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Abstract

The evolution of fifth-generation (5G) and Beyond mobile technologies is spurred by the rapid

demands and high-end requirements of next-generation mobile networks. It is imperative that

advanced intelligence and machine learning techniques address these dynamic requirements

by supporting network operations in terms of maintenance, servicing, and performance. The

Third Generation Partnership Project (3GPP) has outlined a Network Data Analytics Function

(NWDAF) for 5G Core (5GC) networks that should provide predictive network maintenance

and improve network performance in these dynamic networks, and which must leverage the

capabilities of artificial intelligence, machine learning, and advanced data analytics methods

to satisfy its specification requirements. The work presented in this thesis surveys the current

trends and future outlooks for 5G Core networks, in addition to presenting the capabilities of

an implemented NWDAF, in emulated 5G environments, towards addressing a scaling opti-

mization problem for Network Functions (NFs) in the 5G Control Plane. The insights from the

NWDAF and its support in analytical and optimization problems justify its use as more than a

network monitoring and data aggregation tool, but as an intelligence engine that will drive 5G

and Beyond networks to satisfy user demand and improve consumer experience altogether.

Keywords: Future Networks, 5G, 5G Core, 6G, NWDAF, Intelligent Networks, Network
Function Virtualization, Software-Defined Networking, Machine Learning, Predictive Main-
tenance
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Summary for Lay Audience

Modern networks continue to brace for an increasing number of mobile devices such as smart-

phones, cars, and smart home appliances/accessories. Mobile network providers are faced with

the difficult mission of preparing future networks to accommodate user demand in addition to

providing the utmost experience and achieving quality requirements. Enabling technologies

allow these networks to efficiently minimize costs of operations and maintenance, while at the

same time, improving network performance; however, service providers must also consider the

issues of their integration, including placement within the network, reliability of provided ser-

vices, and the guarantee for high-importance applications’ needs to be constantly met. Modern

and future networks are exploring new inter-network functionalities that are focused on data

analytics and new services tailored towards advanced operations and maintenance. This is

what is referred to as intelligent networking: it elucidates the ability of the network to recog-

nize events of congested network traffic or points of failure and formulates decisions for the

network (predictive maintenance) to accommodate these new requirements, through instantia-

tion of new network function instances for example. These intelligent networking techniques

leverage the use of machine learning, artificial intelligence, and advanced data analytics tech-

niques to aid networks in their operations for the purpose of improving overall performance

as well as user experience. The methodology of intelligent networking, as mentioned, can be

categorized into a subfield of mathematics known as operations research. The work presented

here demonstrates the use of network optimization models and statistical decision analysis to

improve network capabilities through simulation: specifically, a scaling optimization problem

is addressed, involving how many instances of a network function are required to best serve

the network and/or end users. The goal of this research is to justify the use of advanced intel-

ligence as working engines in future networks for the purpose of improving performance and

satisfying customer demands as required.
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Chapter 1

Introduction

The advent of fifth-generation (5G) mobile technology is situated to meet the rapid demands

and high-end requirements of next-generation mobile networks. The continuous growth of the

number of wireless devices, data usage, and expected Quality of Service (QoS) has influenced

the evolution of cellular networks and spurred the development of state-of-the-art solutions

to address it [1]. 5G networks will focus on enhancing consumer experience through uninter-

rupted communication services and device connectivity, along with connected intelligent trans-

portation systems and a low-cost communication network-operator-centric infrastructure [2].

In addition, 5G networks are anticipated to realize features such as zero-latency (low latency in

the order of 1 ms), high-speed transmission rates (in the order of Gigabits per second), 10-100

times higher data rate than 4G, 1000 times higher mobile data volume per area, and 99.999%

availability [3]. These envisioned 5G networks, with their apparent and revolutionary advan-

tages compared to 4G networks, require novel and demanding technologies, architectures, and

methodologies, such as Network Function Virtualization (NFV) and Software-Defined Net-

works (SDN) [4]. Rather than a sheer enhancement of the 4G architecture (i.e., additional ca-

pacity), these 5G networks will consolidate the conceptualization, visualization, and redesign

of networking system architectures en masse.

The International Telecommunication Union (ITU) classifies 5G networking into three cat-

1



2 Chapter 1. Introduction

egories based on industrial and consumer demand: Ultra-Reliable Low Latency Communica-

tions (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine-Type Commu-

nications (mMTC). The importance of URLLC is that it focuses on connections with ultra-low

latency, where the data rate is not expected to be very high, but it must offer high mobility.

Typical applications of URLLC involve mission-critical applications, such as remote medical

assistance. In contrast, eMBB focuses on a higher data rate for larger payload applications,

such as high-speed internet gaming, virtual reality (VR), and augmented reality (AR). Relative

to URLLC, mMTC focuses on IoT connectivity (large number of devices), but with low relia-

bility. In particular, it focuses on long-range communication with asynchronous access, which

is intended for applications such as embedded, low-power devices [5].

In order to satisfy strict QoS requirements in URLLC, edge communications solutions have

been provided by researchers to bring resources closer to UE devices [6]. An issue such as end-

to-end delay and reliability can possibly be solved with scheduling method optimization in

communication. In wide-area communication, the issue of precise and reliable communication

between controllers and slaves could be mitigated by mobility forecasting methods to improve

QoS [7]. The focus on core networks and core operations in modern networks is important

for blurring the distinction that previously existed in wireless networks. Core resources are

made closer to end users through edge computing, such as those located near base stations in

Radio Access Networks (RANs); however much core functionality may be supported at the

edge, it is not part of the core and may have its own set of issues. As well, core integration in

edge computing is an important issue as it may increase the risk of compromising previously

non-sensitive equipment and will impact integrity and confidentiality of future networks [8].

1.1 Research Contributions

The work outlined in the subsequent chapters introduces several research contributions, listed

as the following:



1.1. Research Contributions 3

• Chapter 2:

– Provides an extensive analysis on the structure and operations of the 5G Core, the

benefits and impact of 5G networks in modern applications, comparing and con-

trasting 5G architectures, detailing the advent and future paths for the Network

Data Analytics Function (NWDAF), and the associated challenges with regards to

maintaining QoS and user demand

– Highlights the contributions of enabling technologies in 5G and Beyond networks

to assess their impact on service providers’ integration and provisioning of network

microservices

– Summarizes the role of artificial intelligence (AI) in the NWDAF with a focus on

the benefits of AI in network data analytics and the major challenges preventing

widespread adoption and implementation in future networks

– Discusses the applications, benefits, and challenges of current and emerging 5G-

enabled use cases

• Chapter 3:

– Elucidates a preliminary analysis into the types of core network function data that

can be collected by the NWDAF

– Presents insights which can be drawn using the collected core network data

– Discusses how the NWDAF can be used to influence Management and Orchestra-

tion (MANO) activities, such as core network function placement

– Demonstrates an outlook for the state of future networks, the expected limitations

of 5G, and the motivation sparking the initial discussion of 6G networks.

• Chapter 4:

– Formulates a mixed-integer linear programming model for the AMF scaling opti-

mization problem



4 Chapter 1. Introduction

– Develops a load-balancing mechanism for the AMF load-balancing module

– Displays the use of a functional NWDAF and 5G Core prototype to generate data

for the scaling and load-balancing problems



Chapter 2

Network Data Analytics in Future

Networks: Trends, Outlooks, and Future

Directions for the 5G Core and Beyond

Networks

The structure of this chapter is as follows:

Section 2.1 provides an architectural overview of the 5G Core and its Network Functions

(NFs), including the NWDAF. Section 2.2 discusses the evolution from 4G to 5G to 6G and

Beyond networks. Section 2.3 discusses the 5G Core in relation to enabling technologies and

the challenges of implementing 5G microservices, along with outlining their performance and

operational requirements. Section 2.4 discusses the role of AI in the NWDAF in order to realize

zero-touch, fully automated networks, and presents the benefits, challenges and limitations, as

well as the emerging topic of advanced intelligence. Finally, section 2.5 concludes the chapter.

5
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2.1 Architecture of the 5G Core

The 5G network system is comprised of both the 5G Core (5GC), the Radio Access Network

(RAN), and the User Equipment (UE). The 5G system is designed to support services and data

connectivity, which would enable deployment using enabling technologies such as Network

Function Virtualization (NFV) and Software Defined Networking (SDN). The need for these

novel techniques is increasing due to the multitude of microservices offered by the service-

based architecture of the 5G network [9].

The 5GC architecture definition, in accordance with 3GPP, uses a SBA framework, where

the architectural elements are defined in terms of NFs rather than by traditional network en-

tities. All the network functions communicate with one another via common interfaces or

reference points. So, through this common interface, a network function provides services to

other authorized network functions as necessary [10]. The 5G Core is composed of network

functions with their individually associated microservices and responsibilities, including: the

User Plane Function (UPF) which handles the user data, the Application Function (AF) which

handles the applications, the external Data Network (DN), and other NFs (AMF, NRF, etc.)

[11].

The service-based architecture (SBA) for 5G networks is beneficial for decoupling network

functionalities to prioritize flexible service provisioning. A service can be defined as different

capabilities, which are loosely coupled within the 5G network, operating independently of one

another. Some important SBA framework sequences in 5G include service discovery, autho-

rization, and registration. The service-based interfaces (SBI) in the 5G Core connect different

network functions (NFs) to the Network Repository Function (NRF), which maintains NF pro-

files of available NF instances and supports NF discovery. The NRF stores the availability

of the different NF services that can be conducted on each NF instance when they report to

the NRF. In this context, one advantage of the 5G SBA is that it allows individual services to

be deployed on demand. As well, each service can be configured and updated independently

with minimal impact on other services. Some security risks with this architecture may involve
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some user privacy information transferred from one NF to another. Between NFs, an attacker

can eavesdrop on security information where it lacks integrity protection. Consequently, the

security context can be tampered with by attackers to make UE devices and NFs use different

security context information than previously assigned. For example, the Access and Mobility

Function (AMF) for one 5G Core operator may obtain subscriber data from the Unified Data

Management (UDM) for another operator, which can lead to user data integrity breaches [12].

The 5G network SDN architecture is notably comprised of three layers: the control layer,

the infrastructure layer, and the application layer. The layers can be expressed as the control

plane, user plane, and the application plane, respectively. The control plane is responsible

for linking the infrastructure layer and the application layer by open communication inter-

faces. The infrastructure layer contains forwarding elements, such as routers, access points,

and switches, that can be categorized as the data plane. By design, the application layer sat-

isfies user requirements related to consumer/business applications, which provision network

resources and services. Using this architecture, some examples of SDN applications include

cloud computing, load balancing, and network virtualization [13].

As in 4G Evolved Packet Core (EPC), the 5G Core infrastructure separates network func-

tions between the Control Plane and the User Plane by the Control and User Plane Separation

(CUPS) design principle. CUPS allows for independent scalability for each network function

and for flexibility in centralized or edge deployments [12]. In the 5G standalone (SA) architec-

ture, the 5G NR cells and the 5G Core network operate alone such that the NR cells are used

for both the control and user planes. Contrastingly, the 5G non-standalone (NSA) architecture

combines the NR radio cells using dual-connectivity to provide radio access. Based on the

network operator, the core network could, then, either be 5G Core or EPC. The NSA archi-

tecture requires close integration with the LTE RAN in 4G, but can provide 5G Core (5GC)

functionality to customers’ needs without combining resources with the current EPC (as in

4G) [12]. Regarding the RAN, the SA architecture supports simple management and handover

between 4G and 5G, but its disadvantage is that it will not be able to support the existing LTE
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RAN deployment if NR cells are used. The NSA architecture can support the existing LTE

deployment, but the disadvantage is that the LTE and NR cells must be closely integrated and

the end-user experience may be degraded. Regarding the core network, the EPC architecture

supports its current EPC deployment, but does not provide optional cloud support. In contrast,

the 5G Core easily supports cloud-native multi-access functionality; however, an entirely new

deployment is essential [14].

Network slicing is an important feature in the 5G Core, which enables a large variety of

services with diverse performance requirements by network virtualization. The network can be

typically viewed as an encapsulated slice and its services are bundled with proprietary hardware

supported by telecommunications equipment providers [15]. With the network virtualization

technology in 5G, open-networking software can be deployed flexibly on commodity hardware

to offer a multi-slice 5G core architecture where each slice can offer a different set of network

services [16]. For example, by provisioning the User Plane Functions (UPFs) with different

QoS requirements, the performance of such a multi-slice system can be compared with that of

a single-slice architecture under the same resource assignment. Furthermore, the proposed sys-

tem achieves better performance by slicing one UPF into three with proper resource allocation

[9].

