were no statistically significant SNV differences between node-positive and negative 

patients (FDR>0.05).  

There were no differences in the deep amplification or deletions between node positive 

and negative samples that met the threshold of significance (Supplementary Tables 3.3 and 

3.4). Similarly, no differences were identified comparing CNAs in subtypes individually 

(FDR>0.05).  

 

3.3.3 miRNA expression 

A total of 503 separate miRNA expression levels were compared between 159 node-

positive early-stage breast cancer samples and 248 node-negative samples. After correction for 

multiple comparisons, 40 miRNAs were differentially expressed (Figure 3.3, Supplementary 

Table 3.5). Of these 40 miRNAs, 10 were overexpressed in node-positive patients compared to 

node-negative patients, and 30 were under-expressed.  

Examining these 40 miRNAs in each molecular subtype individually, the differential 

expression pattern within subtypes with the highest prevalence in our dataset most closely 

resemble the combined analysis. The expression of 95% (38/40) of the identified miRNAs in 
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Luminal A, the most prevalent subtype, mirrored the results in combined analysis. In contrast, 

22.5% (9 of 40) miRNAs showed the opposite expression trend in the least common subtypes, 

Luminal B and Her2-enriched (ie. miRNAs were overexpressed in node-positive disease in the 

subtype analysis, but under-expressed in combined analysis, or vice versa). Basal samples which 

present the second most available subtype, shared 82.5% (33/40) of the expression trend as the 

overall analysis provided.  

The comparison of miRNA expression between node-positive and node-negative tumours 

was repeated in each molecular subtype individually (Figure 3.4, Supplementary Table 3.6). 

miRNA 517a, 517b, 206 and 105-2 were significantly over-expressed in Luminal A subtype with 

node-involvement, while miRNA 221 was significantly under-expressed. Of note, while 

statistically significant under-expression of miRNA 221 in node-positive patients was also found 

on the analysis of the entire cohort, all molecular subtypes other than Luminal A showed the 

opposite pattern of expression.  

In the Luminal B comparison, miRNA 184 and 224 were overexpressed and 30a was 

under-expressed in node-positive samples. None of these miRNAs met the criteria for statistical 

significance in the overall comparison or within other subtypes. In the Basal subtype, miRNA 

3150b and 3065 were both over-expressed in node-positive samples. miRNA 3150b met the 

threshold of significance in the overall analysis. No miRNAs were differentially expressed at a 

statistically significant rate in the Her2 subtype comparison (FDR>0.05).  

 

3.3.4 mRNA expression 
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In the overall analysis with subtypes combined, transcription levels were compared 

between 250 node-negative and 162 node-positive samples for 19180 mRNAs. 766 mRNAs 

were differentially expressed by ALN status (Figure 3.5, Supplementary Table 3.7). Of these, 

249 were over-expressed and 517 were under-expressed in node-positive disease. The 

comparison was repeated in subtypes individually. Of the 766 identified differentially expressed 

genes (DEGs) with all subtypes combined, only 33.2% (254 transcripts) were either over-

expressed or under-expressed across all subtypes with nodal involvement. Expression trends in 

node-positive vs. node-negative in the combined subtype comparison was similar to the trend 

seen in 86.9% of transcripts in Luminal A (665 of 765 transcripts), 68.6% in Luminal B (524 of 

764 transcripts), 80.9 % in Basal (619 of 765 transcripts), and 69.1% in Her2 samples (526 of 761 

transcripts). Its notable that some transcripts were excluded from the comparison in each 

subtype due to low overall counts in those samples, as discussed in the methods.  

In Luminal A (18983 transcripts compared in node-negative n=143, node-positive n=99), 

185 statistically significant DEGs were identified (Figure 3.6, Supplementary Table 3.8). In 

Luminal B (18549 transcripts compared in node-negative n=29, node-positive n=27), 272 

statistically significant DEGs were seen (Figure 3.7, Supplementary Table 3.9). In Basal (18803 

transcripts compared in node-negative n=60, node-positive n=27), 96 statistically significant 

DEGs were noted (Figure 3.8, Supplementary Table 3.10). The comparison in Her2-enriched 

(18231 transcripts compared in node-negative n=18, node-positive n=9) yielded 126 statistically 

significant DEGs (Figure 3.9, Supplementary Table 3.11).  
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Utilizing the identified DEGs, pathway enrichment analysis was completed in combined 

patients and individual subtypes  (Supplementary Tables 3.12-3.15).  Several immune response 

related pathways were highlighted in the overall analysis (Supplementary Table 3.12). In 

Luminal A subtype, Nucleosome and chromatin-related pathways were enriched in the DEGs 

(Supplementary Table 3.14).  

 

3.3.5 Protein expression 

Expression level of 281 proteins were compared between 128 node-positive and 201 

node-negative early-stage samples (Supplementary Table 3.16). After correction for multiple 

comparisons, no significant differences were found between node-positive and negative 

samples (FDR>0.05). Comparison was repeated in subtypes separately, not revealing any 

statistically significant differences based on nodal-metastasis in any of the 4 molecular 

subtypes. (Supplementary Table 3.17). 
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3.4 DISCUSSION 

Our study found significant differences in clinical characteristics, RNA expression and 

miRNA expression associated with lymph-node involvement in early-stage breast cancer. 

