1985

Coexistence of Equilibria on Black and White Markets

Trien Tien Nguyen
John Whalley

Follow this and additional works at: https://ir.lib.uwo.ca/economicscsier_wp
Part of the Economics Commons

Citation of this paper:
THE CENTRE FOR THE STUDY OF INTERNATIONAL ECONOMIC RELATIONS

WORKING PAPER NO. 8523C

COEXISTENCE OF EQUILIBRIA ON BLACK AND WHITE MARKETS

Trień T. Nguyen

and

John Whalley

This paper contains preliminary findings from research work still in progress and should not be quoted without prior approval of the authors.

DEPARTMENT OF ECONOMICS
THE UNIVERSITY OF WESTERN ONTARIO
LONDON, CANADA
N6A 5C2
COEXISTENCE OF EQUILIBRIA ON BLACK AND WHITE MARKETS

Trien T. Nguyen
Department of Economics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

John Whalley †
Department of Economics
The University of Western Ontario
London, Ontario, Canada N6A 5C2

July 1985

† Paper to be presented at the Fifth World Congress of the Econometric Society at M.I.T., Cambridge, Massachusetts, August 17-24, 1985. John Whalley is currently on leave at Tax Policy Branch, Department of Finance, Government of Canada, 23rd floor, Place Bell Canada, 160 Elgin Street, Ottawa, Canada, K1A 0G5.
ABSTRACT

This paper explores the inter-relationship between black markets and white (or "official") markets, and presents a formulation in which equilibrium conditions hold separately for each type of market for each product, and across market types. The analysis is motivated by the current situation in many developing countries, where price and/or quantity controls are widespread both for commodities and financial markets. Simultaneously, significant black market activity exists.

Using a traditional goods/factor general equilibrium model, the simultaneous operation of price controls on official markets, and surveillance with penalties for those caught trading on black markets is modelled. We assume penalties for black market transactions are borne by sellers. Producers must decide whether to sell on official markets at controlled prices, or on black markets at higher prices but with a risk of prosecution and an associated penalty. With risk neutral behavior, in equilibrium the expected price received by a producer on each of the two markets is the same.

On the demand side, consumers must decide whether to buy on the black market where they pay a higher price than on white markets, or on white markets and face endogenously-determined transactions costs. The latter represent search costs borne by consumers as they attempt to find producers willing to sell to them at the lower official prices. In equilibrium, the expected price a consumer pays for a product on either market (gross of endogenously-determined transactions costs on white markets) must be the same.

The transactions costs which represent the differences between consumer buying and producer selling prices on official markets are real resource costs, additional to those usually associated with general equilibrium analysis of distortions such as taxes and tariffs. The differences between consumer buying and producer selling prices on black markets represent the expected fines paid by producers.

An implication of the model is that in the presence of price controls on white markets, government "anti-corruption" drives designed to reduce the size of black markets are undesirable. If these are pursued by increasing fines, or the probability of detection, they serve to increase both the differential between consumer buying prices and producers selling prices on white markets. This generates increased and socially wasteful search activities on white markets. The first-best policy is either to eliminate controls on white markets or, failing that, remove penalties for transacting on black markets. Attempting to restrict black markets, given the presence of controls, is typically Pareto worsening.

The analytic structure of the model is presented, and computation of equilibrium is discussed. A numerical example of such an economy is outlined using data for India, and equilibria under coexistence are illustrated.
1. INTRODUCTION

The underground economy is regarded by most economists as an inevitable consequence of government intervention in the overground economy, be it through tax policies, regulatory activity, or other measures. It is thought to be growing in most regions of the globe, including the market-oriented OECD countries, centrally-planned economies of the Soviet type, and developing countries (e.g., Ericson [1984], Frey [1983]). In fact, many different types of underground activity exist, each reflecting quite different institutional arrangements. The tax systems of most OECD countries encourage tax-free transactions to take place underground; inappropriate allocations of inputs under the plan in Soviet-style economies encourage illegal underground trades between enterprises; and in the developing countries price and quantity controls on foodstuffs, raw material inputs, foreign exchange, and many other items encourage underground black-market trading.

It is the last of these types of underground activity that provides the focus for the present paper. Black markets are widely viewed as both endemic and widespread in the third world, and are in part a response to price controls on official (or white) markets. The observation that motivates the paper is that, in practice, both black and white markets coexist together. If this is so, there must be an equilibrium structure that links them. We develop an analytical equilibrium formulation of linked black and white markets, illustrate how such an equilibrium can be computed, and explore some of the implications of linkage using Indian data. Unlike some of the previous work on underground activity, particularly that on tax evasion by Allingham and Sandmo [1972], Srinivasan [1973] and others which explores single-agent optimizing behavior given incentives for evasion, we stress the equilibrium structure which links legal and illegal activities.
Our formulation of linkage involves white markets for which binding government price controls apply, and black markets where penalties apply for those caught transacting. Buyers have to choose between buying on white markets at controlled prices and incurring search or queueing costs, or on black markets without queueing costs but at higher prices. Sellers have to choose between selling on white markets at controlled prices, or on black markets at higher prices but face a probability of detection and fine. In equilibrium, with risk neutral behavior effective buying prices (gross of search costs) will be the same across black and white markets for any product. Similarly, expected selling prices (net of expected penalties) have to be equalized. If both black and white markets clear, then for all products demands across the linked markets must equal supplies.

