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Abstract 

Uncertainty about future income plays a conceptually important role in college 

decisions. Unfortunately, characterizing how much earnings uncertainty is present 

for students at college entrance and how quickly this uncertainty is resolved has 

proven to be difficult. This paper takes advantage of unique expectations data 

from the Berea Panel Study to provide new evidence about this issue. We charac

terize initial uncertainty using survey questions that elicit the entire distribution 

describing one’s beliefs about future earnings at an ideal time - immediately before 

students began their first year courses. We characterize the amount of uncertainty 

that is resolved during college by taking advantage of the longitudinal nature of the 

expectations data. Taking advantage of a variety of additional survey questions, 

we provide evidence about how the resolution of income uncertainty is influenced 

by factors such as college GPA and college major, and also examine why much 

income uncertainty remains unresolved at the end of college. 
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1 Introduction 

From a conceptual standpoint, it is clear that the decision to enter or not enter college, 

as well as other college decisions, will depend on the amount of uncertainty about future 

income that is present at the time of college entrance.1 However, college decisions will 

also be influenced by how quickly this initial uncertainty about future income is resolved. 

As one example, the option value of entering college will typically be higher when initial 

uncertainty is resolved more quickly. Further, the speed at which uncertainty is resolved 

is closely related to the important question of whether initial uncertainty is due to, for 

example, academic ability, college major, labor market frictions, future aggregate labor 

market conditions, or other factors. 

A natural first step towards understanding how income uncertainty influences college 

decisions involves characterizing how much income uncertainty is present for students at 

the time of college entrance and how quickly (and why) this uncertainty is resolved.2 Un

fortunately, taking this first step has proven to be difficult (Cunha, Heckman, Navarro, 

2005). This paper takes advantage of unique expectations data from the Berea Panel 

Study (BPS), which is described in Section 2, to provide new evidence.3 From the stand

point of characterizing uncertainty, the general benefit of the expectations approach 

is that survey questions can be designed to elicit the entire distribution describing a 

student’s beliefs about future income, which, for convenience, we often refer to as the 

student’s subjective income distribution. Given our need to characterize income uncer

tainty throughout a student’s entire time in college, a particular virtue of the BPS is that 

earnings expectations were collected longitudinally during college, with the first survey 

collection taking place at an ideal time – immediately before students began their first 

year courses. Our analysis also takes advantage of other unique expectations data avail

able in the BPS. For example, information characterizing a student’s beliefs about college 

grade performance and college major helps us understand why uncertainty is resolved. 

In Section 3, we use beliefs elicited at the time of college entrance to characterize 

each student’s initial amount of uncertainty about future earnings. The appeal of our 

direct, expectations-elicitation approach is in its simplicity. In contrast, traditional in

vestigations require that an individual’s beliefs about future earnings be ascertained from 

an observed distribution of realized earnings. This involves the challenge of decompos

ing the total amount of dispersion in realized earnings across workers into the portion 

due to individual-level uncertainty and the portion due to heterogeneity in ability and 

other income-influencing factors that are known by individuals. One tempting possibility 

1More generally, Friedman(1953) suggests the importance of understanding the relative role of labor 
market uncertainty in determining distributions of wealth. 

2Throughout the paper our focus is on labor market income, and we use the terms earnings and 
income interchangeably. 

3This approach is motivated by a recognition that individual beliefs about earnings (and other out
comes) are perhaps best viewed as data that can potentially be elicited using carefully worded survey 
questions (Manski, 1993, 2004, Dominitz and Manski, 1997a/b). 
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might be to equate individual-level uncertainty with the amount of dispersion in earnings 

present within groups that are homogeneous in terms of observable earnings-influencing 

characteristics. However, when unobserved heterogeneity is prevalent (i.e., when many 

earnings-influencing characteristics are known to individuals but are not observed by the 

econometrician), this approach will tend to substantially overstate the amount of income 

variation that should be attributed to uncertainty. 

In the schooling context, Carneiro, Hansen, and Heckman (2003) and Cunha, Heck-

man, and Navarro (2004, 2005) develop methods for separating uncertainty from het

erogeneity that do not require the econometrician to observe all relevant characteristics 

that influence earning capabilities.4 Specifically, they take advantage of situations where 

economic theory implies that the realization of uncertainty was unanticipated at the mo

ment of decision making, and, therefore, was independent of the choices that economic 

agents made.5 The general conclusion from these papers is that a substantial part of 

the variability in the ex post returns to schooling is predictable and acted on by agents. 

That is, “variability cannot be equated with uncertainty and this has important empirical 

consequences” (Cunha, Heckman, and Navarro, 2005). 

Our results in Section 3 strongly reinforce this general message. At entrance, our 

measure of uncertainty, the standard deviation of the distribution describing a student’s 

beliefs about her earnings at age 28, ranges from an average of $9, 600 a year to an average 

of $13, 700 a year, across the different computational approaches that we take to ensure 

robustness. To characterize the relative importance of uncertainty and heterogeneity, we 

compute an expectations analog to the realized earnings distribution used in other papers 

by aggregating individual beliefs across the sample. The percentage of the total variation 

in this analog that should be attributed to (observed and unobserved) heterogeneity is 

always above 50% and is as high as 77%, depending on which computational approach is 

employed. We find that results do not change substantially when we correct for classical 

measurement error that might arise in the responses to the survey questions. This mea

surement error correction is made possible by the fact that there are two different sets of 

survey questions in the BPS that can be used to construct beliefs about future earnings. 

In Section 4, we turn to examining issues related to the resolution of income uncer

tainty, with a particular focus on what happens during college. Given that empirical 

work has not typically examined these issues, it is an open question whether individuals 

believe that uncertainty will be resolved quickly after college entrance.6 This issue is 

directly linked to the question of why uncertainty exists. For example, one particularly 

prominent potential source of uncertainty is college grade point average (GPA), which 

4Cunha and Heckman (2007) provides a survey on this series of articles. See also Browning and Carro 
(2007) for a further discussion of the difficulties of separating uncertainty from heterogeneity. 

5See also Blundell and Preston (1998) for early work using similar methods in a somewhat different 
substantive context. 

6An exception is Navarro and Zhou (2017) who develop a model that identifies the path of uncertainty 
resolution over multiple periods. With each period having a length of six years, their first period (age 
18-24) corresponds to the time that our sample spends in college and the first two years in the workforce. 
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is widely viewed as the best available proxy for human capital at the time of college 

graduation. By definition, all uncertainty about final college GPA will be resolved by 

the end of college. Thus, if uncertainty about GPA is an important contributor to the 

initial uncertainty about earnings, then students will expect much of the uncertainty 

about earnings to be resolved at some point during college and that this resolution will 

take place early in college if learning about academic ability tends to happen quickly.7 

We are able to provide evidence about the importance of grade uncertainty in determin

ing initial earnings uncertainty by taking advantage of survey questions eliciting beliefs 

about grade performance and survey questions eliciting beliefs about future earnings con

ditional on grade performance. We find that, on average, between 15% and 17% of the 

variance representing (age 28) earnings uncertainty at the time of college entrance can 

be attributed to uncertainty about grade performance at the time of college entrance. A 

related analysis finds that between 11% and 17% of the earnings uncertainty at the time 

of college entrance can be attributed to uncertainty about college major at the time of 

college entrance. 

The finding that students expect much uncertainty about earnings to remain even 

after resolving uncertainty about grade performance and college major raises the pos

sibility that much uncertainty about earnings remains even at the end of college. The 

longitudinal nature of our expectations data allow us to examine this issue. We find that, 

on average, about 65% of a student’s initial uncertainty about future earnings remains at 

the end of college. Further, this result, combined with the results in end of the previous 

paragraph, suggest that the portion of uncertainty that is resolved during school can be 

largely attributed to what one learns about her academic ability and her college major 

during school. 

It is worth considering why much of the initial uncertainty about earnings at age 28 is 

unresolved during college. We consider two broad explanations that may have different 

policy implications. The first explanation is that individuals might be unsure about what 

kinds of job offers they will receive at age 28. The second explanation is that individuals 

might know the kinds of job offers they would receive at age 28, but might be unsure 

about which kinds of available job offers they will prefer/choose at this age. We do not 

find compelling evidence that the second explanation is of central importance when we 

examine hours worked and when we take advantage of unique data related to preferences 

about types of work. As for the first explanation, we find that uncertainty about the 

state of the economy at age 28 is not likely to be the whole story. Among various types 

of frictions that might be present, we find direct evidence suggesting that search frictions 

may be important. 

To some extent, the expectations literature is motivated by the possibility that subjec

tive beliefs do not necessarily correspond to what one might anticipate given distributions 

7See Stinebrickner and Stinebrickner (2012, 2014b) and Zafar (2011) for research that uses expecta
tions data to examine updating of beliefs about grade performance. See Altonji (1993) for early work 
recognizing the role that grade updating may play in schooling decisions. 
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of realized outcomes. In the last subsection of Section 4, we examine whether, consistent 

with what is observed in the data, students believe, at the time of college entrance, that 

much uncertainty will remain unresolved at the end of school. We take advantage of 

a survey question eliciting a student’s beliefs about the probability of dropping out of 

school before graduation. Intuitively, the fact that the average subjective dropout proba

bility is found to be quite low is potentially informative because, under seemingly natural 

assumptions, this probability will be increasing in the fraction of earnings uncertainty 

that the student believes will be resolved during college. 

Contributing to a recent literature that has recognized the benefits of allowing in

dividuals to express uncertainty about outcomes that will be realized in the future, we 

develop a simple model in which a student’s subjective dropout probability depends ex

plicitly on the fraction of the earnings uncertainty that will be resolved during college 

for the types of jobs she would receive with a college degree.8 For completeness, we also 

allow the student to resolve earnings uncertainty for the types of jobs she would receive 

without a college degree. Arcidiacono, Aucejo, Maurel and Ransom (2016) suggest that, 

in this type of specification, it may be important to allow what a student learns about her 

earnings under the graduation scenario to be correlated with what a student learns about 

her earnings under the dropout scenario. Our expectations data provide direct evidence 

that this type of correlated learning is present. We note that our parsimonious model, 

in which students resolve uncertainty about only future income, is not particularly well-

suited for providing deep insight into how the dropout decision is made. Nonetheless, it 

can still be useful for characterizing the fraction of uncertainty about post-graduation in

come that individuals expect to resolve because it seems reasonable to view the estimate 

of this fraction from our simple model as an upper bound for what one would obtain 

from a model in which more types of uncertainty were resolved. Estimating this model, 

we find that, at the time of college entrance, students believe that only approximately 

20% of the uncertainty about post-graduation income will be resolved during college. 

2 The Berea Panel Study 

Designed and administered by Todd Stinebrickner and Ralph Stinebrickner, the BPS is 

a multipurpose longitudinal survey project, which collected detailed information of rel

evance for understanding a wide variety of issues in higher education, including those 

related to dropout, college major, time-use, social networks, peer effects, and transitions 

to the labor market. The BPS took place at Berea College. Located in central Kentucky, 

Berea College has some unique features that have been documented in previous work. 

For example, it operates under the objective of providing educational opportunities to 

“students of great promise, but limited economics resources,” and, as part of this ob

8See, for example, Juster, 1966, Manski, 1990, 1999, Blass, Lach, and Manski, 2010, Stinebrickner 
and Stinebrickner, 2014a and Zafar and Wiswall, 2014. 
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jective, provides a full tuition subsidy to all students. Thus, as always, it is necessary 

to be appropriately cautious about the exact extent to which results from one school 

would generalize to other institutions. However, important for the notion that the basic 

lessons from our work are likely to be useful for thinking about what takes place else

where, Berea operates under a standard liberal arts curriculum and students at Berea 

are similar in academic quality, for example, to students at the University of Kentucky 

(Stinebrickner and Stinebrickner, 2008). Further, academic decisions and outcomes at 

Berea are similar to those found elsewhere (Stinebrickner and Stinebrickner, 2014a). For 

example, dropout rates are similar to the dropout rates at other schools (for students 

from similar backgrounds) and patterns of major choice and major-switching are similar 

to those found in the NLSY by Arcidiacono (2004). 

The BPS consists of two cohorts. Baseline surveys were administered to the first 

cohort (the 2000 cohort) immediately before it began its freshman year in the fall of 

2000 and baseline surveys were administered to the second cohort (the 2001 cohort) 

immediately before it began its freshman year in the fall of 2001. Our primary sample 

consists of the 650 students who answered this survey.9 While observable characteristics 

are not the primary focus of this paper, we note that approximately 41% of the students 

in the sample are male, 15% of the students in the sample are black, and the average 

American College Test (ACT) score in the sample is approximately 25. In addition to 

collecting detailed background information, the baseline surveys were designed to take 

advantage of recent advances in survey methodology to collect beliefs (expectations) 

about future outcomes. An important aspect of the BPS in our context is that substantial 

follow-up surveys, which were administered at the beginning and end of each subsequent 

semester, documented how beliefs change over time.10 

Our primary survey questions eliciting beliefs about future earnings are of the form 

of baseline Survey Question 1A, which is shown in Appendix A.11 Specifically, Survey 

Question 1A elicited the minimum, the maximum, and the three quartiles of the sub

jective income distribution at three different ages (first year after graduation, age 28, 

and age 38), under a scenario in which the student graduates from college. Students 

received detailed classroom instruction related specifically to these questions, with the 

spirit of the discussion being similar to written instructions that were included with the 

survey (see Appendix A for these instructions). An almost identical set of questions 

(not shown) was used to elicit beliefs under the scenario in which the student does not 

graduate from college. A baseline survey question also elicited beliefs about earnings 

conditional on graduating with three particular levels of GPA (2.00, 3.00, 3.75). Ques

9Approximately 85% of all students who entered Berea in the fall of 2000 and the fall of 2001 completed 
the baseline surveys and, in part because surveys were reviewed before students left the survey site, the 
amount of item non-response was trivial. 

10The BPS is unique in its frequency of contact; each student was surveyed approximately 12 times 
each year while in school. 

11For another example of research that uses an expectations-based approach to elicit information about 
the entire distribution of future income, see Attanasio and Kaufmann (2014). 
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tion 1B in Appendix A shows the portion of this question related to graduating with a 

2.00 GPA. 

Table 1 shows descriptive statistics related to Question 1. The entries in the first row 

show the median (the second quartile) of the subjective income distribution, averaged over 

the sample, for several different age and academic performance scenarios. The first three 

columns show that, on average, the median increases with age. The second three columns 

show that, on average, the median increases with final grade point average. To provide 

some descriptive evidence about uncertainty, the entries in the second row show the 

interquartile range (the difference between the third quartile and the first quartile) of the 

subjective income distribution, averaged over the sample, for the same age and academic 

performance scenarios. The first three rows show that, on average, the interquartile range 

increases with age. The second three columns show that, on average, the interquartile 

range increases with final grade point average. 

