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Abstract

Profinite groups are topological groups which are known to be Galois groups. Their
free product was extensively studied by Luis Ribes and Pavel Zaleskii using the no-
tion of a profinite graph and having profinite groups act freely on such graphs. This
thesis explores a different approach to study profinite groups using profinite graphs
and that is with the notion of automorphisms and colors. It contains a generaliza-
tion to profinite graphs of the theorem of Frucht (1939) that shows that every finite
group is a group of automorphisms of a finite connected graph, and establishes a
profinite analog of the theorem of Sabidussi (1959) that states that every abstract
group is a group of automorphisms of a connected graph. The profinite version of
these theorems is: Every finitely generated profinite group is a group of continuous
automorphisms of a profinite graph with a closed set of edges and every profinite
group is a group of continuous automorphisms of a connected profinite graph. The
thesis contains an application of these theorems, which is a solution to the conjecture
of Sidney Morris and Karl Hoffmann stating that every profinite group is a group
of autohomeomorphisms of a connected compact Hausdorff space.

Keywords: profinite graphs, profinite groups, profinite topology, graph automor-
phisms
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Summary for Lay Audience

Mathematicians often try to find links between seemingly unrelated topics. This
can help in solving difficult problems. For example a problem in one theory, like
geometry, could be very difficult to solve by itself, but if one looks at it from the
point of view of algebra, it suddenly becomes much easier.

The goal of this thesis is to study relations between an old theory invented
to solve equations: Galois theory and a much more recent theory that is used to
represent connections: graph theory. At first glance the two topics are seemingly
unrelated: on one hand we get equations like x5− x3 + 12x+ 1 = x2− 2 and on the
other we get a list of points (vertices) and connections between them. The key that
binds them together is the notion of automorphism group, which one can think of
as a list of swaps that preserve certain properties. In the case of equations, we swap
their solutions, in the case of graphs, we swap the vertices in such a way that, after
the swaps are done, the connections remain the same. In this thesis I explore the
different ways in which such swaps on solutions of equations (Galois theory) can be
represented as swaps on vertices (Graph theory).
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Introduction

Galois theory is the study of separable field extensions using groups. Due to the fun-
damental theorem of Galois theory, there is a correspondence between subextensions
of a given finite normal extension and subgroups of its group of automorphisms bet-
ter known as the Galois group. The correspondence works in the following way: to
a subextension, we associate the subgroup of automorphisms that fix that subexten-
sion and to a subgroup of automorphisms we associate its fixed field. When dealing
with the infinite case a problem arises that there is no longer just one subgroup
that corresponds to the fixed field. There exists however a solution that consists of
putting a topology on the Galois group known as the profinite topology and then
consider only closed subgroups. Closed subgroups of the Galois group give us a
natural choice for a group associated to a subextension and reestablishes the bijec-
tivity of the Galois correspondence. The most systematic way to study the infinite
Galois groups is to study the absolute Galois group. That is the Galois group of the
normal closure: the largest normal extension of a given field. The difficulty with
the absolute Galois group is however that it is complicated and outside of a few well
known examples like finite fields and the field of real numbers it is not well known.

A simpler case to study would be the pro-p groups, where we only consider
normal extensions of degree that is a power of some prime number p, or towers of
these extensions. The introduction to this theory is well covered by Helmut Koch
in [29].

Examples of work in this field include the article by Ján Mináč and Michel
Spira [35] on relations between Galois groups of extensions that are powers of 2
and quadratic forms on a given field of characteristic distinct from 2 and the article
by Ján Mináč, Andrew Schultz and John Swallow [34] that studies the structure of
the Fp[G] modules, with G being the Galois group of a cyclic extension of degree
pn. During my thesis, I have worked on the topic of pro-p groups as well together
with my fellow PhD students Ali Alkhairy and Oussama Hamza. We have worked
on the theorem discovered by Serre that for a given finitely generated pro p group
open subgroups are exactly those of finite index as in: exercise 6 page 32 of [45]. We
used it to establish Galois theory of infinite extensions whose Galois group is finitely
generated without having to resort to topology since for subgroups being open is
simply characterized by being of finite index. For further details, see [3]. It is worth
noting that this result was generalized for finitely generated profinite groups that
are not necessarily pro p by Nikolay Nikolov and Dan Segal in [40].

An important tool for studying Galois groups is the cohomology. To any group
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G we can associate a certain projective exact sequence, which we then tensor with
the group ring RG, with R the desired ring, often Z or Fp. After the tensoring, the
exact sequence is no longer exact and so we can study its cohomology. The first two
cohomologies give us important information about the group: the first cohomology
classifies derivations on a group and the second classifies group extensions with
Abelian kernel. More details on this topic are for example covered by Kenneth
Brown in [8] Chapter 4. The higher order cohomologies are often useful to provide
information on the first two: using tools like dimension shifting. A question that has
been studied in Galois theory is the question of formality: that means how much is
the given chain complex associated to the Galois group determined by its cohomology
and when can it be recovered. A sufficient condition was found using a certain
product coming from topology called the Massey product that is a generalization
of a cup product. A Massey product of order n associates to n elements in the
cohomological algebra a subset of the cohomological algebra of elements that are
solutions to certain equations. It is worth pointing out that it is not always defined
and it is not an internal operation, since rather than associating an element in the
cohomology it associates a set. For more details on how the Massey products can
be used in topology: one can check [30]. An important question when it comes to
Massey products is when they vanish. The definition of vanish in this context is that
they contain zero. If a chain complex is formal that is it’s structure can completely
be recovered from its cohomology, then the Massey products vanish whenever they
are defined. In the case of Galois groups, an extensive research has been done on
the triple Massey products. Examples of such work field include the work of Ido
Efrat and Eliyahu Matzri [12], showing that the triple Massey product restricted
to H1(GF )3 in the case of Absolute Galois group of a field containing a pth root of
unity vanish whenever it is defined. In 2015 Ján Mináč and Nguyen Tan showed in
[37] that triple Massey products always vanish for the Absolute Galois group of any
field. An important part in this proof was the existence of unipotent extensions:
that is Galois extension whose Galois group is U4(Fp): the group of upper triangular
matrices over the field Fp for p a prime. An explicit construction of such extensions is
given in [38]. As showed in [36] Massey products can as well be be used in counting
the U4(Fp)- extensions. The case of Massey products for n ≥ 4 is still an open
problem. In 2019 a significant advancement has been made by Yonatan Harpaz and
Olivier Wittenberg in [22], proved that for any number field k, any prime number
p and any natural number n ≥ 3, the Massey product of classes in H1(k,Z�pZ)

vanishes when defined.
The Massey products and cohomology in general open the possibility of using

combinatorial approaches to study Galois group. A very general open question is
how much can one recover from the Galois group using combinatorics. My thesis
focuses on using a very specific combinatorial tool to study Galois groups and that
is graph theory. There is a well known relation between graphs and groups that has
been established by Robert Frucht in 1939 [17]. Any finite group is isomorphic to
the group of automorphisms of a graph. In the case of Galois theory, this theorem
was used by Ervin Fried and János Kollár [15] [With corrections done by Michael



3

Fried in [16]] to prove a weaker version of the inverse Galois problem, where instead
of requiring that any finite group is a Galois group of a normal separable extension,
we require that it is just a Galois group of a separable extension, which proves that
using Graph theory to solve Galois theory question can be a viable approach.

In this thesis, we will look at two ways of studying Galois theory using graph
theory. In the first chapter, we will establish a few generalities on finite graphs
and show a proof of Frucht’s theorem invented by László Lovász in [31] and offer a
generalization of the theorem that I came up with. This generalization consists of
representing a group action on a finite set by a graph that I called the Group action
Cayley graph. We will then reinterpret the classical notion of group actions in terms
of graph properties. The importance of group action on a finite set is that if the
group is a Galois group of a field, then this group action corresponds to a certain
generalization of a notion of a separable extension, which is called Etale Algebra.

In the second chapter we will go over another possible approach to represent-
ing Galois theory using graph theory and that is the notion of covering graphs.
We will also establish a few useful tools in graph homology to detect cycles and
connectedness.

The third chapter is dedicated to the profinite structures that will be used in this
thesis. I used the following profinite structures in my thesis: Profinite groups, rings,
modules, graphs and covering graphs. Since certain notions like projective limits or
compactness were common for all these structures, I decided to group them under a
certain general category-theoretical notion which I called a profinite structure and
proved their common properties at once, rather than establishing them separately.
The last part of the third chapter is about Etale algebras and showing why they
correspond to the action of the absolute Galois group on finite sets.

The fourth Chapter ties all the notions seen previously together and generalizes
them for profinite graphs. We will first give a definition of a profinite graph, then
generalize the notion of connectedness and see how they are different between the
abstract and the profinite case. We will also see a weaker notion of connectedness
that I came up with and call superpath-connectedness and show why this notion
is weaker. We will then generalize the graph homology to profinite graphs and
define with it the notion of a profinite tree. We will then go over the notion of
profinite covering graphs and see why they are a profinite structure in the sense of
the definition given in chapter 3 and then prove the fundamental theorem of Galois
theory of profinite covering graphs. Finally we will generalize the notion of the
group action Cayley graph seen in Chapter 1. We will establish a generalization
of a notion of color to the profinite graph, then use it to construct the profinite
group action Cayley graphs and finally give give two procedures for dropping the
colors. The first one is in the case of finite sets of colors. That procedure is in
fact a generalization for profinite graphs of the procedure given by Lovász in [31].
The second method drops colors for any graph with closed set of edges, but with
the difference that the resulting graph after getting rid of the colors will no longer
have closed edges. At the end of the fourth chapter we will work on an application
of this color substitution to the study of the topology of profinite groups. We will
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prove a generalization of a result established by Karl Hoffmann and Sidney Morris,
proving in [25] that every profinite group with one topological generator is a group of
autohomeomorphisms of a compact Hausdorff connected space. We will generalize
the method exposed in the article and prove that every profinite group is a group
of autohomeomorphisms of a compact Hausdorff connected space. Given that this
proof uses an old theorem proved by de Groot in [20] and that the proof lacked
certain details that is completed in this thesis using convex geometry.
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Contributions

Since this thesis contains a substantial amount of background material, I decided to
dedicate a small section summing up the original contributions of this thesis.

In chapter 1 I examine the theorem of Frucht as proven by Lászlo Lovász in
[31] and I get an alternative construction to his substitution of colors by graphs,
which works for more general graphs than just Cayley graphs and I also examine
the difference between the groups of automorphisms we obtain between the two
substitutions. I then give in 1.5.1 a theorem that generalizes the construction for
Cayley graphs and captures action of a finite group on a finite set. On pages 16 and
17, I examine the reinterpretation of an group action properties in terms of their
associated group action Cayley graphs.

Throughout the chapter 3, I introduce an original notion that unifies structures
such as profinite groups, profinite rings and profinite modules into a single category
called profinite structure as defined in 3.1.4

Finite and infinite color substitution In chapter 4 I introduce the notion
of color on profinite graphs in 4.6.1 and I use it to construct profinite group action
Cayley graphs, which capture the action of a profinite group on a profinite set. I
then give two distinct theorems for substituting colors in graphs by sugraphs that
preserve the groups of automorphisms. The first one in 4.6.6 works for a profinite
graph with closed and colored set of edges and a finite set of colors. The second
approach in 4.6.8 works for a profinite set of colored edges with this time the set
of colors being profinite possibly infinite. The drawback of the second approach is
that after doing the substitution, the set of edges is no longer closed.

Main result: In the section 4.7 I then give an application of the color sub-
stitution method, where I prove a generalization of a result proven in [25]. One
can observe that if we take a compact Hausdorff space X, the group of autohome-
omorphism of X can be equipped with open compact topology to make it into a
topological group. While X is compact the group of automorphisms isn’t necessarily
compact. In 2012 in [24] Sidney Morris and Karl Hofmann showed that if the group
is compact then it is profinite. Naturally one asks the question whether conversely
a profinite group is isomorphic to a group of autohomeomorphisms of a compact
Hausdorff space X. Morris and Hofmann conjectured it is the case and in [25], they
showed it for groups with single generator using topological Cayley graph.

I generalise their approach for all profinite groups using the profinite color sub-
stution theorems. In order to do such a proof, I use an old theorem shown by de
Groot in [20] constructing the de Groot continua. While in the publication, the pre-
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cise way of constructing the continuum is shown, it is missing a substantial amount
of details, which I complete in my thesis using convex geometry. It is important
to mention that originally I proved this result for only finitely generated profinite
groups. Since finitely generated profinite groups are metric as shown in 4.8, there is
actually a more general result by Gartside and Aneirin proven in [18], showing that
every metric profinite group is a group of autohomeomorphisms of a compact con-
nected Hausdorff space. The difference with my approach is that it generalizes the
one done by Hoffmann and Morris and uses the theory of profinite graphs and the
color substitution tools and ultimately led to the valid case for all profinite groups
without any restrictions.
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Chapter 1

Graph theory

1.1 Introduction
In this first chapter, we will give a simple definition of a graph that we will generalize
in the chapters that follow.

Definition 1.1.1. A graph G is defined as a pair (V,E), where V is a nonempty
set called the set of vertices and E ⊂ V 2 is called the set of edges.

If G = (V,E), G′ = (V ′, E ′) are two graphs, then a morphism between G and G′
is a map φ from V to V ′, such that if (x, y) ∈ E is an edge, then (φ(x), φ(y)) ∈ E ′
is an edge as well.

An isomorphism between G and G′ is a morphism φ, such that φ is bijective and
φ−1 is also a morphism.

A graph is called undirected loopless if and only if the set of edges E has no
diagonal elements (∀a ∈ V, (a, a) /∈ E) and E is symmetric i.e ∀a, b ∈ V, (a, b) ∈
E ⇒ (b, a) ∈ E.

Remark. For a bijection of vertices φ it is necessary to check that both φ and φ−1

are morphisms to prove that φ is an isomorphism, as shown in the example below:

Example 1.1.2. Let G be the graph

1 2

34

and G′ the graph

1 2

34
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Identity on the set {1, 2, 3, 4} is a morphism from G to G′, but not from G′ to
G since G′ has an extra edge (1, 3). However we have the following result:

Proposition 1.1.3. Let G = (V,E), G′ = (V ′, E ′) be two finite graphs with the
same number of edges. Let φ be a bijection from V to V ′ that is a morphism from
G to G′. Then φ is an isomorphism.

Proof. All we have to prove is that if (v, v′) ∈ E ′, then (φ−1(v), φ−1(v′)) ∈ E.

Consider the map Φ =

{
E −→ E ′

(u, u′) 7→ (φ(u), φ(u′))
. It is injective, since φ is injective.

By assumption E and E ′ have the same number of elements, hence Φ is bijective

and its inverse is:

{
E ′ −→ E

(v, v′) 7→ (φ−1(v), φ−1(v′))

Definition 1.1.4 (automorphism of graphs). For a graph G we define an automor-
phism as an isomorphism from G to itself.

Observe that the set of automorphisms is a subgroup of the group of permutations
on the set of vertices of G.

Since we know that every group can be realized as a subgroup of the group of
permutations, an interesting question concerning graphs is whether a certain given
group can be represented as automorphisms of a graph. It is a well known case for
finite groups, which we shall show here using an exercise in Lászlo Lovász textbook
[31] and afterwards I will expand on this construction. It is worth mentioning that
infinite groups can be represented as an automorphism group of a graph as well as
proved independently by Johannes Groot in [21] and Gert Sabidussi in [44].
Remark. Given a morphism of finite graphs, one can prove in polynomial time that
it is an isomorphism (simply check its injectivity), however finding explicit isomor-
phisms in polynomial time is currently an open problem. Provided there is no
polynomial time algorithm, there are possible applications to cryptography in form
of zero knowledge proofs protocol explained for example in [11]. Major progress
on this problem has been made using group theory by László Babai in [4] and [5],
proving this problem can be solved in quasi polynomial time.

1.2 Cayley graphs and groups
Definition 1.2.1 (edge colored graphs). An edge colored graph G is the quadruplet:
(V,E,C, c) with (V,E) a graph, C a non empty set and c a map from E to C. The
function c is called a coloring and C is called the set of colors.

If (V,E, c, C) and (V ′, E ′, c′, C ′) are two colored graphs a morphism is a map
f from V to V ′, such that f is a morphism from the graph (V,E) to the graph
(V ′, E ′) and ∀(u, v) ∈ E,∀(w, z) ∈ E, c((u, v)) = c((w, z)) ⇒ c′((f(u), f(v))) =
c′((f(w), f(z))), i.e f sends edges of the same color, to the edges of the same color.
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There is a very particular kind of colored graphs that makes it possible to rep-
resent a group as a group of automorphisms. It is called a Cayley graph.

When we talk about the automorphism group here, we have to be careful. We
are talking about automorphisms that fix colors. They are not automorphisms in a
category theoretical sense. Remember: in the category of edge colored graphs, the
automorphisms are in fact potentially permuting colors as well. Take for example
the following graph:

1 2

34

The permutation (1 2)(4 3) preserves both edges and their colors. It is what
we call a color-preserving automorphism. On the other hand the cycle (1 2 3 4)
preserves the edges, but permutes the colors: it is what we call a color-permuting
automorphism. It is clear that the color-fixing automorphisms form a subgroup of
the color-permuting automorphisms and the example above shows that it can be a
proper subgroup.

Henceforth for an edge colored graph G, we will denote Aut(G) the set of color-
fixing automorphisms and simply call it ’automorphisms’ unless stated otherwise.
Just keep in mind that only the color-permuting automorphisms are automorphisms
in the category theoretical sense.

Definition 1.2.2 (Cayley graph). Let G be a group generated by a set S not con-
taining 1G. We call the Cayley graph of G, the edge colored graph (V,E,C, c), with
V = G, E = {(g, gs)|s ∈ S, g ∈ G}, C = S and c(g, gs) = s.

Example 1.2.3. Take Q8 =< 1, i, j, k > the group of quaternions with generators
i, j. Its Cayley graph is:
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j

−k −j

k

−i

−1 i

1

With red being the multiplication by i and green by j.

The reason why Cayley graphs represent groups well comes from the following
theorem.

Theorem 1.2.4. Let G be a group generated by a set S with 1G /∈ S and G =
(V,E,C, c) an associated Cayley graph. Then there exists an isomorphism Φ from
G to Aut(G), such that the composition of Φ with the natural action of Aut(G) on
G is the multiplication on the left by elements of G.

Proof. Take Ψ the map {
Aut(G) −→ G

σ 7→ σ(1G)

Let us show that Ψ is an isomorphism of groups.
Take σ ∈ Aut(G) and let g = σ(1G). For a g′ ∈ G, we denote l(g′) the minimal

n such that there exists a sequence s1, · · · , sn ∈ S, for which g′ = s1 · · · sn. Let us
prove by induction on l(g′) that σ(g′) = gg′ for all g′ ∈ G.

If l(g′) = 0, then g′ = 1G and the statement is vacuously true. Now suppose
the statement true for all g′, such that l(g′) < n. Let us prove that it is also true
for all g′, such that l(g′) = n. Write g′ = g′′s with l(g′′) < n. Then we know that
σ(g′′) = gg′′. Now (g′′, g′′s) is an edge of color s and σ is an automorphism of G,
therefore (σ(g′′), σ(g′′s)) = (gg′′, σ(g′′s)) is also an edge of color s. There is only
one edge of that color coming out of gg′′, therefore σ(g′′s) = gg′′s = gg′, proving
the statement true for g′. We conclude that for all g′ ∈ G, σ(g′) = gg′. Now let
us prove that Ψ is a group morphism. Take σ, σ′ ∈ Aut(G) and write g = σ(1G)
and g′ = σ′(1G). Then by what we have shown σ(σ′(1G)) = gg′, proving that Ψ is
indeed a morphism.
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Now let us prove that Ψ is injective. If Ψ(σ) = 1G, then

∀g ∈ G, σ(g) = 1G · g = g

therefore σ = idG :
Now let us prove that Ψ is surjective. Let g ∈ G. Define

σ =

{
G −→ G

g′ 7→ gg′

Let us show that σ is an automorphism of Aut(G). Take (g′, g′s) an edge. Then we
have (σ(g′), σ(g′s)) = (gg′, gg′s) an edge of the same color: s. We conclude that Ψ
is an isomorphism.

Finally we put Φ = Ψ−1 it is clear that Φ composed with the natural action of
automorphisms gives the multiplication on the left by G.

We have shown here the well known fact that a group can be represented as
the automorphism group of a Cayley graph. However we have to remember that
the automorphism group we are considering is in fact the group of color-preserving
automorphisms and a natural question is whether for Cayley graphs this group is
the same as the color-permuting automorphisms. The answer to this question is
negative and it is explored in depth in the article [2].

Using a construction from an exercise in Lovász’s book [31] page 495 exercise 5,
we can prove then that any finite group is a group of automorphisms of a certain
undirected graph. This theorem was for the first time established by Frucht in [17]
and is as follows:

Theorem 1.2.5 (Frucht). Let H be a finite group. Then there exists a graph G,
such that H is isomorphic to the group of automorphisms of G.

Proof sketch:

Take S a set of generators of a group G. Take i an injective map from S to the
set of integers {1, · · · , n}, with n = #S, (G,E, c, {1. · · · , n}) a colored graph with
E ′ = {(g, gs)|g ∈ G, s ∈ S} and c((g, gs)) = i(s). The graph (G,E ′, c, {1, · · · , n})
is then a Cayley graph and its group of automorphisms is therefore isomorphic to
G. We will now transform it into an undirected loopless graph without colors in a
way that preserves the automorphism group. We start from the original graph and
we transform an edge of the type t = (g, gs) into the following:
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g

(t, 0, 0)

(t, 0, 1)

(t, 1, 0)

(t, 1, 1)

· · · (t, i(t) + 2, 0)

(t, i(t) + 2, 1)

(t, i(t) + 2, 2)

gs

We will go into more details as to why this transformation preserves the auto-
morphism groups later, but the general idea is that a path of a length i(t) can only
be sent by an automorphism on a path of the same length. The edge that was orig-
inally of color s will become a path of length i(s), which is how the automorphisms
remain the same. The purpose of the ’flag’ (t, i(t), 2) is to preserve the orientation
of the edges: it breaks the overall symmetry of the shape.

The new graph constructed from the Cayley graph has the desired property.
However one small disadvantage of this transformation is that it does not preserve
the automorphism group in the case of all colored graphs. The reason is because in
some instances a vertex could be swapped with its ’flag’.

Take for example this simple graph with two vertices and one edge t:
a b

It has no automorphisms. Now if we apply the Lovász transformation, we obtain:

a b(t, 0, 0)

(t, 0, 1)

(t, 1, 0)

(t, 1, 1)

(t, 2, 0)

(t, 2, 1)

(t, 2, 2)

This artificially adds the transposition between a and the flag (t, 0, 1) as an
automorphism.

In the part that follows, we will give a more general construction that preserves
the automorphism group for all flags and that is also functorial provided that we fix
a coloring system in N. Since we mentioned functors, we will start by defining the
category we are going to be working with.
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1.3 An automorphism preserving transformation.
In this section I will give a variation on the transformation given by Lovász I in-
vented. This new transformation preserves the automorphism group for all colored
graphs provided that the number of colors is finite. I will then show by how much
the automorphism group for the Lovász transform and my own differ.

Definition 1.3.1 (pointed colored graphs). We define a category of pointed finite
colored graphs as Col, a category with the objects being colored graphs: (V,E, c,N)
with V a finite set. A morphism f from (V,E, c,N) to (V ′, E ′, c′,N) is a morphism
of colored graphs, such that ∀t ∈ E, c(t) = c′(f(t)).

Since the set of colors is always N, we do not need to specify it and we will just
denote a graph in our category as (V,E, c).

For this type of graph, all the automorphisms have to be color-preserving rather
than color-permuting.

Definition 1.3.2. • For a pointed finite colored graph G = (V,E, c), we define
T(G) the undirected graph T (G) = (V ′, E ′), with V ′ being the set:

V ∪ {(t, 0, k)|t ∈ E, k ∈ {0, 1, 2}}∪
{(t, k, k′)|t ∈ E, k′ ∈ {1, · · · , c(t) + 1}, k ∈ {0, 1}}∪

{(t, k, c(t) + 2)|t ∈ E, k ∈ {0, 1, 2, 3}}

and E ′ being symmetrization of the set:

{(i, (0, 0, t))|t ∈ E,∃j ∈ V, t = (i, j)}∪
{((t, k, k′), (t, k, k′ + 1))|t ∈ E and (t, k, k′ + 1) ∈ V ′}∪

{((0, k, t), (0, k + 1, t))|(0, k + 1, t) ∈ V ′}∪
{((t, c(t) + 2, 0), j)|t ∈ E,∃i ∈ V, (i, j) = t}
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The corresponding image one can think of for this construction is as follows:
we start with the colored graph and we replace an edge (i, j) of color c(t), with
a path of length c(t) + 2 and adding the corresponding flags as in:

i

(t, 0, 0)

(t, 0, 1)

(t, 0, 2)

(t, 1, 0)

(t, 1, 1)

· · · (t, c(t) + 1, 0)

(t, c(t) + 1, 1)

(t, c(t) + 2, 0)

(t, c(t) + 2, 1)

(t, c(t) + 2, 2)

(t, c(t) + 2, 3)

j

• We shall now call the Lovász transform L the transformation that to a finite
colored graph G = (V,E, c) associates L(G) = (V ′, E ′), with V ′ being the set:

V ∪ {(t, k, k′)|t ∈ E, k′ ∈ {0, 1} and
k ∈ {0, · · · , c(t) + 1}} ∪ {(t, c(t) + 2, k)|k ∈ {0, 1, 2}}

and E ′ is the symmetrization of:

{((t, k, k′), (t, k, k′ + 1))|(t, k, k′ + 1) ∈ V ′}∪
{(i, (t, 0, 0))|t ∈ E,∃j ∈ V, (i, j) = t}∪
{((t, c(t) + 2, 0), j)|∃i ∈ V, (i, j) = t}

The illustration for how this transformation works is in 1.2.5. Now we will show
that the transformation T preserves the automorphism group and we will compare
how the transformation L differs from it.

Proposition 1.3.3. The transformation Tdescribed above is a functor from the cat-
egory of pointed finite colored graphs into the category of loopless undirected graphs,
such that for any pointed finite colored graph G, Aut(T(G)) is isomorphic to Aut(G).
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Proof. Let us start with the functor part. First we need to define T on morphisms.
Take f a morphism from G0 = (V0, E0, c0) to G1 = (V1, E1, c1), we take (E ′0, V

′
0) =

T(G0) and (E ′1, V
′

1) = T(G1). Now define

T(f) =


V ′0 −→ V ′1

x 7→

{
f(x) if x ∈ V0

(f(t), k, k′) if x = (t, k, k′)

With the convention that if t = (a, b) is an edge in G0, then f(t) = (f(a), f(b)). We
need to show that T(f) is well defined and is a morphism.

If (t, k, k′) is a vertex in V ′0 that means that k′ ≤ c0(t)+2. Since c1(f(t)) = c0(t),
by the virtue of f being a morphism, we get that k′ ≤ c1(f(t)) + 2, which makes
(f(t), k, k′) of the correct format to be a vertex in V ′1 , proving that T (f) is well
defined. The fact that T (f) is a morphism is fairly clear. It is also clear that T is
compatible with composition. Now that we know it is a functor, we will prove that
it preserves the automorphism group.

Let G = (V,E, c) be a pointed colored graph. Let T(G) = (V ′, E ′) Let us prove
that Φ the functor T restricted to Aut(G) is an isomorphism of groups from Aut(G)
to Aut(T(G)).

Proof that Φ is injective:
Suppose that for g ∈ Aut(G), Φ(g) = idV ′ Then since Φ(g)|V = g, we get that

g = idV .

Proof that Φ is surjective:
Let g ∈ Aut(T(G)). We start by observing that the path

((t, c(t) + 2, 3), (t, c(t) + 2, 2), (t, c(t) + 2, 1), (t, c(t) + 2, 0))

illustrated locally as:
(t, c(t) + 2, 3)

(t, c(t) + 2, 2)

(t, c(t) + 2, 1)

(t, c(t) + 2, 0)

y

(t, c(t) + 1, 0)

is of the form (A,B,C,D) with deg(A) = 1,deg(B) = 2,deg(C) = 2, deg(D) = 3,
so (g(A), g(B), g(C), g(D)) must also be a path of that form. The vertex g(A) cannot
be an element of V , because all neighbors of elements of V are of degree 3, but g(B)
is a neighbor of g(A) of degree 2. The vertex g(A) is therefore of the form (t, k, k′).
Since it is of degree 1, it can only be one of the following:

(t′, 0, 2), (t′, k, 1) with k < c(t′) + 2 or (t′, c(t′) + 2, 3)

We then differentiate the three cases:
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• In the first case, g(C) would have to be (t′, 0, 0), which is impossible since
g(C) is of degree 2, while (t, 0, 0) is of degree 3.

• In the second case g(B) would have to be (t′, k, 0), which is again impossible
for the degree reasons.

• We know therefore that g(A) is of the form (t′, c(t′) + 2, 3) and so g(D) =
(t′, c(t′) + 2, 0).

The next step to prove is that t and t′ are of the same color, i.e that c(t) = c(t′).
By induction on k, we shall prove that:

∀k ∈ {0, 1, · · · , c(t)+1}, c(t′)+2−k > 0 and g((t, c(t)+2−k, 0)) = (t′, c(t′)+2−k, 0)

Since we have already proved the initialization, we can now show the inductive
step. Suppose that the statement is true for all k strictly smaller than some n ≤
c(t) + 1 (and n > 0). Let us show that it is also true for n.

Let (A,B,C) be the path

((t, c(t) + 3− n, 0), (t, c(t) + 2− n, 0), (t, c(t) + 2− n, 1))

illustrated in red as:

(t, c(t) + 3− n, 0)(t, c(t) + 2− n, 0)

(t, c(t) + 2− n, 1)

a b

(t, c(t) + 3− n, 1)

The degrees of the vertices in the path are respectively 3,3,1. The path (g(A), g(B), g(C))
has therefore the same degree values. The vertex g(B) is of degree 3 and is con-
nected to g(C) that is of degree 1, hence it can only be of the form (t′′, k′, 0). Since
however its neighbor g(A) is of the form
(t′, c(t′) + 3− n, 0), therefore t = t′ and g(B) is either (t′, c(t′) + 4− n, 0) (Provided
such a vertex exists) or (t′, c(t′) + 2 − n, 0), but it can only be the latter by the
injectivity of g. Hence we indeed have that c(t′) + 2 − n > 0 and g((t, c(t) + 2 −
n, 0)) = (t′, c(t′) + 2 − n, 0) This in particular means that g((t, 1, 0)) = ((t′, k, 0))
with k = c(t′)− c(t) + 1. Now let us prove that g((t, 0, 0)) = (t′, 0, 0).

Let (A,B,C,D) be the path

((t, 1, 0), (t, 0, 0), (t, 0, 1), (t, 0, 2))

Illustrated locally in red as:

(t, 1, 0)(t, 0, 0)

(t, 0, 1)

(t, 0, 2)

x

(t, 2, 0)

(t, 1, 1)
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The degrees of the vertices in that path are respectively 3,3,2,1. g(A) = (t′, k, 0),
so g(B) is either (t′, k−1, 0) or (t′, k+1, 0), but it can’t be the latter by the injectivity
of g, so g(B) = (t′, k − 2, 0). The vertex g(C) is of degree 2, so it can either be in
V , of the form (t′′, c(t′′) + 2, 1) or of the form (t′′, 0, 1).

• It can’t be the first case, because elements of V are only connected to vertices
of degree 3, so don’t have a neighbor of degree 1 like g(C) does.

• It can’t be the second case, because the neighbors of (t′′, c(t′′) + 2, 1) are of
degree 2 and of degree 3, so it doesn’t have a neighbor of degree 1 either.

• we therefore conclude that g(C) = (t′′, 0, 1).

Since g(B) is a neighbor of g(C) of degree 2, we conclude that k−1 = 0 and t′′ = t′.
This means that c(t) = c(t′).

So far we therefore know that

∀(t, k, k′) ∈ V ′,∃!t′ ∈ E, g((t, k, k′)) = (t′, k, k′)

and for such a t′, c(t) = c(t′).
Now we shall prove that if t = (u, v) ∈ E, then t′ = (g(u), g(v)). We have that

g(u) is a neighbor of (t′, 0, 0), so it can only be (t′, 0, 1), (t′, 1, 0) or u′, such that there
is a w ∈ V for which (u′, w) ∈ E. (t′, 0, 1) = g((t, 0, 1)) and (t′, 1, 0) = g((t, 1, 0)),
so by injectivity of g, it can only be u′, with t′ = (u′, w). With a similar reasoning
done on g((t′, c(t′)+2, 0)), we get that g(v) = w, which proves that t′ = (g(u), g(v)).

We get in the end that g(V ) = V and that if (u, v) ∈ E, (g(u), g(v)) ∈ E and
c((u, v)) = c(g((u, v))), proving that g|V is an automorphism of the finite pointed
colored graph G. Furthermore we have that g = T(G)(g|V ), proving finally the
surjectivity of T.

Thanks to the functoriality of the transformation T, if we construct some colored
graphs whose properties of automorphisms we wish to study, we can always make
them into undirected non colored graphs with the same automorphisms. While L

is also a functor, as we have already shown it doesn’t preserve the group structure.
There is however a precise answer as to how much larger the automorphism group
of L(G) compared to that of G is and we can also give its precise structure.

Proposition 1.3.4. Let G = (V,E, c) be a pointed colored graph. Let X ⊆ V be
the set of vertices with in/out degree (0,1). Then Aut(L(G)) is isomorphic to the
semidirect product Aut(G)oZ�2Z

X
,with Z�2Z

X
being the free Z�2Z module on the

set X and Aut(G) acting on it in the following way:
If f is a function from X to Z�2Z, then g · f = f ◦ g−1.

Proof. We start by proving that Aut(G) indeed acts on Z�2Z
X
. That is a direct

consequence of the fact that Aut(G) has to preserve in/out degrees, hence ∀g ∈
Aut(G), g(X) = X and therefore f ◦ g−1 is a well defined function and thus Aut(G)
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acts on the left on Z�2Z
X
. Consider now the functor L as a morphism from Aut(G)

to Aut(L(G)). Furthermore let H be the image of that morphism. Let us show
that H is isomorphic to Aut(G). It simply comes from the fact that the restriction
of elements of H on V is an inverse on the right of L. The map L is therefore
injective and a bijection to is image H.

The next step is to prove that Z�2Z
X

injects itself into Aut(L(G)). Take
(V ′, E ′) = L(G). Consider H ′ the subgroup of S(V ′) (the group of permutations on
V ′), generated by the transpositions (x (t, 0, 1)) with x ∈ X and t ∈ E. Let us prove
that it is a subgroup of Aut(L(G)). It is enough to prove that these transpositions
are automorphisms of L(G). That is however trivial. Indeed since x is of in-out
degree (0,1), the graph will locally around x look like this:

x (t, 0, 0)

(t, 0, 1)

· · ·

with t being the unique edge in G coming out of x. We can see on that image
that swapping x with (t, 0, 1), preserves the structure of the graph. Since all these
transpositions are of disjoint support they commute with each other and any ele-
ment in H ′ can be written as a unique product of them. From that we obtain an
isomorphism from H ′ to Z�2Z

X
, hence an injection i from Z�2Z

X
to Aut(L(G)).

We notice that

∀g ∈ Aut(G), ∀f ∈ Z�2Z
X
, i(g · f) = L(G)(g) ◦ f ◦L(G)(g)−1

thus H acts on H ′ by conjugation.
Then to prove that H oH ′ is isomorphic to Aut(L(G)), we need to prove that

HH ′ = Aut(L(G)) and that H ∩H ′ = id.
Proof that H ∩H ′ = {id}:

Let h ∈ H ∩H ′. By contradiction, assume that h is not the identity. Then since
h ∈ H ′, there exists x ∈ X and t ∈ E, such that h(x) = (t, 0, 1). However since
h ∈ H, we have that h(X) ⊆ X, even though h(x) /∈ X, which is a contradiction.
Proof that HH ′ = Aut(L(G)):

We write
mX = {((x, y), 0, 1)|(x, y) ∈ E and x ∈ X}

And
Y = V ′ \ (X ∪mX)

Let g ∈ Aut(L(G)). Let us prove that g(Y ) = Y . We do it by induction similar to
the method in 1.3.3. First we start with vertices (t, c(t) + 2, 2). As a reminder they
look locally like:
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u

(t, 0, 0)

(t, 0, 1)

(t, 1, 0)

(t, 1, 1)

· · · (t, c(t) + 1, 0)

(t, c(t) + 1, 1)

(t, c(t) + 2, 0)

(t, c(t) + 2, 1)

(t, c(t) + 2, 2)

v

Now the vertices of the type (c(t) + 2, 2, t) are the only vertices of degree 1 that
are connected to a vertex of degree 2. Therefore there exists t′ ∈ E, such that
g((t, c(t) + 2, 2)) The path ((t, c(t) + 2, 2), (t, c(t) + 2, 1), (t, c(t) + 2, 0)) gets sent
to ((t, c(t′) + 2, 2), (t, c(t′) + 2, 1), (t, c(t′), 0). Similarly as in 1.3.3,we prove using
induction that c(t) = c(t′) and that (t, k, 0) gets sent to (t′, k, 0) and (t, k, 1) for
k > 0 gets sent to (t′, k, 1). Now if u ∈ V \ X, it cannot be sent onto X ∪ mX,
because it’s of degree at least 2 and all elements in X∪mX are of degree 1. We have
now covered all elements that are in Y and none of them are sent onto X ∪ mX,
hence g(Y ) = Y and g(X ∪mX) = X ∪mX.

Now for u ∈ X, we write tu the transposition that swaps u with (t, 0, 1), with t
being the only edge coming out of u. Let us denote for u ∈ X

αg(u) =

{
1 if g(u) ∈ mX
0 else

and write g′ = g
∏
u∈X

t
αg(u)
u . Let us show that g′ ∈ H. All we really need to show is

that g′(V ) = V and that is true, since we already showed it for x ∈ V \X and if we
take x ∈ X, we only have to deal with the two following cases:

• Case 1:

If g(x) ∈ X, then x is not in the support of
∏
u∈X

t
αg(u)
u and hence g′(x) = g(x),

and so g′(x) ∈ X.

• Case 2:

If g(x) ∈ mX, then g′(x) = g(tx(x)). Since x is sent onto some (t′, 0, 1), then
there is no other option for tx(x) than to be sent onto the u′ ∈ X such that
t = (u′, v′) for some v′ ∈ V .

From this, we can obtain that g′ = L(G)(g′|V ) and therefore g′ ∈ H. We can
finally conclude that g ∈ HH ′, proving that Aut(L(G)) is isomorphic to H oH ′.
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As a consequence of this proposition, we can see that the Lovász transformation,
preserves the automorphism groups if and only if the graph has no vertices of in-out
degree (0, 1). In particular that is true for the Cayley graphs, since for a Cayley
graph (G,S), there is always at least one edge exiting each vertex.

1.4 Using graphs to solve a Galois theory question

1.4.1 The context

In [15] Fried and Kollár show a weaker version of the inverse Galois problem. The
inverse Galois problem is the following: Given a finite group G, is it possible to find
K a Galois extension of Q, for which Gal(K/Q) is isomorphic to G? This is a very
difficult question, which is still unanswered, however [15] shows a weaker version of
this problem using graph theory. The weaker theorem is as follows:

Theorem 1.4.1. For every finite group G, there exists K an extension of Q, such
that Aut(K/Q) is isomorphic to G.

We will first explain the main arguments of the proof of this theorem and then
we will show why the field K constructed in this proof can never be Galois.

1.4.2 Construction of the field K
To construct the field K, the authors of the article rely on the following lemma:

Lemma 1.4.2. Let L be an algebraic number field and R be the ring of integers
in L. Let f1, · · · , fm ∈ R[x], be unitary polynomials. Assume that for some prime
number p, none of the fi are a p-th power in R[x], then there exists a t ∈ Z, such
that none of the fi(t) is a p-th power in L.

The proof of this lemma in the original article [15] contained a mistake that was
later on spotted and corrected by Michael Fried in [16].

We will now sketch the proof of the theorem of Fried and Kollár: We start
by taking G a finite group and represent it as a group of automorphisms of some
undirected loopless graph X = (V,E). We then denote V = {1, · · · , n} and we may
assume that n ≥ 5, since the result is well known for groups of lesser size. Then we
choose a polynomial F (x) of degree n, whose roots are algebraic integers and such
that the Galois group of F is isomorphic to the permutation group Sn. We denote
a1, · · · , an these roots. Take L the splitting field of F . Then using the lemma, Fried
and Kollár chose a prime p > 3 and and integer t, such that if (bi,j) is a p-th root
of ai + aj + t (1 ≤ i < j ≤ n) and ω is a non trivial p-th root of unity, then for any
A ⊆ {b(i,j)|1≤i<j≤n}, b(i0,j0) /∈ A⇒ ωb(i0,j0) /∈ L(A).

Now take
E ′ = (b(i,j)|i < j and (i, j) ∈ E)
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and write K = L(E ′). We shall show that its group of automorphisms is isomorphic
to those of graph X.

If we take Φ ∈ Aut(X), one can by induction construct an automorphism Φ̂ on
L, such that Φ̂(b(i,j)) = b(Φ(i),Φ(j)).

If on the other hand we take an automorphism Ψ of K, then for (i, j) ∈ E,
F (Ψ(b(i,j))

p) = 0, therefore there exists (i′, j′) and ω a p th root of unity, such that
ωb(i′,j′) ∈ K. Which by the property of b means that (i′, j′) ∈ E concluding the
theorem.

1.4.3 Why the field is not a Galois extension

It simply is not a Galois extension, because it contains none of the conjugates of
b(i,j), which would be the multiples by p-th roots of unity. Moreover the Galois group
of the Galois closure would have to be surjective on the group Sn, so would have to
be at least as large as Sn, so it turns out the Galois group of the Galois closure is
much larger than the group G.

While this construction does not make it possible to fully answer the inverse
Galois problem, it still shows that connecting Galois theory and Graph theory can
lead to interesting results. An essential property of field extensions is their action
on groups, so in order to study links between Galois theory and Graph theory, I
came up with a way to represent these actions. In fact the procedure will give a way
to represent the action of any finite group on a set by a graph.

1.5 Group-action Cayley graphs
Consider (G,X) a set X together with an action of G. Furthermore suppose that
G is generated by a set S. We define the group action Cayley graph Cay(G,S,X)
as the colored graph whose vertices are GqX, colors S qX and edges {(g, gs)|g ∈
G, s ∈ S} q {(g, x)|x ∈ X, g ∈ G}. Finally we color the edges of the type (g, gs)
with s ∈ S, while the edges of the type (g, x) with the color g−1 · x. For example if
we take the dihedral group D4 acting on the set {0, 1} such that rotations fix {0, 1}
and reflections swap them, the corresponding group action Cayley graph will look
as follows:
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These types of graphs give many edges, so they are in general difficult to draw
in a clear manner. We now have the proposition that follows.

Proposition 1.5.1. Let G be a group generated by a subset S (not containing iden-
tity) acting on a set X. Then Cay(G,S,X) is a graph with the automorphism
group isomorphic to G and the action of Aut(Cay(G,S,X)) on X by restriction is
equivalent to the action of G.

Proof. Take V = GqX. Let E ′, C ′, c′ be such that (G,E ′, C ′, c′) is a Cayley graph
associated to G, so that Aut((G,E ′, C ′, c′)) is isomorphic to G. Now expand E ′ to
E by adding all the edges of type {(g, x)|g ∈ Gx ∈ X}. Now define C = C ′ q X
and extend c′ into a map from E to C as follows:

c =


E −→ C

t 7→

{
c′(t)| if t ∈ E ′

g−1 · x| if t = (g, x)

G = (V,E,C, c) is a directed edge colored graph. Now let us show that it has the
desired properties:

First let us show that ∀σ ∈ Aut(G), σ(G) ⊆ G and consequently σ(X) ⊆ X,
since G and X are disjoint. By contradiction, assume that there exists g ∈ G, such
that x = σ(g) ∈ X. We have (g, x) that is an edge of color g−1 · x. Therefore
(σg, σx) has to be of color g−1 · x as well. That can only happen if σx ∈ X.We end
up with an edge between two elements in X, which is impossible since there are no
such edges. Therefore Aut(G) can be restricted on G.
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Now let us show that the restriction of Aut(G) on G is injective. Let σ ∈ Aut(G)
be such that σ|G = idG. Let us show that σ = idV . Take x ∈ X. The edge (id, x)
is of color x, therefore (g(id), g(x)) = (id, g(x)) is of color x as well. The only edge
leaving id of color x is (id, x), therefore g(x) = x. This being true for all x, we can
conclude that g = idV .

Now let us denote H the image of Aut(G) by the restriction. Now let us show
that H is the subgroup of the group of color preserving automorphisms of the Cayley
graph (G,E ′, C ′, c′). Take h ∈ H, (g, g′) ∈ E ′. We have that (h(g), h(g′)) ∈ E, but
also both h(g) and h(g′) are in G, thus (h(g), h(g′)) ∈ E. Now let us find its color

c′((h(g), h(g′))) = c((h(g), h(g′))) = c((g, g′)) = c′((g, g′))

We therefore conclude that H is a subgroup of the automorphisms of the Cayley
graph. Now let us show that it is equal to that group. Take σ′ an automorphism
of the Cayley graph (G,E ′, C ′, c′). Let us show that it can be extended to an
automorphism of G and therefore is in H. Write g = σ′(id). Now define the
function

σ =


V −→ V

v 7→

{
σ′(v) if v ∈ G
g · v if v ∈ X

It is clear that σ extends σ′. Let us show that it is an automorphism. We start by
proving it is bijective. First it is clear that σG ⊂ G and σX ⊂ X. Since X and G
are disjoint, it is enough to show that σ is bijective on both these sets. On G it is
bijective, since equal to the bijection σ′. On X it is bijective as an action by g. Now
we need to prove that σ preserves edges and their colors. It is clear for edges in E ′,
since on G, σ and σ′ are equal and σ′ preserves edges with their coloring on G. Now
take (g′, x) an edge in E. Then (σ(g′), σ(x)) = (σ′(g′), g · x) = (gg′, g · x) is an edge
in E as well. Its color is: (gg′)−1 · (g · x) = (g′)−1 · x, so the color is preserved as
well.

We shall call this graph the ”Group action Cayley graph”. This graph represents
an action of a group on a finite set. We can therefore reinterpret the usual notions
of groups actions in terms of graph theory.

Proposition 1.5.2 (Translating group actions properties). Let G be a group gener-
ated by a set S not containing id and acting on a set X. Let G be the group action
Cayley graph corresponding to the action. Then we have:

i. For every x ∈ X, the orbit of x is the set of points in X that can be accessed
from any vertex in G by a walk on G only using edges of colors in S ∪ {x}.
Alternatively it is the set of points in X that can be accessed by a walk on G

only using edges of colors in S and exactly one color in the orbit of X. The
color in question can be any arbitrary color in the orbit.

ii. For every x ∈ X, the stabilizer subgroup is the set of elements in G, such that
(g, x) is of color x. I.e to obtain the stabilizer, we look for all neighbors of x
connected by an edge of color x.
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iii. The group action is transitive if and only if for every x ∈ X G with only edges
colored by S and {x} is (weakly) connected.

iv. The group action is faithful if and only for every g ∈ G, if for every x ∈ X (g, x)
is of color x, then g is identity or alternatively no two g, g′ ∈ G are connected
to all x ∈ X by the same color.

v. The group action is free if and only if id is the only g ∈ G, such that for there
exists x ∈ X (g, x) is of color x, then g is the identity. Or alternatively every x
has only one edge of a given color.

Proof. i. Let x ∈ X. First let us fix a color c ∈ X the orbit of x . Let us take
y ∈ X, such that there exists a path (a1, · · · , am) with a1 = x and am = y such
that (ai, ai+1) is of color either in S or equal to c. Let us prove that y is in the
orbit of x. Without loss of generality, we may assume that if i 6= 1 or m, then
ai ∈ G. indeed any step of the type (g, x) has to be followed by a step (x, g′).
We can replace that path by a path from g to g′ only using colors in S and
vertices in G, since Cayley graphs are connected.