A prominent feature of the approach are the endogenously-determined transactions costs which reflect differences between effective consumer buying and producer selling prices on official markets. These are real resource costs, additional to those usually associated with taxes, tariffs, and other more traditional distortions. An implication is that in the presence of price controls on white markets, government "anti-corruption" drives designed to reduce the size of black markets are undesirable. If these involve increased fines or heightened surveillance of black marketers, the result is to increase the differential between effective buying and selling prices on white markets, generating increased wasteful search activity on white markets. The first test policy is to either eliminate price controls on white markets, or remove penalties for transacting on black markets. Given the presence of controls, attempting to restrict black markets is typically Pareto worsening.

The plan of the paper is as follows. We present the theoretical framework of the model, outline a computational strategy for determining an equilibrium solution, and then illustrate our approach using a small-dimensional numerical model for India based
on data for the period 1979-80. Although the simulation results are largely illustrative, they do show the importance of linkage between black and white markets under price controls. While more careful calculations clearly need to be done before the approach is applied to practical policy situations, our simple numerical example does illustrate that a piecemeal approach to policy reform which restricts the size of the black market without removing price controls on white markets is typically a welfare-losing proposition. The paper concludes with some remarks on potential applications of the approach, and further extensions of the model.

2. THE THEORETICAL FRAMEWORK

To illustrate how inter-linkage between black and white markets operates, we consider an economy with \(n \) goods and \(n \) factors; the reason for restricting the number of goods to the number of factors will be explained more fully below. We assume that the government imposes price controls \(\bar{p} = (\bar{p}_1, \ldots, \bar{p}_n) > 0 \) on all goods at below market-clearing levels. In the presence of these controls, black markets develop because consumers cannot achieve their desired consumption plans by transacting on white markets alone, and producers are induced to sell at higher black-market prices.

We also assume that the government pursues enforcement efforts designed to detect and fine black marketeers. We assume that enforcement is only applied to the supply side of any market; penalties or fines are levied only on producers, not consumers. The rationale is that it is easier for the government to detect and prosecute firms than consumers since the former typically have larger volumes of transactions. Producers must therefore decide whether to sell goods on white markets at lower controlled prices \(\bar{p} \), or on black markets at higher prices \(p = (p_1, \ldots, p_n) \) but risk prosecution and fines. We assume risk neutral behavior by producers, and so in equilibrium the expected price received by a producer selling on either market must be the same.
On the demand side, consumers decide whether to buy goods on black markets at the higher prices p, or on white markets at lower controlled prices \tilde{p} but with endogenously-determined transactions (or search) costs. The greater the differences between black-market prices and controlled prices, the costlier it becomes for consumers to find a producer willing to sell to them at the lower white-market prices. These transactions costs adjust so as to clear white markets. In equilibrium the expected prices paid by buyers on either market, gross of transactions costs, must be the same.

More formally, we represent the structure of our model as follows. Each sector j is characterized by a linearly homogeneous production function

$$ y_j = F_j (R_j) \quad (j = 1, \ldots, n) \quad (1) $$

with output supply y_j and factor requirements $R_j = (R_{j1}, \ldots, R_{jn})$. Cost minimization at the factor prices $w = (w_1, \ldots, w_n)$ yields derived factor demand functions per unit of output

$$ \frac{(R_{ji}/y_j)} = r_{ji} (w) \quad (i, j = 1, \ldots, n). \quad (2) $$

In equilibrium, zero profit conditions will hold for production and sales in both black and white markets. These are given by

$$ p_j = \Sigma_i w_i r_{ji} (w) + f_j \rho_j \quad (j = 1, \ldots, n), \quad (3a) $$

$$ \tilde{p}_j = \Sigma_i w_i r_{ji} (w) \quad (j = 1, \ldots, n). \quad (3b) $$

The first term on the RHS of equations (3ab) is the cost of producing one unit of output. The second term on the RHS of equation (3a) is the expected cost of selling on black markets; f_j is the fine per unit of output if a producer is caught selling on black markets, and ρ_j is the probability per unit production of being detected.

We assume that ρ_j is an increasing function of the relative size of black-market sales to total sales of good j (on both black and white markets). That is,

$$ \rho_j = \rho_j (s_j) \quad \rho' > 0 \quad (j = 1, \ldots, n) \quad (4a) $$

$$ s_j = y_j^b / (y_j^b + y_j^w) \quad (j = 1, \ldots, n) \quad (4b) $$
where \(y_j^b, y_j^w, s_j \) are black-market sales, white-market sales, and the relative size of the black market in good \(j \). The argument is that the bigger the relative size of the black market the more attention it draws from the government enforcement agency, and hence the higher the probability of black-market sellers being caught. Fines collected by the government are assumed to be redistributed to consumers as transfers.

For simplicity, we characterize the demand side of the economy by either a single consumer or many consumers with identical homothetic preferences. There are fixed aggregate factor endowments \(\overline{R} = (\overline{R}_1, \ldots, \overline{R}_n) > 0 \). Government transfers, denoted by \(T \), accrue to consumers who determine commodity demands on the basis of utility maximization. For each good \(j \), consumers decide whether to buy at the higher price \(p_j \) on the black market or to buy at the lower controlled price \(\overline{p}_j \) on the white market but bear transactions costs. In equilibrium consumers are indifferent in which market they transact.

The equilibrium conditions linking black and white markets from the demand side are

\[
\begin{align*}
 p_j &= \overline{p}_j (1 + g_j) \quad (j = 1, \ldots, n) \quad (5)
\end{align*}
\]

where \(g_j \) is the transactions cost per unit of good \(j \) purchased on white markets.

Real resources used in transacting on white markets are denominated in terms of the good being transacted. The search-cost input requirement per unit of good \(j \) bought on white markets is assumed to be given by

\[
\begin{align*}
 g_j &= \left(\frac{p_j}{\overline{p}_j}\right) - 1 \quad (j = 1, \ldots, n), \quad (6)
\end{align*}
\]

i.e., transactions (search) costs increase with the differential between black and white market prices.