Table 1: Descriptive Statistics of Earnings Beliefs at Entrance 

1 Year Out Age 28 Age 38 
Age 28 

GPA = 2.00 
Age 28 

GPA = 3.00 
Age 28 

GPA = 3.75 

Median 
39.5480 
(18.3900) 

49.1923 
(21.9922) 

60.5161 
(36.7525) 

41.8088 
(21.7551) 

48.1623 
(23.7830) 

54.7238 
(26.3292) 

Interquartile Range 
12.6773 
(10.3599) 

15.3221 
(12.8526) 

19.2754 
(30.7070) 

12.3756 
(10.6551) 

13.8969 
(12.1135) 

15.9806 
(13.6923) 

Note: The unit of measurement for all entries is one thousand dollars. A particular entry in 
the table shows the sample mean and the sample standard deviation of the corresponding 
variable. For example, row 1, column 1 shows a sample mean of $39548.00 and a sample 
standard deviation of $18390.00 for the median of the distribution describing a student’s beliefs 
about income in the first year out of college. Similarly, row 1, column 4 shows a sample mean 
of $41808.80 and a sample standard deviation of $21755.10 for the median of the distribution 
describing a student’s beliefs about income at age 28 given that her final GPA is equal to 2.00. 

Baseline Survey Question 2, which characterizes beliefs about future grade perfor

mance by eliciting the probabilities that a student’s future semester grade point average 

will fall in the intervals [3.5, 4.00], [3.0, 3.49], [2.5, 2.99], [2.0, 2.49], [1.0, 1.99] and [0.0, 

.99], is also shown in Appendix A. In terms of other baseline information, this paper takes 

advantage of survey questions eliciting each student’s subjective probability of complet

ing a degree in different possible major groups (Question 5, Appendix A), each student’s 

subjective probability of graduating from college (Question 4, Appendix A), and each 

student’s belief about how much noise exists in the grade process (Question 3, Appendix 

A). 
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3	 Uncertainty about Future Income at College En

trance 

This section examines uncertainty about future income at the time of college entrance. 

In Section 3.1, we characterize the amount of uncertainty that exists at college entrance. 

In Section 3.2, we construct an expectations analog to the realized earnings distribution 

and examine the relative importance of uncertainty and heterogeneity in determining the 

variance of this distribution. 

3.1 Characterizing Uncertainty at Time of College Entrance 

When measuring earnings uncertainty, we focus on earnings under the scenario in which 

a student graduates from college and, unless otherwise noted, examine beliefs about 

earnings at the age of 28.12 The general object of interest is the distribution describing a 

student’s subjective beliefs about her future income, which, as noted earlier, we often refer 

to as the student’s subjective income distribution. While this entire section focuses on 

beliefs at the time of entrance, which we often refer to as “initial” beliefs, we include a time 

subscript in our notation for use in subsequent sections. We let wi denote the earnings 

of person i at age 28, Wit denote the random variable describing student i’s subjective 

beliefs at time t about wi, and fWit (wit) denote the density of Wit. Then, the standard 

deviation and variance of Wit are natural measures of a student’s uncertainty about wi at 

time t. Our objectives related to the issue of uncertainty motivate a focus on measures of 

dispersion, although it is necessary for parts of our analysis to also characterize measures 

of central tendency (e.g., the mean of Wit), which have received substantial attention in 

other previous work. 

Our data allow us to take two different approaches for computing the standard devia

tion (and mean) of Wit from survey information. The first approach, detailed in Section 

3.1.1, takes advantage of Survey Question 1A (Appendix A), which directly elicited the 

minimum, maximum, and three quartiles of the subjective income distribution. The 

standard deviation can be computed directly from this information given a distributional 

assumption for Wit. The second approach, detailed in Section 3.1.2, takes advantage of 

Survey Question 1B (Appendix A), which elicited the minimum, maximum, and three 

quartiles of the subjective income distribution conditional on various levels of grade per

formance, and Survey Questions 2 and 3 (Appendix A), which provide information about 

a student’s subjective grade distribution. While the second approach has the appeal of 

explicitly taking into account one particularly prominent source of income uncertainty – 

uncertainty about grade performance – it also requires additional survey questions and 

12We focus on the graduation scenario because, as we show in Section 4, this is the outcome that 
students overwhelmingly believe is most likely. However, when estimating our model of dropout in 
Section 4, we do take into account uncertainty about earnings under the scenario in which a student 
does not graduate. 
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additional assumptions. Given the trade-offs between the two approaches, examining 

whether they yield similar results is valuable as a robustness check. In addition, the 

comparison is valuable because each of these approaches is utilized in other parts of our 

analysis. 

3.1.1 Approach 1 for characterizing the standard deviation of Wit 

Our first approach for characterizing income uncertainty takes advantage of information 

that was elicited by Question 1A about the unconditional distribution of Wit. We denote 

the elicited minimum, first quartile, second quartile, third quartile, and maximum of 

the distribution of Wit as Cit
1 , Cit

2 , Cit
3 , Cit 

4 and Cit
5 , respectively. Characterizing the mean 

and standard deviation of Wit from this information requires a distributional assump

tion for Wit. We examine the robustness of our results to three different distributional 

assumptions. 

a. Log-normal. We first consider the use of a log-normal distribution, following the 

suggestions in Manski (2004). The mean and standard deviation for the log-normal √ 
σ2/2 σ2distribution are given byE(Wit) = C3e and std(Wit) = E(Wit) e − 1, where σ = 

itlog(
C4 

)/2Φ−1(0.75) and Φ is the standard normal cumulative distribution function. 
C2 

it 

b. Normal. The log-normal distribution imposes an asymmetry that may or may not 

be present in the data. While the log-normal does have the appealing feature of ruling 

out negative income, the probability of negative income will tend to be small for the 

normal distribution when, as we find in our data, the mean is relatively large compared 

to the standard deviation. As described in Appendix B, we find that the fit of the two 

distributions is quite similar with, if anything, the normal having a slightly better fit. 

Then, given that these two distributions can potentially have quite different implications 

for characterizing the mean and variance, it seems worthwhile for robustness reasons to 

consider each of them. The mean and standard deviation of the normal distribution are 

given by E(Wit) = C3 and std(Wit) = (C4 − C2 )/2Φ−1(0.75). it it it

c. Stepwise Uniform. The log-normal and normal distributions do not utilize information 

about the minimum, Cit
1 , or the maximum, Cit

5 , because the supports of the distributions 

are R++ and R, respectively. To allow for a specification that uses these values along 

with the quartiles, we assume that Wit has the stepwise uniform pdf given by: 

0.25 
fWit (wit) = 

Cn+1 , if wit ∈ [Cit
n, Cit

n+1], for n ∈ {1, 2, 3, 4}. (1)
− Cn 

it it 

Cn+1 4 +Cn 
it itThe mean and standard deviation are given by E(Wit) = n=1 and std(Wit) = 8  4 (Cn+1)2+Cn+1Cn )2
 

it it it it
+(Cn 

− (E(Wit))2 . n=1 12 

We examine the magnitude of earnings uncertainty at the time of college entrance 
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(t = 0) for our sample of 650 students. The first three rows of Table 2 summarize the 

results for Approach 1. Depending on which distributional assumption is made (log

normal, normal, stepwise uniform), the average standard deviation of Wi0 for the sample 

varies between $9,653 and $13,064 per year and the average standard deviation to mean 

ratio in the sample varies between 18.95% and 24.17% per year.13 Thus, the results 

are generally quite similar across the three distributional assumptions. The numbers in 

parentheses in the standard deviation column of Table 2 indicate that there is substantial 

heterogeneity in uncertainty across students. 

Table 2: Earnings Beliefs at Entrance 

# of Observations: 650 E(Wi0) std(Wi0) 
std(Wi0) 
E(Wi0) 

Approach 1, Log-normal 
51.1742 
(23.2062) 

13.0641 
(15.5580) 

0.2417 
(0.2055) 

Approach 1, Normal 
49.1524 
(21.9879) 

11.3152 
(9.4768) 

0.2295 
(0.1617) 

Approach 1, Stepwise Uniform 
49.7633 
(22.1799) 

9.6529 
(8.0391) 

0.1895 
(0.1165) 

Approach 2, Log-normal 
52.7181 
(25.3998) 

13.7561 
(14.3449) 

0.2531 
(0.1729) 

Approach 2, Normal 
50.8079 
(24.2972) 

12.0751 
(9.5888) 

0.2402 
(0.1432) 

Approach 2, Stepwise Uniform 
51.2435 
(24.2952) 

10.4876 
(8.0323) 

0.2038 
(0.1141) 

Note: The unit of measurement for Wi0 is one thousand dollars. A particular entry in 
the table shows the sample mean and the sample standard deviation of the corresponding 
variable. For example, row 1, column 1 shows a sample mean of $51,174.20 and a 
sample standard deviation of $23,206.20 for E(Wi0). Similarly, row 1, column 2 shows a 
sample mean of $13,064.10 and a sample standard deviation of $15,558.00 for std(Wi0). 

3.1.2 Approach 2 for characterizing the standard deviation of Wit 

Letting gi denote the final (cumulative) college GPA of person i and letting Git denote the 

random variable describing student i’s subjective beliefs at time t about gi, our second 

approach for characterizing income uncertainty takes advantage of information that was 

elicited about the distribution of Git and about the distribution of Wit conditional on Git. 

The relationship between these distributions and the unconditional income distribution 

13Using log-normal distributions leads to the largest mean and standard deviation approximations 
and using stepwise uniform distributions leads to the smallest. Note that the distributions constructed 
using each of these two distributional assumptions share the same median. Hence, loosely speaking, 
log-normal distributions tend to have larger expectations because they are more left-skewed than the 
stepwise uniform distributions. While log-normal density functions have wider supports than stepwise 
uniform density functions, they also have different shapes which, all else equal, can lead to smaller 
standard deviations. Hence, the relative size of the standard deviations implied by the two distributions 
is theoretically ambiguous. In our case, the wider-support effect dominates the other effect. 
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is given by:  
fWit (wit) = fWit|Git=git (wit)dFGit (git), (2) 

where git is a realization of Git and where FGit (git) and fWit|Git=git (wit) denote the cdf of 

Git and the pdf of Wit|Git = git, respectively. 

The analysis in this paper mostly utilizes the mean, E(Wit), and the standard devi

ation, std(Wit), of Wit. We first consider E(Wit), which can be written as the expected 

value of E(Wit|Git) with respect to Git. In cases like this, where an expresssion of interest 

involves iterated expectations (or variances), it is often useful for reasons of clarity to be 

explicit about the random variable on which the outer expectation (or variance) operates. 

Using this notational device, 

E(Wit) = EGit (E(Wit|Git)). 14 (3) 

We use a standard simulation-based method to approximate this integral, which re

quires repeatedly drawing from the distribution of Git and evaluating E(Wit|Git) at each 

of these draws. The complication that arises, in practice, is that E(Wit|Git) and FGit (git) 

are not fully observed. 

With respect to E(Wit|Git), the complication arises because, as discussed in Section 

2, a student reports information about her subjective conditional income distribution for 

only three different realizations of Git: 3.75, 3.00, and 2.00. For these three git values, 

E(Wit|Git) can be computed by assuming one of the distributions in Section 3.1.1. As 

described in detail in Appendix C.1, we interpolate the value of E(Wit|Git) conditional 

on other realizations of Git using an approach adopted in Stinebrickner and Stinebrickner 

(2014b). 

With respect to FGit (git), the complication arises because the BPS did not directly 

elicit Git, a student’s beliefs at time t about final cumulative GPA, Gi. Given that a 

student’s grades before time t are observed in administrative data, the challenge in de

termining Git comes from the need to characterize the student’s beliefs at t about the 

the average GPA (i.e., the cumulative GPA) she will receive over all remaining (future) 

semesters in school. The primary source of information used to construct these beliefs 

is Survey Question 2 (Appendix A), which elicits beliefs about semester GPA. However, 

even making the natural assumption that Question 2 represents a student’s beliefs about 

semester GPA in each future semester, Question 2 alone is not enough to determine 

how uncertain a student is about the average GPA she will receive over all remaining 

semesters. This is the case because one’s uncertainty about average GPA over multiple 

semesters will depend on beliefs about the correlation in semester GPA across semesters. 

For example, if uncertainty about semester GPA arises because of uncertainty about a 

factor such as ability that is permanent in nature, and, therefore, will tend to influence  
14EGit (E(Wit|Git)) = E(Wit|Git = git)dFGit (git), with E(Wit|Git = git) = 
witfWit|Git =git 

(wit)dwit. 
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grades in each semester, then the uncertainty about semester GPA expressed in Question 

2 will tend to be a good indicator of the student’s uncertainty about average GPA over 

multiple semesters. On the other hand, if uncertainty about semester GPA arises because 

of semester-specific randomness in grades which is transitory in nature, and, therefore, 

will tend to average out to some extent over multiple semesters, then the uncertainty 

about semester GPA expressed in Question 2 might substantially overstate the student’s 

uncertainty about average GPA over multiple semesters.15 Our approach for character

izing a student’s subjective beliefs about the cumulative GPA she will receive over all 

remaining semesters differentiates between these two types of possibilities by taking ad

vantage of a novel survey question (Question 3 in Appendix A), which elicited beliefs 

about the importance of the semester-specific randomness. Appendix C.2 describes this 

approach in detail, focusing, for illustrative purposes, on the case of t = 0, which is of 

relevance in this section. 

We now turn our attention to the measure of dispersion std(Wit), which is given by:  
std(Wit) = varGit (E(Wit|Git)) + EGit (var(Wit|Git)). 16 (4) 

The value of std(Wit) can be approximated in a manner very similar to that described 

in the previous paragraphs for the approximation of E(Wit). Equation (4) shows that, in 

addition to using an interpolation approach to deal with the issue that E(Wit|Git) and 

FGit (git) are not fully observed, it is also necessary to interpolate the value of var(Wit|Git) 

at realizations of Git other than 2.00, 3.00 or 3.75. The details of our interpolation 

approach are described in Appendix C.1. 

Using Approach 2, we examine the magnitude of earnings uncertainty for the same 

sample of 650 students as in Section 3.1.1. Results are summarized in the last three 

rows of Table 2. Depending on which distributional assumption is made, the average 

standard deviation of Wi0 for the sample varies between $10,487 and $13,756 per year and 

the average standard deviation to mean ratio in the sample varies between 20.38% and 

25.31% per year. Thus, we find that the results are reasonably robust to two computation 

approaches. In fact, results change more due to the choice of distribution than to the 

choice of computational approach. 

3.1.3 Demographic Variables 

It is worth examining whether the amount of uncertainty that is present at the time of 

entrance varies systematically with demographic information. To examine this issue, we 

regress std(Wi0) on Black, Male and ACT score for each of the six different distribution

15This randomness might be due to, for example, bad matches with instructors, sicknesses at inop
portune times, or temporary personal problems. 