In the context of UE operation, network slicing involves grouping devices, into a slice, with

similar performance requirements, such as delay, throughput, and transmission rate. However,

from the networking perspective, network slicing can be viewed as dividing physical networks

into multiple, isolated virtual networks. This network slicing architecture consists of three lay-

ers: the service instance layer, the network service instance layer, and the resource layer. The

service instance layer contains the consumer/business services, each operating on an individual

service instance. The network service instance layer outlines the network characteristics which

are defined by a network slice blueprint, a complete description of the structure and configura-

tion of a network slice instance, and required by a service instance. Finally, the resource layer

can be expressed as the underlying network infrastructure of NFs operating under the network
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service instance layer [13].

Network slicing in the RAN is intended for flexible resource management and sharing.

This slicing implementation is best approached by a software-defined RAN. Resource sharing

between different slices is accomplished by controller scheduling and allocation within the

RAN. The controller allocates resources to a network slice according to service requests in

response to events such as an increase in traffic load. For example, RAN slicing requires the

decomposition of NFs in order to determine the hardware specifications and requirements for

each functionality [6].

NSSF

AUSF UDM

AMF

PCF

UPF

SMF

5G RAN

Main 
NWDAF

N13 N10

N11

N7

Mobile NWDAF

Mobile NWDAF

Mobile NWDAF

Figure 2.1: 5G Core Architecture with Distributed NWDAF

2.1.1 Network Functions

The following subsections detail the core components, and any standard names for NF-to-NF

interaction interfaces outlined by the 3GPP, of a 5G core network:
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2.1.1.1 Access and Mobility Management Function

The Access and Mobility Management Function (AMF) is involved with most signalling call

flows in a 5G core network and supports encrypted connections between UE devices, handling

their registrations, authentications, and radio cell transfers in the network. As well, it also sup-

ports activating UE devices in idle mode. The AMF interacts with the radio network through

the N2 interface and with UE devices through the N1 interface. The AMF’s connections to all

other NFs are managed through service-based interfaces. Compared to its EPC equivalent, the

Mobile Management Entity (MME), the AMF does not handle session management, but rather

forward session-management related messages for the UE devices to the Session Management

Function (SMF). The AMF does allow UE devices to be authenticated, but it does not handle

the authentication; it orders this service to be performed by the Authentication Server Function

(AUSF) [17].

2.1.1.2 Session Management Function

The Session Management Function (SMF) manages the end user device sessions in the net-

work. In particular, the SMF is involved with the instantiation, modification, and release of a

given session and IP address allocation for each session [17]. As well as communicating with

other NFs through the service-based interface, the SMF is responsible for the selection and

control of different User Plane Functions (UPFs) across the network through the N4 interface.

The SMF’s control of the UPF(s) traffic steering and enforcement, and their associated config-

urations. Finally, the SMF interacts with the Policy Control Function (PCF) for policy control

of user sessions [18].

2.1.1.3 User Plane Function

The User Plane Function (UPF) is primarily concerned with processing and forwarding user

data. Most of its interactions are with the SMF since the UPF’s functionalities are controlled

there [17]. The UPF will connect to external IP networks and acts as a bridge point for devices
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connecting to other external networks through the 5G Core. For example, an IP packet with the

destination address of a given UE device will always be routed from the Internet to a specific

UPF, regardless of UE mobility. With the forwarded user data, the UPF generates traffic usage

reports (these may also include device charging data) and sends these to the SMF. The UPF

also performs a packet inspection, which analyzes user data packets for the aforementioned

traffic usage data reporting, but it can also be used as an input to guide policy decisions. Some

examples of user policies include traffic redirection, enforcing, and applying data rate limits.

Finally, the UPF can mark packets with Quality-of-Service (QoS) priorities and schemes in

order for the radio network to handle packet priorities during network traffic congestion [19].

2.1.1.4 Unified Data Management

The Unified Data Management (UDM) Function is front-end functional interface for user sub-

scription data stored in the Unified Data Repository (UDR) and executes AMF-requested func-

tions [17]. It also generates authentication data for UE device attachment and can authorize

user access based on their subscription data. An example of different access rules can be be-

tween home and roaming subscribers. If there is more than one instance of the AMF and/or

SMF in the network, the UDM tracks which instances serve a specific device [20].

2.1.1.5 Unified Data Repository

The Unified Data Repository (UDR) acts as a database for subscription data, network policies,

and user policies. The UDR acts as a central point for data storage and access for the UDM,

PCF, and NRF, all of which will use these important data for their inter-NF services [17].

2.1.1.6 Authentication Server Function

The Authentication Server Function (AUSF) has limited, albeit important, functionality to the

5G Core. The AUSF provides an NF service that authenticates a UE device, using authenti-

cation credentials that are created by the UDM. In addition, the AUSF generates secure and
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encrypted messages to provide roaming-specific information and other associated parameters

to UE devices [17].

2.1.1.7 Network Repository Function

The Network Repository Function (NRF) is a new key component of the 5G service-based

architecture. The NRF actively maintains an updated repository of available elements in a

5G operator network. As well, the NRF records NF statuses, statuses of their services, and

when these services are instantiated, scaled, and terminated. The NRF reduces the burden of

consumer NFs on processing this data, as it prioritizes NF discovery service results based on

location, capacity, network load, and priority. Registration, subscription, and discovery are

key services provided by the NRF, but it can also support network traffic logging, tracing,

monitoring, and visibility, making it an important source for network data analytics [21].

2.1.2 5G Network Data Analytics Function

Given its prevalence in AI-assisted applications of the 5G Core network and advanced data

analytics applications in modern networks, the Network Data Analytics Function (NWDAF)

is presented here in its own section of focus in the scope of this chapter. As an underlying

function solely responsible for data analytics and network learning, the NWDAF represents

operator-managed network analytics as a logical function. The NWDAF provides slice-specific

network data analytics to any given NF. As well, the NWDAF provides network analytics

information to NFs on a network slice instance level and it is not required to be aware of the

current subscribers using the slice. The function also notifies NFs with slice-specific network

status analytic information for any that are subscribed to it. NFs may also collect network

status analytic information directly from the NWDAF [22].

In the 5G Core, both the Policy Control Function (PCF) and the Network Slice Selection

Function (NSSF) are consumers of network analytics. The PCF may use that data in its policy

decisions, and the NSSF may use the load-level information provided by the NWDAF for slice
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selection [10].

The NWDAF may be comprised of the following logical functions: the Analytics logi-

cal function (AnLF) and the Model Training logical function (MTLF). The AnLF performs

inferencing (predictions based on analytics consumers’ requests) on derived analytics informa-

tion and statistics. The MTLF trains machine learning (ML) models on analytics information,

which is either statistical information of historic events or predictive information for the future

[23].

Industrial NWDAF implementations provide closed-loop automation for third-party NFs

and solutions inside the 5G Core. In particular, these NWDAFs are intended for continuous

monitoring of every NF, network slice, and UE device and use a variety of KPIs to measure

network performance. The real-time KPIs can be used to automate network issue resolution,

while ML/AI predictive analytics can be used to predict future network issues. Predictive

analytics may also provide anomaly detection to be used for automating mitigation [24].

Figure 2.1 illustrates the 5G Core architecture with a distributed NWDAF as outlined

throughout the section. As seen, the main reference points for all NFs are displayed, along

with edge placements for NWDAF data collection. The NWDAF was originally defined as a

centralized network function for data aggregation and analytics [23], but in order to reduce net-

work resource usage and prevent overloading, the NWDAF is distributed, as shown in Figure

2.1, and is structured by local models communicating with the main NWDAF. This design is

particularly useful for federated machine learning techniques, which trains algorithms across

multiple distributed and decentralized nodes [25].

The following subsections outline the services offered by the NWDAF in accordance with

the 3GPP standard and specifications as of June 2022 [23]:

2.1.2.1 Analytics Subscription

The Nnwdaf AnalyticsSubscription service enables consumers of services to subscribe to or

unsubscribe to notifications from the NWDAF. It can also transfer these subscriptions between
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different NWDAF instances or implementations. An important example of subscribing to such

notifications is binding to network congestion events specific to a network slice. The types

of observed network events include slice load level information, network slice instance load

level information, NF load, network performance, UE mobility, UE communication, user data

congestion, and QoS sustainability in the network [26].

2.1.2.2 Analytics Information

The Nnwdaf AnalyticsInfo service enables NF service consumers to request and retrieve ana-

lytics information from the NWDAF. The NWDAF begins the data collection process to gather

the necessary body parameters and data fields needed for an analytics information request,

then exports this to its own data repository. Afterwards, the NWDAF employs an analyzer, or

an algorithm to form behavioural patterns of the data, and the processed data is provided to

the consumer. Some examples of use cases where this service is employed include automated

policy control (in conjunction with the PCF) and automated network slice selection (in con-

junction with the NSSF). It can also be used to track UE access and mobility for the purpose

of scaling and policy decision-making [24].

2.1.2.3 Data Management

The Nnwdaf DataManagement service allows analytics data consumers to subscribe/unsubscribe

to and be notified about data exposed by the NWDAF or fetch the subscribed data. As well, it

enables the NF services consumer to request the generation of bulked data for event IDs and

analytics IDs from NFs, and retrieve the requested data [23].

2.1.2.4 ML Model Provisioning

The Nnwdaf MLModelProvision service permits the service consumer to receive a notification

whenever an ML model is available, provided with specific parameters in the subscription

request. When the subscription is accepted by the NWDAF containing a MTLF, the AnLF
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receives from the NWDAF an identifier (a Subscription Correlation ID), which allows further

operations, such as modification or deletion, of the given subscription. The modification of

an ML model subscription can be enforced by the NWDAF based on operator policy and

configuration [23].

2.1.2.5 ML Model Information

The Nnwdaf MLModelInfo service allows analytics data consumers to request and retrieve an-

alytics information from the NWDAF pertaining to specific ML model information from the

MTLF. The consumer, in their request, specifies ML Model Filter information to gather de-

tailed info by S-NSSAIs, service areas, and Analytics IDs [23].

2.2 Evolution from 4G to 5G to 6G and Beyond

The 5G system, as a next-generation network, is developed based on the successful experiences

and technologies of the previous 4G generation. For 5G, the evolutionary challenge is avoid-

ing the limitations of the previous system. Some obstacles include the limitations of the 4G

architecture, home network control, malicious attacks on 4G and 4G RAN security, and user

data integrity breaches [27].

One major limitation of the 4G architecture is the security protection measures which have

been revised since their implementation in 3G networks. The Authentication and Key Agree-

ment (AKA) protocol in 4G networks, which is symmetric and key-based, improves on signal-

ing overhead and computational resource efficiency when compared to public key-based mech-

anisms [28]; however, it has been shown that new privacy threats and known attacks on the 4G

AKA protocol can be prevalent in upcoming 5G AKA protocols. A UE device that connects

to its serving network carries a Universal SIM, or USIM, which is necessary for symmetric

encryption and mutual authentication. The USIM stores the International Mobile Subscriber

Identity (IMSI), the secret symmetric key between the UE and the network, KIMS I , and a 48-bit
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counter for replay protection known as a Sequence Number (SQN). The identity request pro-

cedure, which is unprotected and broadcast over-the-air, is subject to ”IMSI-catcher” attacks,

which allows an attacker to track subscribers in particular geographic areas [29]. Accordingly,

the 3GPP modified the identity request phase of the AKA protocol to strengthen the privacy

protection requirement of 5G networks [30].

For 6G networks and beyond, user data protection is crucial to AI-assisted network op-

erations as it is paramount for future networks to prevent data integrity breaches. User data

integrity breaches are comprised of internal attacks involving resource access or external at-

tacks through security protocols. In 4G networks, temporary identifiers, which are encrypted

and always updated to prevent tracking, are used to protect against subscription identification

leaking, where a user identity can be captured by an attacker during transmission; this is ideal

for passive attacks, but not for active attacks. If the temporary identity is foreign or abnor-

mal, the user must contact the network using the permanent identity to avoid permanently

locking the user. The mechanism can be exploited by active attacks that trace users through

the aforementioned IMSI interception [31]. 6G and Beyond networks must be compliant with

Internet-of-Things (IoT) standards and so, machine learning models are tailored to ensure data

integrity and improve end-to-end communications security [32].

2.3 5G Core and Enabling Technologies

The 5G Core (5GC) is designed to be “cloud native”, where NFV (Network Function Virtual-

ization) is leveraged to create network slices. A 5G Core slice is composed of a collection of

5G Core VNFs that are chained together to support a specific use case [16]. One of the major

characteristics of 5G Core, CUPS, decouples a 5G system into two parts, deploys the Con-

trol Plane (CP) as a common slice, and configures User Plane (UP) into multiple customized

slices, each with different bandwidth requirements. Network slicing involves the instantiation

of several separate logical mobile networks hosted atop the same physical infrastructure [10].
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A network slice consists of a group of logical NFs that are independent and perform their rel-

evant tasks, enabling a slice to deliver services according to different service level agreements

(SLAs) [33].