Increased tumour size, younger age and ER-positive status were all associated with ALN 

metastasis in this cohort of patients with early-stage breast cancers, compatible with findings of 

previous studies(22,23).  Notably, lymphovascular invasion has been reported as a strong 

predictor of ALN metastasis(22,24), but was not included in the clinical datasets available for 

this analysis. That said, lymphovascular invasion assessment on pre-operative biopsy alone is 

not accurate(25), and hence the applicability in the pre-operative setting is questionable.  

Of the 766 identified DEGs, only 33.2% were consistently over or under-expressed in 

node-positive tumours across all molecular subtypes. This heterogeneity was seen also in the 

miRNA analysis. The lack of consistency between the combined-subtype analysis and each 

individual subtype was higher in the less common subtypes (Luminal B and Her2-enriched 

samples) as expected. This highlights the baseline molecular heterogeneity that exists in breast 

cancer and supports a subtype-specific approach to molecular comparisons in early-stage 

breast cancers to reduce noise from the analysis.  

Pathway enrichment analysis in Luminal A subtypes highlighted the differential expression 

of several chromatin-related genes in tumours with ALN metastasis (Supplementary Table 

3.14). Amongst these were H1.1, H1.4 and H1.5 mRNAs that all encode for subtypes of linker 

histone H1. Linker Histone H1 is involved in higher-order formation of chromatin(26), and in 

humans, histone H1 has 11 subtypes(27). In-vitro and animal studies have shown that while the 

knockout of one of the H1 subtype genes results in compensation in the overall level of 
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expressed histone H1 by the upregulation of other subtypes, depleting single H1 variants can 

cause alterations in chromatin structure and the expression level of other gene subsets(28,29). 

Human cancer cohorts have shown correlations between expression of H1 subtypes and 

tumour aggressiveness, although this correlation can be positive or negative depending on the 

variant(30). The expression of H1.1-1.5 subtypes are tightly associated with S-phase and DNA-

replication, while other H1 subtypes such as H1.0 are expressed throughout the cell cycle(31). 

In prostate cancer, increased tumour grade has been associated with increased H1.5 expression 

on immunohistochemistry(32). In our dataset however, Luminal A early-stage breast cancer 

patients with nodal involvement had a decreased levels of H1.5 transcript (Log2Fold change of -

1.51, Supplementary Table 3.8), although the levels of H1.5 protein were not available for 

analysis in the TCGA dataset. The connection between linker histone H1 variant expression and 

metastasis in breast cancer may be a productive avenue for future study.  

miRNAs are small single stranded RNAs that can inhibit protein expression by binding to 

target mRNAs(33). In our analysis, miRNA 577 was under-expressed in node-positive early-stage 

breast cancers (Figure 3.3). Lower miRNA 577 levels were similarly reported to be associated 

with lymph-node metastasis and larger tumour size in a separate cohort of 120 breast 

tumours(34). In-vitro experiments have suggestion a role for miRNA 577 in inhibiting epithelial-

mesenchymal transition (EMT), and down-regulating Rab25 protein levels(34). In non-small cell 

lung cancer, decreased miRNA 577 has been associated with increased cell proliferation and 

invasion(35). Notably however the expression pattern of miRNA 577 in node-positive disease 

compared to node-negative disease varied between the four molecular subtypes in the TCGA 

dataset (Figure 3.3). Further highlighting the differences between subtypes is the dramatic 
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differences in mean count level of miRNA 577, which was only 3.81, 3.72 and 10.07 in Luminal 

A, Luminal B and Her2 subtypes, compared to 223.50 in the Basal subtype.  

Another example of heterogeneity within miRNA expression patterns was seen with 

miRNA 206. The under-expression of miRNA 206 has been previously associated with advanced 

clinical stage in breast cancer(36). More specifically, this was shown in the Basal subtype of 

breast cancer and its mechanism of action was attributed to the miRNA’s role in inhibition of 

TM5SF1 expression, an oncogene involved in cell migration(37). In our dataset, miRNA 206 

levels were higher in node-positive Basal early-stage breast cancers, although this was not 

statistically significant (Figure 3.4). However, in subtypes other than Basal, the levels of miRNA 

206 appear to be higher in node-positive disease, possibly suggesting a different role for miRNA 

206 in the non-basal subtypes.  