16V arGit (E(Wit|Git)) = (E(Wit|Git = git)) − EGit (E(Wit|Git = git))
2dFGit (git) and 

EGit (V ar(Wit|Git)) = V ar(Wit|Git = git)dFGit (git), with V ar(Wit|Git = git) = (wit − E(Wit|Git = 
git))

2fWit|Git=git 
(wit)dwit. 
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approach combinations in Table 2. We find a seemingly important role for race. While 

full regression results are not shown, taking the average of estimated coefficients over 

the six different combinations, we find that black students have a standard deviation 

that is approximately $1564 higher than non-blacks. Further, the Black coefficient has 

a t-statistic greater than 1.5 in four of the six distribution-approach combinations, with 

the maximum t-statistic having a value of 2.6. Comparing these findings to those for 

our other binary variable, Male, we find that the coefficient for Male has a t-statistic 

greater than 1.5 for three of the six combinations, but that the average coefficient for 

Male over the six distribution-approach combinations is only approximately 60% of the 

average coefficient for Black. 

We stress that understanding the exact interpretation of these results is beyond the 

scope of this paper. Among other things, interpretation is complicated by the fact that 

uncertainty could be caused by a lack of information, but it could also be caused by 

potential access to a wide range of job opportunities. The possibility that these two 

effects may sometimes push in opposite directions may explain, for example, why we do 

not find evidence of a relationship between ACT score and uncertainty. 

3.2 Heterogeneity vs. Uncertainty 

Traditionally, estimating the amount of uncertainty about earnings that is present at col

lege entrance requires separating the importance of this uncertainty from the importance 

of heterogeneity - differences in ability and other income-influencing factors known by 

individuals - in determining a realized distribution of income. Thus, while characterizing 

the amount of uncertainty that is present at the time of college entrance is reasonably 

viewed as the primary goal, past work has found it natural to also report the percentage 

of the total variation in earnings that is due to this uncertainty. In Section 3.2.1 we 

compute an expectations analog to this percentage. In Section 3.2.2, we examine the 

robustness of our results to a measurement error correction. In Section 3.2.3, we describe 

how our expectations analog relates to the approach surveyed in Cunha and Heckman 

(2007). Given this discussion, we conclude that our results reinforce their findings. 

3.2.1 Decomposition of heterogeneity and uncertainty 

Suppose that a person’s earnings in a future year (e.g., age 28) are determined by a 

vector of finitely many random variables Xi. 17 Further decompose Xi into factors that 

are observed by the students at t, Xi
t−, and those that are not, Xi

t+, and define Xi ≡ 

(Xi
t−, Xi

t+). Then, we can write the future income of student i, Wi, as: 

Wi ≡ W(Xi
t−, Xi

t+). (5) 

17Note that these random variables represent both factors related to the worker and factors related to 
the labor market. 
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Although, a priori, individuals have identical distributions of Xi
t− and Xi

t+, realiza

tions of these random variables vary across people. It is differences in these realizations 

that produce variation in the empirical earnings distribution. At the time t when individ

uals answer the survey, they have already observed Xi
t− . Heterogeneity in Xi

t− produces 

differences in the beliefs we observe as given by the distribution of Wit. To construct 

the expectations analog to the empirical earnings distribution, we take advantage of the 

fact that var(Wi) can be written as a function of the conditional distributions that we 

observe: 

var(Wi) = EXt− (var(Wi|X t−)) + varXt− (E(Wi|X t−)). (6)i ii i 

Under the assumption that Xi is independently distributed across students, taking an 

expectation with respect to Xi
t− is, in essence, averaging across individuals (whose beliefs 

about income at time t differ only through Xi
t−).18 The first term on the right hand side 

of equation (6) shows, on average, how uncertain individuals are about earnings. Thus, 

this term represents the contribution of uncertainty to total variation. Using either of 

the two approaches in Section 3.1, we are able to compute the sample analog of this term 

as the sample mean of var(Wit). Similarly, taking a variance with respect to Xi
t− is, in 

essence, measuring dispersion across individuals. The second term on the right hand side 

shows how much dispersion exists in expected earnings across individuals, arising from 

the heterogeneity term Xi
t− . Therefore, this second term represents the contribution of 

heterogeneity to total variation. Using either of the two approaches in Section 3.1, we 

are able to compute the sample analog of this term as the sample variance of E(Wit). 

Note that if beliefs are correct, i.e., if Wit ≡ Wi|X t−, the sum of the two terms will i 

correspond to the variance of the realized income distribution. If beliefs are not correct, 

the sum of the terms corresponds to what individuals believe about the the variance of 

the realized income distribution. 

For each of our six approach-distribution combinations, the first column of Table 3 

shows the first (uncertainty) term from equation (6), the second column shows the second 

(heterogeneity) term from equation (6), the third column shows the sum of the first two 

columns (the total variation), and the final column shows the ratio of the second column 

(heterogeneity) to the third column (total variation). 

Consistent with what we found earlier, Approach 1 and Approach 2 deliver results that 

are quite similar. While larger differences in results are generated by the distributional 

assumption than by the choice of computational approach (Approach 1 and Approach 

2 in Section 3.1.1 and 3.1.2), all three of the distributional assumptions suggest a large 

role for heterogeneity. For the stepwise uniform distribution, heterogeneity accounts for 

over 75% of overall variation. This percentage is approximately 60% and 70% for the 

log-normal distribution and the normal distribution, respectively. 

18In Section 3.2.3, we discuss scenarios under which the independence assumption would tend to be 
violated and the implications of these scenarios. 
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Table 3: Heterogeneity and Uncertainty
 

# of Observations: 650 
Uncertainty: Sample 
Mean of var(Wi0) 

Heterogeneity: Sample 
Variance of E(Wi0) 

Total 
Heterogeneity 

Ratio 
Approach 1, Stepwise Uniform 157.7 491.9 649.7 75.72% 
Approach 1, Log-normal 412.4 538.5 950.9 56.63% 
Approach 1, Normal 217.7 483.5 701.2 68.95% 
Approach 2, Stepwise Uniform 174.4 590.3 764.7 77.19% 
Approach 2, Log-normal 394.7 645.1 1039.8 62.04% 
Approach 2, Normal 237.6 590.4 828.0 71.30% 

Note: The unit of measurement for Wi0 is one thousand dollars. The third column (Total) is 
the sum of the first two columns. The fourth column (Heterogeneity Ratio) is the ratio of 
column 2 (Heterogeneity) to column 3 (Total). 

3.2.2 Allowing for measurement error 

While the conceptual virtues of expectations data are well-recognized, it is generally 

difficult to know the extent to which the benefits of this approach are mitigated by, 

for example, measurement error in responses to expectations questions. In our context, 

classical measurement error in the income expectations responses would tend to lead to 

an overstatement of the importance of heterogeneity relative to the importance of uncer

tainty. This is the case because, as can be seen in equation (6), the measured contribution 

of heterogeneity (the second term) is represented by a sample variance (which will tend 

to increase with the amount of classical measurement error), while the measured contri

bution of uncertainty (the first term) is represented by a sample mean (which will tend 

to be consistent even in the presence of classical measurement error). To provide some 

evidence about the quantitative importance of measurement error, we take advantage 

of the fact that our two computational approaches in Sections 3.1.1 and 3.1.2 allow us 

to compute E(Wit) in two separate ways. We refer to the computed values from Ap

proach 1 and Approach 2 as EE1(Wit) and EE2(Wit), respectively. The intuition underlying 

the measurement error correction is that, in an environment with no interpolation, the 

two computed values will be identical if the responses to the survey questions used to 

compute these values are not affected by measurement error. However, when the two 

computed values are different, the importance of measurement error can be ascertained 

if one specifies the manner in which measurement error affects the responses to the survey 

questions. 

Starting with Approach 1, the computed value EE1(Wit) comes directly from Question 

1A (which elicits the unconditional subjective income distribution). We assume that 

measurement error enters the computed value EE1(Wit) in a classical manner; 

EE1(Wit) = E(Wit) + ςi, (7) 

where ςi is the classical measurement error attached to the true value E(Wit). Dispersion 
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in the computed value,
E1(Wit), across students originates from both dispersion in the 

true value, E(Wit), across students and randomness caused by measurement error, ςi. 

This can be seen by taking the variance of both sides of equation (7): 

E

E1(Wit)) = var(E(Wit)) + var(ςi). 

Equation (8) reveals that the true contribution of heterogeneity, var(E(Wit)), can be 

obtained by subtracting the variance of the measurement error, ςi, from the measured 

E1(Wit)). Thus, the remainder of this section focusesE

Evar(
 (8)
 

contribution of heterogeneity, var(

on estimating the variance of ςi. 

Turning to Approach 2, the value
E2(Wit) is computed from the responses to questions 

eliciting beliefs about income conditional on the three particular realizations of final GPA 

(questions such as 1B) as well as questions eliciting beliefs about grade performance 

(Questions 2 and 3). Similar to the assumption made in equation (7), we assume that 

measurement error influences the responses to questions such as 1B in a classical manner, 

that is, 

E

E(Wit|Git 

where EE(Wit|Git = git) is the measured value of the true value E(Wit|Git = git) and ςgit ,i 

git = 2.00, 3.00 or 3.75, are the corresponding classical measurement errors. 

E = git) = E(Wit|Git = git) + ςi
git git = 2.00, 3.00 or 3.75, (9) 

E

E

E2(Wit) requires information on EE(Wit|Git) at all realizations of Git and the distribution of Git. However, because we 

only observe the measured value EE(Wit|Git) for three specific realizations of Git, we need 

to interpolate the value of EE(Wit|Git) at other realizations. 

E2(Wit) can be written as a weighted sum of 

As discussed in Section 3.1.2, the computation of


Under the interpolation
 

approach that we adopted in Section 3.1.2,
EE(Wit|Git = 2.0), EE(Wit|Git = 3.0), and EE(Wit|Git = 3.75): 

 
 E

E

EE2(Wit) = E(Wit|Git
 

git
 

where, as shown in Appendix D, the weights λ2.0 , λ3.0 , and λ3.75 are integrals that dei i i 

pend on the distribution of Git. Here, we assume that no errors are introduced by the 

interpolation approach. However, in Appendix F we discuss why our conclusion about 

the importance of heterogeneity in this section will tend to be conservative if this type 

of interpolation error exists or if error is introduced during the computation of Git. 

Combining equation (9) and equation (10), we obtain the following equation: 

E2(Wit) =

λgit 
i = git) git = 2.00, 3.00 or 3.75, (10) 

  
λgit λgit ςgit= git) +i i iE(Wit|Git 

git git 

λgit ςgit= E(Wit) + i i . (11) 

git 
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Taking the difference between the mean computed using Approach 1 and the mean 

computed using Approach 2, we obtain: 

λgit ςgit 
i i . (12)
E1(Wit) − E2(Wit) = ςi − 

git 

Using equation (12) to estimate var(ςi) requires assumptions about the joint distri

bution of ςi, ς2.0, ς3.0 and ς3.75 . The prior assumption that ςi and ςi
git s represent classical 

measurement error implies that they have mean zero and are independent of other fac

tors. In addition, we assume that the four measurement error terms are independent and 

identically distributed. 

Under these assumptions, as shown in Appendix E, 

EE

var(ςi) = 
var(E1(Wit) − E2(Wit))E

(13).g 2it1 + E((λ ) )igit 

E
EEE1(Wit) −

from data available to us.19 Hence, var(ςi) can be estimated. The first column of Table 

4 reports the estimates of var(ςi). Subtracting the measurement error component from 

measured heterogeneity (column 2 in Table 4 for the three rows associated with Approach 

1) yields the magnitude of true heterogeneity var(E(Wit)), which is reported in the second 

column. In the third column, we report the adjusted heterogeneity ratio, which is defined 

as the ratio of true heterogeneity (column 2 in Table 4) to the sum of true heterogeneity 

(column 2 in Table 4) and uncertainty (column 1 in Table 3). 

We find that the magnitude of measurement error is relatively small compared to mea

sured heterogeneity across all specifications so that the true contribution of heterogeneity 

to overall earnings dispersion remains large. 

Table 4: Heterogeneity and Uncertainty (Measurement Error Adjusted) 

Note that we can compute the sample analogs of var(
 E2(Wit)) and E(λg
i 
it ) 

# of Observations: 650 
Measurement Error 

var(ςi) 
Adjusted Heterogeneity 

Adjusted Heterogeneity 
Ratio 

Stepwise Uniform 84.8 407.1 72.08% 
Log-normal 111.4 427.1 50.88% 
Normal 94.3 389.1 64.12% 

Note: The second column (Adjusted Heterogeneity) is found by subtracting column 1, 
Table 4 from column 2, Table 3. The third column (Adjusted Heterogeneity Ratio) is the 
ratio of column 2, Table 4, to the sum of column 2, Table 4 and column 1, Table 3. 

19For example, the sample analog of var( EEE1(Wit) − E2(Wit)) involves finding the difference between 
the mean computed by Approach 1 and the mean computed by Approach 2 for each individual and then 
computing the variance of this difference across all individuals in the sample. 
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3.2.3 Discussion 

There are reasons that our results are not directly comparable to the results surveyed 

in Cunha and Heckman (2007), which are obtained using a realized income distribution. 

One particularly notable difference is that our analysis is based on a sample of relatively 

homogeneous students from one college. A second difference is that our survey questions 

(Question 1A/B) are able to take into account individual-level uncertainty due to a 

potentially important factor, the aggregate state of the economy in the future, which does 

not generate variation in the realized income distribution in a particular year. However, 

if we were to broaden our sample to include students who are likely to have systematically 

different views about future earnings (e.g., students who do not attend college) or if we 

were to remove any uncertainty that exists due to business cycles, then we would tend 

to find an even more prominent role for heterogeneity relative to uncertainty.20 Thus, it 

is reasonable to conclude that our findings reinforce the strong message in Cunha and 

Heckman (2007) that taking into account heterogeneity is essential for characterizing the 

amount of uncertainty that exists about future earnings at the time of college entrance. 

4 Uncertainty Resolution 

In this section, we turn to examining when and why initial uncertainty about income 

is resolved. In Section 4.1, we examine one particularly prominent potential source of 

uncertainty, one’s college grade point average. By definition, all uncertainty about final 

college GPA will be resolved by the end of college. Thus, if uncertainty about GPA is 

an important contributor to overall earnings uncertainty, then students will expect much 

earnings uncertainty to be resolved at some point during college, and much resolution 

may be expected to take place early in school if students tend to learn quickly about 

their academic ability (Stinebrickner and Stinebrickner, 2012, 2014b). In Section 4.2, we 

perform a related analysis to examine how much earnings uncertainty at the time of en

trance can be attributed to uncertainty about college major. The findings in Section 4.1 

and Section 4.2 raise the possibility that much uncertainty about earnings may remain 

unresolved at the end of college. Section 4.3 takes advantage of the longitudinal expecta

tions data in the BPS to show that this is the case, and Section 4.4 explores the factors 

that could contribute to this finding. Finally, Section 4.5 takes advantage of information 

about each student’s subjective probability of dropping out to develop and estimate a 

model that allows an examination of whether students’ expectations about how much 

20The former is true if, e.g., the amount of uncertainty in other groups tends to be roughly similar to 
that of students in our sample. The latter statement holds if aggregate and individual income-influencing 
factors are multiplicatively separable. The proof is available upon request. 
Another difference is that, unlike articles surveyed in Cunha and Heckman (2007), we do not control 

for observed characteristics before computing the relative importance of uncertainty and heterogeneity. 
However, this difference is unlikely to be important; we find that observable characteristics explain 
relatively little of the total variation in E(Wit). 
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uncertainty will be resolved during college are broadly consistent with the reality that 

much uncertainty remains unresolved. 