5GC holds a key role in realizing the full potential of 5G services. 5G NSA (non-standalone)

deployment leaning on legacy LTE network and EPC (Evolved Packet Core) allows for a quick

launch of 5G services, but also hinders the realization of 5G’s full potential [34]. In 5GC, a

cloud native design is introduced to enable flexible scaling and upgrades. The fundamental

concept of a cloud native 5GC is defined as “stateless microservices deployed in a container-

based architecture”. A Network Function (NF) is comprised of small service units called NF

services and store their state information in a central database called Unstructured Data Stor-

age Function (UDSF), which turns the network function stateless itself. Stateless NFs can be

scaled with ease and specific NFs can be isolated in case of failures, which makes an unin-

terrupted service possible [35]. Each micro-service runs in a container and is independently

scalable and reusable. These design characteristics enable the flexible launch of new services,

faster time-to-market, and offers enhanced scalability [36]. As a result, the 5GC functions can

be quickly created, deployed, and scaled, using automated lifecycle management. With the

introduction of 5GC and the standalone network, end-to-end network slicing allows a network

to suspend and resume from an inactive state, so as to allow a UE (User Equipment) device to

return to a connected state as soon as possible from an inactive state. Accordingly, this leads

to significant reduction in RRC signaling, and therefore, latency and battery consumption are

reduced as well [37].

Network Function Virtualization (NFV) as proposed by ETSI in 2012 [38, 39] defines the

decoupling of Network Functions (NFs) from their underlying hardware, and the creation of

Virtualized NFs (VNFs) executed as software-based applications on commercial equipment

such as datacenter servers. The motivation behind switching to an NFV-enabled environment

was inspired by the increasing network connectivity demand along with the various potential

benefits experienced by Network Service Providers (NSPs). From a network Management
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and Orchestration (MANO) perspective, NFV can provide numerous benefits, including the

reduction of Capital and Operation Expenditures, enhanced scalability, reduced product devel-

opment cycle and time to market for new technologies, as well as enhanced flexibility [40].

The introduction of 5G+ networks has raised several challenges regarding the MANO activ-

ities of VNFs. These challenges can be classified into three main categories: Performance

Requirements, Operational Requirements, and Practical Challenges.

2.3.1 Performance Requirements

5G networks require increasingly stringent performance requirements to support the unprece-

dented growth of network traffic and the number of connected devices [41, 42]. These new

requirements pose significant challenges to NSPs in terms of VNF MANO. Firstly, given the

requirement of Ultra-Reliable Low-Latency Communication (URLLC), NSPs are required to

push resources to the extremities of the network in the form of lightweight points of pres-

ence leveraging Multi-access Edge Computing (MEC) [43, 44]. This requirement complicates

VNF MANO as the lightweight points of presence have limited resources available for host-

ing VNFs, meaning that priority should be given to critical services. Additionally, emerg-

ing use cases such as Intelligent Transportation Systems (ITSs) and the Industrial/Internet of

Things (I/IoT) which leverage MEC resources to collect and relay large amounts of data, fur-

ther complicates VNF MANO as communication efficiency needs to be taken into consider-

ation to ensure QoS preservation. Regarding QoS guarantees, 5G networks will require five

nines (99.999%) of availability, which translates to less than 6 minutes of downtime each year

[45, 46]. Given the critical services (e.g., emergency, financial) as well as the emerging ITS

use case, adhering to this requirement is paramount to preserving public safety. To this end,

NSPs need to explore resilient, and reliable VNF MANO solutions such as redundant instance

placement and robust optimization as proposed in [47, 48] to ensure their networks can attain

these levels of availability. Additionally, NSPs need to be proactively sensing the network for

adverse conditions and be ready to prevent any perceived fault or failure from materializing by
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performing dynamic corrective VNF MANO operations, including migration and scaling.

2.3.2 Operational Requirements

Traditional networks have considered a tradeoff between scalability, efficiency, and reliability

where the best-case scenario was a network possessing two of the mentioned three attributes

[49]. Considering the profound impact an event such as the COVID-19 pandemic had on NSP

operations, widespread disruptions and changes in user behaviour can increase in frequency

and severity as user dependence on communication networks increases [50]. Given this in-

creasing dependence and demand on networks, settling for a fraction of these attributes is no

longer feasible from an operational standpoint. The impact of network transformation, moti-

vated by next-generation networking technologies and use cases, has established the fact that

the complexity of future networks and systems has greatly surpassed the human capacity for

manual management [51, 52]. As such, NSPs are tasked with developing methods that reduce

the complexity of the network while simultaneously removing the manual element of MANO

through network automation. Increasing levels of automation have several benefits, includ-

ing time and cost savings, rapid service deployment, as well as enabling humans to redirect

their focus to more complicated tasks that require a more profound understanding and analysis

[51, 53]. To this end, Zero-Touch Network Service Management (ZSM) has been proposed as

an architectural solution to achieve full network automation [54, 52].

Before discussing ZSM, it is important to consider two critical attributes of reliable net-

works, namely robustness and resilience. Robustness defines the network’s ability to survive a

given failure, whereas resilience considers the network’s ability to recover from a failure [55].

While both of these attributes are critical, they are still considered reactive in the sense that they

focus on surviving an error and re-establishing an adequate level of performance. While ZSM

incorporates both robustness and resilience, its main focus is to sense the network and pre-

vent any adverse conditions from materializing. This is accomplished through the four major

pillars of ZSM, namely, self-configuration, self-monitoring, self-healing, and self-optimization
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[51]. By leveraging ML/AI and advanced analytics, ZSM enables the sensing and prediction of

adverse network events (e.g., outages and demand spikes) and the execution of proactive cor-

rective measures (in real-time), which mitigate the event before end users are affected [50, 54].

It should be noted that a challenge arises since healing actions may lead to unintended con-

sequences by impacting other network functionalities and services; this challenge highlights

the importance of full network automation as the autonomous orchestrator requires a universal

understanding of the network in order to select the appropriate action without deteriorating the

performance of other network elements [54]. By implementing ZSM, NSPs aren’t required

to make a tradeoff between the scalability, efficiency, and reliability of their networks since

the network will be entirely intent-driven [49]. In practice, ZSM has profound effects on the

MANO of NFV in 5G. The rapid technological advances have significantly increased the com-

plexity of MANO tasks to the point where they are too critical and time-sensitive to allow any

manual interaction. Some examples of such tasks, specifically, 5G usage scenarios for ZSM,

are outlined below as identified by the ETSI technical specification group on ZSM [54].

2.3.2.1 Network Slice Lifecycle Management

The lifecycle management of a network slice is a critical and complicated process, especially

when dealing with network slices with non-standard characteristics. This complexity is fur-

ther augmented by highly dynamic demands which require constant scaling actions. In order

for ZSM to handle network slice MANO, it must correctly identify and manage all VNFs and

resources related to the slice. Furthermore, it should have the ability to automatically ana-

lyze a slice’s requirement to determine which VNFs and corresponding resources are required.

Additionally, in order to ensure constant performance, ZSM should be able to scale VNFs

while adhering to resource limits and NSP objectives. In terms of performance continuity,

ZSM should be able to perform real-time corrective action to reallocate network resources and

network slice reconfiguration without experiencing downtime.

Isolation management is another important aspect of the network slice lifecycle. Ideally,
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each instance in a given network slice should be protected against interference from other slice

instances. In practice, total isolation is not feasible and instead, instance interdependency is

leveraged to restrict the interference to an acceptable threshold. The aspect of ZSM relating

to isolation presents itself as constant monitoring and analysis of the underlying infrastructure

status. Through this monitoring, any adverse conditions leading to a violation of the acceptable

threshold can be countered such that performance deterioration is mitigated and performance

recovery is achieved. This can be accomplished through slice VNF reconfiguration and re-

source allocation. The ZSM architecture uses network slice monitoring to gain insights into

the performance of the slice as a whole and of individual instances. Through the collection of

data (i.e., KPI, fault, etc.) an autonomous agent can perform real-time diagnosis of network is-

sues and determine an appropriate solution; however, as previously mentioned, this is a reactive

technique as it applies to an observed adverse network condition. One of the main targets of

ZSM is the notion of preventative and predictive maintenance, which aims at predicting when

a certain network instance will fail before it does. This predictive capability will allow NSPs to

perform planned maintenance instead of reactive maintenance and maintain service continuity

and performance.

2.3.3 Practical Challenges

One of the most researched challenges in NFV MANO is the VNF placement problem which

determines the optimal placement of VNFs on network nodes to deliver a service. This prob-

lem has been previously defined as NP-hard [56] and has traditionally been formulated as an

optimization problem. Due to the complexity of the problem itself, optimal solutions are often

considered practically infeasible as the time required to determine them scales poorly with the

size of the network. To mitigate this limitation, near-optimal heuristic solutions have been pro-

posed to achieve a feasible solution in acceptable time. However, as 5G networks take shape,

the complexity of both the network itself as well as the new and emerging use cases coupled

with the increasingly stringent performance requirements suggest the need for the performance



22 Chapter 2. Network Data Analytics in Future Networks

of the optimal solution combined with a lower execution time. This is reflected through the

requirement of real-time and dynamic operational provisioning.

One of the major challenges that 5G networks face is the high-speed and bandwidth de-

mands from large applications and in the field of Internet of Things (IoT). Large-scale indus-

trial applications and autonomous cars can consume vast amounts of data in just few minutes,

so the 5G low-latency transmission and connectivity will add to this data throughput. Cloud

infrastructure support will be needed to support fast data reads and writes with low-latency

compute and storage architectures on cloud. As well, the 5G architecture needs to be defined

and constructed in such a fashion that big data is collected for analytics support that may al-

ready exist for distributed network and application intelligence use-cases. 5G network data

can raise numerous security concerns amidst any applications today, so it is important to safe-

guard user privacy or company data without any compromise. Building a secure and robust

infrastructure from systems to applications is critical in 5G architecture and design [34].

The adoption of NFV is another challenge to the nature of the 5G network and its as-

sociated requirements. NFV requires implementing layers that are typically deployed on a

provided cloud, IaaS (Infrastructure-as-a-Service) and / or Kubernetes – a container orchestra-

tion platform. These techniques, however, are known for being difficult to operate, especially

in distributed environments with hundreds of nodes. Also, many use cases require certain

extensions, such as SDN, to be enabled which adds further difficulty to the process [57].

Contrary to early generations of NFV technology, 5G brings in specific requirements for

VNFs onboarding and orchestration. Instead of running legacy monolithic software blocks in

a virtualized environment, 5G VNFs are designed with the intent to be fully cloud-native. This

means that they have to be re-designed based on the aforementioned microservice architecture.

Those microservices will run inside VMs or containers with high availability and scalability,

which introduces another layer of complexity over the already complex cloud environment

[58].

Table 2.1 outlines the various challenges discussed throughout this section regarding 5G
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Table 2.1: Challenges of Implementing 5G Microservices
Category Challenge

Performance Requirements MEC-enabled services
Resource-constrained network edge
QoS Preservation
High Availability
Network Sensing

Operational Requirements Network Automation
Complexity Reduction
Robustness
Zero-Service Network Management:
- Self-Configuration
- Self-Monitoring
- Self-Optimization
Network Slice Lifecycle Management
Multi-Vendor Network Interoperability

Practical Challenges Dynamic Network Service Provisioning
IoT and Big Data Applications
User and Data Privacy

microservice implementation.

2.4 NWDAF and Zero-Touch Full Automation of 5G Net-

work and Service Management

The full automation of 5G networks and services requires careful consideration before it can

be realized. Major challenges such as multi-vendor networks, URLLC, and edge networks add

significant intricacies to the problem. Firstly, when dealing with multi-vendor networks dis-

tributed across various domains, certain aspects of the network slices will need to be managed

by vertical industries through third-party interfaces. As such, a ZSM agent should be able to

safely and securely manage and monitor these interactions. Additionally, such an agent will

need to consider the management of multiple simultaneous requirements (i.e., ULLC, URLLC,

etc.) encouraged by the constantly developing technological landscape of 5G networks. To

this end, the autonomous management of edge networks and services becomes increasingly
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complex. An agent should be able to perform high-risk actions such as automatic software

deployment and live updates while ensuring that the instance’s performance suffers no degra-

dation. Additionally, an agent should be able to rollback any erroneous updates that lead to

problematic performance and quickly restore service. When dealing with the unprecedented

demand for service connectivity and the rapid increase in the number of connected devices, a

ZSM agent should also be capable of flexible and elastic VNF provisioning. To this end, there

needs to be an automatic flow of data and information between instances without human inter-

vention to make optimal MANO decisions. Additionally, demand forecasting should be used to

influence planning decisions based on the predicted traffic and network load. Another critical

consideration is the rapid coordination of deployed VNFs to adhere to customer requirements

regarding time to market.