After correction for multiple comparisons, no statistically significant protein level 

differences were found between node-positive and negative disease, however strong trends 

were seen. p38MAPK is a mitogen-activated protein (MAP) kinase involved in many processes 

including inflammation, cell growth, differentiation, and death(38). p38MAPK had a trend 

towards increased levels in node-positive tumours. Previous studies support this and have 

shown p38MAPK signalling to be associated with invasive and metastatic behaviour in breast 

carcinoma (39–41).  Additionally, the NF2 tumour suppressor (also known as Merlin or 

schwannomin) showed a trend towards down-regulation in node-positive early-stage breast 

tumours (Supplementary Table 3.16). NF2 regulates contact-dependent inhibition of 

proliferation(42). Chromosomal alterations inactivating NF2 have been associated with 

increased metastatic potential in prostate cancer cell lines(43). NF2 down-regulation has also 
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been seen in advanced disease, and in tumour tissue compared to adjacent normal breast 

tissue(44). There may be value in investigating NF2 protein levels as a clinical marker of 

metastatic potential in breast cancer.  

The value of the discovered molecular differences as predictive signatures of nodal 

metastasis will need to be validated in independent cohorts. Several factors served as 

limitations to our analyses. Clinical information such as the pre-operative nodal stage was 

inferred based on the operation each patient received (namely a SLNB) as this information was 

not directly available. Other tumour characteristics such as lymphovascular invasion or Ki67 

positivity that have been previously associated with lymph-node metastasis were also not 

available for this cohort(22,45).  

The molecular data derived from the TCGA is bulk tumour analysis, include heterogenous 

tissue which includes cells other the breast carcinoma(46). As such, the expression patterns of 

extracellular matrix cells or immune cells were included in the analyzed tissue. Single-cell data 

can further delineate the origin of the cells contributing to the molecular differences seen in 

node-positive disease. A molecular signature was extracted using single-cell RNAseq data in 

breast carcinoma and performed well when validated in the TCGA dataset with accuracy of 

91%(47). The performance of these models in early-stage breast cancers in each molecular 

subtype remains to be assessed.  

This comparison between molecular alterations in early-stage breast cancer patients with 

nodal-involvement revealed distinct heterogeneity between the established molecular 

subtypes, and identified numerous molecular differences associated with nodal metastasis. The 



 64 

potential molecular signatures identified in this study need to be further validated in 

independent datasets and may prove valuable in the development of predictive models.  
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3.6 FIGURES 

Figure 3.1. Frequency of various classes of single nucleotide variation compared by nodal 

status. 

 

  

  



 70 

 

Figure 3.2. SNV classification compared based on ALN status in each subtype 
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Figure 3.3. Differentially expressed miRNAs between node-positive and node-negative groups 

in early-stage samples. Forty miRNAs met criteria for statistical significance (FDR<0.05). Fold 

change and level of significance of each miRNA based on nodal status is also illustrated within 

each molecular subtype for comparison.   
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Figure 3.4. The statistically significant differentially expressed miRNAs between node-positive 

and node-negative early-stage breast cancers analyzed in Luminal A (A), Luminal B (B) and Basal 

(C) molecular subtypes separately. Differences in these miRNA levels between node-positive 

and node-negative tumours in other subtypes and all subtypes combined are provided for 

comparison. No statistically significant differentially expressed miRNAs were found in Her2 

subtype.  
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Figure 3.5. Top 50 differentially expressed genes in node-positive compared to node-negative 

early-stage breast cancers with all subtypes combined. In total, 755 differentially expressed 

genes were statistically significant in the combined analysis (FDR <0.05). 
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Figure 3.6. Top 50 of the 185 statistically significant differentially expressed genes in node-

positive compared to node-negative Luminal A early-stage breast cancers (FDR <0.05). 
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Figure 3.7. Top 50 of 272 statistically significant differentially expressed genes (FDR <0.05) in 

node-positive compared to node-negative Luminal B early-stage breast cancers. 
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Figure 3.8. Top 50 of 96 statistically significant differentially expressed genes (FDR <0.05) in 

node-positive compared to node-negative Basal early-stage breast cancers. 
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Figure 3.9. Top 50 of the 126 statistically significant differentially expressed genes (FDR<0.05) in 

node-positive compared to node-negative Her2 early-stage breast cancers. 
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3.7 TABLES 

Table 3.1: Clinical characteristics of early-stage breast cancers divided based on axillary lymph 

node involvement.  

 
Nodal status Comparison 

Negative 
(n=251) 

Positive 
(n=163) 

p Value 

Age 
Median (Min-Max) 60 (29-88) 53 (26-87) 0.002011a 

Unknown 0 0  

Menopause 
status 

Pre 52 51 

0.02597b Peri 11 3 

Post 171 98 

Indeterminate 17 11  

Histology 

Infiltrative Ductal carcinoma 192 127 
0.1039c 

Infiltrative Lobular carcinoma 44 34 

Other/Unknown 15 2  

T stage 
T1 110 48 

0.0037 c 
T2 141 115 

N stage 

N0 251 0 

 
N1mi 0 25 

N1 0 106 

N2 0 22 

N3 0 10 

M stage 

M0 216 133 
0.3829 c 

M1 0 1 

MX 35 29  

Molecular 
Subtype 

Basal 60 28 

0.2325 b 
Her2 18 9 

LumA 143 99 

LumB 30 27 

ER status 

Positive 181 132 
0.0444 c 

Negative 69 30 

Unknown 1 1  

PR status 

Positive 164 114 
0.3339 c 

Negative 86 48 

Unknown 1 1  

Her2 status 

Positive 29 23 
0.4462 c 

Negative 215 132 

Unknown 7 8 
 

a Mann-Whitney U test.  b Pearson’s chi-squared test. c Fisher’s exact test 
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predictive performance of axillary lymph node involvement in early-
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CHAPTER 4: A NEW APPROACH TO MOLECULAR SIGNATURE PROCESSING IMPROVES 