4.1	 How Much Does Grade Uncertainty Contribute to Earnings 

Uncertainty? 

In addition to being useful for examining robustness and correcting for measurement er

ror, our second computational approach (Section 3.1.2) provides a natural way to quantify 

the importance of uncertainty about final GPA in determining overall uncertainty about 

future income. Equation 4 yields a natural decomposition of income uncertainty. The 

first term in the square root shows the degree to which a student believes that the mean 

of Wit varies across different final GPA realizations. Thus, it measures the contribution 

of uncertainty about grade performance to income uncertainty. The second term is an 

average (across GPA realizations) of how much uncertainty is present conditional on a 

particular realization of final GPA. Thus, it measures the contribution of other factors to 

income uncertainty, including, for example, uncertainty about major choice, labor market 

frictions, and future labor market conditions.21 

Formally, we define the contribution of grade uncertainty to income uncertainty as 

the fraction of overall uncertainty that can be attributed to the first term: 

varGitRG (E(Wit|Git)) 
it =	 (14) 

var(Wit) 
varGit (E(Wit|Git)) 

=	 . 
varGit (E(Wit|Git)) + EGit (var(Wit|Git)) 

Table 5: Contribution of Ri
G 
0: Mean and Quartiles 

# of Observations: 650 Mean 25% 50% 75% 
Stepwise Uniform 0.1729 0.0086 0.0701 0.2530 
Log-normal 0.1473 0.0067 0.0533 0.2022 
Normal 0.1514 0.0072 0.0571 0.2142 

Note: The first column shows the mean of the sample distribution of Ri
G 
0. The final 

three columns show the three quartiles of the sample distribution of Ri
G 
0. 

Table 5 summarizes the results for the time of entrance. The first column shows that, 

on average, 17% of income uncertainty is due to uncertainty about final GPA when we 

use the stepwise uniform assumption and that, on average, 15% of income uncertainty is 

21Of course, it is desirable to directly investigate the importance of each of the “other” factors as 
thoroughly as possible. In Section 4.2 we do examine the contribution of major choice to overall earnings 
uncertainty, and in Section 4.4 we do investigate the relative importance of labor market frictions and 
future labor market conditions in determining the substantial uncertainty that is found to remain at the 
end of college. 
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due to uncertainty about final GPA when we use the log-normal or normal distributions. 

The final three columns show the three quartiles for the three distributional assumptions. 

For the log-normal and normal distributions, only roughly 25% of students believe that 

more than roughly 20% of overall income uncertainty is due to uncertainty about final 

GPA. For the stepwise uniform case, only 25% of students believe that more than 25% 

of income uncertainty is due to uncertainty about final GPA. Hence, we conclude that, 

while uncertainty about grade performance has a non-trivial effect on overall earnings 

uncertainty, the large majority of uncertainty exists for other reasons. 

We can also provide evidence about the determinants of the heterogeneity in the Table 

5 fractions. While individuals with higher fractions do tend to have slightly less income 

uncertainty because of factors other than GPA, they have much more income uncertainty 

because of GPA. For example, splitting the sample based on the median in the second 

(Log-normal) row of Table 5, the first term in the denominator of equation (14) is 12 

times larger for students above the median and the second term in the denominator is 35% 

smaller for students above the median. Differences in the amount of income uncertainty 

that is due to GPA could arise, not only because of differences in uncertainty about 

GPA, but also because of differences in beliefs about how GPA translates to income. 

Descriptive evidence reveals that this latter source of heterogeneity is important.22 

4.2	 How Much Does Major Uncertainty Contribute to Earnings 

Uncertainty? 

Another important determinant of income that is fully realized during college is college 

major (Altonji, Blom, and Meghir, 2012, Stinebrickner and Stinebrickner, 2014a, Altonji, 

Arcidiacono, and Maurel, 2016). A decomposition relevant for investigating the role that 

uncertainty about major plays in determining total income uncertainty can be obtained 

in a way similar to the decomposition for GPA in equation (4): 

var(Wit) = varMit (E(Wit|Mit)) + EMit (var(Wit|Mit)), (15) 

where Mit is a discrete random variable describing student i’s beliefs about final major 

at time t, which takes on one of seven possible majors j with probability Pijt. 23 The 

first term on the right side of equation (15) shows how the mean of Wit varies across 

22The Coefficient of Variation (CV), defined as the ratio of the standard deviation to the mean of a 
distribution, is often used as standardized measure of dispersion. We find that the CV of the sample 
distribution of difference between the median income if GPA is equal to 3.75 and the median income if 
GPA is equal to 3.0, which represents the beliefs about how GPA translates to income, is larger than 
the CV of the sample distribution of standard deviation of the subjective grade distribution, which 
represents uncertainty about GPA. (1.8263 vs. 0.4651) 

23The numbers 1, ..., 7 correspond to the following eight major groups: 1. Agricultural and Physical 
Education; 2. Business; 3. Elementary Education; 4. Humanities; 5. Natural Sciences/Math; 6. 
Professional Programs; 7. Social Sciences, where Economics is included in Social Sciences and where, 
for convenience, we have grouped Agriculture and Physical Education together because of their small 
sizes. 
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different majors. Thus, it measures the contribution of uncertainty about major to 

income uncertainty. The second term is an average (across major realizations) of how 

much uncertainty is present conditional on a particular realization of final major. Thus, 

it measures the contribution of other factors to income uncertainty. Then, analogous to 

our GPA analysis, the goal is to estimate the fraction of total income uncertainty that is 

due to major uncertainty using the following formula: 

varMit (E(Wit|Mit))
RM 

it = . (16) 
varMit (E(Wit|Mit)) + EMit (var(Wit|Mit)) 

Unfortunately, unlike what was the case for our GPA analysis in Section 4.1, the data 

do not include all of the information that would allow us to directly compute the two 

terms, varMit (E(Wit|Mit)) and EMit (var(Wit|Mit)), that enter this fraction. Specifically, 

while our analysis in Section 4.1 took advantage of the fact that var(Wit|Git) is available 

in the data, var(Wit|Mit) is not available. However, given information that is observed 

about E(Wit), var(Wit) and the probabilities Pijt, j = 1, ..., 7, we are able to estimate 

the two terms if we make additional assumptions about how the mean and variance of 

the subjective income distribution conditional on a major varies across students. 

4.2.1 Estimation 

The objective of this section is to examine the fraction of income uncertainty that is due 

to uncertainty about major at the time of entrance (t = 0). With Pij0 observed from 

Survey Question 5 in Appendix A for j = 1, ..., 7, equation (15) shows that estimating 

the two terms requires knowledge of E(Wi0|Mi0) and var(Wi0|Mi0). We estimate these 

conditional means and conditional variances under the assumption that they are homo

geneous across students conditional on observable characteristics, Xi, that are known to 

the student at time t = 0, 

E(Wi0|Mi0 = j) = αw + Xiβ + δj (17) 

var(Wi0|Mi0 = j) = αv + Xiγ + θj , 

where δj , j = 1, ..., 7 and θj , j = 1, .., 7 represent differences in the conditional means and 

the conditional variances, respectively, across majors.24 

The unconditional mean E(Wi0) can be written as EMi0 (E(Wi0|Mi0)), and, there

fore, is a function of E(Wi0|Mi0) and the random variable Mi0. Similarly, the uncon

ditional variance var(Wi0) can be written as varMi0 (E(Wi0|Mi0)) + EMi0 (var(Wi0|Mi0)), 

24While the linear specification does not restrict the conditional means and variances in equation (17) 
to be positive, in practice we find that these objects are typically estimated to be positive. Nonetheless, 
we also estimated a specification in which we assumed that the conditional means and variances were 
exponential functions. This specification, in which the means and variances are restricted to be positive, 
produces results that are quite similar to those obtained for the linear case. 
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and, therefore is a function of E(Wi0|Mi0), var(Wi0|Mi0), and the random variable Mi0. 

Then, following the same assumption as in Section 3.2.2, the unconditional mean that 

is computed from Survey Question 1A using Approach 1, EE1(Wi0), is determined by 

adding classical measurement error, ςi, to the true unconditional mean, E(Wi0). Simi

larly, the unconditional variance, VV ar(Wi0), that is computed from Survey Question 1A 

using Approach 1 is determined by adding classical measurement error, ui, to the true 

unconditional variance, var(Wi0). This implies that 

7 EE1(Wi0) = EMi0 (E(Wi0|Mi0)) + ςi = Pij0E(Wi0|Mi0 = j) + ςi (18) 
j=1 

7 

= αw + Xiβ + Pij0δj + ςi 
j=1 

V (E(Wi0|Mi0)) + EMi0 (19)var(Wi0) = varMi0 (var(Wi0|Mi0)) + ui 

7 

= varMi0 (δj ) + αv + Xiγ + Pij0θj + ui 

j=1 

Normalizing the Social Science coefficients δ7 and θ7 to zero, we estimate the remaining 

parameters, αw, β, δj , j = 1, ..., 6, αv, γ, and θj , j = 1, ..., 6, which are needed to 

estimate E(Wi0|Mi0 = j), j = 1, ..., 7 and var(Wi0|Mi0 = j), j = 1, ..., 7 (equation 17), 

and, therefore, the two terms that appear in the fraction Ri
M 
0 (equation 16). We obtain 

estimates by: 

1. Regressing EE1(Wi0) on Xi and Pij0, j = 1, ..., 7 to obtain estimates of αw, β and 

δj , j = 1, ..., 6. 

2. Using the estimates δ5j , j = 1, ..., 6 and the normalized value δ7 = 0 to compute an 

estimate of varMi0 (δj ), j = 1, ..., 7 for each person i. 

3. Regressing V varMi0
var(Wi0) − V (δj ) on Xi and Pij0, j = 1, ..., 7 to obtain estimates of 

αv, γ and θj , j = 1, ..., 6. 

4.2.2 Results 

Including Black, Male, and ACT score in Xi, Table 6 shows the results. The first column 

shows that, on average, 17% of income uncertainty is due to uncertainty about final major 

when we use the stepwise uniform assumption, on average, 12% of income uncertainty 

is due to uncertainty about final major when we use the log-normal assumption, and, 

on average, 11% of income uncertainty is due to uncertainty about final major when we 

use the normal assumption. Thus, the conclusions for major are fairly similar to the 
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conclusions for GPA - while students believe that uncertainty about major plays non

trivial role in creating the overall uncertainty about income, much of the uncertainty 

about income is present for other reasons. 

Table 6: Contribution of Ri
M 
0 : Mean and Quartiles 

# of Observations: 682 Mean 25% 50% 75% 
Stepwise Uniform 0.1669 0.0419 0.1458 0.2508 
Log-normal 0.1152 0.0333 0.0932 0.1645 
Normal 0.1125 0.0407 0.0957 0.1672 

Note: The first column shows the mean of the sample distribution of Ri
M 
0 . The final 

three columns show the three quartiles of the sample distribution of Ri
M 
0 . 

Table 7: Estimates for δj and θj 

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 

δj 

Stepwise Uniform 
-1.3487 
(0.7612) 

[3] 

8.8563 
(0.0380) 

[1] 

-11.3784 
(0.0176) 

[7] 

-3.7377 
(0.3542) 

[5] 

-3.8968 
(0.2932) 

[6] 

-2.6666 
(0.5168) 

[4] 

0 
N.A. 
[2] 

Log-normal 
-2.6844 
(0.5554) 

[4] 

8.0725 
(0.0720) 

[1] 

-13.2090 
(0.0098) 

[7] 

-6.0781 
(0.1498) 

[6] 

-2.4133 
(0.5350) 

[3] 

-3.5936 
(0.3994) 

[5] 

0 
N.A. 
[2] 

Normal 
-2.8511 
(0.5080) 

[4] 

7.2972 
(0.0780) 

[1] 

-11.4803 
(0.0156) 

[7] 

-6.7927 
(0.0926) 

[6] 

-1.9434 
(0.5954) 

[3] 

-3.2801 
(0.4164) 

[5] 

0 
N.A. 
[2] 

θj 

Stepwise Uniform 
32.6860 
(0.3368) 

[1] 

12.2821 
(0.7798) 

[3] 

-86.5519 
(0.0676) 

[7] 

16.8320 
(0.6150) 

[2] 

-11.6128 
(0.6676) 

[5] 

-30.0232 
(0.3176) 

[6] 

0 
N.A. 
[4] 

Log-normal 
68.7708 
(0.2612) 

[1] 

24.4051 
(0.7140) 

[3] 

-139.0690 
(0.0696) 

[7] 

47.7077 
(0.4082) 

[2] 

18.9153 
(0.7582) 

[4] 

-41.2298 
(0.4746) 

[6] 

0 
N.A. 
[5] 

Normal 
50.8042 
(0.2824) 

[1] 

8.6432 
(0.8916) 

[2] 

-93.4664 
(0.1060) 

[7] 

1.4545 
(0.9932) 

[4] 

8.4128 
(0.8628) 

[3] 

-40.2733 
(0.3514) 

[6] 

0 
N.A. 
[5] 

List of majors: 1. Agricultural and Physical Education; 2. Business; 3. Elementary 
Education; 4. Humanities; 5. Natural Sciences/Math; 6. Professional Programs; 7. Social 
Sciences. 
Note: Equal-tail bootstrap P-values are in the parenthesis. Ranks are in the brackets. 

Table 7 reports the estimates for δj and θj . The first three rows indicate that students 

believe there are substantial differences in mean earnings across majors. For example, 

the Business major (j = 2) has a significantly higher mean than the Social Science major 

(j = 7), while the Education major (j = 3) has a significantly lower mean than the Social 

Science major. The last three rows indicate that there are also differences in uncertainty 

about income across majors. Most notably, consistent with the rigid pay scale that exists 

in public schools, the variance is estimated to be the smallest for Elementary Education. 
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4.3 Total Uncertainty Resolution 

The findings in Section 4.1 and Section 4.2 raise the possibility that much uncertainty 

about earnings may remain unresolved at the end of college. However, while grade per

formance (academic ability) and college major are prominent income-influencing factors 

that a student could learn about during college, they are not the only possible factors of 

relevance. In this section, we examine the actual evolution of income uncertainty over 

time during school, by taking advantage of the fact that the BPS elicited information 

about subjective income distributions in each year of school (using questions such as 

Question 1A in Appendix A). We again focus on subjective beliefs about income at age 

28 under the scenario in which a student graduates from college. 

