
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-2-2022 2:00 PM 

Complete Hopf and Bogdanov-Takens Bifurcation Analysis on Complete Hopf and Bogdanov-Takens Bifurcation Analysis on 

Two Epidemic Models Two Epidemic Models 

Yuzhu Ruan, The University of Western Ontario 

Supervisor: Yu, Pei, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Applied Mathematics 

© Yuzhu Ruan 2022 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
Ruan, Yuzhu, "Complete Hopf and Bogdanov-Takens Bifurcation Analysis on Two Epidemic Models" 
(2022). Electronic Thesis and Dissertation Repository. 8876. 
https://ir.lib.uwo.ca/etd/8876 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8876?utm_source=ir.lib.uwo.ca%2Fetd%2F8876&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Infectious diseases are a global problem that harms people’s health and well-being and severely
threatens human survival. As an epidemiological model, the SIR model is commonly referred
to as forecasting how illnesses will spread, how many people will become sick, and how long
an epidemic will last. It is also possible to estimate other epidemiological parameters.

Bifurcation theory and limit cycle theory have played an important role in the study of
nonlinear dynamical systems, especially for the infectious disease models. In particular, Hopf
and Bogdanov-Takens (B-T) bifurcations are the two most prevalent bifurcations in real-world
systems and should be considered in practical problems which require analysis of stability and
bifurcation.

In this thesis, we reconsider two epidemic models and focus on the dynamical behaviours of
the systems, which are not explored in the previous studies. Our main attention focuses on the
stability and bifurcation of equilibrium solutions. Explicit conditions are obtained to classify
different bifurcations, including forward bifurcation, backward bifurcation, Hopf bifurcation,
and B-T bifurcation. The method of normal forms is applied to study Hopf, codimension-2 and
codimension-3 B-T bifurcations, showing complex dynamics in these two models.

Keywords: SIR disease model, Stability, Limit cycle, Forward bifurcation, Backward bi-
furcation, Hopf bifurcation, Bogdanov-Takens bifurcation, Normal form
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Lay Summary

Infectious diseases are a global problem that harms people’s health and well-being and severely
threatens human survival. In epidemiology, SIR models are widely used to predict the spread
of diseases, the number of infected individuals, epidemic duration, and other factors.

We have studied the stability of epidemic SIR models, the conditions for the existence of
limit cycle bifurcations, as well as Hopf and B-T bifurcations as a result of the increasing
interest in the dynamic behavior of epidemic anaysis. We therefore examined the dynamics of
the systems in this paper and reconsider the two epidemic models. Our analysis focused on
the equilibrium solutions, stability, and bifurcation of the two models and we obtained explicit
conditions that permit us to classify each bifurcation. The center manifold theorem, normal
form theory, bifurcation theory and limit cycle theory were used to demonstrate the complex
dynamics of both models. Hopf, codimension 2 and codimension 3 B-T bifurcations were
studied to demonstrate the complex dynamics of these models.
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Chapter 1

Introduction

Infectious illnesses, as a worldwide concern, not only inflict considerable harm to people’s
bodily and mental health but also constitute a significant danger to human survival and progress
and have piqued the international community’s interest. Today, infectious diseases are widely
distributed worldwide, especially the COVID 19 pandemic. Tens of millions of people suffer
from physical and mental health, leading to increased social problems.

1.1 Research Background

The classic infectious disease model is the famous SIR compartment model developed in the
early 20th century, particularly by Ross in 1916 [23], Ross and Hudson in 1917 [24], Kermack
and McKendrick in 1927 [15], and Kendall in 1956 [16] with S denoting the susceptible, I the
infectious, R the recovered individuals who are immune to the disease ever, and patients are
able to move between compartments [41]. At the time t, the number of people not infected
by the disease but at risk of infection demonstrated by S (t), the number of people infected
and infectious demonstrated by I(t), and the number of people who are out of infectiousness
demonstrated by R(t).

With general assumptions, the population of susceptibles at a given time is constant, the
number of susceptibles infected by a patient at a given time is proportional to the total number
of susceptibles, which is denoted by β, and the number of patients removed per unit time
equals the number of infected patients, with the proportionality factor denoted as γ [16]. Thus,
a fundamental epidemic SIR differential system model can be written as

1



2 Chapter 1. Introduction

dS
dt
= − βS I

dI
dt
= βS I − γI

dR
dt
= γI

(1.1)

According to the above SIR model, people are considered immune to a disease for the
rest of their lives upon recovery. However, an individual’s immunity may wane with time for
other airborne diseases. As a result, the SIRS model has been introduced, which is derived
from the SIR model, with the recovered patient having the ability to revert to a susceptible
state. In recent years, comparative epidemiological models have been widely used to study
infectious disease dynamics. Various infectious disease problems have been analyzed using
various mathematical models. Models based on ordinary differential equations are the most
popular for describing infectious disease dynamics.

As one of the most effective methods to analyze infectious illnesses, more and more schol-
ars are using dynamical systems approach to analyze factors such as the diffusion spread of
infectious diseases. An SIR model is widely recognized as the most important epidemiological
model because it is capable of predicting how diseases will spread, how many people will be
affected, and how long an epidemic will persist throughout a particular population. It can also
estimate other epidemiological factors, such as reproductive capacity.

Several studies have been conducted in recent years on the Hopf bifurcation and Bogdanov-
Takens (B-T) bifurcation of epidemic models. A 2-dimensional disease model has been devel-
oped by Yu et al. [35] , which can be used for both epidemiologic and in-host disease modeling,
by focusing on diverse dynamical behaviors of the system. A simple HIV SIR model with a
convex incidence and four real parameters was studied by Yu et al. [36] to analyze multiple
limit cycles that emerge from Hopf bifurcation, and a unique method was developed to de-
termine the normal forms of codimension-2 and codimension-3 B-T bifurcations. A saturated
incidence rate and saturated treatment function were considered by Zhang et al. in [37]. It was
demonstrated that a backward bifurcation between the endemic and disease-free equilibrium is
observed when there is a strong effect on treatment. There were two studies [3, 14], in which
the authors focused on the stability analysis and the existence of bifurcations in an epidemic
model with a nonlinear incidence rate. Wang et al. [29] investigated a bilinear incidence rate
and density-dependent SIR model with a saturated treatment function, concentrating on the
model’s dynamical bifurcation analysis, particularly the stability of equilibirum solutions and
supercritical Hopf bifurcation. Rao et al. [22] studied an SIRS epidemic model with a gener-
alised incidence rate function representing illness transmission processes with an emphasis on
equilibria, as well as on forward and backward bifurcations.

An increased interest in the dynamic behaviors of epidemic models motivated us to study
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stability and bifurcation of the models in epidemiology, especially the existence condition on
the bifurcation of limit cycles, and Hopf and B-T bifurcations. For the purpose of analysis of
these questions, we have chosen to examine the following epidemic models: an SIR model
with saturated treatment function introduced in [29], and an SIRS model with a generalized
incidence introduced in [22]. The focus of this study will be on the relation between suscep-
tible and infectious within the system since we are able to analyze the dynamical behaviors
of the systems by examining the reduced system, since these two systems are topologically
equivalent.

With regard to the SIR model with a saturated treatment function [29], we will utilize the
fact that the third function is independent from the first two functions. Specifically, we will
address the gap part of their study in this thesis, which is the determination of the codimension
of the Hopf bifurcation, and the maximum number of limit cycles that can bifurcate simultane-
ously from the Hopf critical point, and also the B-T bifurcation.

For SIRS model with a generalized incidence [22], on the other hand, we will assume
that the total population is constant, which reduces the system to two dimensions, and then
analyze the Hopf and B-T bifurcations of the reconstructed system using the new hierarchical
parametric approach proposed in [39].

1.2 Methodology

Before describing the methodology to be used in this thesis, we first introduce some mathe-
matical concepts related to dynamical analysis, such as equilibrium solutions and their stability,
followed by an explanation of the importance on the bifurcation of limit cycles. Then, we will
discuss the conditions for generating Hopf bifurcations and Bogdanov-Takens bifurcations.

1.2.1 Equilibrium Points and Stability

Studies of stability are a vital part of research on the SIR models of infectious diseases. In
preparation for the investigation of stability, we followed the method introduced in [11], which
is needed to compute the equilibrium solutions and the Jacobian matrix of our systems.

Consider the general 2-d system of differential equations:

ẋ1 = f (x1, x2),

ẋ2 = g(x1, x2).
(1.2)

The equilibrium solutions or equilibrium points can be found by solving the nonlinear equa-
tions: f (x∗1, x

∗
2) = g(x∗1, x

∗
2) = 0 for some (x∗1, x

∗
2).
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The Jacobian matrix of the system (1.2) evaluated at the equilibrium point (x∗1, x
∗
2) is given

by

J(x∗1, x
∗
2) =


∂ f
∂x1

(x∗1, x
∗
2)
∂ f
∂x2

(x∗1, x
∗
2)

∂g
∂x1

(x∗1, x
∗
2)
∂g
∂x2

(x∗1, x
∗
2)

 . (1.3)

Then, the stability of the equilibrium point (x∗1, x
∗
2) can be determined by the eigenvalues of J,

which are functions of the parameters of the system.
For our 2-d models, the dynamics of the equilibrium points can be classified in the follow-

ing theorem.

Theorem 1.2.1. Let J be the Jacobian matrix of the dynamical system at equilibrium point
(x∗1, x

∗
2) with eigenvalues λ1 and λ2. Then, the equilibrium is

(i) a saddle if both λ1 and λ2 are real and have opposite signs;

(ii) a stable node if λ1 and λ2 are are distinct, non-zero and both negative, and an unstable
node if λ1 and λ2 are are distinct, non-zero and both positive;

(iii) a stable focus if both λ1 and λ2 are a pair of complex conjugates with negative real part;
an unstable focus if both λ1 and λ2 are a pair of complex conjugates with positive real
part.

If the real parts of the eigenvalues are changed to zero with respect to system parame-
ters, then the quilibrim point becomes singular and bifurcations occur from the equilibrium
solutions.

1.2.2 Limit cycle theory

In studying nonlinear dynamical systems, limit cycle theory plays a very important role in
the well-known phenomenon of self-oscillations arising from physical science and engineer-
ing [10, 13]. Hopf and B-T bifurcations are two main bifurcations that generate limit cycles
in real-world systems. The main task in such studies is to derive the normal form (NF) of the
system and determine the codimension of the associated bifurcation, since the codimension is
directly related to the maximal number of limit cycles which determines complex behaviors of
the system. This is not easy for higher-codimension bifurcation problems. In reality, the pa-
rameters involved in real systems often have physical limitations, yielding additional difficulty
in the bifurcation analysis such that the analysis becomes very difficult even for 2-dimensional
dynamical systems.

Very recently, a hierarchical parametric analysis has been proposed to overcome this dif-
ficulty in dealing with the stability and bifurcation analysis related to Hopf bifurcation [39].
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In this article, the authors use a simple epidemic model to demonstrate that this new approach
is efficient when traditional methods are not applicable, which is to determine the limit cycle
from the normalized dimensionless model. Here is the example for the 2d model mentioned in
[39]
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Figure 1.1: Simulation of one stable limit cycle for the 2-d HIV model in [36]

In the following, we use the limit cycle bifurcation examples given in [36] to illustrate the
codimension of Hopf bifurcation, and to show the significant difference between the bifurca-
tions of one and two limit cycles.

For the case with one limit cycle depicted in Figure 1.1, it is shown in [36] that there exists
a degenerate saddle point (which is not shown in this figure), an unstable focus E1− and a
stable limit cycle. The whole 2-d phase space is divided into two parts by the limit cycle, all
trajectories (both from inside and outside the limit cycle) converge to the stable limit cycle.
This implies that the patient is under a relative stable situation.
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Figure 1.2: Simulation of two limit cycles for the 2-d HIV model in [36]
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For the case with two limit cycles as shown in Figure 1.2 (see Figure 10 in [36]), on the
other hand, it has three equilibria, E0 which is a stable node, E1+ which is a saddle point, and
E1− which is a stable focus. There exist two limit cycles bifurcating from a Hopf critical point,
with the outer one stable (in red color) and inner one unstable (in green color). Therefore, the
whole 2-d phase plane is divided by the two limit cycles into three regions, and trajectories
converge either to the stable node E0, or to the stable focus E1−, or to the satble limit cycle.
These complex dynamical behaviours reflect more realistic situation, since the patient may
experience different situations at different time.

1.2.3 Hopf bifurcation

Hopf bifurcation occurs from a critical point at which the equilibrium loses it stability and pe-
riodic solutions emerge, which is characterized by a pure imaginary pair of eigenvalues. Con-
sequently, for autonomous differential systems, Hopf bifurcations can occur only in dynamical
systems with a dimension of two or greater.

Consider the following differential n-d system:

ẋ = A(µ)x + F(x, µ), x ∈ Rn, µ ∈ R, (1.4)

where µ is a parameter, and A denotes the linear part while F represents the nonlinear part
with F(0) = 0, implying that the origin is an equilibrium solution. Suppose the one pair of
complex conjugate eigenvalues of A(µ) is given by λ1,2 = α(µ)± i β(µ). Then, Hopf bifurcation
is definded by the following two conditions:

(H1) α(0) = 0, and
(H2) d

dµ

∣∣∣∣
µ=µ0
, 0, which is called transversal condition.

To consider the maximal limit cycles bifurcating from a Hopf critical point, we need to
consider the codimension of Hopf bifurcation. To achieve this, the standard method is to
use a computer algebraic system such as Maple or Mathematica to symbolically compute the
conventional normal form (CNF) of the system at an equilibrium point resulting from a Hopf
bifurcation, and then solving a multivariate polynomial system using that CNF.

There are two main difficulties in the computation of the CNF. The first one is due to the
symbolic computational complexity in the CNF caused by the conventional approach used in
stability and bifurcation analysis. The second difficulty comes from that real-world systems
often have extra restrictions on the system parameters.

For instance, consider the maximal number of limit cycles arising from generalized Hopf
bifurcation in a 2-dimensional nonlinear system. The system parameters, in general, must be
positive or even restricted to certain limiting values. Suppose that the system under consider-
ation contains 5 real parameters. In general, if these parameters are assumed to be real, then
the maximal number of bifurcating limit cycles may be 5, which is the same as the number
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of parameters. It should be noted, however, that if the system is a real biological one or other
physical system with parameters that are limited, the maximum number of limit cycles might
be 4, 3, 2, or even only 1. In this case, determining the codimension of the Hopf bifurcation be-
comes extremely difficult. The difficulty is mainly from solving the polynomial systems based
on the normal form or focus values (suppose the normal form has been obtained), since one
needs to determine the sign of the polynomials with respect to the variation of many variables
(parameters).

Besides the above-mentioned difficulties in bifurcation analysis, another difficulty in Hopf
bifurcation is determining the conditions for which a given system undergoes Hopf bifurca-
tion. When more parameters are involved in the system, and equilibrium solutions cannot be
showed distinctly in terms of the system parameters, determining the stability of the equilib-
rium solutions becomes very difficult, and in most cases, it is impossible to determine the Hopf
critical point. Thus, in this case, it is not possible to compute the normal form (or the focus
values), thereby making it impossible to give a theoretical study on the bifurcations except
using numerical approaches to get some solutions for fixed parameter values.

1.2.4 Bogdanov-Takens bifurcation

The Bogdanov-Takens (B-T) bifurcation occurs when the system has a double-zero eigenvalue
at the equilibrium. To analyze the B-T bifurcation, the equilibrium point needs to be translated
to the origin and Taylor expansion should be used around the origin. Next, we need to apply
an appropriate affine transformation to transform the original system to a new one whose linear
part is in the Jordan canonical form. Further, nonlinear transformations should be applied [36]
to find the codimension of B-T bifurcation. Consider the following normal form associated
with the codimension-2 B-T bifurcation (for example, see [40]):

ẏ1 = y2,

ẏ2 = γ1 + γ2y1 + y2
1 − y1y2,

(1.5)

where γ1 and γ2 are two unfolding (bifurcation) parameters. When γ1 = γ2 = 0, the system has
a unique equilibrium at the origin (0, 0), with a zero eigenvalue of multiplicity two. Generally,
Andronov-Hopf bifurcation curves and saddle homoclinic bifurcation curves typically occur
around the origin of the critical equilibrium on saddle-node bifurcation curves [40]. The local
bifurcation curves for the codimension-2 B-T bifurcation are desribed as follows.

Saddle-node bifurcation: SN =
{
γ | 4γ1 − γ

2
2 = 0

}
;

Hopf bifurcation: H =
{
γ | γ1 = 0, γ2 < 0

}
;

Homoclinic loop bifurcation: HL =
{
γ | γ1 = −

6
25γ

2
2, γ2 < 0

}
.

In this thesis, we will analyze the codimension of B-T bifurcations. For the codimension-2
B-T bifurcation, the analysis has become standard [10, 31]. However, for codimension-3 or
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higher-codimension (or degenerate) B-T bifurcations, the computation of the normal forms be-
comes much more involved, particularly in order to establish the relation between the original
system and the simplified system (the normal form). The codimension-3 degenerate cusp B-T
bifurcation was studied by Dumortier et al. in 1987 [6], and the classical six-step transforma-
tion approach was developed and widely used by researchers in deriving the simplest normal
form (SNF) with unfolding. However, the six transformations are usually quite complicated,
and some of them are not even in algebraic form, which causes difficulty in applications.

Recently, the so-called one-step transformation method was proposed [36, 38], which pro-
vides the transformation for the state variables, the parameters, and the time rescaling in just
one step. This enables one to obtain a direct relationship between the original system and the
SNF, which not only greatly simplifies the analysis but also clearly shows the impact of the
original system parameters on the dynamical behaviors of the system. This new method is
based on the SNF theory, and the parametric simplest normal (PSNF) theory [33, 8, 9, 34, 7,
36]. The key step in this method is to choose the appropriate basis for the SNF and the PSNF,
as well as that in the nonlinear transformations.

1.3 Research Objectives

The main objectives of this thesis include the following tasks.

1. Identify the required condition of stability in our epidemic models and analyze the dy-
namical behavior near the equilibrium points.