PERFORMANCE IN PREDICTIVE MODELS OF AXILLARY LYMPH-NODE METASTASIS IN EARLY-

STAGE BREAST CANCER 

4.1 INTRODUCTION 

The axillary lymph node (ALN) basin is the most common site of metastasis in breast 

cancer, and the determination of nodal metastasis is integral to disease staging and 

prognostication(1,2). Clinical lymphadenopathy is absent in up to 40% of patients with ALN 

metastasis on pathologic examination(3). As a result, sentinel lymph-node biopsy (SLNB) 

remains as the standard of care for the staging of axilla in patients presenting with early-stage 

breast cancer (≤5cm) and absent palpable lymphadenopathy(4,5).  

An accurate pre-operative determination of the ALN status that does not entail additional 

axillary surgery provides several clinical opportunities. Although less morbid than an axillary 

lymph node dissection (ALND), SLNB still carries risk for patients(6) and requires healthcare 

resources such as preoperative nuclear medicine radiotracer injection and time in the operating 

room. Ongoing trials are investigating the value of omitting SLNB in patients with early-stage 

disease and negative axilla on preoperative assessment(7), and clinical recommendations for 

SLNB omissions exists in a very select group of older patients with hormone-receptor positive 

disease(8). Identification of patients at high-risk of axillary involvement also provides an 

opportunity for downstaging with neoadjuvant systemic therapy(9,10). This can ultimately 

spare high-risk patients from needing an ALND, as SLNB has a high false negative rate (FNR) 

when repeated(11).   
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Molecular predictive models such as Oncotype DX™ have shown value in the post-

operative setting by predicting tumors at risk of recurrence(12), but they have not been well 

established in the pre-operative stage of care. Previous molecular models of nodal metastasis in 

breast cancer have also not been specific to the early-stage tumours without clinical 

lymphadenopathy, which comprises the population that would most benefit from this 

predictive model(13). Additionally, inherent heterogeneity within various molecular subtypes of 

breast cancers (14–17) has been noted to be an obstacle in development of molecular 

signatures of nodal metastasis(18). Accounting for these molecular subtypes may improve 

predictive model performance.  

To address the clinical gap in the non-invasive pre-operative determination of the ALN 

status in early-stage breast cancer patients without palpable lymphadenopathy, we utilized the 

datasets from The Cancer Genome Analysis (TCGA) project(17) to develop RNA-based predictive 

models of axillary lymphadenopathy. We employed several strategies including subtype-specific 

analyses and additional molecular signature processing to account for inter-subtype molecular 

heterogeneity with the goal of improving predictive model performance.  
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4.2 MATERIALS AND METHODS 

4.2.1 Data retrieval and processing 

TCGA clinical datasets were downloaded from Broad Institute Firehose databases (Version 

2016_01_28, firebrowse.org). All tables were merged, removing samples not included in all 

tables. Stage T1 and T2 samples were selected. Patients who received neoadjuvant 

chemotherapy were removed. PAM50 molecular subtypes were downloaded from Berger et al. 

(19), and samples with subtype “normal” (normal breast-like) were removed from the dataset. 

TCGA data does not provide information regarding clinical stage of the axilla at the time 

of presentation. To select for patients without clinically palpable axillary lymph nodes, we 

investigated the axillary staging method for the remaining patients and selected for patients 

who received sentinel lymph node biopsy +/- axillary dissection. Patients with metaplastic 

carcinoma or unassigned histologic diagnosis were removed.  

RNAseq counts were downloaded from the University of California Santa Cruz Xena 

platform(20). The available transcripts were filtered for protein-coding genes using the 

biomaRT package(21) in R (“hsapiens_gene_ensembl” dataset utilized). This reduced the total 

number of transcripts from 60483 to 19556 protein-coding mRNAs. Raw count reads were 

converted from the log2(counts+1) scale to integer. Clinical exclusion criteria were applied as 

described above. 

4.2.2 Model development 

Training and validation cohorts were created randomly by splitting the TCGA dataset in 

half in R statistical environment. This resulted in a training cohort of 198 samples, and a 
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validation cohort of 199 samples. The clinical characteristics of these cohorts are provided in 

Supplementary Table 4.1.  

Molecular signatures with the most highly differentially-expressed genes (DEGs) in nodal 

metastasis were developed using the training cohort and the DESeq2 package (version 1.30)(22) 

in R statistical environment. RNAseq expression data was then pre-processed for predictive 

model development through normalization of the integer raw counts with the variance 

stabilizing transformation (vst) algorithm through the DESeq2 package. Normalized counts were 

then converted to Z-scores.  