Denoting demands for good \(j \) on black and white markets as \(x_j^b \) and \(x_j^w \) respectively, consumer utility functions are defined over the total consumption of each good,

\[
\begin{align*}
 x_j &= x_j^b + x_j^w \quad (j = 1, \ldots, n), \quad (7)
\end{align*}
\]
since consumers do not differentiate between goods bought on black or white markets. The consumer problem is to maximize utility subject to the following budget constraint

\[\sum_{j} p_j x_j^b + \sum_{j} \bar{p}_j (1 + g_j) x_j^w = \sum_{i} w_i \bar{R}_i + T. \]

(8a)

The LHS of equation (8a) denotes total expenditures on black markets at black-market prices and on white markets at controlled prices, plus endogenous white-market transactions costs. The RHS denotes consumer incomes from factor endowments and government transfers. The latter arises as fines collected by government on black markets are recycled to consumers.

Equations (5,7,8a) thus give the equivalent budget constraint

\[\sum_{j} p_j x_j = \sum_{i} w_i \bar{R}_i + T. \]

(8b)

Utility maximization subject to the budget constraint (8b) yields consumer demands

\[x_j = x_j (p,w,T) \]

\[(j = 1,\ldots,n). \]

(9)

Given that equations (3) guarantee zero profit conditions for producers hold on either black or white markets, and equation (5) ensures that black-market buying prices equal white-market buying prices gross of transactions costs, a general equilibrium in the presence of both black and white markets can be defined as the quadruplet \((p^*,w^*,y^*,T^*)\) such that four sets of conditions hold:

- demands equal supplies in factor markets

\[\sum_{j} r_{ji} (w^*) y_j = \bar{R}_i \]

\[(i = 1,\ldots,n), \]

(10a)

- demands equal supplies for goods in black markets

\[x_j^b = y_j^b \]

\[(j = 1,\ldots,n), \]

(10b)

- demands (gross of transactions costs) equal supplies for goods in white markets

\[(1 + g_j) x_j^w = y_j^w \]

\[(j = 1,\ldots,n), \]

(10c)

- government transfers equal fines collected

\[T^* = \sum_{j} f_j \rho_j (s_j^*) y_j^b \]

(10d)
Equations (10ab) are standard market-clearing conditions with factor prices and black-market prices as the equilibrating mechanism, while equation (10c) uses the endogenously-determined transactions costs on white markets as the equilibrating mechanism in the presence of price controls. Substituting definitions (4b,6) into equation (10c) gives the equivalent equilibrium conditions on white markets

\[(p_j/p_j^e) x_j^W = (1 - s_j) y_j \quad (j = 1,\ldots,n). \quad (10c')\]

Finally, equation (10d) recycles government revenues collected as fines on producers caught trading in black markets in a fashion similar to general equilibrium tax models (e.g., Shoven and Whalley [1973]).

3. COMPUTING INTERLINKED EQUILIBRIA

It is when computation of interlinked black and white market equilibria is considered that the reasons for requiring the number of goods and factors to be equal in our model becomes apparent. Output prices are fixed at \(p \) on white markets and zero profit conditions (3b) must hold. To be operational, our approach requires the same number of goods and factors in the tradition of Samuelson-type [1953] trade models and Gale and Nikaido [1965]. The zero profit conditions yield a system of \(n \) nonlinear equations in \(n \) unknown factor prices \(w^* \). Once equilibrium factor prices \(w^* \) are found, equilibrium output supplies \(y^* \) can be determined from factor market equilibrium conditions (10a), but again it is necessary to have the same number of goods and factors for the system of linear equations (10a) to be solvable.

Substituting (3b,4a) into the black-market zero profit conditions (3a) equilibrium black-market prices can be expressed as a function of only the size of each black market,

\[p_j = p_j^e + f_j \rho_j(s_j) = p_j(s_j) \quad (j = 1,\ldots,n). \quad (11a) \]
As a result, consumer demands (9) and per-unit transactions costs on white markets (6) can be expressed in terms of the vector of proportional black-market size and government transfers

\[x_j = x_j(p(s), w, T) = x_j(s, T) \quad (j = 1, \ldots, n), \quad (11b) \]

\[g_j = \left(\frac{p_j(s_j)}{\bar{p}_j} \right) - 1 \quad (j = 1, \ldots, n). \quad (11c) \]

Since consumers do not differentiate between goods bought on black and white markets, we can represent total excess demands, summed across both black and white markets from (10bc) as

\[z_j = x_j(s, T) + g_j x_j^w - y_j \quad (j = 1, \ldots, n), \quad (12a) \]

or equivalently from (10c') as

\[z_j = x_j(s, T) - (s_j p_j + (1 - s_j) \bar{p}_j / p_j) y_j \quad (j = 1, \ldots, n). \quad (12b) \]

The problem of computing an interlinked black and white market equilibrium can therefore be reduced to that of solving a system of \((n+1)\) nonlinear equations involving total excess demands for goods and government budget imbalance

\[z_j(s, T) = 0 \quad (j = 1, \ldots, n), \quad (13a) \]

\[T - \sum_j f_j \rho_j(s_j) s_j y_j = 0 \quad (13b) \]

in \((n+1)\) unknowns \((s, T)\). This system is similar to that used in general equilibrium tax models (e.g., Shoven and Whalley [1973]) except that here the extended unit simplex is defined over the endogenously-determined size of each black market and revenues from fines.\(^1\) Using this representation of the equilibrium problem, computation can proceed by applying either a fixed-point algorithm or a more traditional Newton or Gauss-Seidel method.