2. Determine the necessary bifurcation condition in our epidemic models and present a pre-
dictably curve with respect to parameter changes in the system to analyze the bifurcation
performance.

3. Use the method of normal forms to determine the condimension of Hopf bifurcation, and
thus find the maximal number of limit cycles bifurcating from a Hopf critical point.

4. Apply he method of normal form to determine the codimension of B-T bifurcation, and
perform bifurcation alaysis for codimension-2 and codimension-3 B-T bifurcations.

1.4 Thesis outline and contribution

In this thesis, we will re-investigate two disease models: one is an infectious disease SIR
model with a saturated treatment function, studied by Wang et al. [29], and the other is an
SIRS model with a generalized incidence function, considered by Rao et al. [22]. In [29],
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the authors consider equilibrium solutions and their stability and present some formulas for
Hopf bifurcation. However, their analysis is incomplete for Hopf bifurcation, though some
numerical simulations are given to show the bifurcation of a single limit cycle. Also, they
did not study the codimension of the Hopf bifurcation, nor the B-T bifurcation. In [22], the
authors provide an analytical study for different death rates on the existence and stability of
equilibrium solutions. They also present some numerical simulations to verify their theoretical
results. However, they do not consider Hopf and B-T bifurcations due to the difficulty caused
by different death rates.

We will re-reconsider the SIR model [29] and the SIRS model [22] in Chapter 3 and Chap-
ter 4, respectively. Our analysis confirms that there is a transcritical bifurcation between the
disease-free equilibrium and the endemic equilibrium at the critical values of the basic re-
production number R0 = 1. We apply the hierarchical parametric analysis [39] to provide
a detailed study on the existence and stability of the endemic equilibrium, and show that the
models can have forward bifurcation, backward bifurcation, Hopf bifurcation, and B-T bifurca-
tion. We mainly focus on the difficult parts: studying the codimension of the Hopf bifurcation
and B-T bifurcation, as well as on the dynamical behaviors around these bifurcation points.
We derive the explicit conditions for the codimension of Hopf and B-T bifurcations. For the
codimension-3 B-T bifurcation, we apply the one-step transformation approach to obtain the
SNF and PSNF for bifurcation analysis, showing the advantage of this method compared to
the classical six-step transformation approach. Numerical simulations are also presented to
demonstrate the existence of multiple limit cycle bifurcations, showing an excellent agreement
with the theoretical predictions.

The main contributions of this thesis are described as follows.

1. Explicit existence conditions for the endemic equilibrium of the two models are obtained.

2. Explicit conditions for determining the Hopf critical point are derived.

3. The CNF for the Hopf bifurcation is explicitly computed and used to determine the codi-
mension of Hopf bifurcation.

4. The SNF and PSNF for the codimension2 and codimension-3 B-T bifurcations are de-
rived, and a complete analysis is given for these two bifurcations.

5. For the SIR model [29], the center manifold reduction is considered, and the dynamical
equation on the manifold is obtained to determine the stability of the degenerate node.
Moreover, the codimension of Hopf bifurcation on the center manifold is determined on
the basis of the normal form.



Chapter 2

An SIR model with a saturated treatment
function

2.1 Introduction

In this chapter, we give a further analysis of the SIR model, which has been studied by Wang
et al. [29]. The model is described by three ordinary differential equations (ODE):

Ṡ = S (A − S ) − kIS ,

İ = kIS − µI −
rI

a + I
,

Ṙ =
rI

a + I
− µR,

(2.1)

All of the parameters are positive and defined in Table 2.1.

In [29], the authors consider the equilibrium solutions and their stability. Also, they an-
alyzed Hopf bifurcation and presented some simulations for bifurcation of single limit cycle.
Their analysis is incomplete, particularly for Hopf bifurcation. They did not study the codi-
mension of the Hopf bifurcation, that is, they did not answer the question: What is the maximal
number of limit cycles which can bifurcate simultaneously from the Hopf critical point. Also,
they did not consider Bogdanov-Takens (B-T) bifurcation at all.

In this section, we will reconsider this model and give a complete analysis of the Hopf and
B-T bifurcation, showing the complex dynamics of this model. We first simply summarize the
solution properties and stability of the equilibrium solutions. Then we focus on Hopf and B-T
bifurcations. Simulations are given to illustrate our theoretical results.

First, it is easy to note that the first two equations in model (2.1) are independent from the
third equation, since the variable R is not included in the first two equations. Since our main
concern is the prevalence of the disease, only the first two equations are relevant. Thus, the

10
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Table 2.1: Definitions of parameters of system (2.1)

Variable Description Resource

S The number of susceptible individuals [41]
I The number of infectious individuals [41]
R The number of recovered individuals [41]
A The population’s carrying capacity without disease [29]
µ The natural mortality of the population [28]
k The infection coefficient [28]
r The cure rate [29]
a Evaluate the impact of a delay in treating the infected patients. [29]

dimensionless 2-d model of the system (2.1) is obtained as follows.

Ṡ = S (A − S ) − kIS ,

İ = kIS − µI −
rI

a + I
.

(2.2)

Unlike the analysis in [29], we first perform a dimensionless change to simplify the analysis. To
achieve this, introducing the changes of state variables: S = AX, I = AY , the parametrization:
r = r̃A, a = ãA, and the time scaling t = 1

Aτ, into (2.2) we obtain the following dimensionless
model (with r̃, ã and τ being still denoted by r, a and t, respectively, for simplicity):

Ẋ = X(1 − X − kY),

Ẏ = Y
(
kX − µ −

r
a + Y

)
.

(2.3)

2.2 Property of solutions

First, we consider the property of solutions of the model (2.3) and have the following result.

Theorem 2.2.1. The solution of the model (2.3) is positive if the given initial condition is
positive; and the solution is bounded.

Proof. Using the method of constant variations, the solution of the initial value for the model
can be written as

X(t) = X(0) exp
{∫ t

0

[
1 − X(s) − k Y(s)

]
ds

}
,

Y(t) = Y(0) exp
{∫ t

0

[
k X(s) − µ −

r
a + Y(s)

]
ds

}
,

(2.4)
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which clearly shows that X(t) > 0, Y(t) > 0 for any t > 0 if X(0) > 0 and Y(0) > 0.
To prove the boundedness of the solution, we construct a simple Lyapunov function:

V(X,Y) = X + Y, (2.5)

which is certainly positive definite for X > 0, Y > 0. Then, differentiating V with respect to
time t and evaluating it on the trajectory of the model yields

dV
dt
= Ẋ + Ẏ = X(1 − X) − Y

(
µ +

r
a + Y

)
= −

(
X −

1
2

)2
− Y

(
µ +

r
a + Y

)
+

1
4
.

It is clear that dV
dt < 0 for X ≥ 1, Y > 0. For X < 1, Y > 0, we choose Y such that

−Y
(
µ +

r
a + Y

)
+

1
4
≤ 0,

yielding dV
dt < 0 for X < 1, Y > 0. From the above equation, we have

Y
(
µ +

r
a + Y

)
> Yµ ≥

1
4
,

which implies that when X < 1, Y > 0, choosing Y ≥ 1
4µ guarantees that dV

dt < 0.
Therefore, we construct the trapping region Ω as the triangle area, bounded by the X-axis,

the Y-axis, and the straight line L:

L : X + Y = 1 +
1

4µ
. (2.6)

The proof is complete.

2.3 Equilibrium solutions and their stability

Simply letting Ẋ = Ẏ = 0 yields three equilibrium solutions:

E0 = (0, 0), Trivial Equilibrium (Population-Free Equilibrium),

E1 = (1, 0), Disease-Free Equilibrium,

E2 =
(
X2,Y2) =

(
X2,

1 − X2

k

)
, Endemic Equilibrium.

(2.7)

The model always admits the trivial equilibrium and disease-free equilibrium (DFE) E0 and
E1. The existence of the endemic equilibrium requires that 0 < X2 < 1, where X2 is determined
from the quadratic polynomial:

F2 = X2
2 −

(
ak + 1 +

µ

k

)
X2 +

(ak + 1)µ
k

+ r. (2.8)
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Solving X2 from F2 = 0 we have

X2± =
1
2

[
ak + 1 +

µ

k
±

√
(ak + 1 − µk )2 − 4r

]
, (2.9)

which exist if (ak + 1 − µk )2 − 4r ≥ 0. Denote the endemic equilibria as

E2± =
(
X2±, Y2±

)
=

(
X2±,

1 − X2±

k

)
. (2.10)

The basic reproduction number can be defined as

R0 =
k
µ + r

a

. (2.11)

Then, we have the following two theorems for the existence of E2 and the stability of the
equilibrium solutions, with the proof given after the second theorem. More details on the Hopf
bifurcation will be given in the next theorem.

Theorem 2.3.1. The existence conditions for the equilibrium solutions of the model (2.3) are
given as follows.

(1) The trivial equilibrium E0 and the disease-free equilibrium (DFE) E1 always exists for
positive parameter values.

(2) For the endemic equilibrium E2, there are three cases:

(a) when µ > k(1 − ak) while r < a(k − µ), only E2− exists;

(b) when µ < k(1 − ak), ak < 1 while r = 1
4 (ak + 1 − µk )2, both E2+ = E2− exists; and

(c) when µ < k(1 − ak), ak < 1 while r < 1
4 (ak + 1 − µk )2, both E2+ and E2− exist.

Theorem 2.3.2. The stability conditions of the equilibrium solutions of the model (2.3) are
given below.

(1) The trivial equilibrium E0 is always unstable (a saddle).

(2) The disease-free equilibrium (DFE) E1 is asymptotically stable(a node) for R0 < 1, and
unstable (a saddle) for R0 > 1.

(3) For the endemic equilibrium E2, there are three cases:

(a) A transcritical bifurcation occurs between E1 and E2 at the critical point R0 = 1
(or k = µ + r

a ).

(b) The endemic equilibrium E2+ is a saddle when it exists.
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(c) One Hopf or two Hopf bifurcations may occur from the endemic equilibrium E2−

when it exists.

Note that one solution E2+ = E2− = E2 exists with X2+ = X2− = X2 =
1
2

(
ak + 1 + µk

)
if

µ < k(1−ak) and r = 1
4

(
ak+1− µk

)2; and two solutions E2+ and E2− exist if µ < k(1−ak)
and r < 1

4

(
ak + 1 − µk

)2.

Proof. The stability of the equilibrium solutions is determined from the Jacobian matrix of
system (2.3), which is given by

J(X,Y) =

 1 − 2X − kY −kX

kY kX − µ −
ar

(a + Y)2

 . (2.12)

It is easy to see that E0 is a saddle since its corresponding eigenvalues are 1 and −µ. Evaluating

J at E1 yields two eigenvalues: λ1 = −1 and λ2 = k − µ − r
a . Thus, E1 is a stable node for

k < µ+ r
a , and a saddle for k > µ+ r

a . The reproduction number R0 can be easily obtained from
the eigenvalue λ2, which can be rewritten as

λ2 =
(
µ +

r
µ

)
( R0 − 1 ).

To find the transcritical point between E1 and E2, we compute the determinant det(J2) of
the Jacobian J at E2 and eliminate X2 from det(J2) = 0 and F2 = 0 to obtain

X̃2 =
(k − µ)(ak + 1)(ak2 + k − µ) − kr(ak2 + 3k − µ)

(k − µ)(ak2 + k − µ) − 2k2r
,

Tc = ark2
(
k − µ −

r
a

)[(
ak + 1 −

µ

k

)2
− 4r

]
.

It is easy to see that Tc = 0 gives the solution k = µ + r
a , which is substituted into X̃2 to yield

X̃2 = 1. Moreover, substituting X2 = 1 into the determinant det(J2) we have

det(J2)|X2=1 = −
(
k − µ −

r
a

)
.

Comparing the above expression with the eigenvalue associated with the equilibrium E1, λ2 =

k − µ − r
a , clearly shows that a transcritical bifurcation occurs between at k = µ + r

a .
To consider the existence condition for the endemic equilibrium E2, we define the discrim-

inant of F2 as
∆ =

(
ak + 1 −

µ

k

)2
− 4r.

Then, it is easy to get that

(1) F2 does not have real roots if ∆ < 0, i.e., r > 1
4

(
ak + 1 − µk

)2;
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(2) F2 has one positive root if ∆ = 0, i.e., r = 1
4

(
ak + 1 − µk

)2; and

(3) F2 has two positive roots if ∆ > 0, i.e., r < 1
4

(
ak + 1 − µk

)2.

We treat r as a bifurcation parameter and other parameters as controlling parameters. The
quadratic equation (2.8) shows that the graph of F2 = 0 represents a parabolic relation between
r and X2 in the r-X2 plane, with a vertex at (X2,Y2) =

(1
2 (ak + 1µk ), 1

2k (1− ak − µk )
)
, at which the

saddle-node bifurcation happens.
Therefore, when µ > k(1− ak), E2+ is biologically meaningless, and only E2− exists, which

shows a forward bifurcation. When µ < k(1 − ak), both E2+ and E2+ exist.
Now, suppose E2+ exists and consider the stability of E2+. For this case, both E2+ and E2−

exist, corresponding to the backward bifurcation. The condition X2+ < 1 yields

√
∆ ≤ 1 − ak −

µ

k
=⇒ k < µ +

r
a
, (or r > a(k − µ)).

Combining the condition ∆ > 0 we have the existence condition for E2+:

µ < k(1 − ak) and a(k − µ) < r <
1
4

(
ak + 1 −

µ

k

)2
. (2.13)

To find the stability of E2+, computing the determinant of the Jacobian J in (2.12) at E2+ we
obtain

det(J(E2+)) =

√
∆

2k(ak2 + k − µ −
√

(ak2 + k − µ)2 − 4k2r)

×
(
ak2 + k + µ + k

√
∆
)[
− k(1 − ak) + µ +

√
(ak2 + k − µ)2 − 4k2r

]
.

(2.14)

Since we have ak < 1 and µ < k(1− ak), we have −k(1− ak)+ µ < 0. The sign of −k(1− ak)+
µ +

√
(ak2 + k − µ)2 − 4k2r is the same as that of

−4k2[r − a(k − µ)]√
(ak2 + k − µ)2 − 4k2r + k(1 − ak) − µ

< 0, due to r > a(k − µ) in (2.13),

which shows that E2+ is a saddle when it exists.

Now, we turn to consider E2−. There are two cases:

(A) µ > k(1 − ak) and r < a(k − µ),
(B) µ < k(1 − ak) and r < 1

4

(
ak + 1 − µk )2.

As pointed out above, only E2− exists for Case (A), leading to forward bifurcation; while
both E2+ and E2− exist for the Case (B), leading to the backward bifurcation.

We first consider the Case (A). X2− < 1 yields

√
∆ > ak − 1 +

µ

k
> 0 =⇒ r < a(k − µ)

(
or k > µ +

r
a

)
. (2.15)
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So the existence condition of E2− for the Case (A) is

µ > k(1 − ak) and r < a(k − µ). (2.16)

For the Case (B) with µ < k(1 − ak), (ak < 1), it is easy to use (2.15) to verify that X2− < 1
since ak − 1 + µk < 0. Hence, the existence condition of E2− for the Case (B) is

ak < 1, µ < k(1 − ak) and r <
1
4

(
ak + 1 −

µ

k

)2
. (2.17)

To consider the stability of E2−, similarly computing the the determinant and trace of the
Jacobian J at E2− we obtain

det(J(E2−)) = −

√
∆

2k(ak2 + k − µ −
√

(ak2 + k − µ)2 − 4k2r)

×
(
ak2 + k + µ − k

√
∆
)[
− k(1 − ak) + µ +

√
(ak2 + k − µ)2 − 4k2r

] (2.18)

and

Tr(J2−) = −
2

k[ak2 + k − µ +
√

(ak2 + k − µ)2 − 4k2r]2

×
{
k
[(
µ − k(1 − ak)

)
+ µ + k(ak + 1)

]
+ µ

[
(ak2 + k − µ)2 − 4k2r

]
+
[
µ
(
k(1 + ak) − µ

)
+ k2(1 − k)r

] √
(ak2 + k − µ)2 − 4k2r

}
.

(2.19)

Similar to prove that det(J(E2+)) < 0, we can show that det(J(E2−)) > 0. Thus the stability
of E2− is determined by Tr(J2−): E2− is asymptotically stable if Tr(J2−) < 0, and unstable if
Tr(J2−) > 0. Hopf bifurcation can occur from E2− at the critical point determined by Tr(J2−).
Hence, from E2−, besides the transcritical bifurcation at the critical point R0 = 1, Hopf bifur-
cation may also happen.

This completes the proof of Theorems 2.3.1 and 2.3.2.

The bifurcation diagrams for the model (2.3) are given in Figure 2.1, which clearly shows
forward bifurcation, backward bifurcation, saddle-node bifurcation and Hopf bifurcations.
Note that biologically meaningful bifurcations only occur in the first quadrant with r > 0
and 0 < X < 1.
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Figure 2.1: Bifurcation diagrams for system (2.3): (a) bifurcation curves in the whole r − X
plane; (b) forward bifurcation for µ > k(1−ak) and r < a(k−µ); (c) forward bifurcation for µ <
k(1−ak), ak < 1 while r = 1

4 (ak+1− µk )2; and (d) backward bifurcation for µ < k(1−ak), ak < 1
and r < 1

4 (ak + 1 − µk )2. The red color, green color and black color curves denote the trivial
equilibrium E0, the disease-free equilibrium E1, and the endemic equilibrium E2, respectively.
The stable and unstable equilibrium solutions are represented by the solid and dashed curves,
respectively.

2.4 Hopf bifurcation

In this section, we consider Hopf bifurcation from the endemic equilibrium E2−. We will derive
a complete set of conditions for which system (2.3) undergoes Hopf bifurcation, which is not
obtained in [29].
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2.4.1 Conditions for Hopf bifurcation

As shown in the previous section, the Hopf bifurcation critical point is determined from Tr(J(E2−)) =
0. However, this condition is not convenient for application. We need to find the explicit ex-
pressions in terms of the system parameters. For convenience, define

µmax =
2k(k2 − k + 2) − 4k

√
2k(k − 1)

2(k + 1)2 ,

amin =
(k − µ)

k2 , amax =
k − 1 + µ − 2

√
(k − 1)µ

k
.