Table 8: Uncertainty Resolution 

# of Observations: 246 Beginning Year 1 Year 2 Year 3 End 
Sample 
Average 
of std(Wit) 

Stepwise Uniform 10.1310 9.1084 8.3859 8.2887 8.2874 
Log-normal 13.4582 11.8160 11.0484 11.0632 10.7536 
Normal 11.7686 10.7123 10.0112 9.6912 9.6384 

Percentage of 
Uncertainty 
Resolved 

Stepwise Uniform N.A. 0.1917 0.3148 0.3306 0.3308 
Log-normal N.A. 0.2291 0.3261 0.3242 0.3615 
Normal N.A. 0.1714 0.2764 0.3219 0.3292 

Note: The unit of measurement for Wit is one thousand dollar. The percentage of 
initial uncertainty resolved by Year t (row 4-6) is obtained in the manner described in 
the text. 

The first three rows of Table 8 report the average standard deviation of the subjective 

earnings distribution at five different points in college - the beginning of college, the end 

of the first year, the end of the second year, the end of the third year, and the time of 

graduation (End) - for each of our three distributional assumptions, using Approach 1.25 

We restrict our sample to students who answered income expectations questions at all 

five points. Looking across columns, as would be expected, students become increasingly 

certain about their future income as they progress through college.26 

In order to facilitate a comparison between total uncertainty resolution and the find

ings in Section 4.1 and 4.2, we define the percentage of uncertainty resolution as the 

percentage decrease in the variance of the subjective income distribution. Since the vari

ance is simply the square of the standard deviation, we compute these percentages using 

entries in the first three rows of Table 8. As an example, the second column in the fourth 

row shows that 1 − 9.1084
2 
= 19.17% of total income uncertainty was resolved during the 

10.13102 

first year of college, when we use the stepwise uniform distribution. 

25For t greater than zero, computing std(Wit) using Approach 2 requires using a student’s cumulative 
GPA at time t to construct the distribution describing subjective beliefs about final grades at time t. 
We avoid this complication by computing std(Wit) using only Approach 1. 

26The only exception is a slight increase of sample average of std(Wit) from the end of Year 2 to the 
end of Year 3 when using log-normal distribution. This increase, however, is quite small and can be 
reasonably attributed to measurement error. 
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The last three rows of Table 8 show the percentage of uncertainty that is resolved 

as of the five different points. The results indicate that, depending on the distributional 

assumption that is made, between 33% and 36% of uncertainty is resolved by the end 

of college. Thus, the evidence indicates that much uncertainty does remain unresolved 

during college. Further, comparing the last three columns, we find that the majority 

of uncertainty resolution took place in the first two years of college, with little uncer

tainty resolved after the end of the third year. This finding suggests that learning about 

future income happens relatively quickly in college, with this being consistent with an 

environment where learning tends to be largely about grade performance (ability) and 

major. 

In order to keep the sample constant across columns in Table 8, the sample used 

includes only students who graduated. A natural question is how the results in Table 

8 would change if no selection issues were present, that is, if we could compute these 

numbers for the full sample of all students who entered college - both those who graduated 

and those who dropped out. Thinking about how the full sample might differ from the 

sample of graduates, it is not clear from a conceptual standpoint whether individuals 

who drop out of school would tend to resolve more uncertainty or less uncertainty than 

individuals who remain in school. This is the case because students who drop out could 

tend to be those that resolve a substantial amount of uncertainty or could be students who 

were very close to the margin of indifference at the time of entrance, and, therefore, could 

be induced to leave school even without resolving much uncertainty. As such, whether the 

amount of uncertainty that would be resolved for the full sample would tend to be higher 

or lower than the amount of uncertainty that is resolved for the sample of graduates is an 

empirical question. We are able to provide some evidence about this question by taking 

advantage of the fact that income expectations were elicited twice during the first year, 

before much dropout occurs. We find that, depending on the distributional assumption 

we use, individuals in the full sample resolve between 7% and 9% of initial uncertainty 

during this period, while individuals who graduate resolve between 15% and 17% of 

uncertainty during the first year. Thus, the amount of uncertainty that is resolved for 

students in the full sample seems to be, if anything, lower than the amount of uncertainty 

that is resolved for students who graduated. This suggests that our conclusion from 

Table 8 - that much uncertainty remains unresolved at the time of graduation - would 

be strengthened further if we were able to examine the resolution of earnings for our full 

sample of students who answered the baseline survey. 

It is worth considering whether it seems generally plausible that much uncertainty 

may remain unresolved at the end of college. Of central relevance, it seems reasonable 

to believe that, during college, a student may be able to resolve uncertainty about her 

own ability or other permanent factors, but it may be, by definition, difficult to resolve 

uncertainty about transitory shocks that could occur in the labor market. Then, the 

notion that substantial uncertainty remains at the end of college may not be entirely sur
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prising given that a broad literature finds that transitory components play an important 

role in the earnings process (Blundell and Preston, 1998, Meghir and Pistaferri, 2004). 

Consistent with these findings, using our post-college data to estimate a random effects 

model of earnings, we find that the transitory component has a standard deviation of 

approximately $9,000.27 While a variety of concerns could arise from comparing this 

standard deviation from the realized earnings data to standard deviations elicited using 

expectations questions, it does seem generally relevant that $9,000 is non-trivial when 

viewed next to the standard deviations in Table 8. 

Demographic Variables 

In Section 3.1.3 we found that black students are particularly uncertain about income 

at the time of entrance. A natural question is whether these students resolve more uncer

tainty early in college, so that they ultimately end up with similar amounts of uncertainty 

as other students. Given that Table 8 found that the majority of resolution during col

lege takes place during the first two years, we regress std(Wi2) on Black, Male and ACT 

score for the three different distributional assumptions associated with Approach 1. We 

find that black students are no longer more uncertain at the end of the second year; the 

estimated coefficient on Black in all three regressions is slightly negative. 

The previous paragraph suggests that black students are resolving more uncertainty 

than other students. To provide more direct evidence, we regress the change in uncer

tainty, as measured by std(Wi2) − std(Wi0), on Black, as well as Male and ACT score for 

the three distributional assumptions associated with Approach 1. As expected, we find 

that the coefficient on Black is significant at a .1 level in all three regressions, with the 

largest t-statistic having a value of 2.31. Averaging the coefficient for Black across the 

three regressions, we find that the decrease in uncertainty is $3088 larger for blacks than 

for non-blacks. 

4.4	 What Factors Account for End-of-College Income Uncer

tainty? 

With the goal of providing a more concrete understanding of why a substantial amount 

of uncertainty about income at age 28 remains unresolved at the end of college, we 

consider two broad explanations. The first explanation is that individuals might be 

unsure about what kinds of job offers they will receive at age 28. The second explanation 

is that individuals might know the kinds of job offers they will receive, but might be 

unsure about what kinds of jobs they will prefer to hold/choose in the future. These two 

explanations may have different policy implications for a variety of reasons, including the 

fact that the latter represents variation in future income that is at least partially under 

27We estimate a random effects model with annual income as the dependent variable and Black, Male, 
ACT score, cohort dummy and year dummy as regressors. We use data duing 2009-2012 for estimation 
because most students in our sample turn 28 around year 2010 or 2011. 
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the control of individuals. 

We begin by considering the second explanation. Traditionally, especially for women, 

uncertainty about hours of work would have represented a particularly salient reason for 

this explanation, with uncertainty about hours of work having an obvious, direct link to 

uncertainty about income. However, Stinebrickner, Stinebrickner, and Sullivan (2018) 

find that this reason is unlikely to be of particular importance for our recent cohort of 

college graduates; the large majority of both men and women work full-time throughout 

their first decade in the labor force, with even departures for children tending to be short. 

A second possible reason for the second explanation is that individuals may be uncer

tain about what types of work they will prefer to perform in the future, with uncertainty 

about types of work having a link to uncertainty about income because income varies sub

stantially across different types of work (Gibbons and Katz, 1992, Heckman and Sedlacek, 

1985, Acemoglu and Autor, 2011, Autor and Handel, 2013). We use Survey Question 7 

to look for evidence of this type of uncertainty. The question stratifies the set of possible 

jobs into jobs that do not require a college degree (No-Degree-Needed), jobs that require 

a college degree in a student’s specific area of study (Degree-My-Area), and jobs that 

do not require a college degree in a student’s specific area of study (Degree-Any-Area). 

This type of uncertainty would be particularly relevant for creating income uncertainty 

if individuals tend to be uncertain about whether they will wish to work in No-Degree-

Needed jobs, because these jobs tend to pay substantially less than jobs that require a 

college degree. However, Survey Question 7 suggests that this is unlikely. Only between 

2-3% of all students prefer No-Degree-Needed jobs to jobs that require a college degree 

and the preference for the types of work in college jobs is very strong, with the average 

respondent requiring an income premium of over 50% ($45, 500 v.s. $30, 000) to change 

from her preferred college job to a No-Degree-Needed job. Further, there seems to be 

relatively little uncertainty about what types of jobs that students prefer even when we 

take a further step and differentiate between Degree-Any-Area jobs and Degree-My-Area 

jobs. More than 80% of students prefer Degree-My-Area jobs, and, on average, these 

individuals would have to be paid a roughly 47% income premium to accept Degree-Any-

Area jobs instead.28 Thus, overall, these informal results do not suggest that uncertainty 

about preferences towards types of work are likely to be a driving force in creating income 

uncertainty. 

The findings in the previous two paragraphs suggest that the first explanation - that 

individuals may be unsure about what kinds of offers they would receive at age 28 - might 

play an important role. We look for evidence about the importance of this explanation 

by considering several possible reasons for this explanation. The first reason we consider 

is that uncertainty may exist about the state of the economy at age 28. To examine this 

reason, we take advantage of the fact that, as students approached the end of college, the 

28In addition, the 16% of students who prefer a Degree-Any-Area job also seem to be quite certain 
about their preferences. On average, these students would have to be paid around 44% more to accept 
Degree-My-Area jobs. 
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BPS elicited beliefs about not only earnings at the age of 28, but also about earnings in 

the first year out of college. As shown in the first column of Table 9, at the end of college 

(t = 4), the average standard deviation of the subjective distribution of earnings in the 

first post-college year is between six thousand and nine thousand dollars, depending on 

the distributional assumption that is employed. This standard deviation tends to be 

approximately 75% of the standard deviation associated with age 28 (second column) 

and approximately 60% of the standard deviation associated with age 38 (third column). 

The fact that much uncertainty exists for the first year out of school suggest that, at the 

very least, factors other than the state if the economy are influencing income uncertainty. 

Table 9: Earnings Beliefs at the End of College 

# of Observations: 359 
std(W a,1 

i4 ) 
a = 1 Year Out a = 28 a = 38 

Stepwise Uniform 
6.3281 8.6233 
(4.9854) (6.9139) 

10.9518 
(9.3353) 

Log-normal 
9.0638 11.4029 

(13.0912) (11.7530) 
14.1175 
(14.5838) 

Normal 
7.2301 9.9188 
(5.6186) (7.9017) 

12.5319 
(10.3720) 

Note: For different ages a, the table shows the standard deviation of the subjective 
income distribution at the end of college (t = 4) for the graduation scenario (s = 1). 
The unit of measurement for Wi

a,
4
1 is one thousand dollars. A particular entry in the 

table shows the sample mean and standard deviation of std(Wi
a,
4
1) for a particular age a. 

For example, row 1, column 1 shows a sample mean of $6,328.10 and a sample standard 
deviation of $4,985.40 for std(Wi

a,
4
1) for the age a corresponding to the first post-college 

year. 

Roughly speaking, we could group the remaining reasons for the second explanation 

under the heading of frictions. One possibility is that information frictions are present. 

For example, students may begin school with uncertainty about the type of job oppor

tunities that tend to be available for college graduates, and this uncertainty may not be 

entirely resolved even by the end of college (Betts, 1996). It is somewhat difficult to pro

vide direct evidence about the importance of this type of friction. However, we are able 

to provide some evidence about a second potential type of frictions - labor market/search 

frictions. The first piece of evidence comes from Survey Question 6. Although we found 

that more than 80% of students prefer a Degree-My-Area job, Question 6 indicates that, 

on average, students believe there is only a 50% chance of ending up in such a job in the 

first year. Further, while almost no students prefer a No-Degree-Needed job, on average, 

students believe there is almost a 20% chance of being forced to accept this type of job. 

The second piece of evidence comes from Survey Question 8. On average, students be

lieve that there is a 22% probability that it will take five or more months of search to find 

a job. Further, on average, students believe that there is only a 20% chance of obtaining 
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a job with less than one month of search.29 While we stress that it is not possible to 

determine the relative importance of the different reasons/explanations described above, 

the results suggest that search frictions are likely to be relevant. 

4.5 Expected Uncertainty Resolution 

In this section, we examine whether students expect that much uncertainty will remain 

unresolved during school. We develop a simple model in which beliefs about graduating 

depend on the fraction of income uncertainty that a student expects to resolve during 

school. Our estimation of this model is made possible by Survey Question 4 (Appendix 

A), which, at the time of college entrance (t = 0), elicits the probability of graduating. 

4.5.1 A simple model 

The model we estimate in this section links a student’s subjective dropout probability 

to her expected resolution of income uncertainty. We first specify the process by which 

uncertainty about income is resolved, then describe how the student arrives at the sub

jective dropout probability that she reports at t = 0, and finally describe how the model 

is estimated. 

The process by which uncertainty about income is resolved 

A student enters college (t = 0) with beliefs about the yearly earnings she will receive 

at age a if she graduates (s = 1) and if she does not graduate (s = 0). These beliefs 
a,s 0, 1.30 
i0 , (σ

a,sare given by W a,s ∼ N(µ )2), s = The student knows that, at a single i0 i0 

time in the future t ∗ , she will make the decision of whether to graduate or to drop 

out by comparing the expected utility associated with each option, with these expected 

utilities depending, in large part, on beliefs about future earnings. However, in thinking 

about whether she will ultimately choose s = 1 or s = 0 at t ∗ , a student must take 

into account that her beliefs about earnings at age a will change before t ∗ due to the 

realization of income-influencing factors ta,si , s = 0, 1. We assume that ta,si enters the 

earnings equation for choice s linearly and is normally distributed, with a mean that 

is normalized to zero and a standard deviation that is denoted by σ;,a,s. The student’s i0 
a,s +ta,s , (σa,s)2 −(σ;,a,sbeliefs about future earnings at t ∗ is then given by W a,s ∼ N(µ )2),it∗ i0 i i0 i0 

σa,s s ss = 0, 1. We further assume that ta,s = ρs vi , where v ∼ N(0, 1), implying that i i0 i 

W a,s a,s σa,s s )(σa,s∼ N(µ + ρs vi , (1 − ρ2 )2). This indicates that the revision of the initial it∗ i0 i0 s i0 

income beliefs associated with s depends on the realization of a factor that is relevant for 

s, vi
s, with the amount of the revision depending on the fraction of total initial uncertainty 

29The survey question elicits beliefs about search frictions during school. The assumption in this 
discussion is that these beliefs are related to beliefs about search frictions in the post-schooling period. 
This assumption is consistent with the assumptions made, out of necessity, in a broader search literature. 