Cross-validated Elastic NET predictive models of nodal metastasis were then developed in 

R using the glmnet package (version 4.1-3)(23). The α value for the elastic NET model was set at 

0.5. Ten-fold cross-validation was used in model development, and a λ value yielding the 

minimum mean cross-validated error was selected.  

Elastic NET predictive models provide the inherent advantage of variable selection. The 

optimal number of genes to utilize as input to the models to best fit the training data was first 

tested using molecular signatures with 50, 75 and 100 genes, and performance values were 

reported (Supplementary Table 4.2). The variables selected in each model, along with the λ 

values and model performance in training cohorts are provided in Supplementary Table 4.3.  

The performance of the model was then evaluated in the validation cohort using the 

assess.glmnet function in the glmnet package, and performance measures including the area 

under the curve (AUC) of the receiver-operator characteristic (ROC) curve were reported. ROC 

curves were generated using the ROCR package in R (version 1.0-11)(24). The performance was 

also separately evaluated in each molecular subtype within the validation cohort.  
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4.2.3 Development of the uniform molecular signature 

A “uniform” molecular signature was generated, which included the top 100 

differentially-expressed genes that were over- or under-expressed consistently across all 4 

molecular subtypes of node-positive breast cancer. To do so, the previously generated 

differentially expressed genes in the training cohort were filtered for consistent over- or under-

expression in node-positive samples across the entire development cohort, and all molecular 

subtypes groups within, based on the expression Z-score values. 10-fold cross-validated elastic 

NET predictive models were again generated using this uniform molecular signature, and the 

performance of the model was evaluated in the validation cohort.  

 

4.2.4 Development of subtype specific molecular signatures 

Subtype-specific molecular signatures were developed by applying the DESeq algorithm 

within each of the molecular subtypes in the training cohort. Elastic-net predictive models were 

generated using 3-fold cross-validation given the smaller sample size in the subtype-specific 

training cohort. Performance of these models was evaluated as previously described.  

 

4.2.5 Addition of clinical factors to predictive models  

Predictive models were generated as before, with the additional input of age and tumour 

T-stage from the clinical datasets to the models in development. The combination of clinical 

factors was tested with the overall signatures of nodal metastasis, the uniform signature, and 

subtype-specific signatures of nodal metastasis. Performance in the validation cohort was then 

assessed as before. 
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4.3 RESULTS 

4.3.1 Training and validation cohorts 

The TCGA early-stage breast cancer cohort was randomly divided in half, yielding a total 

of 198 early-stage samples for training, and 199 samples for validating the training models. The 

training cohort included 88 node-positive and 110 node-negative samples. The validation 

cohort included 66 node-positive and 133 node-negative tumours. Detailed information 

regarding the clinical characteristics of the cohorts are provided in Supplementary Table 4.1.   

 

4.3.2 Predictive model based on molecular signature of nodal metastasis 

Elastic NET regression models of nodal metastasis were generated in the training cohort. 

The model fit to the training cohort was assessed with an input of 50, 75, and 100 differentially-

expressed genes as the molecular signature, and with 10-fold cross-validation. An input of 

molecular signature with 100 genes was chosen as it provided the least mean squared error in 

the training cohort (Supplementary Table 2).  

After feature selection, the resultant predictive model from the subtype-combined 

molecular signature was based on 39 genes, and achieved an AUC for the ROC curve of 0.909 in 

the training cohort, and 0.620 in the validation cohort (Figure 4.1, Supplementary Tables 4.3-

4.5).  Except for the Her2 subtype, the model performed poorly in individual molecular 

subtypes within the validation cohort (Figure 2).  

 

4.3.3 Predictive performance of subtype-specific molecular signatures  

There is significant molecular heterogeneity between the four molecular subtypes of 

breast cancer(16,25), which may introduce noise within the training cohort and diminish the 
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performance of predictive models. In an attempt to improve model performance by separating 

this inherent complexity from the molecular signature analysis, models were again developed 

with subtype-specific signatures and 3-fold cross validation in each individual subtype within 

the training cohort. It is notable that because of subgrouping, these models were trained based 

on much smaller training sizes compared to the previous model with all subtypes combined, 

providing less molecular information for the development of both molecular signatures and 

predictive models (Supplementary Table 3). The subtype specific models achieved an AUC of 

ROC curve of 0.500 in luminal A, 0.579 in luminal B, 0.493 in basal and 0.695 in Her2 subtypes 

(Figure 2). These are not consistently better compared to the previous combined-subtype 

predictive model.  