(2.20)

Then, we have the following theorem.

Theorem 2.4.1. For the model (2.3), Hopf bifurcation can occur from the endemic equilibrium
E2−, if the following conditions are satisfied.

For the Case (A) µ > k(1 − ak) and r < a(k − µ) (forward bifurcation) : Two Hopf bifurca-
tions occur at the criritical points:

rH± =
−F3b ±

√
∆1

2k(k − 1)2 ,

where F3b and ∆1 are given in the following proof, if a ∈ (amin, amax) together with one of the
following conditions to be held:

(A-1) 2 < k ≤ 2.8525454869 and 0 < µ < µmax;

(A-2) 2.8525454869 < k ≤ 3 and k2(3−k)
6k−1−k2 < µ < µmax; or

(A-3) k > 3 and 0 < µ < µmax.

The equilibrium E2− is asymptotically stable for r ∈ (0, rH−)
⋃(

rH+ , a(k − µ)
)

and unstable for
r ∈ (rH− , rH+).

For the Case (B) µ < k(1 − ak) and r < 1
4 (ak + 1 − µk )2 (backward bifurcation) : One Hopf

bifurcation occurs at the criritical point rH+ if

1 < k ≤ 3, a <
k − 1

k(k + 1)2 , and ak3 < µ < k(a + 1) − 1 − 2
√

ak(k − 1).

The equilibrium E2− is asymptotically stable for r ∈ (0, rH+), and unstable for rH+ < r <
1
4 (ak + 1 − µk )2.

Proof. First, we consider the Case (A): µ > k(1 − ak) and r < a(k − µ). It is easy to see from
(2.19) that for the Case (A), Tr(J(E2−) < 0 when k ≤ 1, implying that E2− is asymptotically
stable. Thus, in order to have Hopf bifurcation, it needs k > 1. For this case, we treat the



2.4. Hopf bifurcation 19

parameter k to be free. We rewrite the condition µ > k(1−ak) as a > k−µ
k2 , and thus ak2+k−µ >

2(k − µ) > 0. Further, it can be shown that Tr(J(E2−)) = 0 is equivalent to

F3 = 4k5rF3a = 0,

where
F3a = k(k − 1)2r2 + F3br + aµ(ak2 + k − µ)2, (2.21)

in which
F3b = k4a2 − k

[
k2(k − 1 − µ) + (4k − 1)µ

]
a − µ(k − 1 − µ). (2.22)

Define
∆1 = F2

3b − 4kaµr2(k − 1)2(ak2 + k − µ)2. (2.23)

It is necessary to ensure that F3b < 0 and ∆1 > 0 in order to have positive solutions of r for
Hopf bifurcation. To have F3b < 0, we need that

a1− < a < a1+, (2.24)

where

a1± =
k2(k − 1 − µ) + (4k − 1)µ ±

√
[k2(k − 1 − µ) + (4k − 1)µ]2 + 4k2µ(k − 1 − µ)

2k3 . (2.25)

On the other hand, ∆1 > 0 yields

a < a2− or a > a2+, (2.26)

where

a2± =
k − 1 + µ ± 2

√
(k − 1)µ

k
. (2.27)

A direct computation shows that

a2+ > a1+ > a2− > a1−,

yielding the condition on a:
a1− < a < a2−. (2.28)

Since a > µ > k(1 − ak), define amin =
(k−µ)

k2 , (k > µ). Then,

max{amin, a1−} < a < a2−,

which requires that a2− > amin, leading to

a2− − amin =
k(k−2)+(k+1)µ−2k

√
(k−1)µ

k2 > 0

=⇒ k(k − 2) + (k + 1)µ > 0

=⇒
k(2 − k)

k + 1
< µ <

k(k − 1)
k + 1

.
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To ensure the above inequality, k > 3
2 must be satisfied. Further, a2− − amin > 0 needs

(k + 1)2µ2 − 2k(k2 − k + 2)µ + k2(k − 2)2 > 0,

which yields
µ < µ− or µ > µ+, (2.29)

where

µ± =
2k(k2 − k + 2) ± 4k

√
2k(k − 1)

2(k + 1)2 . (2.30)

Simple direct computation shows that µ+ >
k(k−1)

k+1 for k > 3
2 , and m− >

k(2−k)
k+1 for k > 2.

Moreover, it is easy to show that k(k−1)
k+1 > µ− for k > 2. Therefore, we obtain the following

conditions for the Case (A):

k > 2, 0 < µ < µ−, and max{a1−, amin} < a < a2−.

Finally, we compare a− and µmin depending upon the values of k:

a1− − amin = −
k2(3 − k) + µ(k2 − 6k + 1) +

√
(k2(k − 1 − µ) + (4k − 1)µ)2 + 4k2µ(k − 1 − µ)

2k3 .

There are three cases: (i) 2 < k ≤ 3, (ii) 3 < k ≤ 3 + 2
√

2, and (iii) k > 3 + 2
√

2.

(i) When 2 < k ≤ 3, we can show that a1− < amin regardless whether µ ≥ k2(3−k)
6k−1−k2 or

µ < k2(3−k)
6k−1−k2 . On the other hand,

k2(3 − k)
6k − 1 − k2 − µ1− =

2k(k − 1)(7k3 − 23k2 + 9k − 1)
(k2 − 6k + 1)[(3k − 1)(k − 1)2 + (6k − 1 − k2)

√
2k(k − 1)]

.

A unique positive root of the polynomial 7k3 − 23k2 + 9k − 1 is k = 2.852545487. Then, it is
easy to obtain that

k2(3 − k)
6k − 1 − k2 − µ1−

 ≥ 0 for 2 < k ≤ 2.852545487 =⇒ 0 < µ < µ1−,

≤ 0 for 2.852545487 < k ≤ 3 =⇒
k2(3−k)
6k−1−k2 < µ < µ1−.

(ii) When 3 < k ≤ 3 + 2
√

2, we have k2(3 − k) < 0 and k2 − 6k + 1 ≤ 0, and similarly we
can show that a1− < amin for µ < µ1−. Hence, for this case we have 0 < µ < µ1− and a1− < amin.

(iii) When k > 3+2
√

2, we have k2(3− k) < 0, k2−6k+1 ≤ 0, and 7k3−23k2+9k−1 > 0.
Similar to the case (ii), we can use a direct calculation to show that 0 < µ < µ1− and a1− < amin.
Letting amax = a2− and µmax = µ1− proves for the Case (A).

Now we turn to consider the Case (B). With ak < 1 and µ < k(1 − ak), which is equivalent
to a < k−µ

k2 , we rewrite the trace of J2− given in (2.19) as

Tr(J2−) = −
[I2 + I1

√
(ak2 + k − µ)2 − 4k2r]

k[ak2 + k − µ +
√

(ak2 + k − µ)2 − 4k2r]2
, (2.31)
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where
I1 = µ(ak2 + k − µ) − rk2(k − 1)

I2 = µ(ak2 + k − µ)2 + rk2(k(ak(k + 1) − (k − 1)) + (k − 3)µ)
(2.32)

To have solution from Tr(J2−) = 0, it needs I1I2 < 0. A careful examination on the conditions
for I1 > 0, I2 < 0 and I1 < 0, I2 > 0 gives the following categories:

(B-a) k > 1, k−1
k(k+1) ≤ a < 1

k , µ < min
{
k(1 − ak), k(k−1)(ak+1)

k+3

}
and µ(ak2−µ+k)

k2(k−1) < r < (ak+1− µk )2

4 .

(B-b) k > 1, k−1
k(k+1)2 < a < k−1

k(k+1) ,
k(k−1−ak(k+1))

k+1 < µ < min
{
k(1 − ak), k(k−1)(ak+1)

k+3

}
and µ(ak2−µ+k)

k2(k−1) < r < (ak+1− µk )2

4 .

(B-c) 1 < k < 3, a < k−1
k(k+1) , µ <

k(k−1)(ak+1)
k+3

and µ(ak2−µ+k)
k2(k−1) < r < min

{ µ(ak2−µ+k)2

k2(k(k−1−ak(k+1))+(3−k)µ)
(ak+1− µk )2

4

}
.

(B-d) 1 < k ≤ 3, a < min
{ k−1

k(k+1) ,
1

k(k+1)

}
, ak3 < µ < k(k−1−ak(k+1))

k+1 ,

and µ(ak2−µ+k)2

k2(k(k−1−ak(k+1))+(3−k)µ) < r < min
{µ(ak2−µ+k)

k2(k−1) ,
(ak+1− µk )2

4

}
.

(B-e) k > 3, a < k−1
k(k+1)2 , ak3 < µ < k(k−1−ak(k+1))

k+1 ,

and µ(ak2−µ+k)2

k2(k(k−1−ak(k+1))−(k−3)µ) < r < min
{µ(ak2−µ+k)

k2(k−1) ,
(ak+1− µk )2

4

}
.

Define

rmin =
µ(ak2 + k − µ)

k2(k − 1)
, rmax = a(k − µ), (2.33)

which are substitutes into F3a in (2.21) to obtain

F3a|r=rmin
=
µ(ak2 − µ + k)(ak3 − µ)2

k3(k − 1)
,

F3a|r=rmax = a
[
k5a2 − k2(k − 1)(k − µ)a + µ(k − µ)

]
,

F3a|min = −
∆1(ak3 − mu)2

4k(k − 1)2 .

(2.34)

Then, two Hopf bifurcations only happens if

F3a|r=rmin
> 0, F3a|r=rmax > 0, F3a|min < 0, and rmin < rH− < rH+ < rmax,

otherwise there exists one or none Hopf bifurcation. Now, we solve ∆1 = 0 for µ and thus

∆1 > 0 if µ < µ̃− or µ > µ̃+,
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where
µ̃± = ak + k − 1 ± 2

√
ak(k − 1). (2.35)

Then, combining the above conditions with those in the categories (B-a)-(B-e), as well as
the solutions for the Hopf critical points: rH− and rH+ , we obtain that one Hopf bifurcation
occurs at rH+ if one of the following conditions holds.

(B-a) k > 1, k−1
k(k+1) ≤ a < 1

k , 0 < µ < µ̃−.

(B-b) k > 1, k−1
k(k+1)2 < a < k−1

k(k+1) , k(k−1−ak(k+1))
k+1 < µ < µ̃−.

(B-c) (i) 1 < k < 3, k−1
k(k+1)2 < a < k−1

k(k+1) , and k(k−1−ak(k+1))
k+1 < µ < µ̃−;

(ii) 1 < k < 3, a < k−1
k(k+1) , µ < min

{ k(k−1−ak(k+1))
k+1 , k(k−1)(ak+1)

k+1

}
.

(B-d) (i) 1 < k ≤ 2, a < k−1
k(k+1)2 , ak3 < µ < µ̃− and µ(ak2−µ+k)2

k2(k(k−1−ak(k+1))+(3−k)µ) ;

(ii) 1 < k ≤ 2, a < k−1
k(k+1)2 , ak3 < µ < µ̃− and µ(ak2−µ+k)2

k2(k(k−1−ak(k+1))+(3−k)µ) ;

(iii) 2 < k ≤ 3, a < k−1
k(k+1)2 , k(k−1)(ak+1)

k+3 < µ < µ̃−;

(iv) 2 < k ≤ 3, a < k−1
k(k+1)2 , ak3 < µ < k(k−1)(ak+1)

k+3 .

Combining the above conditions we reach the conclusion for the Case (B).
This completes the proof of Theorem 3.2.3.

2.4.2 Codimension of Hopf bifurcation

Having established the conditions in the previous section for Hopf bifurcation to occur from
the endemic equilibrium E2−, we now consider the codimension of the Hopf bifurcation. That
is, we want to find the maximal number of limit cycles which can bifurcate from the Hopf
critical point. We first consider the marginal case R0 = 1 and then R0 , 1.

For the Case R0 = 1

When R0 = 1, i.e., k = µ + r
a , we obtain the equilibrium solutions:

E1 = (1, 0) and Ẽ2 = (X2, Y2) =
(
aµ + r +

aµ
aµ + r

,
1 − X2

k

)
. (2.36)

Now E1 is a degenerate node. In order to have positive solution E2, it needs

X2 < 1 =⇒ aµ + r +
aµ

aµ + r
< 1 =⇒ aµ <

√
r − r (r < 1).

We apply center manifold theorem to determine the stability of E1 and study Hopf bifurcation
from Ẽ2.
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Theorem 2.4.2. For the model (2.3) with the basic reproduction number R0 = 1, the equi-
librium point E1 is either a degenerate stable node if aµ > max {0,

√
r − r}; or a degenerate

unstable node if aµ <
√

r − r (r < 1). Bifurcation occurs at the critical point aµ <
√

r − r
(r < 1).

Proof. Introducing the following affine transformation, X
Y

 =  1
0

 +
 − µ − r

a
1

1 0


 x1

x2

 , (2.37)

with k = µ + r
a , into (2.3) yields

ẋ1 = −
[(
µ +

r
a

)2
−

r
a2

]
(x2

1 + x2
2) +

(
µ +

r
a

)
x1x2 + O(|(x1, x3)|3),

ẋ2 = − x2 −
(
µ +

r
a

)[(
µ +

r
a

)2
−

r
a2

]
(x2

1 + x2
2) +

(
µ +

r
a

)(
µ + 1 +

r
a

)
x1x2

+O(|(x1, x3)|3).

(2.38)

Then applying center manifold theory and letting x2 = c1x2
1, and using ẋ2 = 2c2x1 ẋ1 yields

c1 = −
(
µ +

r
a

)[(
µ +

r
a

)2
−

r
a2

]
.

Hence, the center manifold up to the second order is given by

Wc = {(x1, x2)|x2 = c1x2
1 + O(x3

1)}, (2.39)

and the differential equation describing the dynamics on the center manifold is

ẋ1 = −
1
a2

[(
aµ + r

)2
− r

]
x2

1 + O(x3
1), (2.40)

which indicates that the equilibrium E1 is a degenerate stable node if (aµ + r)2 − r > 0, which
is equivalent to aµ > max{0,

√
r− r}, and is a degenerate unstable node when (aµ+ r)2 − r < 0,

which is equivalent to 0 < aµ <
√

r − r, (r < 1).

Next, we consider the endemic equilibrium Ẽ2. We have the following result.

Theorem 2.4.3. For the model (2.3) with basic reproduction number R0 = 1, the endemic
equilibrium point Ẽ2 exists for 0 < aµ <

√
r − r (0 < r < 1), and its stability and bifurcation

are described as follows.

(i) Ẽ2 is asymptotically stable for (aµ + r)3[r − (aµ + r)2] < ar[(aµ + r)2 + aµ].

(ii) Ẽ2 is unstable for (aµ + r)3[r − (aµ + r)2] > ar[(aµ + r)2 + aµ].
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(iii) Transcritical bifurcation occurs between E1 and Ẽ2 at the critical point aµ =
√

r − r
(0 < r < 1).

(iv) Hopf bifurcation occurs from Ẽ2 at the critical point defined by (aµ+ r)3[r − (aµ+ r)2]−
ar[(aµ + r)2 + aµ] = 0.

Proof. Evaluating the Jacobian (2.12) at Ẽ2 with k = µ + r
a yields the trace and determinant as

follows:

Tr(J(Ẽ2)) =
1

(aµ + r)3

{
(aµ + r)3[r − (aµ + r)2] − ar

[
(aµ + r)2 + aµ

]}
,

det(J(Ẽ2)) =
ar

(aµ + r)5

[
(aµ + r)2 + aµ

][
r − (aµ + r)2]2

.

det(J(Ẽ2)) > 0 for (aµ + r)2 − r , 0. Thus, the stability is determined by the sign of Tr(J(Ẽ2)):
Ẽ2 is asymptotically stable (respectively unstable) if Tr(J(Ẽ2)) < 0 (respectively Tr(J(Ẽ2)) >
0). det(J(Ẽ2)) = 0 yields the transcritical bifurcation point aµ =

√
r − r (0 < r < 1), and

Tr(J(Ẽ2)) = 0 determines the Hopf critical point.

The remaining question of this section is the codimension of the Hopf bifurcation. We have
the following result.

Theorem 2.4.4. For the model (2.3) with R0 = 1, the codimension of the Hopf bifurcation
arising from the equilibrium Ẽ2 is two.

Proof. To simplify the analysis, let

r = C2
1 +C2, aµ = C1 −C2 −C2

1, (2.41)

which shows that C1 = r + aµ > 0, C2 = r − (aµ + r)2 > 0, C1 > C2, and C2 < C1(1 − C1),
implying that 0 < C1 < 1. Then, we have

Tr(J(Ẽ2)) =
1

C3
1

[
C3

1C2 − a(C2
1 +C2)(C1 −C2)

]
,

from which we can solve a to determine the Hopf critical point:

aH =
C3

1C2

(C2
1 +C2)(C1 −C2)

. (2.42)

Therefore, at a = aH, introducing the affine transformation,

 X
Y

 =
 C1 +

C1−C2
1−C2

C1

−1 + 1
C1
−

C1−C2
1−C2

C2
1

 +
 1 0

−
C2

1C2

(C2
1+C2)(C1−C2)

C1C2
√

C2

(C2
1+C2)(C1−C2)


 u

v

 , (2.43)
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with a time rescaling τ = ωc t, where ωc =
C2
C1

√
C2, into (2.3) we obtain

du
dτ
= v − C1(C1−C2

1−2C2)
(C2+C2

1)(C1−C2) uv −
√

C2

C2+C2
1

v2 −
C2

1
(C2+C2

1)(C1−C2) u2v − C1
√

C2

(C2+C2
1)(C1−C2) uv2

dv
dτ
=−u + 2C1

C2
u2 −

C2
1(C3

1+C2
2)+2C2(C2−C1)(C2

1+C2)
C2
√

C2(C2
1+C2)(C1−C2)

uv − C3
1

C2(C2
1+C2) v2 −

C2
1

C2
2

u3

−
C1[C2

1(2C1−3C2)+2C2(C1−C2)]
C2
√

C2(C2
1+C2)(C1−C2)

u2v − C2
1(C1−2C2)+C2(C1−C2)
C2(C2

1+C2)(C1−C2) uv2

(2.44)

Then we apply the Maple program [32] to the above system to obtain the following focus
values:

v1 = −
1

8C2(C2
1 +C2)(C1 −C2)

v1a,

v2 = −
1

192C4
2(C2

1 +C2)3(C1 −C2)3
v2a,

(2.45)

where
v1a = C3

1(C2
1 +C2) −C2

2(C1 −C2),

v2a = C9
2 −C1(14C1 + 3)C8

2 −C2
1(34C2

1 − 52C1 − 3)C7
2

−C3
1(31C3

1 − 55C2
1 + 89C1 + 1)C6

2 +C5
1(22C2

1 − 52C1 + 51)C5
2

−C7
1(41lC2

1 + 25C1 − 4)C4
2 −C9

1(27C2
1 + 42C1 + 46)C3

2

−C11
1 (13C1 − 5)C2

2 + 16C13
1 C2 +C15

1 .