Now since we have only allowed colors in S or colors equal to c, then (a2, x) has
to be of color c, hence (a2)−1 · x = c. Also (am−1, y) also has to be of color c.
As such a−1

m−1 · y = c = a−1
2 · x, proving that y is in the orbit of x.

Conversely assume y in the orbit of x and let us show that there exists a path
from x to y with our constraints. First of all, we know that there exists g ∈ G,
such that gx = y. Now since c is in the orbit of x, we take g′ ∈ G, such that
(g′)−1 · x = c. We have then (gg′)−1 · y = c and therefore the edge (gg′, y) is of
color c. Finally we choose a path from g′ to gg′ (g1, · · · , gm) such that all the
edges are of colors in S.

ii. Let x be in X. Then g is in the stabilizer of x if and only if g−1 · x = x, which
is equivalent to the color of (g, x) being x.

iii. First suppose the group action being transitive. Then if we fix c = x a color,
then every element in X can be accessed by a walk from x using only colors in
S and c. Proving that the graph is connected, since we can get from x to any
element in G.

Now conversely suppose that there exists a color c such that the graph G is
connected. Take x = c. Now take y ∈ X. Since y can be accessed from x using
only edges of colors in S and c, then y is by i. in the orbit of x. Since X has a
single orbit, the action of G is transitive.

iv. Suppose that the action of G is faithful. Take g, g′ ∈ G two distinct elements of
G. Then by definition of faithful there exists x ∈ X, such that g−1 · x 6= g′−1 · x
and therefore the edges (g, x) and (g′, x) are of different colors. Conversely
suppose that no two elements of G are connected to every element in X by the
same color. Let g, g′ ∈ G. Then there exists x ∈ X, such that (g−1, x) and
(g′−1, x) have different colors, hence g · x 6= g′ · x.
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v. Suppose first that the action is free. Let (g, x) and (g′, x) be of the same color:
let us prove that g = g′. We have g−1 ·x = g′−1 ·x. Since the action is free then
g−1 = g′−1, hence g = g′, proving that (g, x) and (g′, x) are the same edge. Now
on the other hand suppose that no two edges coming from any x have a same
color. Let g, g′ ∈ G, such that g ·x = g′ ·x. Then the edges (g−1, x) and (g′−1, x)
have a same color hence must be the same edge, proving that g−1 = g′−1, so
g = g′.
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Chapter 2

Fundamental group and graph
homology

2.1 Introduction
In this section, we will show a classical way of linking graph theory and group theory
through topology: using paths and loops in graphs. While classically this subject is
approached from a topological point of view (See for example Hatcher [23] Chapter
1), we will focus more on a purely algebraic approach. One of the reasons for this
is that we will later on see how these notions get generalized for profinite graphs,
where the profinite topology is very different from the one that graphs are typically
equipped with. Our main reference for this chapter is [47].

In this chapter we will give a more general definition of a graph than the previous
one.

Definition 2.1.1 (graph). We define a graph as a quadruplet (Γ, V, o, t) with:

• Γ a set and V ⊆ Γ.

• o, t maps from Γ to V , such that o|V = t|V = idV . The letter o stands for
”origin” and t stands for ”terminus”: and the two maps are called the incidence
maps.

• The set V is called the set of vertices and the set Γ \ V is called the set of
edges.

• A morphism of graphs (Γ, V, o, t) and (Γ′, V ′, o′, t′) is a map f from Γ to Γ′,
such that f(V ) ⊆ V ′, f(Γ \ V ) ⊆ Γ′ \ V ′ and such that ∀x ∈ Γ, t′(f(x)) =
f(t(x)) and o′(f(x)) = f(o(x)).

• For a graph Γ, we denote V (Γ) the set of vertices and E(Γ) the set of edges.

• By abuse of notation if there is no possible confusion, we will call a graph
simply the set Γ rather than the quadruplet and use the same o, t maps no-
tations for all graphs we encounter. In that case for example a morphism of
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graphs Γ, Γ′ would be a map from Γ to Γ′ that satisfies f(V (Γ)) ⊆ V (Γ′),
f(E(Γ)) ⊆ E(Γ′) and ∀x ∈ Γ, o(f(x)) = f(o(x)) and f(t(x)) = t(f(x)).

Now we will show that this definition extends the definition of a graph, we gave
in the first chapter.

If (V,E) is a couple of sets such that E ⊆ V 2, we define the map o as the
projection of E onto its first component and t the projection of E onto the second
component. We extend both maps on V , by putting o|V = t|V = idV . Then
Γ = (V q E, V, o, t) is a graph.

Furthermore if (V,E) and (V ′, E ′) are such that E ⊆ V 2 and E ′ ⊆ V ′2 and f a
map from V to V ′, then f can be extended to a morphism of graphs (V qE, V, o, t)
and (V ′ q E ′, V ′, o′, t′) if and only if ∀(x, y) ∈ E, (f(x), f(y)) ∈ E ′, i.e if f is a
morphism of graphs in the sense of the definition given in the previous chapter.

The main advantage of extending a definition of a graph in this way is that we
can now have multiple edges between two vertices. Sometimes graphs defined in this
way are called multigraphs.

For the sake of convenience rather than necessity, we will work in this chapter
with what is called an undirected graph. We will give the definition of an undirected
graph that follows:

2.1.1 Definition of an undirected graph

We will take a variation of the definition given in [47]. An undirected graph is a
graph (Γ, V, o, t) together with a map from the set of edges E(Γ) to itself that to an
edge e associates an edge e with the following properties:

• ∀e ∈ E(Γ), e 6= e

• ∀e ∈ E(Γ), e = e

• ∀e ∈ E(Γ), o(e) = t(e)

A morphism of undirected graphs Γ,Γ′ is then a morphism of graphs from Γ to
Γ′, such that ∀e ∈ E(Γ), f(e) = f(e). The reason we restrict ourselves to undirected
graphs is because the notions of paths become easier: we do not have to worry about
direction of edges, since if we have an edge e between two vertices in one direction,
e will have the opposite direction.

Finally we define an orientation of an undirected graph Γ as a set O ⊆ E(Γ),
such that ∀e ∈ E(Γ), e ∈ O or e ∈ O and e ∈ O⇒ e /∈ O. It comes down to choosing
from each pair {e, e} exactly one edge. Here is a simple example of an orientation

A B

C
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With the edges in O in red.

2.1.2 Definition of a path

Let G be a graph: x, y ∈ V . We define a path p from x to y as a following sequence:
(u0, · · · , un+1) with:

• u0 = x

• un+1 = y

• ∀k ∈ {1, · · · , n}, o(uk+1) = t(uk) and uk is an edge.

We then call n the length of a path, x its origin and y its terminus.
Note that for every x with this definition, there exists a path of length 0 from x

to x.
A path is called a circuit if its initial and terminal vertex coincide. Furthermore

if p and p′ are paths such that t(p) = o(p′), they can be concatenated into a path
from o(p) to t(p′), which we denote pp′.

For a path p = (u0, · · · , un+1), we denote p the path (un+1, un, · · · , u1, u0).
We define a round trip as a path of the form (x, e, e, x), which we shall denote

ee.
Finally we define a connectedness equivalence relation on the set of vertices of a

graph: ∼ by x ∼ y if and only if there exists a path from x to y. It is reflexive due
to the fact that there is the path of length zero from a point to itself, it is transitive,
because we can concatenate two paths and it is symmetric, because if p is a path
from x to y, then p is a path from y to x.

We define the connected components as the equivalence classes for this relation
and we say that a graph is connected if it has only one such a class.

2.2 Fundamental group and covering graphs
This section is based upon the work of J. Stallings in [47].

Definition 2.2.1. Let Γ be a connected graph and x a vertex of Γ. The set O of
circuits starting at x together with the concatenation forms a monoid (a set with an
associative binary operation with an identity element). We can see it as a submonoid
of the free monoid on E(Γ), which we shall denote F . The injective morphism i from
O into F simply associates to a path (x, e1, · · · , en, x) the word: e1 · · · en and to the
path of length 0 the identity. Now let O be an orientation on E(Γ) and A the free
group on O. We then define T to be the unique morphism from F to A, defined by
the formula:

T (e) =

{
e if e ∈ O

e−1 else
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We then define an equivalence relation on O:∼ by p ∼ p′ if and only if T (i(p)) =
T (i(p′)). It is compatible with the monoid structure, since T ◦ i is a morphism. We
then define π1(Γ, x) as the quotient monoid O�∼.

We will show the following facts:

• The equivalence relation ∼ is independent of the choice of orientation O.

• π1(Γ, x) is a group.

• If x′ is another vertex in Γ, then π1(Γ, x) and π1(Γ, x′) are isomorphic.

To prove that ∼ is independent of the choice of orientation, we will prove that
it is the equivalence relation on O, generated by the subset

{(pp′, peep′)|p, p′ are paths and e ∈ E(Γ), such that:
o(p) = x, t(p) = o(e), o(p′) = o(e), t(p′) = x}

We call R such an equivalence relation. We have that T (ee) = 1 and therefore
T (i(pp′)) = T (i(peep′)), so we conclude that R ⊆∼. To prove the other inclusion,
we just observe that T ◦ i is injective on reduced paths (paths that don’t contain
any ee), and the process of path reduction preserves both ∼ and R.

We know that π1(Γ, x) is a monoid, so to prove it is a group we just need
to prove that every element in it has an inverse. Let p = (x, e1, · · · , en, x) be a
representative of an element in π1(Γ, x): one can then show that p = (x, en, · · · , e1, x)
is a representative of an inverse in π1(Γ, x).

Finally for the isomorphism, we consider: x′ another vertex in Γ. Since Γ is
connected, there exists p0 a path from x to x′. The isomorphism between π1(Γ, x)
and π1(Γ, x′), then consists of taking a path p in π1(Γ, x) and associate to it a path
in π1(Γ, x′) given by: p0pp0.

Example 2.2.2 (bouquet). Take an undirected graph Γ with one one vertex a and
e1, · · · , en, and e1, · · · , en as edges. A graphical representation of the graph is:
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All paths start from a and end at a, so the injection into the free monoid on
E(Γ) is in fact an isomorphism. The group π1(Γ, a) is then isomorphic to the free
group on e1, · · · , en.

It turns out that π1 is a group one can always calculate and is a free group as
we will see. First however we need to define a notion of a maximal subtree.

Definition 2.2.3. • For Γ an undirected graph , we call a subgraph of Γ a set
Γ′ ⊆ Γ, such that

∀x ∈ Γ′, o(x) ∈ Γ′, t(x) ∈ Γ′

and if e ∈ Γ′ ∩ E(Γ), then e ∈ Γ′.

• A graph Γ is called a tree if it is connected and if every reduced circuit is of
length 0.

• A subgraph T of a connected graph Γ is called a maximal subtree if T is a tree
and if T ⊆ T ′ ⊆ Γ with T ′ a subtree, then T = T ′

Proposition 2.2.4. The following statements are true:

i. Every connected graph has a maximal subtree.

ii. If T is a tree, then for every x, y ∈ V (T ), there exists a unique reduced path
between x and y.

Proof. i. Let Ω = {T ⊆ Γ|T is a tree} together with the relation of inclusion. Let
us show that Ω is a non empty inductive set. The set Ω is non empty, because
if we take T reduced to one vertex and no edges, T is in Ω. Now take ∆ a chain
in Ω. Let

T =
⋃
T ′∈∆

T ′

Let us show that T is a tree. If x ∈ T , then there exists T ′ ∈ ∆, such that
x ∈ T ′. Then o(x) and t(x) are both in T ′ ⊆ T and if x ∈ E(Γ), we get
that x ∈ T ′ ⊆ T . T is connected: indeed if x, y ∈ T are two edges, we take
x ∈ T ′ ∈ ∆ and y ∈ T ′′ ∈ ∆. Without loss of generality, we may assume that
T ′ ⊆ T ′′ and in that case both x and y are in T ′′ and by connectedness of T ′′,
we get that there is a path in T ′′, so in T between x and y. Finally let x be a
vertex and p = (x, e1, · · · , en, x) a reduced path in T from x to x: let us show
that n = 0. By contradiction, if n > 0, consider Ti ∈ ∆, such that ei ∈ Ti.
Then if we take T ′ a maximum of the Ti, then p is a reduced path in T ′, which
is a tree. We therefore get n = 0, which is a contradiction. Ω is therefore an
inductive set and by Zorn’s lemma it has a maximal element.

ii. Let T be a tree and x, y vertices in T . If x = y, then paths from x to y are
circuits and by definition of a tree all circuits are of length 0. There is only
one path from x to y of length 0. If x 6= y and we take p = (x, e1, · · · , en, y)
and p′ = (x, e′1, · · · , e′m, y) two paths, we observe that pp′ is a path from x to
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x. Since both p and p′ are reduced, we have to have that en = e′m = e′m and we
can then conclude by induction on n.

Lemma 2.2.5. Let p1, · · · , pn be reduced paths in a tree T that can be concatenated.
Then p1 · · · pn is reduced if and only if for every k < n, pk · pk+1 is reduced.

Theorem 2.2.6. Let Γ be a connected graph, T a maximal subtree, O an orientation
on Γ. Let x be a vertex of Γ, then π1(Γ, x) is isomorphic to the free group on O\ T .

Proof. For two vertices: x, y we denote p(x → y) the unique path in T from x to
y. Now we take Φ to be the unique morphism from the free group F on O \ T to
π1(Γ.x) that to an edge e ∈ O\T , associates the class of p(x→ o(e)) ·e ·p(t(e)→ x).
We shall prove that Φ is an isomorphism in the following steps:

• The path p(x→ o(e)) · e · p(t(e)→ x) is reduced.

• Prove that if e ∈ O\ T , then Φ(e−1) = p(x→ t(e)) · e · p(o(e)→ x).

• Prove that for every e, e′ in O\ T ∪ (O\ T )−1, if Φ(ee′) = 1, then e = e′−1.

• Prove that Φ is injective.

• Prove that Φ is surjective.

For the first part, we get that p(x→ o(e)) is reduced by definition and since e is
not in T , we cannot have e to be equal to the inverse of the last edge in p(x→ o(e)).
Since e is not in T , we also can’t have e equal to the first edge in p(t(e) → x).
Finally since p(t(e) → x) is reduced, we get that p(x → o(e)) · e · p(t(e) → x) that
is reduced.

Now take e ∈ O \ T . Then Φ(e−1) = p(t(e)→ x) · e · p(x→ o(e)). The path
p(x→ o(e)) is a reduced path from o(e) to x, so by uniqueness of reduced paths in
a tree, we get that:
p(x→ o(e)) = p(o(e)→ x). Similarly p(t(e)→ x) = p(x→ t(e)), hence

Φ(e−1) = p(x→ t(e)) · e · p(o(e)→ x)

By convention then from here on now, we just denote e−1 = e, which is justified by
the previous result and we can consider e ∈ E(Γ) \ T .

Now let e, e′ be in O\ T ∪ (O\ T )−1, such that Φ(ee′) = 1. We get that the path

p(x→ o(e)) · e · p(t(e)→ x) · p(x→ o(e′)) · e′ · p(t(e′)→ x)

can be reduced to the trivial path of length 0. By the previous lemma that means
that one of the concatenations in that path can be reduced, since individual parts
of the path are reduced. The only concatenation that can be reduced is
p(t(e)→ x) · p(x→ o(e′)). After this reduction, we obtain the homotopy equivalent
path:

p(x→ o(e)) · e · p(t(e)→ o(e′)) · e′ · p(t(e′)→ x)
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If p(o(e) → t(e)) is not of length 0, we cannot reduce any further, so we end
up with that part being of length 0 and we get that our initial path is homotopy
equivalent to:

p(x→ o(x)) · e · e′ · p(t(e′)→ x)

This can only be reduced further if e = e′, hence the conclusion.
Now more generally, let us prove that Φ is injective. We then take x ∈ ker(Φ).

We write x = e1 · · · en and we show that if n > 0, x can be further reduced. Since
the paths Φ(e1), · · · ,Φ(en) are all reduced, we get by the previous lemma that there
exists k < n, such that Φ(ek) ·Φ(ek+1) can be reduced, which implies that ek = e−1

k+1.
We therefore get that x = e1 · · · ek−1ek+2 · · · en. By induction, we can therefore
conclude that x = 1. The map Φ is therefore injective.

Finally let us prove the surjectivity of Φ. Let us write p = (x, e1, · · · , en, x) a
reduced path in π1(Γ, x). We shall prove by induction on the number of i such that
ei ∈ Γ \ T ,that p is in the image of Φ. If there are no edges ei in Γ \ T , then p is
a reduced path in T , so p is of length zero and therefore equal to Φ(1). Now on
the other hand assume that k is the smallest number for which ek ∈ Γ \ T . Then
p = p(x→ o(ek))·ek ·p′, with p′ = (t(ek), ek+1, · · · , en, x) a reduced path from t(ek) to
x. p is then homotopically equivalent to Φ(ek) ·p(x→ t(ek)) · (t(ek), ek+1, · · · , en, x).
The path p(x→ t(ek))·(o(ek), ek+1, · · · en, x) is then a reduced path from x to x with
one less edge in Γ \T , then p, so by induction it is in the image of Φ, so there exists
u in F , such that this path is equal to Φ(u) and hence p = Φ(ek)Φ(u) = Φ(ek · u),
concluding the proof that Φ is an isomorphism.

As an example , let us consider the following graph:

x

e

With the edges that are not part of the maximal subtree in green and a distinct
edge e with orientation and distinct point x. We will now illustrate the path Φ(e)
in red:

x

e

If we come back to the bouquet: the maximal tree is just a vertex with no edges,
so π1 is indeed the free group on edges as we mentioned earlier.



33

Every group can be represented as a quotient of some free group and graphs
give us a way of constructing free groups: the question now is, whether we can also
obtain somehow the quotient through graph theory and the answer is yes. The tool
for obtaining the quotients is the notion of a covering graph. In order to define a
covering graph we first need to define a star.

Definition 2.2.7 (star). Let Γ be a graph and x a vertex in Γ. We define a star at
x, the set

St(Γ, x) = {e ∈ E(Γ)|t(e) = x}

We call the degree of x the cardinal of the star at x.

Basically a star at x is the set of edges connected to x. Trivially we get that if
f is a morphism from Γ to Γ′ and x a vertex in Γ, then f(St(Γ, x)) ⊆ St(Γ, f(x)),
which justifies the definitions that follow:

Definition 2.2.8. Let Γ be a graph and v a vertex in Γ and f a morphism from Γ to
some graph Γ′. We denote fv the map f restricted to the star at v and corestricted
to the star at f(v). We then have the following definitions:

• If fv is injective for all v ∈ V (Γ), then we call f an immersion.

• If fv is surjective for all v ∈ V (Γ), then we call f a locally surjective map.

• If fv is bijective for all v ∈ V (Γ), then we call f a covering.

If f is a surjective covering map from Γ to Γ′, then we call Γ together with f a
covering graph of Γ′.

The most fundamental properties of covering graphs are the lifting properties,
which are completely analogous to the topological theory of covering graphs.

Proposition 2.2.9 (Lifting properties). Let (Γ, f) be a covering graph of Γ′, then
we have the following properties:

a) (Path lifting) Let v be a vertex in V (Γ) and p a path in Γ′ with f(v) as origin.
Then there exists a unique path p̃ in Γ, with initial vertex v, such that f(p̃) = p.

b) (Homotopy lifting) If the path p in Γ′ is homotopically equivalent to a path p′,
then p̃ and p̃′ are homotopically equivalent.

c) (General lifting) If g is a morphism from a connected graph Γ′′ to Γ and u a
vertex in Γ′, v a vertex in Γ′′, such that f(u) = g(v), then g can be factored
through f into a map g̃ from Γ to Γ if and only if g(π1(Γ′′, v)) ⊆ f(π1(Γ′, u)). If
g̃ exists, it is unique.

Factored simply means that there exists a g̃, such that the following diagram
commutes
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Γ′

Γ′′

Γ
f

gg̃

Proof. a) Existence:

We will do it by induction on the length of p. If p is of length 0, the result is
trivial, since by definition f sends v on f(v), so the path of length 0 starting at
f(v) is equal to the image of the path of length 0 starting at v.

Now suppose that any path of length n can be lifted. Let p be a path of length
n + 1. Then p can decomposed into a path of length n, p′ concatenated with
some edge e. Now p′ can be lifted into a path q, so we write p′ = f(q). Let
x be the terminus of q. The map f is then by definition of a covering map a
bijection from St(x,Γ) to St(t(e),Γ′). In particular, there exists e′ an edge such
that o(e′) = x and f(e′) = e. Now define p̃ to be the path q concatenated with
the edge e′. Then f(p̃) = p and we found the lift of p.

Uniqueness

We do the uniqueness proof again by induction of the length of the path. If q, q′
are two paths of length 0 lifting p with origin v, then q = q′. Now assume that for
all paths of length n the lift by f is unique. Let p be a path of length n+1 at the
origin f(v). Then write p = p′ ·e with p′ being a path of length n. Let q, q′ be lifts
of p. Write q = q0 · e0 and q′ = q′0 · e′0. Then f(q0) = f(q′0) = p′ and therefore by
induction, q0 = q′0. Take x0 the terminus of the path q0 = q′0 and x the terminus
of the path q′. We have that f is a bijection from St(x0,Γ) to St(x,Γ′), since
f is a covering morphism. Since e0, e

′
0 ∈ St(x0,Γ) and f(e0) = f(e′0), then by

injectivity of f , e0 = e′0 and we therefore conclude that q = q′.

b) To prove that lifts preserve the homotopy equivalence relation, it is enough to
prove that it preserves the relation that generates it. Take p a path with origin
in f(v) ending in f(v) and p′ a path such that there exists an edge e and paths
p0 and p1, such that p0 · ee · p1 = p′ and p = p0 · p1: we need to show that
then the lifts of the two paths are homotopically equivalent. Take p̃ the lift of
p. We decompose it into p′0 and p′1. Write x to be the origin of the path p1,
then f(x) = o(e). Now let e′ be the unique edge in St(x,Γ), such that f(e′) = e.
Then f(e′) = e by virtue of f being a morphism. Then we get that

f(p′0 · e′e′ · p′1) = f(p′0) · f(e′)f(e′) · f(p′1) = p0 · ee · p1 = p′

Therefore the lifts of p and p′ are equivalent. Lifts therefore preserve the homo-
topy equivalence.

c) ”⇒ ”
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Suppose that g factors through f into a map g̃ with fg̃ = g. Let p be a reduced
path in π1(Γ′′, v). Then g(p) is a path in Γ from g̃(v) to itself. It therefore lifts
into a reduced path starting at u, p̃ (with f(p̃) = g(p)). We therefore get that
f(p̃) = f(g̃(p)). By uniqueness of the lift, we get that p̃ = g̃(p). As such, we get
that the terminal point of p̃ is u and p̃ is a reduced circuit, therefore an element
of π1(Γ, u), hence we indeed have that g(π1(Γ′′, v)) ⊆ f(π1(Γ′, u)).

”⇐ ”

Suppose that g(π1(Γ′′, v)) ⊆ f(π1(Γ′, u)).
For a vertex x ∈ Γ′′, we define g̃(x) as follows:
Take a path p from v to x, lift g(p) by f into a path p̃ starting at u and define
g̃(x) as the terminus of the path p̃.
We need to show that g̃ is well defined, i.e does not depend on the chosen path.
Take p, p′ two paths from u to x and p1, p2 the lifts of respectively g(p) and g(p′)
in Γ′ by f . We have that g(p) · g(p′) is a loop in g(π1(Γ′′, v)) ⊆ f(π1(Γ′, u))
therefore there exists a circuit l ∈ π1(Γ, u), such that g(p) · g(p′) = f(l). We then
have that

f(l) = f(p1) · f(p2)

By uniqueness of path lifting, we then get:

l = p1 · p2

Since l is a circuit, we get that o(l) = t(l) and therefore t(p1) = t(p2), proving
that g̃ is well defined.
Now we need to define g̃ on edges. For an edge e ∈ Γ′′E, take p a path from v
to o(e) and concatenate it with e to get a path p′. Lift g(p′) into a path p̃′ and
define g̃(e) as the last edge of the path p̃′. By the same reasoning as previously,
we get that g̃ is well defined on the edges.
Let us now show that g̃ defined in this way is a morphism of graphs. It sends by
definition edges on edges and vertices on vertices. Furthermore let e be an edge
in E(Γ′′). Take p a path from v to o(e). Then take p̃ the lift of g(p). Its terminal
point is by definition g̃(o(e)). Now concatenate p with the edge e to get p′. Let
e′ be the unique edge in St(g̃(o(e)),Γ), such that f(e′) = g(e). Then p̃ · e′ is the
lift of p′, therefore by definition g̃(e) is the edge e′ and we have o(e′) = g̃(o(e))
as expected.

u p1 o(e) t(e)
ge

g(u) g(p1) o(g(e)) i(g(e))

v p̃1 p̃2 p̃3

g̃(e)

g̃ f
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Finally we need to show that g̃ preserves inverses of edges. Let e be an edge in
E(Γ′′). To calculate g̃(e−1), we first take a path p from u to t(e). Then define
p′ = p · e, which is a path from u to o(e−1). Now take p̃ the lift of g(p) and let x
be the terminus of p̃. Furthermore, take e′ the unique edge in St(x,Γ), such that
f(e′) = g(e). Then: p̃ ·e′e′ is a lift of g(p ·ee). Its last vertex then is by definition
g̃(e), which is: e′ = g̃(e), proving that g̃ is indeed a morphism of graphs.

u p1 o(e) t(e)
g

e

e

g(u) g(p1) o(g(e)) t(g(e))

g(e)

g(e)

v p̃1 p̃2 p̃3

g̃(e)

g̃(e)

g̃ f

2.3 Galois theory of covers
There is a very strong analogy between the classical Galois theory of field extensions
and covers. As we will see, covers are the analogue of field extensions, while the
fundamental group is the analogue of the Galois group.

Definition 2.3.1 (universal cover). Let Γ be a graph. We call a universal cover of
Γ a cover (T, f), such that T is a tree.

Theorem 2.3.2 (Existence of a universal cover). Every connected graph has a uni-
versal cover. A universal cover of a graph is unique up to isomorphism.

Proof. Existence:
We will show here the classical proof that can be found for example in Hatcher

[23] in Proposition 1.36.
We define the set of vertices of a graph T as a set of reduced paths in the graph

Γ starting at a chosen vertex v0. We take the set of edges of T of the form (γ, γ · e),
with e an edge in Γ starting at the vertex v and γ a path starting at v0. The inverse
of this edge is defined as: (γ · e), γ).

Let us show that a graph T defined in this way is a tree.
First observe that there are no multiple edges between two vertices. To prove

it is connected, we take p an unreduced path in Γ. We may prove by induction on
length of p that there exists a path in T from (v0) to p. For clarity we will denote
paths in T with upper case letters and the paths in Γ with lowercase.

If p is of length 0, p = (v0), so the path ((v0)) is a path from (v0) to p. Now
assume that every path of length n can be attained from (v0). Let us show it is the
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case for a path of length n + 1. If p is of length n + 1, we decompose it into p′ · e
with p′ of length n and e an edge. Now apply induction to p′: by assumption there
exists P ′ a path from (v0) to p′. Then P = P ′ · (p′, p) is a path from (v0) to p.

Now we need to show that there are no cycles in T . Take P a reduced path
starting at a p and ending at the same p. If all the vertices visited by P are paths
in Γ of the same length that implies that P is of length 0, because the edges are
only between paths whose lengths differ by 1. Now by contradiction assume that
P1 is of different length than p. The cases where the length is greater and lesser are
very similar, so we will only consider l(P1) = l(p) + 1. Since the path end back at
p, there needs to be a step where length decreases by 1.

Let k be the smallest integer where this happens. Now write

Pk+1 = (v0, e1, · · · , en)

We then get that
Pk = (v0, (e1, · · · , en+1))

since Pk and Pk+1 are connected by an edge, so by definition of edges in T , up until
n-th step the paths must remain identical. Now Pk−1 is shorter than Pk and since it
is connected to Pk by an edge, we have that Pk−1 = (v0, (e1, · · · , en)). We therefore
end up with Pk−1 = Pk+1 and since edges between two vertices in T are in unique,
we end up with a possible reduction, contradicting that the path P is reduced. This
concludes the proof that T is a tree.

Now we need to define the projection f to make T into a universal cover of Γ.
We send the vertex that is a reduced path p to its terminus: f(p). We send an edge
of the form (p, p · e) to e and an edge of the form (p · e, p) to e. Now we need to
show that (T, f) is a covering graph.

We start by showing that f is a morphism of graphs. It by definition sends edges
on edges and vertices on vertices.

Now let us take an edge of the form e′ = (p, p · e). We take u = t(p). We
get that o(f(e′)) = o(e) = u. We have that u is also the terminus of p, therefore
o(f(e′)) = f(o(e′)). Now if we take e′ an edge of the form e′ = (p · e, p), we get that
o(f(e′)) = o(f(e)) = t(e). Now the terminus of (p · e) is t(e), therefore we get again
that: o(f(e′)) = f(o(e′)). Finally we observe that

f( (p, p · e) ) = f((p · e, p)) = e = f( (p, p · e ) )

making f into a morphism.
Now we need to show that this morphism is in fact a cover. Let p be a vertex in

T . We get that

St(p, T ) = {(p · e, p)|e ∈ E(Γ) and o(e) = t(p)}

Furthermore
St(f(p), T ) = {e ∈ E(Γ)|t(e) = f(p)}

The map f is a bijection between the two sets, making f into a covering morphism.
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Uniqueness:
Let (T ′, f ′) be another universal covering graph. First of all f ′ has to be sur-

jective. Indeed take v a vertex in Γ. Let us choose x a vertex in T ′. Then since Γ
is connected, there exists a path from f ′(x) to v: p. The path p can then be lifted
into a unique path starting at x, p̃ by f ′. If then u is the terminus of p̃, we get that
f(u) = v. Since f is surjective, we may pick an antecedent u0 of v0 by f ′. f ′ is a
morphism from the connected graph T ′ to Γ, such that f ′(u0) = f((v0)), therefore
by 2.2.9 c), there exists a unique Φ from T ′ to T , such that f ′ = f ◦ Φ. Applying
2.2.9 c) again, we also get a unique morphism Ψ from T to T ′, such that f = f ′ ◦Ψ.
By an argument by universal property, Φ and Ψ are inverses to each other, making
(T, f) and (T ′, f ′) isomorphic.

Now we shall see the theorem that shows the analogy between Galois theory and
covers. In order to do that, we need to be able to define what the group of Galois
group would be for graphs. In this case, we are interested in deck transformations.
Definition 2.3.3 (deck transformations). Let Γ be a graph and (Γ′, f) a cover of Γ.
a) We call a deck transformation an automorphism of Γ′ that preserves the values

of f . We will denote Autf (Γ) the set of deck transformations.

b) We call a covering graph of Γ, (Γ′, f) normal, if there exists an x a vertex in Γ,
such that Autf (Γ) acts transitively on the set f−1(x).

c) For a covering graph (Γ′, f), we call a triplet (Γ′′, u, f ′) a subcovering graph, if u
is a covering morphism from Γ′ to Γ′′ f a covering morphism from Γ′′ to Γ and
f = f ′ ◦ u.

d) For two subcovering graphs (Γ1, u1, f1) and (Γ2, u2, f2) of a covering graph (Γ′, f)
of Γ, we call a morphism a map h from Γ1 to Γ2 a morphism of graphs, such that
the following diagram commutes:

Γ′ Γ

Γ1

Γ2

u1

u2

f1

f2

h

Note that classically the analogy of Galois theory is done for the universal cover-
ing space, see for example [14]. However with the right definition of “subcovering”,
we can extend this approach to any normal covering graph. In that case very loosely,
one can think of separable field extension as a connected covering and of normal field
extension a normal covering and a subextension then corresponds to a subcovering
graph. Finally the group of deck transformations corresponds to the Galois group.

Another interesting remark is that if we omit the maps u1 and u2 from the defi-
nition of a morphism, then the Galois correspondence would be between conjugacy
classes of subgroups
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Lemma 2.3.4. If (Γ′, f) is a normal covering graph of a connected graph Γ, then:

a) ∀x ∈ V (Γ), Autf (Γ) acts transitively on f−1(x).

b) ∀e ∈ E(Γ), Autf (Γ) acts transitively on f−1(e).

Proof. a) By definition of normal cover, we take x0 a vertex in Γ, such that Autf (Γ)
acts transitively on f−1(x0). Let x be a vertex in Γ. Let u, u′ ∈ f−1(x). Take
p a path from x to x0. Then it lifts into a unique path p̃ starting at u and a
unique path p̃′ starting at u′. The terminal points y, y′ of respectively p̃ and p̃′
are in f−1(x0), therefore there exists g ∈ Autf (Γ), such that y = g(y′). Then
g(p̃−1) is a lift of p starting at y′ and so is p̃′, therefore the two paths are equal.
In particular their terminal point g(u) and u′ are equal, so g(u) = u′.

b) Now we take e an edge in Γ. Let e′ and e′′ be two edges in Γ′, such that
f(e′) = f(e′′) = e. Then we get that f(o(e′)) = f(o(e′′)) = o(e). We then take g
a deck transformation, such that g(o(e′)) = o(e′′). The map f being a bijection
from St(o(e′′),Γ′) to St(o(e),Γ) and f(ge′) = f(ge′′), we get that ge′ = e′′,
proving that the deck transformations act transitively on the edges.

Theorem 2.3.5 (Fundamental theorem of Galois theory of graphs). Let Γ be a
connected graph and (Γ′, f) a normal covering of Γ. Choose a vertex v in Γ and
u its antecedent in Γ′ by f . Then f(π1(Γ′, u)) is a normal subgroup of π1(Γ, v),
Autf (Γ) is isomorphic to π1(Γ, v)�π1(Γ′, u) and there is a 1 to 1 inclusion reversing
correspondence between subgroups of Autf (Γ) and subcovers (Γ′′, f ′) (up to isomor-
phism) of (Γ′, f). Furthermore normal subextensions of (Γ′, f) correspond exactly to
the normal subgroups of Autf .

Proof. First let us start by proving that f(π1(Γ′, u)) is normal is π1(Γ, v). Let p be
a reduced path in Γ′ from u to u and α a reduced path from v to v in Γ. Let us show
that there exists a reduced path p′ in Γ′, such that [f(p′)] = α[f(p)]α−1. The path
α is starting at v, so by the lifting property, there exists a unique α̃ path in Γ′, such
that f(α̃) = α. Now let u′ be the terminus of α̃. Let then g be a deck transformation
that sends u to u′. The path g(p) can then be concatenated on the left with α and
on the right with α−1, since it starts at u′ and ends at u′. Furthermore α · g(p) ·α−1

starts at u and ends at u, therefore has a representative in π1(Γ′, u), which we shall
call β. We have that f(β) = f([α̃ · g(p) · α̃−1]) = [f(α)] · [f(g(p))] · [f(α̃)]−1, with in
this context for a circuit P , [P ] denoting its class in π1. Now f(g(p)) = f(p), since g
is a deck transformation and hence f(β) = [α][f(p)][α]−1. This concludes the proof
that f(π1(Γ′, u)) is normal in π1(Γ, v).

The next step is to prove that Autf (Γ) is isomorphic to π1(Γ, v)�f(π1(Γ′, u))

We define φ =

{
Autf (Γ) −→ π1(Γ, v)�f(π1(Γ′, u))

g 7→ [f([u, g · u])]
, with [u, g · u] denoting a

path from u to g ·u and we shall prove that φ is an isomorphism of groups. We need
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to start by proving that φ is well defined, meaning it doesn’t depend on the choice
of the path from u to gu. Suppose that p1 and p2 are two paths from u to g ·u, then
f(p1 · p2) is in f(π1(Γ′, u)) and therefore the classes of f(p1) and f(p2) are the same
in the quotient group.

Now we need to prove that φ is a morphism of groups. Take g, g′ ∈ Autf (Γ).
Let p be a path from u to g(u) and p′ a path from u to g′(u). Then

f(p) · f(p′) = f(p) · f(g(p′)) = f(p · g(p′))

and p · g(p′) is a path from u to gg′(u). We therefore have that φ(gg′) = φ(g) ·φ(g′).
Now we need to prove that φ is injective. Let g be a deck transformation and

p a path from u to g · u, such that the class [f(p)] is equal to the class [f(q)], with
[q] ∈ π1(Γ′, u). By uniqueness of lift, we get that q and p are the same path, therefore
p starts and ends at u, which means that g(u) = u. Since g is a deck transformation
that implies that g is the identity.

Finally let us show that φ is surjective. Take [p] a class in π1(Γ, v). Then there
exists p̃ a path starting at u, lifting p. Let u′ be the terminus of p̃. By transitivity of
the deck transformations, we get that there exists g ∈ Autf (Γ), such that g(u) = u′.
Then p̃ is a path from u to g(u), hence p = φ(g), proving the surjectivity of φ.

Now is the time to prove the second part of the statement. We will prove that
there is a one to one correspondence (up to isomorphism) between subcovers of
(Γ′, f) and subgroups of Autf (Γ). Let H be a subgroup of Autf (Γ). We define an
equivalence relation on Γ′ as follows: two vertices x, y are equivalent if there exists
h ∈ H, such that h(x) = y and two edges e, e′ are equivalent if there exists h ∈ H,
such that h(e) = e′. We shall show that f is compatible with this equivalence
relation and therefore can factor into a morphism from the quotient graph Γ′�H to
Γ. We will then show that Γ′�H together with the natural morphism is a covering
graph. Let x, y be equivalent edges or vertices. Then there exists h ∈ H, such that
h(x) = y. Then f(h(x)) = f(y), since h is a deck transformation, showing that f is
indeed compatible. Now we define Γ′′ as the quotient graph of Γ′ by our equivalence
relation. Together with the induced map by f : f ′ = f

H , Γ′′ is a cover of Γ. To
prove it, let us take xH a vertex in Γ′′. Now let us prove that f ′ is a bijection from
St(Γ′′, xH) in St(Γ, f(x)). Let us start with the surjectivity.

If e ∈ E(Γ) is an edge, such that o(e) = f(x), then by surjectivity of f , there
exists e′ ∈ St(Γ′, x), such that f(e′) = e. Then we simply get f ′(e′H) = e and
e′
H ∈ St(Γ′′, xH). Now let us prove the injectivity of f . Suppose that eH and e′H

are two edges in St(Γ′, x) mapping to the same edge. Now we have that o(e) = y
and o(e′) = y′ and there are h, h′ ∈ H, such that h(y) = x and h′(y′) = x. Then by
injectivity of f on the stars we get that h(e) = h′(e′) and therefore e = h−1h′(e′),
proving that the two classes eH and e′H are equal.

Finally we need to show that Γ′ together with the natural projection of Γ′′: π is
a covering graph of Γ′′. I.e we need to show that π is a bijection on stars.

Let x be a vertex in Γ′′. First let us show the injectivity of the projection. Let
y be such that y = x. Take e, e′ two edges in St(Γ′, y), such that e = e′. Then there
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exists by definition a h ∈ H, such that h(e) = e′. We also have that h(x) = x and
we know that if a deck transformation fixes one point, it is the identity. Therefore
e = e′. The surjectivity of π on the stars is trivial.

This proves that to a subgroup of Autf (Γ), we can associate a subcovering graph,
which we shall call F (H). This map F is inclusion reversing.

The next step is to prove that every subcovering graph (Γ′′, f ′) is isomorphic to
some F (H). Let u be a morphism from Γ′ to Γ′′, such that (Γ′, u) is a covering
graph of Γ′′ and f = f ′ ◦ u. Let H = Autu(Γ

′′). Let us show that H is a subgroup
of Autf (Γ). Suppose that h ∈ H. Then for every x ∈ Γ′, u(h(x)) = u(x) and
therefore f ′(u(h(x))) = f ′(u(x)) and therefore f(h(x)) = f(x). We therefore get
that h ∈ Autf (Γ).

Now consider the graph F (H). First since u is by definition constant on the
equivalence classes of H, u is compatible with the H-equivalence relation. It there-
fore factors into a morphism uH from F (H) to Γ′′: i.e the diagram:

Γ′

F (H)

Γ′′

πH

u

u

commutes, with π being the natural projection of Γ′ on F (H). Let us show that
u is an isomorphism of covering graphs of Γ. To prove it is a morphism, we need
to show that f ′ ◦ u = fH with fH the natural covering morphism from F (H) to g.
That is however obvious, since if we pick xH ∈ F (H), we get:

f ′(u(xH)) = f ′(u(x)) = f(x) = fH(xH)

Now we need to prove that uH is bijective. We start by proving that u is injective.
Let x, y be two vertices in Γ′, such that u(x) = u(y). Then we get that f(x) = f(y),
therefore by the transitivity of the deck transformations, there exists g ∈ Autf (Γ),
such that g(x) = y. Now we need to prove that g ∈ H. By contradiction, suppose
that there exists a vertex z in Γ′, such that u(z) is distinct from u(g(z)). Let p be a
path from x to z. The paths u(p) and u(g(p)) are two lifts of the path f(p) starting
at u(x), therefore by uniqueness of the lift the two paths are equal. In particular
their terminal points are equal. Hence we get that u(z) = u(g(z)) and therefore by
definition g ∈ H. Since x = g(y), the two vertices are equal in the quotient graph.

Take now e, e′ ∈ E(Γ′) two edges, such that u(e) = u(e′). By transitivity of
the deck transformations, there exist g ∈ Autf (Γ), such that g(e) = e′. Then
g(o(e)) = o(e′) and therefore by the previous part, we can conclude that g ∈ H.
Then e and e′ are equivalent in the quotient graph.

The surjectivity of uH is a direct consequence of u being surjective.

Now we need to show that F is injective. Take H and H ′ subgroups of Autf (Γ′),
such that F (H) and F (H ′) are isomorphic. Then there exists an isomorphism φ
from F (H) and F (H ′). If then we denote the respective covering morphisms fH and
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fH′ and πH and πH′ the natural projections onto the quotient graphs, we get the
two following commutative diagram:

F (H ′)

Γ

F (H)

Γ′ φ

fH

fH′

πH

πH′

Now let us show that H ⊆ H ′, which is enough to conclude that H = H ′, since
the two groups play a symmetric role. Let h ∈ H. In that case let us pick x a vertex
in Γ′. We get that:

πH′(h(x)) = φ(πH(h(x))) = φ(πH(x)) = πH′(x)

As such we get that there exists h′ ∈ H ′, such that h(x) = h′(x). Since the group
Autf (Γ) acts freely on the vertices, we then conclude that h = h′ and so h ∈ H ′.

We finally need to show that a subgroup H of Autf (Γ) is normal if and only if
F (Γ′) is a normal covering graph of Γ.

Suppose first that H is normal. Take v a vertex in Γ and x, y ∈ F (Γ), such that
f(x) = f(y). Since (Γ′, f) is normal, there exists g ∈ Autf (Γ), such that y = g(x).
Now let us show that g induces a map g from F (Γ) to F (Γ). We need to show that
if two vertices w, z are equivalent that g(z) and g(w) are as well. We get that there
exists h ∈ H, such that z = h(w). Then: g(z) = g(h(w)) = ghg−1(g(w)). Now since
H is normal, we get that ghg−1 ∈ H and therefore z and w are equivalent.

The induced map g is trivially a deck transformation of F (Γ), since f ′(g(z)) =
f(g(z)) = f(z).

As we can see, we then get an analogue of Galois correspondence for fields. The
larger the subgroup of symmetries: in this case the deck transformations, the smaller
the subcover. The universal cover plays then the role of the algebraic closure. We
are now ready to classify all the covering graphs of a graph.

Theorem 2.3.6 (Classification of covering graphs). Let Γ be a connected graph and
a vertex v in Γ. There is a bijection between connected covering graphs of Γ up to
isomorphism and subgroups of π1(v,Γ) up to conjugation.

Proof. First take (T, f) to be the universal cover of Γ. If we prove that any covering
graph is isomorphic to a subcover of T , we can conclude by the fundamental theorem.

First of all the group of deck transformations of T is isomorphic to π1(v,Γ), so
we can just consider them to be equal by implicitly fixing an isomorphism. Now
consider F the Galois correspondence from the previous theorem. To a subgroup of
π1(v,Γ) we associate the cover (F (H), fH). Let us now show that if H and H ′ are
conjugate in π1(v,Γ), then F (H) and F (H ′) are isomorphic as covers. (But not as
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subcovers according to our definition!) Let g ∈ π1(v,Γ) such that H ′ = gHg−1. In
that case πH′ ◦ g is invariant by the action of H. Indeed if we pick h ∈ H and x a
vertex in T :

πH′(gh · x) = πH′(ghg
−1g · x) = πH′(g · x)

Since ghg−1 ∈ H ′. In that case by the universal property of the quotient, there
exists a map φ, such that the diagram

T

F (H)

F (H ′)
πH′ ◦ g

πH
φ

commutes. We observe that φ is an isomorphism of coverings by constructing
an inverse map that is obtained by factoring this time φH′ ◦ g−1. The map F then
factors into a map from conjugation classes of subgroups of π1(v,Γ) to isomorphism
classes of coverings of Γ. We will still call that map F and we shall prove that it is
a bijection.

First let us prove that F is injective. Suppose that F (H) and F (H ′) are isomor-
phic as covers of Γ. Let us show that H and H ′ are then conjugate. Let φ be the
isomorphism of covers from F (H) to F (H ′).

We then get that the following diagram commutes:

F (H)

F (H ′)

Γ
fH

φ fH′

Now let u be a vertex in Γ, such that fH′(u) = φ(fH(v)). In that case f(u) = f(v)
and therefore there exists g ∈ π1(v,Γ), such that u = g(v), since π1(v,Γ) acts
transitively on fibers. Let us show that H ′ = gHg−1. First observe that we have
the following commutative diagram

T Γ

F (H ′)

f

fH′fH′ ◦ gφ ◦ fH

Furthermore fH(u) = fH ◦ g(u), so by the uniqueness of the factorization given
in 2.2.9 part c) , we can conclude that φ ◦ fH = fH′ ◦ g. Using the fact that φ is an
isomorphism, we also get that fH ◦ g−1 = φ−1 ◦ fH′ Now let h ∈ H.We get that

fH′(ghg
−1 · v) = φ(fH(hg−1 · v)) = φ(fH(g−1 · v)) = fH′(v)

In that case there exists h′ ∈ H ′, such that ghg−1 · v = h′ · v and since the action
of π1(v,Γ) is free then ghg−1 = h′ and so ghg−1 ∈ H ′, concluding that H ⊆ gHg−1.
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Using the inverse relation fH ◦ g−1 = φ−1 ◦ fH′ , we can similarly conclude that
H ′ ⊆ g−1Hg and therefore H ′ = gHg−1. That concludes the injectivity proof.

To prove that F is surjective, we take (Γ′, f ′) a covering of Γ. Then let (T ′, t) be
the universal cover of Γ. In that case (T ′, f ′◦t) is a universal cover of Γ and (Γ′, t, f ′)
is a subcover of T . By the fundamental theorem and the fact that universal covers
are isomorphic, we then conclude that there exists H a subgroup of π1(v,Γ), such
that F (H) is isomorphic to (Γ′, f ′) as expected.

Another consequence of the fundamental theorem is that we can represent any
group as a set of deck transformations of a covering graph as we will see:

Proposition 2.3.7. Let G be a group. Then there exists a graph Γ and a normal
covering graph (Γ′, f) of Γ, such that Autf (Γ) is isomorphic to G.

Proof. Take Γ a graph with a single vertex v And the set of edges equal to

E = {[g]|g ∈ G} ∪ {[g]−1|g ∈ G}

with [g] just being a formal letter of an alphabet on G. Let (T, u) be the universal
cover of Γ. Its set of deck transformations is then the free group on letters in E.
Now consider φ the morphism from Autu(T ) to G that sends [g] to g and [g]−1 to
g−1.

Let H be its kernel. Let F (H) be the subcover of Γ associated to H. Then
F (H) is normal and the group of deck transformations on F (H) is isomorphic to
Autf (Γ)�H, which itself is isomorphic to G as expected.