 

4.3.4 Predictive performance of a customized molecular signature of nodal metastasis with 

uniform expression pattern across molecular subtypes 

To both utilize the higher power provided by the large sample size of the entire 

development cohort compared with each individual molecular subtype group, and to reduce 

the heterogeneity inherent within the molecular subtypes, an extra step of processing was 

added to the molecular signature. DEGs in node-positive disease were again identified utilizing 

the entire subtype-combined training cohort, but only genes that were consistently over- or 

under-expressed in node-positive disease across the combined cohort and each individual 

subtype were selected to yield a “uniform” molecular signature. Predictive models were then 

developed with this unform signature (Supplementary Table 4.3). These models slightly 

outperformed the previous combined-subtype signature in the validation cohort (AUC of 0.664 
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vs 0.660). However, in the two most common subtypes, luminal A and basal, this uniform 

molecular signature outperformed both the combined signature and subtype-specific 

signatures (Figure 4.3). Most notably, the predictive performance in the basal subtype of early-

stage breast cancer exhibits an AUC of 0.870. The performance numbers remain substantially 

weaker in subtypes with lower sample count, including luminal B and Her2 (Supplementary 

Table 4.4).   

 

4.3.5 Addition of clinical variables to predictive models 

We next assessed the value of adding clinical variables of age and T-stage (shown to be 

significant in previous studies) to predictive models of nodal metastasis in addition to the 

previously described combined, uniform and subtype-specific molecular signatures 

(Supplementary Table 4.4). The luminal B, Basal and Her2 signatures did not include these 

clinical variables after the elastic NET algorithm completed variable selection, while the 

combined-molecular subtype model included only age. The addition of clinical variables slightly 

increased the predictive performance of the model (AUC of uniform model improved from 

0.664 to 0.669 with the inclusion of age and T-stage, Figure 4.4). Of note, at a FNR of less than 

10%, the performance of the predictive model of nodal metastasis with the uniform molecular 

signature and clinical characteristics in the basal subgroup showed an accuracy of 71.74%, with 

a sensitivity of 91.7% and specificity of 64.7% (Supplementary table 4.6).  
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4.4 DISCUSSION 

The involvement of ALN nodes is an important prognostic marker in breast cancer, and is 

the basis of tumour staging(2). Many important clinical decisions such as recommendation for 

neoadjuvant chemotherapy and adjuvant chemoradiation also rely on the ALN status of the 

patient(4,5). Non-invasive prediction of ALN metastasis has the potential of offering several 

advantages in early-stage breast cancer, including the possibility of sparing low-risk patients 

from staging axillary surgery, and finding high-risk candidates for neoadjuvant systemic therapy. 

In this study, we utilized the molecular differences in RNA sequencing data from the TCGA 

datasets to create predictive models of axillary involvement in early-stage breast cancer 

patients receiving SLNB (Figure 4.2). This predictive model of axillary nodal status achieved an 

AUC for ROC curve of 0.620 in the validation subset of the TCGA dataset.  

Although previously reported molecular models did not specifically investigate patients 

with early-stage breast cancers with no clinical lymphadenopathy, they showed similar 

performance values in predicting axillary lymph-node status in breast cancer while 

encompassing a less-selective group of disease stages. Smeets et al. developed a 241 gene 

signature and used cross-validated weighted Least-Squares Support Vector Machines to train 

the model on 96 breast cancer patients and validate it in an external dataset with an AUC of 

0.651(26). In a separate report using data from the Sweden Cancerome Analysis Network 

Breast initiative, molecular-based gradient boosted machine models showed an AUC of 0.67 in 

the validation set(13).  

The performance range of the aforementioned models is similar to our combined-subtype 

model, and is comparable to the performance of the currently well-known clinical nomogram of 
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nodal metastasis which was developed by Memorial Sloan Kattering in 2007(27). This model has 

been validated in several external early-stage breast cancer cohorts, showing predictive values 

ranging from an AUC of 0.67-0.73(28–31). Dihge et al. compared the performance of molecular-

based predictive models of nodal metastasis and clinical-based models (including variables such 

as tumour size, lymphovascular invasion, age and multifocality) in their cohort(13). Their 

predictor assessments showed an AUC of 0.71, 0.67 and 0.72 for clinical, molecular, and 

clinical/molecular combined models in their local validation cohort. Although this suggests a 

negligible improvement in predictive performance with the addition of molecular variables, the 

most frequently utilized clinical variable of lymphovascular invasion can only be accurately 

determined in post-surgical pathology specimens, due to its multifocal nature(32). This limits 

the utility of lymphovascular invasion as a variable in the pre-operative setting. Due to 

frequently missing clinical variables in the TCGA dataset, we only assessed the value of well-

established clinical variables of age(33–35) and T-stage(30,36) in advancing the predictive 

model performance. The inclusion of these clinical variables only had a modest impact on our 

predictive models (Figure 4.2). There is emerging support for the application of machine 

learning to tumour imaging modalities such as magnetic resonant imaging (MRI) to predict 

axillary lymph-node stage(37–39). A combined clinical, molecular, and radiologic profiling of the 

tumour may be the next step in improving predictive performance.  