\(^1\) We can further eliminate \(T\) by substituting (13b) into (13a), yielding a vector equation \(z(s) = 0\) in only \(n\) dimensions.
4. SOME NUMERICAL ILLUSTRATIONS USING INDIAN DATA

We illustrate our approach with some numerical calculations for India. India is by common agreement one of the most heavily regulated of the larger economies in the developing world, and one in which issues of policy toward the black market are prominent. We apply the same type of approach as in other applied general equilibrium literature of calibration of a model to a micro-consistent benchmark equilibrium data set, followed by counterfactual equilibrium analysis (see Shoven and Whalley [1984]).

We consider two sectors (agriculture and industry) and two factors (capital and labor). Agriculture consists of agriculture, forestry, and fishing. Industry consists of mining, manufacturing, construction, utilities, railways and transportation, communications, and banking. Our data are taken from a ten-sector micro-consistent Indian benchmark equilibrium data set used by Hamilton, Mohammad, and Whalley [1985]. This involves aggregate data drawn from the 89-sector input-output data constructed by the Indian Planning Commission [1981], and value-added data from the 1979-80 National Accounts [1982].

Price controls are assumed to apply only to the output of the industrial sector, but not to agriculture. In view of the fact that most price controls applicable to agricultural products involve forced deliveries by producers to marketing agencies, and licenced purchases by consumers, but with additional purchases or sales taking place on open and free markets, our assumption is probably not too unrealistic.

Physical units for goods and factors are chosen such that all factor prices and controlled white-market prices equal unity in the benchmark equilibrium. The black-market price of industrial output is assumed to be twice the controlled white-market price in the benchmark equilibrium, as assumed in other recent work which discusses price controls in India (e.g., Mohammad and Whalley [1984,1985], Bhagwati and Srinivasan [1975], and Minhas [1975]).
While black markets are agreed to be significant in India, empirical estimates of their size remain sketchy. We assume that the black market in industrial products covers 50% of output in the benchmark equilibrium, and experiment with alternative values in sensitivity analysis. For simplicity, we also assume that black-market size determines the probability of detecting black-market sellers. In other words, equations (4a) are assumed to have the specific form

\[\rho_j = d_j s_j \quad (j = 1, \ldots, n) \] (4a')

with the constants \(d_j \) set equal to unity for all \(j \). Our observed value-added data refer only to benchmark equilibrium production costs on white markets, but with our assumed values for the relative size of black and white markets under price controls, we are able to adjust our benchmark equilibrium data to include production costs on both black and white markets (see Table 1).

We follow the calibration procedure outlined in Mansur and Whalley [1984] and assume that our benchmark equilibrium data set represents an equilibrium for the economy in the presence of price controls and black markets. From this data, we then determine demand and production parameters from the consumer and producer equilibrium conditions of the model. The parameter values generated, if properly calibrated, should reproduce the benchmark equilibrium data set as an equilibrium solution of the model. Table 1 presents some of the model parameter values determined via calibration. We assume CES functions for demand and production functions, and hence calibration requires priori specification of elasticities of substitution. Reliable estimates of these key parameters for India are not available, and we use different assumed values for elasticities of substitution in demand and production.

With all parameters determined in this way, the model can be used to evaluate various counterfactual equilibrium situations. Model simulations are carried out by representing alternative government "anti-corruption" drives designed to reduce the size of
Table 1: Benchmark Data Set and Model Parameter Values Determined Through Calibration

(a) Production Costs - White Markets Only (billions of 1979 rupees)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Capital</th>
<th>Labor</th>
<th>Value Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>92.7195</td>
<td>248.2263</td>
<td>340.9458</td>
</tr>
<tr>
<td>Industry</td>
<td>250.2258</td>
<td>331.8254</td>
<td>582.0512</td>
</tr>
<tr>
<td>Total</td>
<td>342.9453</td>
<td>580.0517</td>
<td>992.9970</td>
</tr>
</tbody>
</table>

(b) Production Costs - Both Black and White Markets (billions of 1979 rupees)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Capital</th>
<th>Labor</th>
<th>Value Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>92.7195</td>
<td>248.2263</td>
<td>340.9458</td>
</tr>
<tr>
<td>Industry</td>
<td>500.4516</td>
<td>663.6508</td>
<td>1164.1024</td>
</tr>
<tr>
<td>Total</td>
<td>593.1711</td>
<td>911.8771</td>
<td>1505.0482</td>
</tr>
</tbody>
</table>

(c) Parameter Values Determined Through Calibration for CES Production and Demand Functions

<table>
<thead>
<tr>
<th>Sector</th>
<th>Constant Term</th>
<th>Share Parameters</th>
<th>Elasticity of Substitution Assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>1.7416</td>
<td>0.2120</td>
<td>0.7880</td>
</tr>
<tr>
<td>Industry</td>
<td>1.9740</td>
<td>0.4070</td>
<td>0.5930</td>
</tr>
<tr>
<td>Consumer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

black markets by increasing fines per unit of industrial output by successive 10% increments. These policies widen the price gap between black and white markets as well as increase socially wasteful transactions costs on white markets. The welfare costs associated with these "anti-corruption" drive scenarios are each calculated as Hicksian
equivalent variations (ev). For each case considered, we compute a counterfactual equilibrium in the presence of the increased fine and calculate the Hicksian equivalent variations with reference to the benchmark equilibrium.

Table 2 reports simulation results for these cases. While largely illustrative, they nonetheless show the importance of black markets in policy debates on the impacts of price controls. The first-best policy for the government is always to abolish price controls altogether. The welfare gains from such a move towards the counterfactual competitive solution are estimated at 27.68% of benchmark national income in this case.