We can then imitate what happens in case of Galois theory for any kind of
group. The problem is that infinite Galois groups are only interesting if we take
into account their profinite topology, so we have to modify this approach to get
profinite coverings, which we will cover in Chapter 4.

2.4 Graph homology
Homology is a tool coming from algebraic topology that as we will see is useful for
finding the number of connected components as well as finding loops in graphs. In
chapter 4, we will see how these tools are used in the profinite graphs case, but first
we examine the abstract graphs. This part is loosely based on the work [10]. With
a difference that we will use augmented chain complex, to stay consistent with the
homology version in chapter 4 and definitions of graph that are consistent with this
chapter: i.e we will be taking undirected graphs with the origin and terminus maps.

Definition 2.4.1 (graph chain complex). Let R be a ring and Γ an undirected
graph.We choose an orientation O on Γ.

• We denote C1(Γ, R) the free R-module on edges in O

• We denote C0(Γ, R) the free module on vertices of Γ
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• We denote ∂ the differential from C1 to C0 that to an edge e associates t(e)−
o(e).

• We denote ε the augmentation map on C0, i.e the R-linear map from C0 to R
that to any vertex v associates 1.

Then the R- complex associated to the graph Γ is the complex:

C1(Γ, R) C0(Γ, R) R
∂ ε

We get that ε ◦ ∂ = 0 and therefore we can speak of its homology. We write

H1(Γ, R) = ker(∂)

and
H0(Γ, R) = ker(ε)�im(∂)

Both H1 and H0 are seen here is R-modules.

It is worth mentioning that this complex is independent of the choice of orien-
tation: if we choose any other orientation, we can see that the two complexes are
isomorphic.

The three results we will show are that morphisms of graphs induce natural
morphisms between homology rings that a graph is connected if and only if its
zeroth homology with coefficients Z is zero and that a graph is a tree if an only if
both H0(Γ,Z) and H1(Γ,Z) are zero.

Proposition 2.4.2. Let Γ,Γ′ be two undirected graphs and f a morphism from Γ to
Γ′. Let O′ be an orientation on Γ′ and O = f−1(Θ′), which is the unique orientation
on Γ, such that f(Θ) ⊆ Θ′. Then there exist a unique morphism Φ1 from C1(Γ, R)
to C1(Γ′, R), such that

∀e ∈ O,Φ1(e) = f(e)

and a unique morphism Φ0 from C0(Γ, R) to C0(Γ′, R), such that

∀v ∈ V (Γ),Φ0(v) = f(v)

We also have that the diagram:

C1(Γ, R) C0(Γ, R) R
∂ ε

C1(Γ′, R) C0(Γ′, R) R
∂′ ε′

Φ1 Φ0 idR

commutes and therefore f induces maps H1(f) and H0(f) on the homology.
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Proof. The existence of maps Φ1 and Φ0 simply comes from the fact that C1 and C0

are free modules and f is a map from O to O′ as well as a map from V (G) to V (G′).
To prove that the diagram commutes, we observe that for e ∈ O, t(f(e))−o(f(e)) =
f(t(e))− f(o(e)), since f is a morphism. Since the diagram commutes on a basis of
C1(G,R), it commutes everywhere by linearity of all maps involved.

Proposition 2.4.3. Let Γ be an undirected graph. The graph Γ then is connected
if and only if H0(Γ) = H0(Γ,Z) is equal to zero.

Proof. Suppose first that Γ is connected. Choose O an orientation on Γ. For e ∈
E(Γ), we denote

α(e) =

{
e if e ∈ O

−e else

One can show that ker(ε) is generated by v − u, with u, v ∈ V (Γ). To then prove
that ∂ is surjective on ker(ε), it is enough to prove that all the v − u have an
antecedent by ∂. Now let (u, e1, e2, · · · , en, v) be a path from u to v. Notice that
∂(α(e)) = t(e)− o(e), hence
∂

n∑
k=1

α(ek) = v − u, hence ∂ is indeed surjective onto ker(ε).

Suppose now that ∂ is surjective onto ker(ε). First of all, any x ∈ Z[O] can be

written as a sum
n∑
k=1

α(ek). Now we will prove by induction on n that if there exists

u, v ∈ V (Γ), such that
n∑
k=1

α(ek) = v − u, then there exists a permutation σ on

{1, · · · , n}, such that (o(eσ(1)), eσ(1), · · · , eσ(n), t(eσ(n))) is a path from u to v.
If n = 1 the result is trivial. Now suppose that it is true for n ∈ N. Suppose

that
∂(α(e1) + · · ·+ α(en+1)) = v − u

If we denote mi the projection of ∂(α(ei)) on v, we get that mi ∈ {1, 0,−1} and

also that
n∑
i=1

mi = 1. We then have to have that there exists i0, such that mi0 = 1,

since otherwise the sum would have been negative or null. We have that ∂(α(ei0)) =
t(ei0)− o(ei0). Then we must have that t(ei0) = v. If we then denote x = o(ei0) and

τ the transposition (i0, n + 1), we get that ∂(
n∑
k=1

α(eτ(k))) = x − u. By induction,

there exists then a permutation σ′ on {1, · · · , n}, such that

(u, eσ′(τ(1)), · · · , eσ′(τ(n)), x) is a path from u to x

We extend then σ′ into a permutation on {1, · · · , n + 1}, by fixing n + 1 and we
write σ = σ′ ◦ τ . Then since o(eσ(n+1)) = o(ei0) = x and t(eσ(n+1)) = t(ei0) = v, we
get that

(u, eσ(1), · · · , eσ(n+1), v) is a path from u to v

which is what we wanted to show. Now finally if we pick any u, v ∈ V (Γ), then
since we know that H0(Γ) = {0}, we get that there exists x ∈ Z[E(Γ)], such that
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∂(x) = v − u and by what we have shown earlier that implies that there is a path
from u to v.

Proposition 2.4.4. Let Γ be an undirected graph. Then Γ is a tree if an only if
H0(Γ) = {0} and H1(Γ) = {0}.

Proof. First suppose Γ to be a tree. Since Γ is connected, by the previous proposi-
tion, we get that H0(Γ) = {0}. Now let us show that H1(Γ) is zero as well. Choose
O an orientation on Γ.

By contradiction, assume that there exists x ∈ Z[Θ], such that ∂(x) = 0, but x

is not zero. Let us then decompose x into
n∑
k=1

α(ek), with

α(e) =

{
e if e ∈ O

−e else

Since α(e) + α(e) = 0, we may suppose after simplifying that ∀k, k′, ek 6= ek′ . We
furthermore have that ∂(α(e1) + · · · + α(en−1)) = o(en) − t(en). Since Γ is a tree,
it has no loops and therefore o(en) 6= t(en). By what we have seen in the previous
proposition, up to permutation, (t(en), e1, · · · , en−1, o(en)) is a path from t(en) to
o(en). Then we get that (t(en), e1, · · · , en, t(en)) is a path from t(en) to itself. Since
∀k, k′, ek 6= ek′ , the path is reduced. It is then of length 0, since Γ is a tree, which
is a contradiction.

Now suppose on the other hand thatH0(Γ) andH1(Γ) are both zero. SinceH0(Γ)
is zero, then Γ is connected. Now let us show that Γ is a tree. By contradiction,
assume that there exists a non trivial reduced path from some u to u. Let us
denote that path (u, e1, · · · , en, u) We may furthermore suppose that the path has
no repetitions i.e that the map i 7→ o(ei) is injective, simply by shortening the path
if necessary. In that case: ∀i, ei 6= e1. Indeed: suppose by contradiction that there
is an i, such that ei = e1. In that case t(ei) = o(ei) = o(e2) and so ei = e2 by
assumption that there are no repetitions in the path. In that case however e2 = e1,
which contradicts the assumption that our path is reduced. From this result we get
that:
∀k, α(ek) 6= −α(e1) and therefore if we project orthogonally α(e1)+ · · ·+α(en) onto
α(e1), we get a non zero number, hence α(e1)+· · ·+α(en) is non zero. However since
(u, e1, · · · , en, u) is a path from u to u, we get that ∂(α(e1)+· · ·+α(en)) = u−u = 0,
contradicting the injectivity of ∂.

So far, we have seen two possible approaches to create analogies between Galois
theory and graphs. The first one seen in the first chapter is to imitate an action of
a Galois group on roots using the Cayley action graphs and the second is using the
Galois theory of covers. These two representations however lack topology, which is
necessary when we want to use infinite Galois theory rather than the finite one. The
next step will then be to equip graphs with a profinite structure, but before doing
that, we will see in more detail how infinite Galois theory works in the next chapter.
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Chapter 3

Profinite structures and Etale
algebras

3.1 Profinite structures
In this part we will define several profinite structures that we will be using. While
these notions are typically defined separately, I decided to group them under the
term of ”Profinite structure” and prove their common properties together. I origi-
nally wanted to call them “Profinite categories”, but this term is already used for a
different concept in for example the publication: [27] that studies categories from
the point of view of graphs.

Definition 3.1.1 (directed set). We define a directed set as a nonempty ordered set
(I,≤), such that

∀x, y ∈ I,∃z ∈ I, z ≥ x and z ≥ y

A very simple example of a directed set is a set of finite subsets of a set Ω for
the relation of inclusion. Observe that a union of two finite subsets is a finite subset
and it is greater than both sets.

Definition 3.1.2 (projective limits). For a category C, we define a projective system
as a collection of objects in C (Xi)i∈I indexed by a directed set I, together with
morphisms (φi,j)i,j∈I

i≤j
from Xj to Xi, such that

∀i, j, k ∈ I, i ≤ j ≤ k ⇒ φi,k = φi,j ◦ φj,k
If it exists, we define a projective limit of a projective system ((Xi)i∈I , (φi,j)i,j∈I

i≤j
)

as an object X, together with morphisms (φi)i∈I from X to Xi such that for j ≥ i
the following diagram commutes:

X Xi

Xj

φi

φi,jφj
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Furthermore we require X to be universal: that is if (Y, (ψi)i∈I) is another object,
such that:

Y Xi

Xj

ψi

φi,jψj

commutes for every i, j ∈ I, such that i ≤ j, then there exists a unique morphism
f from Y to X, such that ∀i ∈ I, ψi = φi ◦ f .

Example 3.1.3. An example of such a projective limit would be taking a group
G and I the set of normal subgroups of G of finite index together with the order
of reverse inclusion. Then take the projective system (G�N)N∈I with morphisms
φN,N ′ being the natural projection of G�N ′ on

G�N if N ′ ⊆ N . The limit of
such a projective system exists in the category of groups and is called the profinite
completion of G. Note that if G is finite, then the profinite completion of G is G.

One important result is that if a limit of a projective system exists, it is unique
up to isomorphism, i.e if Y together with maps (φ′i)i∈I is another limit, then there
exists an isomorphism f : X −→ Y , such that ∀i ∈ I, φ′i = φi ◦ f .

So far these definitions are standard and are mentioned for example in [29] on
the first page. For the sake of convenience I have decided to treat certain generalities
about structures such as profinite rings, groups and modules and prove their common
properties for a general structure I call a profinite structure.

Definition 3.1.4. Let C be a category together with a functor F from C into the
category of sets. We make the following assumptions on F :

• The functor F is faithful, i.e for all objects X, Y : F as a map from hom(X, Y )
to hom(F (X), F (Y )) is injective.

• For any projective system in C ((Xi)i∈I , (φi,j)j≥i∈I), such that F (Xi) is finite
for all i ∈ I, there exists a limit (X, (πi)i∈I). Furthermore (F (X), (πi)i∈I) is
isomorphic in the category of sets to the projective limit of the sets

(F (Xi)i∈I , (F (φi,j))j≥i).

• For all objects A,B,C in C and for all morphisms u from B to A, v from B
to C and f a map from F (A) to F (C), if F (u) is surjective and the diagram:

F (A)

F (B)

F (C)
f

F (u) F (v)

commutes, then there exists a morphism w from A to C, such that f = F (w).
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We call such category C together with F a preprofinite category.
We then define P a profinite structure induced by C as a category whose objects

are limits of projective systems of objects whose images by F are finite. Objects
in this category are called profinite objects. A morphism between (X, (φi)i∈I) and
(Y, (ψj)j∈J) is then defined as a morphism f ∈ hom(X, Y ), such that for every j ∈ J ,
there exists an i0 ∈ I such that

∀x, y ∈ F (X),∀i ≥ i0, F (φi)(x) = F (φi)(y)⇒ F (ψj ◦ f)(x) = F (ψj ◦ f)(y)

This definition of a morphism doesn’t seem to be very clear, but once we give
a more topological interpretation of this category it will make more sense: as the
morphisms between two profinite objects will essentially be morphisms that are
continuous for a certain profinite topology. We will now show that P is indeed a
category.

Let (X, (φi)i∈I) be an object in P. Then observe that idX is a morphism from
X to X.

Now suppose that (X, (φi))i∈I , (Y, (ψj))j∈J) and (Z, (ωk))k∈K) are three objects,
f a morphism from X to Y and g a morphism from Y to Z. Let us show that g ◦ f
is morphism from X to Z. Let k ∈ K. Then since g is a morphism, there exists
j0 ∈ J , such that

∀j ≥ j0,∀x, y ∈ F (Y ), F (ψj)(x) = F (ψj)(y)⇒ F (ωk ◦ g)(x) = F (ωk ◦ g)(y)

Now since f is a morphism, there exists i0 ∈ I, such that

∀i ≥ i0,∀x, y ∈ F (X), F (φi)(x) = F (φj)(y)⇒ F (ψj0 ◦ f)(x) = F (ψj0 ◦ f)(y)

Now suppose that i ≥ i0 and x, y ∈ F (X) are such that F (ψi)(x) = F (ψi)(y).
Then F (ψj0)(f(x)) = F (ψj0)(f(y)) and therefore

F (ωk ◦ g ◦ f)(x) = F (ωk ◦ g ◦ f)(x)

proving that g ◦ f is indeed a morphism.
The sole reason for this functor F is that strictly speaking most profinite struc-

tures are not a subcategory of sets, but often do inject themselves in it. For example
while groups are strictly speaking not sets: rather sets together with their internal
operation, the morphisms of groups are maps between sets. In practice then by abuse
of notation, we will identify F (X) with X and F (φ) with φ, unless an ambiguity
could arise.

We will show that profinite objects have interesting topological properties, but
first we will prove a fundamental property of profinite objects that will serve as a
foundation for the topology.

Proposition 3.1.5. Let (C, F ) be a preprofinite category and (X, (φi)i∈I) an object
in the induced profinite structure P. Then

∀x, y ∈ F (X), x = y ⇔ ∀i ∈ I, F (φi)(x) = F (φi)(y)
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Proof. One implication is clear.
Now consider the set:

X ′ = {(xi)i∈I |∀i ∈ I, xi ∈ F (Xi) and ∀j ≥ i ∈ I, F (φi,j)(xj) = xi}

X ′ together with πi the natural projections on F (Xi) is then the limit of
((F (Xi)i∈I , (F (φi,j))j≥i) in the category of sets. Since C is a preprofinite category,
we know that (F (X), (F (φi))i∈I) is a limit of (F (Xi)i∈I) in the category of sets. As
such, there exists a bijection u from F (X) to X ′ , such that ∀i ∈ I, πi ◦ u = F (φi).
As such, if we take x, y ∈ F (X), such that ∀i ∈ I, F (φi)(x) = F (φi)(y), then we get
that ∀i ∈ I, u(x)i = u(y)i and therefore u(x) = u(y). By injectivity of u, x = y.

Definition 3.1.6. Let (C, F ) be a preprofinite category. Let (X, (φi)i∈I) be a profi-
nite object. We call the profinite topology on F (X) the coarsest topology that makes
the maps F (φi) continuous, with F (Xi) being equipped with its discrete topology.

We then have a theorem that describes the topology that profinite objects can
be equipped with. First we will need to prove a helpful lemma.

Lemma 3.1.7. Let (C, F ) be a preprofinite category, ((Xi)i∈I , (φi,j)j≥i) a projective
system with ∀i ∈ I, F (Xi) finite and (X, (φi)i∈I) its limit. Let then

X ′ = {(xi)i∈I |∀i ∈ I, xi ∈ F (Xi) and ∀j ≥ i ∈ I, F (φj,i)(xj) = xi}

together with its natural projections πi and equipped with the product topology (the
coarsest topology making the projections continuous), then there exists a homeomor-
phism f from F (X) to X ′, such that for all i ∈ I, F (φi) = πi ◦ f .

Proof. Since (C, F ) is a preprofinite category, then ifX is a projective limit in C. We
then get that F (X) is a projective limit in the category of sets. Since F (X) and X ′
are both limits, then by the universal property, there exists a natural isomorphism f
between them. We need to prove that f and f−1 are both continuous. For i ∈ I, we
call πi the natural projection of X ′ on F (Xi). By Proposition 1 in Chapter 1 section
3 of Bourbaki General Topology [7], f is continuous if and only if πi◦f is continuous
for all i ∈ I. We have that πi ◦ f = F (φi), which is continuous by the definition of
the topology on F (X), so f is a continuous map. Again by the same proposition in
Bourbaki, we get that f−1 is continuous if and only if F (φi) ◦ f−1 is continuous for
all i ∈ I. Since f−1 is a morphism of limits we get that F (φi) ◦ f−1 = πi and we get
the continuity of f−1.

This lemma implies that if we want to study the topology of the set F (X)
induced by the projection maps F (φi), we can simply study the topology of the set
X ′. Finally before stating the theorem that describes the topology of X ′, we will
give here the definition of a uniform space.

Definition 3.1.8 (uniform spaces). Let X be a nonempty set. We call a uniform
structure (or the set of entourages) on X a set of relations E on X with the following
axioms:
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i. For every R ∈ E and for every R′ ⊆ X ×X, R ⊆ R′ ⇒ R′ ∈ E.

ii. For every R,R′ ∈ E, R ∩R′ ∈ E.

iii. For every R ∈ E, the diagonal ∆ ⊆ X ×X is contained in R.

iv. For every R ∈ E, R−1 ∈ E.

v. For every R ∈ E, there exists R′ ∈ E, such that R′ ⊆ R.

Axioms 1 and 2 imply that a uniform structure has to be in particular a filtration.
The idea behind uniform structures is that they generalize metric spaces. In metric
spaces we get a certain notion of closeness that is independent of where we are.
(Just pick a small enough distance). Uniform structure with its relations provides
also that independent notion of closeness. We observe that for a uniform structure,
we obtain a topology defined as follows: a set of neighborhoods of x is generated by
Ω = {{y ∈ X|(x, y) ∈ R}|R ∈ E}.

Theorem 3.1.9 (Properties of a profinite topology). Let X = {(xi)i∈I} be a profi-
nite set together with the natural projections πi. Then the profinite topology τ on X
has the following properties:

i. (X, τ) is Hausdorff.

ii. (X, τ) is compact.

iii. (X, τ) is a uniform space.

Proof. X is Hausdorff, since the product Hausdorff spaces is Hausdorff.
By the theorem of Tychonov, we know that the product is a compact space,

therefore X is compact if and only if X is closed in
∏
i∈I
Xi. For i, j ∈ I, such that

i ≤ j, denote φi,j the transition map from Xj to Xi. To prove that X is closed, we
define for j ∈ I

Aj = {(xk)k∈I |∀i ≤ j, φi,j(xj) = xi}

We have that
Aj =

⋃
u∈Xj

⋂
i≤j

π−1
i ({φi,j(u)})

By continuity of the projections π−1
i ({φi,j(u)}) is closed for all u ∈ Xj and all

i ≤ j. The set Aj is then closed as a finite union of closed subsets. FinallyX =
⋂
j∈I

Aj

is an intersection of closed subsets, therefore X is closed, proving that X is compact.

Finally, let us prove that X is a uniform space. We define a collection of relations

(Ri)i∈I = ({(x, y) ∈ X ×X|πi(x) = πi(y)})i∈I
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We then take R to be the set of all the Ri. We define the set of entourages as

E= {U ⊆ X ×X|∃R ∈ R|R ⊆ U}

The relations in R are equivalence relations, therefore the set E of relations on X
generated by Ri form a uniform structure on X.

We now need to prove that the topology coming from this uniform structure is
the profinite topology on X.

Let x ∈ X and V a neighborhood of x for the profinite topology. Then there
exists a finite set I0 ⊆ I and a collection (Ai)i∈I0 with ∀i ∈ I0, Ai ⊆ Xi, such that
V contains: X ∩

∏
i/∈I0

Xi ×
∏
i∈I0

Ai. Now let i0 be an upper bound of I0. In that case

V contains ∏
i 6=i0

Xi × {πi0(x)} ∩X

Indeed suppose that yi0 = xi0 . If we take i ∈ I0, then

yi = φi0,i(yi0) = φi0,i(xi0) = xi ∈ Ai

Therefore we get that yi ∈ Ai for all i ∈ I0 and hence y ∈ V . Now the set
X∩

∏
i 6=i0

Xi×{xi} is exactly the set of y, such that (x, y) ∈ Ri, so V is a neighborhood

of x for the uniform topology.
Now if we take U a neighborhood of x for the uniform topology, there exists

i ∈ I, such that
π−1
i ({πi(x)}) = {y ∈ X|(x, y) ∈ Ri} ⊆ U

U is therefore a neighborhood of x, by continuity of πi. This concludes the proof
that X is indeed a uniform space.

For a profinite object (X, (φi)i∈I) in a profinite structure P induced by a pre-
profinite category (C, F ), the uniform relations on F (X) will then be given by the
maps φi.

More often than not we do not have a metric structure on profinite spaces, but
as the theorem shows, we will get a uniform structure given by the projections. If
we replace then Cauchy sequences by Cauchy filters, then one can show that since
profinite spaces are compact uniform, they are complete.

Structures like topological rings , groups are then uniform spaces and they can
be completed into a profinite space. The example we saw in 3.1.3 is a case of such
completion. We simply consider the group as a discrete topological group and we
complete it into a profinite space where the original group is dense. We will see the
details of it later. Before examining different profinite categories in detail, we will
show one last generality on the profinite topology.

Proposition 3.1.10. Let (X, (φi)i∈I) be a profinite object. Then F (X) is totally
disconnected. That is, if Y ⊆ F (X) has only trivial clopen subsets, then Y is reduced
to a single element.
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F (X) is therefore a Stone Space: a totally disconnected, Hausdorff compact
space.

Proof. Let Y ⊆ F (X) that has at least two distinct elements x, y ∈ Y . In that case,
there exists i ∈ I, such that F (φi)(x) 6= F (φi)(y). The set U = F (φi)

−1({F (φi)(x)})
is a clopen in X by continuity of F (φi). The set U ∩ Y is then a non trivial clopen
in Y . It is non trivial since it contains x, but doesn’t contain y.

Depending on the categories Stone Spaces might not always be profinite objects
in the same category, but it is true for the categories we will be working with.

We will give a sufficient condition for which Stone Spaces are profinite objects.

Definition 3.1.11 (profinite-compatible objects). Let (C, F ) be a preprofinite cat-
egory and X an object in C. We then say that X is a profinite-compatible object, if
there exists a compact Hausdorff topology on F (X), such that for every open equiv-
alence relation R on F (X), there exists an open equivalence relation R′ ⊆ R, an
object U in the category C and a morphism f from X to U , such that F (X) together
with F (f) is isomorphic to the natural projection of F (X) on F (X)�R′ as a map
of sets. I.e: we have that ∀x, x′ ∈ F (X), if xRx′, then F (f)(x) = F (f)(x′) and if
g is a map from F (X) to a set Y , such that ∀x, x′ ∈ F (X), xRx′ ⇔ g(x) = g(x′),
then there exists a unique map u from F (U) to Y , such that the following diagram
commutes:

F (X)

F (U)

Y
g

F (f) u

Remark. Note that if g is a morphism, i.e there exists Y ′ an object in C, such that
Y = F (Y ′) and g′ a morphism from X to Y ′, such that g = F (g′), then by the
properties of a preprofinite category, we get that u is a morphism i.e there exists u′
a morphism from X to Y ′, such that F (u′) = u.

Proposition 3.1.12. Let (C, F ) be a preprofinite category, P the induced profinite
structure and X an object in C. If X is a profinite-compatible object, then the
following statements are equivalent:

i. X is a profinite object in P, and the profinite topology on F (X) is the same as
the topology making X into a profinite-compatible object.

ii. F (X) together with its profinite-compatible topology is a Stone space: i.e com-
pact, Hausdorff and totally disconnected.

iii. There exists Ω a directed set (for inverse inclusion) of open relations on F (X),
such that ∀R ∈ Ω, ∃XR ∈ Obj(C),∃fR ∈ hom(X,XR), (F (X), F (fR)) is iso-
morphic to the natural projection of F (X) onto F (X)�R and such that

⋂
R∈Ω

R =

{∆}, where ∆ is the diagonal of F (X)× F (X).
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Proof. i.⇒ ii. Assume X to be a profinite limit of ((Xi)i∈I), (φi,j)j≥i). Equip F (X)
with its profinite topology. Then by 3.1.10, we get that F (X) is a Stone-Space.
ii.⇒ iii.
Let Ω′ be the set of open relations. We start by proving that

⋂
R∈Ω′

R = {∆}. We

take x ∈ F (X). We shall prove that for all y ∈ F (X) such that y 6= x there exists
R ∈ Ω′, such that (x, y) /∈ R. To prove it we will use a similar method to the one
used in the Lemma 1.1.11 (page 22) of [42].

First we consider T the family of all clopen neighborhoods of x. We will show that⋂
V ∈T

V is connected. We write A =
⋂
V ∈T

V . Assume that A = F1∪F2 with F1∩F2 = ∅.

By contradiction, assume that F1 6= ∅ and F2 6= ∅. Now let a ∈ F1. For every b ∈ F2,
there exists U(a,b) an open neighborhood of a and V(a,b) an open neighborhood of b,
such that U(a,b) ∩ V(a,b) = ∅, since F (X) is Hausdorff. We have that F2 ⊆

⋃
b∈F2

V(a,b),

therefore by compactness there exists a finite family b(a)1, · · · , bn(a) ∈ F2, such

that F2 ⊆
n(a)⋃
k=1

V(a,b(a)i). Now consider Ua =
n(a)⋂
k=1

U(a,b(a)k) and V (a) =
n(a)⋃
k=1

V(a,b(a)l).

We get that U(a) is an open neighborhood of a, V (a) is an open containing F2 and
Ua∩

⋃
V (a) = ∅. We have that F1 ⊆

⋃
a∈F1

Ua , therefore by compactness, there exists

a finite family : a1, · · · , an ∈ F1, such that F1 ⊆
n⋃
k=1

U(a). Now put U =
n⋂
k=1

Ua and

V =
n⋂
k=1

Va. We get that F1 ⊆ U , F2 ⊆ V , U ∩ V = ∅ and U, V are open in F (X).

We then get that:
F (X) \ (U ∪ V ) ∩ A− ∅

F (X) \ (U ∪ V ) is closed, therefore by compactness, there exists a finite subfamily
T ′ ⊆ T , such that:

F (X) \ (U ∪ V ) ∩
⋂
W∈T ′

W = ∅

We have that B =
⋂

W∈T ′
W that is a clopen neighborhood of x as a finite intersection

of clopen neighborhoods of x. Then we get that:

x ∈ (B ∩ U) ∪ (B ∩ V ) = B

Let us assume without loss of generality that x ∈ B ∩ U . The set B ∩ U is open,
as intersection of two opens. Its complement in B: B ∩ V is also open in B and
therefore in F (X). The set B ∩U is then a clopen neighborhood of x and therefore
A ⊆ B ∩ U and so B ∩ U = A. We then get that A ⊆ U , so F2 ∩ A = ∅, proving
that F2 has to be empty which is a contradiction.

Now that we proved that A is connected, we use the fact that F (X) is totally
disconnected to obtain that A = {x} as announced. Now let y ∈ F (X) distinct
from x. Since

⋂
V ∈T

V = {x}, we get that {y} ∩
⋂
V ∈T

V = ∅. The singleton {y} being

closed in F (X) we get by compactness that there exists V1, · · · , Vn ∈ T , such that
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y /∈ V1 ∩ · · · ∩ Vn. If then we put V = V1 ∩ · · · ∩ Vn, we get that V is a clopen
neighborhood of x and y /∈ V . Now consider R an equivalence relation, whose
equivalence classes are V and F (X) \ V . It is then an open relation, since both V
and F (X) \ V are open. We therefore get that R ∈ Ω′ and (x, y) /∈ R.

From that we conclude that
⋂
R∈Ω′

R = ∆.

Finally we will use that X is a profinite-compatible object to reach our conclu-
sion. For every R ∈ Ω′, we take P(R) ⊆ R an equivalence relation, such that there
exists an objectXR in Cand a morphism fR fromX toXR, such that (F (X), F (fR))

is isomorphic to the natural projection of X onto X�P(R). We then define Ω as
the set {P(R)|R ∈ Ω′}. Finally to conclude that

⋂
R∈Ω

R = ∆, we take x ∈ F (X)

and y 6= x. We then know that there exists R ∈ Ω′, such that (x, y) /∈ R. In that
case we have that (x, y) /∈ P(R) as well, proving indeed that

⋂
R∈Ω

R = ∆. Finally we

need to prove that Ω is a directed set for the relation of inverse inclusion. That is
however easy to see, since P(P(R) ∩P(R′)) ⊆ P(R) ∩P(R′) for any two relations
R,R′ ∈ Ω′.

iii.⇒ i.
Consider the set Ω of the open equivalence relations compatible with F , such that⋂
R∈Ω

R = ∆ and such that Ω is a directed set for the inverse inclusion.

For R ∈ Ω, we take XR an object in C and fR a morphism from X to XR, such
that (F (X), F (fR)) is isomorphic to the natural projection πR onto F (X)�R. We
denote uR the isomorphism between the two. Now consider for R′ ⊆ R, πR,R′ , the
map from F (X)�R′ to

F (X)�R that to a class xR′ , associates the class xR. Now
consider the diagram:

F (XR′)

F (X)

F (XR)
u−1
R πR,R′uR′

F (fR′) F (fR)

The map F (fR′) is surjective and therefore there by the third axiom of preprofi-
nite categories, there exists a fR,R′ a morphism fromXR′ toXR, such that F (fR,R′) =
u−1
R πR′,RuR′ . Now let us show that if R′′ ⊆ R′ ⊆ R, then fR,R′′ = fR,R′ ◦ fR′,R′′ . We

simply just have:

F (fR,R′′) = u−1
R πR,R′′uR′′ = u−1

R πR,R′u
−1
R′ uR′πR′,R′′uR′ =

F (fR,R′) ◦ F (fR′,R′′) = F (fR,R′ ◦ fR′,R′′)

By injectivity of F , we then get that fR,R′′ = fR,R′ ◦ fR′,R′′ . Now let us show that
(X, (fR)R∈Ω) is the projective limit of the projective system ((XR)R∈Ω, (fR,R′)R′⊆R∈Ω).

First let us show, that (F (X), F (fR)R∈Ω) is a projective limit of
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(F (X), F (fR,R′)R′⊆R) in the category of sets. First denote P the projective limit of
(F (X).F (fR,R′)R′⊆R) in the category of sets and take p the map from F (X) to P ,
that to x ∈ F (X), associates (F (fR)(x))R∈Ω. Let us show, that p′ is a bijection.
To prove that it is injective, we take x, y ∈ F (X), such that fR(x) = fR(y) for all
R ∈ Ω. That means that (x, y) ∈ R for all R ∈ Ω, hence x = y, since

⋂
R∈Ω

R = ∆

by assumption on Ω. Now let us prove that p′ is surjective. Let (yR)R∈Ω be a
collection in P . For every R ∈ Ω, F (fR) is isomorphic to the natural projection
onto the quotient F (X)�R, hence the map F (fR) is surjective and therefore we can
rewrite the collection (yR)R∈Ω as (F (f)(xR))R∈Ω. Now by contradiction assume that
∀x ∈ F (X), ∃R ∈ Ω, F (fR)(x) 6= F (fR)(xR). That means that the set

⋂
R∈Ω

xRR

is empty. Note that every R ∈ Ω is an open relation in a compact set, hence it is
closed as well as we can write F (X) as a finite union of open equivalence classes.
We then get that

⋂
R∈Ω

xRR is an empty intersection of closed subsets, hence there

exists R1, · · · , Rn ∈ Ω, such that xR1R1 ∩ · · · ∩ xRnRn is empty. Now take R0 ∈ Ω
included in R1 ∩ · · · ∩ Rn(it exists since by assumption Ω is a directed set). We
then get xR0 ∈ xR1R1 ∩ · · · ∩ xRnRn, which is a contradiction. As such there exists
x ∈ F (X), such that ∀R ∈ Ω, F (fr)(x) = yR, proving that p is a surjective map.

Using the fact that (F (X), F (fR) is a projective limit in the category of sets,
we can now conclude that (X, fR) is a projective limit in our preprofinite category.
Let (X ′, gR) be the limit of the projective system ((XR)R∈Ω, (fR,R′)R′⊆R (it exists,
since the category C is preprofinite and we have shown earlier, that F (XR) has to
be finite). Then we know that there exists a unique morphism h from X to X ′, such
that ∀R ∈ Ω, fR = gR ◦ h. We also know that F (X ′) together with the (F (gR))R∈Ω

is a projective limit in the category of sets, therefore there exists p′ an isomorphism
between F (X ′) and projective limit P of the F (XR). We have shown that F (X) to-
gether with the F (fR) is a projective limit of the system (F (XR)R∈Ω, F (fR,R′)R′⊆R∈Ω)
and we called p the isomorphism from F (X) to P . Now write h′ = p−1p′, which a
map from F (X ′) to F (X).

Notice that we have:

F (X ′)

F (X)

P

F (h)

p′

p

Which can be checked by composing with the natural projections of P onto XR.
In that case: h′ ◦ F (h) = p−1 ◦ p′ ◦ F (h) = p−1 ◦ p = idF (X). By similar arguments,
one can also check that F (h) ◦ h′ = IdF (X′). The map F (h) is therefore bijective.
Now we have that:
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F (X ′)

F (X)

F (X)

F (h) F (idX)

h′

commutes. Therefore there exists h′′ a map from X ′ to X, such that h′ = F (h′′).
Using the injectivity of F , we conclude that h′′ is the inverse of h and therefore X
and X ′ are isomorphic and X is therefore a projective limit of finite objects in C

hence an object in the the induced profinite structure P.
Finally we need to show that the profinite topology on F (X) is the one we started

with. To prove that, consider U an open neighborhood of x ∈ F (X). Let us show
that U is a neighborhood of x for the profinite topology. Since

⋂
R∈Ω

xR = {x}, we

have that (F (X) \ U) ∩
⋂
R∈Ω

xR = ∅. By compactness of F (X) there exists then a

R ∈ Ω, such that xR∩ F (X) \U = ∅. In that case xR ⊆ U . The set xR is equal to
{y ∈ F (X)|F (fR)(x) = F (fR)(y)}, hence xR is a neighborhood of x in the profinite
topology. The set U then is a neighborhood of x as well. On the other hand every
neighborhood of x for the profinite topology contains some xR, which itself is open
in our starting topology, since R is by assumption an open relation. This concludes
the proof that X is a profinite object in P and that its profinite topology is the one
that makes X profinite-compatible.

Proposition 3.1.13. Let (C, F ) be a preprofinite category. Let P be the profinite
structure associated to C. Let ((Xi)i∈I(φi,j)j≥i) be a projective system in P, such
that for every i ∈ I, Xi seen as a limit of finite sets has all of its natural projections
surjective. Then ((Xi)i∈I , φi,j) has a limit in P.

Proof. Every Xi is by definition of profinite structure a limit of a projective system
((Xi,j)j∈Ji , (ψ

i
j,k)j≤k), with Ji some directed set. We denote then ψij the natural

projection of Xi onto Xi,j. By assumption, we have F (ψij) surjective for all i and j.
Now let us define Ω =

∐
i∈I
I × Ji, together with the following relation: (i, j) ≤ (i′, j′)

if and only if i < i′ and there exists a morphism f , such that:

Xi,j

Xi Xi′

Xi′,j′

ψij

φi,i′

ψi
′

j′

f

commutes, or i = i′ and j ≤ j′

We can observe that if such f exists, it is unique. Indeed if g is another such
a morphism, let us take a ∈ F (Xi′,j′). Then there exists x ∈ F (Xi′), such that
a = F (ψi

′

j′)(x). In that case:

F (f)(a) = F (f ◦ ψi′j′)(x) = F (ψii,j)(F (φi,i′)(x)) = F (g)(F (ψi
′

j′)(x)) = F (g)(a)
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Since it is true for every a ∈ F (Xi,j), we get that F (f) = F (g) and by injectivity of
F , f = g.

Since such an f is unique, we will denote it f(i,j),(i′,j′). Now let us prove that
Ω together with the relation ≤ is a directed set. We start by proving that ≤ is an
order relation. Observe that it is reflexive.

Let us show that it is anti symmetric. Suppose that (i, j) ≤ (i′, j′) and (i, j) ≥
(i′, j′). We then have that i ≤ i′ and i′ ≤ i and so i = i′. Since ≤ is an order on I.
We then are in the case where j ≤ j′ and j′ ≤ j, so we have j = j′

For transitivity, take (i, j) ≤ (i′, j′) and (i′, j′) ≤ (i′′, j′′). We will now differen-
tiate several cases:

• Case 1: i < i′ < i′′

In that case we get the following commutative diagram:

Xi,j

Xi Xi′

Xi′,j′ Xi′′,j′′

Xi′′

ψij

φi,i′

ψi
′

j′

f(i,j),(i′,j′) f(i′,j′),(i′′,j′′)

ψi
′′

j′′

φi′,i′′

φi,i′′

Which means that if we complete this commutative graph with f = f(i,j),(i′,j′)◦
f(i′,j′),(i′′,j′′), then f is the morphism required and so we have indeed (i, j) ≤
(i′′, j′′) We also proved at the same time the formula:

f(i,j),(i′′,j′′) = f(i,j),(i′,j′) ◦ f(i′,j′),(i′′,j′′)

• Case 2: i = i′ < i′′

We replace the previous diagram with:
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Xi,j

Xi Xi

Xi,j′ Xi′′,j′′

Xi′′

ψij

idXi

ψij′

ψij,j′ f(i,j′),(i′′,j′′)

ψi
′′

j′′

φi,i′′

φi,i′′

Which proves both that (i, j) ≤ (i′′, j′′) and that f(i,j),(i′′,j′′) = ψij,j′◦f(i′,j′),(i′′,j′′).

• Case 3: i < i′ = i′′

Take this time the diagram:

Xi,j

Xi Xi′

Xi′,j′ Xi′,j′′

Xi′

ψij

φi,i′

ψi
′

j′

f(i,j),(i′,j′) ψi
′

j′,j′′

ψi
′

j′′

idXi′

φi,i′

It proves again that (i, j) ≤ (i′′, j′′) and also that f(i,j),(i′′,j′′) = f(i,j),(i′,j′)◦ψi
′

j′,j′′ .

This concludes the proof that ≤ is an order relation. In light of what we have
seen, we also denote for j ≤ j′ ∈ Ji, f(i,j),(i,j′) = ψij,j′ and we get f(i,j),(i′′,j′′) =
f(i,j),(i′,j′) ◦ f(i′,j′),(i′′,j′′) for (i, j) ≤ (i′, j′) ≤ (i′′, j′′).

Now we shall prove that Ω together with ≤ is a directed set.Let (i, j), (i′, j′) ∈ Ω.
Since I is a directed set, we choose a i′′ that is an upper bound of the set {i, i′}.
The map φi,i′′ is a morphism of profinite spaces, therefore there exists j0 ∈ J(i′′),
such that:

∀k ≥ j0,∀x, y ∈ F (Xi′′), F (ψi
′′

k )(x) = F (ψi
′′

k )(y)⇒ F (φi,i′′)(x) = F (φi,i′′)(y) (3.1)

For the same reason, there exists j1 ∈ J(i′′), such that:

∀k ≥ j1,∀x, y ∈ F (Xi′′), F (ψi
′′

k )(x) = F (ψi
′′

k )(y)⇒ F (φi′,i′′)(x) = F (φi′,i′′)(y) (3.2)
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Since J(i′′) is directed,we take j′′ ∈ J(i), such that j′′ ≥ j0 and j′′ ≥ j1. In case
that i = i′′, we also require j′′ ≥ j. In case that i′ = i′′, we require that j′′ ≥ j′

as well. Since (i, j) and (i′, j′′) play symmetric roles, it is enough to show that
(i′′, j′′) ≥ (i, j) to conclude that Ω is directed. If i = i′′ the result is trivial since by
construction j′′ ≥ j. Otherwise we define g a function from F (Xi′′,j′′) to F (Xi,j) by
the formula:

g(F (ψi
′′

j′′)(x)) = F (ψij)(F (φi,i′′)(x))

Due to the continuity equation 3.1 and the surjectivity of Ψi′′

j′′ , the function f is well
defined i.e independent of choice of x.

Furthermore ψi′′j′′ is surjective and we have the following commutative diagram:

F (Xi′′,j′′)

F (Xi′′)

F (Xi,j)

F (ψi
′′

j′′)

g

F (ψij ◦ φi,i′′)

therefore by the lifting property of the preprofinite category C, we can conclude
that there exists f ∈ Hom(Xi′′,j′′ , Xi,j), such that F (f) = g. Using the injectivity

of F , we get that the diagram:

Xi,j

Xi Xi′

Xi′′,j′′

ψij

φi,i′

ψi
′

j′

f

commutes and therefore (i, j) ≤ (i′′, j′′) This leads us to define the follow-
ing projective system P = ((Xi,j)(i,j)∈Ω, (f(i,j),(i′,j′))(i,j)≤(i′,j′)). Let us prove that
the limit of P , which we shall call X, is a limit of our initial projective system
((Xi)i∈I , (φi,j)i≤j∈I).

Let us simply call π(i,j) the natural projection of X onto Xi,j. For a fixed i, we
have for all j ≤ j′ ∈ J(i) the diagram:

X Xi,j

Xi,j′

πi,j

πi,j′
f(i,j),(i,j′) = ψij,j′

that commutes and therefore by the universal property of projective limit Xi,
there exists a unique πi from X to Xi, such that π(i,j) = ψij ◦ πi.

Now let us prove that φi,i′ ◦ πi = πi′ for all i ≤ i′. By contradiction, assume
that there exists x ∈ F (X), such that F (φi,i′)(F (πi′)(x)) 6= F (πi)(x). In that
case, there exists j ∈ J(i), such that F (ψij)(F (φi,i′))(F (πi′)(x)) 6= F (ψij)(F (πi)(x)).
By continuity of F (φi,i′), there exists then a j′ ∈ J(i′), such that if F (ψi

′

j′(y)) =

F (ψi
′

j′(y
′)), then F (ψij(F (φi,i′)(y)) = F (ψij(F (φi,i′))(y

′)). Using this implication, we
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can prove that (i, j) ≤ (i′, j′) We then have that

F (ψi
′

j′ ◦ φi,i′)(F (πi)(x)) = F (f(i,j),(i′,j′) ◦ ψij ◦ πi)(x) =

F (f(i,j),(i′,j′) ◦ πi,j)(x) = F (πi′,j′)(x) = F (ψi
′

j′ ◦ πi′)(x)

which is the contradiction.
We therefore have the following diagram that commutes:

X Xi

Xi′

πi

πi′
φi,i′

We have now the first part of the definition of a projective limit. Now we need
to prove that X together with the maps (πi)i∈I has the universal property. Let Y be
an object in P, together with morphisms ui from Y to Xi, such that for all i > i′,
ui′ ◦ φi,i′ = ui as illustrated in the commutative diagram below:

Y Xi

Xi′

ui

ui′
φi,i′

Let us prove that there exists a unique morphism h from Y to X, such that
∀i ∈ I, ui = πi ◦ h. Consider for all i ∈ I and j ∈ J(i), maps vi,j = ψij ◦ ui. Let
(i, j) ≤ (i′, j′) ∈ Ω. Let us show that vi,j = f(i,j),(i′,j′) ◦ vi′,j′ . We have that

f(i,j),(i′,j′) ◦ vi′,j′ = f(i,j),(i′,j′) ◦ ψij ◦ ui = ψi
′

j′ ◦ φi,i′ ◦ ui = ψi
′

j′ ◦ ui′ = vi′,j′

Then by the universal property of X, seen as a projective limit of the (Xi,j), we get
that there exists a morphism h from Y to X, such that ∀(i, j) ∈ Ω, vi,j = πi,j ◦ h.
The map h is currently seen as morphism between objects in C, we need to also
show that it is continuous for the profinite topologies for it to be a morphism of
profinite objects. This is equivalent to showing that for all (i, j) ∈ Ω, F (π(i,j) ◦ h)
is continuous, but that is the case, since F (π(i,j) ◦ h) = F (ψij) ◦ F (ui), which is a
composition of two continuous maps.

Now that we know that h is a morphism between profinite objects, we need
to show that ∀i ∈ I, πi ◦ h = ui. By contradiction, assume that there exists,
x ∈ F (Y ), such that F (πi ◦ h)(x) 6= F (ui)(x). Then there exists j ∈ J(i), such that
F (Ψi

j)(F (πi◦h)(x)) 6= F (Ψi
j)(F (ui)(x)). In that case, we get that F (πi,j)◦F (h)(x) 6=

F (vi,j)(x), which is a contradiction.
Finally we need to prove the uniqueness of h. Suppose that there is another

morphism of profinite objects h′ from Y to X, such that for every i ∈ I, πi ◦h′ = ui.
Then for every (i, j) ∈ Ω, ψij ◦ πi ◦ h′ = vi,j. By uniqueness of h given by the fact
that X is a projective limit over Ω, we get that h = h′. This concludes the proof
that X and object in P is indeed the projective limit of the (Xi)i∈I .
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Now if we take X a profinite space, one can define a topological group Aut(X)
that is going to be of interest in the next chapter.

3.1.1 Automorphisms of a profinite space

Let X be a projective limit of ((Xi)i∈I , (φj,i)j≥i) and let (πi)i∈I be the natural pro-
jections of X to Xi. Now let Aut(X) be the group of continuous bijective morphisms
from X to X. It is a topological group for the following topology: For g ∈ Aut(X),
we say that V is a neighborhood of g, if and only if there exists i ∈ I, such that
∀g′ ∈ Aut(X), πi ◦ g = πi ◦ g′ ⇒ g′ ∈ V . One can prove that this topology is the
compact open topology on Aut(X) and is therefore in particular independent of the
choice of limits projections and transition maps.

3.2 Profinite groups
As per definition of a profinite structure, given in 3.1.4, to show that there is a
profinite structure on groups, we take Gr the category of groups, together with the
forgetful functor F .

Let us show that (Gr, F ) is a preprofinite category.

• The forgetful functor is injective in morphisms.

• If ((Gi)i∈I , (φi,j)j≥i) is a projective system, then the set:

{(gi)i∈I |∀i ∈ I, gi ∈ G and ∀j ≥ i ∈ I, φi,j(gj) = gi}

together with a multiplication component by component is a limit in the cat-
egory of groups. It is also a limit in the category of sets as well, hence the
second property of preprofinite categories is true as well.

• Let u, v be morphisms of groups and f a map, such that u is surjective and
the diagram:

A

B

C
f

u v

commutes. Let us show that f then is a morphism of groups. Let x, y ∈ A.
Then by surjectivity of u, there exist x′, y′, such that x = u(x′) and y = u(y′).
Then

f(xy) = f(u(x′y′)) = v(x′y′) = v(x′)v(y′) = f(u(x′))f(u(y′)) = f(x)f(y)



64

We have proved now that the category of groups is a preprofinite category and
therefore we can associate to it a profinite structure of groups. As mentioned earlier
we can ”forget” the forgetful functor. We will just consider profinite groups as a
structure on its own and we won’t mention the forgetful functor,unless ambiguity
between a profinite group seen as a set or as a group could arise.

Proposition 3.2.1 (continuity of multiplication and inversion). Let G be a profinite
group together with its profinite topology. Then the multiplication and inversion are
continuous operations. The group G is therefore a topological group.