As breast cancer encompasses a heterogenous group of disease with previously identified 

molecular subtypes showing distinct clinical and biologic differences(14–17), this inherent 

molecular heterogeneity could be exploited to improve predictive model performance. We 

utilized two strategies to apply molecular subtype information to develop better models. The 
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first strategy was to create subtype-specific models by training the machine learning algorithms 

within each subtype of the training dataset individually. These models did not yield any 

improved performance in the TCGA datasets (Figure 4.3). This likely reflects the limitations 

inherent in smaller sample sizes created by the division of the training cohort for both the 

development of the molecular signatures and for training the machine learning models. 

Nakauchi et al. specifically targeted the luminal A subset of breast cancer, and trained a model 

with 388 patients, and achieved superior performance values with an AUC of 0.717 and 0.749 in 

validation datasets(40).  In contrast, the luminal A subset in our data was comprised of only 114 

patients. Repeating our analyses in larger cohorts may provide better predictive performances.  

The second strategy was to use an additional processing step, which was applied to the 

DEGs identified in the node-positive disease across all subtypes combined. With the aim of 

benefiting from both the additional value of a larger training cohort, and accounting for inter-

subtype variations, the DEGs were assessed for conformity in over- or under- expression across 

all molecular subtypes. This “uniform” signature yielded the best performance of our models in 

the combined-subtype validation cohort with an AUC of 0.664. This novel uniform signature 

also showed improvements in the two most common molecular subtypes, Luminal A and Basal 

(Figure 2). This predictive model based on the uniform molecular signature and clinical 

variables showed notably good performance in basal subtype within the validation dataset with 

an AUC of 0.870. At a FNR  of <10%, this model can yield a SLNB reduction rate of 50% based on 

the formula suggested by Dihge et al(41). The basal molecular subtype of breast cancer typically 

aligns with triple-negative disease, as identified with standard clinical biomarkers with tumours 

that lack expression of estrogen, progesterone or Her2 receptors on histopathology(42). There 
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are existing recommendations by the Surgical Society of Oncology in 2016 for omitting routine 

sentinel lymph-node biopsy in hormone-receptor positive breast cancer patients of age > 70 

years(8). Further external validation of the predictive models proposed in this study can aid in 

the development of similar strategies in basal/triple-negative breast cancer patients by 

differentiating tumours with a low risk of nodal metastasis.  

Our molecular analysis was subject to the technological limitations of bulk tumour 

transcriptomics, as the significant intratumorally heterogeneity within breast cancer can add 

noise to molecular signature identification(43). In addition, factors outside of the primary 

tumour cells, including the peri-tumoral and lymph node microenvironment may play an 

important role in progression of metastatic breast disease(44,45). The complex biological 

processes contributing to nodal metastasis have been noted as a major obstacle to the 

development of molecular signatures that can stratify patients by nodal involvement(18). 

Technologies such as single-cell analysis and spatial transcriptomics can further provide us with 

information about tissue structure and intercellular interactions(46,47), and may be the 

breakthrough necessary to improve the predictive models.   

In conclusion, we utilized RNA sequencing molecular information to create predictive 

models of nodal metastasis specific to early-stage breast cancer patients undergoing sentinel 

lymph-node biopsy. Our models showed improved predictive performance by accounting for 

the molecular heterogeneity between the previously established molecular subtypes of breast 

cancer, with notably enhanced performance within the Basal-subtype of the disease.   
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4.5 FIGURES 

 

 

Figure 4.1. Receiver operator characteristic curves showing predictive model performance in A. 

training cohort and B. validation cohort with molecular signatures generated from all molecular 

subtypes combined (black), and the “uniform” molecular signature select for consistent over- or 

under-expression of genes across all node-positive tumour subtypes (blue).  
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Figure 4.2. Receiver operator characteristic curves showing predictive model performance in A. 

Luminal A, B. Luminal B, C. Basal, and D. Her2 subtypes within the validation cohort. Models 

included those generated with the molecular signatures generated from combined-subtypes 

analysis (black), and the uniform molecular signature (blue), and subtype-specific molecular 

signatures developed from subtype-specific training cohorts (red). The uniform signature 
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notably showed improved performance in the two most common molecular subtypes, Luminal 

A and Basal.  
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Figure 4.3. Receiver operator characteristic curves showing the performance change with the 

inclusion of clinical variables of age and T-stage in the training model along with the A. 

combined-subtype molecular signature, and B. the uniform molecular signature.  
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Opportunity to improve care in early-stage breast cancer 

Axillary lymph-node (ALN) metastasis in breast cancer is a marker of more advanced 

disease, and its presence is used to stage the cancer and recommend treatments in current 

guidelines (1,2). Since clinical examination of lymphadenopathy lacks sensitivity (3), invasive 

sampling of lymph-nodes remains as the standard of care for most patients with early-stage 

disease and no clinical lymphadenopathy. A non-invasive mode of predicting the risk of ALN 

metastasis provides an opportunity to improve care in patients with early-stage breast cancers 

(tumour size ≤ 5cm, and no palpable lymphadenopathy). Firstly, those patients at low-risk of 

ALN metastasis may be spared from the operative time and morbidity associated with lymph-

node sampling (4). Secondly, neoadjuvant systemic therapy may be considered in patients at 

high-risk of axillary metastasis to down-stage their axilla (5), leaving them with the option to 

receive a SLNB to stage their axilla after chemotherapy(6).  