Table 2: Efficiency Impacts of Reducing the Size of Black Markets By Fine Increases Without Removing Price Controls

<table>
<thead>
<tr>
<th>Proportional Fine Per Unit for Black Market Sellers</th>
<th>Black Market Size in Industrial Products</th>
<th>EV From Increasing Fines (w.r.t. benchmark value 2.0) as % of Benchmark National Income</th>
<th>Fines Collected as % of Benchmark National Income</th>
<th>White Market Transactions Costs as % of Benchmark National Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.5000</td>
<td>1.8540</td>
<td>27.8880</td>
<td>13.9440</td>
</tr>
<tr>
<td>2.2</td>
<td>0.4821</td>
<td>3.5695</td>
<td>28.5138</td>
<td>14.8688</td>
</tr>
<tr>
<td>2.4</td>
<td>0.4663</td>
<td>5.1651</td>
<td>29.1070</td>
<td>15.7204</td>
</tr>
<tr>
<td>2.6</td>
<td>0.4523</td>
<td>6.6560</td>
<td>29.6715</td>
<td>16.5091</td>
</tr>
<tr>
<td>2.8</td>
<td>0.4398</td>
<td>8.0545</td>
<td>30.2106</td>
<td>17.2430</td>
</tr>
<tr>
<td>3.0</td>
<td>0.4285</td>
<td>9.3710</td>
<td>30.7267</td>
<td>17.9287</td>
</tr>
<tr>
<td>3.2</td>
<td>0.4182</td>
<td>10.6140</td>
<td>31.2223</td>
<td>18.5717</td>
</tr>
<tr>
<td>3.4</td>
<td>0.4088</td>
<td>11.7909</td>
<td>31.6991</td>
<td>19.1768</td>
</tr>
<tr>
<td>3.6</td>
<td>0.4002</td>
<td>12.9080</td>
<td>32.1587</td>
<td>19.7477</td>
</tr>
<tr>
<td>3.8</td>
<td>0.3922</td>
<td></td>
<td>32.6027</td>
<td>20.2879</td>
</tr>
<tr>
<td>4.0</td>
<td>0.3848</td>
<td></td>
<td>33.0321</td>
<td>20.8002</td>
</tr>
</tbody>
</table>
Thus if total abolition of price controls is not politically feasible, black markets act as a pressure valve to provide an outlet for excess demands on white markets. As long as price controls remain in effect, attempts to reduce the size of black markets will result larger economic efficiency losses (see Figure 1).

Table 2 suggests that an "anti-corruption" drive that doubles fines per unit of output from 2.0 to 4.0 would lower the equilibrium size of the industrial black market by 11 points from 50% to 39%. This policy raises the associated efficiency costs of controls by 14% of benchmark national income. The fines collected from convicted black-market sellers increase from 28% to 33% of benchmark national income. In addition, the socially wasteful transactions costs on white markets, evaluated at controlled prices, increase from 14% to 21% of benchmark national income.

5. CONCLUSION

In this paper we present an equilibrium framework useful for exploring linkages between black markets and the rest of the economy under an assumption that price controls on "official" markets lead to the growth of black markets. In this formulation sellers evaluate the higher price they could receive on black markets relative to their expected penalty if caught, while buyers evaluate the lower price they would pay on official markets relative to search costs. In equilibrium, search costs on white markets, black-market prices, and the relative sizes of black and white markets are all endogenously-determined. We present the basic framework, discuss computation of equilibria, and present a numerical illustration based on Indian data. The analysis strongly suggests that, in the presence of controls, "anti-corruption" drives which seek to reduce the size of the black market are undesirable since they serve to increase socially wasteful search costs on white markets. The first best policy is to eliminate controls, the second best is to allow as free black market activity as possible.
FIGURE 1

THE WELFARE COSTS OF REDUCING THE SIZE OF THE INDUSTRIAL BLACK MARKET BY FINE INCREASES (WITHOUT REMOVING PRICE CONTROLS)

Welfare Costs in Terms of Hicksian Equivalent Variations (Relative to the Benchmark Situation) Expressed as a Percent of Benchmark National Income: The initial size of the industrial black market is assumed to be 50% of the total industrial market.
REFERENCES

1981

8104C Laidler, David. On the Case for Gradualism.

8105C Wirick, Ronald G. Rational Expectations and Rational Stabilization Policy in an Open Economy

8107C Burgess, David F., Energy Prices, Capital Formation, and Potential GNP

8108C DSU Jimenez, E. and Douglas H. Keare. Housing Consumption and Income in the Low Income Urban Setting: Estimates from Panel Data in El Salvador

8109C DSU Whalley, John Labour Migration and the North–South Debate

8110C Manning, Richard and John McMillan Government Expenditure and Comparative Advantage

8111C Freid, Joel and Peter Hwitt Why Inflation Reduces Real Interest Rates

1982

8201C Manning, Richard and James R. Markusen Dynamic Non-Substitution and Long Run Production Possibilities

8202C Feenstra, Robert and Ken Judd Tariffs, Technology Transfer, and Welfare

8203C Ronald W. Jones, and Douglas D. Purvis: International Differences in Response to Common External Shocks: The Role of Purchasing Power Parity

8204C James A Brander and Barbara J. Spencer: Industrial Strategy with Committed Firms

8205C Whalley, John, The North–South Debate and the Terms of Trade: An Applied General Equilibrium Approach

8206C Roger Betancourt, Christopher Clague, Arvind Panagariya CAPITAL UTILIZATION IN GENERAL EQUILIBRIUM

8207C Mansur, Ahsan H On the Estimation of Import and Export Demand Elasticities and Elasticity Pessimism.