2.4.1 Artificial Intelligence in the 5G Core

The widespread use of AI in 5G networks and systems is one of the defining characteristics

of this paradigm-shifting technology. According to reported statistics, by 2025, it is projected

that the telecom industry will invest USD 36.7B in AI through software and hardware invest-

ments as well as AI services [59]. In order to prepare for this AI revolution, telecom operators

internationally need to begin strategic planning for the development, adoption, and integration

of AI into their networks and practices. It is estimated that the majority of major network

operators have already initiated the planning and integration phase of AI to improve their net-

work management and operation [59]. The envisioned AI network ecosystem will consist of

agents being fed data related to the network, including network measurements and statistics, re-

source utilization, traffic patterns, and alarms and will conduct inferencing to provide network

automation through management and orchestration tasks such as resource optimization and

system reconfiguration [59]. The following section will outline the various benefits and chal-

lenges associated with the adoption of AI in 5G networks, outline some of the key intelligence

technologies being considered, and discuss some of the emerging use cases and applications
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currently being considered and implemented.

In recent years, AI has garnered significant attention across various industries. With the

ability to automatically extract information from complex data and systems, conduct inferenc-

ing, and provide the user with a decision, the benefits of AI are numerous. For the purposes

of this chapter, the benefits of AI, specifically applied to 5G networks, will be categorized and

classified in terms of operational and business benefits.

2.4.1.1 Operational Benefits

The operational benefits of AI in 5G networks consider the added value the AI system pro-

vides in terms of the management and orchestration of networks. As previously mentioned, the

paradigm of ZSM, enabled by AI, provides the major benefit of reliable and robust network au-

tomation; as such, one of the main benefits of AI is the ability to take proactive and predictive

measures to ensure the optimization of network performance [60]. Some methods of network

performance optimization include the reduction of power consumption through enhanced al-

gorithmic performance, the maximization of throughput through optimal traffic routing and in-

frastructure placement, as well as the ability to support an increasingly dense number of users

[60]. As demonstrated, the plethora of potential operational benefits of AI makes it an appeal-

ing and necessary technology for the feasible realization of stringent 5G network performance

requirements.

2.4.1.2 Business Benefits

The use of AI in 5G networks also presents NSPs with various alluring business benefits.

Firstly, through the optimization of network operations, NSPs experience a reduction in their

capital and operational expenses [60]. Furthermore, AI enables the improvement of QoS and

QoE, leading to better service delivered to the end-user coupled with a reduction in the num-

ber of SLA violations incurred. Ultimately, these two benefits suggest that NSPs will be able

to maximize their revenue through expense reduction, while also delivering superior service
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to end-users, leading to improved customer satisfaction. Finally, another key major business

advantage is the creation of new revenue streams realized through advanced user behaviour

understanding and the ability to provide new services and use cases to customers such as con-

nected vehicles and Industry 4.0 [60, 61]. Coupled with the operational benefits, the added

business-related benefits of AI provide NSPs with the flexibility to explore new services and

revenue streams that will diversify and strengthen their operations.

Table 2.2 summarizes the various operational and business benefits discussed throughout

this section.

Table 2.2: Benefits of AI in 5G Networks
Category Benefit

Operational Network Automation
Proactive Management
Preventative Maintenance
Optimized Power Consumption
Performance Optimization
Improved Network Strength

Business CAPEX / OPEX Reduction
QoS / QoE Improvements
SLA Violation Reduction
Improved Customer Satisfaction
Creation of New Revenue Streams
Enhanced User Behaviour Understanding

2.4.2 Challenges and Limitations of AI in 5G and Beyond

Despite the various benefits, AI adoption in 5G and Beyond networks can offer, there are still

several existing challenges and limitations which must be addressed. These challenges and

limitations are classified into four distinct categories: data, AI lifecycle management, privacy

and optics, and operational considerations.
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2.4.2.1 Data

One of the main challenges plaguing AI implementations across all fields relates to the avail-

ability of high-quality data. In networking applications, the effect of this challenge is amplified

due to the lack of publicly available data sets caused by data privacy concerns and proprietary

confidentiality [61]. Aside from inadequate data availability, the collection process for data in

5G networks is increasingly difficult as the increasing complexity and number of users classify

the generated data as Big Data [60]. In order to effectively collect the required data to build

and train AI agents, data collection interfaces need to be deployed throughout the network and

constantly be monitored [62]. Once collected, the data will need to be processed, structured,

and stored to enable multiple stakeholders to access the relevant data for their needs. Due to the

volume and velocity at which the data is generated, this is not a trivial task. Additionally, the

storage and transfer of such large amounts of data at the resource-constrained network edge

are infeasible as it utilizes the limited and valuable storage, processing, and communication

resources. In order to adequately address the aforementioned data challenges, significant work

must be put into improving data quality and availability, as well as developing distributed and

decentralized intelligence agents that do not require the transfer of data to centralized locations

[63].

2.4.2.2 AI Lifecycle Management

One of the added complexities when adopting and actively implementing AI is the added life-

cycle management tasks which differ from traditional software lifecycle management. In terms

of AI lifecycle management, the first step that must be considered is the selection of a model.

This task is especially complex given the various considerations which must be made. Firstly, it

should be noted that the well-known ‘no free lunch theorem’ states that if averaged across every

data instance, all ML will perform the same. This being said, the goal of an AI implementation

should be to determine the best performing model for a given set of data [60]. Additionally,

operational constraints such as training time, model complexity, inference time, and acceptable
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performance complicate the selection process further. Another challenge is determining the op-

timal set of hyperparameters to improve model performance. As model complexity increases,

so too does the effort required to determine the optimal hyperparameters as the hyperparam-

eter state-space greatly increases. To this end, techniques such as metaheuristic evolutionary

algorithms have been proposed due to their improved convergence time [64]. A final challenge

relating to the lifecycle management of AI is the presence of model drift, where changes in

the deployed environment create a gap between what the model was built for and where it is

being applied. All types of model drift eventually lead to performance degradation and can

significantly impact the decision-making process of AI systems. As demonstrated, the lifecy-

cle management of AI is quite complex and therefore requires additional considerations when

implementing to ensure the lasting performance of the system.

2.4.2.3 Privacy and Optics

The next set of AI-related challenges considers the privacy and optics of such systems. Given

the services provided through networks, especially critical services, including emergency and

financial, much of the generated data is considered highly sensitive and has increased privacy

measures. Considering the next-generation use cases and systems, including connected and

autonomous vehicles, system and data privacy is paramount to ensuring the safety of the public;

however, privacy doesn’t only affect the data itself, but also the types of models that can be used

and the safeguards put into place. An example of a challenge requiring a safeguard would be

the prevention of data reconstruction where malicious users can extract fragments of data used

to train the model [65]. Additionally, security measures need to be put into place to prevent

malicious entities from accessing and tampering with a model or its training data, leading to

performance degradation or more significantly manipulated decision-making. Another critical

consideration when implementing AI is the notion of interpretability which pertains to a user’s

ability to explain a decision reached by the autonomous agent and the factors leading to said

decision. It is a well-known fact that as model complexity increases, so too does the capacity
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for inference which ultimately leads to improved performance; however, this is at the cost of

interpretability. The less interpretable a model is, the more difficult it is to adopt due to a

lack of trust [61]. As such, when using more complex models, human involvement through

performance monitoring and intervention will be required to build trust in the newly adopted

AI technology.

2.4.2.4 Operational Considerations

There are additional challenges relating to the practical implementation of AI in 5G networks

that must be considered. Firstly, a critical hindrance to the widespread adoption of AI exists

because of standard fragmentation [61]. There are currently various efforts in both standard-

ization and open-source development; however, these efforts are often developed in isolation

and either overlap or are not interoperable, making it increasingly complex and difficult for

positive industry reception and adoption. Additionally, with various vendors developing their

own AI services and platforms, NSPs face vendor lock-in and interoperability concerns. This

is counterintuitive considering that one of the goals of 5G networks and NFV is to avoid vendor

lock-in and improve flexibility. Moving forward, efforts need to be made to consolidate frag-

mented standards and create a unified 5G AI standardization team that will ensure ubiquitous

standards across all NSPs internationally.

Table 2.3 summarizes the current challenges preventing widespread AI adoption in 5G

networks presented throughout this section regarding data, AI lifecycle management, privacy

and optics, as well as operation considerations.

2.4.3 Advanced Intelligence in the NWDAF

Advanced intelligence techniques are required in 5G and Beyond networks to address the afore-

mentioned limitations of conventional ML techniques provided by the NWDAF. Manias and

Shami have identified two such techniques: reinforcement and federated learning, which are

expected to be an integral part of NFV MANO and next-generation 5G use cases [63]. Boasting
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Table 2.3: Challenges of AI Adoption in 5G Networks
Category Challenge/Limitation

Data High Quality Data Availability
Complex System Data Collection
Big Data Processing and Storage
Data Structuring
Data Accessibility
Resource-Constrained Network Edge

AI Lifecycle
Management Model Selection

Model Operational Constraints:
- Training Time
- Complexity
- Inference Time
- Acceptable Performance
Hyperparameter Optimization
Model Drift

Privacy &
Optics Data Privacy

Model Safeguards
Model Training Tampering
Model Interpretability
Public Trust

Operational
Considerations Standard Fragmentation

Interoperability
Vendor Lock-In
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benefits such as domain adaptability and distributed intelligence, these methods are essential

for the establishment of intelligence and automation in future networks. The following section

will outline these techniques and discuss their potential benefits.

2.4.3.1 Federated Learning

Federated Learning (FL) is a distributed and decentralized intelligence technique proposed

in 2017 [66]. The main actors in this technique are the federated nodes and the aggregation

agent. Initially, the aggregation agent sends a global model to each federated node that actively

collects and processes its own data. The nodes train the global model and develop a local

model using their collected data. Once trained, the nodes determine the differences between

the initial global model and their current local model and send an update to the aggregation

agent. As its name suggests, the aggregation agent is responsible for collecting the updates

from all federated nodes and aggregating them, based on a predefined aggregation scheme, in

order to develop a new global model. Once developed, the new global model is passed to the

federated nodes, continuing the training process. There are several benefits associated with

the FL training process. Firstly, since each node collects and processes its own data and sends

an update to the aggregation agent, no local data is transferred, improving both privacy and

communication efficiency [67]. Additionally, since all model updates are aggregated, all nodes

can benefit from insights from other federated nodes without possessing or accessing their

data. This can improve data availability for nodes that collect fewer data as well as create a

robust system capable of learning various concepts observed in different regions of the system.

Finally, FL is a highly scalable and resilient system that can easily tolerate node or aggregation

agent outages improving the overall system reliability.

2.4.3.2 Reinforcement Learning

Reinforcement Learning (RL) is a method of experiential learning that uses agent-environment

interactions to develop an optimal policy [68]. Each time the agent selects a specific action,
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it is rewarded based on the results of that action – the better the action, the better the reward.

Through numerous training iterations, the agent attempts to maximize the reward obtained in

an effort to learn the optimal policy. Additionally, RL can be combined with neural networks

to develop Deep RL methods (DRL) capable of addressing large state and action spaces in in-

creasingly complex systems [69]. RL and DRL have several key benefits making them critical

to 5G networks and systems. Firstly, the ability to learn optimal policy through experience is

advantageous in high complexity systems where access to data and a full system representation

are not possible. Additionally, since an RL agent is constantly rewarded for interactions with

its environment, it inherently possesses the ability to adapt its policy to address drifts in the do-

main. Furthermore, given the appropriate simulation environment, RL agents can be trained on

anticipated future conditions and domains to prevent adverse conditions such as performance

degradation from materializing proactively.