30It is, in general, difficult to decompose a step-wise uniformly distributed random variable into mul
tiple factors. We choose the normal distribution since it fits the expectations data slightly better than 
log-normal distribution does. 
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that is resolved before t ∗ , ρ2 
s. Motivated by recent work suggesting the importance of 

correlated learning (Arcidiacono et al., 2016), we allow vi
s and vi

s to have a correlation of 

κ. 

The reported subjective dropout probability 
sAt t ∗, a student observes the realizations of vi , s = 0, 1 and chooses between the two 

schooling options, s = 0 and s = 1 by comparing the expected utility of these two options. 

If the student chooses s = 1, she receives a constant utility γi for the remaining time in 

school and receives utility equal to the realization of her earnings, wi
a,1, in each year (age) 

out of school. We assume that γi is known at t = 0, so that the only new information 

obtained between t = 0 and t ∗ that is relevant for s = 1 utility is the realization of vi 
1 . 

¯Conditioning on the realization of vi 
1, defining A to be the age of retirement, t̄ to be the 

age of graduation and β to be the discount factor, the expected utility, or value, at t ∗ 

associated with schooling scenario s = 1 is given by: 

Ā Ā Ā

V s=1 1 βa−t ∗ 
E(W a,1 βa−t ∗ a,1 1 βa−t ∗ 

σa,1(vi ) = γi + ) = γi + µ + ρ1vit∗ it∗ i0 i i0 

a=t̄ a=t̄ a=t̄

If a student drops out, she enters the labor market immediately and receives utility 

equal to her earnings in each year, so the expected utility, or value, at t ∗ of dropping out 

(s = 0) is given by: 

Ā Ā Ā

V s=0 0 βa−t ∗ 
E(W a,0 βa−t ∗ a,0 0 βa−t ∗ 

σa,0(v ) = ) = µ + ρ0v . (20)it∗ i it∗ i0 i i0 
a=t ∗ a=t ∗ a=t ∗ 

At t = 0, the student reports the probability of dropping out by computing the 
s 0 1fraction of time that her realizations of vi , s = 0, 1 will lead to V s=0(vi ) > V s=1(vi ).it∗ it∗ 

A βa−t∗ a,1 A βa−t∗ a,0 A βa−t∗σa,1Denoting µ̄1,i = a

¯

=t̄ µi0 , µ̄0,i = a

¯

=t ∗ µi0 , σ̄1,i = a

¯

=t̄ i0 , and σ̄0,i = 
Ā βa−t∗σa,0, the dropout probability can be written as: a=t ∗ i0 

P D 0 1 µ̄0,i − µ̄1,i − γi 
= P rob(µ̄0,i + ρ0v σ̄0,i > γi + µ̄1,i + ρ1v σ̄1,i) = Φ( ),i i i 

ρ21σ̄1
2 
,i + ρ0

2σ̄0
2 
,i − 2κρ1ρ0σ̄1,iσ̄0,i 

where the last expression follows from the fact that vi 
1 and vi 

0 are standard normal random 

variables with correlation κ. 

The general focus of our paper on income uncertainty under the graduation scenario 

motivates a particular interest in ρ1. The effect of ρ1 on the subjective dropout prob

ability depends on the value of other parameters. However, some intuition about how 

subjective dropout probabilities are related to ρ1 can be obtained by considering a seem

ingly reasonable scenario in which students resolve relatively little uncertainty about 

income under the dropout scenario (i.e., ρ0 is small). The numerator in the probability 
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expression is the difference between the expected utility of s = 0 and the expected utility 

of s = 1, at t = 0. Thus, it is typically negative with its absolute value being related to 

the distance that a student is from the margin of dropping out at the time of entrance.31 

An increase in ρ1 increases the amount that a student learns about earnings between 

t = 0 and t ∗, thereby increasing the probability that the new information she receives 

will push her across the margin into a situation where it is optimal to leave school. Thus, 

all else equal, in the seemingly most likely scenario in which the numerator is negative, 

the dropout probability will tend to be increasing in ρ1. 

Estimation 

µ̄0,i − µ̄1,i, σ̄0,i and σ̄1,i can be constructed from data.32 Thus, assuming that γi is 

normally distributed, equation (21) reveals that the three parameters ρ0, ρ1, and κ (as 

well as the distribution of γi) can be estimated using Maximum Likelihood.33 However, 

from a practical standpoint, given the our relatively small sample size and the potentially 

high correlation between σ̄0,i and σ̄1,i, it may be difficult in practice to estimate all three 

parameters. Hence, as discussed in Appendix G, we choose to assume that κ is equal 

to its realization counterpart and estimate κ outside the model in a manner that takes 

advantage of the longitudinal aspects of our data.34 

4.5.2 Results and Discussion 

Students in the 2000 cohort were not asked to answer the dropout probability question, 

Question 4, in their freshman year. As a result, we restrict our sample to 349 respon

dents from cohort 2001. For this sample, we find that the average subjective probability 

of dropping out reported on Question 4 is only 0.14. At t = 0, the sample average 

of expected lifetime income associated with the graduation scenario and the dropout 

scenario are approximately $1, 040, 000 and $729, 000, respectively. On average, there 

is more uncertainty about earnings under the graduation scenario than there is about 

31Of course, from a theoretical standpoint, when experimentation plays a role in the decision to enter 
school, a student might enter college even if she has a positive numerator. 

32µ̄1,i and σ̄1,i are weighted sums (across ages a) of the means and standard deviations of subjective 
earnings distributions for the graduation scenario, elicited at t = 0 using Question 1A. µ̄0,i and σ̄0,i are 
the weighted sum (across ages a) of means and standard deviations of subjective earnings distributions 
for the dropout scenario, elicited at t = 0 using questions analogous to Question 1A. 

33We assume that β = 0.95. Following Stinebrickner and Stinebrickner (2014b), to deal with the fact 
a,s and σa,sthat values of µ are only observed directly for the first year a student leaves school, at age i0 i0 

a,s and σa,s28, and at age 38, we assume that both µ are linear between the first year out of college and i0 i0 
the age of 28, are linear between the ages of 28 and 38, and are constant after the age of 38. 
Our model implies that the reported dropout probability should be strictly between 0 and 1. In 

practice, following Stinebrickner and Stinebrickner (2014a), we set P D = 0.01 if i reports a dropout i 
probability that is smaller than 0.01, and P D = 0.99 if i reports a dropout probability that is greater i 
than 0.99. Our results are robust to slight changes in these assumptions. 

34Consistent with our belief that estimating all of the parameters that are technically identified might 
be challenging in practice, we had some difficulty obtaining convergence when we tried to estimate 
the full model. Our decision to estimate κ outside the model was motivated by the symmetry present 
between ρ0 and the parameter ρ1 which has been the focus of previous sections. 
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earnings under the dropout scenario: The sample average of σ̄1,i and σ̄0,i are $256, 000 

and $175, 000, respectively. 

The estimation results are shown in Table 10. Consistent with the notion that learning 

is highly correlated, the estimate for κ is 0.5605. However, the estimate of ρ0, 0.2170, in

dicates that the amount of uncertainty that is resolved about earnings under the dropout 

scenario is not particularly large. 

The estimate of ρ1, our parameter of primary interest, is 0.4695, implying that, during 

college, students expect to resolve 22.04% (ρ21) of their uncertainty about earnings under 

the scenario in which they graduate from college. Hence, consistent with evidence on 

actual uncertainty resolution, our results suggest that the majority of income uncertainty 

is expected to remain at the end of college.35 

It is notable that income represents the only source of uncertainty in our model. As a 

result, we do not believe that our model is particularly well-suited for providing general 

evidence about how uncertainty influences the dropout decision. Nonetheless, our model 

is still valuable for our quite narrow objective of providing a rough characterization of the 

fraction of uncertainty that students expect to resolve in college. This is the case because, 

from a conceptual standpoint, the dropout probability will tend to be increasing in the 

total amount of uncertainty that is resolved about all factors that a student is uncertain 

about at college entrance. Therefore, introducing another potential source of uncertainty 

resolution that could help explain the observed subjective dropout probabilities would 

likely lead to a lower estimate of ρ1. 36 

Table 10: Estimation Results 

# of Observations: 349 ρ1 γ̄ ρ2 κ 

Correlated Learning 
0.4695 

(13.0265) 
-158.7077 
(7.8757) 

0.2170 
(2.6665) 

0.5605 

Note: t-statistics are in the parenthesis. 

5 Conclusion 

Whether large amounts of uncertainty about future earnings tend to be resolved during 

college has been an open question. Large amounts would tend to be resolved if: 1) the 

substantial dispersion found in realized earnings is indicative of substantial amounts of 

uncertainty at the time of college entrance, and 2) much of this initial uncertainty is 

resolved during college as students learn about earnings-influencing factors. 

35The fact that the estimated disutility associated with being in school is quite large is consistent with 
other research, e.g., Stinebrickner and Stinebrickner (2014a/b) and Stange (2012). 

36Similarly, at a given value of ρ1, the subjective dropout probabilities from our conceptual framework 
would tend to increase if students were given more points in time at which they could choose to drop 
out. This implies that the value of ρ1 that would be needed to explain the observed subjective dropout 
probabilities would tend to be lower if we relaxed the assumption that students make their dropout 
decision at a single point in time, t ∗ . 
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Prior evidence about 1) is provided by research such as Cunha, Heckman, and Navarro 

(2005). They conclude that only a relatively small portion of the variation in realized 

earnings should be attributed to uncertainty, leaving a large role for heterogeneity. We 

find direct evidence in support of their conclusion when, taking advantage of expectations 

data collected at the time of college entrance, we decompose an expectations analog to 

the realized wage distribution into the portion due to uncertainty and the portion due 

to heterogeneity. 

Very little evidence about 2) is present in the literature. Taking advantage of the 

longitudinal nature of our expectations data, we find that much of the income uncertainty 

that is present at the time of entrance remains unresolved at the time of graduation. 

Further, taking advantage of a variety of unique data features, we provide evidence about 

the amount of initial income uncertainty that is and is not resolved. Our findings suggest 

that the portion of uncertainty that is resolved during school can be largely attributed to 

what one learns about her academic ability and her college major during school. As for 

why some uncertainty remains unresolved, we find evidence that transitory factors, such 

as search frictions, are likely to play an important role in creating initial uncertainty. 
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Appendices 

A Survey Questions 

Question 1. The following questions will ask you about the income you might earn in 

the future at different ages under several hypothetical scenarios. We realize that you 

will not know exactly how much money you would make at a particular point in time. 

However, you may believe that some amounts of money are quite likely while others are 

quite unlikely. We would like to know what you think. We first ask you to indicate 

the lowest possible amount of money you might make and the highest amount of money 

you might make. We then ask you to divide the values between the lowest and the 

highest into four intervals. Please mark the intervals so that there is a 25% chance that 

your income will be in each of the intervals. When reporting incomes, take into account 

the possibility that you will work full-time, the possibility that you will work part-time, 

the possibility that you will not be working, and (for the hypothetical scenarios which 

involve graduation) the possibility that you will attend graduate or professional school. 

When reporting income you should ignore the effects of price inflation. (NOTE TO 

READER: Before answering Question 1, students received classroom training related to 

these specific questions. The written instructions/example shown in this appendix after 

Question 1 are strongly related to the classroom training.) 

Question 1A. For ALL of question 1A, assume that you graduate from Berea. 

Think about the kinds of jobs that will be available for you and those that you would 

accept. Please write the FIVE NUMBERS that describe the income which you would 

expect to earn at the following ages or times under this hypothetical scenario. 

I. Your income during the first full year after you leave school 

| | 
lowest highest 

II. Your income at age 28 (note: if you are 20 years of age or older, give your income 10 

years from now) 

| | 
lowest highest 

III. Your income at age 38 (note: if you are 20 years of age or older, give your income 20 

years from now) 

| | 
lowest highest 
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Question 1B. For ALL of question 1B, assume that you graduate from Berea. Question 

1A did not make any assumptions about your final grade average. For this question, 

assume that you graduate with a grade point average of 2.0 (a C average). 

Please describe the income which you would expect to earn at the following ages or times 

under this hypothetical scenario. 

I. Your income during the first full year after you leave school 

| 
lowest 

| 
highest 

II. Your income at age 28 

| | 
lowest highest 

III. Your income at age 38 

| | 
lowest highest 

NOTE TO READER: In the paper, we also use close variants of Question 1, in which 

students were asked to consider scenarios in which they leave Berea after three years of 

study or graduate with other grade point averages (GPA) (3.00 and 3.75). 

INSTRUCTIONS AND EXAMPLE To illustrate what we are asking you to do, 

consider the following example. A student is asked to describe what she thinks about 

how well she will do on an exam before taking it. Before the exam the person will not 

know exactly what grade she will receive. However, she will have some idea of what 

grade she will receive. Suppose that the person believes that the lowest possible grade 

she will receive is a 14 and the highest possible grade is 100 (so she believes that there 

is no chance that she will receive less than a 14 and some chance she will earn as high as 

100). 

1) The above person would begin by indicating the lowest and highest value on the line. 

(We will provide the lines for you whenever they are needed.) 

14 100 

| | 
lowest highest 

2) The person would then divide the values between 14 and 100 into four intervals so 

that she thinks that there is a 25% chance that her grade will be in each interval. For 

example, suppose that the person marked three points between 14 and 100 and labeled 

them 52, 80 and 92. 
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14 54 80 92 100 

| | | | | 
lowest highest 

This would mean that the person thinks there is a 25% chance she will get a grade 

between 14 and 52. Similarly, the person thinks there is a 25% chance she will get a 

grade between 52 and 80, a 25% chance she will get a grade between 80 and 92, and 

there is a 25% chance she will get a grade between 92 and 100. (This also means that 

the person thinks that there is a 50% chance she will get a grade less than 80 and a 50% 

chance that she will get a grade higher than 80.) 

NOTE that the intervals o not have to have the same widths. For example, the interval 

between 14 and 52 is wider than the other intervals. This suggests that the student 

believes that she has a smaller chance of receiving a particular grade in this interval than 

a particular grade in the higher intervals. For example, the person may think that she is 

less likely to receive a 30 than 82. 

A different person taking the exam might have very different views about how he 

might do on the exam. For example, a student might fill in the line to look like 

0 32 51 63 90 

| 
lowest 

| | | | 
highest 

This student thinks that the smallest possible grade is 0 and the highest possible grade 

he will receive is 90. When compared to the other student, this student thinks he is more 

likely to get a lower grade. For example, he thinks that there is a 25% chance he will 

get a grade less than 32. There is a 25% chance he will get a grade between 32 and 51. 