Proof. Let us denote (πi)i∈I the projections characterizing G. To show that the
multiplication as a function f from G×G to G is continuous, we just need to prove
that πi ◦ f is continuous for all i ∈ I. Let g, g′ ∈ G. Then V = g ker(πi)× g′ ker(πi)
is an open neighborhood of (g, g′), such that π ◦ f(V ) = {πi(f((g, g′))}, proving the
continuity of f .

Now consider f as the function from G to G that maps g to g−1. Then

f−1(g ker(πi)) = g−1 ker(πi)

proving the continuity of inversion as well.

Proposition 3.2.2. Let G be a compact Hausdorff group. Then:

i. Every open subgroup is of finite index and closed.

ii. Every open subgroup contains an open normal subgroup.

iii. Every clopen neighborhood of 1 contains an open normal subgroup.

Proof. i. This is a very straightforward result. If H is an open subgroup, then G is
a union of x ∈ G�H, which are all open since translates of H and translation is
a homeomorphism. By compactness of G, we can extract a finite subcover of G.
However since all the classes are disjoint that subcover must be the initial cover
itself, so our union

⋃
x∈G�H

x had to be finite to begin with. The complement of

H is the union
⋃

x∈G�H\{1}
x, so it is open. As such, H is closed.

ii. Let H be an open subgroup of G. Consider N =
⋂
g∈G

gHg−1. We start by

proving that this intersection is finite. Let g1, · · · , gn be representatives of the
cosets of H on the left (by i. there are finitely many of them). Let us show

that N =
n⋂
i=1

giHg
−1
i . Let x ∈

n⋂
i=1

giHg
−1
i . To prove that x ∈ N , we take

g ∈ G. Let us then show that gxg−1 ∈ H. We have that there exists h′ ∈ H
and i such that ggi−1 ∈ H. Furthermore by definition, gixg−1

i ∈ H, therefore
gg−1

i gixg
−1
i gig

−1 ∈ H. We conclude that gxg−1 ∈ H. The subgroup N then is
a finite intersection of open subsets, hence is itself open. It is also normal by
construction.
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iii. For this part, we shall use the proof in Ribes-Zaleskii Theorem 1.1.12 [42].
Let U be a clopen neighborhood of 1. For a set X, we shall denote Xn =
{x1 · · · xn|x1, · · · , xn ∈ X}.
Now write F = (G \ U) ∩ U2. By compactness of U and continuity of the
product, U2 is compact and therefore F is compact. For every x ∈ U , x ∈ G\F
and so we can by continuity of multiplication choose an open neighborhood of x:
Vx and an open neighborhood of 1 Sx, such that VxSx ⊂ G \F and Vx, Sx ⊆ U .
By compactness of U , we can extract a finite cover Vx1 , · · ·Vxn of U . Now write

S =
n⋂
i=1

Si and W = S ∩ S−1. Since Si are all open neighborhoods of 1, their

intersection S is an open neighborhood of 1. By continuity, S−1 is also an open
neighborhood of 1 and therefore W is a symmetric open neighborhood of 1.

Let us observe that UW ⊆ U2. Indeed: UW ∩F ⊆ V S ∩F . Now suppose that
u ∈ U and s ∈ S. We have that there exists i, such that u ∈ Vxi . Since s ∈ Sxi ,
we get that us ∈ VxiSxi ⊆ G \ F . As such, UW ∩ F = ∅. Since we also have
UW ⊆ V 2, we conclude from that that UW ⊂ U .

By induction we then get that UW n ⊆ U for all n ∈ N. Since W is symmetric,
we have that the group generated byW is the set

⋃
n∈N

W n ⊆ V . Given that (W )

contains an open subset:W , one can prove that (W ) is an open subgroup of G.
Then by ii., it contains a normal open subgroup N , which concludes the proof.

Theorem 3.2.3 (characterization of profinite groups). Let G be a compact Haus-
dorff topological group. The following statements are equivalent:

i. G is profinite.

ii. G is totally disconnected.

iii. There exists a set U of open normal subgroups of G that forms a neighborhood
basis of 1.

Proof. This theorem is a direct consequence of proposition 3.1.12, if we prove that
all compact Hausdorff groups are profinite-compatible. Now if we assume G to be a
compact Hausdorff group and take R an open relation on G, by iii. of the previous
proposition, for each x ∈ G, there exists Nx an open subgroup of G, such that
xNx ⊆ xR. We have that then the following open cover of G

G =
⋃
x∈G

xNx

By compactness of G, we can then extract a finite subcover:

G =
n⋃
k=1

xkNk
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N1, · · · , Nn are all open normal, hence N =
n⋂
k=1

Nk is open normal. Let RN be the

equivalence relation on G with gRNg
′ ⇔ gg′−1 ∈ N . Let us show that RN ⊆ R.

Suppose that gRNg
′. Then there is a k ∈ {1, · · · , n}, such that g′ ∈ xkNk. In that

case since gRNg
′, we get that g ∈ xkNk. We get that xkNk ⊆ xkR and therefore

gRxk and g′Rxk, so gRg′ as expected.
Now if we take fN the natural product of G onto G�N , we obtain that fN is a

morphism in the category of groups and therefore we conclude that G is profinite-
compatible. The rest of the theorem follows from that as we explained.

3.2.1 Galois theory of infinite extensions

Classical Galois theory studies the Galois group of finite Galois extensions. Let
us denote N/K a finite Galois extension of a field K In that case, we get the
fundamental theorem of Galois theory establishing an inclusion reversing bijection
between subextensions of N and subgroup of the group of automorphisms better
known as the Galois group.

The bijection goes as follows:
{Subextensions of N} ↔ {Subgroups of Gal(N/K)}
K ′ 7→ AutK′(N,K

′)

{x ∈ N |∀g ∈ G, g(x) = x} ←[ G

When we however consider N/K infinite, then the same map from the subgroups of
Gal(N/K) is no longer injective. However given that it still remains surjective, we
could restrict it to only some subgroups of Gal(N/K): the problem is we need some
canonical way of choosing which subgroups we will restrict ourselves to. Fortunately
the profinite topology onGal(N/K) provides us with one natural choice of subgroups
upon which the map becomes injective: that natural choice is: we only consider
closed subgroups for the profinite topology. In order to do this, we first need to
prove that Gal(N/K) is a profinite group.

Theorem 3.2.4 (Galois groups are profinite). Let K be a field and N a Galois
extension of K. Let

N= {F ⊆ N |F is a finite extension of K}

denote the set of finite subextensions of N , together with the order relation. Let G
be the group Gal(N/K) = AutK(N). Then

τ = {U ⊆ G|∀g ∈ U,∃F ∈N,∀g′ ∈ G,∀x ∈ F, g(x) = g′(x)⇒ g′ ∈ U}

as a set of opens makes G into a topological group with a profinite topology.

Proof. First step is to prove that τ defines a topology. Intuitively we can think of
elements g, g′ as close if they are equal on many points, which is here the idea behind
this topology.
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We start by taking (Ui)i∈I a family of elements of τ and we shall prove that⋃
i∈I
Ui ∈ τ . That is relatively clear, since if g is in some some Ui, we just take F a

finite subextension of N , such that

∀g′ ∈ G,∀x ∈ F, g(x) = g′(x)⇒ g′ ∈ Ui ⊆
⋃
i∈I

Ui

Now if we take U, V ∈ τ , we need to prove that U ∩ V ∈ τ . Let g ∈ U ∩ V . Let
F, F ′ be finite subextensions of N , such that if g′ is equal to g on F , then g′ is in
U and if g′ is equal to g in F ′, then g′ is in V. If we then consider F ′′ the extension
generated by F ′ and F , it will still be a finite extension of K of degree bounded by
the product of the two degrees. Now suppose that g′ is equal to g on F ′′. Then g′
is equal to g on both F and F ′ and therefore g′ is both in U and V as expected. G
and ∅ are contained in τ , which concludes the proof that τ defines a topology on G.

Now let us show that this topology makes G into a topological group. Consider
the map u from G×G to G, with u(g, g′) = gg′. Then let U be a neighborhood of
gg′. Then there exists F a finite subextension of N , such that if ∀x ∈ F, g′′(x) ∈ F ,
then g′′(x) ∈ U . Now let F ′ be the normal closure of F , V = {g′′ ∈ G|∀x ∈
F ′, g′′(x) = g(x)} and V ′ = {g′′ ∈ G|∀x ∈ F ′, g′′(x) = g′(x)}, then we get that
V × V ′ is a neighborhood of (g, g′). If we then take (h, h′) ∈ V × V ′ and x ∈ F ,
then h(x) = g(x). Since g(x) ∈ F ′ (F ′ is normal), then h′(h(x)) = g′(g(x)). This
being true for all x ∈ F , we get that hh′ ∈ U . Using the normal closure we prove
similarly that the inverse function is continuous as well.

Now for a normal finite subextension F of N , define fF (g) = g|F ∈ Gal(F/K),
which is a well defined morphism of groups since g(F ) = F , due to F being normal.
For F ⊆ F ′ two normal subextensions of N , define the transition map fF,F ′ as the
morphism from Gal(F ′, K) to Gal(F,K) that to g associates g|F . For every F ⊆ F ′,
we get that the diagram:

Gal(N/K) Gal(F/K)

Gal(F ′/K)

fF ′

fF fF ′,F

Commutes and therefore if we denote (G′, (πF )F∈N) the limit of the projective
system

((Gal(F/K))F∈N, (fF,F ′)F⊆F ′∈N)

there exists a unique morphism from G to G′, such that for every F finite normal
subextension of K, πF ◦f = fF . Let us show that f is an isomorphism of topological
groups, which will conclude the proof that G is profinite. First f is injective: indeed
if for every normal finite subextension F of N , g|F = idF , then if we take x ∈ N
and consider F to be the normal closure of K(x), we get that g(x) = x. To prove
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that f is surjective, we take (gF )F∈N ∈ G′. We then define

g =

{
N −→ N

x 7→ gF (x) if x ∈ F

g is well defined, due to the fact that g|F is compatible with restrictions. It fixes K,
since all the gF fix K and it is an automorphism since all the gF are. Now we need
to prove that f is continuous and open.

To prove that f is continuous, we take g ∈ G and f(g) ker(πF ) an open neigh-
borhood of f(g). Then simply take U = {g′ ∈ G|∀x ∈ F, g(x) = g′(x)}. The set U
is a neighborhood of g and f(U) ⊆ f(g) ker(πF ).

Now let us finally show that f is open. Consider U a neighborhood of g. Then
there exists F a finite subextension of N , such that of g′ is equal to g on F , then
g is in U . Let F ′ be the normal closure of F : let us show that f(U) contains
f(g) ker(πF ′) and thus is a neighborhood of f(g). If we take h ∈ f(g) ker(πF ′), then
by surjectivity of f , there exists g′ ∈ G, such that f(g′) = h. Then we get that
g′|F ′ = g|F and therefore we get that g′ ∈ U , thus h ∈ f(U). Since as a topological
group, G is isomorphic to a profinite group, G itself is profinite which concludes the
proof of our theorem.

Now that we have shown that Galois groups are profinite, we can now state the
infinite version of the fundamental theorem of Galois theory.

Theorem 3.2.5 (Fundamental theorem of infinite Galois theory). Let N/K be a
Galois extension. Let Ω be the set of subextensions of N and Ω′ the set of closed
subgroups of G = Gal(N/K). Then the function:

Φ =

{
Ω −→ Ω′

F 7→ AutF (N)

is an inclusion reversing bijection, with:

Ψ =

{
Ω′ −→ Ω

H 7→ NH = {x ∈ N |∀h ∈ H, h(x) = x}

as the inverse.
Furthermore Φ sends normal subextensions onto normal subgroups of G and if

F/K is a normal subextension of N , then G�Φ(F ) is isomorphic to Gal(F/K).

Proof. First we show that Φ and Ψ are inverses. Let us start with H a closed
subgroup of G. First we observe that H ⊆ Φ(Ψ(H)). Indeed: if h ∈ H and x ∈ NH ,
then by definition, h(x) = x and therefore h ∈ AutNH (N). Now we need to show
that H is dense in Φ(Ψ(H)). Let g ∈ Φ(Ψ(H)) and let U be a neighborhood of
g. Then by the definition of the topology on G, there exists F a finite normal
subextension of N , such that every g′, if g′|F = g|F , then g′ ∈ U .
Consider

H ′ = {g′ ∈ Gal(F/K)|∃h ∈ Hg′ = h|F}
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and
H ′′ = {g′ ∈ Gal(F/K)|∃h ∈ Φ(Ψ(H)), h|F = g′}

Now let us denote FH′ the fixed field of H ′ and FH′′ the fixed field of H ′′. We
observe that FH′ = F ∩ NH : indeed: x ∈ FH′ ⇔ (x ∈ F and ∀h ∈ H, h|F (x) = x).
Furthermore, if x ∈ FH′ = F ∩NF ′ , then ∀g′ ∈ Φ(Ψ(H)), g′(x) = x, since Φ(Ψ(H))
fixes by definition NH . We have that FH′ ⊆ FH′′ and using the fundamental theorem
of finite Galois theory, we get that H ′′ ⊆ H ′. As such, we get that g|F ∈ H ′′ ⊆ H ′

and therefore there exists h ∈ H, such that h|F = g|F and therefore h ∈ U , proving
that H is dense in Φ(Ψ(H)). Since H is by assumption closed, we can conclude that
H = Φ(Ψ(H)).

Now let us prove that if F is a subextension of N , Ψ(Φ(F )) = F . First of all
trivially, F ⊆ Ψ(Φ(F )), since by definition, ∀g ∈ Φ(F ) = Gal(N/F ), g(x) = x and
therefore x ∈ NΦ(F ) = Ψ(Φ(F )). Now to prove the other inclusion, let x ∈ N be
fixed by all the elements of Φ(F ) and N ′ a finite normal extension of F containing
x and contained in N . The restriction of Φ(F ) = Gal(N/F ) onto Gal(N ′/F ) is
surjective, since every automorphism of N ′ fixing F can be extended. Therefore x
is fixed by every element of Gal(N ′/F ), which by the fundamental theorem of finite
Galois theory implies that x ∈ F .

One small detail left to prove is that Φ(F ) = Gal(N/F ) is a closed subgroup ofG.
To prove that, we take g that is not in Gal(N/F ). Since it does not fix F , there exists
x ∈ F , such that g(x) 6= x. Now consider U = {g′ ∈ G|∀y ∈ K(x), g(y) = g′(y)}. It
is an open neighborhood of g and its intersection with Gal(N/F ) is empty, because
none of the elements of U can fix x ∈ F . Now we indeed have that Φ is a bijection
from subextensions of N into the set of closed subgroups of G.

The next step is to prove that Φ is inclusion reversing. That is however trivial
since if F ⊆ F ′, then any automorphism fixing F ′ will fix F . In the same way, Ψ is
inclusion reversing as well.

Finally we need to show that the Galois correspondence maps normal subexten-
sions onto normal closed subgroups and vice versa. Suppose that F is a normal
subextension of N . Let g ∈ G, h ∈ Φ(F ) = Gal(N/F ) and x ∈ F . Since F is
normal g−1(x) ∈ F . In that case h(g−1(x)) = g−1(x) and therefore g(h(g−1)(x)) =
g(g−1(x)) = x, proving that Φ(F ) is normal. Now let H be a normal subgroup of G
and x ∈ Ψ(H) = NH . Let x′ ∈ N be another root of the minimal polynomial of x.
In that case, there exists an automorphism g ∈ G, such that x′ = g(x). Now let us
show that x′ ∈ NH . For that, we take h ∈ H. We have h(x′) = h(g(x)) = g(h(x))
(since H is normal) and therefore h(x′) = g(x) = x′. Now to conclude the theorem,
we need to prove that G�H is isomorphic to Gal(NH/k). The restriction map of G
onto NH is surjective. It’s kernel is H: indeed g|NH = idNH ⇔ ∀x ∈ NH , g(x) =
h⇔ h ∈ Φ(NH) = H.
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3.3 Profinite rings and modules
Just like in the case of groups, projective limits exist in the category of rings, and
therefore one can define a category of profinite rings. Just like for groups, one can
prove that the operations of addition and multiplication are continuous, making
profinite rings into topological rings.

Example 3.3.1 (profinite completion of Z). Consider N \ {0} equipped with the
relation of divisibility |. We say that n ≤ n′ if n|n′. For n|n′, consider the transition
map φn,n′ that is the natural projection of Z�n′Z onto Z�nZ and then we call Ẑ the
profinite completion of Z the limit of the projective system in the category of rings.

3.3.1 Profinite modules

There are two kinds of modules we can make a profinite ring act on topologically.
Either we just pick modules with discrete topology, or we pick profinite Abelian
groups with a continuous action of a profinite ring, in which case we get the profinite
modules. We will focus on the latter here and give the following definition:

Definition 3.3.2. Let R be a profinite ring. We call a profinite R-module a profinite
Abelian group M together with a continuous map ρ from R×M (equipped with the
product topology) into M , such that:

• ∀r, r′ ∈ R, ∀m ∈M,ρ(r + r′,m) = ρ(r,m) + ρ(r′,m)

• ∀r ∈ R, ∀m,m′ ∈M , ρ(r,m+m′) = ρ(r,m) + ρ(r,m′)

• ∀m ∈M,ρ(1,m) = m

A morphism of profinite modules would then be a continuous morphism of R-
modules, which gives us a category. A natural question to ask is whether this
category is a profinite structure. The answer is yes and more precisely we will see
that every profinite R-module is a projective limit of finite R-modules equipped with
discrete topology.

3.3.2 The category of R-modules is a profinite structure

Let us denote C the category of profinite R-modules. We will show that this category
is preprofinite and that every object in this category is a limit of finite objects,
making it into a profinite structure.

We take F the forgetful functor from C to the category of sets. Observe that the
functor F is faithful. Now we will show that the limits in the category C exist and
that F preserves them. Let ((Mi)i∈I , (φi,j)j≥i) be a projective system of profinite
R-modules. Let M be their limit in the category of Abelian groups. We will show
that M is also a profinite module. Define

ρ =

{
R×M −→M

(r, (xi)i∈I) 7→ (r · xi)i∈I



71

Let us show that ρ is a continuous map. Since M is equipped with the product
topology of

∏
i∈I
Mi, to prove continuity of ρ, it is enough to prove the continuity of

φi ◦ ρ for every i ∈ I with φi being the natural projection on Mi. Now let r ∈ R
and m ∈ M and U an open neighborhood of r ·mi in Mi. Since the action of R is
continuous, there exists V an open neighborhood of r and V ′ an open neighborhood
of mi, such that if m′ ∈ V ′ and r′ ∈ V , then rm ∈ U . By continuity of φi, φ−1

i (V ′)
is an open set in M and therefore V × φ−1

i (V ′) is a neighborhood of (r, v) and
φi ◦ ρ(V × ρ−1(V ′)) ⊆ U , proving the continuity of ρ. Since limits in the category
of profinite R modules are limits in the category of Abelian groups, then they are
also limits in the category of sets, hence the second axiom of preprofinite category
is verified by F .

Now we need to show the last axiom of preprofinite categories. Let us pick
M,N,O three profinite modules, u a surjective morphism from M to N , v a mor-
phism from M to O and f a map from N to O, such that the diagram:

N O

M

f

u v

commutes. Let us show that f is a continuous linear map from N to O. For
that, we take F a closed subset of O. The set v−1(F ) is then a closed subset ofM by
continuity of v. The set u(v−1(F )) then is a closed subset of N , by continuity of u
and compactness ofM . Now let us show that u(v−1(F )) = f−1(F ). Let x ∈ f−1(F ).
In that case by surjectivity of u, there exists y ∈ M , such that x = u(y). We get
that v(y) = f(u(y)) = f(x) ∈ F , therefore y ∈ v−1(F ) and x ∈ u(v−1(F )). Now in
the other hand suppose that x ∈ u(v−1(F )). In that case, there exists y ∈ v−1(F ),
such that x = u(y). In that case: f(x) = f(u(y)) = v(y) ∈ F and therefore
x ∈ f−1(F ). Since the inverse image by f of every closed subset of O is closed, then
f is continuous.

Now let us prove that f is a morphism of modules. Let r ∈ R, x, y ∈ N . Then
by surjectivity of u, there exists x′, y′ ∈ M , such that u(x′) = x and u(y′) = y. We
then get that

f(rx+ y) = f(u(rx′ + y′)) = v(rx′ + y′) = rv(x′) + v(y′) = rf(x) + f(y)

C is therefore preprofinite category. To prove that it is actually profinite we need
to prove that every profinite module M is a profinite limit of finite modules with
continuous action of R. For this part, we shall use the Lemma 5.1.1 b) in Ribes’s
and Zalesskii’s book [42].

ConsiderM a profinite module. Since it is equipped with a structure of a profinite
Abelian group, it is of course compact Hausdorff and totally disconnected topological
space. If we then manage to show that it is profinite-compatible, then it is a profinite
limit by 3.1.12. Let ∼ be an open relation on M . Since M is profinite-compatible
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as an Abelian group, there exists U an open subgroup of M , such that

∀x, y ∈M,x− y ∈ U ⇒ x ∼ y

Now we will show that U contains an open submodule. By continuity of the action
of R, for every r ∈ R, there existsWr a neighborhood of R and Ur an open subgroup
of U , such that WrUr ⊆ U . By compactness of R, there exist then r1, · · · , rn, such
that Wr1 , · · · ,Wrn cover R. In that case we put:

V =
n⋂
i=1

Vri

In that case, we get: RV ⊆ U . Now let N be the module generated by V . Since U
is a subgroup, containing RV , we get that N ⊆ U . The set N is a subgroup of M
containing an open subset V , therefore one can prove that N is an open subgroup
of M . The set N is also a submodule of M , therefore let us take f to be the natural
projection ofM onto the R-moduleM�N . Let us show thatM�N is a finite module
that the action of R on M�N with the discrete topology is continuous and that f is
a continuous map.

• M�N is finite, since N is an open subgroup of M and therefore of finite index.

• Let us prove that the action of R is continuous. Let m ∈ M�N and r ∈ R.
Since rm+N is open, there exists by continuity of the action of R on M , W
a neighborhood of r , such that ∀r′ ∈ W , r′m ∈ rm+N . When we have that
W{m} ⊆ {rm}, proving the continuity of the action of R on M�N .

• Observe that the map f is continuous, since f−1({x}) = x+N , which is open
since N is open.

From here on now, we can represent any profinite module as a projective limit
of finite R- modules with a continuous action.

3.3.3 Free modules

If we take X a profinite set and R a profinite ring, then there exists up to isomor-
phism a unique R module M with a continuous map ρ from X to M , such that for
any continuous map u from X to some R module N , there exists a unique morphism
of R modules from M to N , such that the diagram:

M

X

N

ρ u

f

commutes. We denote such a module R[[X]] and call it a free module on X.
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Proof. The uniqueness just comes from the universal property of R[[X]]. To prove
the existence, we will construct R[[X]] as follows: Let (πi)i∈I be the natural pro-
jections of X onto a finite set Xi, with (X, (πi)i∈I) seen as a projective limit of
the system ((Xi)i∈I , (πi,j)j≥i). We assume furthermore that all the projections are
surjective. (By restricting them to their image if necessary). We define R[Xi] to be
the free R-module on Xi equipped with the product topology (for x ∈ Xi, we take
the topology on Rx to be the profinite topology on R). The set R[Xi] is then an R
module, since multiplication by R is continuous on every component of R[Xi]. For
j ≥ i ∈ I, we take the transition map from R[Xj] to R[Xi] to be the R-linear map
φi,j induced by πi,j. Let us show that φi,j is continuous. We writeXj = {u1, · · · , un}.
Now let x =

n∑
k=1

rkuk ∈ R[Xj] and let U be an open neighborhood of φi,j(x). If we

write
Xi = {v1, · · · , vm}

and

φi,j(x) =
m∑
k=1

r′kvk

then U contains some (r′1 + ker(p))v1 + (r′2 + ker(p))v2 + · · · + (r′m + ker(p))vm
with p a continuous ring morphism from R to some finite ring R′ (by definition of
the product topology). Now consider V the neighborhood of x defined by:

V = (r1 + ker(p))u1 + · · ·+ (rn + ker(p))un

let us show that φi,j(V ) ⊆ U .
We write

y = (r1 + q1)u1 + · · ·+ (rn + qn)un

Then

φi,j(y) =
m∑
k=1

(r′k +
n∑

k′=1

qk′Ak,k′)vk

with Ak,k′ being the matrix of φi,j in the bases u1, · · · , un and v1, · · · , vm. Since for

every k′, qk′ is in the kernel of p, we get that
n∑

k′=1

qk′Ak,k′ will be in the kernel of p

and therefore we conclude that φi,j(y) ∈ U as expected.
The morphisms φi,j are therefore continuous linear maps between profinite R-

modules. R[[X]]: the limit of our projective system given by the transition maps φi,j
is then a profinite module. Now we define the map ρ that to (xi)i∈I ∈ X associates
(xi)i∈I seen as elements of R[Xi]. We need to show that ρ is continuous. To prove
that, it is enough to prove that for every i ∈ I, φi ◦ ρ is continuous, with φi being
the natural projection of the projective system of R[[X]] onto R[Xi]. Now let x ∈ X
and U an open neighborhood of φi ◦ ρ(x). If we consider

V = {y ∈ X|πi(y) = πi(x)}
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a neighborhood of X, we get that φi(ρ(V )) = {φi(ρ(x))} ⊆ U , showing the continu-
ity of φi ◦ ρ. Since the topology on R[[X]] is given by the product topology of the
R[Xi], this is enough to prove that the map ρ is continuous.

Now we need to prove that (R[[X]], ρ) has the universal property. For that, we
consider N a profinite R-module and u a continuous map from X to N . We know
by 3.3.2 that N is a projective limit of finite R-modules. We take J a directed set
and (Nj)j∈J finite R modules and (ψi,j)j≥i∈J transition morphisms, such that N is
the projective limit of the Nj. We then denote ψj the natural projection of N onto
Nj. Consider the map ψj ◦ u from X to Nj. It is then continuous, so there exists a
δ(j) ∈ I, such that

∀i ≥ δ(j),∀x, y ∈ X, πi(x) = πi(y)⇒ ψj ◦ u(x) = ψj ◦ u(y)

Then we define a map uj from Xδ(j) to Nj, by the formula: uj(πδ(j)(x)) = ψj(u(x)).
Furthermore for i ∈ I, write ρi the natural injection from Xi to R[Xi]. For every
j ∈ J , R[Xδ(j)] is a free module on Xi in sense of abstract modules, therefore there
exists a unique R-linear map (not necessarily continuous) fj, such that the following
diagram commutes:

R[Xδ(j)]

Xδ(j)

Nj

ρδ(j) uj

fj

Now for x ∈ R[[X]], let f(x) be the collection in
∏
j∈J

Nj, defined by

f(x) = ( fδ(j)(φδ(j)(x)) )j∈J

To show that this collection is in the limit N , we need to show that it is compatible
with the transition maps. Let j′ ≥ j. Now let i ∈ I be greater than both δ(j′)
and δ(j). We have that f(x)j = fj(φδ(j),i(xi)) and that f(x)j′ = fj′(φδ(j′),i(xi)).
Therefore to show that
ψj,j′(f(x)j′) = f(x)j, it is enough to show that fj ◦ φδ(j),i and ψj,j′ ◦ fj′ ◦ φδ(j′),i are
equal. Since Xi forms a basis of R[Xi], it is enough to show by linearity that they
are equal on that set. Now if we take x′ ∈ Xi, then there exists x ∈ X, such that
xi = x′.

In that case:

ψj,j′ ◦ fj′ ◦ φδ(j′),i(xi) =

ψj,j′(fj(xδ(j))) = ψj,j′((u(x))j′) = (u(x))j = fj(xδ(j)) = fj(φδ(j),i(xi))

This proves that f is indeed a well defined map from R[[X]] to N .
The next step is to prove linearity. If we take: x, y ∈ R[[X]], r ∈ R and j ∈ J ,

we obtain:

f(x+ ry)j = fj(φδj(x+ ryδ(j))) = fj(φδj(x)) + rfj(φδj(y))
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by linearity of fj and φδj . Since this is true for all j ∈ J , f is indeed linear. Now
we need to prove the continuity of f . To do that, we prove the continuity of the
function ψj ◦ f for all j ∈ J . To prove that ψj ◦ f is continuous, it is enough to
prove that ker(ψj ◦ f) is a neighborhood of 0, since ψj ◦ f is linear. Since R acts
continuously on Nj, there exists a continuous ring morphism p from R to some finite
ring R′, such that ker(p) · Nj = {0}. Now let us show that φ−1

δ(j)(ker(p) · R[[Xδ(j)]])

(which is an open neighborhood of 0 in R[[X]] by continuity of φδ(j)) is contained
in ker(ψj ◦ f). Let x ∈ R[[X]], such that there exists r ∈ ker(p) and y ∈ R[[Xδ(j)]],
such that φδ(j)(x) = ry. We have that

ψj(f(x)) = f(x)j = fj(xδ(j)) = fj(ry) = rfj(y) = 0

ker(ψj◦f) contains then an open neighborhood of 0, therefore is itself a neighborhood
of 0, proving the continuity of f .

Now we need to show that f factors through ρ into v, but the is straightforward
to check. Finally we need to show uniqueness of f . Suppose that g is another
continuous linear map from R[[X]] to N , such that g ◦ ρ = v. Let us show that
f = g. We will prove it, by showing that for every j ∈ J , ψj ◦ f = ψj ◦ g. By
continuity of ψj ◦g, there exists i1, such that for all i ≥ i1 and for all x, y ∈ R[[X]], if
φi(x) = φi(y), then ψj(f(x)) = ψj(f(y)). Now take i that is greater than i1 and δ(j).

Now let us take an x ∈ X. Let us write φi(x) =
n∑
k=1

rkek, with Xi = {e1, · · · , en}.

We have f(x)j =
n∑
k=1

rku(ek). Now for k in {1, · · · , n}, let yk be an element in X,

such that (yk)j = ek. We have that φi(
n∑
k=1

rky
k) = φi(x) and therefore by continuity,

φj(g(x)) = φj(g(
n∑
k=1

rky
k)). We then have that φj(g(x)) =

n∑
k=1

rku(ek) = φj ◦ f(x),

which shows the uniqueness of f .
That concludes the proof that R[[X]] is a free R-module on X.

We will now prove the properties of profinite modules that we will make use of
in the next chapter.

Lemma 3.3.3. Let M be a profinite module over a profinite ring R. Let A be
subset of M , such that the module generated by A is dense in M (i.e A generates M
topologically). Let f be a continuous R linear form on M , such that f(A) = {1}.
Then: ker(f) ∩ (A) is dense in ker(f) ,with

(A) = {
n∑
k=1

rkak|n ∈ N and ∀k ∈ {1, · · · , n}, rk ∈ R and ak ∈ A}

Proof. Let (φi)i∈I be the natural projections of M onto Mi with M seen as the
limit of the finite R-modules (Mi)i∈I . Let (πj)j∈J be the natural projections of R
onto Rj with R seen as the projective limit of the finite rings (Rj)j∈J . We take
u ∈ ker(f). To prove that u ∈ (A) ∩ ker(f), we take i ∈ I and show that there
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exists v ∈ A ∩ ker(f), such that φi(u) = φi(v). By continuity of the action of R on
M , there exists j0 ∈ J , such that

∀x ∈M,∀j ≥ j0,∀r ∈ R, πj(r) = 0⇒ φi(r · x) = 0 (3.3)

The map φj0 ◦ f is continuous and φj0 ◦ f(u) = 0, therefore there exists i0 ∈ I, such
that:

∀i′ ≥ i0,∀x ∈M,φi′(x) = φi′(u)⇒ πj0(f(x)) = 0 (3.4)

Now take i′ that is greater than both i and i0. Since (A) is dense in M , there exists
a0, · · · , an ∈ A and r0, · · · , rn ∈ R, such that φi′(u) = φi′(r0a0 + · · · + rnan). Now
just take a ∈ A and write v′ = r0a0 + · · · rnan and v = v′ − (r0 · · · + rn)a. We
get that v ∈ ker(f) ∩ (A). Now let us show that φi(u) = φi(v). We have that
φi′(u) = φi′(v) and therefore by (3.4), 0 = φj0(f(u)) = φj0(f(v)). From that we
obtain that φj0(r0 + · · · + rn) = 0 and therefore by (3.3), φi((r0 + · · · + rn)a) = 0.
We then get that φi(v′) = φi(v). However since i′ ≥ i we also get φi(u) = φi(v

′) and
therefore φi(u) = φi(v), which concludes the proof of the lemma.

Proposition 3.3.4. Let u be a continuous injective map from a profinite set X
to a profinite set Y . Let R be a profinite ring and let f be the induced R-linear
continuous map from R[[X]] to R[[Y ]], then f is injective.

Proof. We consider R[[Y ]] to be the closed subset of
∏
i∈I
R[Yi] with Y being the

projective limit of Yi. By continuity of u, A = u(X) is a closed subset of Y and
is therefore a profinite set. Furthermore u is a homeomorphism between X and A.
Consider now the set

M = {(xi)i∈I ∈ R[[Y ]]|∀i ∈ I, xi ∈ R[πi(A)]}

With πi the natural projection of Y on Yi. It is a closed submodule of R[[Y ]]. Let
us show that it is the free module on A. For i, j ∈ I with j ≥ i, we denote φi,j the
transition map from Yj to Yi. Notice that φi,j then is a transition map from πj(A)
to πi(A). One can then prove that A is a projective limit of the πi(A), which give
us that M is indeed the free module over A, since it is the projective limit of the
R[πi(A)].

Now consider the continuous map u−1 from A to R[[X]] that to u(x) associates
x. It can then be extended to a unique continuous linear map from M to R[[X]],
which we shall call g. Note that f(R[[X]]) ⊆M and therefore g ◦ f is a well defined
linear map on R[[X]] that sends every element of X to itself and it is therefore the
identity on R[[X]]. The map f is invertible on the left and is therefore injective.

3.3.4 Pointed free modules

In some cases we may want to collapse one point of the set X on which the module
is free to 0. In the case we get the following slight modification of the theorem of
free modules:
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Theorem 3.3.5. Let R be a ring and (X, a) a pointed profinite space ( a profinite set
X together with an element a ∈ X). Then up to isomorphism, there exists a unique
R-module called R[[X, a]] with a continuous injective map ρ from X to R[[X, a]],
such that ρ(a) = 0 and for any continuous map u from X to an R module N , such
that u(a) = 0, we have that there exists a unique linear map l from R[[X, a]] to N ,
such that the diagram:

R[[X, a]]

X

N
l

ρ u

commutes.

The proof of this theorem is very similar to the non pointed version, so will be
omitted.

Another result that stays the same for pointed version is the following:

Proposition 3.3.6. Let (X, a) and (Y, b) be two pointed profinite spaces and u a
continuous injective map from X to Y , such that u(a) = b. Let l be the induced R
linear map from R[[X, a]] to R[[Y, b]], then l is injective.

3.4 Etale algebras
Etale algebras are a generalization of finite separable extensions. In this section, we
will see that they can be represented by an action of a group on a finite set and
therefore by a group action Cayley graph as in 1.5.1. Etale algebras are algebras
that can be written as a product of finite separable extensions. In order to study
them, we will first prove the theorem that classifies finitely generated algebras over
a field. This theory is very old one and none of the material in this section is
new. The proofs found here are based on [6] Chapter V §6 and [28] Chapter V §18.

Theorem 3.4.1. Let A be a finite dimensional commutative algebra over a field K.
Then A has only finitely many maximal ideals: M1, · · · ,Mk and there exist integers

a1, · · · , ak, such that A is isomorphic to the algebra:
n∏
k=1

A�Mak
k
.

Proof. We start by proving that A has only finitely many maximal ideals. Con-
sider a sequence M1, · · · ,Mn of distinct maximal ideals. Then by using the Chi-
nese remainder theorem, we know that the algebra A�M1 · · ·Mn

is isomorphic to
A�M1

× · · · × A�Mn
. Now the dimension of A�M1 · · ·Mn

is bounded by dim(A).

The dimension of A�M1
×· · ·×A�Mn

is at least n, therefore dim(A) ≥ n and A has
at most dim(A) maximal ideals. Now let M1, · · · ,Mn be all the distinct maximal
ideals of A. We shall prove that second part of the statement. Consider the sequence
of K-vector spaces ((M1 · · ·Mn)i)i∈N. It is decreasing sequence of subspaces of A,
therefore it is stationary.
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Now we shall prove that if for an m ∈ N, (M1 · · ·Mn)m+1 = (M1 · · ·Mn)m, then
(M1 · · ·Mn)m = {0}. We have M1 ∩ · · · ∩ Mn = M1 · · ·Mn by the Chinese re-
mainder theorem and (M1 · · ·Mn)m+1 = (M1···Mn)m, so by Nakayama’s lemma,
(M1 · · ·Mn)m = {0}. Finally by the Chinese remainder theorem, A�(M1 · · ·Mn)m is

isomorphic to A�Mm
1
× · · · × A�Mm

n
, proving the rest of the proposition.

Notice that if the m from the proof is equal to 1, then A is isomorphic to a
product of fields. We call these kinds of algebras ”diagonalizable”.

Definition 3.4.2 (Etale algebras). We call an algebra L over a field K etale if L is
isomorphic to a finite product of separable extensions of K.

If K is a perfect field, then we can make the following simple observation.

Proposition 3.4.3. Let K be a perfect field and L a finite dimensional commutative
algebra over K, then L is etale if and only if it has no non trivial nilpotent elements.

Proof. If L is a product of separable extensions of K, we have L = K1 × · · · ×Kn

and if we take (a1, · · · , an) ∈ L and m ∈ N, such that (am1 , · · · , amn ) = 0, then
am1 = · · · = amn = 0 and so a1 = · · · = an = 0.

Now on the other hand, suppose that L has no nontrivial nilpotent elements.
By the classifying theorem 3.4.1, we know that L is a product L�Ma1

1 × · · · ×Man
n

with M1, · · · ,Mn maximal ideals. Now let us prove that all the ai’s are equal to 1.
Suppose that ai > 1 for some i. We may then simply assume thatMi 6= Mai

i and take
u ∈ Mai

i that is not in Mai
i . Now consider the t = (0, · · · , 0, u(M

ai
i ), 0, · · · , 0) ∈ L.

Then uai ∈ Mi and thus tai = 0. Since L has no non-trivial nilpotent elements,
t = 0, but that means that u ∈Mai

i , which is a contradiction. We therefore get that
L is a product of finite extensions of K. Given the fact that K is perfect, we get
that these extensions are separable, hence L is an etale algebra.

Etale algebras are a generalization of separable field extensions and there is a
notion of Galois theory on them. We will in fact see that they are entirely charac-
terized by their morphisms into the separable closure of the base-field. In the rest
of this section, we will examine the properties that etale algebras have in common
with field extensions. We will start by showing that all elements of etale algebras
have separable minimal polynomials.

Proposition 3.4.4. Let L be an etale algebra over F . Let θ ∈ L and χ the minimal
polynomial of θ over L, then χ is separable.

Proof. We know that L is isomorphic to a product F1 × · · · × Fn, with Fi finite
separable extensions of F . We denote πi the natural projection of L onto Fi and χi
the minimal polynomial of πi(θ). The polynomials χi are all irreducible with simple
roots in F (the algebraic closure of F ), since Fi are all separable. If then we denote
P the least common multiple of all the χi, then P is with simple roots in F . Now
let us prove that χ divides P . We have for every i, πi(P (θ)) = P (πi(θ)) = 0, since
χi divides P . As such, we have that P (θ) = 0, since πi are projections and therefore
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χ divides P as the minimal polynomial of θ. The polynomial χ divides a separable
polynomial and is therefore itself a separable polynomial.

We will show a criterion that determines whether a given finite-dimensional
algebra is etale. Before that we will first show that just like in the case of separable
field extensions, morphisms from etale algebras into the separable closure can be
extended. We will need to make a use of two lemmas.

Lemma 3.4.5. Let L be an etale K-algebra and f a morphism from L to Ksep.
Then Im(f) is a field and thus ker(f) is a maximal ideal.

Proof. It is a ring as an image of a morphism of rings. Now we need to prove
that each element is invertible. Let f(a) ∈ K×sep. Then f(a) is algebraic over K
and therefore K(f(a)) = K[f(a)]. In particular 1

f(a)
is a polynomial in f(a) and

therefore in the image of f . Since every non zero element is invertible in Im(f),
Im(f) is a field and thus ker(f) is maximal.

Lemma 3.4.6. Let K be a field, let L be an etale algebra, L′ a subalgebra such
that L = L′[θ]. Let f be a morphism from L′ to Ksep, then f can be extended to a
morphism from L to Ksep.

Proof. Suppose that L =
m∏
i=1

Fi, with Fi/K being a finite separable extension of K.

Take πi the natural projection on Fi. For every i, πi restricted to L′ is a morphism
into Fsep, hence its kernel is a maximal ideal. We therefore have that for every i,
ker(πi) ∩ L′ is a maximal ideal in L′. Let us now prove that there exists i0, such
that ker(πi0) ⊆ ker(f).

By contradiction assume that

∀i,∃xi ∈ ker(πi), f(xi) 6= 0

In that case we have that f(x1 · · ·xn) = f(x1) · · · f(xn) 6= 0. However x1 · · ·xn = 0:
indeed for all i, we get that πi(x1 · · · xn) = 0. This contradicts that f(x1 · · ·xn) is
not zero.

Now consider I the ideal in the polynomial ring L′[X] defined by:

I = {P ∈ L′[X]|P (θ) = 0}

By abuse of notation, we denote f the extension of f into a morphism from L′[X] to
f(L′)[X]. Then it is a surjective morphism and therefore f(I) is an ideal in f(L′)[X].
Let us prove that f(I) 6= f(L′)[X]. By contradiction assume that f(I) = f(L′)[X].
In that case, there exists a0, a1, · · · , an ∈ L′, such that

f(a0) + f(a1)X + · · ·+ f(an)Xn = 1 (3.5)
a0 + a1θ + · · ·+ anθ

n = 0. (3.6)

By (3.5), f(a0) = 1 and for all i > 0, f(ai) = 0. Since πi0 has the same kernel as
f , we deduce from it that ∀i > 0, πi0(ai) = 0. Applying πi0 to both sides of (3.6),
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we get that πi0(a0) = 0 From this we get that f(a0) = 0, which contradicts that
f(a0) = 1.

From this we deduce that f(I) is not the whole f(L′)[X] and is therefore gen-
erated by a non constant polynomial f(Q). Furthermore if χ denotes the minimal
polynomial of θ over F , we get that χ ∈ f(I) and therefore f(Q) divides χ. The
polynomial χ being separable (by 3.4.4), it implies that f(Q) is separable as well.
Since f(Q) is non constant and separable, we can take u ∈ Fsep, a root of f(Q).
Now we extend f with a formula f(P (θ)) = f(P )(u). Let us prove that f is well
defined. If we have that P (θ) = O(θ), then P − O(θ) = 0. In that case P − O ∈ I,
therefore there exists f(U) ∈ f(L′)[X] such that f(P − O) = f(U)f(Q). Then
f(P )(u)− f(O)(u) = 0. Given the formula it is also clear that f is a morphism.

Theorem 3.4.7 (extending morphisms of etale algebras). Let L be an etale algebra
and L′ a subalgebra of L and f : L′ → Ksep a morphism of K algebras from L′ into
the separable closure of K. Then there exists g a morphism from L to Ksep that
extends f .

Proof. We shall do it by induction on the dimension of L′. If dim(L′) = dim(L),
the statement is trivially true, since we may pick g = f . Now suppose that the
statement is true for every L′ such that dim(L′) > n. Let us prove that it is true
for dim(L′) = n as well. Since L′ ( L, we have that there exists a θ ∈ L, such
that θ /∈ L′.Therefore we have that dim(L′[θ]) > dim(L′) = n and therefore f can
be extended to a map h defined on L′[θ] using the previous lemma. By applying
induction to L′[θ], we extend h into a g defined on L. Then g|L′ = f and the theorem
is proven.

Finally we are going to prove that there is a correspondence between sets together
with a continuous action of the absolute Galois group and etale algebras. As such,
since we have seen that action of a group can be represented using the group action
Cayley graph, we can represent these etale algebras using graphs.

For the proof, we are going to use the section 18 in Chapter 5 of [28].

Theorem 3.4.8 (Dedekind’s Lemma). Let F/K be a field extension and g1, · · · , gn ∈
Aut(F/K) distinct automorphisms. Then g1, · · · , gn are F -linearly independent as
maps from F to F .

Lemma 3.4.9 (Galois descent). Let F be a field, Fsep its separable closure and
Γ = Gal(Fsep/F ) its absolute Galois group. Suppose that Γ acts continuously (for
the discrete topology) on a Fsep-vector space V by semi linear automorphisms: i.e

∀g ∈ Γ,∀x, y ∈ V, g · (x+ y) = g · x+ g · y

∀g ∈ Γ,∀λ ∈ Fsep,∀x ∈ V, g · λx = g(λ) · g(x)

then
V Γ = {v ∈ V |∀g ∈ Γ, g · v = v}
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is a F - vector space and the map{
Fsep ⊗F V Γ −→ V

x⊗ v 7→ xv

is an isomorphism of Fsep vector spaces.

Proof. One can think of the vector space V in some sense as a field extension, while
V Γ can be thought of as fixed field under Γ, which would correspond to the base
field F . We are dealing here with vector spaces rather than fields, which slightly
complicates matters.

The set V Γ is a F vector space as a subspace of V seen as a F -vector space. By
continuity of the action of Γ, there exists a finite normal subextension of Fsep, N ,
such that

∀v ∈ V, ∀g, g′ ∈ Γ, g|N = g′|N ⇒ g · v = g′ · v

SinceN/F is finite, Gal(N/F ) is finite and therefore we writeGal(N/F ) = {γ1, · · · , γn},
with γ1 the identity map. We extend all these automorphisms into automorphisms
of Fsep. Now take {m1, · · · ,mn} a basis of N seen as a F -vector space. ([N : F ] =
|Gal(N/F )|, since N is separable). Now for j ∈ {1, · · ·n} write

vj =
n∑
i=1

γi(mj)v

All these vj are in V Γ: indeed, if we take g ∈ Γ, we have that there exists i0, such
that g|N = γi0 |N . For that reason, we get that

g|N · vj = γi0 · vj =
n∑
i=1

γi0 · (γi(mj)v) =
n∑
i=1

γi0(γi(mj))v

Now in the sum, we can do a bijective change of variable γ′i = γi0 ◦ γi and therefore
we can conclude that g ·vj = vj for all g ∈ Γ and all j ∈ {1, · · · , n}. Now considerM
the n× n matrix with coefficient in N , given by: Mi,j = γi(mj). We will prove that
M is invertible, by proving its columns are linearly independent. Let λ1, · · · , λn be
such that

n∑
i=1

λiMi,− = 0 (3.7)

Now if we consider f the map from N to N that to x associates
n∑
i=1

λiγi(x), it is

F -linear. By 3.7, f is zero on the F basis of N , m1, · · · ,mn, therefore f is a zero

map. From that we conclude that
n∑
i=1

λiγi = 0. By Dedekind’s lemma, we then get

that λ1 = · · · = λn = 0. Since the matrix M is invertible, we shall denote M ′ its
inverse. Now we get that:
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n∑
j=1

M ′
j,1vj =

n∑
j=1

n∑
i=1

M ′
j,1γi(mj)γi · v =

n∑
i=1

n∑
j=1

γi(mj)Mj,1γi · v =

n∑
i=1

Idi,1γi · v =

γ1 · v = v

v is therefore indeed in the image of the map from Fsep ⊗F V γ to V .
Now to prove the injectivity of our map, we take (ei)i∈I an F -basis of V Γ.