(2.46)

Since there are two free parameters C1 and C2, there may exist solutions such that v1 = v2 = 0,
and v2 , 0, yields three limit cycles. However, eliminating C2 from the equations v1a = v2a = 0
we obtain a solution,

C2 := −
C2

1(7C2
1 + 133C1 + 174)

(31C2
1 + 265C1 + 282)

,

and a resultant R12 = C1(C1 + 1)(C1 − 2)(C1 − 15). Since C1 > C2 > 0, it is obvious that no
feasible parameter values satisfying C2 > 0. Thus, three limit cycles are not possible. The
existence of two limit cycles only needs v1 = 0 or v1a = 0 which certainly has solutions since
C3

1(C2
1 + C2) > 0 and C2

2(C1 − C2) > 0, and there exist an infinite number of solutions for
bifurcating two limit cycles. This indicates that the codimension of the Hopf bifurcation is two
when the reproduction number R0 = 1.

This completes the proof of Theorem 3.4.2.

An example of the two limit cycle simulation for the model (2.3) is shown in Figure 2.2, by
choosing the following parameter values:

a = 0.061758641, k = 2.430000932, µ = 0.367779398, r = 0.12736.



26 Chapter 2. An SIR model with a saturated treatment function

 0

 0.2

 0.4

 0.6

 0.8

 0  0.3  0.6  0.9  1.2

Y

X

 

 

 

 

 

     

 

 

]

]

]
�-

?

•

•

E0

E1−

 0

 0.2

 0.4

 0.6

 0.1  0.3  0.5  0.7

Y

X

 

 

 

 

    

 

 

I
I•

E1−

(a) (b)

Figure 2.2: Simulation of the model (2.3) with a = 0.061758641, k = 2.430000932, µ =
0.367779398, r = 0.12736, showing bifurcation of two limit cycles: (a) a global picture of the
phase portrait; and (b) the zoomed region near the stable equilibrium E2−, with the outer limit
cycle stable (in red color) and the inner one unstable (in blue color), both of them enclosing
the stable equilibrium E1−.

For the Case R0 , 1

Now, we consider the codimension of the Hopf bifurcation arising from E2− for the case R0 , 1,
and have the following theorem.

Theorem 2.4.5. For the model (2.3) with R0 , 1, the codimension of the Hopf bifurcation
arising from the equilibrium Ẽ2 is two.

Proof. The existence conditions for the existence of E2− are

k > 1, 0 < X2 <
k

k + 1
, and 0 < r <

(k − 1)X2(ak − X2 + 1)2

ak2 .

For this case, it is impossible or extremely difficulty to compute the focus values if we solve X2

explicitly from the equation F2 = 0. Instead, we use µ to solve the determinant of the Jacobian
evaluated at E2− and treated X2− as a parameter in the stability and bifurcation analysis. To find
the focus values, we first apply the affine transform,

 X
Y

 =


X2

1 − X2

k

 +


1 0

−
1
k

√
−X2(X2k + X2 − k)

k X2


 u

v

 , (2.47)
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where X2 denotes the endemic equilibrium solution. Then, similar to the case R0 = 1, we apply
the the Maple program [32] into the resulting system to obtain the first-order value:

v1 =
(k − 1)(1 − X2)2 − ak(1 + 2k − 2(1 + k)X2)

8((ak + 1 − X2)(k(1 − X2) − X2))
.

The conditions k > 1 and X2 <
k

k+1 ensures that v1 = 0 has a positive solution for a:

a =
(k − 1)(1 − X2)2

k[1 + 2k − 2(1 + k)X2]
, (2.48)

under which v2 and v3 become

v2 =
4X2(k−1)(1−X2)5(k−kX2−X2)2

(2k−2kX2+1−2X2)2

[
2(k + 1)(3k2 + 3k + 1)X2

2 − 3k(2k + 3)(2k + 1)X2 + 6k2(k + 2)
]
,

v3 =
4X2(k−1)(1−X2)5(k−kX2−X2)2

(2k−2kX2+1−2X2)2

[
· · ·

]
.

Eliminating X2 from the equations v2 = v3 = 0 yields a solution X2 = X2(k), and a resultant
equation:

R23 = k(k2 − 1)(8k2 − 5)(k2 − 4) = 0,

which has a positive solution k = 2 > 1, which in turn yields X2 = 1. Thus, there are no
feasible parameter values satisfying v2 = v3 = 0, implying that there are no four limit cycles
due to the Hopf bifurcation. Next, examine if three limit cycles can exist, which only needs
v2 = 0. Solving v2 = 0 for X2 gives

X±2 =
k[3(2k + 3)(2k + 1) ±

√
3(8k2 − 5)]

4(k + 1)(3k2 + 3k + 1)
, (k > 1).

However, it is easy to show that

X+2 > X−2 >
k

k + 1
,

implying that no feasible parameter values can be chosen to have three limit cycles. Therefore,
the best result is two limit cycles, and so the codimension of the Hopf bifurcation is two.

The sign of the v2 is easy to be verified as positive since it has been shown that X2 <
k

k+1 <

X−2 , indicating v2 < 0. Thus, the outer bifurcating limit cycle is stable and the inner one is
unstable, both of them enclose a stable focus E2−.

2.4.3 B-T bifurcation of system (2.3)

In this section, we present an analysis on the B-T bifurcation of the model (2.3). We first
determine the codimension of the B-T bifurcation, and then present the bifurcation results for
codimension-2 and codimension-3 B-T bifurcations.



28 Chapter 2. An SIR model with a saturated treatment function

In order to find the B-T bifurcation critical point from E2, we solve the polynomial F2 for r
to obtain

r =
1
k
(
ak + 1 − X2

)(
kX2 − µ

)
.

Then, evaluating J at E2 results in the trace and determinant as

TrE2 =
X2[(k − 1)(1 − X2) − ak] − (1 − X2)µ

ak + 1 − X2
,

detE2 =
X2(1 − X2)(ak2 + k − 2kX2 + µ)

ak + 1 − X2
.

(2.49)

Solving µ from detE2 = 0 we obtain

µ = k(2X2 − 1 − ak),

which is substituted into TrE2 = 0 gives

k − (1 + k)X2 = 0,

which yields

X2 =
k

k + 1
, and then Y2 =

1
k(k + 1)

, r =
(1 + ak)2

(k + 1)2 , µ =
k[k − 1 − ak(k + 1)]

k + 1
. (2.50)

µ > 0 requires that

a <
k − 1

k(k + 1)
, k > 1. (2.51)

2.4.4 Determining the codimension of B-T bifurcation

We apply the SNF theory [33, 34, 36] to determine the codimension of B-T bifurcation. To
achieve this, introduce the following affine transformation:

 X
Y

 =


k
k + 1

1
k(k + 1)

 +

−k

k + 1
1

1
k + 1

0


 u

v

 (2.52)

into (2.3) yields

du
dt
=

(ku + 1){ak3v + k2[(2a + u)v − u2] + k(a + u + 1)v + v}
(k + 1)[ak2 + k(a + u) + 1](k + 1)

,

dv
dt
=

1
(k + 1)2[ak2 + k(a + u) + 1]

{
ak5uv − k4[u3 − (3a + u)uv + av2]

−k3[u2 + (3a + u)v2 −
(
2u2 + (3a + 1)u

)
v
]
− k2[(3a + 2u + 1)v − (a + u + 2)u

]
v

−k
[
(a + u + 2)v − u

]
v − v2}

(2.53)
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Next, applying the 5th-order change of variables:

u = y1 +
[ak(k2−1)+2k−1]

4[ak(k+1)+1] y2
1 +

(k+1)[k2(k−1)(k+1)3a2+k(k+1)(5k2+7k−2)a−2k2+7k−1]
12k2[ak(k+1)+1] y1y2

− 1
240k4[ak(k+1)+1]

{
(k+1)2[4k3(k−1)(k+1)5a3+k2(k+1)2(25k3−86k2+9k−12)a2

−2k(k + 1)(38k3 + 27k2 − 15k + 6)a + 20k3 + 36k2 + 17k − 4
]}

y2
2 + · · ·

v = y2 +
k2

((k+1)[ak(k+1)+1] y2
1 − y1y2

+
(k+1)[k2(k−1)(k+1)3a2+k(k+1)(5k2+7k−2)a−2k2+7k−1]

12k2[ak(k+1)+1] y2
2 + · · ·

(2.54)
and the time scaling:

t =
(
1 +

[ak(k2 − 1) − 1]
2[ak(k + 1) + 1]

y1 + t30 y3
1

)
τ1,

where t30 is a function in a and k, into (2.53) yields the SNF up to 5-th order:

dy1

dτ1
= y2,

dy2

dτ1
= c20 y2

1 + c11 y1y2 + c31 y3
1y2 + c41 y4

1y2,
(2.55)

in which

c20 = −
k3

(k + 1)2[ak(k + 1) + 1]
, c11 = −

k[k − 1 − ak(k + 1)2]
(k + 1)[ak(k + 1) + 1]

, c31 = · · · , c41 = · · · ,

(2.56)
which shows that c20 < 0, and c11 , 0 if a , k−1

k(k+1)2 . Since a = k−1
k(k+1)2 <

k−1
k(k+1) (k > 1), we see

that c11 can reach zero under the condition (2.51) if a = k−1
k(k+1)2 at which

c31 =
k(k2 − 1)

8
> 0, c41 = −

k(k + 5)(k2 − 1)
64

< 0.

Thus, we have the following theorem.

Theorem 2.4.6. For system (2.3), B-T bifurcation occurs from the equilibrium E2:
( k

k+1 ,
1

k(k+1)

)
at the critical point (µ, k) =

( k[k−1−ak(k+1)]
k+1 , (1+ak)2

(k+1)2

)
, with k > 1. Moreover, the B-T bifurcation is

(i) codimension 2 if a ∈
(
0, k−1

k(k+1)2

)⋃ ( k−1
k(k+1)2 ,

k−1
k(k+1)

)
; or

(ii) codimension 3 if a = k−1
k(k+1)2 .

2.4.5 Codimension-2 B-T bifurcation

In this subsection, we apply the one-step transformation approach to derive the parametric
simplest normal form (PSNF) [8, 9, 7, 36]. Let

µ =
k[k − 1 − ak(k + 1)]

k + 1
+ µ1, r =

(ak + 1)2

(k + 1)2 + µ2, (2.57)
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which, together with the transformation (2.54), is substituted into (2.3) to yield the following
system up to second-order terms:

du
dτ
= v − 1

k µ1 −
k+1

ak(k+1)+1 µ2 −
[
µ1 +

k2(k+1)2a
[ak(k+1)+1]2 µ2

]
u − k2

(k+1)[ak(k+1)+1 u2 + kuv,

dv
dτ
= 1

k+1 µ1 −
k

[ak(k+1)+1] µ2 −
[ k

k+1 µ1 +
k3(k+1)a

[ak(k+1)+1]2µ2
]
u

− k3

(k+1)2[ak(k+1)+1] u2 + kuv − v2,

(2.58)

Next, applying the change of variables:

u =− (k+1)2[ak(k+1)+1]
k3 y1 +

1
k γ2

−
(k+1)2[ak(k+1)+1]

k8

{
(k + 1)4[ak(k + 1) + 1]γ1 + (k − 1)k4γ2

}
y1

+
(k−1)(k+1)4[ak(k+1)+1]2

2k6 y2
1 +

2(k+1)5[ak(k+1)+1]2

3k7 y1y2,

v =− (k+1)2[ak(k+1)+1]
k3 y2 +

(k+1)3[ak(k+1)+1]
k4 γ1 +

2(k+1)5[ak2+ak+1]2

3k7 γ1 y1

−
(k+1)2[ak(k+1)+1]

k8

{
(k + 1)4[ak(k + 1) + 1] γ1 − k4γ2

}
y2 +

(k+1)3[ak(k+1)+1]
k4 y2

1

−
(k+1)4[ak(k+1)+1]2

k6 y1 y2 +
2(k+1)5[ak(k+1)+1]2

3k7 y2
2,

(2.59)

and the parametrization:

µ1 =
(k + 1)3[ak(k + 1) + 1]

k3 γ1 −
2k

k + 1
γ2,

µ2 =
2[ak(k + 1) + 1]

(k + 1)2 γ2 +
1

(k + 1)2 γ
2
2,

(2.60)

into (2.58), we obtain the PSNF as follows:

dy1

dτ
= y2,

dy2

dτ
= γ1 + γ2y2 + y2

1 +C11 y1y2,
for a ∈

(
0, k−1

k(k+1)2

)⋃( k−1
k(k+1)2 ,

k−1
k(k+1)

)
, (2.61)

where

C11 =
(k + 1)[k − 1 − ak(k + 1)2]

k2 . (2.62)

Note from the above equation that the coefficient C11 is not normalized into ±1 in order to show
the direct effect of the original system parameters on the dynamics of the system. It is clear
that C11 > 0 for a ∈

(
0, k−1

k(k+1)2

)
and C11 < 0 for a ∈

( k−1
k(k+1)2 ,

k−1
k(k+1)

)
. Also, note that there is a

negative multiplier − (k+1)2[ak(k+1)+1]
k3 in the transformation from (u, v) to (y1, y2).

Based on the PSNF (2.61), we have the following bifurcation result.



2.4. Hopf bifurcation 31

Theorem 2.4.7. For the epidemic model (2.3), codimension-2 B-T bifurcation occurs from the
equilibrium E2: (X,Y) = ( k

k+1 ,
1

k(k+1) ) when µ = k[k−1−ak(k+1)]
k+1 and r = (ak+1)2

(k+1)2 if a ∈
(
0, k−1

k(k+1)2

)⋃( k−1
k(k+1)2 ,

k−1
k(k+1)

)
. Moreover, three local bifurcations with the representations of the bifurcation

curves are given below.

(1) Saddle-node bifurcation occurs from the bifurcation curve:

SN =

(γ1, γ2) | γ1 = 0,

γ2 > 0 (C11 > 0)

γ2 < 0 (C11 < 0)

 .
(2) Hopf bifurcation occurs from the bifurcation curve:

H =

(γ1, γ2)

∣∣∣∣∣∣γ1 = −
1

C2
11

γ2
2,

γ2 > 0 (C11 > 0), subcritical

γ2 < 0 (C11 < 0), supercritical

 .
(3) Homoclinic loop bifurcation occurs from the bifurcation curve:

HL =

(γ1, γ2)

∣∣∣∣∣∣γ1 = −
49
25

1
C2

11

γ2
2,

γ2 > 0 (C11 > 0), unstable

γ2 < 0 (C11 < 0), stable

 .
The above formulas for bifurcation curves can be expressed in terms of the original pertur-

bation parameters µ1 and µ2 by using (2.60). The bifurcation diagram is depicted in Figure 2.3.

  (a)   (b)

Figure 2.3: Bifurcation diagrams for the codimension-2 B-T bifurcation of the epidemic model
(2.3) based on the normal form (2.61): (a) for a ∈

(
0, k−1

k(k+1)2

)
(C11 > 0); and (b) for a ∈( k−1

k(k+1)2 ,
k−1

k(k+1)

)
(C11 < 0).
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2.4.6 Codimension-3 B-T bifurcation

Now we turn to consider codimension-3 B-T bifurcation for the model (2.3), and we again
apply the one-step transformation approach, based on the parametric simplest normal form
(PSNF) [34, 7, 36]. The main difficulty of this method is how to determine the basis for
nonlinear transformations, since different systems require different forms of transformations.