The chance that he gets a grade higher than 63 is only 25%. This person thinks there is 

a 50% chance he will get less than 51 and a 50% chance he will get more than 51. 

We will be asking you questions about income instead of grades. However, the process 

will be the same as above. For each question, please do the following: 

1) Write the lowest and highest possible incomes above the words lowest and 

highest on the line. Give the salary in thousands of dollars. If you write 15, you will 

mean $15,000. If you write 120, you will mean $120,000. 

2) Mark three points on the line between the lowest and highest values and 

write an income above each point. These income values should divide the line into 

four intervals. As in the previous example, the numbers should be chosen so that there 

is a 25% chance that your income will be in each interval. The middle value you write 

should be the number such that there is a 50% chance that you will make more money 

and a 50% chance you will make less money. 
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Note: For each line you should enter five numbers. 

The following questions will ask you about the income you would expect to earn 

under several hypothetical scenarios. Each of the questions will have the same format. 

In particular, each question will be divided into three parts. Each part will ask you the 

income that you will earn at a particular time in your life. The questions will differ in 

their assumptions about how far you go in school an how well you do in classes. In the 

first three questions, we will ask you about your income under several scenarios in which 

you do not graduate. In the last four questions, we ask you about your income under 

several scenarios in which you graduate with different grade point averages. 
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Question 2. We realize that you do not know exactly how well you will do in classes. 

However, we would like to have you describe your beliefs about the grade point average 

that you expect to receive in the first semester. Given the amount of study-time you 

indicated, please tell us the percent chance that your grade point average will be in each 

of the following intervals. That is, for each interval, write the number of chances out of 

100 that your final grade point average will be in that interval. 

Note: The numbers on the six lines must add up to 100. 

Interval Percent Chance(number of chances out of 100) 

[3.5,4.00] 

[3.0,3.49] 

[2.5,2.99] 

[2.0,2.49] 

[1.0,1.99] 

[0.0,0.99] 

Note: A=4.0, B=3.0, C=2.0, D=1.0, F=0.0 

Question 3. Your grades are influenced by your academic ability/preparation and how 

much you decide to study. However, your grades may also be influenced to some extent 

by good or bad luck which may vary from term to term and may be out of your control. 

Examples of “luck” may include 1) The quality of the teachers you happen to get and 

how hard or easy they grade; 2) Whether you happened to get sick (or didn’t get sick) 

before important exams; 3) Whether a noisy dorm kept you from sleeping before an 

important exam; 4) Whether you happened to study the wrong material for exams; 5) 

Whether unexpected personal problems or problems with your friends and family made 

it hard to concentrate on classes. 

We would like to know how important you think “luck” is in determining your grades 

in a particular semester. We’ll have you make comparisons relative to a semester in which 

you have “average” luck. Average luck means that a usual number of things go right and 

wrong during the semester. Assume you took classes at Berea for many semesters. 

BAD LUCK IN A TERM MEANS THAT YOU HAVE WORSE THAN AV

ERAGE LUCK IN THAT TERM 

Assume for this section that you are in a semester in which you have bad luck 

In what percentage of semesters that you have bad luck would bad luck lower your grade 

point average (GPA) by between 0.00 points and 0.25 points? 
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(If you are taking four courses, bad luck would lower your GPA by 0.25 points if bad
 

luck led to a full letter grade reduction in one of your courses.)
 

In what percentage of semesters that you have bad luck would bad luck lower your grade
 

point average (GPA) by between 0.26 points and 0.50 points?
 

(If you are taking four courses, bad luck would lower your GPA by 0.50 points if bad luck
 

led to a full letter grade reduction in two of your courses or a two letter grade reduction
 

in one of your courses.)
 

In what percentage of semesters that you have bad luck would bad luck lower your grade
 

point average (GPA) by 0.51 or more points?
 

(For a student taking four courses, this would mean that bad luck would lead to a full
 

letter grade reduction in three or more courses.)
 

The numbers in the three spaces above should add up to 100(because if you are
 

in a semester where you have bad luck, bad luck must lower your grades by between 0
 

and 0.25 points, or by between 0.25 and 0.5 points, or by more than 0.5 points).
 

GOOD LUCK IN A TERM MEANS THAT YOU HAVE BETTER THAN 

AVERAGE LUCK IN THAT TERM 

Assume for this section that you are in a semester in which you have good 

luck 

In what percentage of semesters that you have good luck would good luck raise your grade 

point average (GPA) by between 0.00 points and 0.25 points compared to a semester in 

which you received “average” luck? 

(If you are taking four courses, good luck would raise your GPA by 0.25 points if good 

luck led to a full letter grade increase in one of your courses.) 

In what percentage of semesters that you have good luck would good luck raise your grade 

point average (GPA) by between 0.26 points and 0.50 points compared to a semester in 

which you received “average” luck? 

(If you are taking four courses, good luck would raise your GPA by 0.50 points if good 

luck led to a full letter grade increase in two of your courses or a two letter grade increase 

in one of your courses.) 

In what percentage of semesters that you have good luck would good luck raise your 

grade point average (GPA) by 0.51 or more points compared to a semester in which you 

received “average” luck? 

(For a student taking four courses, this would mean that good luck would lead to a full 

letter grade increase in three or more courses.) 

The numbers in the three spaces above in the good luck section should add 

up to 100(because if you are in a semester where you have good luck, good luck must 

increase your grades by between 0 and 0.25 points, or by between 0.25 and 0.5 points, or 

by more than 0.5 points). 
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Question 4. What is the percent chance that you will eventually graduate from Berea
 

College? Note: Number should be between 0 and 100 (could be 0 or 100).
 

Question 5. We realize that you may not be sure exactly what area of study you will
 

eventually choose. In this first column below are listed possible areas of study. In the
 

second column write down the percent chance that you will have this area of study (note:
 

the percent chance of each particular area of study should be between 0 and 100 and the
 

numbers in the percent chance column should add ip to 100).
 

Humanities include Art, English, Foreign Languages, History, Music, Philosophy, Reli

gion, and Theatre.
 

Natural Science and Math includes Biology, Chemistry, Computer Science, Physics
 

and Mathematics.
 

Professional Programs include Industrial Arts, Industrial Technology, Child Develop

ment, Dietetics, Home Economics, Nutrition, and Nursing.
 

Social Sciences include Economics, Political Science, Psychology and Sociology.
 

Area of Study Percent Chance
 

1. Agricultural (and Natural Resources) 

2. Business 

3. Elementary Education 

4. Humanities 

5. Natural Science & Math 

6. Physical Education 

7. Professional Programs 

8. Social Sciences 

Question 6. After graduating there are different types of jobs that you may hold. 

For Question 6 and 7, NO-DEGREE-NEEDED means all jobs that do not require a 

college degree. DEGREE-ANYAREA means all jobs that require a college degree of 

any type. DEGREE-MYAREA means all jobs that require a college degree specifically 

in your area of study. Please tell us the percent chance that your first job after graduating 

will be in each of these types of jobs. 

Job-Type Percent Chance 

NO-DEGREE-NEEDED 

DEGREE-ANYAREA 

DEGREE-MYAREA 

Note: The numbers should add up to 100 and all numbers should be between 0 and 100. 

Write 0 if there is no chance that you will have a particular type of job. Write 100 if you 

know for sure that you will have a particular type of job. 
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Question 7. It is possible that how happy you will be in your job will depend on what 

type of job you have since different types of jobs require different types of work. Suppose 

you were offered the same pay to work in a NO-DEGREE-NEEDED job, a DEGREE

ANYAREA job, and a DEGREE-MYAREA job. Which would you choose? Circle one. 

NO-DEGREE-NEEDED DEGREE-ANYAREA DEGREE-MYAREA 

If NO-DEGREE-NEEDED, skip to 7.1. If DEGREE-ANYAREA, skip to 7.2. 

If DEGREE-MYAREA, skip to 7.3. 

7.1 IF you circled NO-DEGREE-NEEDED 

You have indicated that you would enjoy working in a NO-DEGREE-NEEDED job more 

than in either a DEGREE-ANYAREA job or a DEGREE-MYAREA job if all the jobs 

had the same pay. Therefore, in order to be convinced to choose a DEGREE-ANYAREA 

job or a DEGREE-MYAREA job, you would have to receive a job offer which paid more 

money than the job offer in your NO-DEGREE-NEEDED job. 

If the NO-DEGREE-NEEDED job paid $30,000, how much would you have to be paid 

by the DEGREE-ANYAREA job to convince you to choose the DEGREE-ANYAREA 

job instead? Note: should be more than $30,000. 

If the NO-DEGREE-NEEDED job paid $30,000, how much would you have to be paid 

by the DEGREE-MYAREA job to convince you to choose the DEGREE-MYAREA job 

instead? Note: should be more than $30,000. 

7.2 IF you circled DEGREE-ANYAREA 

You have indicated that you would enjoy working in a DEGREE-ANYAREA job more 

than in either a NO-DEGREE-NEEDED job or a DEGREE-MYAREA job if all the 

jobs had the same pay. Therefore, in order to be convinced to choose a NO-DEGREE

NEEDED job or a DEGREE-MYAREA job, you would have to receive a job offer which 

paid more money than the job offer in your DEGREE-ANYAREA job. 

If the DEGREE-ANYAREA job paid $30,000, how much would you have to be paid by 

the NO-DEGREE-NEEDED job to convince you to choose the NO-DEGREE-NEEDED 

job instead? Note: should be more than $30,000. 

If the DEGREE-ANYAREA job paid $30,000, how much would you have to be paid 

by the DEGREE-MYAREA job to convince you to choose the DEGREE-MYAREA job 

instead? Note: should be more than $30,000. 

7.3 IF you circled DEGREE-MYAREA 

You have indicated that you would enjoy working in a DEGREE-MYAREA job more 

than in either a NO-DEGREE-NEEDED job or a DEGREE-ANYAREA job if all the 

41
 



jobs had the same pay. Therefore, in order to be convinced to choose a NO-DEGREE

NEEDED job or a DEGREE-ANYAREA job, you would have to receive a job offer which 

paid more money than the job offer in your DEGREE-MYAREA job. 

If the DEGREE-MYAREA job paid $30,000, how much would you have to be paid by 

the NO-DEGREE-NEEDED job to convince you to choose the NO-DEGREE-NEEDED 

job instead? Note: should be more than $30,000. 

If the DEGREE-MYAREA job paid $30,000, how much would you have to be paid by 

the DEGREE-ANYAREA job to convince you to choose the DEGREE-ANYAREA job 

instead? Note: should be more than $30,000. 

Question 8. Suppose during this school year that you searched seriously for a job. You 

may not know exactly how long it would take to find a job. What is the percent chance 

that it would take the following amounts of time to receive a job offer from the time you 

start searching seriously? 

Note: A serious job search is one that involves actively looking for a job by participating 

in activities such as on-campus interviewing, reading and responding to want-ads, or 

contacting potential employees even if they have not posted want ads. 

Amount of time to find a job-Interval Percent Chance 

[0,1) months 

[1,2) months 

[2,3) months 

[3,5) months 

[5,6) months 

6 months or more 
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B Approximation Error: Normal Versus Log-normal 

When computing subjective income distributions using either normal or log-normal dis

tributions, we have only used data on the median (Cit
3 ) and the difference between first 

and third quartiles (Cit 
4 − Cit 

2 or Cit
4 /Cit

2 ). Hence, for either the normal and log-normal 

distributions, the three quartiles reported in the data (Cit
2 , Cit

3 , Cit
4 ) will not partition 

the support of the subjective income distribution into four segments that each have a 

probability of .25, unless the distributional assumption is exactly correct. Therefore, we 

evaluate the validity of a particular distributional assumption using the loss function: 

AE(D) = 
N 
1	 

N 

[(F (Cit
3 ; D)−F (Cit

2 ; D)−0.25)2 +(F (Cit
4 ; D)−F (Cit

3 ; D)−0.25)2], (21) 
i=1 

where F (w; D) is the cdf of the distribution computed using distributional assumption 

D. 

Using the same sample as in Section 3, we compute the value of AE(D) for D = 

normal and D = log-normal. We find that AE(normal) = 0.0101 and AE(log-normal) = 

0.0103. Hence, we conclude that the fit of the two distributions is quite similar with, if 

anything, the normal having a slightly better fit. 

C Approach 2: Computation Details 

C.1	 Construction of E(Wit|Git = git) and std(Wit|Git = git) (or, 

equivalently, var(Wit|Git = git)) at Realizations of Git Other 

than 2.00, 3.00 or 3.75 

Survey questions eliciting subjective income distributions conditional on final GPA are in 

the same form as the survey questions eliciting unconditional subjective income distribu

tions shown in Question 1 of Appendix A. Hence, assuming either a log-normal, normal, 

or stepwise uniform distribution, Approach 1 can be used to compute E(Wit|Git = git) 

(henceforth, E(Wit|git), for the ease of notation) and std(Wit|Git = git) (henceforth, 

std(Wit|git)) for git = 2.00, 3.00, or 3.75. However, we need to approximate E(Wit|git) 
and std(Wit|git) for all other possible values of git. Following a straightforward inter

polation approach adopted in Stinebrickner and Stinebrickner (2014b), we assume that 

both E(Wit|git) and std(Wit|git) are linear between git = 2.00 and git = 3.00. We also 

assume that E(Wit|git) and std(Wit|git) are linear between git = 3.00 and git = 4.00, with 

the slope being identified by the observed values at git = 3.00 and git = 3.75 (i.e., we 

extrapolate values of E(Wit|git) and std(Wit|git) between git = 3.75 and git = 4.00). 
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C.2 Construction of the subjective final GPA distribution, FGit (git) 

In this subsection we discuss how we construct the subjective distribution Gi0 describing 

beliefs, at the time of college entrance, about final cumulative GPA. A student’s final 

GPA, Gi, is the average of the student’s semester GPA over her eight semesters, k=1,...,8, 

subject to the constraint that the student obtains the 2.0 average that is needed to 

graduate. Thus, Gi0 is given by: 

8 8 

Gi0 = Gk
i0/8, if Gk

i0/8 ≥ 2, (22) 
k=1 k=1 

where Gk
i0 is the subjective distribution describing beliefs, at time t = 0, about semester 

GPA in semester k. 