Now let x ∈ Fsep ⊗F V Γ that gets mapped to V . Then there exists i1, · · · , in ∈ I
and λ1 · · ·λn ∈ Fsep, such that

x = λ1 ⊗ ei1 + · · ·+ λn ⊗ ein

We then for the sake of simplicity denote the involved vectors in the basis as
e1, · · · , en. The point x then gets mapped to

y = λ1e1 + · · ·+ λnen

Assume that y = 0: let us show that all the λi are zero. To prove that, we take N
a normal extension of F containing all the λi and we consider the non degenerate
bilinear form coming from the trace. We will show that

∀µ ∈ N, ∀i ∈ {1, · · · , n}, T r(µλi) = 0

For γ ∈ Gal(N/F ), γ · µy = γ(µ)γ · y = 0. Therefore we get that
n∑
i=1

γ(µλi)ei = 0,

since all the ei are fixed by γ. Summing these relations on γ ∈ Gal(N/TF ), we get

that
n∑
i=1

Tr(µλi)ei = 0. Since all the ei are linearly independent over F , we get that:

∀i ∈ {1, · · · , n}, T r(µλi) = 0

This relation being true for all µ ∈ N , we get that the λi are indeed all zero.

Note that the proof of injectivity worked regardless of assumption of the conti-
nuity of the action, therefore that map will be injective whether or not the action
is continuous.

Now before stating the equivalence between etale algebras and finite Γ-sets, we
will show that the number of morphisms from the algebra into the separable closure
is its dimension.
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Proposition 3.4.10. Let L be a finite-dimensional algebra over a field F . Let us
denote X(L) the set of morphisms of algebras from L to Fsep, then: |X(L)| ≤ dim(L)
and we have equality if and only if L is etale.

Proof. First if L is a finite dimensional algebra, then by 3.4.1, L has only finitely

many maximal ideals: M1, · · · ,Mn and
n∑
k=1

dimF (L�Mk
) ≤ dimF (L). Now a mor-

phism from L to Fsep can be considered as a morphism from L to F , where F is
an algebraic closure of F extending Fsep. If we then denote X ′(L) as the set of
morphisms from L to F , we have that X(L) ⊆ X ′(L), therefore it is enough to
prove the upper bound for X ′(L). For i ∈ {1, · · · , n}, consider Φi an isomorphism
between a subextension Ki of F and L�Mi

(which is an algebraic extension of F ,
because finite-dimensional over F ). If f is a morphism from L to F , then ker(f) is
a maximal ideal of L, therefore ker(f) corresponds to one of the Mi. In that case
f factors to an isomorphism between L�Mi

and Ki, which by abuse of notation we
shall still call f . In that case f ◦Φ−1

i is an automorphism of Ki. We can then define

a map Ψ from X ′(L) to
n∐
i=1

AutF (Ki), by the formula:

Ψ(f) = f ◦ Φ−1
i

The next step is to show that Ψ is an injective map. To prove that, suppose that
Ψ(f) = Ψ(g). In that case ker(f) = ker(g) = Mi for some i. Now if we take
x ∈ L, we denote x its class in L�M . In that case, we have that f(x) = g(x) and
so f(x) = g(x). The morphism f and g being equal for all x ∈ L, we conclude

that f = g. Since Ψ is an injective map from X ′(L) to
n∐
i=1

AutF (F�Mi
) we have the

following inequalities:

|X(L)| ≤ |X ′(L)| ≤
n∑
i=1

|AutF (F�Mi
)| ≤

n∑
i=1

[L�Mi
: F ] ≤ dim(L) (3.8)

Now we need to prove the equivalence between L being etale and dim(L) =
|X(L)|.

First assume that L is etale. In that case L is isomorphic to a product
n∏
i=1

Fi,

where Fi are separable finite extensions of F . Now let πi be the natural projection
of L on Fi. Then notice that for any i, the set {f ◦ πi|f ∈ AutF (Fi)} has cardinal
[Fi : F ] (since Fi is separable) and it is contained in X(L). Finally all these sets
are disjoint, so the cardinal of X(L) has to be at least dim(L), but by (3.8) it is at
most dim(L), therefore it is equal to dim(L).

Now on the other hand assume that |X(L)| = dim(L). Then all the inequalities
in (3.8) are in fact equalities. From that we deduce that |AutF (F�Mi

)| = [L�Mi
]

for all i, which proves that L�Mi
is separable for all i. Furthermore we have that

dim(L� n⋂
i=1

Mi
) =

n∑
i=1

[L�Mi
: F ] = dim(L), which proves that

n⋂
i=1

Mi = {0}. Now
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denote πi the natural projection of L onto L�Mi
. Let then consider the morphism

of algebras:

Φ =

L −→
n∏
i=1

L�Mi

θ 7→ (πi(θ))i∈{1,··· ,n}

Since
n⋂
i=1

Mi = {0}, we get that Φ is injective. Since the dimensions of the two

algebras are equal, then Φ is an isomorphism.

3.4.1 Equivalence between etale algebras and Γ sets

To an etale algebra L, we associate the finite set X(L), together with the action of
Γ = Aut(Fsep/F ) given by g · f = g ◦ f . To a morphism of etale algebras l L1 → L2,
we associate the Γ-equivariant map

X(l) =

{
X(L2) −→ X(L1)

f 7→ f ◦ l

X is then a contravariant functor from the category of etale algebras to the category
of finite sets together with a Γ-action. We will now show that this functor has an
inverse. For a finite set X together with a continuous action of Γ, we take the
algebra Map(X,Fsep). We equip it with the following action: to a map f from X
to Fsep, we associate the map

g · f =

{
X −→ Fsep

x 7→ g(f(g−1 · x))

We then take the algebra Map(X,Fsep)
Γ. To a Γ-equivariant map l from X1 to X2,

we associate the morphism of algebras Map(X2, Fsep)
Γ and Map(X1, F1)Γ

M(l) =

{
Map(X2, Fsep)

Γ −→Map(X1, Fsep)
Γ

f 7→ f ◦ l

Let us now show that L = Map(X,Fsep)
Γ is an etale algebra. By the Galois

descent lemma, we get that L ⊗F Fsep is isomorphic to Map(X,Fsep), which itself
is isomorphic to F n

sep, with n = |X|. Then we know that L injects itself to the
product F n

sep. Now let π1, · · · , πn be the natural projections of L on Fsep. For all i,

ker(πi) is a maximal ideal in L and we also have
n⋂
i=1

ker(πi) = {0}. By the Chinese

remainder theorem, we then get L� n⋂
i=1

ker(πi)
∼= L that is isomorphic to

n∏
i=1

im(πi),

which is a product of subextensions of Fsep, therefore separable extension of F . We
can therefore conclude that L is etale.

We have therefore two contravariant functors X andM : we shall show that they
are an anti-equivalence of categories.
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Theorem 3.4.11. The functors X and M define an anti equivalence of categories
between F etale algebras and finite Γ-sets with a continuous action and we have the
following table of correspondences:

Etale algebras Finite Γ-sets
Dimension Cardinal

Tensor product (over F ) Direct product
Direct product Disjoint union

Before we prove the theorem, note that in category theory terms the anti equiva-
lence functors transforms products into coproducts and vice versa. Now let us begin
the proof.

Proof. Before proving that the functors define an anti equivalence of categories,
we first prove the second entry in the table: i.e that dimension gets transformed
into cardinal and vice versa. If L is an etale algebra, then by 3.4.10 X(L) has the
cardinal equal to the dimension of L. If A is a finite Γ-set, then since Map(A,Fsep)

is isomorphic to F |A|sep , then the dimension of Map(A,Fsep) as a Fsep-vector space is
|A|. SinceMap(A,Fsep)

Γ⊗F Fsep is isomorphic toMap(A,Fsep), then the dimension
of Map(A,Fsep)

Γ as a F -vector space is dim(Map(A,Fsep)) = |A|. This concludes
the first part of the proof. Now let us use it to prove that the two functors define
an anti equivalence of categories.

Let L be an etale algebra over F . Let us show that L is naturally isomorphic to
M(X(L)). To an element x, we associate the unique map in M(X(L)) ex that to
f ∈ Hom(L, Fsep) associates f(x). Let us show that ex is fixed by the action of Γ
for all x. Let x ∈ L,g ∈ Γ and f ∈ X(L). We have that

g · ex(f) = g((g−1 · f)(x)) = g(g−1f(x)) = f(x)

This relation being true for all g ∈ Γ and f ∈ X(L), we get that ex is indeed fixed
by the action of Γ. Now consider

ΦL =

{
L −→M(X(L))

x 7→ ex

a morphism from L to M(X(L)). Let us prove that is is an isomorphism. First to
prove the injectivity, we consider x ∈ L, such that ∀f ∈ X(L), f(x) = 0. Let us
show that x = 0. By contradiction, assume that it is non zero. Then let χ be the
minimal polynomial of x over F . By 3.4.4, χ is separable. Now take α ∈ Fsep a
root of χ. Consider the unique morphism f from F (x) to Fsep that to x associates
α. By 3.4.7 f then can be extended to a morphism from L to Fsep, which is a
contradiction, since f(x) = 0 by assumption. Since ΦL is an injective morphism
and L and M(X(L)) have a same dimension, then Φ is an isomorphism of algebras.
Now let us show that the map ΦL is natural. We have to be careful what that term
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means here. Since we are working with an anti-equivalence of categories, rather
than an equivalence, we need to consider op: the functor from the category of etale
algebras to its opposite. Then we shall show that if l is a morphism from L to L′,
then the diagram:

op(L) op(L′)

M(X(L)) M(X(L′))

op(l)

op(ΦL) op(ΦL′)

M(X(l))

commutes. The composition of morphisms is then done in the opposite way
compared to the category of Etale algebras.

To check the commutativity of the diagram, we then can simply check it for each
x ∈ L. We have that ΦL′◦l is the unique map inMap(X(L′), Fsep) that to µ ∈ X(L′)
associates µ(l(x)). Now on the other hand if we consider M(X(l))(ΦL(x)), it is by
definition the map from X(L′) to Fsep that to µ associates ΦL(x)(µ ◦ l) = µ(l(x)).
This concludes the proof that the diagram above commutes.

Now let A be a finite set together with a continuous action of Γ. Let us show
that X(M(A)) is isomorphic to A as a Γ set. Consider δ a map from A to X(M(A))

that to an a ∈ A, associates the map δa =

{
M(A) −→ Fsep

f 7→ f(a)
. The map δa is a

morphism from M(A) to Fsep. Let us show that it is injective. We take x, y ∈ A,
such that x 6= y. In order to show that δx 6= δy, we differentiate two cases:

• Case 1:

x, y are in distinct orbits of Γ. In that case let

u =


A −→ Fsep

a 7→

{
1 if a is in the orbit of x
0 else

In that case, u is in Map(A,Fsep)
Γ, since constant on orbits of G and with

values fixed by G. Furthermore we have that δx(u) 6= δy(u), hence δx 6= δy.

• Case 2: x and y are in the same orbit of Γ. Let then g0 ∈ Γ be such that
x = g−1

0 ·y. Since x and y are distinct, the stabilizer of x, which we shall denote
H cannot be the whole Γ. Let FH be the fixed field of H included in Fsep.
Since the action of Γ is continuous, H is a closed subgroup of Γ. Therefore by
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the fundamental theorem of infinite Galois theory, Gal(Fsep, FH) = H. Since
g0 /∈ H, we get that there exists θ ∈ FH , such that g0(θ) 6= θ. Now define

u =


A −→ Fsep

a 7→

{
g(θ) if a = g · x and g ∈ Γ

0 else

Let us show that u is well defined and fixed by the action of Γ. To show that u
is well defined, we prove that if g · x = g′ · y, then g(θ) = g′(θ). If g · x = g′ · x,
then g−1g′ ∈ H. Since x ∈ FH , then g−1g′(x) = x and therefore g(x) = g′(x),
proving that u is well defined. Now we need to prove that u is fixed by the
action of Γ. Let a ∈ A and g ∈ Γ. If a is not in the orbit of x, we get that
g(u(g−1a)) = g(0) = 0. If on the other hand there exists g′ ∈ Γ, such that a =
g′ ·x, then (g ·u)(a) = g(u((g−1g′) ·x)) = g(g−1g′(θ)) = g′(θ) = u(a). We then
get that u is indeed in Map(A,Fsep)

Γ. Also δx(u) = u(x) = θ 6= g0(θ) = u(y).

This concludes the proof of injectivity of δ. Since δ is an injective map between
the two sets A and Map(A,Fsep)

Γ with the same cardinal, then δ is a bijection.
Finally we need to prove that δ is equivariant. For that, let g ∈ Γ, a ∈ A and
u ∈Map(A,Fsep)

Γ. We get that

g · δa(u) = g(u(a)) = g(u(g−1g · a)) = g · u(g · a)

Since u is fixed by the action of Γ, we conclude that g ·δa(u) = δg·a(u) and hence δ is
an equivariant bijection between the two Γ-sets and it is therefore an isomorphism
of Γ-sets. Just like in the previous case, one can prove that op(δ) is a natural
transformation from op(A) to X(M(A)).

This concludes the proof that X and M define an anti equivalence of categories.
The next step in the proof is to show that products get sent on coproducts and vice
versa. One can already conclude that from the fact that X and L are anti equiva-
lences of categories, but it is worth seeing explicitly the isomorphisms constructed.

Let L and L′ be two etale algebras. Let us show that X(L⊗L′) is isomorphic to
X(L)×X(L′). To a morphism f from L⊗ L′ to Fsep we associate (fL, fL′), where
fL(x) = f(x⊗ 1) and
fL′(y) = f(1 ⊗ y). Such a map is a bijection from X(L ⊗ L′) to X(L) × X(L′),
with the inverse the map that to (f, g) associates the unique morphism of algebras
u defined by the formula
u(x⊗ y) = f(x)g(y).

Now let us show that X(L × L′) is isomorphic to X(L) q X(L′). Consider the
map from X(L)qX(L′) that to f associates the morphism

φ(f) =


F × F ′ −→ Fsep

(x, y) 7→

{
f(x) if f ∈ X(L)

f(y) if f ∈ X(L′)
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φ is injective and X(L)qX(L′) and X(L×L′) have the same amount of elements,
therefore φ is a bijection.

Now suppose instead that A,B are two finite Γ-sets. Consider the map from
M(A)⊗M(B) to M(A×B), given by:

Φ(f ⊗ g) =

{
A×B −→ Fsep

(a, b) 7→ f(a)g(b)

Let us show that this map is surjective. One can show that M(A×B) is generated
by maps that are null outside of one orbit in A×B. If we can then find an antecedent
of every such a map by Φ, we’d prove that Φ is surjective. Let O be an orbit by the
action of Γ. Let us pick (a0, b0) a representative in O. We write HA the stabilizer of
a by the action of Γ on A,HB the stabilizer of b by the action of Γ on B and finally
H the stabilizer of (a, b). We have HA∩HB = H. Let f be a function in M(A×B)
that is 0 outside of O. Let us show that f(a0, b0) ∈ FH

sep. In order to do that, we take
γ ∈ FH

sep. Since f ∈M(A×B), we get that γ(f(a0, b0)) = f(γ · (a0, b0)) = f(a0, b0).
This being true for every γ ∈ H, we get that f(a0, b0) ∈ FH

sep. Now let u1, · · · , un
be an F -basis of FHA

sep and v1, · · · , vm an F -basis of FHB

sep . It is clear that the family
(uivj) then generates the field FH(A)

sep F
H(B)
sep = FH

sep. Now let χi for i between 1 and
n be the map :

χi =


A −→ Fsep

a 7→

{
γ(ui) if a = γa0 with γ ∈ Γ

0 else

and for j between 1 and m,

ξj =

{
B −→ Fsep

b 7→
{
γ(vj) if b = γb0 with

One can prove that χi are well defined maps in M(A) and ξj well defined maps in
M(B). Now we write

f(a0, b0) =
n∑
i=1

m∑
j=1

αi,juivj

Then we have that

f = Φ(
n∑
i=1

m∑
j=1

αi,jχi ⊗ ξj)

Since the map Φ is surjective and the dimensions are the same (both equal to
|A| × |B|), then Φ is an isomorphism of algebras, which is what we wanted to show.

Finally we want to prove that M(A q B) is isomorphic to M(A) ×M(B). For
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that we consider the morphism

Φ =


M(A)×M(B) −→M(AqB)

(f, g) 7→


AqB −→ Fsep

x 7→

{
f(x) if x ∈ A
g(x) if x ∈ B

and the morphism

Ψ =

{
M(AqB) −→M(A)×M(B)

f 7→ (f|A, f|B)

Observe that these morphisms are inverse to each other, which concludes the proof.

An interesting question is when does a Γ set correspond to a field extension
rather than a product of field extensions. The following proposition answers that
question:

Proposition 3.4.12 (Field extensions are Γ-sets with transitive action). Let F be
a field with the absolute Galois group Γ. Let A be a Γ set. Then A corresponds to a
field extension of F if and only if the action of Γ is transitive.

Proof. Suppose first that Γ acts transitively on A. Let us show that M(A) then is
a field. Let f ∈ M(A) a non zero map. Then there exists a ∈ A, such that f(a) is
non zero. Then for every γ ∈ Γ, γf(a) 6= 0. Since f ∈ M(A), this implies that for

every γ ∈ Γ, f(γa) 6= 0. If then we define g =

{
A −→ Fsep

a′ 7→ 1
f(a′)

, g is in M(A) and g

is the inverse of f , proving that M(A) is a field and therefore a separable extension
of F .

Now on the other hand assume the action of Γ is not transitive. Let us show
that M(A) is not a field. Let O be an orbit in A. Then the function f that is equal
to 1 on O and zero outside of O is in M(A) and is clearly non invertible.

We have seen that etale algebras can be represented as Γ-sets. Now if Γ is finite
then we know how to represent an action on a set by the Cayley action graph. If
Γ is infinite, since we assumed the action continuous, we can still represent it using
a finite quotient of Γ, rather than Γ itself. Another possible approach would be to
somehow represent the profinite structure of the infinite group on a graph, which is
going to be the goal of the next chapter.
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Chapter 4

Profinite graphs

As we have seen, if a category C has limits of finite objects, we can define from it
a profinite structure. Now for abstract graphs, the morphisms we typically consider
are the ones that send edges on edges. While this would give us a profinite structure
on graphs: it is a limited one and lots of interesting cases couldn’t be explored. The
more appropriate notion for our morphisms are the so called qmorphisms. The dif-
ference is that while morphisms send edges on edges, qmorphisms can contract edges
to vertices. A trivial example of a qmorphism would be the map that contracts all
the connected components of a graph onto a single vertex. Using these qmorphisms,
we will construct the category of profinite graphs and generalize notions we have
seen for finite graphs on this structure.

4.1 Basic notions
Definition 4.1.1. • We call an abstract graph a quadruplet: (X, V, o, t), such

that X is a set and V is a subset of X called the set of vertices and o, t
are maps from X to V , whose restriction on V is identity. They are called
origin and terminus and are also known as incidence maps. Finally for a
graph G = (X, V, o, t), we denote V (G) = V and call it the set of vertices and
E(G) = X \ V and call it the set of edges.

• We call a qmorphism of graphs (X, V, o, t) and (X ′, V ′, o′, t′) a map from X to
X ′, such that

∀x ∈ X, f(o(x)) = o′(f(x)) and f(t(x)) = t′(f(x))

• We call a morphism of graphs (X, V, o, t), (X ′, V ′, o′, t′) a qmorphism, such
that

f(X \ V ) ⊆ X ′ \ V ′, i.e it sends edges on edges.

Note that a qmorphism always sends vertices to vertices.
Now to prove that graphs have a profinite structure we need to check the three

axioms of preprofinite categories. We will start by proving that the projective limits
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in the category of graphs together with their qmorphisms exist. By abuse of nota-
tion, we shall often identify a graph Γ with the set representing it and we just use
the maps o and t universally for all graphs.

Proposition 4.1.2 (Existence of projective limits). The category C of abstract
graphs is a preprofinite category.

Proof. First we prove that the projective limits exist. Let ((Gi)i∈I , (fi,j)j≥i) be a
directed system. Write Gi = (Xi, Vi, oi, ti) Let

X = {(xi)i∈I ∈
∏
i∈I

Xi|∀i, j ∈ I, j ≥ i⇒ fi,j(xj) = xi}

Define
V = {(xi)i∈I ∈

∏
i∈I

Vi|∀i, j ∈ I, j ≥ i⇒ fi,j(xj) = xi}

Now consider the maps

o =

X −→
∏
i∈I
Vi

(xi)i∈I 7→ (oi(xi))i∈I
and t =

X −→
∏
i∈I
Vi

(xi)i∈I 7→ (ti(xi))i∈I

Observe that o and t map X to V , since they are compatible with q morphisms.
They act as identity on V , since they act as identity component by component. The
quadruplet G = (X, V, o, t) is therefore a graph. It is a projective limit in the sense
of the category of sets and so one can show that it is also a projective limit in sense
of qmorphisms.

Now to define C as a preprofinite category, we take F to be the forgetful functor
on it. It is faithful and transforms projective limits of graphs into projective limits
of sets.

Finally let A,B,C be graphs, u, v qmorphisms with u surjective and f a map
from A to C, such that:

A

B

C

u v

f

commutes. Let us show that f is a qmorphism. Let x ∈ A and d ∈ {o, t}. Then
there exists y ∈ B, such that u(y) = x. Then

d(f(x)) = d(f(u(y))) = d(v(y)) = v(d(y)) = f(u(d(y))) = f(d(u(y))) = f(d(x))

We conclude that f is indeed a qmorphism.

As such we can define profinite graphs as follow:

Definition 4.1.3 (Profinite graph). A profinite graph is a profinite object (Γ, (φi))i∈I
in the preprofinite category of abstract graphs.
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While seeing profinite graphs as limits of graphs is a valid definition, one can
also see them as simply profinite spaces with a graph structure that is continuous
for the graph topology. We have the characterization that follows:

Theorem 4.1.4 (characterization of profinite graphs). Let Γ be a compact Hausdorff
topological space, together with continuous maps o, t from Γ to a closed subspace V ,
such that (Γ, V, o, t) is a graph. Then Γ is a profinite graph if and only if Γ is totally
disconnected as a topological space.

Proof. One implication is simply consequence of 3.1.10.
To prove the other implication, by 3.1.12 it is enough to prove that if Γ is compact

Hausdorff, then (Γ, V, o, t) is a profinite-compatible object. Let Ω be the set of open
equivalence relations on Γ. First let us show that any R ∈ Ω, contains an open R′
compatible with the graph structure.

For R ∈ Ω, take

R′ = {(x, y) ∈ R|o(x)Ro(y) and t(x)Rt(y)} ⊆ R

which is clearly an equivalence relation. Let us show it is open. First by compactness
of G, there are only finitely many equivalence classes for R. Let us call φ the natural
projection onG�R. If then the finite set Γ�R gets equipped with its discrete topology,
φ is then continuous, since the preimage of a singleton by φ is an equivalence class
and since R is open, then this class is open. Now consider

ψ =

{
Γ −→ Γ�R

3

x 7→ ( φ(x), φ(o(x)), φ(t(x)) )

This is a continuous map, since each component is continuous (since o, t are contin-
uous). For an x ∈ Γ, we get that

xR′ = ψ−1(ψ(x))

Indeed: if xR′y, then xRy, so φ(x) = φ(y), o(x)Ro(y),so φ(o(x)) = φ(o(y)) and
similarly
φ(t(x)) = φ(t(y)). As such we get that ψ(x) = ψ(y). On the other hand if ψ(y) =
ψ(x), we get that φ(x) = φ(y), φ(o(x)) = φ(o(y)) and φ(t(x)) = φ(t(y)), therefore
xR′y. We have shown that xR′ is a preimage of a singleton by a continuous function,
therefore xR′ is an open subset, proving that R′ is a open relation. Finally let us
prove that R′ is compatible with the graph structure. Take d ∈ {o, t} and xR′y.
In this case d(x)Rd(y), o(d(x)) = d(x) and o(d(y)) = d(y), so o(d(x))Ro(d(y)) and
by the same reasoning t(d(x))Rt(d(y)). As such, d(x)R′d(y), proving that R′ is
compatible with the graph structure.

This means that for every open equivalence relation R in Ω, there exists an open
equivalence relation R′ ⊆ R, such that Γ�R′ is a graph and the natural projection
of Γ on Γ�R′ is a morphism and therefore by 3.1.12 Γ is a profinite graph.

Now we will define the group of automorphisms and an action of a profinite
group.
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4.1.1 Group of automorphisms

Let Γ be a profinite graph. We denote Aut(G) the group of continuous graph
automorphisms of Γ. I.e g ∈ Aut(Γ) if and only if: g is bijective and g and g−1 send
vertices to vertices and preserve the incidence maps o and t. According to 3.1.1, we
can equip the automorphisms of Γ as a profinite space (without considering its graph
structure) with a structure of a topological group with the compact open topology.
Now the automorphisms of Γ as automorphisms of graph are a closed subgroup of all
the automorphisms of the profinite set Γ, so it is a topological group for the induced
topology. Naturally we want Aut(Γ) to be a profinite group, but unfortunately, we
will see that it is not always the case. We have however the criterion that follows.

Proposition 4.1.5 (profiniteness criterion). Let Γ be a profinite graph and G a
closed subgroup of Aut(Γ). Suppose that Γ is written as the projective limit of graphs
(Γi)i∈I , together with transition maps (φi,j)j≥i and with natural projections pi. In
that case, we get that G is profinite if and only if for every i ∈ I, the set Ai =
{pi ◦ g|g ∈ G} is finite.

Proof. Before we begin, notice that G as a topological space is homeomorphic to

the projective limit of Ai with transition maps (ψi,j)j≥i =

{
Aj −→ Ai

pj ◦ f 7→ pi ◦ f
and

equipped with product topology (each Ai having the discrete topology). Indeed for
every i ∈ I, we have a continuous map ψi from G to Ai that to f associates Ai. It
is continuous with Ai being equipped with discrete topology, since for any f ∈ G,
ψ−1
i ({pi◦f}) = {g ∈ G|pi◦g = pi◦f}, which is open by the definition of the topology

on Aut(Γ). The maps ψi are clearly compatible with the transition maps ψi,j,
therefore there exists a unique map Ψ from G to lim←−

i∈I
Ai, such that ∀i ∈ I, πi◦Ψ = ψi,

with πi being the natural projection of the limit on Ai. The map Ψ is injective.
Indeed if f, g ∈ G are such that ∀i ∈ I, pi ◦ f = pi ◦ g, then clearly f = g. Now let
us show that Ψ is surjective. Let (pi ◦ gi)i∈I be a collection in lim

i∈I
Ai.

Define g =

{
Γ −→ Γ

x 7→ ( pi ◦ gi(x) )i∈I
. The relation g is a well defined function

from Γ to Γ. Let us prove that it is in G. First we start by proving that it is in
Aut(Γ). For that we take x ∈ Γ and d ∈ {o, t} one of the incidence maps. To prove
that d(g(x)) = g(d(x)), it is enough to prove that for every i ∈ I, pi(d(g(x))) =
pi(g(d(x))). Now if we take i ∈ I, we get that

pi(g(d(x))) = pigi(d(x)) = d(pigi(x)) = d(pi(g(x))) = pi(d(g(x)))

since gi and pi are morphisms of graphs. Finally pi(g(d(x))) = pi(d(g(x))) as ex-
pected. The next step is to prove that g is continuous. For that we take x, y ∈ Γ
and i ∈ I. Now let i0 be such that for every j ≥ i0, if pj(x) = pj(y), then
pi(gi(x)) = pi(gi(y))(by continuity of the maps pi and gi). Now if j ≥ i0, and
pj(x) = pj(y), we have that

pi(g(x)) = pigi(x) = pigi(y) = pi(g(y))
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Now we need to prove that the inverse of g is continuous as well. The map g′

associated to (g−1
i )i∈I is clearly a continuous inverse morphism of g, therefore g is

indeed in Aut(Γ).
Now we need to show that g is specifically in G. We will show that g ∈ G and

therefore g ∈ G, since G is closed. Let V be a neighborhood of g. Then there exists
i ∈ I, such that the set {g′ ∈ Aut(Γ)|pi ◦ g = pi ◦ g′} ⊆ V . In that case we get
that gi ∈ V and since gi ∈ G, we get that V ∩ G 6= ∅. Since this is true for all
neighborhoods V of g, it proves that g ∈ G. The topological space G is therefore
homeomorphic to lim←−

i∈I
Ai.

Now we can finally finish the proof: assume first that Ai is finite for every i. The
group G is a projective limit of finite sets and so it is a profinite set, therefore a
totally disconnected compact Hausdorff topological group and as such it is a profinite
group by: 3.2.3.

On the other hand if we suppose that G is profinite, then we have the following:
Take i ∈ I. The set Ψi(G) = Ai then is compact by the continuity of Ψi. Since it is
equipped with the discrete topology, it has to be finite.

Remark. This result is very similar to the Theorem 5.3 in the DDMS book [26],
which establishes a sufficient condition for automorphisms of a profinite group to be
profinite. For a description of the automorphism group of finitely generated profinite
groups, one may also see [46]: in Theorem 1.3 John Smith shows that automorphism
group of a finitely generated profinite group is compact and consequently profinite.
Note that if we assume a profinite group G to be finitely generated then an auto-
morphism of G is determined by its image on the generators and if we compose by a
natural projection onto the quotient by an open normal subgroup, we end up with
only finitely many options, hence from the point of view we adopted in the previ-
ous proposition applied to groups rather than graphs, we get indeed that Aut(G) is
profinite as stated in the theorem.

4.2 Connectedness
Since the correct arrows in the category of profinite graphs aren’t morphisms, but
qmorphisms, we will need to adapt our definition of a path slightly when compared
to the one given in Chapter 2, so that paths are preserved by qmorphisms rather
than just morphisms. We will give the following definition of a path:

Definition 4.2.1. Let (Γ, V (Γ), o, t) be an abstract graph. For an incidence map d ∈

{o, t},denote d =

{
t if d = o

o if d = t
. We define a path as a finite sequence (x1, · · · , xn)

of elements of Γ, such that there exist incidence maps d1, · · · , dn ∈ {o, t}, such that
for all k < n, dk(xk) = dk+1(xk+1).

Notice that since for every vertex x ∈ V (Γ), o(x) = t(x), this new definition
of path allows paths to remain stationary at vertices between steps. That is the
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only difference with our previous definition of path in Chapter 2, so the notion of
path-connected components will remain unaffected.

We define an equivalence relation on Γ, simply as: x ∼ y if and only if there
exists a path (x1, · · · , xn), such that x1 = x and xn = y. Note that this definition
applies to vertices and edges alike. This relation is compatible with graph structure,
so we can quotient a graph by it. Unfortunately it will not be compatible with the
profinite structure, i.e the relation is not always open, or even closed for the profinite
topology, which will lead us to define a more general notion of connectedness for
profinite graphs.

Proposition 4.2.2 (qmorphisms preserve paths). Let Γ,Γ′ be two abstract graphs,
f a qmorphism from Γ to Γ′ and (x1, · · · , xn) a path in Γ. Then (f(x1), · · · , f(xn))
is a path in Γ′.

Proof. Since (x1, · · · , xn) is a path take d1, · · · , dn ∈ {o, t} such that for all k < n,
dk(xk) = dk+1(xk+1). Then using the fact that f is a qmorphism we get that:

dk(f(xk)) = f(dk(xk)) = f(dk+1(xk+1)) = dk+1(f(xk+1))

Now that we know that qmorphisms preserve paths, we will give a definition of
connectedness that works for profinite graphs.

Definition 4.2.3. A profinite graph Γ is said to be connected if for every continuous
qmorphism f from Γ into a finite graph, the image of f is path-connected.

While path-connected profinite graphs are connected (qmorphisms preserve paths),
it is only a small part of connected profinite graphs. Ribes in Example 2.1.8 in [41]
gives an example of a connected profinite graph that is connected, but has a vertex
with no edges. We shall give a similar example that has two such vertices: one on
each side.

Example 4.2.4 (A graph that is connected, but not path-connected). We define a
graph Γ with the set of vertices Z ∪ {−∞,+∞} and edges {ei|i ∈ Z}. The origin
map o is then defined as: o(ei) = i and a terminus map defined as: t(ei) = i + 1.
We then get a graph that looks like:

0−1−2 1 2· · · · · ·−∞ +∞
e−2 e−1 e0 e1

We equip it with projections pn onto path from −n to n, with:

pn(x) =



x if x ∈ Z and − n ≤ i ≤ n

n if x ∈ Z and i ≥ n

−n if x ∈ Z and i ≤ −n
(i, i+ 1) if i ∈ Z,−n ≤ i ≤ n and x = ei

−n if i ∈ Z, i < −n and x = ei

n if i ∈ Z, i > n and x = ei
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Similarly to Ribes’s example, one can show that these projections induce on the
graph a profinite structure. As a side note, this graph is an example of a profinite
graph whose group of automorphisms is not profinite. One can prove that it is
isomorphic to Z with discrete topology. The automorphisms in this case are simply
translations, with infinities being fixed.

The interesting property of this graph is that even though it is not connected,
if we admit in some sense limits of paths, the graph would still be path-connected.
To formally describe this situation, I came up with the definition that follows.

Definition 4.2.5. Let Γ be a profinite graph. We call a superpath a finite sequence
(C1, · · · , Cn) of path-connected components of G, such that ∀i < n, Ci ∩ Ci+1 6= ∅,
with for A ⊆ Γ, A being the topological closure of A in Γ for the profinite topology.

We then call a profinite graph Γ superpath-connected, if for every x, y ∈ Γ, there
exists a superpath (C1, · · · , Cn), such that x ∈ C1 and y ∈ Cn.

The path-connected components of a graph are disjoint, but not necessarily their
closures. Requiring that Ci ∩ Ci+1 6= ∅ means that any element in Ci can approach
any element in Ci+1 by paths, so even though it is not possible to get from one
component to another in finitely many steps, it is possible to do it by taking limits.

An interesting question one can ask is whether this superpath connectivity is
simply equivalent to connectivity or if it is still not enough. We will prove that
if a profinite graph is superpath-connected, then it is connected, we will give one
case where these notions are equivalent and finally we will show that they are not
equivalent in general.

Proposition 4.2.6. Let Γ be a profinite graph. If Γ is superpath-connected, then Γ
is connected.

Proof. Assume that Γ is superpath-connected. Let f be a continuous qmorphism
from Γ to a finite graph. Let x, y ∈ Γ. To prove that Γ is connected, we need to show
that there exists a path from f(x) to f(y) in the graph im(f), to prove that Γ is
connected. Since Γ is superpath-connected, we take (C1, · · · , Cn) a superpath from
x to y. Take xi ∈ Ci ∩ Ci+1. Now for i between 0 and n− 1, we take yi ∈ Ci, such
that f(xi) = f(yi) using the continuity of f and the fact that xi ∈ Ci. Furthermore
for all i between 0 and n − 1, we take zi ∈ Ci+1, such that f(xi) = f(zi), which
is possible for the same reasons. The set f(Ci) is connected for all i, since Ci is
connected and f is a qmorphism. We then take p0 a path from x to y0, pn a path
from yn to y and for i between 1 and n− 1, we take pi a path from f(zi−1) to f(yi),
since they both belong to the connected subgraph f(Ci). Notice that the terminal
vertex of the path f(pi) is f(yi) = f(xi) = f(zi), which is the initial vertex of the
path f(pi+1). We can therefore concatenate the paths f(p0), · · · , f(pn) to obtain a
path p from f(x) to f(y). The image that follows illustrates the proof:
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x y0 z0

x0

Topologically close

y1 z1

x1

· · · zn y

f(x) f(x0) f(x1) · · · f(xn) f(y)

pnp1p0

f : glues together yi and zi through xi

f(p0) f(p1) f(pn)

Now we will see one case, where being connected and superpath-connected is
equivalent, but first we will prove a very useful lemma.

Lemma 4.2.7. Let Γ be a profinite graph. If it is a proper disjoint union of two
open subgraphs, then it is not connected.

Proof. Suppose that Γ = Γ′ q Γ′′, with Γ′ and Γ′′ open subgraphs. Let f be a map
from Γ to {0, 1} defined by

f(x) =

{
0 if x ∈ Γ′

1 if x ∈ Γ′′

If we consider {0, 1} to be a graph with no edges and two vertices, we get that
f is a continuous qmorphism. It is indeed continuous, since constant on the two
open disjoint sets. Now let d be either the terminus or the origin map. Let x ∈ Γ.
Without loss of generality, we assume that x ∈ Γ′, and we show that f(d(x)) =
d(f(x)). We have that d(x) ∈ Γ′, since G′ is a subgraph. Therefore we get that
f(d(x)) = 0 = d(f(x)). We have found a continuous surjective qmorphism into a
finite disconnected graph, therefore G is not connected.

Proposition 4.2.8. Let Γ be a profinite graph, with finitely many path-connected
components. Then Γ is connected if and only if it is superpath-connected.

Proof. We already know that one implication is true in general case, so it is enough
to prove that if a graph Γ has finitely many path-connected components and is
connected, then it is superpath-connected.

Since the relation “There exists a superpath between x and y” is an equivalence
relation, we can partition Γ into superpath-connected components. We start by
proving that there are only finitely many of these superpath-connected components.

Let X denote the set of path-connected components. Consider the function Φ
from the set of superpath-connected components, to the power set of X: P(X) that
to a superpath-connected component C associates the set

Φ(C) = {c ∈ X|c ⊆ C}
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i.e that set of all path-connected components included in C. Let us show that Φ is
injective. Suppose that Φ(C) = Φ(C ′). It is enough by symmetry of this relation
to prove that C ⊆ C ′ to conclude that C = C ′. Let x ∈ C. Consider c the path-
connected component of x. Then c ⊆ C, by definition of a superpath-connected
component. In that case, we also get that c ⊆ C ′, since Φ(C) = Φ(C ′), proving that
x ∈ C ′. Since Φ is an injection from the set of superpath-connected components
into the finite set P(X), we get that the graph has indeed finitely many superpath-
connected components.

The next step is to prove that superpath-connected components are all closed.
Let C be a superpath-connected component, then let us prove that C =

⋃
c∈Φ(C)

c,

with Φ the injection from above. If x ∈ C, then if we take c its path-connected
component, then c ⊆ C, therefore x ∈

⋃
c∈Φ(C)

c. On the other hand let us now take x

in some c, with c ⊆ C. Let c′ be the connected component of x. Then by definition
x ∈ c ∩ c′. Then (c′, c) is a superpath from x to any element of c ⊆ C, hence x is
in the superpath-connected component C. We then get that C is therefore a finite
union of closed sets and is therefore closed.

Now by contraposition, we will prove that if Γ has finitely many path-connected
components and is connected, then it is superpath-connected. Assume that Γ is
not superpath-connected. Take C a superpath-connected component. The set C is
clopen, because it is closed and its complement is a union of finitely many closed
sets (the other superpath-connected components). We will furthermore prove that
C is a subgraph. If x ∈ C, we take c a path-connected component of x. Then
t(x) ∈ c and o(x) ∈ c. therefore t(x), o(x) ∈ C, confirming that C is indeed an open
subgraph of Γ. Its complement is a disjoint union of open subgraphs, therefore is
itself an open subgraph.

The graph Γ is then a proper union of two open subgraphs, therefore by the
lemma 4.2.7, we get that Γ is not connected.

If we want to come up with an example of a profinite graph that is connected,
but not superpath-connected, we will need to find a graph with infinitely many
path-connected components. To construct such a graph, we will make use of limits
of profinite graphs. We will first however need the proposition that follows:

Proposition 4.2.9 (Limits of connected graphs are connected). Let ((Γi)i∈I , (fi,j)j≥i∈I)
be a projective system of profinite connected graphs, then if the limit Γ of this pro-
jective system has all of its natural projections surjective, then it is connected.

Proof. Let g be a surjective continuous qmorphism from Γ to some finite graph A.
We need to show that A is path-connected. Write for a ∈ A, Ua = g−1({a}), which
is a clopen set in Γ. We will proceed as follows:

• Prove that there exists i ∈ I, such that for every a, a′ ∈ A, if a 6= a′, then
φi(Ua) and φi(Ua′) are disjoint.
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• Prove then that the map g̃ =

{
Γi −→ A

x 7→ g(y) if φi(y) = x
is well defined and

continuous.

• Prove that the map g̃ is a qmorphism.

• Conclude using g̃ that A is path-connected.

Let us fix a ∈ A, and write U = Ua. Take x ∈ U . First notice that⋂
i∈I

f−1
i ({fi(x)}) ∩ U c = ∅

Indeed if there was a y ∈ U c, such that ∀i ∈ I, fi(x) = fi(y), then x = y, which is
impossible since U c ∩ U = ∅. The map fi is continuous, so f−1

i ({fi(x)}) is closed.
By compactness of U c, there exists then an ix, such that f−1

ix
({x}) ∩ U c = ∅. Since

Γix is a profinite graph, if we denote Ωx the set of clopen neighborhoods of fix(x) in
Γix , we get that

⋂
V ∈Ωx

V = {fix(x)}. As such, we end up with:

⋂
V ∈Ωx

f−1
ix

(V ) ∩ U c = ∅

Since all the V ∈ Ωx are closed, by compactness there exists a Vx ∈ Ωx, such that
f−1
ix

(Vx) ∩ U c = ∅. The sets f−1
ix

(Vx)(x ∈ U) form an open cover of the compact set

U , therefore there exist x1, · · · , xn ∈ U , such that
n⋃
k=1

f−1
ixk

(Vxk) = U . Now we take

ia an upper bound of the ik. Let us show that for i ≥ ia, fi(U) ∩ fi(U c) = ∅. By
contradiction, assume that there exists x ∈ U and y ∈ U c, such that fi(x) = fi(y).
Since x ∈ U , then there exists k, such that x ∈ f−1

ik
(fik(Vxk)). Using the transition

map fi,ik , we deduce then that fixk (x) = fixk (y), which proves that y ∈ f−1
xk

(Vxk)
which is a contradiction. Finally just take i an upper bound of all the ia and it is
clear that

∀a, a′ ∈ A, a 6= a′ ⇒ fi(Ua) ∩ fi(Ua′) = ∅

Now define

g̃ =

{
Γi −→ A

x 7→ g(y) if x = fi(y)

Let us show that g̃ is well defined and is continuous.
First it is well defined, because if fi(y) = fi(y

′), then Ug(y) = Ug(y′) and therefore
g(y) = g(y′). Now to prove that g̃ is continuous, it is enough to show that the
inverse image of singletons is closed, since A is finite. We have g̃−1({a}) = fi(Ua).
We know that Ua is closed, Γ is compact and fi is continuous, therefore g−1({a}) is
closed and g̃ is continuous.

The next step is to prove that g̃ is a qmorphism. If we take y ∈ Γi, we take x ∈ Γ,
such that fi(x) = y. In that case if d is an incidence map, we get that fi(d(x)) = d(y),
since fi is a qmorphism. In this case, we get that g̃(d(y)) = g(d(x)) = d(g(x)), since
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g is a qmorphism. We therefore conclude that g̃(d(y)) = d(g̃(y)) and that g̃ is a
qmorphism.

Now to conclude: we know that Γi is connected and g̃ is trivially a surjective
map, therefore A is path-connected, proving that Γ is connected.

A corollary of this statement is that a profinite graph is connected if and only if it
is a limit of a projective system of path-connected graphs with surjective transition
maps.

Example 4.2.10 (A connected graph that is not super-path-connected). The rough
idea behind this proof is taking the case that makes path-connectedness fail: i.e a
limit of paths and adapt it to superpaths instead. Basically instead of taking limits
of paths, we will take limits of superpaths and given that our category is stable by
limits, it will give us a valid counterexample.

Let Pn for n ∈ N, be the path from −n to n, i.e the graph with

V (Pn) = {k ∈ Z||k| ≤ n}

and
E(Pn) = {(k, k + 1)|k ∈ Z,−n ≤ k < n}

Take pm,n, for n ≥ m qmorphisms from Pn to Pm defined by the formula:

pm,n =


Pn −→ Pm

x 7→


m if o(x) ≥ m

−m if t(x) ≤ −m
x else

Take Z to be the limit of the projective system ((Pn)n∈N, (pm,n)n≥m). As a reminder,
Z looks like:

0−1−2· · ·−∞ 1 2 · · · +∞
e−2 e−1 e0 e1

Now construct Zn as follows: Define An =
n∐
k=0

Z. A finite disjoint union of

profinite graphs is a profinite graph. Now take Rn the relation on An with

Rn = {((+∞, k), (−∞, k+1))|0 ≤ k < n}∪{((−∞, k+1), (+∞, k))|0 ≤ k < n}∪∆n

where ∆n is simply the diagonal of An. The relation Rn basically glues the endpoints
of paths together creating one big superpath. The relation Rn is an equivalence
relation on Zn. It is closed, as a union of three closed subsets of A2

n. It is compatible
with the graph structure, because it only identifies the infinities, which are isolated
vertices. We therefore have that Zn = An�Rn

is a profinite graph.
Zn has finitely many path-connected components: the

C2i = {(a, i)|a 6= +

−
∞}
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with i < n,
C2i+1 = {(+∞, i)

Rn}

again with i < n and
C−1 = {(−∞, 0)}

and
C2n+1 = {(+∞, n)}

The graph Zn is super-path-connected, since the closure of C2i and C2i+1 have a non
empty intersection ( they both contain (+∞, i) = (−∞, i+ 1) ). Therefore we get
that Zn is connected.

We can represent schematically the graph as:

�−∞ +∞�−∞ +∞�−∞ · · · +∞�−∞ +∞�
Z, 0 Z, 1 Z, n

With the circles being in the closure of the path-connected Z, i (i-th copy of Z in the
disjoint union).

Now define for n ≥ m the maps:

fm,n =


Zn −→ Zm

(x, k) 7→

{
(+∞, k) if k > m

(x, k) else

The maps are well defined, since the −∞ and +∞ that get identified get sent by the maps
to the same point. Let us prove that these maps are continuous qmorphisms. Consider
gm,n a map from An to Am defined with the same formula as fn,m, i.e:

gm,n =


An −→ Am

(x, k) 7→

{
(x, k) if k > m

(x, k) else

gm,n is continuous for every n ≥ m, because An is a disjoint union of open subsets Z,
upon which gm,n either behaves like identity or is constant. The map gm,n then composed
with the natural projection πn on Zn is continuous as well. Finally gm,n is constant on
the equivalence classes of the relation Rn on An, so factors into a unique continuous map
from Zn to Zm and that map is fm,n. The map fm,n is therefore a morphism of profinite
graphs.

Now consider Ẑ = lim←−
n∈N

Zn. It is a profinite connected graph as a limit of profi-

nite connected graphs with surjective transition maps. Now define ∞ as the vertex
((+∞, n))n∈N. It has no edges coming into it or from it. Indeed take for a d ∈ {o, t},
a sequence e = ((un, n))n∈N, such that d(e) = ((+∞, n)n∈N). In that case we get
∀n ∈ N, (d(un), n) = (+∞, n). However the vertices (+∞, n) are all isolated, so that
proves that un = (+∞, n), so e =∞, proving that ∞ is isolated.

Now we will prove that there exists no superpath between u = ((0, 0))n∈N and ∞.
We will prove it in the following steps:
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• Prove that for every vertex x ∈ Ẑ, there exists m ∈ N ∪ {∞}, such that

∀n ≥ m,xn = xm and that ∀n < m, xn = (∞,m) and xm ∈ Zm

• Prove that the path-connected components of the vertices

(um,n)n∈N =

{
(+∞, n) if n < m

(0,m) else

are the vertices

u(k)n,m =

{
(+∞, n) if n < m

(k,m) else

together with edges between these vertices.

• Prove that if we take C2m a path-connected component of (um,n)n∈N, then the closure
of C2m is the set C2m ∪ {(vm,n)n∈N, (vm+1,n)n∈N}, with

(vm,n)n∈N =

{
(+∞, n) if n < m

(−∞,m) else

• Prove that (vm,n)n∈N isn’t in the closure of any other path-connected component
besides its own, C2m and C2m+2.

• Conclude.

Suppose ((xn, yn))n∈N is a vertex in Ẑ. We shall prove that if y is not a bounded sequence,
then xn will be equal to infinity and yn to n for all n ∈ N. Let n ∈ N. Since y is
not bounded, there exists n′ > n, such that yn′ > n ≥ yn. In that case, we get that
fn′,n(xn′ , yn′) = (+∞, n) = (xn, yn). If that happens, we simply put m =∞.

Therefore we may now assume that y is bounded. In this case, it has a maximal value
m. If we take now an n ∈ N, such that yn = m.