We first introduce the transformation,

X = k
k+1 + u, Y = 1

k(k+1)

µ = k2(k−1)
(k+1)2 , r = 4k2

(k+1)4 , a = k−1
k(k+1)2 + µ3,

(2.63)

into (2.3) to obtain the following system:

du
dt
=−

1
k + 1

(kv + u)(ku + k + u),

dv
dt
= 1

k(k+1)[k2(µ3+v)+2k(µ3+v)+v+µ3+2]

[
kv(k + 1) + 1

]{
k4µ3v + k3[(u + 2µ3)v + µ3u

]
+k2[(2u − µ1 + µ3 + 2)v + (2u − µ1)µ3 − µ2

]
+k

[
(u − 2µ1)v + (u − 2µ1)µ3 + 2u − 2µ2

]
− µ1v − µ1µ3 − 2µ1 − µ2

}
(2.64)

Then, applying the change of variables:

u =− 2
k+1

( k+1
k−1

) 2
5 y1 −

k−3
2(k2−1)

( k−1
k+1

) 1
5γ1 −

1
k−1

( k−1
k+1

) 4
5γ2

+ 3k−1
2(k+1)2

( k+1
k−1

) 4
5 y2

1 −
2

3(k−1)y1y2 +
9k2+42k−143
40(k−1)(k2−1)

( k−1
k+1

) 4
5 y2

2

+

4∑
i+ j+k+l+s=3

ai jkls yi
1y j

2γ
k
1γ

l
2γ

s
3,

v = 2k
(k+1)2

( k+1
k−1

) 3
5 y2 +

2k
(k+1)2

( k+1
k−1

) 4
5γ1 +

2k
(k+1)2

( k+1
k−1

) 4
5 y2

1 +
4k

(k+1)(k2−1)y1y2

+ 2k
3(k2−1)

( k+1
k−1

) 1
5 y2

2 +

4∑
i+ j+k+l+s=3

bi jkls yi
1y j

2γ
k
1γ

l
2γ

s
3,

(2.65)
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the parametrization:

µ1 =
4k2

(k+1)2

( k−1
k+1

) 1
5γ1 +

2k2

(k+1)2

( k+1
k−1

) 1
5γ2 −

k2(5k2+54k−47)
2(k−1)(k+1)3

( k−1
k+1

) 2
5γ2

1

−
k2(k2+7)

3(k−1)(k−3)(k+1)2

( k−1
k+1

) 3
5γ2

2 −
2k2(k3+14k2−11k+8)

3(k−1)(k−3)(k+1)3 γ1γ2

−
k2(k2+22k−11)
3(k−3)(k+1)3

( k+1
k−1

) 3
5γ1γ3 −

2k2(k−1)
3(k−3)(k+1)2γ2γ3 +

4∑
i+ j+k=3

α1i jk γ
i
1γ

j
2γ

k
3,

µ2 =−
4k2(k−3)

(k−1)(k+1)4

( k−1
k+1

) 1
5γ1 −

4k2

(k+1)4

( k+1
k−1

) 1
5γ2 +

k2(k−3)(7k2+20k−19)
(k−1)2(k+1)5

( k−1
k+1

) 2
5γ2

1

+
2k2(7k2−24k+25)

3(k−3)(k+1)5

( k+1
k−1

) 2
5γ2

2 +
2k2(13k2−24k+19)

3(k−1)(k+1)5 γ1γ2

−
2k2(k−7)

3(k−3)(k+1)4γ1γ3 +

4∑
i+ j+k=3

α2i jk γ
i
1γ

j
2γ

k
3,

µ3 =−
k−3

(k+1)3

( k+1
k−1

) 1
5γ1 +

3k−5
2(k+1)2

( k+1
k−1

) 1
5γ2 +

1
(k+1)2

( k−1
k+1

) 1
5γ3

−6997k4−43778k3+103308k2+31570k−53393
720(k−1)(k+1)5

( k+1
k−1

) 3
5γ2

1

+
(3k−1)(k2−6k+13)

6(k−3)(k+1)4

( k+1
k−1

) 2
5γ2

2 +
(k−1)2

3(k−3)(k+1)3

( k+1
k−1

) 3
5γ2

3

−79k3+4385k2−49019k+10739
1200(k−1)(k+1)4 γ1γ2 −

143k2−826k+359
120(k+1)4

( k+1
k−1

) 3
5γ1γ3

−
(k−5)(5k−3)
6(k−3)(k+1)3γ2γ3 +

4∑
i+ j+k=3

α3i jk γ
i
1γ

j
2γ

k
3,

(2.66)

and the time rescaling:

dt =
[
− k

k+1

( k+1
k−1

) 1
5 +

k(k−3)
2(k+1)2

( k+1
k−1

) 3
5 y1 +

k(k2+7)
6(k−3)(k+1)2

( k+1
k−1

) 2
5γ2 +

k(k−1)
3(k+1)(k−3)γ3

]
dτ1, (2.67)

into (2.64) yields the following PSNF up to 4th-order terms:

dy1

dτ1
= y2,

dy2

dτ1
= γ1 + γ2 y2 + γ3 y1y2 + y2

1 + y3
1y2 + O(|(y1, y2, γ)|5).

(2.68)

Here, ai jkls’s, bi jkls’s and αmi jk’s are coefficients given in terms of k, and γ = (γ1, γ2, γ3).
It is easy to verify that

det
[
∂(µ1, µ2, µ3)
∂(γ1, γ2, γ3)

]
γ=0
= − 8k4

(k+1)8

(k + 1
k − 1

) 4
5
, 0, (2.69)

which shows that near the critical point µ = 0, system (2.3) has the same bifurcation set with
respect to µ as system (2.68) has with respect to γ, up to a homeomorphism in the parameter
space.

Now, following the method described in [6], and the computations in [36] we apply the
method of normal forms and Abelian integral (or the Melnikov function method) to derive the
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bifurcations for the codimension-3 B-T bifurcation. For the convenience of readers, in the
following we briefly describe the derivations. First of all, it is easy to see that system (2.64)
has two equilibrium solutions E±:

E± = (y1±, 0), where y1± = ±
√
−γ1 for γ1 < 0. (2.70)

Evaluating the Jacobian of (2.64) at E± gives

J± =

 0 1
2y1± γ2 + γ3y1± + y3

1±

 , (2.71)

which shows that E1+ is a saddle, and E1− is either a focus or node. It follows from the Jacobian
that the plane

SN =
{
(γ1, γ2, γ3) | γ1 = 0

}
, (2.72)

excluding the origin in the parameter space is the saddle-node bifurcation surface. Hopf bi-
furcation occurs from E− on the critical surface, determined by setting the trace to equal zero,
given by

γ2 − (γ3 − γ1)
√
−γ1 = 0, (γ1 < 0). (2.73)

With Hopf bifurcation theory, a direct computation (e.g., with the Maple program in [32]) leads
to the following focus values:

v1 =
γ3 + 3γ1

16
√
−γ1

and v2|v1=0 =
5

96
√
−γ1
> 0,

indicating that generalized Hopf bifurcation occurs on the surface, defined by v1 = 0:

γ3 + 3γ1 = 0, (γ1 < 0), (2.74)

giving rise to two limit cycles, with the outer one unstable and the inner one stable, and both
them enclose the unstable focus E−.

Next, in order to find the homoclinic and degenerate homoclinic bifurcations, we apply the
Melnikov function method [13]. To achieve this, introducing the scaling:

y1 = ε
2
5 w1, y2 = ε

3
5 w2, γ1 = ε

4
5 ν1, γ2 = ε

6
5 ν2, γ3 = ε

4
5 ν3, τ2 = ε

1
5τ1, (0 < ε ≪ 1), (2.75)

together with the following transformation,

w1 = ν̄1 + z1, w2 =
√

2ν̄1 z2, τ3 =
√

2ν̄1 τ3, ν1 = −ν̄
2
1, (ν̄1 > 0), (2.76)

into (2.64) one obtains
dz1

dτ2
= z2,

dz2

dτ2
= z1 +

1
2ν̄1

z2
1 + ε q(z1, z2, ν̄),

(2.77)
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where

q(z1, z2, ν̄) =
1
√

2ν̄1

[
(ν2 + ν̄1 ν3 + ν̄

3
1)z2 + (ν3 + 3ν̄2

1)z1z2 + 3ν̄1z2
1z2 + z3

1z2
]
, (2.78)

with ν̄ = (ν̄1, ν2, ν3).
When ε = 0, the system (2.77) is a Hamiltonian system which has two equilibrium points:

Ẽ− = (−2ν̄1, 0) and Ẽ0 = (0, 0), (2.79)

which are center and saddle, respectively. These two equilibria correspond to the E± defined in
(2.64). The Hamiltonian of (2.77) is given by

H(z1, z2) =
1
2

(z2
2 − z2

1) −
1

6ν̄1
z3

1, (2.80)

and the homoclinic orbit connecting E0 is described by

Γ0 : H(z1, z2) =
1
2

(z2
2 − z2

1) −
1

6ν̄1
z3

1, with H(0, 0) = 0, (2.81)

and H(−2ν̄1, 0) = −2
3 ν̄

2
1. Thus, any closed orbits of the Hamiltonian system (2.77)|ε=0 inside

the homoclinic loop Γ0 can be described by

Γh : H(z1, z2, h) =
1
2

(z2
2 − z2

1) −
1

6ν̄1
z3

1 − h = 0, h ∈
(
−

2
3
ν̄2

1, 0
)
. (2.82)

Then, the Abelian integral or the (first-order) Melnikov function for the perturbed system (2.77)
can be expressed as [13]

M(h, ν) =
∮
Γh

q(z1, z2, ν) dz1 − p(z1, z2, ν) dz2 |ε=0 (p = 0)

=

∮
Γh

q(z1, z2, ν) |ε=0 dz1 =

∮
Γh

Hz2q(z1, z2, ν) |ε=0 dt

=
1
√

2ν̄1

∮
Γh

z2
2
[
ν2 + ν̄1 ν3 + ν̄

3
1 + (ν3 + 3ν̄2

1)z1 + 3ν̄1z2
1 + z3

1
]
dt

= M(h, ν) = C0(ν) +C1(ν) h ln |h| +C2(ν) h +C3(h) h2 ln |h| + · · · ,

(2.83)

for 0 < −h ≪ 1, where

C0(ν) =
1
√

2ν̄1

∮
Γ0

z2
2
[
ν2 + ν̄1 ν3 + ν̄

3
1 + (ν3 + 3ν̄2

1)z1 + 3ν̄1z2
1 + z3

1
]
dt,

C1(ν) = a10 + b01,

(2.84)

in which a10 and b01 are the coefficients in the functions p(z1, z2, ν) and q(z1, z2, ν), given by

a10 = 0, b01 =
1
√

2ν̄1
(ν2 + ν̄1 ν3 + ν̄

3
1). (2.85)
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To compute C0(ν), we introduce the parametric transformation:

z1(t) = −3 ν̄1 sech2(t), z2(t) = 3 ν̄1 sech2(t) tanh(t), (2.86)

into C0(ν) with a direct integration to obtain

C0(ν) =
6ν̄1
√

2ν̄1

5

[
ν2 −

5
7
ν̄1 ν3 −

103
77

b1ν̄
3
1

]
. (2.87)

Further, we express C0(ν) and C1(ν) in terms of the original perturbation parameters γ j by using

ν̄1 =
√
−ν1 =

√
−ε−

4
5 γ1 = ε

− 2
5
√
−γ1, ν2 = ε

− 6
5γ2, ν3 = ε

− 4
5γ3,

as

C0(γ) =
6ν̄1
√

2ν̄1

5
ε−

6
5

[
γ2 −

(5
7
γ3 −

103
77
γ1

)√
−γ1

]
,

C1(γ) =
1
√

2ν̄1
ε−

6
5

[
γ2 + (γ3 − γ1)

√
−γ1

]
.

(2.88)

Therefore, the homoclinic and degenerate homoclinic bifurcation surfaces are defined by C0(γ)=
0 and C1(γ) = 0, respectively.

Summarizing the above results yields the following theorem.

Theorem 2.4.8. For the model (2.3), codimension-3 B-T bifurcation occurs from the equilib-
rium E2: (X,Y) = ( k

k+1 ,
k−1

k(k+1) ) when µ = k2(k−1)
(k+1)2 , r = 4k2

(k+1)4 and a = k−1
k(k+1)2 . Moreover, six local

bifurcations with the representations of the bifurcation surfaces/curves are obtained, as given
below.

(1) Saddle-node bifurcation occurs from the critical surface:

SN =
{
(γ1, γ2, γ3) | γ1 = 0

}
.

(2) Hopf bifurcation occurs from the critical surface:

H =
{
(γ1, γ2, γ3) | γ1 < 0, γ2 =

(
γ3 − γ1

)√
−γ1

}
.

(3) Homoclinic loop bifurcation occurs from the critical surface:

HL =
{
(γ1, γ2, γ3) | γ1 < 0, γ2 =

(5
7 γ3 −

103
77 γ1

)√
−γ1

}
.

(4) Generalized Hopf bifurcation occurs from the critical curve:

GH =
{
(γ1, γ2, γ3) | γ1 < 0, γ2 = −4γ1

√
−γ1, γ3 = −3γ1

}
.



2.4. Hopf bifurcation 37

(5) Degenerate homoclinic bifurcation occurs from the critical curve:

DHL =
{
(γ1, γ2, γ3)

∣∣∣ γ1 < 0, γ2 = −
4

11 γ1
√
−γ1, γ3 =

15
11 γ1

}
.

(6) Double limit cycle bifurcation occurs from a critical surface, which is tangent to the Hopf
bifurcation surface H on the critical curve GH, and tangent to the homoclinic bifurcation
surface HL on the critical curve DHL.

Figure 2.4: Bifurcation diagram for the codimension-3 B-T bifurcation based on the normal
form (2.64), displayed in the intersection of the cone and the 2-sphere γ2

1 + γ
2
2 + γ

2
3 = σ

2, with
the brown color curve for saddle-node, red curve for Hopf and blue curve for homoclinic loop
bifurcations, respectively: (a) with σ = 0.02, where the intersection point of the pink and red
curve is the degenerate Hopf bifurcation, and the intersection point of the pale pink and blue
curves denotes the degenerate homoclinic loop bifurcation; and (b) a schematic bifurcation dia-
gram, where the GH and DHL represent the generalized Hopf critical point and the degenerate
homoclinic critical point, respectively.

The bifurcation diagram projected on a 2-sphere is shown in Figure 2.4. Figure 2.4(a) is an
exact bifurcation diagram for σ = 0.02, in which the intersection points C, GH and DHL, as
shown in Figure 2.4(a), are given by

C = (σ2, σ3)C = (0.0031, 0.0151), for σ1 = − 0.0128,

GH = (σ2, σ3)GH = (0.0020, 0.0189), for σ1 = − 0.0063,

DHL= (σ2, σ3)DHL = (0.0005,− 0.0161), for σ1 = − 0.0118.

(2.89)

For a better view of bifurcations, a schematic general bifurcation diagram is shown in
Fig. 2.4(b) with typical phase portraits, which is similar to Figure 3 in [6] and Figure 2 in [18].



Chapter 3

An SIRS model with a generalized
incidence

3.1 Introduction

In this chapter, we reconsider a disease system studied by Rao et al. [22], in which a general-
ized incidence function, f (I) = βI

π(I) is proposed to model the transmission of disease. It implies
that susceptible individuals become infected at this rate. The function f is non-monotone when
the psychological influence is considered. The model is described by the following equations:

Ṡ = (1 − p)b − µ1S − λS I + γR,
İ = λS I − (µ2 + α)I − T (I),
Ṙ = pb − (µ3 + γ)R + αI + T (I),

(3.1)

where S , I and R represent the numbers of the susceptible, infected, and recovered populations,
respectively[41]. Among the factors that affect the transmission of diseases is the infection
force which is given by f (I) = β

/pi(I) , whereas 1
π(I) represents the effect of intervention measures

on the lowering of valid contact coefficient β. T (I) is the treating function, and is assumed in
the form T (I) = rI

1+kI , which is used in [29]. With this T , system (3.1) becomes

Ṡ = (1 − p)b − µ1S − λS I + γR,

İ = λS I − (µ2 + α)I −
rI

1 + kI
,

Ṙ = pb − (µ3 + γ)R + αI +
rI

1 + kI

(3.2)

The total population at time t is given by N(t) = S (t) + I(t) + R(t). All the parameters are
assumed to be positive and typical values are shown in Table 3.1.

38



3.1. Introduction 39

Table 3.1: Definitions and value of parameters of system (3.2)[22]

Variable Description Value Resource

b The population’s recruitment rate 1 or 50 [30, 4, 28]

p
The proportion of susceptible populations

that is vaccinated remains constant
[ 0, 1 ] [17]

α The recovery rate of infectious individuals 0.1 [4]
λ The individuals’ treatment rate 0.1 [4]
γ The immune loss rate 0.25 [4]
µ1 The mortality rate among the susceptible population 0.2 [30]
µ2 The mortality rate among the infected population 0.2 [30]
µ3 The mortality rate among the recovered population 0.2 [30]
r The capacity of treatment for infected individuals varies [28]
k The impact of delays in treating infected varies [28]

In [22], the authors provide an analysis for different death rates µi on the existence and
stability of equilibrium solutions, as well as numerical simulations to verify their theoretical
results. However, the important Hopf and B-T bifurcations are not discussed due to the diffi-
culty caused the different death rates.

In general, the three death rates µi should be different. But in the reality, the difference in
the rates can be ignored, and in the literature, they are taken the same values (see Table 3.1).
As a matter of fact, all simulations given in [22] use the same value 0.2 for the three death
rates. Therefore, we assume that µ1 = µ2 = µ3 = µ in our study so that we can perform a more
complex bifurcation analysis. Adding the equations in (3.2) results in a different equation for
N: Ṅ = b − µN, which gives the solution

N(t) =
b
µ
+

(
N(0) −

b
µ

)
e−µt,

showing that N(t) → b
µ

as t → ∞. Thus, with R = b
µ
− S − I, the dynamics of the limiting

system is described by the following 2-d differential system,

Ṡ = (1 − p)b − µS − λS I + γ
(b
µ
− S − I

)
İ = λS I − (µ + α)I −

rI
Ik + 1

(3.3)

To further simplify the mathematical analysis, we introduce the scaling transformation:

S =
X
k
, I =

Y
k
, τ = rt, (3.4)
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into (3.3) to obtain the dimensionless system,

Ẋ = A − BXY − (C + D)X −CY,

Ẏ = BXY − (D + E)Y −
Y

Y + 1
,

(3.5)

where the new parameters are defined as

A =
kb
r

(
1 − p +

r
µ

)
, B =

λ

rk
, C =

γ

r
, D =

µ

r
, E =

α

r
. (3.6)

The positivity of the solution of the system can be easily proved using the method of vari-
ation constant, and the boundedness of the solution can be shown using a Lyapunov function
V(X,Y) = X + Y to find the trapping region bounded by the X-axis, the Y-axis and the straight
line L, defined by

L : X + Y =
A

C + D
. (3.7)

3.2 Equilibrium solutions and their stability

Setting Ẋ = Ẏ = 0 yields two equilibrium solutions:

E0 =
( A
C + D

, 0
)
, Disease free equilibrium (DFE),

E1 =
(
X1,Y1

)
=

(D
B
+

E
B
+

1
B(Y1 + 1)

, Y1

)
, Endemic equilibrium,

(3.8)

where Y1 is determined from the quadratic polynomial,

F2 = −
F2a

B(Y1 + 1)
, where F2a = M2Y2

1 + M2Y1 + M0, (3.9)

where
M0 = B(C + D + E) > 0,

M1 = (C + D)(D + E) + B(C + D + E + 1 − A),

M2 = (C + D)(D + E + 1) − AB.