2.5 Conclusion

As demonstrated throughout this chapter, 5G networks will have a profound impact on our

daily lives. Through the architectural evolution and transition from 4G to 5G, the emerg-

ing technologies will enhance next-generation network performance and provide a plethora of

novel use cases. As with any technological revolution, this paradigm-shifting network has its

own associated challenges, which must be addressed to ensure a feasible and seamless imple-

mentation. One of the proposed solutions to these challenges is increasing levels of network au-

tomation through the use of intelligence techniques with the vision of having fully autonomous

zero-touch network service management. This automation will also enable advances in use

cases such as healthcare, which benefit from the ability to attain sub-millisecond latency, high

availability, and improved reliability. Intelligence engines, such as the NWDAF, are rapidly

progressing future networks to achieve fully automated network management with the focus

on network performance and improving user experience.
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Towards Supporting Intelligence in 5G

and Beyond Networks: NWDAF

Implementation and Initial Analysis

3.1 Introduction

The telecommunications industry has sparked a dramatic transition to novel and improved

high-speed wireless communications architectures in industry and society. The design and

operation of 5G and Beyond (5G+) networks is a tightly woven cooperation of developments

in both the 5G Core and 5G radio networks that has led the charge for fast-paced development

in the communications industry. The 5G+ concept has become a critical tool in the introduction

and development of Industry 4.0, a paradigm shift of modern wireless communications systems

to true, digital economies [17].

The 5G architecture is comprised of the 5G Core (5GC) network, the new Radio Access

Network (RAN), and its newly supported New Radio (NR). The Third Generation Partnership

Project (3GPP) outlined the design of the 5G Core to implicitly and explicitly support new

architectural features, such as a service-based architecture (SBA), consistent user experience,

33
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improved Quality-of-Service (QoS), enhanced machine-to-machine communication services,

adaption to cloud-native technologies, and edge computing access. 5G defines three service

grades, where each strata defines its own special requirements to adhere to customers’ busi-

ness models: Ultra-Reliable Low Latency Communications (URLLC), Massive Machine-Type

Communications (mMTC), and Enhanced Mobile Broadband (eMBB) [70][71].

The use of AI in 5G+ networks is one of the defining characteristics of this paradigm-

shifting technology. According to reported statistics, by 2025, it is projected that the telecom

industry will invest USD 36.7B in AI through software and hardware investments as well as

AI services [59]. The operational benefits of AI in 5G+ networks consider the added value the

AI system provides in terms of the management and orchestration of networks [72][73]. One

of the main benefits of AI is the ability to take proactive and predictive measures to ensure the

optimization of network performance. Some methods of network performance optimization

include the reduction of power consumption through enhanced algorithmic performance, the

maximization of throughput through optimal traffic routing and infrastructure placement, as

well as the ability to support an increasingly dense number of users [60][74].

The envisioned AI-enabled network will consist of intelligent agents being fed data related

to the network, including network measurements and statistics, resource utilization, and traffic

patterns and conducting inferencing to provide network automation through MANO tasks such

as resource optimization and system reconfiguration [59]. However, one of the main challenges

plaguing AI implementations across all fields relates to the availability of high-quality data.

In order to effectively collect the required data to build and train AI agents, data collection

interfaces need to be deployed throughout the network and constantly be monitored [62]. To

this end, the Network Data Analytics Function (NWDAF) has been proposed by 3GPP as a

solution to this problem to be directly implemented in the 5G+ core network as a key network

function.

The work described in this chapter addresses the practical development of the NWDAF and

considers its integration into an operational 5G core implemented using open-source software,
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including Open5GS [75] and UERANSIM [76].

The structure of this chapter is as follows: Section 3.2 considers relevant background in-

formation on the 5G Core and the NWDAF for moving towards supporting network intelli-

gence. Section 3.3 presents a use case highlighting key insights obtained from the analysis of

NWDAF-collected 5G Core network data and its application to the MANO of 5G+ networks.

Section 3.4 discusses the vision and requirements of 6G networks, as well as the expected lim-

itations of 5G networks motivating their initial conceptualization and development. Finally,

Section 3.5 concludes the chapter and discusses opportunities for future work.

3.2 5G Core and the NWDAF

3.2.1 5G Core

The 5G Core is composed of various Network Functions (NFs) with their individually associ-

ated microservices and responsibilities. The 3GPP intended for the 5G Core to bring about a

mindset shift from evolving architectures into standalone, access-independent structures. For

example, the 5G Core, by design principle, does not provide backwards compatibility for any

previous generations of RANs (e.g., GSM, LTE). Instead, the 5GC consists of a new set of

interfaces that are intended for core network-radio network interactions. In terms of the 5G

RAN specifications, the 3GPP defined two architectural variants which combine the LTE and

the 5G NR: the non stand-alone architecture (NSA) and the stand-alone architecture (SA). The

key difference is that the NSA aims to maximize the reusability of 4G architectures by rely-

ing on LTE radio access for signaling between UE devices and the network. Specifically, it

consolidates an enhanced EPC network to support 5G in the more recent deployments [17].

At the core of 5GC, NFs provide the functionality for establishing sessions and forwarding

data to and from mobile User Equipment (UE) devices. Some key NFs and their operations

are detailed to provide a brief summary of the 5G Core functionalities. The Access and Mobil-

ity Management Function (AMF) interacts with the UE devices and the RAN, and is involved



36 Chapter 3. Towards Supporting Intelligence in 5G and Beyond Networks

in most 5G signalling calls. As well, the AMF supports activation for devices in idle mode.

The Session Management Function (SMF) manages end user device sessions, including their

establishment, modification, release, and IP address allocation. The SMF also interacts with

other NFs to select and control different User Plane Function (UPF) instances over the network.

This control allows it to configure traffic steering and enforcement in UPFs for individual ses-

sions. The UPF processes and forwards user data and is controlled by the SMF. In addition,

the UPF connects to external IP networks to act as anchor points, hiding mobility. The Uni-

fied Data Management Function (UDM) accesses user subscription data stored in the Unified

Data Repository (UDR), a database containing network/user policies and associated data. Fi-

nally, the Authentication Server Function provides authentication services for a specific device,

utilizing credentials from the UDM [12].

As an underlying function solely responsible for data analytics and network learning, the

NWDAF represents operator-managed network analytics as a logical function [70]. The NWDAF

provides slice-specific network data analytics to any given NF. As well, the NWDAF provides

network analytics information to NFs on a network slice instance level. The function also no-

tifies NFs with slice-specific network status analytic information for any that are subscribed to

it. NFs may also collect network status analytic information directly from the NWDAF. In the

5G Core, both the Policy Control Function (PCF) and the Network Slice Selection Function

(NSSF) are consumers of network analytics. The PCF may use that data in its policy decisions,

and the NSSF may use the load-level information provided by the NWDAF for slice selection.

3.2.2 NWDAF

The NWDAF architecture is designed to aid policy and decision-making for NFs in the con-

trol plane and supports some important services for a given NF service consumer. Industrial

NWDAF solutions typically have an N23 interface and an N34 interface as reference points to

the PCF and the NSSF, respectively. As well, 5G edge computing use cases allow the NWDAF

to aid the SMF in routing decisions. As the central point of network analytics, the NWDAF en-
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ables operators to capture non-SBI data in addition to SBI data as standalone 5G deployments

become more prevalent [24].

As of June 2022, the NWDAF provides five different NF services: AnalyticsSubscription,

AnalyticsInfo, DataManagement, MLModelProvision, and MLModelInfo. The AnalyticsSub-

scription service notifies the NF consumer instance of all analytics subscribed to the specific

NWDAF service. The AnalyticsInfo service enables the NF consumer to request and retrieve

network data analytics from the NWDAF. As well, it enables the NWDAF to request analytics

context transfers from another NWDAF if necessary. The DataManagement service allows an

NF consumer to subscribe to receive data or historical analytics (interpreted as data); if the data

is already defined in the NWDAF, the subscription is updated. The MLModelProvision service

enables an NF consumer to receive notifications when an ML model, matching subscription

parameters, becomes available. Finally, the MLModelInfo service enables an NF consumer to

request and retrieve ML model information from the NWDAF [77].

Industrial NWDAF implementations provide closed-loop automation for third-party NFs

and solutions inside the 5G Core. In particular, these NWDAFs are intended for continuous

monitoring of every NF, network slice, and UE device and use a variety of KPIs to measure

network performance. The real-time KPIs can be used to automate network issue resolution,

while predictive analytics can be used to predict those network issues in the future. Predictive

analytics may also provide anomaly detection to be used for automating mitigation [24].

3.3 Case Study: NWDAF Implementation and Analysis

The following case study will explore the various insights and conclusions drawn from network-

generated data from a 5G Core Network. The analysis conducted in this case study is an ex-

ample of how the NWDAF can leverage data to provide meaningful insights to enhance the

MANO of core network functions. Specifically, this case study will analyze control packets

generated during the instantiation of the network core. Through these control packets, various
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statistics such as the size and number of packets per protocol will be displayed. Additionally,

an in-depth exploration of the Binding Support Function (BSF) and its interaction with the Net-

work Repository Function (NRF) will be discussed. Using both analyses, a recommendation

can be made regarding the placement of the BSF in relation to the NRF.

The collected data for this case study was generated through Open5GS, an open-source

project providing network functionalities for building private 5G networks [75]. The 5G stan-

dalone implementation was used for the system model leveraging both the Service-Based Ar-

chitecture (SBA) and following the Control and User Plane Separation (CUPS) scheme, as

described by 5G network standardization efforts led by the 3GPP [77]. UERANSIM, an open-

source state-of-the-art 5G UE and RAN implementation, was used to complete full operation

of the 5G Core with connected devices [76]. Figure 3.1 outlines the various core network

functions which were operational during the data collection phase. Additionally, this figure il-

lustrates how the proposed NWDAF fits in the 5G Core with its associated interfaces (depicted

in green). In this figure, the reference point architecture, presented by solid lines, illustrates

the point-to-point interaction between core network functions, whereas the SBA is illustrated

by the dashed lines. Through the SBA, the NWDAF is able to collect data and statistics about

all other authorized core network functions without having an explicit point-to-point reference

defined. The data collection phase ran for 138 minutes and, as previously mentioned, exclu-

sively considered the control signalling between the various network functions in the control

plane, not including any GPRS Tunneling Protocol (GTP) traffic from the UE and the RAN.

The data for this case study is publically available [78].

The first result presented in Fig. 3.2 considers the total number of packets associated with

each observed protocol throughout the duration of the data collection phase. As seen through

this figure, the overwhelming majority of packets utilize the TCP protocol, something which

is expected considering the NFs communicate with each other through REST APIs leveraging

the HTTP/2 protocol. RESTful SBA procedures can be categorized into Service Registration,

Service Discovery, and Session Establishment. It should be noted that the three NGAP pro-
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Figure 3.1: 5G Core Service Based Architecture Representation

tocols have been introduced in 5G and are used in communications between the gNB and the

Access and Mobility Function.

In addition to the NGAP protocols, which are prevalent in UE registration and de-registration,

the Packet Forwarding Control Protocol (PFCP) is paramount to formalizing the interactions

between 5G Core NFs, specifically between the SMF and the UPF through the N4 interface.

Albeit infrequent in the generated network traffic when compared to other protocols, PFCP

is used in signalling procedures in the Control Plane for network attachment and in the User

Plane for IPv4/IPv6 packet forwarding with the wireless RAN and the PDU [79].

The next stage in this analysis considers the average size of each protocol’s packets along

with statistics such as the standard deviation and maximum packet size as presented in Fig.

3.3. Through this figure, it can be seen that the largest packet sizes are attributed to the SSL

protocols. However, given the volume of SSL packets presented in the previous results, these

packets are infrequent. Considering both presented results, it is evident that the focus of this

analysis should be on TCP packet signalling as they have the greatest volume and significant

size compared to the other protocols.
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The following results pertain to the interaction between the BSF and the NRF. This interac-

tion was selected to further explore the trends in TCP control packets and provide a meaningful

recommendation based on the volume and frequency of data exchanged between these NFs.

Figure 3.4 considers all TCP control packets exchanged between these two functions and com-

pares the size of the packet to the time at which it was sent, effectively providing bi-direction

link throughput for this interface. This figure shows a clear spike in packet size near the be-

ginning, followed by a constant packet size for the remainder of the data collection stage. The

zoomed-in portion of the graph shows that the packets are transmitted periodically with minor

variations due to signalling processes.
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Figure 3.4: Bytes per Second Exchanged between BSF and NRF

To further explore these results and translate them to observable 5G NF events, a more

intuitive analysis is done regarding the one-way communication of the BSF with the NRF as

seen in Fig. 3.5. In this figure, the TCP packets with the BSF as the source and the NRF as
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the destination are displayed, and text annotations have been used to highlight key NF events.

As seen in this figure, the initial spike in packet size is attributed to the BSF registering with

the NRF. In HTTP/2-based communications, this interaction corresponds to a request/response

fetch in the SBI, as opposed to a subscribe/notify callback (e.g., the SMF subscribing to the

NRF for notifications when other NFs go down). During this registration process, the BSF is

required to send all its functional information to the NRF, resulting in the increased packet size.