Observe that fn,m((xn, yn)) =

{
(+∞,m) if n>m
(ym,m) if n=m

This proves that ym = m. Let us observe that for all n ≥ m, yn = m and xn = m. Indeed
if n ≥ m, then m ≥ yn and so we have that fn,m(xn, yn) = (xn, yn). As such we obtain
that yn = m. m is also the least integer for which y attains the value m.

Now we need to prove that for a vertex of the form um, the path-connected component
of um is exactly the set {u(k)m|k ∈ Z} together with the edges connected to it. We simply
denote
u(k)m = (u(k)m,n)n∈N and vm = (vm,n)n∈N.

First we start by proving that if e ∈ Ẑ and o(e) = u(k)m, then either e = u(k)m,
or t(e) = u(k + 1)m. Assume that e 6= u(k)m. Then for all n0 ∈ N, there exists a
n > n0, such that en 6= u(k)m,n. By contradiction now assume that there exists n0 ∈
N, such that t(en) 6= u(k + 1)m,n. Take n > max{n0,m}, such that en 6= u(k)m,n.
Since o(en) = u(k)m,n = (k,m), we know that en is an edge in Z. There is however
only one edge in Z coming out of k and that is the edge with terminus at k + 1, hence
t(en) = (k + 1,m) = u(k + 1)m,n. Now if we apply the transition map fn,n0 , we get that
t(en0) = u(k + 1)m,n0 which is our contradiction. Using the same method, one can prove
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that if e is such that t(e) = u(k)m, then either e = u(k)m, or o(e) = u(k− 1)m. From this
it follows that C2m = {x ∈ Ẑ|∃k ∈ Z, o(x) = u(k)m}, i.e the set of all the u(k)m together
with edges connected to u(k)m.

Now we need to prove that C2m = C2m∪{vm, vm+1}. Let πn be the natural projection of
Ẑ onto Zn. Let us show first that C2m∪{vm, vm+1} is closed. Consider Fn = {(x,m) ∈ Zn}.
It is basically the set of elements of the m th component in Zn seen as the union

n∐
k=0

Z.

Let us show that Fn is closed in Zn. For that we write again Zn as the quotient An�Rn.
One can see that the preimage of Fn by the natural projection on the quotient is the
closed component m-th Z in An together with the closed set {(+∞,m−1), (−∞,m+1)}.
As such, since the preimage of Fn is closed, Fn itself is closed. Now let us show that
C2m ∪ {vm, vn} =

⋂
n≥m

π−1
n (Fn).

Let x ∈
⋂
n≥m

π−1
n (Fn). Then xn = (an,m). The sequence an however has to be

constant, so xn = (a,m) for all n ≥ m. In that case we can observe that x is either an
edge connecting to some u(k)m or some u(k)m or one of the infinities. That concludes the
proof that C2m ∪ {vm, vm+1} is closed.

To prove now that C2m is equal to that set, all we need to prove is that both vm
and vm+1 are in its closure. Notice that πm is a bijection between C2m ∪ {vm, vm+1} and
Fm.We already know that πm is surjective. The reason it is injective is simply, because if
m th components are equal, all components above will be simply by what we have proved
earlier and the components below are always equal by applying the transition maps fm,n.
The map πm is therefore a homeomorphism between C2m ∪ {vm, vm+1} and Fm. Since
(−∞,m) and (+∞,m) are in the closure of πm(C2m), then vm and vm+1 will be in the
closure of C2m in the closed subset C2m ∪ {vm, vm+1}. Since the subset is closed, we get
indeed that C2m = C2m ∪ {vm, vm+1}

Now we will need to prove that the only path-connected components such that vm is
in their closure are C2m, {vm}, C2m+2. To prove this, we now define C2m+1 as {vm} and
we shall prove that Z \ ∞ =

⋃
n∈N

Cn. We start by proving that every vertex is in such a

component. As we have proved earlier, there exists m ∈ N, such that ∀n ≥ m, πn(x) =
πm(x) and ∀n < m, πn(x) = (∞, n). If we then write xm = (a,m), we get that either
xm = u(a)m, if a ∈ Z or xm ∈ {vm, vm+1}. This proves that xm ∈ C2m−1 ∪ C2m ∪ C2m+1.
Now we know that every vertex is in one of the components and since they are path-
connected, every edge must be in one of them as well.

Now we can finally write the conclusion. By contradiction, assume that there exists a
sequence of path-connected components X0, X1, · · · , Xl, with u0 ∈ X0 and ∞ ∈ Xl and
Xk ∩Xk+1 6= ∅. Without loss of generality, we may assume that this sequence is without
repetition. In that case Xl−1 6= {∞} We then have to have that there exists m ∈ N, such
that Xl−1 = Cm. However we know that ∞ 6∈ Cm, so we have a contradiction.

Now we have proven superpath-connectedness is not always enough to prove
connectedness. There is however still a topological notion that explains what con-
nectedness is. As seen in the 4.2.7, if there exists a non constant qmorphism into the
discrete space {0, 1}: that seems close to one possible definition of connectedness in
general topological spaces, where a space X is connected if and only if every contin-
uous map from X to {0, 1} is constant. This indicates there could be some topology
for which a profinite graph is connected in the sense of profinite graphs if an only
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if it is connected in the sense of this topology. It cannot be the profinite topology
since we know that profinite topologies are totally disconnected, which is the exact
opposite of what we want. We will however show that there is a coarser topology
on a profinite graph for which the connected graphs are exactly those connected for
that topology.

Proposition 4.2.11. Let Γ be a profinite graph. We have that Γ is connected if
and only if every continuous qmorphism from Γ into the discrete graph with vertices
{0, 1} and no edges is constant.

Proof. First suppose that Γ is connected. Then if f is a qmorphism into {0, 1} then
its image has to be path-connected. As such, f has to be constant, because if it
were not its image would have been the whole {0, 1}, which is not path-connected.

Now suppose on the other hand that Γ is not connected. Let us construct a
non constant continuous qmorphism from Γ to {0, 1}. Since Γ is not connected,
there exists a qmorphism f from Γ to some finite graph X, such that im(f) is not
path-connected. Let C then be one of the path-connected component of im(f). Let
u be a map from im(f) to {0, 1} defined by

u(x) =

{
0 if x ∈ C
1 else

u is qmorphism: indeed if we take x ∈ C, then (o(x), x, t(x)) is a path, so o(x), t(x)
and x are all in C, therefore get sent to 0 by u. If x isn’t in C, then none of
the t(x), o(x) and x can be in C, therefore u(x) = u(o(x)) = u(t(x)) = 1. It
is automatically continuous, since for discrete graphs, all maps automatically are.
Then u ◦ f is a non constant continuous qmorphism from Γ to {0, 1}.

Again let us reiterate that this result is strongly analogous to a possible definition
of connectedness. Now we will finally define the topology that is compatible with
our notion of connectedness.

Definition 4.2.12 (Subgraph). Let (Γ, V, t, o) be an abstract graph. A subset A of
Γ is called a subgraph, if ∀d ∈ {t, o}, d(A) ⊆ A.

We observe that for a subgraph A, (A,A ∩ V, t|A, o|A) is a graph.

Proposition 4.2.13. Let Γ be a profinite graph. The following statements are true:

i. The set τ of all open subgraphs of Γ forms a topology on Γ.

ii. The functions o, t and all continuous qmorphisms for the profinite topology are
continuous for the topology given by τ .

iii. Γ is connected in the sense of profinite graphs if and only if it is connected for
the topology given by τ .
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Proof. i. Let Γ1 and Γ2 be two open subgraphs. The set Γ1∩Γ2 is an open set for
the profinite topology. Now let us prove it is a subgraph. If d ∈ {o, t} is one of
the incidence maps and x ∈ Γ1 ∩ Γ2, then since Γ1 and Γ2 are subgraphs, d(x)
has to be by definition in both of them.

Let Γi be a collection of subgraphs. Let us define Γ′ to be their union. The
set Γ′ is open in the profinite topology as a union of opens. To prove that Γ′ is
a subgraph, we again take d ∈ {o, t}, Then if x ∈ Γ′, there exists i such that
x ∈ Γi, therefore d(x) ∈ Γi ⊆ Γ′.

The empty set is an open subgraph, since ∀x ∈ ∅, d(x) ∈ ∅ is vacuously true and
Γ is trivially an open of Γ. This concludes the proof that τ is a set of opens.

ii. Let Γ′ be an open subgraph of Γ and d ∈ {o, t}. Let us prove that d−1(Γ′) is
a subgraph as well. If x ∈ Γ, such that d(x) ∈ Γ′, then we have d(o(x)) =
d(t(x)) = d(x), therefore both o(x) and t(x) are in Γ′, proving the continuity of
the map d.

Now let f be a continuous qmorphism from a profinite graph Γ to a profinite
graph Γ′. Let U be an open subgraph of Γ′. Let us show that f−1(U) is an open
subgraph of Γ. Let d be again one of the two incidence maps. Let x ∈ f−1(U).
Since U is a subgraph of Γ, we have that d(f(x)) ∈ U . Since f is a qmorphism,
we get that d(f(x)) = f(d(x)), so d(x) ∈ f−1(U), concluding our proof that
qmorphisms which are continuous for the profinite topology are continuous for
the open-subgraph topology.

iii. Suppose first that Γ is not connected for the open subgraph topology. Then Γ
is a disjoint union of open subgraphs, so by lemma 4.2.7, Γ is not connected as
a profinite graph. Now by contraposition suppose that Γ is not connected in
the profinite sense. In that case by the proposition 4.2.9 , there exists a non
constant qmorphism from Γ to {0, 1}. By continuity of f in sense of the open
subgraph topology, we conclude that Γ is not connected for that topology, since
we found a non constant continuous map from Γ to the discrete space {0, 1}.

Let us now briefly revisit the example in Ribes [41](2.1.8). Now that we know in
this light that the profinite connectedness is in fact a topological notion of connect-
edness, we can see that the compactification of the path P in N is a close analogue
to the famous example in R2: with the curve (x, sin( 1

x
)), x ∈ (0, 1] in R, The curve

is path-connected, just like the path P is, but its closure in a bigger space is not
connected. The details for this counter example can for example be seen in the
following topology textbook: [32] page 141.

4.3 Chain complex of profinite graphs
As we have seen in the section 2.4, a graph chain complex is useful for finding
properties of a graph: mainly whether the graph is connected and whether is is
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a tree. We will see that it is the case for profinite graphs as well, but we need
to change the notion of a complex to adapt it to the profinite structure. Instead
of working with complexes over rings, we will work with complexes over profinite
rings. Another difference to resolve is that in the case of abstract graphs, we take a
sequence R[E(Γ)] → R[V (Γ)] → R. The problem with the case of profinite graphs
is that E(Γ) is not necessarily a profinite space. It is when E(Γ) is closed in which
case we can do the same theory, but with profinite topology added on top. If not
what we do is by factoring by the set of vertices V (Γ) (which is always closed for
a profinite graph), we collapse all vertices onto a single point. That point has to
be zero for the complex to make sense, which is why we have the definition that
follows:

Definition 4.3.1. Let Γ be a profinite graph. Consider the pointed profinite space
(Γ�V (Γ), ∗), with ∗ being the class V (Γ) in the quotient. Take R to be a profinite

ring. We take ∂ the continuous map from (Γ�V (Γ), ∗) to R[[V (Γ)]] the free profinite

module over V (Γ) that to x ∈ Γ�V (Γ) associates t(x) − o(x). It sends ∗ onto
0 and therefore can be extended to a linear continuous map from the free pointed
module R[[Γ�V (Γ), ∗]] to R[[V (Γ)]], which we shall call ∂ as well. Now consider ε
the continuous map from V (Γ) to R constant and equal to 1. It can be extended to
a continuous R-linear map from the free module R[[V (Γ)]] into R, which we shall
call the augmentation map and denote it ε as well. We observe that ε ◦ ∂ = 0 and
therefore we can consider the complex:

R[[Γ�V (Γ), ∗]] R[[V (Γ)]] R 0
∂ ε

We call it the chain complex of Γ with coefficients in R.
We call the zeroth homology the profinite R module H0(Γ, R) = ker(ε)�im(∂) and

the first homology the profinite R-module: H1(Γ, R) = ker(∂).

We can do a more classical homology without pointed spaces if we consider
E(Γ) closed we shall now prove that if that is the case the two give isomorphic
chain complexes.

Proposition 4.3.2. Let Γ be a profinite graph. Let

R[[Γ�V (Γ), ∗]] R[[V (Γ)]] R 0
∂ ε

be its complex. Suppose that E(Γ) is closed in Γ. Now consider the continuous
map ∂′ from E(Γ) to V (Γ) that to e associates t(e) − o(e). We extend it into a
continuous R-linear map from R[[E(Γ)]] to R[[V (Γ)]], which we shall still call ∂′.
Then there exists an isomorphism u from R[[Γ�V (Γ), ∗]] to R[[E(Γ)]], such that the
diagram:
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R[[Γ�V (Γ), ∗]] R[[V (Γ)]] R 0
∂ ε

R[[E(Γ)]] R[[V (Γ)]] R 0
∂′ ε

u id id

commutes. In particular the chain complexes are isomorphic.

Proof. Consider the map u from Γ into R[[E(Γ)]] that sends any element of V (Γ)
onto 0 and an element of E(Γ) onto itself. The map u is continuous on both V (Γ)
and E(Γ), which are disjoint opens in Γ, therefore it is continuous. Furthermore it is
constant on V (Γ), therefore it can be factored into a continuous map which we still
shall call u from Γ�V (Γ) to R[[E(Γ)]]. We have that u(∗) = 0 and therefore u can

be extended to a unique R-linear continuous map from R[[Γ�V (Γ), ∗]] to R[[E(Γ)]].
To prove that u is an isomorphism of profinite R-modules, we shall find an explicit
inverse. Simply consider v the continuous map from E(Γ) to Γ�V (Γ) that sends
an edge into its class in the quotient. It can be extended to a R-linear map from
R[[E(Γ)]] to R[[Γ�V (Γ), ∗]]. The maps u and v restricted to the bases are inverse
to each other, therefore they are inverses to each other as maps of modules. Finally
let us prove that ∂′ ◦ u = ∂. Let x ∈ Γ�V (Γ). Then

∂′(u(x)) = ∂′(0) = 0 = ∂(u(x)), if x is the class V (Γ)

If x ∈ E(Γ), then ∂′(u(x)) = t(x)− o(x) = ∂(x). Since ∂′ ◦ u and ∂ are equal on the
basis of R[[Γ�V (Γ), ∗]], then they are equal everywhere which concludes the proof.

Since the chain complexes are isomorphic, so are the homologies.

Now we will prove that the notion of connectedness is characterized by the ho-
mology.

Lemma 4.3.3. Let α be a q morphism of profinite graphs Γ,Γ′ and R a profinite
ring.

a) If α is surjective, then H0(α,R), the induced morphism on the zeroth homology
is surjective.

b) If α is injective, then H1(α,R) is injective.

c) If Γ is a projective limit of a projective system of profinite graphs Γi, then
H0(Γ, R) is a projective limit of the H0(Γi, R) and H1(Γ, R) is the projective
limit of the H1(Γi, R).
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Proof. a) Suppose that α from Γ to Γ′ is surjective. By the lemma 3.3.3, if ε′ is the
augmentation map of R[[V (Γ′)]], then R[V (Γ′)] ∩ ker(ε′) is dense in R[[V (Γ′)]].
The module R[V (Γ′)]∩ ker(ε′) is generated by the x− y, with x, y ∈ V (Γ′). The
linear map h̃ from ker(ε) to ker(ε′) then is surjective, since im(h̃) is closed in
ker(ε′) and contains all the x − y , with x, y ∈ V (Γ′) by surjectivity of α. We
then get that H0(α) is surjective.

b) Now suppose that α is injective. By 3.3.4, the linear map induced by α from
R[[Γ�V (Γ), ∗]] to R[[Γ

′
�V (Γ′), ∗]] is injective and therefore H1(α) is injective as

well.

c) Let (pi)i∈I be the natural projections of Γ onto Γi with Γ seen as a projective
limit of the Γi. Let ∂i be the boundary map from R[[Γi�V (Γi)

, ∗]] to R[[V (Γi)]]

and εi the augmentation map on R[[V (Γi)]]. Furthermore let ∂ be the boundary
map of Γ and ε the augmentation map from R[[V (Γ)]]. One can check that:

∀i ∈ I, pi∂ = ∂ipi

and that:
∀i ∈ I, εipi = ε

With pi denoting the appropriate induced linear map. Now consider the unique
isomorphism f from R[[Γ�V (Γ), ∗]] to the limit L = lim←−

i∈I
R[[Γ�V (Γi)

, ∗]], such that

πi ◦ f = pi, with πi being the natural projection of L onto R[[Γi�V (Γi)
, ∗]]. Let

us show that f is an isomorphism from ker(∂) to {(xi)i∈I ∈ L|∀i ∈ I, ∂i(xi) =
0} = lim

i∈I
ker(∂i). The map f is injective as a restriction of an injective map. To

prove that f is surjective, consider (yi)i∈I a collection in lim
i∈I

ker(∂i). Since it is a

collection in L, then there exists x ∈ R[[Γ�V (Γi)
, ∗]], such that f(x) = (yi)i∈I . Let

us show that ∂(x) = 0. For that, it is enough to prove that ∀i ∈ I, pi(∂(y)) = 0.
If we take i ∈ I, we obtain that pi(∂(y)) = ∂ipi(y) = ∂i(xi) = 0. Since f
is an isomorphism and ker(∂i) is by definition H1(Γi, R), then H1(Γ, R) and
lim
i∈I

H1(Γi, R) are isomorphic.

Let us prove the same result for H0. Consider g the unique isomorphism of
projective limits from R[[V (Γ)]] to L′ = lim←−

i∈I
R[V (Γi)]. Now restrict g onto ker(ε)

and compose it with natural projections into quotients to get a map g̃ from
ker(ε) to lim←−

i∈I
H0(Γi, R). The map g̃ is surjective for the same reason the map

f was. Let us show that its kernel is exactly im(∂). To do that suppose that
g(y) = (∂i(pi(xi))).

Now by contradiction assume that there is no x ∈ R[[Γ�V (Γ)]], such that y =

∂(x). In that case: ⋂
i∈I

(pi ◦ ∂)−1({pi(y)}) = ∅
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Indeed if there was an x in that set, then for all i ∈ I, pi(∂(x)) = pi(y) and
therefore ∂(x) = y. Using the continuity of the map pi ◦ ∂ and compactness, we
then get that there exist i1, · · · , in ∈ I, such that:

n⋂
k=1

(pik ◦ ∂)−1({pik(y)}) = ∅

Now consider j an upper bound of {i1, · · · , in} and φik,j the transition map from
Γj to Γik . In that case:

pik∂(xj) = φik,j(pj(∂(xj))) = φik,j(∂j(pj(xj))) = φik,j(pj(y)) = pik(y)

Since this is true for an arbitrary k, we get that xj ∈
n⋂
k=1

(pik ◦ δ)−1({pik(y)}),

which is a contradiction. This proves that y ∈ im(∂), hence we conclude that g
is an isomorphism of R modules and that

H0(Γ, R) ∼= lim←−
i∈I

H0(Γi, R)

Proposition 4.3.4 (Connectivity criterion). A profinite graph Γ is connected if and
only if for every profinite ring R, H0(Γ, R) = {0}.

Proof. If we write Γ as a projective limit of Γi of finite graphs with the natural
projections pi all surjective, then Γ is connected if and only if all the Γi are path-
connected. Furthermore by the lemma if all the pi are surjective, then all the
H0(pi, R) are surjective. Hence H0(Γ, R) is equal to zero if and only if H0(Γi, R) is
zero for all i. It is therefore enough to prove the theorem for the case Γ finite.

Assume first then that Γ is connected. We can complete Γ into an undirected
graph Γ̃(as defined in chapter 2), by formally adding inverses of the edges. The
edges in Γ will then form an orientation on Γ̃ and the homology computed in the
sense of this chapter will be the same homology as defined in: 2.4. Furthermore
since we assumed that Γ is connected, then H0(Γ,Z) = {0}. Then by the universal
coefficient theorem: if R is a ring, we get an exact sequence of the form:

0 H0(Γ,Z)⊗R H0(Γ, R) Tor1(H−1(Γ,Z), R) 0

We have that H0(Γ,Z) = {0} and H−1(Γ,Z) = {0}, therefore H0(Γ, R) = {0}.
This being true independently of the ring R, it is true for any profinite ring as well.

Now suppose on the other hand that H0(Γ, R) = {0} is true for any profinite ring
R. Let us show that Γ is connected. We simply take R = F2, the finite field with two
elements. Let x, y ∈ V (Γ). Let us show that there exists a path from x to y. Since
y− x ∈ im(∂), there exist e1, · · · , en ∈ E(Γ), such that x− y = ∂(e1) + · · ·+ ∂(en).
Just like in the proof of 2.4.3, we can prove by induction on n that we can rearrange
the edges into a path from x to y. It is in fact even a little easier, since thanks to
the coefficients in F2, we do not need to worry about signs. The graph Γ is therefore
connected and that concludes the proof.



110

4.4 Profinite Trees
So far the approach we took for generalizing a notion from graph theory to profinite
graphs, we proceeded by taking limits of finite graphs that verified the notion we
wanted to generalize. Following this approach, we could define a profinite tree as a
limit of finite trees. Such a definition however defies an intuition one usually has of
trees: that is connected graphs with no cycles.

Take for example the following profinite graph:
For n ∈ N \ {0}, we define Cn to be the cycle of length n: i.e a tree whose

vertices are: elements of Z�nZ and whose edges are {e0, · · · , en−1} such that for all
k ∈ Z�nZ, o(ek) = k and t(ek) = k + 1. For m dividing n, the transition map from
Cn to Cm is the

pm,n =


Cn −→ Cm

x 7→

{
xm if x ∈ Z�nZ
ekm if x = ek, k ∈ Z�nZ

The image below illustrates the transition map for the case n = 6 and m = 3. The
edges and vertices of a certain color are sent to the edges or vertices of the same
color.
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The limit graph has no cycles, because any loop for smaller n will eventually get
lifted into a path without a loop for a high enough multiple of m. When looking
for trees then, the right notion seems then to be cycles, rather than just plain limits
of trees. The tool for detecting cycles in graphs is H1, but we cannot simply pick
it with coefficients in Z, because that would disregard the profinite structure, so
we take the coefficients in the profinite completion of Z: Ẑ and end up with the
definition that follows:

Definition 4.4.1. Let Γ be a profinite graph. We say that Γ is a tree, if Γ is
connected and H1(Γ, Ẑ) = {0}.

We will show that the example that we gave above is a tree in the sense of this
definition. What we can observe is that profinite trees are connected and without
cycles, but we will also show that not all connected profinite graphs without cycles
are profinite trees.

Remark. There is a more precise notion of a tree. Sometimes instead of studying
actions of all profinite groups, we want to restrict ourselves to only pro-p groups
or more generally groups with only certain primes involved. In that case we would
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consider H1 with coefficients of certain products of p- completions of Z: Zp. If we
would denote the set primes in the product π, then the definition of a π-tree would
be a connected profinite graph with H1(Γ,

∏
p∈π
Zp). However we won’t study this

case in here. It is covered in more details in Ribes’s book [41] section 2.4.

Proposition 4.4.2 (properties of profinite trees).

a) A finite tree is a profinite tree.

b) Limits of profinite trees with surjective natural projections are profinite trees.

c) A profinite tree has no cycles: i.e for any path (x, e1, · · · , en, x), with e1, · · · , en ∈
E(G), there exist distinct i, j, such that ei = ej.

Proof. a) Let T be a finite tree. The graph T is then by definition path-connected,
so it is connected. Now consider ∂ to be the boundary map from Ẑ[[E(T )]] to
Ẑ[[V (T )]]. Since E(T ) is finite, we have that Ẑ[[E(T )]] is equal to the free Ẑ-
module Ẑ[E(T )] Therefore the homology H1 is just a regular homology, without
the profinite structure and we can compute it using the universal coefficient
theorem. T is a tree, therefore we get that H1(T,Z) = {0}. Using the universal
coefficient theorem, we get the following exact sequence:

0 H1(T,Z)⊗ Ẑ H1(T, Ẑ) Tor1(H0(T,Z), Ẑ) 0

Since T is a tree, we get H1(T,Z) and H0(T,Z) that are zero which leads to the
conclusion that H1(T, Ẑ) is zero and therefore T is a profinite tree.

b) Suppose that T is a limit of trees (Ti)i∈I with surjective natural projections, then
T is connected as a limit of connected profinite graphs. Furthermore we have by
the lemma 4.3.3 that H0(T, Ẑ) is isomorphic to lim

i∈I
H0(Ti, Ẑ), which are all zero

since Tis are assumed to be trees.

In particular a limit of finite trees is a profinite tree.

c) Let p = (x, e1, · · · , en, x) be a path. There exist then incidence maps d1, · · · , dn ∈
{o, t}, such that d1(e1) = x, dn(en) = x and such that for all k < n, dk(ek) =
dk+(ek+1) We write for k between 1 and n

εk =

{
1 if dk = o

−1 if dk = t

Since p is a path from x to itself, we get that ∂(
n∑
k=1

εkek) = 0. Since ∂ is injective

map (by assumption T is a profinite tree), we get that
n∑
k=1

εkek = 0, which implies

that there exists some i, j distinct such that εiei = εjej and ei = ej. The graph
T is therefore without cycles.
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A natural question is whether a connected profinite graph without cycles is a
profinite tree: we will now show that it is not the case.

Example 4.4.3 (A connected profinite graph with no cycles that is not a tree). Take
p some prime number. For n ∈ N, consider Cn the cycle of length pn, i.e a graph
whose vertices are Z�pnZ and edges en0 , · · · , enpn−1, with o(enk) = k and t(enk) = k+ 1.
We consider for n ≥ m, the transition map from Cn to Cm:

πm,n =


Cn −→ Cm

x 7→

{
xp

m if x ∈ Z�pnZ
k
pm if x = ek, k ∈ Z�pnZ

and takeG the limit of the Cn. The graphG is then connected as a limit of connected
graphs. Let us prove that G has no cycles. By contradiction, assume that there
is a cycle (x, e1, · · · , ea, x) with e1, · · · , ea distinct edges in G. Since e1, · · · , ea are
distinct, there exists a number m ∈ N, such that πm(e1), · · · , πm(ea) are all distinct
(with πm the natural projection of G on Cm). Now let n be a natural number, such
that pn > a and n ≥ m. In that case (πn(x), πn(e1), · · · , πn(ea), πn(x)) is a cycle in
Cn of length a < pn, which is impossible, since the length of all cycles in Cn has to
be a multiple of pn.

Now that we know that G is without cycles, let us prove that is nevertheless not
a profinite tree. In order to do that, we need to find a ∈ Ẑ[[G�V (G), ∗]], such that
∂(a) = 0, but a 6= 0.

We know that Ẑ can be represented as the infinite product
∏

q prime
Zq. Take q a

prime that is coprime with p. Then qn for all n is coprime with p and therefore
p is invertible modulo qn. Using the axiom of choice, we can construct a sequence
(un)n∈N, such that pun ≡ 1[qn] and un ≡ un−1[qn−1]. This sequence gives us a
number v in Zq and therefore in Ẑ. The number v has the property that pv is equal
to 1̃q, which we define as the number in Ẑ associated to the number 1 in Zq. Now
define a sequence vn by v0 = 1̃q and vn = vn for n 6= 0. Then take

(an)n∈N = (vn

pn−1∑
k=0

enk)

Due to the property pvn = vn−1, we get that this sequence is compatible with
transition maps from Ẑ[E(Gn)] to Ẑ[E(Gm)] for n ≥ m and it therefore defines a
non zero element in Ẑ[[G�V (G), ∗]], which we shall call a. Observe that ∂(a) is zero,
because component by component, a is a multiple of a cycle. However a is not zero,
proving that G is indeed not a profinite tree.

Example 4.4.4 (A profinite tree that is not a limit of finite trees). This time
consider the graph G from 4.4 that is the limit of cycles Cn, with transition maps
pm,n for m dividing n. Let us show that such a graph is a profinite tree. Consider
u ∈ ker(∂) an element on the augmentation map. By contradiction, assume it
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is non zero, then there exists n ∈ N, such that πn(a) 6= 0, with πn being the
natural projection of Ẑ[[G�V (G)]] to Ẑ[E(Cn)]. The element πn(u) is then a cycle

in Ẑ[E(Cn)]. Using the universal coefficient theorem, we can observe that cycles in
Cn are generated by en0 + · · ·+enn−1 and therefore there exists u ∈ Ẑ, u 6= 0, such that
πn(u) = a(en0 + · · ·+ enn−1). Since a is not zero, there exists an integer n1, such that
pn1(a) is a non zero element in Z�nZ, with pn1 the natural projection of Ẑ on Z�n1Z.

Now let m = n1n. We have πm(u) = b
m∑
k=1

emk−1, with b ∈ Ẑ. Then by applying the

transition map from Ẑ[E(Gm)] to Ẑ[E(Gn)], we get that n1b
n∑
k=1

enk−1 = a
n∑
k=1

enk−1 and

therefore n1b = a. This is however impossible, since pn1(n1b) = 0 and pn1(a) 6= 0,
which concludes the proof that G is indeed a profinite tree.

4.5 Profinite covering graphs
In this section, we will generalize the notions we have seen in chapter 2. We will focus
mainly on normal covering graphs, which in case of profinite graphs will be called
Galois coverings. We will give a definition using a free action of a profinite group,
we will show that in the finite case it’s equivalent to the classical definition given in
chapter 2 and then we will prove that every Galois covering can be seen as a profinite
limit of finite covering graphs. This section is based on the work of Amrita Acharyya
, Jon M Corson and Bikash Das in [1]. Note that it uses undirected profinite graphs,
while up until now we have been working with directed ones. Furthermore just like
in [1], we will assume that our profinite graphs have a closed set of edges i.e that
they are limits in the category of graphs with morphisms.

4.5.1 Undirected profinite graphs

First note that the category of undirected graphs together with morphisms form a
pre-profinite category as defined in 3.1.4. We can then define undirected profinite
graphs as follows:

Definition 4.5.1 (Undirected profinite graphs). We define an undirected profinite
graph as a profinite object (Γ, (φi∈I)i∈I) in the category of undirected abstract graphs.

Just like in 4.1.4, we have the following characterization of undirected profinite
graphs:

Theorem 4.5.2 (characterization of undirected profinite graphs). Let Γ be a com-
pact Hausdorff topological space, together with continuous maps o, t from Γ to a
clopen subspace V , such that (Γ, V, o, t) is an undirected graph with a continuous
inversion map. Then Γ is a profinite undirected graph if and only if Γ is totally
disconnected as a topological space.

Proof. We will take a similar approach as in 4.1.4. We know that one implication
is a simple consequence of 3.1.10. To prove the other implication, we take Ω the set
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of clopen equivalence relations on Γ. Now let R ∈ Ω. Since E(Γ) and V (Γ) form an
open partition of Γ, we have that R∩(E(Γ)2qV (Γ)2) is an open equivalence relation
that has the property that edges can only be equivalent to edges. Now define

R′ = {(x, y) ∈ R∩(E(Γ)2qV (Γ)2), o(x)Ro(y), t(x)Rt(y) and if x ∈ E(Γ), then xRy}

Similarly to 4.1.4, we can show that this equivalence relation is compatible with
the graph structure and is open. Thus we conclude that Γ is indeed an undirected
profinite graph.

4.5.2 Covering graphs form a preprofinite category

As a reminder in section 2.2.7, for an abstract undirected graph Γ and x a vertex in
V (Γ), we define a star at a vertex x: St(Γ, x) := {e ∈ G|o(e) = x or t(e) = x}. Now
we define the following category: The objects are triplets (Γ,∆, ξ), with Γ and ∆
abstract undirected graphs and ξ a morphism of graphs, such that for every x ∈ Γ,
ξ is a bijection from St(Γ, x) to St(∆, ξ(x)). The objects are then called coverings.
A morphism of coverings (Γ,∆, ξ) and (Γ′,∆′, ξ′) is a pair of morphisms of graphs
(u, v), such that the diagram:

Γ ∆

Γ′ ∆′

ξ

u v

ξ′

commutes. One has to be a little careful here as we do not assume ξ to be
surjective, which is typically the case in the theory of covering graphs. Let us show
that this category is preprofinite in the sense of the definition in 3.1.4. First, we
define the forgetful functor F in the following way: To an object O = (Γ,∆, ξ), we
associate F (O) = Γq∆ and to a morphism (u, v) of objects (Γ,∆, ξ) and (Γ′,∆′, ξ′),
we associate the map

F ((u, v)) =


Γq∆ −→ Γ′ q∆′

x 7→

{
u(x) if x ∈ Γ

v(x) if x ∈ ∆

The functor F is faithful.
Now we will prove that projective limits exist in this category and that F com-

mutes with them.
Let ((Oi)i∈I , (φi,j, ψi,j)j≥i) be a projective system in the category of covering

graphs, such that for all i ∈ I, F (Oi) is a finite set. We write for i ∈ I, Oi =
(Γi,∆i, ξi). We then define (Γ, (pi)i∈I) as the limit of the system ((Γi)i∈I , (φj,i)j≥i) in
the category of graphs with morphisms and (∆, p′i) to be the limit of ((∆i)i∈I , (ψi,j)j≥i)
in the same category. The morphisms (ξi ◦ pi)i∈I are compatible with the transition
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maps (ψi,j)j≥i and therefore by definition of a projective limit, there exists a unique
morphism ξ from Γ to ∆ , such that the diagram:

Γ ∆

Γi ∆i

ξ

pi

ξi

p′i

commutes for every i ∈ I. Let us show that (Γ,∆, ξ) is a projective limit. We
need to prove that ξ is locally bijective. For that, take x ∈ V (Γ).

For every i ∈ I, we denote ηi the inverse map of ξi from St(∆, ξi(xi)) to St(Γi, xi).
Now take (ei)i∈I ∈ St(∆, ξ(x)). We have ∀i ∈ I, ei ∈ St(∆, xi). Indeed we have
that d((ei)i∈I) = x, with d being either o or t and so d(ei) = xi for all i ∈ I, so
ei ∈ St(∆i, xi) for all i ∈ I. The collection (ηi(ei))i∈I is well defined. Now let us
prove that it is compatible with the transition maps φi,j. For that take i ∈ I and
j ∈ I, such that j ≥ i. We have that:

ξi(φi,j(ηj(ej))) = ψi,j(ξj(ηj)(ej)) = ψi,j(ej) = ei

Since
ξi(φi,j(ηj(ej))) = ei

Then by applying ηi, we get:

φi,j(ηj(ej)) = ηi(ei)

proving the compatibility of the collection with the transition maps. We conclude
that:
(ηi(ei))i∈I ∈ Γ. More precisely we have that (ηi(ei))i∈I ∈ St(Γ, x). We can then
define the map: {

St(∆, ξ(x)) −→ St(Γ, x)

(ei)i∈I 7→ (ηi(ei))i∈I

This map is the local inverse of ξ, since their both compositions equal identity
component by component.

We have proven therefore that (Γ,∆, ξ) is a cover, now we need to prove that it
is a projective limit, but that comes directly from the fact that both Γ and ∆ are
projective limits.

Now we need to prove that Γ q∆ is also a projective limit of the sets Γi q∆i.
Write for j ≥ i

ui,j =


Γj q∆j −→ Γi q∆i

x 7→

{
φi,j(x) if x ∈ Γj

ψi,j(x) if x ∈ ∆j

And denote A the limit of the projective system ((Γi q∆i)i∈I , (ui,j)j≥i). Note that
if (ai)i∈I ∈ A, then either for all i, ai is in Γi, or for all i, ai is in ∆i. Thanks to
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that we obtain a straightforward isomorphism between Γ q∆ and A, proving that
F ((Γ,∆, ξ)) is isomorphic to the projective limit of the F ((Γi,∆i, ξi)).

There is one last property of F to prove.
Let O1 = (Γ1,∆1, ξ1), O2 = (Γ2,∆2, ξ2) and O3 = (Γ3,∆3, ξ3) be three objects in
the category of covering graphs. Let (u, v) be a morphism from O2 to O3 and (g, h)
a morphism from O2 to O1, such that F ((g, h)) is surjective and finally let f be a
map from F (O1) to F (O3), such that the diagram:

F (O1)

F (O2)

F (O3)

F ((g, h)) F ((u, v))

f

commutes. Let us show that there exists a morphism (w, z) from F (O1) to
F (O3), such that F ((w, z)) = f .

First let us prove that f(Γ1) ⊆ Γ3 and f(∆1) ⊆ ∆3. We take x ∈ Γ1. Since
F ((u, v)) is surjective, and x ∈ Γ1, there exists y ∈ Γ2, such that u(y) = x. Then

f(x) = F ((g, h))(y) = g(y) ∈ Γ3

The proof that f(∆1) ⊆ ∆3 follows exactly the same logic. In that case denote f1,
f restricted to Γ1 and f2, f restricted to ∆2. The fact that f1 and f2 are morphisms
follows simply from that fact that graphs are a preprofinite category. We therefore
conclude that f = F ((f1, f2)).

As such, we can therefore define a category of profinite graph coverings as profi-
nite limits of finite coverings of finite graphs.

Now we want to establish a Galois theory of profinite covering graphs to gener-
alize what we have seen in chapter 2. In order to do that, we will need to define the
notion of a subcovering graph and a notion of a normal cover. For normal coverings,
we will use the definition coming from Ribes [41] in Chapter 2: on Galois coverings.

Definition 4.5.3. Let C = (Γ,∆, ξ) be a covering graph, we call a subcovering graph
of C a triplet (Γ′, ξ′, u) with ξ′ and u morphisms of graphs, such that (Γ′,∆, ξ′) is
a covering graph of ∆ and (Γ,Γ′, u) is a covering graph of Γ′ and such that the
following diagram commutes:

Γ

γ′

∆

u

ξ′

ξ

A morphism of subcovering graphs of (Γ,∆, ξ): (Γ′, ξ′, u) and (Γ′′, ξ′′, u′), Is a
continuous morphism of graphs f from Γ′ to Γ′′ such that the following diagram
commutes:
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Γ ∆

Γ′

Γ′′

u

ξ′′

f

ξ′

u′

Definition 4.5.4 (Group action on a graph). Let G be an abstract group and Γ
an abstract graph. An action of G on Γ, is a morphism φ from G to Aut(Γ).
We often denote φ(g)(x) as g · x. We say that G acts without edge inversions if
∀e ∈ E(Γ), g · e 6= e.

Not that of a group acts we can without edge inversions, the quotient graph of
an undirected graph is also undirected.

Definition 4.5.5 (Galois coverings). Let G be a profinite group acting freely (and
continuously) without edge inversions on an undirected profinite graph Γ. Let ∆ be
the profinite graph Γ�G, i.e Γ, quotiented by the closed relation: x ∼ y ⇔ ∃g ∈
G, x = g · y. Finally let ξ be the natural projection of Γ on ∆. We call the triple
(Γ,∆, ξ) a Galois covering.

We can now prove that if (Γ,∆, ξ) is a Galois covering, then is a covering.
Let x ∈ V (Γ). First let us show that ξ is injective on St(Γ, x). Let e, e′ ∈ St(Γ, x)

be two edges, such that ξ(e) = ξ(e′). In that case there exists g ∈ G, such that
e′ = g · e. We now distinguish two cases:

• Case 1: o(e) = x and t(e′) = x.
In that case t(g · e) = x = o(e′), thus g · x = x and since G acts freely, that
implies that g = 1G and e = e′.

• Case 2: o(e) = x and o(e′) = x. Then g · x = x and so e = e′.

Now let us prove that ξ is surjective. Let [e] ∈ St(∆, [x]), with [x] denoting the
class of x in the quotient. In that case, there exists g ∈ G, such that o(e) = g · x.
Thus we have that g−1 · e ∈ St(Γ, x) and ξ(g−1 · e) = [e]. We can therefore conclude
that (Γ,∆, ξ) is indeed a covering. We will now show more specifically that it is a
profinite covering.

Proposition 4.5.6. Let (Γ,∆, ξ) be a Galois covering, with G acting without edge
inversions, then (Γ,∆, ξ) is a profinite covering.

Proof. We will adapt the proof in Ribes [41], Proposition 3.1.3.
Let N denote the set of all open subgroups of G. For N ∈N, we denote πN the

natural projection of Γ, onto the quotient graph ΓN = Γ�N . The group G�N is then
a finite group and acts freely on ΓN , therefore there exists a directed set I ′N , such
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that ΓN is decomposed into lim←−
i∈I′N

ΓN,i, with ΓN,i finite undirected graph and G�N

acting freely on ΓN,i. Denote φN,i the natural projection of ΓN onto ΓN,i. Now for
g ∈ G�N , consider

Fg,i = {e ∈ E(ΓN), φN,i(g · e) = φN,i(e)}

Since G�N acts without inversions of edges, we get that
⋂
i∈I′N

Fg,i = ∅. Indeed if it

were nonempty and contained an e ∈ E(Γ), then g · e = e, which is a contradiction.
By compactness, we can therefore find an ig ∈ I ′N , such that Fg,ig = ∅. Then denote
iN an element of I ′N that is greater than all the ig. (Possible since G�N is finite).
Then denote IN = {i ∈ I ′N |i ≥ iN}. One can then prove that ΓN is a projective
limit lim←−

i∈IN

ΓN,i and for all i ∈ IN G�N acts without edge inversions. The collection

(ΓN,i, ξN.i,∆N.i), with ξN.i the natural projection of ΓN.i on ∆N,i = ΓN,i�G�N
is

therefore a finite covering. One can prove that Γ is a limit of the ΓN,i and therefore
it is a profinite covering.

This result justifies the definition that follows:

Definition 4.5.7. A profinite covering (Γ,∆, ξ) is called normal, if it is isomorphic
to a Galois covering.

Alternalitevely if we take Γ and ∆ be two graphs. Let ξ be a surjective morphism
from Γ to ∆, we can say that (Γ, ξ) is a Galois covering of ∆ if there exists G a
profinite group acting freely on Γ, such that

∀x, y ∈ Γ, ξ(x) = ξ(y)⇔ ∃g ∈ G, g · x = y

As shown in [41],section 3.2 of Chapter 3, a Galois covering can be seen as a
subgroup of automorphisms of the graph. We will show more precisely that in case
of a connected profinite graph it corresponds to the automorphisms fixing ξ, which
in terms of chapter 2 would correspond to deck transformations.

Proposition 4.5.8. Let (Γ, ξ) be a Galois covering of ∆ with the profinite group
G. Suppose that Γ is connected: then G is isomorphic to the automorphisms of Γ,
fixing ξ, i.e the subgroup

Autξ(Γ) = {g ∈ Aut(Γ)|ξ ◦ g = ξ}

Proof. By adapting the Proposition 3.1.3 in [41] to undirected graphs, (Γ, ξ) can be
decomposed into finite Galois coverings with surjective natural projections: (Γi, ξi)i∈I .
We then denote for an i ∈ I pi the natural projection of Γ onto Γi and p′i the natural
projection of ∆ onto ∆i with:
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Γ ∆

Γi ∆i

ξ

pi

ξi

p′i

Furthermore take for j ≥ i, φi,j the transition map from Γj to Γi. Now let
f ∈ Autξ(G). Since ξ ◦ f = ξ, we pick a ∈ Γ and then there exists by definition a
g ∈ G, such that:

f(a) = g · a

Now for every i ∈ I take Ni the open normal subgroup of G, such that G�N together
with (Γi, ξi) is a Galois covering of ∆i. We then get

∀g ∈ G,∀x ∈ Γ, pi(g · x) = gNi · pi(x)

Take i ∈ I. By continuity of f , there exists j ≥ i, such that if pj(x) = pj(y), then
pi(f(x)) = pi(f(y)).

Since Γ is connected, then Γj is connected as well. We can then do an induction:
Consider

A = {u ∈ Γj|∀x ∈ Γ, pj(x) = u⇒ pi(f(x)) = gNi · φi,j(u)}

We will now prove that A is non empty and has the two following inductive
properties:

∀u ∈ A, ∀e ∈ Γj, o(e) = u or t(e) = u⇒ e ∈ A

∀u ∈ A, o(u) ∈ A and t(u) ∈ A

Basically we require that if u is in A, then all of its neighbors are in A as well, which
coupled with the connectedness of Γ will let us conclude that A is equal to Γj.

First of all A is non empty, since pj(a) ∈ A. Now suppose that u ∈ A and
take e′ ∈ Γj, such that d(e′) = u, with d an incidence map (origin or terminus).
Let e ∈ Γ, such that pj(e) = e′. Since ξ(f(e)) = e, there exists g′ ∈ G, such that
f(e) = g′ · e. In that case pi(f(e)) = g′

Ni · pi(e). Since pi and f are morphisms,
we get that d(pi(f(e))) = pi(f(d(e))). Since pj(d(e)) = u, then by definition of the
set A, we get: d(pi(f(e))) = gNi · φi,j(u). Now on the other hand we also have that
f(e) = g′ · e and so pi(f(e)) = g′

Ni · φi,j(u). Since the action of G�Ni
on Γi is free

we get that g′Ni = gNi and as such, pi(f(e)) = gNi · e. This being true for all e, such
that pj(e) = e′ we get that e′ ∈ A. The proof that if u ∈ A, then o(u) and t(u) are
in A is very similar, so we skip it.

We conclude therefore that A = Γj. Now let us show that this implies that
for every x ∈ Γ, f(x) = g · x. Let x ∈ Γ, then: pj(x) ∈ A. Therefore pi(f(x)) =
gNi · pi(x) = pi(g · x). That being true for every i ∈ I and every x ∈ Γ, we conclude
that f = g.
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Now we prove more generally that for connected profinite coverings, the group
of deck transformations is a profinite group.

Proposition 4.5.9. Let (Γ,∆, ξ) be a connected profinite covering graph (Γ and ∆
are connected ), then together with its open compact topology: Autξ(Γ) is a profinite
group.

Proof. Since (Γ,∆, ξ) is profinite, it is a limit of (Γi,∆i, ξi)i∈I finite covering graphs.
Furthermore by corestricting the natural projections (pi, p

′
i) to their image we can

assume that pi, p′i are surjective for all i ∈ I. In that case, since Γ and ∆ are
connected, we get that for every i ∈ I, Γi and ∆i are connected.

Now to prove that Autξ(Γ) is profinite, we make first the simple observation
that Autξ(Γ) is closed in Aut(Γ), so it inherits its topological group structure. Now
using, the result from the proposition 4.1.1, all we need to prove is that for all i ∈ I
, the set Ai = {pi ◦ g|g ∈ Autξ(Γ)} is finite. Take a ∈ V (Γ). Let us show that the
map

Φ =

{
Ai −→ ∆i

pi ◦ g 7→ pi(g(a))

is injective. Let g, h ∈ Autξ(Γ), such that pi(g(a)) = pi(h(a)). By continuity of g
and h, there exists j ∈ I, such that

∀x, y ∈ Γ, pj(x) = pj(y)⇒ pi(g(x)) = pi(g(y)) and pi(h(x)) = pi(h(y))

Now consider

X = {u ∈ Γj|∀x ∈ Γ, pj(x) = u⇒ pi(g(x)) = pi(h(x))}

Since Γj is connected, we can do the same induction as in the previous proposition.
We need to prove the statements:

∀u ∈ X, ∀e ∈ Γj, o(e) = u or t(e) = u⇒ e ∈ X

∀u ∈ X, o(u) ∈ A and t(u) ∈ X

Assume that u ∈ X and let e ∈ Γj, such that d(e) = u, with d being an in-
cidence map (terminus or origin) and let e′ ∈ Γ, such that pj(e′) = e. In that
case pj(d(e′)) = u and by definition of X: pi(d(g(e))) = pi(d(h(e))). Then we
get that pi(g(e)) and pi(h(e)) are both edges in StΓi(g(e)). Furthermore, since
ξi(pi(g(e))) = pi(ξ(g(e))) = pi(ξ(e)) = ξi(pi(h(e))), we get by injectivity of ξi at
the star of pi(d(e)) that pi(g(e)) = pi(h(e)) and therefore e′ ∈ X as expected. Just
like in the previous proposition, the proof of the second statement needed for the
induction is very similar and will be skipped.