8208C Whalley, J. and Randy Wigle PRICE AND QUANTITY RIGIDITIES IN ADJUSTMENT TO TRADE POLICY CHANGES: ALTERNATIVE FORMULATIONS AND INITIAL CALCULATIONS

8209C DSU Jimenez, E. SQUATTING AND COMMUNITY ORGANIZATION IN DEVELOPING COUNTRIES: A CONCEPTUAL FRAMEWORK
1982

8210C Grossman, G.M. INTERNATIONAL COMPETITION AND THE UNIONIZED SECTOR

8211C Laidler, D. FRIEDMAN AND SCHWARTZ ON MONETARY TRENDS – A REVIEW ARTICLE

8212C Imam, M.H. and Whalley, J. INCIDENCE ANALYSIS OF A SECTOR SPECIFIC MINIMUM WAGE IN A TWO SECTOR HARRIS–TODARO MODEL.

8213C Markusen, J.R. and Melvin, J.R. THE GAINS FROM TRADE THEOREM WITH INCREASING RETURNS TO SCALE.

8214C INDUSTRIAL ORGANIZATION AND THE GENERAL EQUILIBRIUM COSTS OF PROTECTION IN SMALL OPEN ECONOMIES.

8215C Laidler, D. DID MACROECONOMICS NEED THE RATIONAL EXPECTATIONS REVOLUTION?

8216C Whalley, J. and Wigle, R. ARE DEVELOPED COUNTRY MULTILATERAL TARIFF REDUCTIONS NECESSARILY BENEFICIAL FOR THE U.S.?

8217C Bade, R. and Parkin, M. IS STERLING M3 THE RIGHT AGGREGATE?

8218C Kosch, B. FIXED PRICE EQUILIBRIA IN OPEN ECONOMIES.

1983

8301C Kimbell, L.J. and Harrison, G.W. ON THE SOLUTION OF GENERAL EQUILIBRIUM MODELS.

8302C Melvin, J.R. A GENERAL EQUILIBRIUM ANALYSIS OF CANADIAN OIL POLICY.

8303C Markusen, J.R. and Svensson, L.E.O. TRADE IN GOODS AND FACTORS WITH INTERNATIONAL DIFFERENCES IN TECHNOLOGY.

8304C Mohammad, S. Whalley, J. RENT SEEKING IN INDIA: ITS COSTS AND POLICY SIGNIFICANCE.

8305C Jimenez, E. TENURE SECURITY AND URBAN SQUATTING.

8306C Parkin, M. WHAT CAN MACROECONOMIC THEORY TELL US ABOUT THE WAY DEFICITS SHOULD BE MEASURED.

8307C Parkin, M. THE INFLATION DEBATE: AN ATTEMPT TO CLEAR THE AIR.

8308C Wooton, I. LABOUR MIGRATION IN A MODEL OF NORTH–SOUTH TRADE.

8309C Deardorff, A.V. THE DIRECTIONS OF DEVELOPING COUNTRIES TRADE: EXAMPLES FROM PURE THEORY.

8310C Manning, R. ADVANTAGEOUS REALLOCATIONS AND MULTIPLE EQUILIBRIA: RESULTS FOR THE THREE-AGENT TRANSFER PROBLEM.
1983

8311C DSU Mohammad, S. and Whalley, J. CONTROLS AND THE INTERSECTORAL TERMS OF TRADE IN INDIA.

8313C Jones, R.W., Neary, J.P. and Ruane, F.P. TWO-WAY CAPITAL FLOWS: CROSS-HAULING IN A MODEL OF FOREIGN INVESTMENT.

8314C DSU Follain, J.E. Jr. and Jimenez, E. THE DEMAND FOR HOUSING CHARACTERISTICS IN DEVELOPING COUNTRIES.

8315C Shoven, J.B. and Whalley, J. APPLIED GENERAL EQUILIBRIUM MODELS OF TAXATION AND INTERNATIONAL TRADE.

8316C Boothe, Paul and Longworth David. SOME IRREGULAR REGULARITIES IN THE CANADIAN/U.S. EXCHANGE MARKET.

8317C Hamilton, Bob and Whalley, John. BORDER TAX ADJUSTMENTS AND U.S. TRADE.

8318C Neary, J. Peter, and Schweinberger, Albert G. FACTOR CONTENT FUNCTIONS AND THE THEORY OF INTERNATIONAL TRADE.

8319C Veall, Michael R. THE EXPENDITURE TAX AND PROGRESSIVITY.

8320C Melvin, James R. DOMESTIC EXCHANGE, TRANSPORTATION COSTS AND INTERNATIONAL TRADE.

8321C Hamilton, Bob and Whalley, John. GEOGRAPHICALLY DISCRIMINATORY TRADE ARRANGEMENTS.

8322C Bale, Harvey Jr. INVESTMENT FRICTIONS AND OPPORTUNITIES IN BILATERAL U.S.-CANADIAN TRADE RELATIONS.

8323C Wonnacott, R.J. CANADA-U.S. ECONOMIC RELATIONS—A CANADIAN VIEW.

8324C Stern, Robert M. U.S.-CANADIAN TRADE AND INVESTMENT FRICTIONS: THE U.S. VIEW.

8325C Harrison, Glenn, H. and Kimbell, Larry, J. HOW ROBUST IS NUMERICAL GENERAL EQUILIBRIUM ANALYSIS?

8326C Wonnacott, R.J. THE TASK FORCE PROPOSAL ON AUTO CONTENT: WOULD THIS SIMPLY EXTEND THE AUTO PACT, OR PUT IT AT SERIOUS RISK?