The second major NF event is the BSF heartbeat which occurs every 10 seconds and makes the

NRF aware of any changes in its status (i.e., registration, load). As illustrated in the zoomed-in

portion of the graph, two packet size values emerge; the greater packet size is associated with

the PATCH request used to perform the heartbeat, whereas the lesser packet size is associated

with the acknowledgement of received information from the NRF in response. It is important

to note that the PATCH request, partially updates the network resource, compared to a PUT re-

quest, which completely replaces the resource addressed by the URI with the JSON-formatted

payload of the request.

Equivalently, Fig. 3.6 presents the one-way communication of the NRF with the BRF. As

labelled through the annotation, the first major spike corresponds to the response sent when

the NF has been registered (NF REGISTERED) and the profile has been created. As expected,

when compared with the initial request seen in Fig. 3.5, the response is significantly smaller.

Furthermore, when looking at the zoomed-in portion of the graph outlining the response to the

BSF heartbeat, there are once again two distinct packet sizes that emerge. The smaller of the

two sizes corresponds to a simple acknowledgement, whereas the larger size corresponds to the

response of the heartbeat. As outlined in the NRF schema, if no significant change has been

made to the status of the function, the response to the heartbeat is a packet with an empty body;

however, if there were to be a significant change to the function status, such as the signal value

NF DEREGISTERED, this response’s body would contain the latest updated information.

Given the results presented in this case study, the NWDAF could be tasked with recom-

mending a placement decision for another instance of the BSF function. An industrial NWDAF



44 Chapter 3. Towards Supporting Intelligence in 5G and Beyond Networks

19:10 19:26:40 19:43:20 20:00 20:16:40 20:33:20 20:50 21:06:40 21:23:20
Time

200

400

600

800

Pa
ck
et
 L
en

gt
h 
[b
yt
es
]

BSF Registrati n with NRF

Packet Length BSF → NRF

20:25 20:26:4020:28:20 20:30
Time

60

80

100

120

140

160
BSF Heartbeat t  NRF

Figure 3.5: Length of Packets Sent from BSF to NRF



3.3. Case Study: NWDAF Implementation and Analysis 45

19:10 19:26:40 19:43:20 20:00 20:16:40 20:33:20 20:50 21:06:40 21:23:20
Time

75

100

125

150

175

200

225

Pa
ck
et
 L
en
gt
  
[b
yt
es
]

Profile Created - NF Registration Response

Packet Lengt  NRF → BSF

20:18:20 20:20 20:21:4020:23:20 20:25
Time

70

80

90

100
NRF Heartbeat Response

Figure 3.6: Length of Packets Sent from NRF to BSF



46 Chapter 3. Towards Supporting Intelligence in 5G and Beyond Networks

solution utilizes similar policy decision-making in the context of the PCF and the NSSF [24].

The PCF should take input from the NWDAF to allocate resources and steer traffic policies for

dynamic network slices, and the NSSF should gather load-level information from the NWDAF

for the purpose of slice selection. As illustrated, the initial registration process with the NRF

results in the packet size spike, whereas the remainder of its interaction with the NRF is a set

of periodic heartbeats of much smaller packet size. For this reason, the co-location of these

network functions is likely not required as the amount of control information exchanged be-

tween them is limited. Future work with the BSF will explore its interaction with the PCF as

it is responsible for communicating with the PCF to partially update binding information for

PDU sessions which are set to binding level endpoint NF SET.

3.4 Outlook for 6G Networks

As 6G networks take shape, AI will be deeply integrated into the network, more than just

through a core network function. As intelligence gets distributed through the system, so do the

privacy and security risks associated with it. These risks can range from data poisoning at edge

nodes to system-wide model drift, each with its own intricacies and nuances which must be

addressed. Additionally, with more data distributed at the edge, data privacy is paramount to

ensuring public safety considering critical services such as emergency, finance, and transporta-

tion will be in jeopardy of being compromised. As such, it will become increasingly important

to consider model maintenance as an integral part of the ML/AI life cycle to ensure future

networks’ safe and secure performance.

6G networks must fully realize the revolutionizing Industry 4.0 that started with 5G net-

works. In particular, it is the digital transformation of physical manufacturing systems and IoT

services. IoT-based diagnostics will enhance maintenance and operation of machine commu-

nications, prioritizing cost-effectiveness and flexibility. In Industry 4.0, automation requires

reliable and synchronous communication systems that 6G is situated to address through the
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aforementioned disruptive technologies [80].

With the advent of low-power requirements for IoT devices, AI model training could con-

sider new specifications recommended by NWDAF data, based on federated learning (e.g.,

learning at edge devices). As well, AI use cases guided by the NWDAF data analytics must

address the lack of bounding performance in 6G networks. In contrast to the previous chal-

lenge, system design must consider worst-case scenario network events while providing a min-

imum acceptable QoS/performance guarantee; however, due to non-linear characteristics of

such related problems, it may be infeasible for AI approaches regardless of their effectiveness

in real-time inferences [81].

3.5 Conclusion

The adoption and integration of intelligence in 5G networks has the potential to revolutionize

our current networking practices. Perhaps the greatest potential lies in the Network Data and

Analytics Function (NWDAF) proposed by 3GPP. This function will collect a plethora of in-

formation and statistics on the operation of the network ranging from high-level data such as

slice level information to very specific data related to a single NF. This chapter presented a

case study that outlined an analysis of NWDAF-collected core network function data from an

Open5GS and UERANSIM implementation. An initial analysis into this data and the potential

insights that can be drawn from it were illustrated. In this case study, 5G Core function con-

trol messages were considered; specifically, the interaction between the Network Repository

Function (NRF) and the Binding Support Function (BSF) was examined.

Future work in this area will consider the impact of the NWDAF on 5G networks and

continue to explore data generated from 5G Core network functions. As mentioned in Section

3.3, a study on the interaction between the BSF and the Policy and Control Function (PCF) will

be a focus. Finally, the development of advanced analytics models will be considered using the

generated data for use cases such as proactive network management and forecasting.



Chapter 4

A Reliable AMF Scaling and Load

Balancing Framework for 5G Core

Networks

4.1 Introduction

Mobile data traffic in 4G systems is rapidly increasing and in order for 5G communications

systems to accommodate these user servicing demands, increasing system capacity and pro-

visioning network resources are necessary. Scalability techniques and strategies in the 5G

Core (5GC) architecture offer more effective opportunities since the architecture splits the 4G

Mobility Management Entity (MME) into the AMF, as well as the Unified Data Management

(UDM), and the Session Management Function (SMF) [82]. The AMF, in particular, presents

an issue with addressing ever-increasing demand for handling User Equipment (UE) sessions,

and 5G networks must adopt improving technologies if there are to retain their competitiveness

in the mobile communications market. Network Function Virtualization (NFV) is considered a

significant contributor to the realization of 5G networks since it decouples 5G Network Func-

tions (NFs) from associated hardware and deploys them as virtualized NFs (VNFs), which are

48
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platform-independent. Multi-access edge computing (MEC) is another promising technology

in 5G networks for addressing low-latency requirements while alleviating network load [83].

These technologies have to employ effective solutions and strategies in order to realize their

requirements that are hinging on 5G network performance. Mixed-integer linear programming

(MILP) problems can formulate scaling strategies for the AMF by minimizing variables, such

as cost or migration time, while satisfying variable constraints, such as user throughput or

data rate requirements. Load-balancing mechanisms, as well, can alleviate the loads of user

demand on each scaled AMF instance, depending on the algorithm and strategy employed to

reduce latency in the Control Plane (CP) [84]. Therefore, this chapter proposes both an integer

programming formulation of the AMF scaling problem to minimize the number of instances

and a load-balancing module to address the influx of varying numbers of UE requests for ses-

sions to the AMF.

The structure of this chapter is as follows: Section 4.2 presents related works in the field

of network optimization operations research. Section 4.3 outlines the methodology followed,

including the problem formulations, a description of the 5G Core system prototype, and details

regarding the implementation. Section 4.4 presents and analyzes the obtained results from both

problems. Finally, Section 4.5 concludes the chapter and discusses future work.

4.2 Related Work

The research directions of 5G network infrastructure optimization techniques can focus on

request models or control signalling as indicators for NFs to be placed, replaced, or instanti-

ated. Pertaining to mobility management requests for mobile users in the network, the AMF

is considered the most important NF as it is also considered a bottleneck for performance op-

timization and deployment in the 5GC [85]. Typically, optimization problems regarding the

AMF involve placement decision-making; however, network flow models, such as the previ-

ously mentioned request models, can be modelled with integer variables in MILP to consider
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scaling instances [86]. MILP models can achieve optimal solutions in many scaling scenar-

ios, but as the network size increases, the solution may not easily be managed or directed.

Heuristic algorithms have been used to achieve near-optimal solutions in faster times, relative

to MILP solutions [87]. Linear programming models have been shown to provide a trade-off

between replications and migrations of NFs, since replications are beneficial to Quality-of-

Service (QoS) requirements, but require additional resources, and vice versa for migrations

[88]. In similar models, additional heuristics frameworks have been proposed to provide an-

other optimizable objective for maximizing throughput [89].

Load balancing mechanisms for NFs are important because the algorithms they employ

must be adequate, for any 5G architecture, in establishing an optimal load management scheme

[90]. Based on UE mobility, when it is necessary to increase system capacity for mobile data

traffic, UE devices can be categorized into different priority schemes when load-balancing,

based on operational speeds and mean throughput [91]. UE devices can be further grouped into

service-customized network slices in the 5G framework and have also been considered in other

VNF placement problems [92]. Regarding dynamic allocation of network slice bandwidth

for these UE devices, traffic prediction can be achieved with long short-term memory (LSTM)

networks and the problem formulation can be modelled with a fractional knapsack optimization

problem [93]. Both scaling and placement (location and number of instances, respectively) can

be considered in a single problem, such as the UPF Placement (UPFP) Problem [94]. Session

establishment requests from UE devices to the AMF have been used as signalling procedures

for finding solutions to the scaling problem and performance evaluation [95].

4.3 Methodology

The following section will outline the methodology followed in this work, including the opti-

mization problem formulation, the load balancing module, the 5GC prototype, and the imple-

mentation parameters.
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4.3.1 Optimization Problem Formulation

The variables used in the optimization problem formulation are defined as follows. α denotes

the number of AMFs required. C denotes the set of classes. u denotes the number of UEs per

class. wc denotes the weight assigned to each class. rβAMF denotes the β resource requirement

of the AMF. Cβs denotes the β resource capacity of the hosting server. Nu denotes the maximum

allowable number of UEs per AMF. Ngnb denotes the maximum number of UEs per gNB. The

optimization problem is formulated as follows:

Objective:

minimize(α) (4.1)

Constraints: ∑
c∈C

wc ×
∑
u∈c

u ≤ Nu × α (4.2)

wc ≥ 1 ∀ c ∈ C (4.3)

rRAM
AMF × α ≤ CRAM

s (4.4)

rCPU
AMF × α ≤ CCPU

s (4.5)

∑
c∈C

∑
u∈c

u ≤ Ngnb (4.6)

The objective of this optimization model, as expressed through Eq. 4.1 is to minimize the

number of AMF instances required to support a projected number of users. The users are split

into classes, which directly translate to QoS priority and slice selection policies (i.e., class 3

represents high QoS requirements, which can be attributed to intensive AR/VR application,

whereas class 1 represents low QoS requirements, with applications that do not require strin-

gent performance guarantees). UE classes have been grouped in broader categories, such as

Enhanced Mobile Broadband (eMBB), Massive Machine-Type Communications (MMC), and

Ultra-Reliable Low-Latency Communications (URLLC) [93]; however, there is a greater im-
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portance to specify user demands and impacts on QoS requirements, justifying the user strat-

ification mentioned above. In an effort to improve system reliability and resilience, the class

weights wc are introduced to act as an over-provisioning mechanism protecting against rapidly

increasing UE device densities by scaling the projected number of users per class. Equation 4.2

incorporates the weight term and determines the weight-adjusted number of users projected; in

order to meet this demand, the number of AMF instances α multiplied by the UE capacity per

AMF Nu must exceed the weighted user projection. Equation 4.3 ensures that the weight of

any given class cannot be less than one. This constraint is critical as class weight values below

one would result in AMF under-provisioning. The resource constraints presented in Eq. 4.4

and 4.5 ensure that the host server has enough RAM and CPU resource capacity to support the

required number of AMFs. Finally, Eq. 4.6 ensures that the number of users does not exceed

the maximum tolerable number per gNB.