We now can conclude, using that Γj is connected that X = Γj. Now if we take
x ∈ Γ, then pj(x) ∈ Γj and therefore pi(g(x)) = pi(h(x)). Since this is true for all
x ∈ Γ, then pi ◦ g = pi ◦ h, proving that the map Φ we started with is injective.
Since ∆i is a finite set and Φ is an injection, we get that Ai is a finite set as well.

We can therefore conclude that Autξ(Γ) is indeed profinite.
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Remark. A similar proof would work even under the assumption that Γ has a finite
number of connected components, but I suspect that the statement can be false if
we get infinitely many connected components.

Proposition 4.5.10 (Uniqueness of liftings). Let (Γ,∆, ξ) be a profinite covering
graph. Let G be a profinite connected graph and f a continuous morphism from G
to ∆. Let u ∈ Γ and v ∈ ∆, such that f(u) = ξ(v). Let h, h′ be two continuous
morphisms, such that the diagram

G ∆

Γ

f

ξhh′

commutes and such that h(u) = h′(u) = v, then h = h′.

Proof. We start by writing (Γ,∆, f) as a limit of ((Γi,∆i, fi))i∈I finite covers. We
denote pi the natural projection of Γ on Γi and qi the natural projection of ∆ on
∆i. We also write G as a limit of (Gj)j∈J and denote πj the natural projection of G
onto Gj. We assume that all the πj are surjective and Gj are therefore connected.

To prove that h′ = h, we show that πi ◦ h = πi ◦ h′ for all i ∈ I. Let j ∈ J such
that

∀j′ ≥ j,∀x, y ∈ G, πj′(x) = πj′(y)⇒
( pi(h(x)) = pi(h(y)), pi(h

′(x)) = pi(h
′(y)) and qi(f(x)) = qi(f(y)) )

Let hj, h′j be the induced morphisms from Gj to Γj and fj the induced q-
morphism from Gj to ∆i. In that case we get that:

Gj ∆i

Γi

fj

ξihjh′j

Now assuming that we have proved the proposition in the case of finite graphs,
we can conclude that hj = h′j. By contradiction now assume that pi ◦ h 6= pi ◦ h′.
In that case there exists x ∈ G, such that pi(h(x)) 6= pi(h

′(x)). In that case
hj(πj(x)) 6= h′j(πj(x)), which is a contradiction.

Now we shall prove that the result is true in the finite case. From now on we
assume that (Γ, ξ) is a finite cover of the finite graph ∆ and G is a finite connected
graph with a morphism f . Furthermore assume that u ∈ G and v ∈ Γ, such that
f(u) = ξ(v). Assume that h, h′ are two morphisms from G to Γ, such that the
following diagram commutes:
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G ∆

Γ

f

ξhh′

Finally assume that h(u) = h′(u) = v. Let us prove that under these conditions,
h = h′. To prove it, we will use the connectedness of Γ and use induction. Let

A = {x ∈ G|h(x) = h′(x)}

To prove that A = G, we us induction and we shall prove that

∀x ∈ G, o(x) ∈ A or t(x) ∈ A⇒ x ∈ A

and
∀x ∈ A, o(x) ∈ A and t(x) ∈ A

Let d ∈ {o, t} be an incidence map. Assume that d(x) ∈ A. Then h(d(x)) = h′(d(x))
and h(x), h′(x) are therefore in the star of d(h(x)). Furthermore ξ(h(x)) = f(x) =
ξ(h′(x)) and by injectivity of ξ on stars we get that h(x) = h′(x) and therefore x ∈ A.
Now suppose that x ∈ A. We get that h(x) = h′(x) and therefore d(h(x)) = d(h′(x)).
Since h, h′ are morphisms, we get that h(d(x)) = h′(d(x)) and therefore d(x) ∈ A.
We conclude that A = G, hence the lifting is indeed unique.

Now we are ready to state the fundamental theorem of Galois theory of profinite
covering graphs.

Theorem 4.5.11 (Fundamental theorem of Galois theory of profinite covering
graphs). Let (Γ,∆, ξ) be a profinite normal connected covering graph. Then there
is an inclusion reversing bijection Φ between the closed subgroups of Autξ(Γ) and
subcovering connected graphs (Γ′,∆, ξ′) (up to isomorphism) of (Γ,∆, ξ).

Proof. Let H be a closed subgroup of Autξ. The group H then acts continuously
and freely on Γ. Now let f be the natural projection of Γ onto Γ′ = Γ�H the graph
of orbits under the action of H. We have that for every h ∈ H and every x ∈ Γ,
ξ(h · x) = ξ(x) and therefore by the universal property of the quotient, there exists
a unique continuous morphism of graphs ξ′ from Γ′ to ∆, such that the following
diagram commutes

Γ

Γ′

∆

f

ξ

ξ′

(Γ, ξ′, f) is a subcovering, but we need to show that it is profinite and connected.
We denote G = Autξ(Γ) and we decompose Γ into (Γi,∆i, ξi)i∈I Galois coverings

with (Ni)i∈I being a basis of open normal subgroups of G and G�Ni
acting freely and
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without edge inversions on (Γi,∆i, ξi). For every i ∈ I, Ni ∩ H is an open normal
subgroup of H. The group H�H ∩Ni

injects itself naturally into G�Ni
. Consider

then
Γ′i = Γi�

(H�H ∩Ni
)

If we denote fi the natural projection of Γi onto Γ′i, there exists ξ′i morphism such
that following diagram commutes:

Γi

Γ′i

∆i

fi

ξi

ξ′i

All the (Γ′i,∆i, ξ
′) are covering graphs. Now if we denote (φi,j, ψi,j)j≥i the tran-

sition maps for (Γi,∆i, ξi)i∈I , we have using the universal property of quotients that
there exist transition maps φ′i,j, such that for every j ≥ i, the diagram:

Γj Γ′j

Γi Γ′i

fj

φi,j φ′i,j

fi

commutes. Now let us show that (Γ′,∆, ξ′) is a projective limit of (Γ′i,∆i, ξ
′
i) for

the transition maps φ′j,i. If pi is the natural projection of Γ onto Γi, we denote p′i,
the natural map from Γ′ to Γ′i, such that the diagram

Γ

Γ′

Γ′i

f

fi ◦ pi

p′i

commutes. To prove that (Γ′,∆, ξ′) together with the maps (p′i, qi)i∈I (qi being
the natural projection of ∆ onto ∆i) is a projective limit of the (Γ′i,∆i, ξi)i∈I together
with the transition maps (φ′i,j, ψi,j)j≥i, we need to prove that if (xi)i∈I is a collection
in
∏
i∈I

Γ′i compatible with φ′i,j, then there exists a unique x in Γ′, such that for all

i ∈ I, p′i(x) = xi.
Uniqueness Suppose that for all i ∈ I, p′i(x) = p′i(y). Let us write x = f(x′)

and y = f(y′). Then for every i ∈ I, there exists hi
Ni∩H ∈ H�Ni ∩H, such that

pi(x
′) = hi

Ni · pi(y′). If we take j ≥ i, we have that φi,j(pj(x′)) = hi
Ni
pi(y), but also

that φi,j(pj(x′)) = hi
Nj
pj(y

′). Since G�Ni
acts freely on Γi, we get that hj

Ni
= hi

Ni .
The collection (hi)i∈I is compatible with the transition maps in the profinite group
G and (Ni)i∈I form a neighborhood basis of 1G and H is a closed subgroup of G,
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therefore there exists h ∈ H, such that ∀i ∈ I, hNi = hi
Ni . In that case we get that

for every i ∈ I, pi(x′) = pi(h · y′) and therefore x′ = h · y′. As such since f is fixed
by the action of G, we get that f(x′) = f(y′), so x = y.

Existence
Let (xi)i∈I ∈

∏
i∈I

Γ′i be a collection compatible with the transition maps. By

contradiction, assume that there is no x ∈ Γ, such that ∀i ∈ I, fi(pi(x)) = xi. In
that case by compactness and compatibility of the collection with the transition
maps, there exists an i ∈ I, such that for all x ∈ Γ, fi(pi(x)) 6= xi. That is however
a contradiction, since both pi and fi are surjective maps. In that case let x ∈ Γ,
such that ∀i ∈ I, fi(pi(x)) = xi. In that case for all i in I, p′i(f(x)) = xi, which
concludes the proof of existence.

Note that Γ′i are all path-connected, since Γi are and the projection fi is surjec-
tive.

We now know that (Γ′,∆, ξ′) is a limit of finite path-connected covers, therefore is
a connected profinite cover. We conclude that (Γ′, ξ′, f) is then a profinite subcover
of Γ. We shall denote it Φ(H). Furthermore, we denote ξH = ξ′ and fH = f ′.

Let us now show that H and H ′ are equal if and only if Φ(H) is isomorphic to
Φ(H ′).

Suppose that Φ(H) and Φ(H ′) are isomorphic and let us show that H and H ′
are equal.

Let u be the isomorphism between Φ(H) and Φ(H ′). Then simply take h ∈ H
and let us show that h ∈ H ′. Let us take a a vertex in Γ. We have that

fH′(h · a) = u(fh(h · a)) = u(fH(a)) = fH′(a)

Therefore there exists by definition of fH′ an h′ ∈ H, such that h′ ·a = h ·a. Since G
acts freely, we get that h = h′, from which we conclude that h ∈ H ′. Since H ⊆ H ′

and H,H ′ play symmetric roles, we get that the two subgroups are equal.
This proves that Φ is an injective map. Now we need to prove that Φ is surjec-

tive on subcovering graphs that is: if (Γ′, ξ′, u) is a profinite subcovering graph of
(Γ,∆, ξ), then there exists a closed subgroup H of G, such that Φ(H) and (Γ′,∆, ξ′)
are isomorphic. Let H = Autu(Γ), then H is a closed subgroup of G. Let us prove
that Φ(H) and (Γ,Γ′, ξ′) are isomorphic. The map u is by definition invariant by
the action of H, therefore there exists a natural map f from ΓH to Γ′, such that the
diagram:

Γ

ΓH

Γ′

fH

u

f

commutes. Now let us prove that f is bijective. The map f is surjective because
u is (due to the fact that Γ′ and Γ are connected and u is a continuous covering
morphism). Now let xH , yH ∈ ΓH , such that f(xH) = f(yH). In that case: u(x) =
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u(y) and therefore ξ′(u(x)) = ξ′(u(y)), thus ξ(x) = ξ(y). Therefore there exists
g ∈ G, such that g(x) = y and as such, u(g(x)) = u(x). Using the fact that Γ
is connected and the previous proposition about uniqueness of lifts, we get that
u ◦ g = u. Indeed: we have that the following diagram commutes:

Γ ∆

Γ′

ξ

ξ′u ◦ gu

commutes that u ◦ g(x) = u(x) and that (Γ′,∆, ξ′) is a profinite covering, so by
the uniqueness of the lift given in the previous proposition, we get that u ◦ g = u.
Therefore g ∈ Autu(Γ) = H and as such fH(x) = fH(y) and so f is injective.

Now let us prove that the following diagram commutes:

ΓH ∆

Γ′ ∆

ξH

f id

ξ′

Let xH ∈ ΓH . In that case:

ξ′(f(x)) = ξ′(u(x)) = ξ(x) = ξH(x)

proving that the diagram indeed commutes. We therefore get that ΓH and Γ′ are
isomorphic, showing that Φ is indeed a bijection between closed subgroups of G and
isomorphism classes of connected profinite subcovering graphs of (Γ,∆, ξ).

The next step is to show that Φ is inclusion reversing: i.e if H is a subgroup of
H ′, then Φ(H ′) is a subcovering graph of Φ(H). That is however straightforward:
since there exists a natural surjection from ΓH′ to ΓH which to a class xH′ associates
the class xH .

The last step is to show that Φ(H) is normal if and only ifH is a normal subgroup
of G. Suppose first that Φ(H) is normal. In that case there exists a profinite group
G′ and a graph Γ′, such that Φ(H) is isomorphic to the covering (Γ′,Γ

′
�G′, π), with π

being the natural projection of Γ′ onto Γ′�G′. We then denote (u, v) an isomorphism
between them. We then have the following commutative diagram:

ΓH ∆

Γ′ Γ′�G′

ξH

u v

π
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Now take g ∈ G and h ∈ H. Let us prove that ghg−1 ∈ H. Let a ∈ ΓH . Then
there exists g′ ∈ G′, such that u(g · x) = g′ ·u(a). Using the fact that Γ is connected
and that G′ acts freely on Γ′, we can then show that for every x ∈ Γ, u(g · x) =
g′ · u(xH). Using the same result for g−1, we get that there exists g′′ ∈ G′, such
that u(g−1 · xH) = g′′ · u(xH) for every x ∈ Γ. We then get that u(aH) = g′g′′u(aH)
and using the fact that G′ acts freely on Γ′, we get that g′ = g′′−1. Furthermore we
get that u(ghg−1 · aH) = g′ · u(hg−1 · aH) = g′ · u(g−1 · aH) = g′g′′ · u(aH) = u(aH).
Since u is a bijection, we get that ghg−1 · aH = aH and therefore ghg−1 ∈ H as
announced. The group H is therefore normal, which ends the first part of the proof.

If on the other hand H is normal, we get that the profinite group G�H acts
continuously and freely on ΓH . Now we need to prove that ∆ is isomorphic to
ΓH�G�H

. The map ξH is constant on the equivalence classes of G�H, since if g ∈ G:

ξH(gH · xH) = ξH(g · x) = ξ(g · x) = ξ(x) = ξH(xH). ξH is surjective, since ξ is.
Finally, suppose that ξH(x) = ξH(y). Then ξ(x) = ξ(y) and so ∃g ∈ G, y = g · x,
therefore yH = gH · xH and so we can conclude that ΓH is indeed normal.

To conclude this section we will generalize the notion of the universal covering
graph to profinite coverings.

Definition 4.5.12 (Universal covering graph). Let ∆ be a connected profinite graph.
A connected profinite covering graph (∆̃,∆, p) is called universal if every connected
covering graph (Γ,∆, f) is isomorphic to a subcovering (∆̃,∆, p).

Remark. We could have also worked by choosing a distinguished point for a cover-
ing, in which case we would have had uniqueness of the isomorphism map h such
that (Γ, f, h) is a subcovering of (∆̃,∆, f) with the assumption that it sends a dis-
tinguished point c of ∆̃ onto a distinguished point a ∈ Γ , such that f(a) = p(c) as
in the definition 32 of [1].

Finally we state the theorem of existence of universal coverings.

Theorem 4.5.13. Let ∆ be a connected profinite graph. Then the universal profinite
covering graph of ∆ exists, is normal and is unique up to isomorphism of coverings
of graphs.

Proof. We will prove the uniqueness here. The proof of existence can be found in
[1] section 3.5. Let (Γ,∆, p) and (Γ′,∆, p′) be two universal coverings of ∆. Choose
a distinguished point c ∈ Γ. Then there exists a covering morphism u from Γ to
Γ′, such that p′ ◦ u = p. Also there exists a morphism v, such that p ◦ v = p′. Let
us observe that for any g ∈ Autp(Γ), g ◦ v is also a covering morphism, such that
p ◦ g ◦ v = p′. We will use this to correct v in order so that it becomes an inverse
of u. We have p ◦ v ◦ u = p′ ◦ u = p. Therefore there exists g ∈ Autp(Γ), such that
v◦u(c) = g(c). In that case g−1◦v◦u(c) = c and using the connectedness, we can then
conclude that g−1 ◦ v ◦u = idΓ. We also have u(g−1(v(u(c)))) = u(g−1(g(c))) = u(c)
and again using the connectedness, we get that u ◦ g−1 ◦ v = id and hence (Γ,∆, p)
and (Γ′,∆, p′) are isomorphic.
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4.6 Colors and color substitutions
In this section, we want to generalize the results in Chapter 1 to profinite graphs.
We will construct a group action Cayley graph for finite sets. In order to do that, we
will need to define a notion of color (or label) on a profinite graph. In the end, we
will show that the Lovász construction that is used for dropping colors in abstract
graphs works for profinite graphs as well for finitely many colors. A reader interested
in exploring labeling on finite graphs may read for example [9].

Now to define a notion of color, we need some definition that is compatible with
the profinite structure of a graph. Hence the set of colors has to have a topology to
ensure such compatibility. I came therefore with the definition that follows:

Definition 4.6.1 (Edge colored profinite graphs). An edge-colored profinite graph
is a triplet (G, c, C), where G is a profinite graph, C a topological set, called the set
of colors and c a continuous map from E(G) to C.

A morphism of edge-colored graphs (G, c, C) to (G′, c′, C ′) is a morphism f from
G to G′, such that ∀x, y ∈ E(G), c(x) = c(y)⇒ c′(f(x)) = c′(f(y)).

For an edge-colored profinite graph (G, c, C), we define Autc(G) as the group of
automorphisms preserving colors, i.e: Autc(G) = {g ∈ Aut(G)|c ◦ g = c}.

Since the only colorings we will be interested in are those on edges, we will simply
call edge-colored graphs as ’colored graphs’ from now on. Naturally we want to give
the set Autc(G) a structure of a topological group, coming from Aut(G). For that,
we would like to have Autc(G) closed inside of Aut(G). Luckily there is a very loose
sufficient condition on C for that to happen.

Proposition 4.6.2. Let (G, c, C) be a colored profinite graph. Then if C is a T1

separated space (all singletons are closed) then Autc(G) is closed in Aut(G) for the
compact open topology.

Proof. Suppose that g ∈ Autc(G). Let us show that g preserves colors. Let x ∈
E(G). To show that c(g(x)) = c(x), we will show that c(x) ∈ {c(g(x))}. Let
pi be the natural projections onto Gi with G seen as a projective limit of finite
graphs Gi: lim←−

i∈I
Gi. Let V be a neighborhood of c(g(x)). By continuity of c, there

exists i0 ∈ I, such that ∀i ≥ i0,∀y ∈ E(G), pi(y) = pi(g(x)) ⇒ c(y) ∈ V . Since
g ∈ Autc(G), there exists g′ ∈ Autc(G) such that pi0 ◦ g = pi0 ◦ g′. In that case:
pi0(g(x)) = pi0(g

′(x)) and therefore by continuity: c(x) = c(g′(x)) ∈ V . Since this is
true for every neighborhood V of c(g(x)), we get that c(x) ∈ {c(g(x))} = {c(g(x))}
and so we conclude that g ∈ Autc(G).

Now we will define a profinite group action Cayley graph. The basic idea behind
this construction is to take the Cayley graph as defined in [41], Chapter 1 and extend
it with the group action structure that I constructed in the discrete case.

Definition 4.6.3 (Colors and color substitutions). Let G be a profinite group gen-
erated topologically by a closed subset S and X a profinite set. Suppose that G acts
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continuously on X. We take S̃ = S ∪ {1G} and define F = G×X, which we equip
with its product topology (it is then a profinite space). Then we put

Γ = G× S̃ q F qX

We equip it with the disjoint topology. Now we define V (Γ) = G× {1} qX, which
is a closed subset of Γ. Let us define the origin and terminus maps, to make Γ into
a graph. We write:

o =


Γ −→ V (Γ)

x 7→


x if x ∈ X
(g, 1) if x = (g, s) ∈ G× S̃
(g, 1) if x = (g, u) ∈ G×X

We also define:

t =


Γ −→ V (Γ)

x 7→


x if x ∈ X
(gs, 1) if x = (g, s) ∈ G× S̃
u if x = (g, u) ∈ G×X

These two maps are continuous on each of the disjoint components and therefore are
continuous for the disjoint topology. Their restriction to V (Γ) is equal to identity
and therefore they define a profinite graph. Now we need to put colors on that graph.

We define C = S̃ q Xq. We equip C with disjoint topology, (S̃ and X having
their respective profinite topologies). We define

c =


E(Γ) −→ C

x 7→

{
s if x = (g, s) ∈ G× S̃
g−1 · u if x = (g, u) ∈ G×X

The map c is continuous, because the action of G on X is continuous. As such this
defines a colored graph that we shall call the Profinite group action Cayley graph and
denote it Cay(G,S,X)

We have the following theorem:

Theorem 4.6.4. Let G be a profinite group topologically generated by a closed subset
S and acting on a profinite set X. Let Cay(G,S,X) = (Γ, c, C) be the associated
group action Cayley graph. Then there exists Φ an isomorphism of topological groups
from G to Autc(Γ), such that Autc(Γ) ∀x ∈ X, g · x = Φ(g)(x).

Proof. Let

Φ =



G −→ Autc(Γ)

g 7→


Γ −→ Γ

x 7→


(gg′, s) if x = (g′, s) ∈ G× S̃
(gg′, g · u) if x = (g′, u) ∈ G×X
(g · x) if x ∈ X
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Φ(g) is a continuous morphism on Γ, since G is a topological group and the action
of G on X is continuous. The map Φ(g) preserves colors. To prove it, take x ∈ Γ
and we distinguish two cases.

• Case 1: x = (g′, s) ∈ G× S̃

c(x) = s = c(gg′, s) = c(Φ(g)(x))

• Case 2: x = (g′, u) ∈ G×X.

c(x) = g′−1 · u = (g′−1g−1) · g · u = (gg′)−1 · (g · u) = c(Φ(g)(x))

The map Φ is injective, since Φ(g)(1, 1) = (g, 1). Now let us prove that Φ is sur-
jective. Let u ∈ Autc(Γ). Then u has to send the vertex (1, 1) onto some (g, 1)
with g ∈ G. Now let us prove that ∀g′ ∈ G, u(g′) = Φ(g)(g′). Using the standard
proof for Cayley graphs as done in 1.5.1, we can prove that for every g′ ∈< S >
and for every s ∈ S̃, u((g′, s)) = Φ(g)(g′, s). Since < S > is dense in G and u,Φ(g)
are continuous, then they are equal on G× S. Now we need to prove that they are
equal on G × X. Let (g′, x) ∈ G × X. Since u preserves the colors, we get that
u((g′, x)) = (g′′, y), with g′−1 · x = g′′−1 · y.
We get (g′′, 1) = o(u(g′, x)) = u((g′, 1)) and therefore g′′ = gg′, proving that

Φ(g)((g′, x)) = u((g′, x))

Finally if x ∈ X, we get that

u(x) = u(t((1, x))) = t(u(1, x)) = t(Φ(g)(u(1, x))) = Φ(g)(x)

We therefore conclude that u = Φ(g), proving that Φ is surjective.
Now we need to show that Φ and Φ−1 are continuous.
For that we write G as a limit of (Gi)i∈I with natural projections πi and X a

limit of (Xj)j∈J , with natural projection ψj. Then for i ∈ I and j ∈ J take

ui,j =


Γ −→ Gi × S̃i qGi ×Xi qXi

x 7→


(φi(g), φi(s)) if x = (g, s) ∈ G× S̃
(φi(g), ψj(x)) if x = (g, x) ∈ G×X
(ψj(x)) if x ∈ X

The profinite set Γ together with the transition maps ui,j is a projective limit of
(Gi× S̃iqGi×Xj qXj)(i,j)∈I×J , with the partial order on I ×J defined component
by component. We will use these maps ui,j to prove continuity of Φ and the fact
that Φ is open. Let g ∈ G , i ∈ I and j ∈ J . The action of G on X is continuous,
so there exists i0 ∈ I, such that

∀i′ ≥ i0,∀g′ ∈ G,∀x ∈ X, πi′(g′) = πi′(g)⇒ ψj(g · x) = ψj(g
′ · x)
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Now take i1 greater than both i and i0 and let i′ ≥ i1. If πi′(g) = πi′(g
′), then

πi(g) = πi(g
′) and ∀x ∈ X,ψj(g · x) = ψj(g

′ · x), which proves that ui,j ◦ Φ(g) =
ui,j ◦Φ(g′), therefore Φ is continuous. Since G is compact and Φ is injective, Φ is a
homeomorphism to its image, so Φ−1 is continuous as well.

This concludes the proof that G and Autc(Γ) are isomorphic as topological
groups.

Just like in the case of finite graphs, an interesting question is whether is possible
to drop the colors, while preserving the automorphism group. I have shown that
it is possible in case that both X and S are finite sets by generalizing the Lovász
construction given in 1.3.3. I have also shown that it is possible even without the
assumption that X and S are finite, but in that case the set of edges will no longer
be closed. We will show that such constructions also preserve connectedness, but
for that we need the proposition that follows.

Proposition 4.6.5. Let G be a connected profinite graph, G′ a profinite graph and
h an injective continuous map from V (G) to V (G′), such that

∀e ∈ E(G), h(o(e)) and h(t(e)) are in the same path-connected component in G′

Finally suppose that every g′ ∈ V (G′) is in a path-connected component of some
h(g) with g ∈ V (G). Then we have that G′ is connected.

Proof. To show that G′ is connected, we will show that if R is a profinite ring, then
H0(G′, R) = {0}. The map h is a continuous map from V (G) to V (G′). It therefore
induces a unique continuous linear map of modules h̃: from R[[V (G)]] to R[[V (G′)]].
Let ε be the augmentation map from R[[V (G)]] to R, let ε′ be the augmentation
map from R[[V (G′)]] to R.
Let ∂1 be the boundary map from R[[G�V (G), ∗]] to R[[V (G)]] and let ∂′1 be the

boundary map from R[[G
′
�V (G′), ∗]] to R[[V (G′)]].

We observe that ε′ ◦ h̃ = ε, since it is true for R[V (G)], which is dense in
R[[V (G)]]. Then we get that h̃(ker(ε)) ⊆ ker(ε′), and hence h̃ sends cycles to cy-
cles. Now we need to prove that h̃(im(∂1)) ⊆ im(∂′1), i.e that it sends bound-
aries to boundaries. The set im(∂′1) is closed in ker(ε′) by compactness. We
also get that ∂1(R[[G�V (G), ∗]])) = ∂1(R[G�V (G)]), since R[G�V (G), ∗] is dense

in R[[G�V (G), ∗]]. Therefore if we prove that h̃(∂1(R[G�V (G), ∗])) ⊆ im(∂′1), then

h̃(im(∂1)) ⊆ im(∂′1) Now if we take u ∈ G, then h(o(u)) and h(t(u)) are in the
same path component, therefore there exists p = (u1, · · · , un) a path in G′ from
h(o(u)) to h(t(u)). Now take p̃ the corresponding element in G′�V (G′). We then

get that h(∂1(u)) = h(t(u)) − h(o(u)) = ∂′1(p̃), hence h̃(R[G�V (G), ∗]) ⊆ im(∂′1)

and so h̃ sends boundary to boundary.The induced map h̃ therefore factors into a
unique continuous map H0(h) from H0(G) into H0(G′). Now let us show that H0(h)
is surjective.

Using the lemma 3.3.3, we know that ker(ε′) is topologically generated by u− v,
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with u, v ∈ V (G′). If we therefore prove that all these generators are in the image
of H0(h), then we will know that H0(h) is surjective. Now let u, v ∈ V (G′). By
assumption on h, we know that there exist x, y ∈ V (G) and paths p from u to h(x)

and p′ from v to h(y). Let p̃ and p̃′ be the corresponding elements in R[[G
′
�V (G′)]].

We then get that u− v = h(x)−∂′1(p) +∂′1(p′)−h(y) and therefore in the homology
H0(h)(x− y) = u− v. The map H0(h) is therefore surjective. Since G is connected,
we know that H0(G,R) = {0} and by surjectivity of H0(h), we get that
H0(G′, R) = {0}. This being true for every profinite ring R, the graph G′ is con-
nected as well.

Now we are ready to state the theorem for Lovász construction.

Theorem 4.6.6 (Finite color substitution). Let (G, f,X) be an edge colored profi-
nite graph such that E(G) is closed in G and X is a finite set together with its
discrete topology. Then there exists a profinite graph G′ with a closed set of edges, a
continuous injective map h from V (G) to V (G′) and an isomorphism of topological
groups Φ from Autf (G) to Autf (G′) such that ∀g ∈ Autf (G),Φ(g) ◦ h = h ◦ g.

Furthermore if we assume G to be connected, we may assume G′ to be connected
as well.

Also if we assume G to be superpath-connected, we may assume G′ to be superpath-
connected as well.

Proof. Up to relabeling, we can assume without loss of generality that X is the set
{1, · · · , n} with some n ∈ N. Let us write

A(G) = {(e, k, f(e))|e ∈ E(G), k ≤ f(x) + 2}

and
V (G′) = V (G)q A(G)

We equip A(G) with the following topology: For e ∈ E(G) and V a neighborhood
of e in E(G) contained in f−1({f(e)}) and k ≤ f(e) + 2, define:

Ne,k,V = {(e′, k, f(e′))|e′ ∈ V }

Then we say that U is open in A(G) if and only if for all (e, k, f(e)) ∈ U , there
exists N neighborhood of e contained in f−1({f(e)}), such that Ne,k,V ⊆ U . Let us
prove that we define in such a way a topology. We observe that the empty set is
open.

The set A(G) is open: indeed if we take e ∈ E(G) and k ≤ f(e) + 2, V =
f−1({f(e)}) is a neighborhood of e by continuity of f and we have Ne,k,f−1({f(V )}) ⊆
A(G). We observe that a union of open sets is open. Finally let U,U ′ be two open
sets. Let us show that U ∩ U ′ is open. Let (e, k, f(e)) ∈ U ∩ U ′. Then there exist
V, V ′ ⊆ f−1({f(x)}), such that Ne,k,V ⊆ U and Ne,k,V ′ ⊆ V ′. We then have that
V ∩ V ′ ⊆ f−1({f(x)}) and Ne,k,V ∩ Ne,k′,V ′ = Ne,k,V ∩V ′ , therefore U ∩ U ′ is open.
We have finished the proof that A(G) is indeed a topological space.

Let us now show that A(G) defined in this way is compact.
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Consider the compact set
E(G)× {0, · · · , n+ 2}

and the map F from this set to A(G), defined by:

F ((e, k)) =

{
(e, k, f(e)) if k ≤ f(e) + 2

(e, f(e) + 2, f(e)) else

This map is surjective. Let us show that it is continuous. Let e ∈ E(G) and let
Ne,k,V be a neighborhood of F ((e, k)). Then F (V × {k}) ⊆ Ne,k,V , if k ≤ f(e) + 2,
so F is continuous at (e, k, V ). If on the other hand k ≥ f(e) + 2, we get that
F (V × {k}) ⊆ Ne,f(e)+2,V , so F is continuous at (e, k) as well. The map F being
continuous at every point, we conclude that A(G) is compact. We define V (G′) =
V (G)qA(G) together with its disjoint topology. It is compact as a disjoint union of
two compacts. For e ∈ E(G) and k ≤ f(e) + 2, we now write u(e, k) = (e, k, f(e)).

Now define
E(G′) = {(o(e), u(e, 0))| e ∈ E(G)}∪
{u(e, 1), u(e, 0)| e ∈ E(G)}∪
{(u(e, f(e)), t(e))| e ∈ E(G)}∪

{(u(e, k), u(e, k + 1))| e ∈ E(G), 1 ≤ k ≤ f(e) + 1}

We equip it with the topology induced by the product topology on the compact set
V (G′)2.

Let us now show that E(G′) is compact. As it is a union of four components,
we can simply show individually that each of these components is compact.

• For the first component, consider the map F from E(G) to {(t(e), u(0, e))|e ∈
E(G)} that to e associates F (e) = (o(e), u(0, e)). Let us show that F is
continuous. Let e ∈ E(G). Consider V a neighborhood of t(e) in V (G) and
V ′ a neighborhood of e in E(G) contained in f−1({f(e)}). Let us show that
there exists a neighborhood of e that gets sent by F to V ×Ne,o,V ′ . Since o is
continuous, there exists U ⊆ E(G) neighborhood of e, such that o(U) ⊆ V . If
we write W = U ∩V ′, we get that F (W ) ⊆ V ×Ne,0,V ′ , proving the continuity
of F . Given that F is continuous and surjective and E(G) is compact, we get
that {(t(e), u(0, e))|e ∈ E(G)} is compact.

• The proof that {(u(e, f(e)), t(e))} is compact is very similar to the previous
proof, except it uses the continuity of the terminus map, rather than the origin
map.

• Consider F the map from A(G) to {(u(e, k), u(e, k+1))|e ∈ E(G), k ≤ f(e)+2}
that to u(e, k) associates (u(e, k), u(e, k + 1)), if 0 < k < f(e) + 2.
The map F is surjective. Let us prove it is continuous. Let e ∈ E(G) and
k < f(e) + 2 Let V, V ′ be two neighborhoods of e contained in f−1({f(e)}),
then we get that F (Ne,k,V ∩V ′) ⊆ Ne,k,V × Ne,k+1,V ′ , proving that f is contin-
uous at (e, k, f(e)). From the surjectivity of F , the continuity of F and the
compactness of A(G), we get that the set {(u(e, k), u(e, k + 1))} is compact.
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• Similarly we can prove that {(u(e, 1), u(e, 0))|e ∈ E(G)} is compact.

We conclude that E(G′) is compact. Now let us define incidence and origin maps
on G′ = V (G′) q E(G′) equipped with its disjoint topology. On V (G′) we define
them as identities. On E(G′) we define them as projection on the first and the
second component, which makes them continuous, since the topology of E(G′) is
induced by that of V (G′)2.

Then if we consider (G′, V (G′), o, t) it is a graph with a compact topology. We
observe that this topology is Hausdorff. To obtainG′ = V (G′)qE(G′), we essentially
substitute in G an edge of color k with the following graph:

Now we need to prove that G′ is profinite.
For that it is sufficient to prove that there exists a set Ω of open equivalence

relations on G′, whose intersection is the diagonal. First take Ω′ a set of open rela-
tions on G compatible with the incidence maps, whose intersection is the diagonal.
We also require that only vertices can be equivalent to vertices, which is possible,
since E(G) is closed in G. Now for R ∈ Ω, we define an equivalence relation R̃ on
each disjoint component of G separately.

• For two elements in x, y ∈ V (G), we say that xR̃y if and only if xRy.

• For two elements u(e, k) and u(e′, k′) in A(G), we say that u(e, k)R̃u(e′, k′) if
and only if f(e) = f(e′), k = k′ and eRe′.

• Two elements (o(e), u(e, 0)) and (o(e′), u(e′, 0)) are equivalent if and only if
eRe′ and f(e) = f(e′).

• Two elements (u(e, f(e)), t(e)) and (u(e′, f(e′)), t(e′)) are equivalent if and only
if eRe′ and f(e) = f(e′).

• Two elements (u(e, k), u(e, k + 1)) and (u(e′, k), u(e′, k + 1)) are equivalent if
and only if eRe′ and f(e) = f(e′).

• Two elements (u(e, 1), u(e, 0)) and (u(e′, 1), u(e′, 0)) are equivalent if and only
if eRe′ and f(e) = f(e′).

And no two other elements are equivalent. The relation R̃ is an equivalence
relation on each of these disjoint components. No two elements from two distinct
components are equivalent and hence R′ is an equivalence relation on G′.
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Then we define Ω = {R̃|R ∈ Ω′}. Let us show first that all the relations in Ω
are open. Let x ∈ G′: we distinguish several cases:

• x ∈ V (G):

In that case: xR̃ = xR ∩ V (G), which is an open subset of V (G), therefore of
G′.

• x = u(e, k).

Let us show that xR̃ is open. Let x′R̃x. In that case x′ = u(e′, k) with e′Re
and f(e′) = f(e). Let then V be an open neighborhood of x′ contained both
in eR and f−1({e}). We get that N(e′, k, V ) ⊆ xR.The set xR is therefore by
definition open in A(G), hence in G′.

• x = (o(e), u(e, 0)).

We write F = {(o(e′), u(e′, 0))|e′ ∈ E(G)}, which is open in E(G′), since its
complement {u(e′, f(e′)), t(e′)|e′ ∈ E(G)}∪{(u(e, k), u(e, k+1))|k < f(e)+2}
is closed. To prove that xR̃ = xR̃ ∩ F is open, we will prove that it is a
neighborhood of each of its points. Let x′Rx. We write x′ = (o(e′), u(e′, 0)).
We then get that eRe′ and f(e) = f(e′). Now consider V a neighborhood of e
contained in eR and in f−1({f(e)}). We then have that F ∩V ×N(e′, 0) ⊆ xR̃.
Indeed if x′′ ∈ F ∩ V , then x′′ = (o(e′′), u(e′′, 0)) and

e′′Re, f(e′′) = f(e), so x′′Rx. The set xR is therefore open in F and such it is
open in E(G′).

• The last three cases are proven similarly.

The intersection of all open relations R on G is by assumption reduced to the
diagonal. We therefore have that the intersection of all R̃ is reduced to the diagonal
as well. We therefore conclude that G′ is indeed a profinite graph. Furthermore the
set of E(G′) is closed in G′.

Now let us prove that the group of automorphisms fixing colors of G is isomorphic
to the automorphism group of G′.

To a continuous automorphism g, such that f ◦ g = f , we associate the auto-
morphism

Φ(g) =



G′ −→ G′

x 7→



g(x) if x ∈ V (G)

u(g(e), k) if x = u(e, k)

(o(g(e)), u(g(e), 0))if x = (o(e), u(e, 0))

(u(g(e), k), u(g(e), k + 1)) if x = (e, k) and k < f(e) + 2

(u(g(e), 1), u(g(e), 0)) if x = (u(e, 1), u(e, 0))

(u(g(e), f(e)), g(t(e))) if x = (u(e, f(e)), t(e))

This function is well defined, because g preserves colors and is continuous, simply
because g is. It is an automorphism with the inverse Φ(g−1) and we have Φ(gg′) =
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Φ(g)Φ(g′). Given its formulas Φ(g) is a morphism as it sends edges on vertices and
preserves the origin and terminus maps. The map Φ is therefore a morphism of
groups. We define then the map h to be the natural injection of V (G) into V (G′)
and we have that

∀g ∈ Autf (G)Φ(g) ◦ h = h ◦ g

We define a continuous qmorphism a from G′ to G as follows:

a =



G′ −→ G

x 7→



x if x ∈ V (G)

o(e) if x = u(e, k)

e if x = (o(e), u(e, 0))

e if x = (u(e, f(e)), t(e))

o(e) if x = (u(e, k), u(e, k + 1)) and k < f(e) + 2

o(e) if x = (u(e, 1), u(e, 0))

Note that a ◦ Φ(g) = g ◦ a and that a is surjective.
Φ is injective, because of the formula a ◦ Φ(g) = g ◦ a.
Now to prove the surjectivity of Φ, we take g a continuous automorphism of G′.

The map g then has to send a vertex of the type u(e, f(e)+2) on a vertex of in-degree
1 connected to a vertex of in-degree 1 and out-degree 2. The only such vertices are
the vertices of the type u(e′, f(e′) + 2). The path (u(e, f(0)), · · ·u(e, f(e))) then
has to become (u(e′, 0), · · · , u(e′, f(e′))) by similar arguments as used in 1.3.2. The
vertices in V (G) can then only be sent on vertices in V (G) by bijectivity. Then
write

g′ =


G −→ G

x 7→

{
g(x) if x ∈ V (G)

a ◦ g( ((u(x, f(x)), t(x)) ) ) if x ∈ E(G)

The map g′ is continuous given that the maps a, e 7→ (u(e, f(e)), t(e)) and g are
continuous and V (E) and E(G) are two open disjoint subsets of G. The map g′

preserves the colors of the edges, since as we have shown, g(u(e, f(e))) = u(e, f(e′)),
with f(e) = f(e′). We therefore conclude that g′ ∈ Autf and we have Φ(g′) = g.
The map Φ is therefore an isomorphism of groups. Now we need to show that both
Φ and Φ−1 are continuous.

Let g ∈ Autf (G) and R′ an open relation on G′ We know that there exists R
an open relation on G, such that R̃ ⊆ R′. Now if g′ ∈ Autf (G), such that ∀x ∈ G,
g(x)Rg′(x), then ∀x ∈ G′,Φ(g)(x)R̃Φ(g′)(x), so ∀x ∈ G′,Φ(g)(x)R′Φ(g)(x), proving
the continuity of Φ.

Now on the other hand take g ∈ Aut(G′) and R a relation on G. If we
then take a g′ ∈ Aut(G′), such that ∀x ∈ G′, g(x)R̃g(x′), then for every x ∈ G,
Φ−1(g)(x)RΦ−1(g′)(x), proving that Φ−1 is continuous as well.

This concludes the proof that Φ is an isomorphism of topological groups Autf (G)
and Aut(G′) and as we have shown earlier ∀g ∈ Autf (G),Φ(g) ◦ h = h ◦ g with h
the natural injection of V (G) into V (G′).
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Now assume that G is connected. We will prove that G′ is connected. We will
do it using the proposition 4.6.5.

Consider the natural injection h from V (G) into V (G′). If we take e ∈ E(G), we
have a path from o(e) to t(e) given by the sequence of vertices

( o(e), u0, · · · , uf(e), t(e) )

with ui being the vertex u(e, i) It is also clear that there is a path from any element
of G′ into the image of h and therefore by the proposition 4.6.5 G′ is connected.

Assume now instead that G is superpath-connected. Let us show that G′ is
connected. Since every element in G′ \V (G) is in the path-connected component of
some vertex in V (G), it is enough to prove that all the vertices in V (G) are in the
same superpath-connected component. Let x, y ∈ V (G). Since by assumption G is
superpath-connected, there exist C1, · · · , Cn path-connected components in G and
a sequence xi ∈ Ci ∩Ci+1, such that x ∈ C1 and y ∈ Cn. Now consider C ′i = a−1Ci.
Note that all the vertices in Ci ⊆ C ′i are in the same path-connected component of
G′ and since every element of C ′i \ Ci is in the path-connected component of some
element in Ci, we get that C ′i is path-connected. Now let us prove that C ′i∩C ′i+1 6= ∅
for every i < n. Let yi be such that a(yi) = xi. Let us prove that yi ∈ C ′i ∩ C ′i+1. If
yi ∈ V (G), then yi = xi ∈ Ci ⊆ Ci, since V (G) is closed in G′. Otherwise we may
assume that yi = (u(e, f(e), t(e)) with xi = e ∈ E(G). Now let V be a neighborhood
of yi. In that case there exists V ′ a neighborhood of e contained in f−1(f(e)) and
U a neighborhood of t(e), such that NV ′,e,f(e) × U ⊆ V . By continuity of the
terminus map take U ′ ⊆ V ′, such that t(U ′) ⊆ U . Since e ∈ Ci, we get that there
exists e′ ∈ U ′ ∩ Ci. In that case we get that (u(e′, f(e′), t(e′))) ∈ NV ′,e,f(e) ⊆ V .
Furthermore a( (u(e′, f(e′)), t(e′)) ) = e′ ∈ Ci, thus (u(e′, f(e′)), t(e′)) ∈ V ∩ C ′i,
proving that yi ∈ Ci+1. We then get that x ∈ C ′1, y ∈ C ′n and for all i, C ′i ∩C ′i+1 6= ∅
with C ′i connected for all i, which means that x and y are in the same superpath-
connected component.

We can also prove a profinite version of a generalization of the theorem of Frucht,
which was proved by Sadibussi in 1960. The approach here remains essentially the
same: we replace colors by non isomorphic graphs, which have no automorphisms.
However we have to be careful, because these graphs will not be profinite, which is
where I had the idea to do a certain profinite completion that still makes the graphs
non isomorphic and have no additional automorphisms.

Lemma 4.6.7 (Sabidussi (1960)). For every ordinal α, there exists an abstract
undirected loopless graph Tα, such that Tα has no automorphisms and its cardinal is
greater than that of α. Furthermore if β is an ordinal distinct from α, then Tβ and
Tα are non isomorphic as abstract graphs.

Theorem 4.6.8 (Infinite color substitution). Let (Γ, c) be a profinite edge colored
loopless graph, with C a Hausdorff set of colors, such that E(Γ) is closed in Γ. There
exists a profinite graph Γ′ without colors and maps ι,Φ such that:

ι is a continuous injection from V (Γ) to V (Γ′) and Φ is an isomorphism of
topological groups Autc(Γ) and Autc(Γ′) with ∀g ∈ Autc(Γ),Φ(g) ◦ ι = ι ◦ g.
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If furthermore Γ is connected, then we can choose Γ′ to be connected as well. If
Γ is superpath-connected, then we can choose Γ′ to be superpath-connected as well.

Proof. First up to taking a bijection between the set of colors C and a subset of
the proper class of infinite ordinals, we can using the Sabidussi’s lemma associate
to each color x ∈ C an abstract graph Tx with no automorphisms and such that Tx
and Ty are isomorphic as abstract graphs if and only if x = y. Furthermore without
loss of generality, we may assume that the graphs are pairwise disjoint.

Now denote

T = {(o(x), t(x), e)|e ∈ E(Γ), x ∈ Tc(e)} ∪ {(x,∞, e)|e ∈ E(Γ), x ∈ V (Tc(e))}∪
{(∞, y, e)|e ∈ E(Γ), y ∈ V (Tc(e))} ∪ {(∞,∞, e)|e ∈ E(Γ)}

with ∞ a point that is in none of the Ta’s nor in Γ.
For e ∈ E(Γ), denote Te the corresponding copy of Tc(e) in T , i.e the set

Te = {(o(x), t(x), e)|x ∈ Tc(e)}

Now we write Γ as a projective limit of some finite graphs (Γi)i∈I , with surjective
natural projections pi. Furthermore let J be the directed set of finite subsets of

⋃
a∈C

Ta

for the order of inclusion. We equip the set I × J × J with the product order. For
each i ∈ I and X, Y ∈ J , we define

Ai,X,Y ={(x, y, pi(e))|e ∈ E(Γ), x ∈ X, y ∈ Y and ∃u ∈ Tc(e), o(u) = x and t(u) = y} ∪
{(x,∞, pi(e))|e ∈ E(Γ), x ∈ V (Tc(e)) ∩X} ∪
{(∞, y, pi(e))|e ∈ E(Γ), y ∈ V (Tc(e)) ∩ Y } ∪
{(∞,∞, pi(e))|e ∈ E(Γ)}.

These sets are finite, since X, Y is finite and so is {pi(e)|e ∈ E(Γ)} for all i ∈ I.
Now define for X ∈ J and x ∈

⋃
e∈E(Γ)

V (Tc(e)) ∪ {∞}:

hX(x) =

{
x if x ∈ X
∞ else

Now we will define the transition map fromAj,X,Y toAi,X′,Y ′ for (i,X, Y ) ≤ (j,X ′, Y ′).
Write:

φ(i,X,Y ),(j,X′,Y ′) =

{
Aj,X′,Y ′ −→ Ai,X,Y

(x, y, pj(e)) 7→ (hX(x), hY (y), pi(e))

This map is well defined, because the projections pi are compatible with the tran-
sition maps of the graph Γ. It is a transition map on each component, hence it is a
transition map for the product order. Now we will define the natural projections of
the set T onto Ai,X,Y . Write:

pi,X,Y =

{
T −→ Ai,X,Y

(x, y, e) 7→ (hX(x), hY (y), pi(e))



138

We shall now prove that T together with these projections is the limit of the
projective system:

((Ai,X,Y )i∈I,X,Y ∈J , (φ(i,X,Y ),(j,X′,Y ′))(i,X,Y )≤(j,X′,Y ′))

Observe that the projections are compatible with transition maps. Let us to
prove that if (ui,X,Y )(i,X,Y )∈I×J×J is a collection compatible with the transition maps,
then there exists u ∈ T , such that ∀(i,X, Y ) ∈ I × J × J , p(i,X,Y )(u) = u(i,X,Y ).

For that purpose we distinguish four cases.

• Case 1: For all (i,X, Y ) ∈ I × J × J, ui,X,Y = (∞,∞, pi(ei,X,Y )).

Write ei,∅,∅ = ei. The collection pi(ei) is compatible with the transition maps
of Γ and E(Γ) is closed in Γ, hence there exists an e ∈ E(Γ) such that ∀i ∈
I, pi(e) = pi(ei). By compatibility with the transition maps, we get that for
all (i,X, Y ) ∈ I × J × J :

ui,X,Y = (∞,∞, pi(e))

• Case 2: There exists (i0, X0, Y0) ∈ I×J×J , such that ui0,X0,Y0 = (x, y, pi0(e
′))

with x ∈ Ta, y ∈ Ta and a = c(e′).