8327C Bradford, James C. CANADIAN DEFENCE TRADE WITH THE U.S.
Conklin, David. SUBSIDY PACTS.
Rugman, Alan M. THE BEHAVIOUR OF U.S. SUBSIDARIES IN CANADA: IMPLICATIONS FOR TRADE AND INVESTMENTS.
1983

8328C Boyer, Kenneth D. U.S.-CANADIAN TRANSPORTATION ISSUES.

8329C Bird, Richard M. and Brean, Donald J.S. CANADA-U.S. TAX RELATIONS: ISSUES AND PERSPECTIVES.

8330C Moroz, Andrew R. CANADA-UNITED STATES AUTOMOTIVE TRADE AND TRADE POLICY ISSUES.

1984

8401C Harrison, Glenn W. and Manning, Richard. BEST APPROXIMATE AGGREGATION OF INPUT-OUTPUT SYSTEMS.

8402C Parkin, Michael. CORE INFLATION: A REVIEW ESSAY.

8403C Blomqvist, Åke, and McMahon, Gary. SIMULATING COMMERCIAL POLICY IN A SMALL, OPEN DUAL ECONOMY WITH URBAN UNEMPLOYMENT: A GENERAL EQUILIBRIUM APPROACH.

8404C Wonnacott, Ronald. THE THEORY OF TRADE DISCRIMINATION: THE MIRROR IMAGE OF VINERIAN PREFERENCE THEORY?

8405C Whalley, John. IMPACTS OF A 50% TARIFF REDUCTION IN AN EIGHT-REGION GLOBAL TRADE MODEL.

8406C Harrison, Glenn W. A GENERAL EQUILIBRIUM ANALYSIS OF TARIFF REDUCTIONS.

8407C Horstmann, Ignatius and Markusen, James R. STRATEGIC INVESTMENTS AND THE DEVELOPMENT OF MULTINATIONALS.

8408C Gregory, Allan W. and McCurdy, Thomas H. TESTING THE UNBLASEDNESS HYPOTHESIS IN THE FORWARD FOREIGN EXCHANGE MARKET: A SPECIFICATION ANALYSIS.

8409C Jones, Ronald W. and Kierzkowski, Henryk. NEIGHBORHOOD PRODUCTION STRUCTURES WITH APPLICATIONS TO THE THEORY OF INTERNATIONAL TRADE.

8410C Weller, Paul and Yano, Makoto. THE ROLE OF FUTURES MARKETS IN INTERNATIONAL TRADE: A GENERAL EQUILIBRIUM APPROACH.

8411C Brecher, Richard A. and Bhagwati, Jagdish N. VOLUNTARY EXPORT RESTRICTIONS VERSUS IMPORT RESTRICTIONS: A WELFARE-THEORETIC COMPARISON.
8412C Ethier, Wilfred J. ILLEGAL IMMIGRATION.
8413C Eaton, Jonathon and Gene M. Grossman. OPTIMAL TRADE AND
 INDUSTRIAL POLICY UNDER OLIGOPOLY.
8414C Wooton, Ian. PREFERENTIAL TRADING AGREEMENTS - A 3xn MODEL.
8415C Parkin, Michael. DISCRIMINATING BETWEEN KEYNESIAN AND
8416C Deardorff, Alan V. FIRless FIRwoes: HOW PREFERENCES CAN INTERFERE
 WITH THE THEOREMS OF INTERNATIONAL TRADE.
8417C Greenwood, Jeremy. NONTRADED GOODS, THE TRADE BALANCE, AND THE
 BALANCE OF PAYMENTS.
8418C Blomqvist, Ake and Sharif Mohammad. CONTROLS, CORRUPTION, AND
 COMPETITIVE RENT-SEEKING IN LDCs.
8419C Grossman, Herschel I. POLICY, RATIONAL EXPECTATIONS, AND
 POSITIVE ECONOMIC ANALYSIS.
8420C Garber, Peter M. and Robert G. King. DEEP STRUCTURAL
 EXCAVATION? A CRITIQUE OF EULER EQUATION METHODS.
8421C Barro, Robert J. THE BEHAVIOR OF U.S. DEFICITS.
8422C Persson, Torsten and Lars E.O. Svensson. INTERNATIONAL
 BORROWING AND TIME-CONSISTENT FISCAL POLICY.
8423C Obstfeld Maurice. CAPITAL CONTROLS, THE DUAL EXCHANGE RATE,
 AND DEVALUATION.
8424C Kuhn, Peter. UNION PRODUCTIVITY EFFECTS AND ECONOMIC EFFICIENCY.
8425C Hamilton, Bob and John Whalley. TAX TREATMENT OF HOUSING IN A
 DYNAMIC SEQUENCED GENERAL EQUILIBRIUM MODEL.
5426C Hamilton, Bob, Sharif Mohammad, and John Whalley. RENT SEEKING
 AND THE NORTH-SOUTH TERMS OF TRADE.
8427C Adams, Charles and Jeremy Greenwood. DUAL EXCHANGE RATE SYSTEMS
 AND CAPITAL CONTROLS: AN INVESTIGATION.
8428 Loh, Choon Cheong and Michael R. Veall. A NOTE ON SOCIAL
 SECURITY AND PRIVATE SAVINGS IN SINGAPORE.
8429 Whalley, John. REGRESSION OR PROGRESSION: THE TAXING
 QUESTION OF INCIDENCE ANALYSIS.
8430 Kuhn, Peter. WAGES, EFFORT, AND INCENTIVE-COMPATIBILITY IN
 LIFE-CYCLE EMPLOYMENT CONTRACTS.
Greenwood, Jeremy and Kent P. Kimbrough. AN INVESTIGATION IN THE THEORY OF FOREIGN EXCHANGE CONTROLS.

Greenwood, Jeremy and Kent P. Kimbrough. CAPITAL CONTROLS AND THE INTERNATIONAL TRANSMISSION OF FISCAL POLICY.