4.3.2 Load Balancing Module

The proposed load balancing module is used to distribute incoming user requests to an AMF

set (group of associated AMFs) based on their relative capacity as outlined by 3GPP, and ETSI

[96]. For each batch of incoming requests, the current capacity of each AMF is retrieved. This

value is part of the AMF schema as outlined in 3GPP and indicates the relative processing

capacity of an AMF compared to other AMFs in the AMF set [97]. For the purposes of this

work, this parameter is scaled to a value on the range [0,1] and is calculated through Eq. 4.7,

where AMF x
capacity denotes the capacity of AMF x and the AMF set is denoted by AMF. These

relative capacities are then used as probabilities (since their summation is equal to one) for an

incoming request being assigned to an AMF. For example, if AMF y has a greater capacity than

AMF z, then it is more probable that a UE will connect to AMF y.

AMF x
capacity∑

x∈AMF
AMF x

capacity
∀ x ∈ AMF (4.7)
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4.3.3 Prototype

Emulated environments provide real-like scenario data that the optimization and load-balancing

problems can apply to. Hence, this section considers a working emulation of the 5GC stan-

dalone architecture, which consists of a single server that runs a virtual management service,

hosting individual Linux virtual machines (VMs) for each NF in the 5GC or entity that interacts

with the 5GC. The 5GC prototype utilizes Open5GS, which is a C-language open-source im-

plementation of 5GC. Open5GS is also Release-16 compliant, or in accordance with the 3GPP

release specifications [75]. The 5GC NFs provided by Open5GS include the following: the

AMF, in addition to the Network Repository Function (NRF), Session Management Function

(SMF), Authentication Server Function (AUSF), Unified Data Management (UDM), Unified

Data Repository (UDR), Policy Control Function (PCF), Network Slice Selection Function

(NSSF), Binding Support Function (BSF), and User Plane Function (UPF). In order to setup

a RAN and multiple UE devices to interact with the 5GC, UERANSIM is used, which is an

open-source 5G SA UE and RAN C++ implementation [76]. A single gNB connects to the

fully operational 5GC and a single host uses multiple network interfaces to emulate different

UE devices interacting with the RAN and the User Plane Function. All NFs are executed as

Linux executable programs in each VM.

The system prototype contains our implementation of the NWDAF which uses network

monitoring and data collection techniques to synthesize all service operations of the NWDAF,

according to its 3GPP specification. As a Type 1 Hypervisor for the server’s Virtual Machine

Management Service, Hyper-V (used for the VMs) allows port mirroring to designate VMs as

sources and destinations in terms of network traffic, where source VMs will duplicate all net-

work traffic contained within the private network and forward their copies to a single host as the

destination, acting as the central point for NWDAF analytics and operations. Apache Kafka is

used to monitor and pipeline the captured network data and stream it to a MongoDB instance to

aggregate historical data, as well as provide support for current state network monitoring for fu-

ture policy decision-making in the 5GC. The Open5GS implementation in the private network
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does not use Network Address Translation (NAT), and port forwarding rules are configured

such that UE device traffic can be encapsulated in the GPRS Tunneling Protocol (GTP) when

communicating with the UPF. Thereafter, the UPF routes Internet connectivity to UE devices

for any applications that the UE devices run. As multiple UE devices run sample applications

which connect through the 5GC, newly-generated packets are processed and then transformed

into schema-validated NWDAF events, which can constitute a readily available dataset for any

algorithm or optimization problem, as well as in the context of load-balancing. Closed-loop

automation, therefore, is a capability, from the prototype in its entirety, to maximize the po-

tential of the NWDAF and its impact on maintenance and operation-specific decisions in the

5GC.

4.3.4 Implementation Details

The prototype developed above was used to determine the number of UEs supported by an

AMF and a gNB, the resource requirements of an AMF instance, as well as the hosting server

capacity. For the experiments conducted in this chapter, the maximum number of UEs sup-

ported by an AMF is 1024, the maximum number of UEs supported by a gNB is 2e6, the

resource requirements of an AMF instance are 6.8 GB RAM and 1 vCPU, and the server re-

source capacities are 64 GB RAM and 12 vCPUs. The results section will outline various

experiments conducted by varying the distribution of classes to which the UEs belong, the

class weight parameters, and the number of UEs. Table 4.1 outlines the various parameters

considered. Three classes were assumed in this work where class 3 exhibits the greatest QoS

requirement and class 1 exhibits the lowest. It should be noted that the parameters with an alias

value in the table correspond to results presented in the subsequent section.
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Table 4.1: Implementation Parameters
Variable Value Alias

Class Distribution [c1, c2, c3]
[0.33, 0.33, 0.33] 4
[0.6, 0.2, 0,2] 5
[0.8, 0.1, 0.1] 6
[0.2, 0.2, 0.6] 2
[0.1, 0.1, 0.8] 0
[0.2, 0.6, 0.2] 3
[0.1, 0.8, 0.1] 1

Class Weights [w1, w2, w3]
[1, 1, 1] 0
[1, 1.1, 1.2] 1
[1, 1.2, 1.4] 2
[1, 1.3, 1.5] 3

Number of UEs [1, 2, 3, 4, 5, 6, 7] x 1000

4.4 Results

The results presented in this section are separated into two sections, optimization model testing

and load balancing module testing. For the optimization model testing, the model was run using

all permutations of the parameters listed in Table 4.1. The load balancing module testing uses

the results of the optimization model to determine the minimum number of AMFs required. A

Poisson distribution of varying λ values is used to simulate the inter-arrival time of the requests.

The λ values considered are from the set [1, 3, 5], where a λ value of 1 results in a lower

interarrival time than that of the distribution where λ is 5. The various lambda values are used

to simulate different types of events that could increase the number of UEs at different rates

(i.e., crowd events). The load balancing module runs using these request interarrival times; it

selects an AMF for the incoming request and updates the AMFs relative capacity accordingly.

Two different permutations of this experiment are conducted, the first where all AMFs begin

at full capacity and the second where initial AMF capacities are randomly generated on the

interval [0.68, 1].



56 Chapter 4. Reliable AMF Scaling and Load Balancing Framework

4.4.1 Optimization Problem
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The results of the optimization problem formulation testing are presented in Fig. 4.1. Each

graph in this figure represents a different number of UEs requiring AMF allocation. The x-axis

of the graphs is the weight distribution used, and the y-axis is the class probability distribution

used. It should be noted that for brevity, the values displayed along the axes are aliases for the

weights and distributions as outlined in Table 4.1. As seen in this figure, as the number of UEs

increases, so does the number of AMFs required to support those UEs; however, the weight

and class distribution considered also impact the minimum number of AMFs required.

The case where the number of UEs is 7000 is a prime example of how the weight and

class distribution can affect the optimal solution. As seen in this figure, there are three de-

picted optimal values, 7, 8, and 9 AMFs and two cases where the solution was infeasible (class

distribution 0 with weight distributions 2 and 3). Regarding the weights, as seen in Table 4.1,

weight distribution with alias 0 considers an equal weighting between all classes and the subse-

quent weights become increasingly biased towards the second and third classes associated with

higher QoS requirements. As such, it is evident that as the weight distribution shifts from 0 to

3, the system’s resiliency increases through the class weights controlling the conservativeness

of the solution. These weights allow for increased flexibility for the network service providers

as they can efficiently manage the level of over-provisioning for resilience in their system.

Intuitively, the class distribution affects the solution when considering class weighting. For

the case of 7000 UEs, when the weight distribution is type two, there are three obtained solu-

tions based on the class distribution types considered, 8, 9, and infeasible solution. Consulting

Table 4.1 it is seen that distributions 5 and 6 result in the lowest number of UEs belonging to

classes 2 and 3; as such, the impact of increased weight on these classes is diminished, result-

ing in the smallest number of AMFs. Conversely, class distribution 0 results in the greatest

number of UEs belonging to class 3; the compounding impact of the number of users in class

three and the increased weight of class three requires over-provisioning levels that cannot be

accommodated given the current server capacities and therefore, results in an infeasible solu-

tion. The remaining distributions fall somewhere between the previously discussed boundary
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cases, resulting in 9 AMFs required.

The results presented in this section illustrate the optimal solution bound when exploring

an increasing number of UEs, variable class distributions, and increasing class weights. This

analysis has illustrated that by manipulating the class weights, service providers can increase

the resilience of their system to protect against unforeseen events causing an influx of users

and adverse network conditions.

4.4.2 Load Balancing Module

Figure 4.2 displays the load-balancing experiments with three different λ values for the Poisson

distributions of the UE request arrival times and the capacities of all AMF instances are equal

(the maximum supported capacity at 1.0, based on its configuration scale in Open5GS) [75].

Each plot shows the changing AMF capacities over time as they converge towards full capacity

and underneath the plot, a bar graph demonstrates the number of times each AMF was selected

for servicing the incoming UE requests. Comparing the three capacity plots, the different λ

values of the Poisson distributions show longer times for the AMFs to converge to full capacity

when λ is larger. The corresponding bar graphs show an almost equal distribution of AMF

selections, which is expected for equal AMF capacities.

Figure 4.3 shows the same load-balancing experiments as before, with varying Poisson

distributions, but the AMF instances’ capacities are configured at random. Both the plots,

at time t = 0, and the bar graphs show the starting capacities of each AMF. For example,

the left-most plot demonstrates that AMF 8 has the largest capacity, while AMF 0 has the

smallest capacity: the same information is conveyed based on the total number of times, that the

corresponding AMF is selected, in the bar graph. Similar to Figure 4.2, this figure shows how

the AMF instances converge to full capacities slower, with larger λ values. As well, the AMF

capacity curves converge at similar rates, with equidistant descents beginning approximately

at t = 102 seconds. This point is important for evaluating relative AMF capacities in the Load-

Balancing service mechanism for any AMF; if all AMF capacities are analyzed at a given
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Figure 4.2: Number of Times Selected per AMF Instance and AMF Capacity (Equal Initial
Capacity) over Time for Varying UE Request Distributions
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Figure 4.3: Number of Times Selected per AMF Instance and AMF Capacity (Random Initial
Capacity) over Time for Varying UE Request Distributions
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point in time for each plot, the initial capacities ranking, of all AMFs’ capacities from largest

to smallest, remains consistent as requests are completed from start to finish. AMF instances

use a weight factor with the Load-Balancing service to denote the relative capacity of its own

instance with respect to other instances, and this insight is important to network maintenance

because weight factors are not changed frequently (typically on a monthly basis) [97].

4.5 Conclusion

The work presented in this chapter proposes a reliable AMF scaling and load balancing frame-

work for 5G core networks. The minimum number of AMFs required to support a forecasted

number of UEs is determined through an optimization problem formulation. The solution to

the optimization problem is then leveraged to instantiate the appropriate number of AMF in-

stances and perform load balancing through relative AMF capacity. The implementation phase

of this work includes the development of a 5G core prototype, which is used to obtain capacity

and utilization values for various elements of the core network used in the optimization prob-

lem formulation. Future work in this field will consider a traffic forecasting module such that

an end-to-end proactive service pipeline can be used to provision AMF instances in advance

of anticipated large-scale events and ensure a resilient and reliable network with performance

and service continuity.



Chapter 5

Conclusion

5G and Beyond networks will have a profound impact on daily life in our society, as the in-

sightful analysis on mobile networks, along with the evolution of advancing technologies and

emerging use cases, has shown. The transition from 4G to 5G and to 6G and beyond has

spurred a rapid architectural evolution of modern networks, and new enabling technologies are

enhancing and improving the performance of next-generation networks. With any technolog-

ical revolution, there are also a plethora of challenges; intelligent networking techniques have

been shown to address these challenges with the aim of ensuring a feasible and seamless im-

plementation of these modern, intelligent networks. As well, increasing levels of intelligent

automation in these networks pave the way for the transition to fully autonomous zero-touch

network service management, which is essential for use cases such as healthcare, which de-

mand sub-millisecond latencies, utmost reliability, and high availability.

The NWDAF proposed by the 3GPP has the potential to revolutionize the adoption and

integration of intelligence in 5G and Beyond networks. This NF has been shown to collect a

large variety and volume of network data and statistics involving operations and maintenance,

including high-level data related to network slices and NF service operation data within the 5G

Core. It is both useful to network providers for monitoring network performance and to the

network itself, acting upon NWDAF data by predictive maintenance operations and realizing
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complete network automation. NWDAFs can be centralized and/or distributed across different

tracking areas and regions of operation to, furthermore, expose the underlying network data.

A practical and operational implementation of the 5G Core and the NWDAF were presented

and shown to provide key insights on core network function data, in order to draw conclusions

on future decision-making within the network. In addition, advanced analytics models were

constructed using the generated data to illustrate both the capabilities and the importance of

proactive network management and forecasting.