We view Question 2 in Appendix A as eliciting a student’s subjective distribution 

about GPA in a typical future semester. That is, it elicits the marginal distributions of 

Gk
i0, k = 1, ..., 8. The fact that Gi0 is the average of the Gk

i0’s implies that the mean of Gi0 

is given by the mean of the distribution elicited by Question 2. However, computing the 

variance of Gi0 requires additional information describing beliefs about how the Gk
i0’s are 

correlated across semesters. For example, if students believe that grades are independent 

across time, then the variance of Gi0 would be found by dividing the variance elicited 

by Question 2 by the number of semesters (eight). On the other hand, this type of 

“averaging out” would not occur and the variance of Gi0 would tend to be considerably 

larger if a student believes that grade performance is highly (positively) correlated across 

time. To formalize this notion, we denote a latent grade belief variable: 

G̃k = ai0 + ξk , where Gk = 0 if G̃i
k 
0 < 0, Gk = 4 if G̃i

k 
0 > 4, and Gk = G̃k , otherwise. i0 i0 i0 i0 i0 i0

(23) 

ai0 represents student i’s (t = 0) beliefs about permanent (academic) ability and ξi
k 
0 

describes i’s (t = 0) beliefs about the mean-zero transitory shock component of grades 

which is independent across semesters k. Thus, the Gk
i0’s will tend to be highly correlated 

if uncertainty in Survey Question 2 reflects uncertainty about ability and will have a 

smaller correlation if uncertainty in Survey Question 2 reflects a belief that there exists 

substantial transitory variation. Survey Question 2 alone provides only information about 

the total amount of uncertainty about grade performance. To differentiate between the 

two sources of uncertainty, we take advantage of Survey Question 3, which quantifies the 

importance of uncertainty due to the transitory shock component by asking students to 

report the probability that their grades in a semester would turn out to be 0.25 points 

and 0.5 points higher than expected due to good luck (and also bad luck). 

In terms of implementation, we assume that ai0 and ξi
k 
0 are normally distributed: 

ai0 ∼ N(µa
i0, σi

a 
0) and ξk ∼ N(0, σξ ). For each student, we numerically search for the set i0 i0


a
of parameters {µ , σa , σξ } that minimizes a weighted sum of the discrepancies between i0 i0 i0
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observed and model implied probabilities. We weight each category by its associating 

probability to account for the fact that errors in categories with lower probability have less 

impact on the computation of unconditional moments of subjective income distribution.37 

Formally, we have: 

 	 g g g{µ ai0, σ ia 
0, σ

ξ } = argmin P rmodel(G
k ∈ cat )(Probs(G

k ∈ cat )−Prmodel(G
k ∈ cat ))2 

i0	 i0 j i0 j i0 j 
gcat ∈CAT g 
j 

ξ ξ	 ξ+	 Prmodel(ξi
k 
0 ∈ catj )(Probs(ξi

k 
0 ∈ catj ) − Prmodel(ξi

k 
0 ∈ catj ))

2 , (24) 
catj∈CAT ξ 

j 

where CAT g = {[3.5, 4.00], [3.0, 3.49], [2.5, 2.99], [2.0, 2.49], [1.0, 1.99], [0.0, .99]} and CAT ξ = 

{(−∞, −0.5], (−0.5, −0.25], (−0.25, 0], (0, 0.25], (0.25, 0.5], (0.5, ∞)}. 
Once parameters {µi

a 
0, σi

a 
0, σ

ξ } are estimated, we can approximate the distribution of i0

Gi0 by simulation using equation (22) and (23). 

D	 Expressing E(Wit) as a weighted sum of E(Wit|Git = 

2.00), E(Wit|Git = 3.00), and E(Wit|Git = 3.75) 

We show that E(Wit) can be expressed as a weighted sum of E(Wit|Git = 2.00), E(Wit|Git = 

3.00), and E(Wit|Git = 3.75). For the ease of notation, we write E(Wit|Git = git) as 

E(Wit|git). Hence, 

4 

E(Wit) = EGit (E(Wit|Git)) = E(Wit|git)dFGit (git) 
2 

3	 E(Wit|3.00) − E(Wit|2.00) 
= [E(Wit|2.00) +	 (git − 2)]dFGit (git) 

2	 3.00 − 2.00
 
4 E(Wit|3.75) − E(Wit|3.00)
 

+ [E(Wit|3.00) +	 (git − 3)]dFGit (git) 
3	 3.75 − 3.00
 
3
 git − 2	 git − 2 

= [E(Wit|2.00)(1 − ) + E(Wit|3.00) ]dFGit (git) 
2	 3.00 − 2.00 3.00 − 2.00
4 git − 3	 git − 3 

+ [E(Wit|3.00)(1 − ) + E(Wit|3.75) ]dFGit (git)3.75 − 3.00	 3.75 − 3.003 

λG = it E(Wit|G) G = 2.00, 3.00 or 3.75, (25) 
G 

3	 3 4
where λ2

i
.00 = (3 − git)dFGit (git), λ

3
i
.00 = (git − 2)dFGit (git) + (1 − git−3 )dFGit (git)2	 2 3 0.75 

git−3and λ3.75 = 4 
i dFGit (git).3	 0.75 

37We have also estimated a non-weighted version. The results are similar. 
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E Magnitude of the Measurement Error 

In this section, we show that equation (12), along with additional assumptions, implies 

equation (13). Recall that equation (12) states: 

λgit ςgitEE1(Wit) − EE2(Wit) = ςi − i i . (12 revisited) 
git 

Taking the expectation of the square of both sides, we have: 

λgit ςgitvar(EE1(Wit) − EE2(Wit)) = var(ςi − i i )
 
git
 

ςgit= var(ςi) + var(λg
i 
it 

i ) (independence of MEs) 
git 

E((λgit )2)E((ςgit )2) − (E(λgit )E(ςgit= var(ςi) + ))2 
i i i i 

git 

(λgit 
i ςgit 

i|= )
 

= var(ςi) + E((λg
i 
it )2)var(ςi

git ) 
git 

(E(ςi) = 0 and E(ςi
git ) = 0) 

= var(ςi)[1 + E((λi
git )2)]. (var(ςi) = var(ςi

git )) 
git 

Therefore, 

var(EE1(Wit) − EE2(Wit)) 
var(ςi) = . (13 revisited) 

1 + E((λg
i 
it )2)git 

F Taking into Account Interpolation Errors 

In Section 3.2.2, we note that interpolation error could be introduced into our computa

tions because it is necessary to interpolate the means of subjective income distributions 

conditional on values of GPA other than 2.00, 3.00 or 3.75. In addition, errors can be 

introduced because it is necessary to compute distributions of final GPA from data. In 

this appendix, we show that taking into account these errors would lead to a smaller 

value of var(ςi), implying a larger estimate of our measure of true heterogeneity. 

We start by describing how we incorporate both types of errors into our analysis. With 

respect to the potential error introduced during the computation of the distribution of 

final GPA, we denote FGit (git) and FEGit (git) as the true CDF and the computed CDF of 

Git, respectively. We allow the CDFs to potentially differ from each other and denote 

the difference as FG
Δ 
it 
(git) = FEGit (git) − FGit (git). 

For ease of notation, we denote a vector that includes (E(Wit|Git = 2.00), E(Wit|Git = E3.00), E(Wit|Git = 3.75)) as EW , and a vector that includes ( EE(Wit|Git = 2.00), E(Wit|Git = Git 

46
 



  
  
  
 

  
 

  
      

 

 

i 

3.00), EE(Wit|Git = 3.75)) as EEWGit 
.
 The interpolation approach that we use to compute
 

the mean of subjective income distributions conditional on values of GPA other than 2.00,
 

3.00, or 3.75 is essentially a mapping from EE
 to EE(Wit|Git = git), git  = 2.00, 3.00, 3.75. 

). Note that the difference between the com-

W
Git 

We denote this mapping as EEW (git; EE
puted value of the conditional mean, EEW (git; EE

W
Git 

git), is a result of both the measurement error, 

W
Git 

W
Git 

), and the true value of conditional EEW
Git 

) − E(Wit|Git = git). 

The mean of subjective income distribution computed using Approach 2, E
E(Wit|Git 

, ς3.75 

− E
mean,
 =
 =
 

(ς2.00 ), and the interpolation error, EEW (git; EW
Git

, ςi 
3.00 

i 

E2(Wit), is 

then given by, 

4 4 E E EE2(Wit) = E(Wit|Git = git)dFEGit (git) = EW (git; EE )d EFGit 
W
G

W
G

it 

= git)dFEGit (git) + (EEW (git; EE it 

(git) 
2 2 
4 4 

= git))dFEGit
E(Wit|Git ) − E(Wit|Git (git)=
 

2 2 
4 4 

= E(Wit|Git = git)dFGit (git) + E(Wit|Git = git)dF Δ (git)Git 
2 2
 

4
 

(EEW (git; EE ) − E(Wit|Git = git))dFEGit 

4 4 

W
Git 

(git)+
 
2 

(EEW (git; EE ) − EEW (git; E ))dFEGit = git)dFG
Δ 
it 
(git) + W

G
W
Git it 

(git) (26) 

= E(Wit) + E(Wit|Git 
2 

W
Git 

(git) 
2 

4 

(EEW (git; E = git))dFEGit
) − E(Wit|Git+
 

2 

Following steps similar to those in Section D, we can show that: 

4 

λEgit(EEW (git; EE )−EEW (git; E ))dFEGit 
W
G

W
Git it 

2 git 

(27) 
3 3 4

λ2.00 λ3.00 (1 − git−3where Ei = (3 − git)dFEGit (git), Ei = (git − 2)dFEGit (git) + )dFEGit (git)2 2 3 0.75
 

λ3.75 git−3
and E = 4 
d E (git).i 3 0.75 FGit 

ςgit 
i(git) = , git = 2.00, 3.00 or 3.75,i 

4 4
( E≡ E(Wit|Git = git)dF Δ (git) + EW (git; E2 Git 2 

W
Git 

(git), equation (26) can be written as: 

E Eλgit ςgitE2(Wit) = E(Wit) + i i +Δit git = 2.00, 3.00 or 3.75. (28) 
git 

) − E(Wit|GitDenoting Δit =
 

git))dFEGit 

Taking the difference between the mean computed using Approach 1 and the mean com

puted using Approach 2, we obtain: 

λgit ςgitEE1(Wit) − EE2(Wit) = ςi − E
i i − Δit git = 2.00, 3.00 or 3.75. (29) 

git 
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Recall that ςi and ςi
git , git = 2.00, 3.00 or 3.75, are, by assumption, independent of other 

factors. Hence, they are independent of Δit since none of them show up in the expression 

of Δit. Taking the variance of both sides of equation (29), we find: 

λgit ςgitvar(EE1(Wit) − EE2(Wit)) = var(ςi − E
i i ) + var(Δit) 

git 

= var(ςi)[1 + E((Eλi
git )2)] + var(Δit) 

git 

≥ var(ςi)[1 + E((λEigit )2)]. (30) 
git 

Therefore, 

var(EE1(Wit) − EE2(Wit)) 
var(ςi) ≤ . (31) 

1 + E((λEigit )2)git 

Since both Eλi
git in this section and λg

i 
it in Section 3.2.2 are computed using the same 

distribution of Git (we assume that there is no error in the distribution of Git in Section 

3.2.2), they are numerically identical. Thus, the right side of equation (31) is numerically 

identical to the right side of equation (13). As a result, equation (31) shows that our 

estimates of var(ςi) reported in Table 4 should be considered as upper bounds for the 

true value of var(ςi). 

G Estimation of κ 

We show that κ can be estimated from the evolution of individual income beliefs. Recall 

that student i’s expectation about wi
a,s at the beginning of college and at the end of the 

third year are denoted as EW a,s and EW a,s, respectively. As explained in the text: i0 i3 

EW a,s a,s= µi0 i0 

EW a,s a,s 
i
sσa,s= µ + ρsv . (32)i3 i0 i0 

Taking the difference of the two equations, we have: 

EW a,s − EW a,s sσa,s= ρsv . (33)i3 i0 i i0 

EW a,0−EW a,0 EW a,1−EW a,1 
i3 i0 i3 i0Denote the covariance matrix of (
σa,0 , 

σa,1 ) as Π, with the (p, q)th entry 
i0 i0 

denoted by Πpq. Equation 33 implies that: 
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0 0 1ρ2 

0var(vi ) ρ0ρ1corr(vi , vi )Π =
0 1 1ρ2ρ0ρ1corr(vi , vi ) 1var(vi )  

0 0 1ρ20var(v ) ρ0ρ1κ var(v )var(v )i i i = . (34)
0 1 1ρ0ρ1κ var(vi )var(vi ) ρ1

2var(vi )

Π12Π21Hence, κ = .
Π11Π22 

In the BPS dataset, students were asked to report their expectations about future 

income at the time of college entrance and at the end of each academic year. Therefore, 
EW a,0−EW a,0 EW a,1−EW a,1 

i3 i0 i3 i0we are able to compute both 
σa,0 and 

σa,1 for students who remain in the 
i0 i0 

sample at the end of the third year. The sample analog of Π can be computed accordingly. 

However, due to the potentially non-random attrition of our sample, this sample analog 

might not consistently estimate Π. Therefore, we also consider the following alternative. 

We further decompose ρsvi
s into independently distributed factors that are realized 

in Year 1, Year 2 and Year 3, respectively; 

3 
s s,jρsvi = ρs,j vi , (35) 

j=1 

s,j 3where v s are standard normal and ρ2 = ρ2 . It follows that: i j=1 s,j s

EW a,s − EW a,s s,1σa,s . (36)i1 i0 = ρs,1vi i0 

0,j 1,j and EW a,sDenote δj = corr(v , v ). Data on EW a,s are collected at the beginning i i i1 i0 

and end of the first year, respectively. Since the majority of dropout takes place after the 

end of the first year, sample attrition is arguably random. Hence, κ1 can be consistently 
EW a,0−EW a,0 EW a,1−EW a,1 

i1 i0 i1 i0estimated from the sample covariance matrix of 
σa,0 and 

σa,1 . Under 
i0 i0 

the assumption that κj is constant over j, it can be shown that κ = κ1. 

Table 11: Estimates of κ 

a = 1 Year Out a = 28 Average 
EW a,s 

i3 − EW a,s 
i0 0.4069 0.4999 0.4534 

EW a,s 
i1 − EW a,s 

i0 0.5393 0.5818 0.5605 

EW a,0−EW a,0 EW a,1−EW a,1 
i3 i0 i3 i0Note that we can compute the sample covariance matrix of (
σa,0 , 

σa,1 ) 
i0 i0 

EW a,0−EW a,0 EW a,1−EW a,1 
i1 i0 i1 i0and (
σa,0 , 

σa,1 ) and estimate κ for both a = 4 (first year out of college) 
i0 i0 

and a = 10 (age 28 or 10 years after college entrance). Hence, in total, we can obtain 4 

estimates of κ. 

Estimation results are summarized in Table 11. Depending on which sample covari

ance matrix is used, κ is estimated to be between 0.4069 and 0.5818. We find that, the 

estimate of κ is reasonably robust to the choice of a. In the main text, we choose to 
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set κ to 0.5605, which is the average of the two estimates computed using the sample
 
EW a,0−EW a,0 EW a,1−EW a,1 

i1 i0 i1 i0covariance matrix of (
σa,0 , 

σa,1 ). 
i0 i0 
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