(3.10)

The Jacobian matrix of system (3.5) can be used to determine the stability of equilibrium
solutions, which is given by

J(X,Y) =

 −BY −C − D −BX −C

BY BX − D − E −
1

Y + 1
+

Y
(Y + 1)2

 . (3.11)

For the DFE E0, we have the following result.
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Theorem 3.2.1. For system (3.5), the DFE is asymptotically stable (a stable node) if AB <
(C +D)(1+D+ E); and unstable (a saddle) if AB > (C +D)(1+D+ E). A bifurcation occurs
at the critical point, defined by AB = (C + D)(1 + D + E).

Proof. Evaluating the Jacobian J at E0 gives two eigenvalues:

λ1 = −(C + D) < 0, λ2 =
AB

C + D
− (D + E + 1),

which clearly shows that E0 is a stable node if AB < (C +D)(D+ E + 1) (λ2 < 0), and a saddle
if AB > (C +D)(D+ E + 1) (λ2 > 0). At the critical point defined by AB = (C +D)(D+ E + 1),
E0 loses its stability and bifurcates into E1 (as shown in the next theorem).

The basic reproduction number R0 can be easily obtained from λ2 as

λ2 =
AB

C + D
− (1 + D + E) = (D + E + 1)

[ AB
(C + D)(1 + D + E)

− 1
]

△
= (D + E + 1)

(
R0 − 1

)
,

implying that λ2 ≶ 0 ⇐⇒ R0 ≶ 1.
Similarly, we can obtain stability conditions for the endemic equilibrium, but the analysis

is much more involved. Define

B1 =
(C+D)(D+E+1)

A ,

B2 =
(C+D)(D+E)
A−C−D−E−1 ,

B± =
(C+D){(D+E)(A+C+D+E+1)+2C±2

√
(C+D+E)[(A+C)(D+E)+C]}

(A−1)2+(C+D+E)(C+D+E+2A+2) ,

Y1± =
1

2M0

(
− M1 ±

√
∆1

)
,

E1± =
(
X1±, Y1±

)
,

(3.12)

where

∆1 = M2
1 − 4M0M2 =

[
(A − 1)2 + (C + D + E)(C + D + E + 2A + 2)

]
B2

− 2(C + D)
[
(D + E)(A +C + D + E + 1) + 2C

]
B + (D + E)2(C + D)2.

∆1 > 0 if B < B− or B > B+, for which the quadratic polynomial F2a has real solutions for Y1.
We have the following theorem.

Theorem 3.2.2. For the system (3.5), the following holds for the existence of the endemic
equilibrium solution.

(1) No solution if B < B−, or A ≤ C + D + E + 1 and B+ < B < B1, or C + D + E + 1 < A <
(D + E + 1)(C + D + E + 1) and B+ < B < min{B1, B2},
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(2) Two solutions E1± if A > (D + E + 1)(C + D + E + 1) and max{B+, B2} < B < B1.

(3) One solution E1+ if B > B1, or A > (D + E + 1)(C + D + E + 1) and B = B1.

Proof. We first prove that F2a has no real roots if B < B−. Note that the constant coefficient in
F2a, M0 < 0 for B > B1 and M0 ≥ 0 for B ≤ B1. A direct computation shows that B1 > B+.
Hence, M0 > 0 for B < B− (< B+ < B1).

Next, consider the sign of M1, the coefficient of linear term in F2. If C +D+E + 1−A ≥ 0,
then M1 > 0, indicating that all the three coefficients Mi are positive, and so F2a has no real
roots.

If C + D + E + 1 − A < 0, we have

M1 > (C + D)(D + E) + B−(C + D + E + 1 − A)

=
2(C + D)

(A − 1)2 + (C + D + E)(C + D + E + 2A + 2)
[
(D + E)3 + 2(C + 1)(D + E)2

+C(C + 1) + (C2 + 3C + 1)(D + E) + A(D + E − 1)(C + D + E)

+ (A −C − D − E − 1)
√

(C + D + E)[(A +C)(D + E) +C]
]
.

It is obvious that M1 > 0 if D + E − 1 ≥ 0. When D + E − 1 < 0, M1 > 0 if

C + D + E + 1 < A ≤
(D + E)3 + 2(C + 1)(D + E)2 +C(C + 1) + (C2 + 3C + 1)(D + E)

(1 − D − E)(C + D + E)
.

When

A >
(D + E)3 + 2(C + 1)(D + E)2 +C(C + 1) + (C2 + 3C + 1)(D + E)

(1 − D − E)(C + D + E)
,

A direct computation shows that M1 > 0.
Summarizing the above discussions, we have that F2a = 0 does not have real positive

solutions for Y1 if B < B−.
Now, we consider B > B+. We have three cases:

(a) No solution if B+ < B ≤ B1 and M1 ≥ 0.

(b) Two solutions if B+ < B ≤ B1 and M1 < 0.

(c) One solution if B > B1.

(d) One solution if B = B1 and M1 < 0.

For the Case (d), we have M2 ≥ 0. Thus A ≤ C + D + E + 1 yields M1 > 0. When
A > C + D + E + 1, M1 ≥ 0 results in B ≤ B2 and thus B+ < B < min{B1, B2}. This requires
B2 > B+. Then, similar to the proof for the case B < B−, we discuss two sub-cases: D + E ≥ 1
and D + E < 1 to obtain that

C + D + E + 1 < A < (D + E + 1)(C + D + E + 1).
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This finishes the proof for the case (a). Proving the case (b) and (d) needs to find the condition
for B1 > B2, which is equivalent to

B1 − B2 =
(C + D)[A − (D + E + 1)(C + D + E + 1)]

A(A −C − D − E − 1)
> 0,

yielding A > (D + E + 1)(C + D + E + 1).
The proof is complete.

For the stability of E1, it is difficult to obtain the explicit conditions expressed in terms of
system parameters. Instead of Y1, we use A to solve F2a = 0 and then treat Y1 (representing
both Y1± as a parameter in the following stability analysis. Note that since the solutions Y1±

are computed at the equilibrium E1, expressed in terms of the system parameters, Y1 indeed
represents parameters in an implicit form. Solving F2a = 0 for A yields

A =
B(C + D + E)Y2

1 + [B(C + D + E + 1) + (C + D)(D + E)]Y1 + (D + E + 1)(C + D)
B(Y1 + 1)

,

(3.13)
which is positive for positive parameter values and Y1 ≥ 0.

Then, we have the following result.

Theorem 3.2.3. For the system (3.5), we have the following results for the stability of the
endemic equilibrium E1.

(i) E1 is asymptotically stable for

0 < C < −Y1B − D +
Y1

(Y1 + 1)2 and E > max
{−B +C + D

(Y1 + 1)2B
− (C + D), 0

}
.

(ii) E1 is unstable for

either C > B(C + D + E)(Y1 + 1)2 − D

or C > max
{
− BY1 − D +

Y1

(Y1 + 1)2 , 0
}

and E > max
{−B +C + D

B(Y1 + 1)2 − (C + D), 0
}
.

(iii) Transcritical bifurcation occurs at the critical point R0 = 1 between E0 and E1.

(iv) Hopf bifurcation occurs at the critical point, defined by

C = −BY1 − D +
Y1

(Y1 + 1)2 , D <
Y1[1 − B(Y1 + 1)2]

(Y1 + 1)2 , B <
1

(Y1 + 1)2 ,

E >
Y1[B(Y1 + 1)2 − 1]2 − B(Y1 + 1)2

B(Y1 + 1)4 .
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(v) Bogdanov-Takens bifurcation at the critical point, defined by

C = −BY1 − D +
Y1

(Y1 + 1)2 , D <
Y1[1 − B(Y1 + 1)2]

(Y1 + 1)2 , B <
1

(Y1 + 1)2 ,

E =
Y1[B(Y1 + 1)2 − 1]2 − B(Y1 + 1)2

B(Y1 + 1)4 .

Proof. Using Y1, the Jacobian matrix (3.11) becomes

J(E1) =


−BY1 −C − D

(−C − D − E)Y1 −C − D − E − 1
Y1 + 1

BY1
Y1

(Y1 + 1)2

 ,
which gives the trace and determinant as follows:

Tr(J(E1)) = −BY1 −C − D +
Y1

(Y1 + 1)2 ,

det(J(E1)) =
Y1

(Y1 + 1)
[
B(C + D + E)(Y1 + 1)2 + B −C − D

]
.

(3.14)

Then, based on det(J(E1)) and Tr(J(E1)), we use the parameters C and E to determine the
stability conditions and bifurcations.

Case (i) E1 is asymptotically stable if Tr(J(E1)) < 0 and det(J(E1)) > 0. Solving the inequality
Tr(J(E1)) < 0 gives the condition on C, and then solving the inequality det(J(E1)) > 0
yields the condition on E.

Case (ii) E1 is unstable if either det(J(E1)) < 0, or det(J(E1)) > 0 and Tr(J(E1)) > 0.
det(J(E1)) < 0 leads to C > B(C + D + E)(Y1 + 1)2 − D. Similar to the Case I, the
second condition can be easily derived.

Case (iii) Transcritical bifurcation occurs from E1 if Tr(J(E1)) < 0 and det(J1) = 0. det(J1) = 0
gives Y1 = 0, and then (3.13) yields the critical point,

A =
(C + D)(D + E + 1)

B
,

under which Tr(J(E1)) = −(C + D) < 0, and in addition,

X1 =
D + E + 1

B
=

A
C + D

,

which indicates that a transcritical bifurcation happens at AB = (C + D)(D + E +
1), i.e., R0 = 1, between E0 and E1.
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Case (iv) Hopf bifurcation occurs if Tr(J(E1)) = 0 and det(J(E1)) > 0, which requires

C =
Y1

(Y1 + 1)2 − D − BY1.

C > 0 needs
B <

1
(Y1 + 1)2 and D < Y1

[
(Y1 + 1)2 − B

]
. (3.15)

det(J(E1)) > 0 yields

E >
Y1[B(Y1 + 1)2 − 1]2 − B(Y1 + 1)2

B(Y1 + 1)4 . (3.16)

Case (v) B-T bifurcation occurs if Tr(J(E1)) = det(J(E1)) = 0, which directly leads to

C =
Y1

(Y1 + 1)2 − D − BY1 and E =
Y1[B(Y1 + 1)2 − 1]2 − B(Y1 + 1)2

B(Y1 + 1)4 ,

together with the condition (3.15).

3.3 Codimension of Hopf bifurcation

In this section, we consider the codimension of the Hopf bifurcation. We have the following
result.

Theorem 3.3.1. For the model (3.5), the codimension of Hopf bifurcation is two.

Proof. To determine the codimension of Hopf bifurcation, we use the method of normal forms
to compute the focus values. To achieve this, we first use the parameter A to solve the polyno-
mial F2a = 0 to obtain the solution given in (3.14). Then, to simplify the computation of focus
values, we introduce the time scaling

dt = (Y + 1)dτ

into (3.5) to obtain
dX
dτ
=

[
A − BXY − (C + D)X −CY

]
(Y + 1),

dY
dτ
=

[
BXY − (D + E)Y

]
(Y + 1) − Y.

(3.17)

The stability of the equilibrium solution E1 is determined from the Jacobian matrix of system
(3.17), which is evaluated at E1 to yield

J(E1) =


−(Y1 + 1)(BY1 +C + D) −(C + D + E)(Y1 + 1) − 1

BY1(Y1 + 1)
Y1

Y1 + 1

 , (3.18)
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where (3.14) has been used.
Next, let the trace of the J equal to zero yields the Hopf critical point, defined by

CH =
Y1

(Y1 + 1)2 − D − BY1. (3.19)

CH > 0 requires the condition given in (3.15).
Now, introducing the following affine transformation: X

Y

 =


1
B
(
D + E +

1
Y1 + 1

)
Y1

 +
 1 0

−
(Y1+1)(BY1+C+D)
(C+D+E)(Y1+1)+1

ωc
(C+D+E)(Y1+1)+1


 u

v

 , (3.20)

where
ωc =

1
Y1 + 1

√
Y1

[
− Y1

(
1 − B(Y1 + 1)2)2

+ B(Y1 + 1)2 + EB(Y1 + 1)4]. (3.21)

into (3.17) we obtain the following system,

du
dt
= v − BY1(Y1+1)

Q1ωc
u2 −

B(Y1+1)3−Y1
Q1(Y1+1) uv + ωc

Q1
v2 −

BY2
1

Q2
1ωc

u3

−
2BY1(Y1+1)

Q2
1

u2v − Bωc(Y1+1)2

Q2
1

uv2,

dv
dt
=−u + Y1

(Y1+1)2ω2
c

[
B(Y1 + 1)(2Y1 + 1) + 1 + E(Y1+1)2+3Y1+1

Q1

]
u2

+ 1
(Y1+1)2ω2

c

{
(Y1 + 1)

[
B(Y1 + 1)(2Y1 + 1) + 1

]
+

E(Y1+1)3+3Y2
1+5Y1+1

Q1

}
uv

+ 1
Q1(Y1+1) v2 + 1

Q1(Y1+1) u3 +
BY2

1 [(BY1−E)(Y1+1)−1]
Q2

1ω
2
c

u2v

+
2BY1(Y1+1)[(BY1−E)(Y1+1)−1]

Q2
1ωc

uv2 +
B(Y1+1)2[(BY1−E)(Y1+1)−1]

Q1
v3,

(3.22)

where
Q1 = (BY1 − E)(Y1 + 1)2 − 2Y1 − 1.

The transversal condition can be obtained as

v0 = −
Y1 + 1

2
. (3.23)

Now, applying the Maple program [32] for computing the normal forms of Hopf and gen-
eralized Hopf bifurcations, we obtain the following focus values:

v1 =−
BY1

8(Y1 + 1)Q1[B(Y1 + 1)2Q1 + Y1

[
B(Y1 − 2)(Y1 + 1)4E − B2(2Y2

1 + 1)(Y1 + 1)4

+B(2Y2
1 − 2Y1 − 1)(Y1 + 1)2 + Y1

]
,

v2 = · · · ,

v3 = · · · .

(3.24)

Solving v1 = 0 for E yields

E =
B2(2Y2

1 + 1)(Y1 + 1)4 − B(2Y2
1 − 2Y1 − 1)(Y1 + 1)2 − Y1

B(Y1 − 2)(Y1 + 1)4 . (3.25)
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Substituting the solution E into v2 we have

v2 = −
B4Y1(Y1 − 2)2(Y1 + 1)3[2B(2Y1 − 1)(Y1 + 1)3 − (Y2

1 − 4Y1 − 2)]
[B2(Y1 + 1)6 − B(Y1 + 1)3 − Y1]2[B(Y1 + 1)3 + Y1 − 1]

.

Similarly, solving v1 = 0 for B we obtain

B =
Y2

1 − 4Y1 − 2
2(2Y1 − 1)(Y1 + 1)3 . (3.26)

With the solutions E and B, the 3rd-order focus values become

v3 = −
(Y1 + 2)(Y2

1 − 4Y1 − 2)6(Y2
1 − Y1 − 1)

800Y3
1 (Y1 + 1)13(Y2

1 − 26Y1 − 6)3
. (3.27)

Four limit cycles may bifurcate from the Hopf critical point if v3 = 0. It is seen from (3.26)
that Y2

1 − 4Y1 − 2 , 0 due to B , 0. Thus, the only possibility for v3 = 0 is the solution from
the equation Y2

1 − Y1 − 1 = 0, which gives

Y1 =
1 +
√

5
2
.

However, this solution leads to

B =
3
√

5 − 7
4

=
−1

3
√

5 + 7
< 0,

implying that there do not exist solutions such that v3 = 0 and so four limit cycles are not
possible.

Next, consider the possibility of three limit cycles, which only needs v1 = v2 = 0. Substi-
tuting B in (3.26) into E in (3.33) we have

E = −
(Y1 + 2)(6Y4

1 − 4Y3
1 + 3Y2

1 + 6Y1 + 2)

2(Y2
1 − 4Y1 − 2)(2Y1 − 1)(Y1 + 1)3

= −
Y1 + 2

4(Y1 + 1)3

[
(6Y1 + 23) +

213Y2
1 − 42

(Y2
1 − 4Y1 − 2)(2Y1 − 1)

]
.

It is easy to see that B > 0 requires that

(Y2
1 − 4Y1 − 2)(2Y1 − 1) > 0 =⇒ Y1 >

1 +
√

5
2
,

under which 213Y2
1 − 42 > 0, yielding E < 0. Thus, the bifurcation of three limit cycles is not

possible.
Finally, the existence of two limit cycles which can bifurcate from the Hopf critical point

only needs v1 = 0 and v2 , 0. There is an infinite number of sets of parameter values for two
limit cycles. For example, taking Y1 = 1 and B = 1

10 gives E = 3
40 , under which

v1 = 0, v2 = −
11

107648
.
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Note that the existence condition, B(Y1 + 1)2 = 4B = 2
5 < 1, is satisfied. Another existence

condition needs D < Y1
( 1

(Y1+1)2 − B
)
= 3

20 . So we choose D = 1
10 and then CH =

1
20 . With these

parameter values, in addition, taking the perturbations:

E =
3

20
− ε, C =

1
20
+ ξ, with ε = 10−3, ξ = 10−6,

we have the following normal form up to 5th order,

ρ̇ = ρ (v0 ξ + v1ρ
2 + v2r4) = ρ

(
−

1
106 +

25
1146816

ρ2 −
11

107648
ρ4

)
. (3.28)

Letting (̇ρ) = 0 yields two positive solutions:

ρ1 = 0.258402, ρ2 = 0.382834,

indicating that two limit cycles exist, and the outer one is stable, since v2 < 0 and the inner one
is unstable, and both of them enclose the stable focus E1.

The proof is complete.