5.2 Inconsistencies in literature 

Our systematic review revealed a plethora of clinical, pathological, molecular, and 

radiological variables associated with lymph-node metastasis in the literature for breast cancer 

patients with early-stage disease. Of note was the inconsistency in the reported significance 

and strength of association between these variables and ALN involvement (Figure 2.1). 

Although variables such as age, tumour size, tumour location, and hormone-receptor status 

were frequently included in studies, the lack of uniformity in variable definition and patient 

selection between these studies was a barrier to conducting a meta-analysis. Advances in meta-

analytics through methods such as meta-regressions may enable combining these 
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heterogeneous datasets, and clarify the relationship between these variables and lymph-node 

involvement (7).  

5.3 Next steps in clarifying the molecular landscape of early-stage breast cancers with nodal 

metastasis  

Noting an absence of predictive molecular models specific to early-stage breast cancer 

patients, we utilized the TCGA database to identify differences in the molecular landscape of 

node-positive tumours that can be utilized as a predictive signature. Tumours with axillary 

metastasis had a lower mutation burden in the TCGA cohort (Figure 3.1). Wang et al. 

hypothesized a lack of immunogenicity because of reduced neoantigens in tumours with low-

mutation burden as a potential explanation for this finding(8). Tumour infiltrating lymphocytes 

responding to tumour antigens have been proposed as biomarkers for lymph node metastasis 

in patients, and may be a productive avenue for future studies (9).  

Several statistically significant differences in mRNA and miRNA levels were identified 

between node-positive and node-negative cancers. Importantly, once the analyses were 

repeated in each of the established intrinsic molecular subtypes of breast cancer (namely 

Luminal A, Luminal B, Her2 and Basal), only 33% of the identified mRNA expression differences 

were consistent across all subtypes. This highlighted the intrinsic heterogeneity within breast 

cancer, supporting existing international recommendations for a subtype-specific approach to 

early-stage breast cancer(10). The correlation between differences in mRNA expression, miRNA 

expression and protein quantification in tumours with nodal involvement was beyond the scope 

of this study, but an important topic to pursue in further studies.  
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Intertumoral cellular heterogeneity serves as a major limitation to our analyses. TCGA 

data is comprised of analyses with bulk tumour samples. These surgical specimens include cells 

of various origins and functions such as immune cells and connective tissue in addition to 

breast epithelium. Advanced molecular techniques such as single-cell sequencing show promise 

as the next step in clarifying mechanisms of tumour metastasis despite intertumoral 

heterogeneity (11). Single-cell sequencing in five breast cancer patients with paired primary 

tumours and axillary nodes suggested a role for NECTIN2-TIGIT-mediated interaction between 

cancer cells and tumour microenvironment cells in promoting lymph-node metastasis(12). The 

lymph-node microenvironment appears to play an important role in the process of metastasis 

(13). In a breast cancer mouse model, single-cell sequencing of lymph-nodes suggested 

alterations in the immune and metabolic modulation within the nodes as instrumental to the 

process of tumour metastasis(14). Exciting developments combining spatial transcriptomics 

with single-cell analyses show further promise in advancing our knowledge of intercellular 

interactions within heterogenous tissue (15).  

5.4 Predictive models of nodal-metastasis and future directions  

After developing algorithms to find molecular differences between node-positive and 

node-negative early-stage breast cancers, the next step was to utilize these molecular 

signatures in predictive models of nodal metastasis. To reduce statistical bias, we split the TCGA 

database in half with computer randomization, into training and validation datasets. Molecular 

signatures of nodal metastasis were regenerated only based on the training half of the 

datasets, and machine learning predictive models were developed. Following our previous 

findings of molecular heterogeneity across the 4 intrinsic molecular subtypes, we trained 
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models in individual subtypes as well as all subtypes combined, and compared the performance 

of these models. As a result of sample size reductions, the subtype-specific models did not 

perform better than the combined-model (Figure 4.2). Promising results were seen however 

with our “uniform” molecular signature models that utilized a new approach to accounting for 

inter-subtype heterogeneity (Figures 4.1 and 4.2).  

The uniform signature showed the best performance in the Basal subtype of tumours 

within the validation cohort. The uniform model which relied on a 31 gene signature, tumour T-

stage and age, achieved an AUC of 0.875 in the ROC curve. At a commonly accepted false-

negative rate threshold of 10%(16), this model would achieve a 50% SLNB reduction rate 

(model performance measures provided in Supplementary Table 4.6).  

The predictive models and molecular signatures identified in our studies will need to be 

validated in external datasets before clinical application, but if replicated, these predictive 

models show promise in reducing SLNB procedures. This can have a major impact in reducing 

associated patient morbidity and healthcare resource use. Finally, to highlight an advantage of 

machine learning algorithms, the models can be retrained and applied to additional 

cohorts(17–20). This can possibly reduce model over-fitting, and improve predictive 

performance with time.  
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