Operations research has been conducted with practical, generated network data to find op-

timal or near-optimal solutions to decision-making problems in the 5G Core. In particular, a

scaling framework and load-balancing mechanism were proposed for the AMF and its number

of instances within the 5G Core. The optimization problem determines the minimum number

of AMFs required to accommodate and support a forecasted number of UEs within the net-

work. The problem solution has been demonstrated to aid in instantiation of AMF instances

and perform load balancing with accordance to relative AMF capacities. The insights from this

approach to the optimization problem can be extended to traffic forecasting and user prediction

for network service operations.

Future works, considering the challenges that have been addressed in each chapter, will

focus on the limitations of the current NWDAF prototype, as well as refining the optimization

problems to better suit industrial needs and applying machine learning techniques to model-

ready training datasets prepared by the NWDAF. Efficient operation is at the forefront of future

5G deployment and maintenance considerations, and mobility is a key metric/KPI that the

NWDAF must follow and learn about within the network. Control plane NFs can predict this

mobility, provided that the analytics operations are efficient and intelligent (i.e., leads to making

proactive decisions). Data required for mobility prediction can be streamed by the AMF to the

NWDAF via the data collection API and can identify aperiodicity in mobility patterns. On

the user plane side, a UPF area prediction service can be implemented based on UE location,

capacity/availability, and distance [98].
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While 5G is currently being developed and NSPs are beginning initial deployment, and

integration, discussion of 6G networks is already on the horizon. The motivation behind this

discussion is the rapidly increasing number of connected devices, a trend that is expected to

continue for the foreseeable future as I/IoT frameworks continue to develop and expand. To

this end, the outlook for future research in 5G and Beyond networks will have to address the

current issues and limitations of modern operational networks as they will not be able to meet

the demands of future use cases, which are projected to require transfer rates in the order of

Tb/s, latency on the order of microseconds, as well as increased connection density due to a

multitude of deployed sensors. The various use cases of the NWDAF will aid in addressing the

AI-related challenges in 6G networks.

To address the expected limitations and shortcomings of 5G networks, research has begun

into methods of expanding the capacity and capability of future networks to ensure that future

demands can be met. Some proposed lines of research include the exploration of new frequency

bands (THz) as well as distributed and federated intelligence throughout the network. As

user behaviour and habits change and evolve, networking practices must also follow suit. 6G

presents a revolutionary opportunity to scale up the presence of intelligence in networks and

ultimately enable a plethora of future use cases and applications; however, this is not a trivial

task.

With the ever-increasing demands of users and applications alike, and the capabilities of

rapidly developing intelligence engines such as the NWDAF, next-generation mobile networks

are positioned to satisfy the strict service requirements for future networks.
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[7] Gábor Soós, Dániel Ficzere, Pál Varga, and Zsolt Szalay. Practical 5g kpi measurement
results on a non-standalone architecture. In Noms 2020-2020 IEEE/IFIP network opera-
tions and management symposium, pages 1–5. IEEE, 2020.

[8] Hisham A Kholidy, Andrew Karam, James L Sidoran, and Mohammad A Rahman. 5g
core security in edge networks: A vulnerability assessment approach. In 2021 IEEE
Symposium on Computers and Communications (ISCC), pages 1–6. IEEE, 2021.

[9] Cheng-Chin Tsai, Fuchun Joseph Lin, and Hiroshige Tanaka. Evaluation of 5g core
slicing on user plane function. Communications and Network, 13(03):79–92, 2021.

[10] Peter Rost, Albert Banchs, Ignacio Berberana, Markus Breitbach, Mark Doll, Heinz
Droste, Christian Mannweiler, Miguel A Puente, Konstantinos Samdanis, and Bessem
Sayadi. Mobile network architecture evolution toward 5g. IEEE Communications Mag-
azine, 54(5):84–91, 2016.

[11] Nokia. “5g core (5gc)”. https://www.nokia.com/networks/portfolio/5g-core/ (accessed
Jan. 9, 2022).

65



66 BIBLIOGRAPHY

[12] Gabrial Brown. Service-based architecture for 5g core networks. A Heavy Read-
ing white paper produced for Huawei Technologies Co. Ltd. Online verfügbar unter:
https://www. huawei. com/en/press-events/news/2017/11/HeavyReading-WhitePaper-5G-
Core-Network, letzter Zugriff am, 1:2018, 2017.

[13] Sassan Ahmadi. 5G NR: Architecture, technology, implementation, and operation of
3GPP new radio standards. Academic Press, 2019.

[14] Guangyi Liu, Yuhong Huang, Zhuo Chen, Liang Liu, Qixing Wang, and Na Li. 5g de-
ployment: Standalone vs. non-standalone from the operator perspective. IEEE Commu-
nications Magazine, 58(11):83–89, 2020.

[15] Yongwan Park. 5g vision and requirements of 5g forum, korea. In ITU-R WP5D Work-
shop, 2014.

[16] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines. 5g net-
work slicing using sdn and nfv: A survey of taxonomy, architectures and future chal-
lenges. Computer Networks, 167:106984, 2020.

[17] Stefan Rommer, Peter Hedman, Magnus Olsson, Lars Frid, Shabnam Sultana, and Cather-
ine Mulligan. 5G Core Networks: Powering Digitalization. Academic Press, 2019.

[18] Junseok Kim, Dongmyoung Kim, and Sunghyun Choi. 3gpp sa2 architecture and func-
tions for 5g mobile communication system. ICT Express, 3(1):1–8, 2017.

[19] Andy Sutton. 5g network architecture. J. Inst. Telecommun. Professionals, 12(1):9–15,
2018.

[20] Endri Goshi, Michael Jarschel, Rastin Pries, Mu He, and Wolfgang Kellerer. Investigat-
ing inter-nf dependencies in cloud-native 5g core networks. In 2021 17th International
Conference on Network and Service Management (CNSM), pages 370–374. IEEE, 2021.

[21] Georg Mayer. Restful apis for the 5g service based architecture. Journal of ICT Stan-
dardization, pages 101–116, 2018.

[22] Danish Sattar and Ashraf Matrawy. Optimal slice allocation in 5g core networks. IEEE
Networking Letters, 1(2):48–51, 2019.

[23] 3GPP. Architecture enhancements for 5G System (5GS) to support network data ana-
lytics services. Technical Specification (TS) 23.288, 3rd Generation Partnership Project
(3GPP), 2022. Version 17.5.0.

[24] Network data analytics function (nwdaf), Oct 2021.

[25] Youbin Jeon, Hyeonjae Jeong, Sangwon Seo, Taeyun Kim, Haneul Ko, and Sangheon
Pack. A distributed nwdaf architecture for federated learning in 5g. In 2022 IEEE Inter-
national Conference on Consumer Electronics (ICCE), pages 1–2. IEEE, 2022.
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Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[67] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Pascha-
lidis, and Wei Shi. Federated learning of predictive models from federated electronic
health records. International journal of medical informatics, 112:59–67, 2018.

[68] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learn-
ing: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[70] 5G; 5G System; Network Data Analytics Services; Stage 3 (3GPP
TS 29.520 version 15.0.0 Release 15)etsi ts 129 520 v15.0.0.
https://www.etsi.org/deliver/etsits/129500129599/129520/15.00.0060/ts129520v150000p.pd f .

[71] Abdallah Moubayed, Abdallah Shami, Parisa Heidari, Adel Larabi, and Richard Brun-
ner. Edge-enabled v2x service placement for intelligent transportation systems. IEEE
Transactions on Mobile Computing, 20(4):1380–1392, 2021.

[72] Dimitrios Michael Manias and Abdallah Shami. The need for advanced intelligence in
nfv management and orchestration. IEEE Network, 35(1):365–371, 2021.

[73] Dimitrios Michael Manias, Manar Jammal, Hassan Hawilo, Abdallah Shami, Parisa Hei-
dari, Adel Larabi, and Richard Brunner. Machine learning for performance-aware vir-
tual network function placement. In 2019 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, 2019.

[74] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool Asal. Nfv: state of
the art, challenges, and implementation in next generation mobile networks (vepc). IEEE
Network, 28(6):18–26, 2014.

[75] Open5GS. “open5gs: Open source project of 5gc and epc (release-16)”.
https://open5gs.org/ (accessed Feb. 25, 2022).

[76] Aligungr. Aligungr/ueransim: Open source 5g ue and ran (gnodeb) implementation.

[77] 3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Release 16 Description; Summary of Rel-16 Work Items
(Release 16) 3gpp tr 21.916 v16.1.0. January 2022. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493.



BIBLIOGRAPHY 71

[78] https://github.com/Western-OC2-Lab/5G-Core-Networks-Datasets.

[79] Ramy Mohamed, Sofiane Zemouri, and Christos Verikoukis. Performance evaluation and
comparison between sa and nsa 5g networks in indoor environment. In 2021 IEEE Inter-
national Mediterranean Conference on Communications and Networking (MeditCom),
pages 112–116. IEEE, 2021.

[80] Zhengquan Zhang, Yue Xiao, Zheng Ma, Ming Xiao, Zhiguo Ding, Xianfu Lei, George K
Karagiannidis, and Pingzhi Fan. 6g wireless networks: Vision, requirements, architecture,
and key technologies. IEEE Vehicular Technology Magazine, 14(3):28–41, 2019.

[81] Rubayet Shafin, Lingjia Liu, Vikram Chandrasekhar, Hao Chen, Jeffrey Reed, and
Jianzhong Charlie Zhang. Artificial intelligence-enabled cellular networks: A critical
path to beyond-5g and 6g. IEEE Wireless Communications, 27(2):212–217, 2020.

[82] Imad Alawe, Yassine Hadjadj-Aoul, Adlen Ksentini, Philippe Bertin, César Viho, and
Davy Darche. Smart scaling of the 5g core network: an rnn-based approach. In 2018
IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2018.

[83] Davit Harutyunyan, Rasoul Behravesh, and Nina Slamnik-Kriještorac. Cost-efficient
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Scalability and performance analysis in 5g core network slicing. IEEE Access, 8:142086–
142100, 2020.

[96] 5G;System Architecture for the 5G System ETSI TS
123 501 v15.3.0. September 2018. [Online]. Available:
https://www.etsi.org/deliver/etsits/123500123599/123501/15.03.0060/ts123501v150300p.pd f 3.

[97] NG-RAN; NG Application Protocol (NGAP) 3GPP TS
38.413 v16.9.0. April 2022. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3223.

[98] Jaeseong Jeong, Dinand Roeland, Jesper Derehag, Åke Ai Johansson, Venkatesh
Umaashankar, Gordon Sun, and Göran Eriksson. Mobility prediction for 5g core net-
works. IEEE Communications Standards Magazine, 5(1):56–61, 2021.



Curriculum Vitae

Name: Ali Chouman

Post-Secondary University of Western Ontario
Education and London, ON, Canada
Degrees: 2020 Bachelor of Engineering Science

Honours and Ontario Graduate Scholarship
Awards: 2022

Related Work Teaching Assistant
Experience: The University of Western Ontario

2021-2022

Publications:

A. Chouman, D.M. Manias, and A. Shami. Toward Supporting Intelligence in 5G/6G Core
networks: NWDAF Implementation and Initial Analysis. In 2022 International Wireless Com-
munications and Mobile Computing Conference (IWCMC), pages 324–329, 2022.

A. Chouman, D.M. Manias, and A. Shami. A Reliable AMF Scaling and Load Balancing
Framework for 5G Core Networks. (awaiting review, GlobeCom)

A. Chouman, D.M. Manias, and A. Shami. Network Data Analytics in Future Networks:
Trends, Outlooks, and Future Directions for the 5G Core and Beyond Networks. (pending sub-
mission)

D.M. Manias, A. Chouman, and A. Shami. An NWDAF Approach to 5G Core Network
Signaling Traffic: Analysis and Characterization. (awaiting review, GlobeCom)

D.M. Manias, A. Chouman, S. Primak and A. Shami. Deep Learning for 5G Wireless
Channel Estimation in Cognitive Networks. (awaiting review, CC-ECE)

D.M. Manias, A. Chouman, and A. Shami. A Model Drift Detection and Adaptation
Framework for 5G Core Networks. (awaiting review, MeditCom 2022)

73



74 BIBLIOGRAPHY

D.M. Manias, A. Chouman, and A. Shami. Model Drift in Dynamic Network Environ-
ments. (awaiting review, IEEE Communications)


	Machine Learning and Operations Research for Intelligence Engines in Future Networks
	Recommended Citation

	tmp.1659980539.pdf.ie9ey