With the parameter values, as discussed in the proof, given by

A =
86750387
50000000

, B = D =
1

10
, C =

50001
1000000

, E =
37
500
,

we perform the simulation as shown in Figure 3.1.
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(a) (b)

Figure 3.1: Simulation of the model (3.5) with A = 86750387
50000000 , B = D = 1

10 , E = 37
500 , showing

bifurcation of two limit cycles: (a) a global picture of the phase portrait; and (b) the zoomed
region near the stable equilibrium E2+, with the outer limit stable (in red color) and the inner
one unstable (in blue color), both of them enclosing the stable equilibrium E1.
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3.4 B-T bifurcation of system (3.5)

In this section, we present an analysis on the B-T bifurcation of the model. We first de-
termine the codimension of the B-T bifurcation, and then present the bifurcation results for
codimension-2 and codimension-3 B-T bifurcations. In order to find the B-T bifurcation crit-
ical point from E1, we use the solution A given in (3.13) and the critical point defined in item
(v) of Theorem 3.2.3 to define

A =
B(C + D + E)Y2

1 +
[
B(C + D + E + 1) + (C + D)(D + E)

]
Y1 + (C + D)(D + E + 1)

B(Y1 + 1)
△
= Ã,

C =
Y1

(Y1 + 1)2 − D − BY1
△
= C̃,

E =
Y1(Y1 + 1)4B2 − (2Y1 + 1)(Y1 + 1)2B + Y1

B(Y1 + 1)4 ,

(3.29)
where C > 0 requires the condition (3.15), and E > 0 yields B− < B < B+, where

B± =
1

2Y1(1 + Y1)2

[
1 + 2Y1 ±

√
1 + 4Y1

]
. (3.30)

But it is easy to see that B+ > 1
(Y1+1)2 . Hence, the existence conditions for the B-T bifurcation

are
B < B− and D < Y1

( 1
(Y1 + 1)2 − B

)
. (3.31)

3.4.1 Determining the codimension of B-T bifurcation

To find the codimension of the B-T bifurcation, we apply the SNF theory [33, 34, 36]. Define

B∗ =
1 − Y1

(Y1 + 1)3 , (Y1 < 1), Y∗1 = 0.5566930950. (3.32)

Then, we have the following theorem.

Theorem 3.4.1. For system (3.5), B-T bifurcation occurs from the equilibrium E1:
( 1

B(D+ E +
1

Y1+1 ),Y1
)

at the critical point: (A,C) = (Ã, C̃). Moreover, the B-T bifurcation is

(i) codimension 2 if Y1 ∈ (0,Y∗1]
⋃

[1,∞), or if Y1 ∈ (Y∗1 , 1) with B , B∗; or

(ii) codimension 3 if Y1 ∈ (Y∗1 , 1) with B = B∗.

Proof. First, introduce the following affine transformation:

 X
Y

 =


1
B

(
D + E +

1
Y1 + 1

)
Y1

 +

−Y1

(Y1 + 1)2 1

BY1 0


 u

v

 (3.33)
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into (3.5) we obtain the equations up to 5th order:

du
dt
= v − B

(Y1+1)3 u
[
Y2

1 u − (Y1 + 1)3v
]
−

B2Y2
1

(Y1+1)4 u3 +
B3Y3

1
(Y1+1)5 u4 −

B4Y4
1

(Y1+1)6 u5,

dv
dt
=− BY1

(Y1+1)5 u
{
Y1

[
Y1 − B(Y1 + 1)3] u + (Y1 + 1)3[B(Y1 + 1)2 − 1

]
v
}

−
B2Y3

1
(Y1+1)6 u3 +

B3Y4
1

(Y1+1)7 u4 −
B4Y5

1
(Y1+1)8 u5.

(3.34)

Then, applying the change of variables up to 5th-order:

u = y1 +
B(2Y1+1)
4(1+Y1) y2

1 −
B(1+Y1)[B(2Y1−1)(Y1+1)3−2Y2

1+5Y1+1]
12Y1[B(Y1+1)3−Y1] y1y2

+
B(2Y1−1)(1+Y1)3(4B2(Y1+1)6+B(6Y1−17)(Y1+1)3−10Y2

1+33Y1+4)
240Y2

1 [B(Y1+1)3−Y1]2 y2
2 + · · ·

v = y2 +
BY2

1
(Y1+1)3 y2

1 −
B(1+Y1)[B(2Y1−1)(Y1+1)3−2Y2

1+5Y1+1]
12Y1[B(Y1+1)3−Y1] y2

2 + · · ·

(3.35)

and the time scaling:

t =
(
1 +

B
2(Y1 + 1)

y1 + t30 y3
1

)
τ,

where t30 is a function in B and Y1, into (3.34) yields the SNF up to 5th order:

dy1

dτ
= y2,

dy2

dτ
= c20 y2

1 + c11 y1y2 + c31 y3
1y2 + c41 y4

1y2,
(3.36)

in which

c20 =
BY2

1

(Y1 + 1)5

[
B(Y1 + 1)3 − Y1

]
,

c11 = −
BY1

(Y1 + 1)3

[
B(Y1 + 1)3 + Y1 − 1

]
,

c31 = · · · , c41 = · · · .

(3.37)

It is easy to show that c20 < 0 since

B(Y1 + 1)3 − Y1 < B−(Y1 + 1)3 − Y1 =
− 2Y2

1

(Y1 + 1)
√

1 + 4Y1 + 3Y1 + 1
< 0.

Hence, codimension-3 B-T bifurcation can happen only if c11 = 0. First note that c11 < 0 for
Y1 ≥ 1. When Y1 < 1, it is easy to see that c11 = 0 has a unique solution B = B∗, and c11 > 0
for B < B∗ and c11 < 0 for B > B∗. Recall that the existence condition of the B-T bifurcation
requires B < B−, we compute B− − B∗ to obtain

B− − B∗ =
2(4Y3

1 + Y2
1 − 1)

(Y1 + 1)3[4Y2
1 + Y1 + 1 + (Y1 + 1)

√
1 + 4Y1]

,
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implying that there exists a unique solution

Y1 = Y∗1 = 0.5566930950, (3.38)

at which B− = B∗, and B− < B∗ if 0 < Y1 ≤ Y∗1 , and B− > B∗ if Y∗1 < Y1 < 1 for which B can
reaches B∗. At B = B∗, we have

c31 =
Y3

1 (1 − Y1)3

(Y1 + 1)14 > 0, c41 =
Y3

1 (1 − 2Y1)(1 − Y1)4

4(1 + Y1)18 < 0.

Therefore, the B-T bifurcation cannot have codimension higher than three.
The proof is complete.

In the following two sections, we present the B-T bifurcation results using the parametric
simplest normal form (PSNF) [8, 9, 7, 36], first for codimension two and then for codimension
three.

3.4.2 Codimension-2 B-T bifurcation

Based on the PSNF theory, we can prove the following bifurcation results for the codimension-
2 B-T bifurcation.

Theorem 3.4.2. For the epidemic model (3.5), codimension-2 B-T bifurcation occurs from the
equilibrium E1: (X,Y)=

( 1
B(D + E + 1

Y1+1 ),Y1
)

when A= Ã and C = C̃ if Y1 ∈ (0,Y∗1]
⋃

[1,∞),
or if Y1 ∈ (Y∗1 , 1) with B , B∗. Further, three local bifurcations with the representations of the
bifurcation curves are given as follows.

(i) Saddle-node bifurcation occurs from the bifurcation curve:

SN =

(β1, β2) | β1 = 0,

β2 < 0 (C11 < 0)

β2 > 0 (C11 > 0)

 .
(ii) Hopf bifurcation occurs from the bifurcation curve:

H =

(β1, β2)

∣∣∣∣∣∣β1 = −
1

C2
11

β2
2,

β2 < 0 (C11 < 0), supercritical

β2 > 0 (C11 > 0), subcritical

 .
(iii) Homoclinic loop bifurcation occurs from the bifurcation curve:

HL =

(β1, β2)

∣∣∣∣∣∣β1 = −
49
25

1
C2

11

β2
2,

β2 < 0 (C11 < 0), stable

β2 > 0 (C11 > 0), unstable

 .
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Proof. Let
A = Ã + µ1, C = C̃ + µ2, (3.39)

which, together with the transformation (3.35), is substituted into (3.5) to yield the following
system up to second-order terms:

du
dt
= v − B

(Y1+1)3 u
[
Y2

1 u − (Y1 + 1)3v
]
,

dv
dτ
= µ1 +

1
(Y1+1)5

{
BY2

1
[
B(Y1 + 1)3 − Y1

]
u2 − (Y1 + 1)5µ2v

−Y1(Y1 + 1)3[B(Y1 + 1)2 − 1
]
(Bv + µ2)u

}
.

(3.40)

Now, to obtain the PSNF of the system, we further apply the change of variables:

u = (Y1+1)5

BY2
1 (B[(Y1+1)3−Y1] y1 −

[B(Y1+1)2−1]
BY1(Y1+1)3[B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1] β2

−
(Y1+1)8[B(Y1+1)2−1]

BY3
1 [B(Y1+1)3−Y1][B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1]

β1 y1 +
(Y1+1)10

2BY4
1 [B(Y1+1)3−Y1]2 y2

1,

v = (Y1+1)5

BY2
1 [B(Y1+1)3−Y1] y2 +

[B(Y1+1)2−1]2(Y1+1)3

B[B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1]2 β
2
2

−
2(Y1+1)5[B(Y1+1)2−1]

BY1[B(Y1+1)3−Y1][B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1] β2 y1 +
(Y1+1)7

BY2
1 [B(Y1+1)3−Y1]2 y2

1,

(3.41)

and the parametrization:

µ1 =
(Y1+1)5

BY2
1 (B(Y1+1)3−Y1] β1 +

(Y1+1)[B(Y1+1)3−Y1][B(Y1+1)2−1]2

B[B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1]2 β
2
2,

µ2 =−
2[B(Y1+1)3−Y1]

B2(Y1+1)5+2BY1(Y1+1)2−3Y1+1 β2,
(3.42)

into (3.40) to obtain the PSNF below:

dy1

dτ
= y2,

dy2

dτ
= β1 + β2y2 + y2

1 +C11 y1y2,

for Y1 ∈ (0,Y∗1]
⋃

[1,∞), or

for Y1 ∈ (Y∗1 , 1) with B , B∗,
(3.43)

where

C11 =
(Y1 + 1)5(B − B∗)

Y1[Y1 − B(Y1 + 1)3]
. (3.44)

It should be pointed out that the coefficient C11 is not normalized into ±1 in order to show the
direct effect of the original system parameters on the dynamics of the system. It can be shown
that since Y1 − B(Y1 + 1)3 > 0 for B < B−, C11 > 0 if 0 < Y1 ≤ Y∗1 or if Y∗1 < Y1 < 1 with
B < B∗; and C11 < 0 if Y1 ≥ 1 or if Y∗1 < Y1 < 1 with B∗ < B < B−. Also, note that there is a
negative multiplier (Y1+1)5

BY2
1 [B(Y1+1)3−Y1] in the transformation from (u, v) to (y1, y2).

Since the normal form (3.43) is in the standard form (e.g., see [10, 36]), we can directly
obtain the bifurcation results in Theorem 3.4.2.

This finishes the proof.

The above formulas for bifurcation curves can be expressed in terms of the original pertur-
bation parameters µ1 and µ2 by using (3.42). The bifurcation diagram is depicted in Figure 3.2.
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  (a)   (b)

Figure 3.2: Bifurcation diagrams for the codimension-2 B-T bifurcation of the epidemic model
(3.5) based on the normal form (3.43): (a) for C11 < 0; and (b) for C11 > 0.

3.4.3 Codimension-3 B-T bifurcation

In this section, we consider codimension-3 B-T bifurcation for the model (3.5), and again apply
the parametric simplest normal form (PSNF) [34, 7, 36] associated with the one-step transfor-
mation approach. One needs to choose proper nonlinear transformations in order to determine
the right basis for the PSNF, and therefore to overcome the difficulty in the application of this
approach. We have the following theorem.

Theorem 3.4.3. For the model (3.5), codimension-3 B-T bifurcation occurs from the equilib-
rium E1: (X,Y) =

( 1
B(D + E + 1

Y1+1 ),Y1
)

when A = Ã, C = C̃ and B = B∗. Moreover, six local
bifurcations with the representations of the bifurcation surfaces/curves are obtained, as given
below.

(1) Saddle-node bifurcation occurs from the critical surface:

SN =
{
(β1, β2, β3) | β1 = 0

}
.

(2) Hopf bifurcation occurs from the critical surface:

H =
{
(β1, β2, β3) | β1 < 0, β2 =

(
β3 − β1

) √
−β1

}
.

(3) Homoclinic loop bifurcation occurs from the critical surface:

HL =
{
(β1, β2, β3) | β1 < 0, β2 =

(5
7 β3 −

103
77 β1

)√
−β1

}
.



54 Chapter 3. An SIRS model with a generalized incidence

(4) Generalized Hopf bifurcation occurs from the critical curve:

GH =
{
(β1, β2, β3) | β1 < 0, β2 = −4β1

√
−β1, β3 = −3β1

}
.

(5) Degenerate homoclinic bifurcation occurs from the critical curve:

DHL =
{
(β1, β2, β3)

∣∣∣ β1 < 0, β2 = −
4

11 β1
√
−β1, β3 =

15
11 β1

}
.

(6) Double limit cycle bifurcation occurs from a critical surface, which is tangent to the Hopf
bifurcation surface H on the critical curve GH, and tangent to the homoclinic bifurcation
surface HL on the critical curve DHL.

Proof. First, introducing the transformation,

X =
1
B

(
D + E +

1
Y1 + 1

)
+ u, Y = Y1 + v,

A = Ã + µ1, C = C̃ + µ2, B = B∗ + µ3,

for Y1 ∈ (Y∗1 , 1), (3.45)

into (3.5) yields the following system up to 4th-order terms:

du
dt
= v +

(Y1 − 1)
(Y1 + 1)6 u

[
Y2

1 u − (Y1 + 1)3v
]

−
1

(Y1 + 1)10 u
[
Y2

1 (Y1 − 1)2u2 + Y2
1 (Y1 + 1)7µ3u − (Y1 + 1)10µ3v

]
+

Y2
1 (Y1 − 1)

(Y1 + 1)14 u3[2(Y1 + 1)7µ3 − Y1(Y1 − 1)2u
]
,

dv
dt
=

1
(Y1 + 1)8

[
Y2

1 (2Y1 − 1)(Y1 − 1)u2 − 2Y2
1 (Y1 − 1)(Y1 + 1)2uv

+2Y2
1 (Y1 + 1)5µ2u − (Y1 + 1)8µ2v

]
−

Y1

(Y1 + 1)12 u
[
(Y1 + 1)12µ2µ3 + Y2

1 (Y1 − 1)2u2

+Y1(3Y1 − 2)(Y1 + 1)7µ3u − (3Y1 − 1)(Y1 + 1)9µ3v
]

−
Y1

(Y1 + 1)16 u
[
Y3

1 (Y1 − 1)3u3 − 2Y2
1 (Y1 − 1)(Y1 + 1)7µ3u2

−Y1(Y1 + 1)14µ2
3u + (Y1 + 1)16µ2

3v
]
.

(3.46)
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Next, we apply the change of variables:

u = (Y1+1)4

Y1(Y1−1)

[
Y1(2Y1 − 1)

] 1
5 y1 +

(Y1+1)3(4Y3
1−10Y2

1−Y1+1)
4Y2

1 (2Y1−1)(Y1−1)

[
Y1(2Y1 − 1)

] 2
5 β1

−
(Y1+1)3

(Y1−1)(2Y1−1)

[
Y1(2Y1 − 1)

] 3
5 β2 −

(Y1+1)4(2Y1+1)
4Y2

1 (Y1−1)

[
Y1(2Y1 − 1)

] 2
5 y2

1

−
(Y1+1)4(Y1−2)

3Y1(Y1−1) y1y2 +
(Y1+1)4(4Y2

1−16Y1+3)
80Y3

1 (Y1−1)

[
Y1(2Y1 − 1)

] 3
5 y2

2

−
{ (Y1+1)3(592Y6

1−2960Y5
1+4888Y4

1−2776Y3
1+381Y2

1+56Y1−21)
80Y3

1 (2Y1−1)2(Y1−1)2

[
Y1(2Y1 − 1)

] 3
5 β1

−
(Y1+1)3(48Y4

1−88Y3
1+41Y2

1−11Y1+4)
6Y2

1 (2Y1−1)2(Y1−1)2

[
Y1(2Y1 − 1)

] 4
5 β2

+
(Y1+1)4(7Y1−4)

3Y1(Y1−1)2(2Y1−1)

[
Y1(2Y1 − 1)

] 3
5 β3

}
y1

+
{ (Y1+1)3 m1

180Y2
1 (2Y1−1)2(Y1−1)2(44Y2

1+44Y1+23)

[
Y1(2Y1 − 1)

] 1
5 β1

−
(Y1+1)3 m2

180Y2
1 (44Y2

1+44Y1+23)(2Y1−1)2(Y1−1)2

[
Y1(2Y1 − 1)

] 2
5 β2

(Y1+1)4(1352Y4
1−3276Y3

1−398Y2
1+1365Y1+117)

18Yl(44Y2
1+44Y1+23)(2Y1−1)(Y1−1)2

[
Y1(2Y1 − 1)

] 1
5 β3

}
y2

+

4∑
i+ j+k+l+s=3

ai jkls yi
1y j

2β
k
1β

l
2β

s
3,

v =− (2Y1−1)(Y1+1)2

Y1(Y1−1)(2Y1−1)

[
Y1(2Y1 − 1)

] 4
5 y2 −

(Y1+1)2

Y1−1

[
Y1(2Y1 − 1)

] 2
5 y2

1

+
(Y1−2)(Y1+1)2

3Y1(Y1−1)

[
Y1(2Y1 − 1)

] 3
5 y2

2

−
{ (Y1+1)(8Y3

1−24Y2
1+3Y1−1)

6Y1(Y1−1)(2Y1−1)

[
Y1(2Y1 − 1)

] 3
5 β1 −

2Y1(Y1+1)
(Y1−1)(2Y1−1)

[
Y1(2Y1 − 1)

] 1
5 β2

}
y1

+
{ (Y1+1)(80Y6

1−464Y5
1+952Y4

1−684Y3
1+143Y2

1+12Y1−7)
16Y2

1 (Y1−1)2(2Y1−1)