Nguyen, Trien Trien and John Whalley. EQUILIBRIUM UNDER PRICE CONTROLS WITH ENDOGENOUS TRANSACTIONS COSTS.

Adams, Charles and Russell S. Boyer. EFFICIENCY AND A SIMPLE MODEL OF EXCHANGE RATE DETERMINATION.

Kuhn, Peter. UNIONS, ENTREPRENEURSHIP, AND EFFICIENCY.

Hercowitz, Zvi and Efraim Sadka. ON OPTIMAL CURRENCY SUBSTITUTION POLICY AND PUBLIC FINANCE.

Lenjosek, Gordon and John Whalley. POLICY EVALUATION IN A SMALL OPEN PRICE TAKING ECONOMY: CANADIAN ENERGY POLICIES.

Aschauer, David and Jeremy Greenwood. MACROECONOMIC EFFECTS OF FISCAL POLICY.

Hercowitz, Zvi. ON THE DETERMINATION OF THE EXTERNAL DEBT: THE CASE OF ISRAEL.

Stern, Robert M. GLOBAL DIMENSIONS AND DETERMINANTS OF INTERNATIONAL TRADE AND INVESTMENT IN SERVICES.

Deardorff, Alan V. COMPARATIVE ADVANTAGE AND INTERNATIONAL TRADE AND INVESTMENT IN SERVICES.

Daly, Donald J. TECHNOLOGY TRANSFER AND CANADA'S COMPETITIVE PERFORMANCE.

Grey, Rodney de C. NEGOITIATING ABOUT TRADE AND INVESTMENT IN SERVICES.

Grossman, Gene M. and Carl Shapiro. NORMATIVE ISSUES RAISED BY INTERNATIONAL TRADE IN TECHNOLOGY SERVICES.

Chant, John F. THE CANADIAN TREATMENT OF FOREIGN BANKS: A CASE STUDY IN THE WORKINGS OF THE NATIONAL TREATMENT APPROACH.

Aronson, Jonathan D. and Peter F. Cowhey. COMPUTER, DATA PROCESSING, AND COMMUNICATION SERVICES.

Feketakuty, Geza. NEGOITIATING STRATEGIES FOR LIBERALIZING TRADE AND INVESTMENT IN SERVICES.

Harrison, Glenn, W. and E.E. Rutstrom. THE EFFECT OF MANUFACTURING SECTOR PROTECTION ON ASEAN AND AUSTRALIA: A GENERAL EQUILIBRIUM ANALYSIS.
Horstmann, Ignatius and James R. Markusen. UP YOUR AVERAGE COST CURVE: INEFFICIENT ENTRY AND THE NEW PROTECTIONISM.

Gregory, Allan W. TESTING INTEREST RATE PARITY AND RATIONAL EXPECTATIONS FOR CANADA AND THE UNITED STATES.

Kuhn, Peter and Ian Wooton. INTERNATIONAL FACTOR MOVEMENTS IN THE PRESENCE OF A FIXED FACTOR.

Wong, Kar-yiu. GAINS FROM GOODS TRADE AND FACTOR MOBILITY.

Weller, Paul and Makoto Yano. FUTURES MARKETS, REAL INCOME, AND SPOT PRICE VARIABILITY: A GENERAL EQUILIBRIUM APPROACH.

Diewert, W.E. THE EFFECTS OF AN INNOVATION: A TRADE THEORY APPROACH.

Ethier, Wilfred J. FOREIGN DIRECT INVESTMENT AND THE MULTINATIONAL FIRM.

Dinopoulos, Elias. INSIDE THE BLACK BOX: (IN)TANGIBLE ASSETS, INTRA-INDUSTRY INVESTMENT AND TRADE.

Jones, Richard, John Whalley, and Randall Wigle. REGIONAL IMPACTS OF TARIFFS IN CANADA: PRELIMINARY RESULTS FROM A SMALL DIMENSIONAL NUMERICAL GENERAL EQUILIBRIUM MODEL.

Whalley, John. HIDDEN CHALLENGES IN RECENT APPLIED GENERAL EQUILIBRIUM EXERCISES.

Smith, Bruce. SOME COLONIAL EVIDENCE ON TWO THEORIES OF MONEY: MARYLAND AND THE CAROLINAS.

Romer, Paul R. TAX EFFECTS AND TRANSACTION COSTS FOR SHORT TERM MARKET DISCOUNT BONDS.

McCallum, Bennett T. ON CONSEQUENCES AND CRITICISMS OF MONETARY TARGETING.

Dinopoulos, Elias and Ian Wooton. A NORTH-SOUTH MODEL OF INTERNATIONAL JUSTICE.

Huffman, Gregory W. A DYNAMIC EQUILIBRIUM MODEL OF ASSET PRICES AND TRANSACTION VOLUME.

Huffman, Gregory W. AN ALTERNATIVE VIEW OF OPTIMAL SEIGNIORAGE.

Huffman, Gregory W. ASSET PRICING WITH HETEROGENEOUS ASSETS.
1985

8520C Hercowitz, Zvi. THE REAL INTEREST RATE AND AGGREGATE SUPPLY.

8521C Davies, James and Michael Hoy. COMPARING INCOME DISTRIBUTIONS UNDER AVERSN TO DOWNSIDE INEQUALITY.

8522C Nguyen, Trien T. and John Whalley. COEXISTENCE OF EQUILIBRIA ON BLACK AND WHITE MARKETS.

8523C Clarete, Ramon and John Whalley. INTERACTIONS BETWEEN TRADE POLICIES AND DOMESTIC DISTORTIONS: THE PHILIPPINE CASE.