[
Y1(2Y1 − 1)

] 1
5 β1

−
(Y1+1)(6Y3

1−8Y2
1+Y1−1)

2Y1(Y1−1)2

[
Y1(2Y1 − 1)

] 2
5 β2 +

(2Y1−1)(Y1+1)2

(Y1−1)2

[
Y1(2Y1 − 1)

] 1
5 β3

}
y2

+

4∑
i+ j+k+l+s=3

bi jkls yi
1y j

2β
k
1β

l
2β

s
3,

(3.47)

the parametrization:

µ1 =
2Y1−1
Y1−1

[
Y1(2Y1−1)

] 2
5β1

−
(16Y7

1−76Y6
1+91Y5

1+83Y4
1−137Y3

1+39Y2
1+2Y1−2)

4Y2
1 (Y2

1−1)2(2Y1−1)

[
Y1(2Y1−1)

] 4
5β2

1

+
Y3

1
(Y1−1)(Y1+1)2

[
Y1(2Y1 − 1)

] 1
5 β2

2 +
(24Y5

1+22Y4
1−67Y3

1+6Y2
1+Y1+2)

6(Y2
1−1)2 β1β2

−
(5Y1−2)
3(Y1−1)2

[
Y1(2Y1 − 1)

] 4
5 β1β3 +

4∑
i+ j+k=3

α1i jk β
i
1β

j
2β

k
3,

(3.48)
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µ2 =−
Y1−2

(Y1+1)2

[
Y1(2Y1 − 1)

] 1
5 β1 +

1
(Y1+1)2

[
Y1(2Y1 − 1)

] 3
5 β2

−
16Y6

1−103Y5
1+88Y4

1+218Y3
1−100Y2

1+Y1+4
4Y2

1 (2Y1−1)2(Y1+1)4

[
Y1(2Y1 − 1)

] 4
5 β2

1

−
6Y4

1−22Y3
1−6Y2

1+3Y1−1
6(2Y1−1)(Y1+1)4

[
Y1(2Y1 − 1)

] 1
5 β2

2 −
92Y4

1−70Y3
1+39Y2

1−10Y1+5
12(2Y1−1)(Y1+1)4 β1β2

−
8Y3

1−11Y2
1+2Y1+3

6Y1(2Y1−1)(Y1+1)3

[
Y1(2Y1 − 1)

] 4
5 β1β3 +

Y1(4Y1+1)
3(Y1+1)3 β2β3

+

4∑
i+ j+k=3

α2i jk β
i
1β

j
2β

k
3,

µ3 =−
2Y1(Y1−2)2

(Y1+1)4(2Y1−1)

[
Y1(2Y1 − 1)

] 2
5 β1 +

(4Y3
1−6Y2

1+Y1−1)
2Y1(Y1+1)4(2Y1−1)

[
Y1(2Y1 − 1)

] 3
5 β2

− 1
(Y1+1)3

[
Y1(2Y1 − 1)

] 2
5 β3 −

m3
720Y3

1 (Y1+1)6(2Y1−1)3

[
Y1(2Y1 − 1)

] 4
5 β2

1

−
72Y7

1−208Y6
1+72Y5

1+32Y4
1−63Y3

1+27Y2
1−13Y1+1

12Y1(Y1+1)6(2Y1−1)2

[
Y1(2Y1 − 1)

] 1
5 β2

2

− 2
3(Y1+1)3(2Y1−1)

[
Y1(2Y1 − 1)

] 4
5 β2

3 +
m4

1200Y2
1 (Y1+1)6(2Y1−1)2 β1β2

−
752Y6

1−2616Y5
1+1992Y4

1+1844Y3
1−1371Y2

1+6Y1+21
120Y2

1 (2Y1−1)2(Y1+1)5

[
Y1(2Y1 − 1)

] 4
5 β1β3

+
40Y4

1−40Y3
1−23Y2

1+18Y1−3
6(2Y1−1)(Y1+1)5 β2β3 +

4∑
i+ j+k=3

α3i jk β
i
1β

j
2β

k
3,

(3.49)

and the time rescaling:

dt =
{
− 1

(Y1+1)2

[
Y1(2Y1 − 1)

] 3
5 + 1

2Y1(Y1+1)2

[
Y1(2Y1 − 1)

] 4
5 y1

−
16Y2

1−7Y1+1
6(2Y1−1)(Y1+1)3

[
Y1(2Y1 − 1)

] 1
5 β2 −

Y1
3(Y1+1)2 β3

}
dτ,

(3.50)

into (3.46) yields the following PSNF up to 4th-order terms:

dy1

dτ
= y2,

dy2

dτ
= β1 + β2 y2 + β3 y1y2 + y2

1 + y3
1y2 + O(|(y1, y2, β)|5).

(3.51)

Here,

m1 = 19840Y8
1 − 294032Y7

1 + 968504Y6
1 − 824808Y5

1 − 712658Y4
1

+ 1134587Y3
1 − 307564Y2

1 − 11187Y1 + 10518,

m2 = 51200Y7
1 − 135952Y6

1 + 183440Y5
1 − 466288Y4

1

+ 523256Y3
1 − 120031Y2

1 − 38016Y1 + 10791,

m3 = 24640Y1
1 0 + 26144Y9

1 − 62528Y8
1 − 310684Y7

1 + 47194Y6
1

+ 520343Y5
1 − 18353Y4

1 − 295435Y3
1 + 80617Y2

1 + 10764Y1 − 3798,

m4 = 10560Y9
1 − 66112Y8

1 − 26000Y7
1 + 179432Y6

1 + 368792Y5
1

− 111830Y4
1 − 170161Y3

1 + 64113Y2
1 + 8085Y1 − 3927,
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and ai jkls’s, bi jkls’s and αmi jk’s are coefficients given in terms of k, and β = (β1, β2, β3).
It is easy to verify that

det
[
∂(µ1, µ2, µ3)
∂(β1, β2, β3)

]
β=0
=

Y1(2Y1 − 1)2

(Y1 + 1)5(1 − Y1)
[
Y1(2Y1 − 1)

] 2
5 > 0, for Y1 ∈ (Y∗1 , 1), (3.52)

which shows that near the critical point µ = 0, system (3.5) has the same bifurcation set with
respect to µ as system (3.51) has with respect to β, up to a homeomorphism in the parameter
space.

Now, following the method described in [6], and the computations in [36] we apply the
method of normal forms and Abelian integral (or the Melnikov function method) to derive the
bifurcations for the codimension-3 B-T bifurcation. In the following, we outline the proof.

The system (3.46) has two equilibrium solutions E±:

E± = (y1±, 0), where y1± = ±
√
−β1 for β1 < 0. (3.53)

The stability of the equilibria E± is determined from the Jacobian of (3.46), which is given by

J(y1, y2) =

 0 1
2y1 + 3y2

1y2 + β3y2 β2 + β3y1 + y3
1

 . (3.54)

It is easy to see that the determinant of the J evaluated at E± equals det(J(E±) = ∓2y1±, imply-
ing that E+ is a saddle. The saddle-node bifurcation arises from the critical surface determined
from y1± = 0, as

SN =
{
(β1, β2, β3) | β1 = 0

}
, (3.55)

excluding the origin in the parameter space. Since det(J(E−) = 2y1− > 0, the stability of E− is
determined by the trace:

Tr(J(E−)) = β2 − (β3 − β1)
√
−β1, (β1 < 0).

E− is asymptotically stable (either a focus or node) if Tr(J(E−)) < 0 and unstable if Tr(J(E−)) >
0. Hopf bifurcation arising from E− occurs on the critical surface, determined by Tr(J(E−)) = 0
as

β2 = (β3 − β1)
√
−β1, (β1 < 0). (3.56)

Further, Hopf bifurcation theory can be applied to obtain the focus values by using the Maple
program in [32] as follows:

v1 =
β3 + 3β1

16
√
−β1

v2 =
5(β3 − 3β1)[2

√
−β1 − β1(β3 + 3β1)(β3 − 3β1)]

1152β2
1

.
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Hence, generalized Hopf bifurcation occurs from the curve which is the intersection of the
Hopf bifurcation surface H and the critical surface, defined by v1 = 0:

β3 + 3β1 = 0, (β1 < 0),

as

β2 = −4β1

√
−β1, β3 = −3β1, (β1 < 0), (3.57)

from which two limit cycles can bifurcate. Moreover, since

v2|v1=0 =
5

96
√
−β1
> 0,

the outer limit cycle is unstable, and the inner one stable, and both them enclose the unstable
focus E−.

Next, in order to find the homoclinic and degenerate homoclinic bifurcations, we apply the
Melnikov function method [13]. To achieve this, introducing the following scaling:

y1 = ε
2
5 z1, y2 = ε

3
5 z2, β1 = ε

4
5γ1, β2 = ε

6
5γ2, β3 = ε

4
5γ3, τ1 = ε

1
5τ, (0 < ε ≪ 1), (3.58)

together with the transformation,

z1 = γ̄1 + w1, z2 =
√

2γ̄1 w2, τ2 =
√

2γ̄1 τ1, γ1 = −γ̄
2
1, (γ̄1 > 0), (3.59)

into (3.46) we obtain
dw1

dτ2
= w2,

dw2

dτ2
= w1 +

1
2γ̄1

w2
1 + ε q(w1,w2, γ̄),

(3.60)

where

q(w1,w2, γ̄) =
1√
2γ̄1

[
(γ2 + γ̄1 γ3 + γ̄

3
1)w2 + (γ3 + 3γ̄2

1)w1w2 + 3γ̄1w2
1w2 + w3

1w2
]
, (3.61)

with γ̄ = (γ̄1, γ2, γ3).
When ε = 0, the system (3.60) is a Hamiltonian system with equilibrium points:

Ẽ− = (−2γ̄1, 0) and Ẽ0 = (0, 0). (3.62)

Ẽ− is a center and Ẽ0 is a saddle, and they correspond to the E± defined in (3.46). The Hamil-
tonian of (3.60) can be written as

H(w1,w2) =
1
2

(w2
2 − w2

1) −
1

6γ̄1
w3

1, (3.63)
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and the homoclinic orbit connecting E0 is described by

Γ0 : H(w1,w2) =
1
2

(w2
2 − w2

1) −
1

6γ̄1
w3

1, with H(0, 0) = 0. (3.64)

Note that H(−2γ̄1, 0) = −2
3 γ̄

2
1. Thus, any closed orbits of the Hamiltonian system (3.60)|ε=0

within the homoclinic loop Γ0 can be expressed by

Γh : H(w1,w2, h) =
1
2

(w2
2 − w2

1) −
1

6γ̄1
w3

1 − h = 0, h ∈
(
−

2
3
γ̄2

1, 0
)
. (3.65)

Now, the (first-order) Melnikov function (or Abelian integral) for the perturbed system (3.60)
is given by [13]

M(h, γ) =
∮
Γh

q(w1,w2, γ) dw1 − p(w1,w2, γ) dw2 |ε=0 (p = 0)

=

∮
Γh

q(w1,w2, γ) |ε=0 dw1 =

∮
Γh

Hw2q(w1,w2, γ) |ε=0 dt

=
1√
2γ̄1

∮
Γh

w2
2
[
γ2 + γ̄1 γ3 + γ̄

3
1 + (γ3 + 3γ̄2

1)w1 + 3γ̄1w2
1 + w3

1
]
dt

= M(h, γ) = C0(γ) +C1(γ) h ln |h| +C2(γ) h +C3(h) h2 ln |h| + · · · ,

(3.66)

for 0 < −h ≪ 1, where

C0(γ) =
1√
2γ̄1

∮
Γ0

w2
2
[
γ2 + γ̄1 γ3 + γ̄

3
1 + (γ3 + 3γ̄2

1)w1 + 3γ̄1w2
1 + w3

1
]
dt,

C1(γ) = a10 + b01,

(3.67)

in which a10 and b01 are derived from the coefficients in the functions p(w1,w2, γ) and q(w1,w2, γ)
as

a10 = 0, b01 =
1√
2γ̄1

(γ2 + γ̄1 γ3 + γ̄
3
1). (3.68)

To compute C0(γ), introducing the following parametric transformation:

w1(t) = −3 γ̄1 sech2(t), w2(t) = 3 γ̄1 sech2(t) tanh(t), (3.69)

into C0(γ) with a direct integration yields

C0(γ) =
6γ̄1

√
2γ̄1

5

[
γ2 −

5
7
γ̄1 γ3 −

103
77

b1γ̄
3
1

]
. (3.70)

Finally, C0(γ) and C1(γ) can be expressed in terms of the original perturbation parameters β j

by using

γ̄1 =
√
−γ1 =

√
−ε−

4
5 β1 = ε

− 2
5
√
−β1, γ2 = ε

− 6
5β2, γ3 = ε

− 4
5β3,
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as

C0(β) =
6γ̄1

√
2γ̄1

5
ε−

6
5

[
β2 −

(5
7
β3 −

103
77
β1

)√
−β1

]
,

C1(β) =
1√
2γ̄1

ε−
6
5

[
β2 + (β3 − β1)

√
−β1

]
.

(3.71)

Therefore, the homoclinic loop bifurcation occurs from the critical surface, defined by C0(β)=
0, as

β2 =
(5
7
β3 −

103
77
β1

)
,

while the degenerate homoclinic loop bifurcation happens on the curve, which is the intersec-
tion of the homoclinic loop bifurcation surface and the critical surface defined by C1(β) = 0:

β2 + (β3 − β1)
√
−β1 = 0,

as
β2 = −

4
11
β1

√
−β1, β3 =

15
11
β1, (β1 < 0).

Finally, it is known from [6] that double limit cycle bifurcation occurs from a critical surface,
which is tangent to the Hopf bifurcation surface H on the critical curve GH, and tangent to
the homoclinic bifurcation surface HL on the critical curve DHL. However, no formulas have
been obtained for this surface, nor numerical approaches have been developed for plotting this
surface.

HL

2

S1

SN
SN

H

C

GH

DHL

DLC

S

β3

β2

Figure 3.3: Bifurcation diagram for the codimension-3 B-T bifurcation based on the normal
form (3.46), displayed in the intersection of the cone and the 2-sphere β2

1 + β
2
2 + β

2
3 = σ

2, with
the red color curve for saddle-node, the blue curve for Hopf and the green curve for homoclinic
loop bifurcations, respectively. The GH and DHL represent the generalized Hopf critical point
and the degenerate homoclinic critical point, respectively.
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The bifurcation diagram projected on a 2-sphere is shown in Figure 2.4 with typical phase
portraits, which is similar to Figure 3 in [6] and Figure 2 in [18].



Chapter 4

Conclusion and future work

Human health has been severely endangered throughout history by infectious diseases, the nat-
ural enemies of humans. Many researchers have successfully predicted and evaluated patterns
of transmission of infectious diseases based on their etiology and transmission routes. Other
non-pathological infectious diseases, such as the spread of computer viruses, the proliferation
of information on the Internet, alcoholism, smoking, apoptosis, gene sequencing, and other
forms of non-pathological infectious diseases, may also benefit from the application of infec-
tious disease modeling, which is not limited to the study of pathological infectious diseases.

Bifurcation analysis is necessary in the study of disease models in order to explore com-
plex dynamics which may happen in reality. The analysis provides a global picture of the
qualitative dynamical behaviors of the models, thus helping them design, predict, and control
diseases. Hopf bifurcation and Bogdanov-Takens (B-T) bifurcation are two well-known bifur-
cation phenomena, yielding complex dynamical behaviors such as jumping between equilib-
rium solutions and periodic oscillations (limit cycles), as well as homoclinic and heteroclinic
loop motions. These different dynamical patterns may reflect the complex situations of pa-
tients. In fact, almost all scientific articles devoted to studying disease models pay attention to
these two bifurcations. However, it has been shown that even for simple 2-d disease models,
the bifurcation analysis becomes extremely difficult, caused by complicated computation, such
that traditional approaches are not applicable. In many published articles related to disease
systems, Hopf bifurcation analysis is not complete and B-T bifurcation is even not discussed.
Recently, a hierarchical parametric analysis has been proposed to attack the difficulty [39], in
which a simple epidemic model is used to demonstrate that this new approach is efficient when
traditional methods are not applicable.

In this paper, we have applied dynamical system theory, in particular, stability and bifur-
cation theory, to further study the dynamics of two infectious disease models, which were
investigated in [22, 29], however, these analyses are far from completion regarding the impor-
tant Hopf and B-T bifurcations. We follow the new hierarchical parametric approach to provide
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a complete analysis on the Hopf and B-T bifurcations of the two models.
Two disease models are investigated in this paper: one is an infectious disease SIR model

with a saturated treatment function, introduced by Wang et al. [29], and another one is an SIRS
model with a generalized incidence function, studied by Rao et al. [22]. Our analysis confirms
that the disease-free equilibrium E0 = (0, 0 is always a saddle point (which only exists in the
model [29]), while another disease-free equilibrium E1 = (1, 0) (which exists in both the two
models) is asymptotically stable for the basic reproduction number, R0 < 1, and unstable for
R0 > 1, with a transcritical bifurcates to occur at the critical point R0 = 1. We determined
the conditions necessary for forward, backward, Hopf, and B-T bifurcation to analyze the na-
ture of these bifurcations, especially for the conditions to the codimension of Hopf and B-T
bifurcations. We showed how to determine the codimension of Hopf and B-T bifurcations
using this epidemic model and the dynamical behavior around the equilibrium points. Further-
more, for the codimension-3 B-T bifurcation, we used a one-step transformation methodology
suggested by [38], which is superior to the usual six-step strategy. Based on numerical simula-
tions, several limit cycle bifurcations are demonstrated, which are in excellent agreement with
theoretical predictions.

Future works mainly focus on the following tasks:

(1) To perform numerical simulation for the B-T bifurcation of the Rao’s model, which is
much more difficult than that for Hopf bifurcation;

(2) To carry out the Hopf and B-T bifurcations for the Rao’s model with different death rates
µi;

(3) To improve the hierarchical parametric analysis to be applicable for general nonlinear
dynamical models;

(4) To develop combined symbolic and numerical Maple software package for Hopf and B-T
bifurcation analyses.
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