For i ≥ i0, we take ei ∈ E(Γ), such that ui,X0,Y0 = (x, y, pi(ei)). The elements
pi(ei) are compatible with transition maps of the graph Γ and are all in E(Γ)∩
c−1({a}), which is closed in E(Γ), therefore there exists e ∈ E(Γ), such that
c(e) = a and ∀i ≥ i0, pi(e) = pi(ei). Using then the compatibility with the
transition maps, we can prove that

∀(i,X, Y ) ∈ I × J × J, ui,X,Y = pi,X,Y ((x, y, e))

The two remaining are proven very similarly to the case two, so we will just
mention them for the sake of completeness.

• Case 3: There exists (i0, X0, Y0) ∈ I×J×J , such that ui0,X0,Y0 = (x,∞, pi(e′))
with x ∈ Tc(e′) and such that for all I × J × J the second component of ui,X,Y
is ∞.

• Case 4: There exists (i0, X0, Y0) ∈ I×J×J , such that ui0,X0,Y0 = (∞, y, pi0(e′))
with y ∈ Tc(e′) and such that for all (i,X, Y ) ∈ I × J × J the first component
of ui,X,Y is ∞.

Let us take a step back and examine this construction. We start with a disjoint
union of the graphs Tc(e) and we have to complete it in order to make it a profinite
graph. The most naive completion would be a single point compactification. The
problem with this approach is that the origin and terminus maps will not necessarily
be continuous, unless the graph is locally finite. Instead we identify the graphs Te
with the product of vertices V (Te) × V (Te) with the diagonal corresponding to
vertices and its complement to the edges. This identification works, because none
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of the Te has neither loops nor multiple edges between two vertices. We compactify
these graphs with point at infinity and edges connecting all points to infinity and
vice versa. We illustrate the resulting graph below. Choose i ∈ I and two edges e, e′,
such that pi(e) = pi(e

′) and such that c(e) = c(e′). Then pick a x ∈ Tc(e) and write
X = Y = {x}. We illustrate the elements u, v ∈ T , such that pi,X,Y (u) = pi,X,Y (v)
with the same colors.

Now that we have constructed the graph T , we will use it to create the graph Γ′

with the desired properties. The construction of Γ′ proceeds as follows:
Take e ∈ E(Γ) an edge from u to v. Replace it with the edges e+ and e−, with e−

going from u to (∞,∞, e) and e+ from (∞,∞, e) to v, as in the following picture:
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The resulting graph will have the desired properties, because by construction,
the graphs Te and Te′ can’t be isomorphic if e and e′ have distinct colors.

Define E+ = {e+|e ∈ E(Γ)} and E− = {e−|e ∈ E(Γ)} two disjoint copies of
E(Γ). We write:

Γ′ = V (Γ)q E− q E+ q T
and equip it with the disjoint topology. Since all the individual topologies on the
disjoint components are profinite, the overall topology will be profinite as well. To
make it into a graph, we need to define a closed subset of vertices and the continuous
maps origin and terminus.

We write:

V (Γ′) = V (Γ) ∪ {(x, x, e)|e ∈ E(Γ), x ∈ V (Tc(e))}

as the set of vertices. To prove that is closed, we will show that its complement
is a neighborhood of each of its points. Take q in the complement of V (Γ′). We
differentiate several cases.

• Case 1: q ∈ E+ ∪ E−

By the definition of disjoint topology E+ ∪ E− then is a neighborhood of q
and it does not intersect V (Γ′).

• Case 2: q = (∞, y, e), with y ∈ V (Tc(e)).

Let i be any element of I, X = {y} and Y = {y}. Now take q′ = (x′, y′, e′) ∈ T ,
such that pi,X,Y (q′) = pi,X,Y (q) = (∞, y, pi(e)). That means that hX(x′) = ∞
and therefore x′ /∈ {y}, so x′ 6= y. Furthermore hY (y′) = y and therefore
y′ = y. As a conclusion q′ = (x′, y, e′), with x′ 6= y, therefore q′ cannot be in
V (Γ′). We conclude that the complement of V (Γ′) is indeed a neighborhood
of q.
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• Case 3: q = (x,∞, e) with x ∈ V (Tc(e)).

This case is essentially the same as the previous one and will therefore be
omitted.

• Case 4: q = (x, y, e) wtih (x, y) being an edge in Tc(e).

Take again i any element of I, X = {x} and Y = {y}. Now assume that
q′ = (x′, y′, e′) ∈ T is such that pi,X,Y (q′) = pi,X,Y (q) = (x, y, pi(e)). Then we
get that x = x′ and y = y′. We conclude that q′ is not a vertex. We have
again that the complement of the set of vertices is a neighborhood of q.

From this we can indeed conclude that V (Γ) is closed in Γ. Now is the time to
define the origin and terminus maps and prove that they are continuous.

Write

o =



Γ′ −→ V (Γ′)

q 7→


q if q ∈ V (Γ)

o(e) if q = e− ∈ E−

(∞,∞, e) if q = e+

(x, x, e) if q = (x, y, e) ∈ T

and

t =



Γ′ −→ V (Γ′)

q 7→ q if q ∈ V (Γ)

(∞,∞, e) if q = e−

t(e) if q = e+

(y, y, e) if q = (x, y, e) ∈ T

Since both cases are very similar, we will only prove that o is continuous. To do that,
we will prove that o is continuous at every point. Take q ∈ V (Γ′). We differentiate
the following cases:

• Case 1: q ∈ V (Γ).

This part is straightforward, because of the structure of Γ and continuity of
its own origin map.

• Case 2: q ∈ E−:
Same reasoning as before.

• Case 3: q = e+ ∈ E+.

Let i ∈ I,X ∈ J and Y ∈ J . If e′+ ∈ E+ is such that pi(e′) = pi(e), then

pi,X,Y (o(e′)) = pi,X,Y (∞,∞, e′) = (∞,∞, pi(e′)) = pi,X,Y (o(e+))

This proves that o is continuous at q.
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• Case 4: q = (x, y, e) ∈ T , with x and y vertices in Tc(e).

Let i ∈ I, X ∈ J and Y ∈ J . We write X ′ = {x} and Y ′ = ∅. Now suppose
that q′ = (x′, y′, e′) ∈ T , such that

pi,X′,Y ′(q
′) = pi,X′,Y ′(x, y, e) = (x,∞, pi(e))

Then x = x′ and therefore o(q′) = (x, x, e′). We get that

pi,X,Y (o(q′)) = (hX(x), hY (x), pi(e
′)) = (hX(x), hY (x), pi(e)) = pi,X,Y (o(q))

This proves the continuity of o at q.

• Case 5: q = (x,∞, e) ∈ T , with x a vertex in Te.

Let again i ∈ I, X ∈ J and Y ∈ J . Write X ′ = {x} and Y ′ = ∅. Suppose
that q′ = (x′, y′, e′) is such that

pi,X′,Y ′(q
′) = pi,X′,Y ′(q) = (x,∞, pi(e))

We then get that x′ = x and as such

pi,X,Y (o(q′)) = (hX(x), hY (x), pi(e
′)) = (hX(x), hx(Y ), pi(e)) = pi,X,Y (o(q))

• Case 6: q = (∞, y, e) ∈ T . Let i ∈ I and X, Y ∈ J .
Let X ′ = X ∪ Y and Y ′ = ∅. Suppose that q′ = (x′, y′, e′) ∈ T , such that:

pi,X′,Y ′(q
′) = (hX′(x

′),∞, pi(e′)) = hi,X,Y (q) = (∞,∞, pi(e))

Since hX′(x′) =∞, we deduce that x′ is neither in X nor Y . As such we get:

pi,X,Y (o(q′)) = (hX(x′), hY (x′), pi(e
′)) = (∞,∞, pi(e)) = hi,X,Y (q)

• Case 7: q = (∞,∞, e). Let i ∈ I and X, Y ∈ J . Write X ′ = X ∪ Y and
Y ′ = ∅. Suppose that q′ = (x′, y′, e′ ∈ E) ∈ T , such that

pi,X′,Y ′(q
′) = (hX′(x

′), hY ′(y
′), pi(e

′)) = pi,X′,Y ′(∞,∞, e) = (∞,∞, pi(e))

Then since hX′(x′) =∞, we can conclude that x′ /∈ X ′ and so x′ is neither in
X nor in Y . From this we get that

pi,X,Y (o(x′, y′, e′)) = (hX(x′), hY (x′), pi(e
′)) = (∞,∞, pi(e))

Note that while the projections pi,X,Y define a profinite topology, they are not q-
morphisms. Now that we proved that Γ′ is a profinite graph, we will prove that it
has the properties of the proposition. The injection ι from V (Γ) to V (Γ′) is simply
the natural inclusion, which is continuous.
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Now define:

Φ =



Autc(Γ) −→ Aut(Γ′)

g 7→



Γ′ −→ Γ′

q 7→


g(q) if q ∈ V (Γ)

g(e)− if q = e−

g(e)+ if q = e+

(x, y, g(e)) if q = (x, y, e) ∈ T

This map is well defined, because g preserves colors, so if x or y or both valid vertices
are in Te, then they are the same vertices in Tg(e), which is the copy of the same set
Tc(e) = Tc(g(e)). We can check at each point that Φ(g) is continuous.

Now let us show that Φ is continuous.
Let (i,X, Y ) ∈ I × J × J . If we take g, g′ ∈ Autc(G), such that pi ◦ g = pi ◦ g′,
then for every q in the complement of T , pi ◦ φ(g)(q) = pi ◦ Φ(g′)(q) and for every
q = (x, y, e) in T , we get that

πi,X,Y ◦Φ(g)(q) = (hX(x), hY (y), pi(g(e))) = (hX(x), hY (y), pi(g
′(e))) = πi,X,Y ◦Φ(g′)(q)

which concludes the proof of the continuity of Φ. All that remains to do if to find
the inverse and prove that it is continuous as well.

Now let us take g ∈ Aut(Γ′). The only one sided edges in this graph are those in
E+ and E−, so g(E−) ⊆ E+∪E−. Now let us show that g(E−) = E− and therefore
that g(E+) = g(E+). If we take e− ∈ E−, then o(e−) ∈ V (Γ). If by contradiction
g(e−) ∈ E+, then o(e−) gets sent by g to some (∞,∞, e′). However (∞,∞, e′) has
some two sided edges connected to it and o(e−) = o(e) does not, which contradicts
the fact that g is an automorphism of a graph. As such, we get that g(E−) = E−.

Since g is an automorphism sending infinity on infinity, we get that for every e ∈
E(Γ), there exists a unique ug(e) ∈ E(Γ), such that g(∞,∞, e) = (∞,∞, ug(e)). Let
us show that ug preserves colors and is continuous. The fact that ug preserves colors
is simply because if we restrict g to Te, we get that g(Te) ⊆ Tu(e) and g(Tu(e)) ⊆ Te,
so g is an isomorphism between Te and Tu(e). By construction such an isomorphism
is only possible if c(ug(e)) = c(e).

Now for the continuity of ug. Let i ∈ I. By continuity of g, there exists
(j,X, Y ) ∈ I × J × J , such that if pj,X,Y (x, y, e′) = pj,X,Y (∞,∞, e), then

pi,∅,∅(g(x, y, e′)) = pi,∅,∅(g(∞,∞, e)) = (∞,∞, pi(u(e)))

Now if we take e′, such that pj(e′) = pj(e), then

pi,∅,∅(g(∞,∞, e′)) = pi,∅,∅(g(∞,∞, e))

and so pi(u(e′)) = pi(u(e)), proving the continuity of u.
From what precedes we can see that g sends V (Γ) onto V (Γ) and thus we can

define:
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Ψ =


Aut(Γ′) −→ Autc(Γ)

g 7→


Γ −→ Γ

q 7→

{
g(q) if q ∈ V (Γ)

ug(q) if q ∈ E(Γ)

Ψ is then an inverse to Φ.
To prove the continuity of Ψ, we take an i ∈ I. Then we take g, g′ ∈ Aut(Γ′),

such that for every x ∈ T , pi,∅,∅(g(x)) = pi,∅,∅(g
′(x)) and for every x /∈ T , pi(g(x)) =

pi(g
′(x)). In that case if we take a ∈ V (Γ):

pi ◦Ψ(g)(a) = pi ◦ g(a) = pi ◦ g′(a) = pi ◦Ψ(g)(a)

If on the other hand a ∈ E(Γ):

pi ◦Ψ(g)(e) = pi(ug(e)) = pi(ug′(e)) = pi ◦Ψ(g′)(e)

We can therefore conclude that Ψ is indeed continuous, which concludes that
Autc(Γ) and Aut(Γ′) are isomorphic.

Finally assume that Γ is connected and let us prove that Γ′ is connected. Take
ι the natural injection of V (Γ) to V (Γ′). We have for every e ∈ E(Γ) that ι(o(e))
and ι(t(e)) are in the same component in Γ′, since (o(e), e−, e+, t(e)) forms a path
from o(e) to t(e). Every element of Γ′ is in the path component of some ι(u) with
u ∈ V (Γ), so by 4.6.5, Γ′ is connected.

Similarly to 4.6.6 we can prove that if we Γ is superpath-connected, then Γ′ is
superpath-connected as well.

4.7 Application to the topology of profinite groups
In this section we will prove that every profinite group is a group of autohomeo-
morphisms of a compact connected Hausdorff space together with its open compact
topology.

It is a generalization of a result published by Karl Hofmann and Sidney Morris
in [25] and [24] proving that every profinite group with one generator is a group of
automorphisms of a Hausdorff compact space. The approach is the following: we
start with a profinite graph and we replace each edge with a specially constructed
curve called de Groot space, which is compact connected and has no local autohome-
omorphisms. These curves were constructed by de Groot in [20] and [19]. Once the
edges are replaced in such a way, we will show that the autohomeomorphism group
is isomorphic to the automorphism group of the graph. Then using the profinite
analogue of the theorem of Sabidussi, we will construct a graph with a given profinite
group as a group of automorphisms and closed set of edges.

Due to certain difficulties related to whether the set of edges of a profinite graph
is closed or not, I originally proved this theorem only for finitely generated profinite
groups as opposed to all profinite groups. It is important to mention that such a
result has already been established in a more general context by Paul Gartside and
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Anerin Glyn in [18], who showed that every metric profinite group is a group of
autohomeomorphisms of a connected compact Hausdorff space. Their methodology
was however different from the one that I and Morris with Hofmann used.

Before proving the Morris and Hofmann conjecture, we will shed more light on
the de Groot construction as given in [20] as in its original form it is not very
detailed. While the original proof uses undefined curves called propellers, in our
version we will use rhombi which have the same topological properties needed in
the proof and will enable us to do the proof in greater detail, while making use of
convex geometry. We start by properly defining a rhombus.

Definition 4.7.1 (Rhombus). Let R2 be the two dimensional affine space equipped
with its standard dot product · giving a Euclidean metric d and the standard ori-
entation. A rhombus is a set of four points A,B,C,D in R2, such that d(A,B) =

d(B,C) = d(C,D) = d(D,A) > 0 and such that the oriented angles D̂AB, ÂBC,
B̂CD and ĈDA all have a measure between 0 and π. We call the segments [AB],[BC],
[CD] and [DA] the faces of the rhombus.

Now take ~n1, ~n2 the unique unit vectors, such that the angles ̂
( ~AB, ~n1) and

̂
( ~BC, ~n2) have a measure π

2
. We say that a point X is below a face f , if ~AX · ~n1 < 0

and f = [AB],or ~BX · n2 < 0 and f = [BC] or ~CX · n1 > 0 and f = [CD] or
~DA · ~n2 > 0 and f = [AD]. We say that the point is above the face f , if the inequal-
ities above are in the other way. We call the interior of the rhombus ABCD the set
of points which are below all its faces.

Here is an illustration of a rhombus together with the vectors ~n1 and ~n2 and its
interior in blue.

Now we will prove a property of rhombus that we will use.

Lemma 4.7.2. Let R be a rhombus and O a point that is neither in the interior
of R nor on the faces of R. Let P be the closest point of the faces to O, then O is
above at least one of the faces containing P .

Proof. We have two distinct possibilities: either P is in the interior of one of the
faces or P is on the intersection of two faces. Let us begin by examining the case
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where P is in the interior of a face f = [AB]. We denote the measure of the angle
ÔAB in [−π, π] and β the measure of the angle ÂBO in [−π, π]. Up to a choice of
orientation we may assume that α and β are positive. The situation is illustrated
below.

Now let D and C be the points such that R is the rhombus ABCD. We denote
x the measure of the angle B̂AD. To prove that O is above the face [AB], we shall
prove that x is negative and therefore the orientation we chose does not conflict with
the definitions above and below for the rhombus ABCD.

By contradiction, assume that x > 0. We will deal with the case where x < 2α.
We take H the orthogonal projection of O onto the line (AD). We illustrate this
configuration below:

Now assume that d(A,O) ≤ d(A,B). We will prove that H belongs to the
segment [AD] and that the distance d(H,O) is smaller than d(P,O), which will
give a contradiction. We have ~AH · ~AD = ~AO · ~AD = d(A,D)d(A,O)cos(x −
α). Since 0 < x < 2α, we get that −α < x − α < α. Now α has to be less
than π

2
, otherwise P wouldn’t be on the segment [AB]. From this we deduce that

cos(α − x) is positive and hence the angle between ~AH and ~AD is 0. Furthermore
d(A,H) = cos(x − α)d(A,O) < d(A,D) and thus H belongs to [AD]. In this case
d(O,H) = |sin(x− α)|d(A,O) < sin(α)d(A,O) = d(O,P ), since 0 < x < 2α. Now
assume instead that d(A,O) > d(A,B). If H belongs to [AD], the same reasoning
still works and we find a point on one of the faces of R that is closer to O than P .
If on the other hand H does not belong to [AD], then we get that

d(O,D)2 = d(A,O)2 + d(A,D)2 − 2d(A,D)d(A,O)cos(x− α)

by the law of cosines.
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Furthermore we have that cos(x− α)d(A,O) = d(A,H) and hence

cos(x− α)AO > AD

From this we obtain that

d(O,D)2 < d(A,O)2 − d(A,D)2

By the theorem of Pythagoras, we also get that

d(O,P )2 = d(A,O)2 − d(A,P )2 > d(A,O)2 − d(A,B)2

From this we conclude that d(O,D)2 < d(O,P )2, which is again a contradiction.
Now that we have dealt with the case 0 < x < 2α, we will work on the case

π > x > π − 2β and this time we take H to be the projection of O onto the line
(BC).

Let us illustrate it below:

The angles ÂBC and D̂AB are complementary, since ABCD is a rhombus and
thus if D̂AB is between π−2β and π, then ÂBC will be between 0 and 2β and thus
we can do the same reasoning to prove that either H is on a face of the rhombus
and is closer to O than P or C is closer to O than P and get a contradiction.

We have so far examined two cases: x in the open interval (0, 2α) and x in the
open interval (π − 2β, π). If these two intervals overlap each other that is to say
2α > π − 2β, which is equivalent to α + β > π

2
, then we are done. Suppose then

instead that α + β ≤ π
2
. We will then show that for α ≤ x ≤ π − β, O is on the

rhombus R (either inside or on a face).
Let us illustrate it below:
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Since the angle ÔAB is α and is non negative, O is below or on the face [AB].
The point O is below or on the line (AD), since the angle ÔAD is x − α ≥ 0.
The point O is below or on the line (BC), since the angle ÔBC is π − x − β ≥ 0.
Finally we need to prove that O is below or on the line (CD). Now let ~n be the
normalization of the vector ~PO and ~m it’s complement into a direct orthonormal
basis. Since the line (CD) is orthogonal to ~n, to prove that O is below the face
[CD] or on the line (CD), it is enough to prove that that the height of D in the
coordinate system defined by A,~n, ~m is at least that of O. The height of O is
d(P,O) = d(A,O)sin(α) = d(B,O)sin(β). The height of D is d(A,B)sin(x). It
is therefore increasing on the interval [α, π

2
] and since we get that for x = α it is

d(A,B)sin(α) ≥ d(A,O)sin(α) (the angle ÂOB is obtuse), we get that for every x
between α and π

2
, the point O is below the face [CD]. Now if we take x in [π

2
, π−β],

we recenter our coordinate system in B. Since we shift by a vector orthogonal to ~n,
the height won’t change and we can do the same reasoning. The height of C will
then be sin(π − x)d(A,B) = sin(x)d(A,B). In that case the height is decreasing
on the interval [π

2
, π − β]. At the value β it is greater than that of O, so we have

our conclusion.
Since we have shown that it is impossible for the angle x to be positive, we now

know that it is negative and hence O is above the face [AB] as expected.
Now we need to deal with the special case where the projected point P is equal to

one of the vertices of the rhombus. Suppose without loss of generality that P = A.
The situation together with the labels of important angles is illustrated below:

Note that we have both the angles ̂
( ~AD, ~AO) and ̂

( ~AB, ~AO) are obtuse, since
the orthogonal projection of O on respectively (AD) and (AB) is on respectively
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the semi lines [DA) and [BA).

Now let α be the measure between −π and π of the angle ̂
( ~AD, ~AO) and β the

measure between −π and π of the angle ̂
( ~AB, ~AO). Now we shall prove that O is

above the face [AD] or the face [BA]. To do that it is enough to prove that α is less

than 0 or β is greater than 0. Suppose that β < 0. Then since the angle ̂
( ~AB, ~AO) is

obtuse, we get that −π < β ≤ −π
2
. Now let γ be the measure between −π and π of

the angle ̂
( ~AD, ~AB). We have that α ≡ β + γ[2π]. Furthermore −π < β + γ < −π

2
.

From that we conclude that −π < α < π
2
. However we know that the angle α is

obtuse, hence −π < α,≤ −π
2
and therefore O is above the face [AD].

We therefore conclude that in all cases there exists a face containing the closest
point to O, such that O is above that face.

Lemma 4.7.3. Let C ⊆ R2 be a set that is broken line connected. Let A1, · · · , An
be open and pairwise disjoint subsets of C, such that for all k the boundary ∂Ak is
path-connected and if a line intersects Ak, then it intersects ∂AK at finitely many
points. We then have that C \ (A1 ∪ · · · ∪ An) is path-connected.

Proof. Take x, y ∈ C \ (A1 ∪ · · · ∪ An). Now take α : [0, 1]→ C a broken line in C,
such that α(0) = x and α(1) = y as illustrated below

This broken line can of course intersect some of the Ak, however whenever it
enters an open Ak at a point P , it has to exit it at a point P ′. By assumption, the
boundary is path-connected, hence we replace the portion of the broken line inside
Ak between P and P ′ by a path on the boundary from P to P ′ as illustrated in red
below:
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By assumption each segment in the broken line can intersect Ak only finitely
many of times, hence the total number of replacements will be finite and the resulting
path will connect x and y in C \ (A1 ∪ · · · ∪ An).

Lemma 4.7.4. Let X be a compact Hausdorff topological space and Ω a non empty
totally ordered set for inclusion of closed connected subspaces. Then

⋂
A∈Ω

A is a

connected topological space.

Proof. Write Y =
⋂
A∈Ω

A. Let F1 and F2 be two closed subsets of X, such that Y

is a disjoint union of F1 and F2. Since X is compact Hausdorff, it is normal, i.e.
there exist two U1 and U2 two disjoint opens in X, such that F1 ⊆ U1 and F2 ⊆ U2.
Now

⋂
A∈Ω

A \ (U1 ∪ U2) ⊆ Y \ (F1 ∪ F2) = ∅ is a decreasing intersection of closed

sets, therefore by compactness for some A ∈ Ω, A \ (U1 ∪ U2) = ∅. We then have
A ⊆ U1∪U2 with A∩U1 and A∩U2 being disjoint since U1 and U2 are disjoint. The
set A is by assumption connected, so without loss of generality, we may assume that
U2 ∩ A = ∅. In that case F2 ⊆ Y ∩ U2 ⊆ U2 ∩ A = ∅ and hence Y is connected.

Lemma 4.7.5. Let D be a closed disc of positive radius and let A1, · · · , An be a
sequence of distinct points on D, such that A1 and An are on the boundary of D.
Suppose furthermore that for every k between 1 and n − 1 and every k′, k′′ distinct
from k and k+ 1, the points Ak′ and Ak′′ are on the same open half space delimited
by the line (AkAk+1). Let l be the broken line (A1 · · ·An). Then there exists an open
convex subset U ⊆ D, whose boundary is l and such that D \ U is path-connected.
We call U the inside of l and D \ (U ∪ l) the outside

Furthermore suppose that B1, · · · , Bm is another such sequence with broken line
l′ associated to it. Suppose that l′ ⊆ U∪l and the the outside of l and the outside of
l′ have a non empty intersection. Furthermore assume that l and l′ have at most
one point of intersection P and that P ∈ {A1, · · · , An} ∩ {B1, · · · , Bm}. Finally
assume one of the following holds true for P :

• P = A1 or P = An

• P 6= B1 and P 6= Bm
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• P = B1, P = Ak and Ak−1 and Ak+1 are on the same side of the face [B1B2].

• P = Bm, P = Ak and Ak−1 and Ak+1 are on the same side of the face
[Bm−1Bm]

Then the inside of l′ is included in the inside of l.

Proof. Here is an illustration for the situation with n = 7.

In case n = 2, the result is trivial. If n > 2, for each k < n, define Pk as the
intersection of D and the open half plane delimited by (AkAk+1) and containing all

the other As. Define then U =
n−1⋂
k=1

Pk. The set U has an empty intersection with

the broken line l.The set U is convex as an intersection of convex spaces. Let us
show that the boundary of U is l. First note that if x ∈ U , then x has to be on
the intersection of closed half planes delimited by (Ak, Ak+1). If x is not on either
of these lines, then x is inside of U . If on the other hand x is on a line (Ak, Ak+1):
we deal with the following cases:

• Case 1: x is on the line (A1, A2).

Since A1 is on the boundary of D and A2 is in D, then the semi line A1+t ~A1A2

with t < 0 is outside of D, hence x cannot be on that semi line. The point
x is therefore on the semi line [A1A2). Since A1 is on the open half space P2,
then the semi line A2 + t ~A2A1 (t < 0) is on the opposite open half plane and
x cannot belong to it. The point x is therefore on the semi line [A2A1) and
hence x in on the segment [A1A2] and therefore on the broken line l.

• Case 2: x is on a line (AkAk+1) with k between 2 and n− 2.

x is simultaneously on the closed half planes Pk−1 and Pk, hence x has to be
on the segment [AkAk+1] using a similar reasoning to the previous case.

• Case 3: x is on a line (An−1An).

This case is symmetric to the case 1, hence we can prove that x is on the
segment [An−1An]
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We have now proved that U ⊆ U ∪ l. Now let us prove that l ⊆ U . Take x
on l and an ε > 0. Since x ∈ l, there exists k, such that x belongs to the segment
[Ak, Ak+1]. Now suppose that x is not an extreme point, then since x is strictly
below all the other faces, then there exists δ < ε, such that the circle centered at x
and of radius δ is below all these faces as illustrated below:

We then simply take a point in the smaller disc that is below the face [AkAk+1]
and prove that x ∈ U . If x is one of the vertices Ak the proof is essentially the
same, except we take a radius δ, such that x is below all the faces [Ak′Ak′+1] with k′
distinct from k − 1 and k + 1 and pay attention to the angles when picking a point
inside U .

Since U is open and U = U ∪ l and l∩ U = ∅, then ∂U = l as expected.
Now we need to prove that D \ (U ∪ l) is path-connected. First we show that all

the points in D\(U∪l) are path-connected to the boundary of D. Let x ∈ D\(U∪l).
Then x is strictly above some face [AkAk+1]. Now just draw a semi line starting at
x, orthogonal to the face [AkAk+1] and moving away from it. Since the semi line is
unbounded and x is in D, it has to intersect the boundary of D on a point y. The
point y is strictly above [Ak, Ak+1] and hence is on the exterior of l.

Now we need to prove that the boundary of D intersected with the complement
of U is connected. To prove that it is connected it is enough to prove that its
complement in the circle is. The set C cannot be the whole circle and therefore
is included inside the circle without a point, which is homeomorphic to the open
interval ]0, 1[. We have therefore the property that path-connected subspaces are
intervals. Furthermore C is the intersection of the circle and all the subsets that are
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above the faces [Ak, Ak+1], which itself are connected. That intersection contains the
point A0 in common hence is a non empty interval and therefore path-connected.
We can therefore conclude indeed that D \ U is connected.

Now we need to prove the second part of our statement: we take B0, · · · , Bm

another sequence of points, l′ the broken line (B0, · · · , Bm). Assume that l′ is
included in U and that l and l′ have only one point of intersection and such that
there exists a point A outside of l and l′. A picture of the situation is shown below:

Now pick [BkBk+1] a face, such that A is strictly above it. Furthermore, we pick
a point x strictly between Bk and Bk+1: then x is strictly inside the curve l. Then
there exists an ε > 0, such that the open ball around x is inside l. Now pick y a
point on the semi line [Ax) that is inside the ball of radius ε and inside of l′. The
semi line [yx) can only intersect l′ in one point, since the interior of l′ is convex.
Furthermore y is inside l, while A is outside therefore it intersects l at a unique
point z. This point z is on the semi line [xA), since the segment [yx] is included
in the ball of center x and radius ε and therefore y is outside of l′. Here is the
illustration of the reasoning above:

Now if l and l′ have no common points of intersection, all points on l then
have to be on the outside of l′. Now assume that they have one common point of
intersection: say Ak. If k is zero or n, then the point is extremal and one can prove
that l is on the outside of l′. Suppose now that Ak is not an extremal point. Take t

to be the connected component of z (the point on l exterior to l′) on l\{Ak}. The
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whole t is then on the exterior of l′. Now if t′ is the other connected component
of l\ {Ak}, then t′ is either completely on the outside of l′ or completely on the
inside. By contradiction, assume it is on the inside. First assume that Ak = Bk′ ,
with Bk′ an internal point. Let us draw that situation:

Now choose an orientation, such that the angle ̂Bk′+1Bk′Bk′−1 is between 0 and
π. Then since Ak−1 and Bk′−1 are on the same side of the face [Bk′Bk′+1], then the
angle ̂Bk′+1Bk′Ak−1 is between 0 and π. The angle ̂Ak−1AkBk′+1 is then between −π
and 0. The angle ̂Bk′−1Bk′Bk′+1 is between −π and 0. Since Ak−1 is on the same
side of the face [Bk′−1Bk′ ] as Bk′+1, then the angle ̂Bk′−1Bk′Ak−1 is between −π
and 0 as well. That means that the angle ̂Bk′−1AkAk−1 is between 0 and π, while

̂Bk′+1AkAk−1 is between −π and 0, contradicting the fact that Bk′−1 and Bk′+1 are
on the same side of the face [Ak−1Ak].

Now assume instead that Bk′ is an extremal point, say k′ = 0 then by assumption
Ak−1 and Ak+1 are on the same side of the face [B0B1] and hence the curve l stays
on the outside of l′. Now let us prove that U ′ the inside of l′ is included in U : the
inside of l Let x ∈ U ′. Let us pick y ∈ l′, such that y ∈ U . Since U ′ is convex the
segment [xy] is included in U ′ and y is the only of its points l′. Furthermore, [xy]
does not intersect l′, since l′ is on the outside of l and y isn’t a point that l and
l′ have in common. The points x and y are therefore in the same path-connected
component of D \ l. Since y ∈ U , this implies that x ∈ U as expected.

Lemma 4.7.6. Let B be an open disc in R2 of a positive radius and P = (A1 · · ·An)
a convex polygon. Let U be the interior of P . Then U \B can be written as a finite
disjoint union of path-connected opens, whose boundary in R2 \B is path-connected.

Proof. A drawing of a generic situation for n = 5 goes as follows:



155

Now let C be the boundary of B. First let us treat the case when ∂P does not
intersect C. If all points of ∂P are in B, then by convexity the whole interior of
the polygon is included in B and so U \ B = ∅. Now let us assume that there is
a point on ∂P outside of B. If U ∩ B = ∅, then the result is trivial. If not take
x0 ∈ U ∩B. Let us show that U \B is connected. By the lemma 4.7.3, it is enough
to show that B is included in U . Let y be another point in B. By contradiction,
assume that y /∈ U , then the segment [xy] crosses the boundary of U : ∂P at some
point z. We however assumed that ∂P ∩ B = ∅, hence we obtain a contradiction.
A picture illustrating this proof is below:

Now let us assume that ∂P intersects C at exactly one point. If all other points
of ∂P are inside the open disc B, then by convexity U ⊆ B. Now assume that
there is at least on point outside of B: y. Let us show that then ∂P does not
intersect B. By contradiction, assume there exists a point of intersection y ∈ U .
Then there exists a path on ∂P from x to y that doesn’t go trough the unique point
of intersection between C and ∂P as illustrated below:

That path would have to then intersect Cat some point, which is a contradiction.
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Then we use again the lemma 4.7.3 to conclude.
Now assume that there are two or more points of intersection. We parameterize

∂P by a continuous function γ from S1 to ∂P . Now for each x on ∂P outside of
U , we associate L(x) the first point on ∂P ∩ C on the left of x and R(x) the first
point on ∂P ∩ C on the right of x. Now if x belongs to the line (L(x)R(x)), we can
find a point on ∂P that is outside of U and not on (L(x)R(x)). In that case define
Hx as the half open plane delimited by (L(x)R(x)) containing that point. If on the
other hand x does not belong to (L(x)R(x)), then we define Hx as the open plane
delimited by (L(x)R(x)) containing x. The two cases are illustrated below:

Now we define Cx = Hx ∩ [U \B]. We will prove that Cx is path-connected. We
will do it in the following steps:

• Prove that Hx intersected with ∂P is the curve between L(x) and R(x) going
from left to right with our chosen parameterization γ if x /∈ (L(x)R(x)).

• Prove that C∩Hx doesn’t intersect ∂P .

• Prove that C∩Hx ⊆ Cx.

• Prove that every y ∈ Cx is connected by a path to C∩Hx.

We start by proving that Hx ∩ ∂P is the curve between L(x) and R(x) if x is
not on (L(x)R(x)). Now take t0, t1, t2 ∈ S1. such that L(x) = γ(t0), x = γ(t1) and
R(x) = γ(t2). Let us take t ∈ S1 between t1 and t3. By contradiction, assume that
γ(t) /∈ Hx. In that case by continuity, there exists t′ between t0 and t1 or between
t1 and t2, such that γ(t′) ∈ (L(x)R(x)), which is impossible, since P is a convex
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polygon, so a line that is not a face can intersect its boundary at at most two points.
By a similar reasoning we can prove that points whose parameter is not between t0
and t2 is on the opposite half plane to Hx.

Now we need to prove that C∩ Hx doesn’t intersect ∂P . First assume that
x is not on (L(x)R(x)). If then C∩ Hx intersected ∂P , it would intersect ∂P on
a point between L(x) and P (x), which is a contradiction. If on the other hand
x ∈ (L(x)R(x)), then it cannot intersect another face besides the one x is on,
because we otherwise would find a t between t0 and t2, such that γ(t) is on C. It
also cannot intersect the face of x more than at two points and both R(x) and L(x)
are outside of Hx.

Next step is to prove that C∩Hx ⊆ Cx. The arc C∩Hx doesn’t intersect ∂P ,
therefore it is either entirely in U or entirely outside. Let us prove that there exists
at least one point inside. Now let us assume that x /∈ (L(x)R(x)) Take O the middle
of the segment [L(X)R(x)]. Then O is inside U as well as inside B. The segment
[Ox] with the point x excluded is then therefore inside U . It has to intersect C at
some point y, since x is outside B and hence y ∈ U . Furthermore the segment [Ox]
with O excluded is inside Hx, hence y ∈ Hx∩ C. We illustrate this part of the proof
below:

Now instead assume that x ∈ (L(x)R(x)). Take again O in the middle of the
segment [L(x)R(x)]. Furthermore take y ∈ Hx ∩ ∂P . The point y is outside of B
and in Hx, so we take an open ball small enough centered around y such that the
ball is inside Hx \ B. Then take y′ ∈ U that is inside that ball. The segment [y′O]
without O is in Hx∩U and it has to intersect C at a point z ∈ Hx∩U . We illustrate
this part of the proof as well:
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Finally we shall prove that every y ∈ Cx is connected by a path to C∩Hx. We
write again O to be the center of [L(x)R(x)]. The segment [yO] has to intersect C

at a point z by the same reasoning as above. Furthermore [yz] is included in Hx∩U
and is outside B, proving that y is connected by a path to Hx ∩ C.

The arc Hx ∩ C is path-connected proving therefore that the whole Cx is path-
connected.

Cx is furthermore open in R2 \B as an intersection of two open sets: U \B and
Hx\B. Now we shall prove that every y ∈ U \B is in some Cx. Let y ∈ U \B. Then
the semi-line coming from y and going in the opposite direction from the center of
B has to intersect at some point x with the boundary ∂P , since P is bounded. Let
us prove that y ∈ Cx. By contradiction, assume that y is on the lower plane of Hx.
It cannot be on the segment [R(x)H(x)], since either y would be on a face which is
impossible or y would be inside of the disc B. The segment [yx] would then have
to intersect [R(x)L(x)], which is impossible, since we chose it in such a way that it
cannot enter in the disc B, hence y ∈ Hx and therefore y ∈ Cx as expected.

Finally using a similar reasoning to the one above, we can prove that the open
sets in the set {Cx|x ∈ ∂P \B} are disjoint, which concludes the proof.

Theorem 4.7.7 (de Groot). There exists a connected Hausdorff compact and locally
connected space H and a, b ∈ H, two distinct points in H such that: H \ {a, b} is
connected and if U is an open in H and f a continuous injective and open map from
U to H, then ∀x ∈ U, f(x) = x.

Proof. We will detail the proof done by de Groot in [20]. While de Groot originally
used unspecified curves that are bouquets of propellers, which looked as follows:
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We will replace these propellers by rhombi, so that the proof can be reduced to
convex geometry. The bouquets will then look as follows:

We can construct a flower of rhombi centered at a point X of radius r and of n
petals R(X, r, n) as follows. Take D(X, r) the closed disc of radius r centered at X
and D(X, r

2cos( π
2n

)
) a closed disc of radius r

2cos( π
2n

)
. Split the smaller disc into 2n equal

parts by taking the points that correspond to 2n-th roots of unity. On the exterior
disc take the nth roots of unity shifted by the angle π

2n
. Then connect appropriately

to get n rhombi whose only common point is X as shown in the illustration above.
Now we start the construction of H by picking D a disc of radius 1 in R2 and

choose (xn)n∈N\{0} a sequence in the interior of D and dense in D. Now we construct
a sequence Dn by induction. We start with D0 = D. We construct D1, by taking
x′1 = x1 and constructing around it a flower R(x′1, r1, 2) with two petals, such that
its radius doesn’t touch the edges of D as illustrated below.

Then we obtain D1, simply by removing the interior of the two rhombi. We
construct D2 in the following way: choose x′2 as the first of the xn that is not on
a rhombus in D1 (neither in the interior nor on the edges). It exists because the
complement of a rhombus is open and the sequence is dense in the disc D. Now
choose a disc centered at x′2 of a radius r2 that is less than 1

2
, such that the disc is

disjoint with the flower centered at x′1 as well as with the edges of D. Finally we
take a flower with three petals centered at x′2 and of radius of the given disc. We
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illustrate one such case below:

We then obtain D2 by removing the interior of all rhombi of the flower centered
at x′2 from D1.

Now suppose by induction that we have constructed a Dn and x′1, · · · , x′n with
the following properties:

• For every k, x′k is a center of a flower with k+1 rhombi and of a radius rk ≤ 1
2k
.

• For every k > 1 x′k the first xm that is in none of the flowers centered at
x1, · · ·xk−1.

• For every k > 1 the disc of radius rk centered on x′k has an empty intersection
with the flowers centered respectively at x′1, · · ·x′k−1 and an empty intersection
with the boundary of D.

• Dn is the complement of the interiors of all the flowers centered at x′1, · · · , x′n
in D.

We construct Dn+1 as follows: Take x′n+1 to be the first xm, such that xm is in none
of the flowers so far constructed. Then take rn+1 a radius smaller than 1

2n+1 , such
that the disc centered at x′n+1 has an empty intersection with all the flowers so far
constructed as well as the boundary of D. Construct a flower of radius rn+1 centered
at x′n+1 and remove its interior to obtain Dn+1.

Now define
H =

⋂
n∈N

Dn

We shall prove that H has the following properties:

• H is compact and connected.

• For every n ∈ N \ {0}, if there is no k ∈ N \ {0}, such that xn = x′k, then xn
belongs to one of the flowers.

• The sequence (x′n)n∈N\{0} is dense in H.

• For every x ∈ H distinct from all the x′k and every U a neighborhood of
x, there exists C ⊆ U a neighborhood of x, such that: C and C \ {x} are
connected.
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• For every n ≥ 1 and every U a neighborhood of x′n, there exists C ⊆ U a
neighborhood of xn, such that C is connected and C \{x′n} has n+1 connected
components dense in C.

From these properties, we will then be able to prove that H is a de Groot space.
To prove that H is compact and connected, we first prove that all the Dn are.

They are compact, because closed in D, which is compact. To prove they are
connected, we notice that all the interiors of the rhombi inDn are disjoint convex sets
with a path-connected boundary. By the lemma 4.7.3, Dn is then path-connected,
hence connected. H is a decreasing intersection of compact connected subsets and
is therefore itself compact connected.

Now we need to prove that all the xn that are not of the form x′k are on the
flowers (including their interiors). By contradiction take n the smallest positive
integer such that ∀k ∈ N \ {0} xn 6= x′k and xn is on none of the flowers. Then for
every n′ ≤ n, xn′ is either equal to some x′k or is on some flower. Now take k0 the
largest k, such that

∃n′ < n, x′k0 = xn′

The number k0 +1 is the smallest n′, such that xn′ is on none of the flowers centered
at x′k′ for k′ ≤ k0. For all n′ ≤ n, xn′ is on one of the flowers with indexes up to k0

because of how the sequence x′ is constructed and therefore x′k0+1 = xn, which is a
contradiction.

The next step is to establish that the sequence (x′n)n∈N\{0} is dense in H. By
contradiction, assume that it is not. Then there exists x ∈ H and a radius r > 0,
such that for all integers n, x′n does not belong to the disc (closed ball) centered at
x of radius r: D(x, r). Now let n0 be such that the radius of the flower centered
at xn0 : rn0 is less than r

2
. Denote C the open ball centered at x of radius r

2
with

all the flowers up to rank n0 removed. The ball C cannot be empty, since then we
could write B(x, r

2
) as a finite disjoint union of open sets, which is impossible since

B(x, r
2
) is connected. We then get that C with interiors of all flowers removed is

equal to C, since all the flowers from the rank n0 are centered outside of the open
ball B(x, r) and of radius r

2
, so don’t intersect C at all. Furthermore C is open in

D, therefore there exists n ∈ N, such that xn is in C by density of the sequence.
The point xn is distinct from all the x′k and therefore has to be on of one of the
flowers, but that is impossible, since all the flowers are by construction disjoint with
C, hence the contradiction. The illustration for the proof is shown below:
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The next step in the proof is to show that for every x ∈ H distinct from the x′k
and for every U a neighborhood of x, there exists C a neighborhood of x, such that
C \ {x} and C are connected. We take x ∈ H distinct from the x′ks. We will show
that there exists An an increasing sequence of connected subsets of U , such that x
is in none of the An and such that

⋃
n∈N

An ∪ {x} is a neighborhood of x. To do that

we will distinguish three cases:
Case 1: x is neither an element of the boundary of D nor on any of the rhombi.
Since U is a neighborhood of x, there exists a r > 0, such that the closed disc

of radius r intersected with H: D(x, r) ∩ H is a subset of U . Furthermore we can
choose r > 0 small enough such that D(x, r) doesn’t intersect the boundary of D.
Let n0 be in N, such that the flower centered on x′n0

is of radius less than r
3
. Let

r′ > 0 be a radius strictly smaller than r
3
, such that none of the flowers centered

at x′1, · · · , x′n0
intersect the open ball centered at x. Here is an illustration of the

configuration:

Now let’s take r′n a sequence of radii converging monotonely to zero with r0 = r′.
ConsiderRn = D(x, r)\B(x, r′n) a ring centered at x. (B(x, r′n) being the open ball of
radius r′n centered at x). Note that none of the flowers intersect both the outer edge
of the ring and the inner edge. To prove it: first take x′n with n < n0. Then the flower
centered at x′n does not intersect the inner edge by definition. If on the other hand
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n ≥ n0,then suppose that the flower centered at x′n intersects the inner edge. Take
x′ to be the point of intersection. We get that d(x, x′n) ≤ d(x, x′) + d(x′, x) < r

3
+ r

3
.

The circle centered at x′n and of radius r′ < r
3
is therefore included in the interior

of D(x, r) and hence does not intersect the outer edge. The flower centered at x′n
cannot therefore intersect the edge either.

Now let m be an integer greater than 1 and R a rhombus that is part of a flower
centered at some x′k, k ≤ m. We will define an open Υ(R) as follows:

• If R intersects the outer edge, we take P the closest point on R to x. Now
take P the path-connected component on ∂R ∩ D(x, r) of P as illustrated
below.

In the case of the illustration that would be two faces.

Define then Υ(R) as follows: if R is entirely included in D(x, r), then Υ(R)
is simply the interior of R. If it is not entirely included, then P is a convex
broken line starting and ending on the boundary of D(x, r), hence by the
lemma 4.7.5 it splits B(x, r) into two path-connected sets and we take Υ(R)
to be the region not containing x.

First note that Υ(R) is included in the ring Rn. It is by definition included
in D(x, r).

Now let us show that it doesn’t intersect withD(x, r′). Note that by the lemma
4.7.2 x is above some face containing P and therefore is outside of Υ(R).
Furthermore if there was a point y ∈ D(x, r′) ∩Υ(R), then the segment [xy],
would have to intersect the boundary of the set Υ(R), which is impossible,
since then D(x, r′) and the rhombus R would have a non empty intersection.

Furthermore since rhombus is a convex polygon, we have that the interior of
R is a subset of Υ(R). Now let us show that if R′ is another rhombus that
intersects the outer edge such that Υ(R′) ∩ Υ(R) 6= ∅, then either Υ(R′) ⊆
Υ(R) or vice versa.
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Take u ∈ Υ(R′)∩Υ(R). Now let us take v a point on ∂Υ(R) By convexity of
Υ(R) the segment [uv] is included in Υ(R) with v being the only point of the
segment on the boundary. Suppose first that this segment doesn’t intersect
the boundary of Υ(R′) as shown below:

In the case the segment is wholly included into Υ(R′) and so v is in Υ(R′).

Now suppose that it does intersect at some point:

we simply exchange the roles of R and R′ and we obtain a point v′ on the
boundary of Υ(R′) that is inside of Υ(R). Hence we can suppose after po-
tentially relabeling that Υ(R′) contains a point on the boundary of Υ(R)

Now if R is entirely included into B(x, r), then its interior is in Υ(R′) by
convexity. Indeed the boundary of Υ(R′) and the polygon convex polygon R′

have at most one point in common, Υ(R′) contains a point of the boundary
of R′ and Υ(R′) is a convex region. In case that both R and R′ are included
inside of B(x, r), then Υ(R) and Υ(R′) are disjoint by construction, which
cannot happen, since we assume that there is at least a point in common. In
case that R′ is entirely included B(x, r), then R would have a point on the
boundary of R′ in its interior, which would contradict the construction of the
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flowers. Finally in case that neither R nor R′ are fully included inside B(x, r),
we apply the lemma 4.7.5 to prove that Υ(R) ⊆ Υ(R′)

• IfR does not intersect inner or outer edge and is fully included in the ring, then
we simply take Υ(R) to be equal to R. By the same reasoning as previously,
we can prove that it doesn’t intersect any other Υ(R) as previously defined
or is entirely included in it.

• IfR intersects the inner edge and therefore not the outer edge, we take Υ(R) =
R \B(x, r′n) Note that Υ(R) cannot intersect with any other opens Υ(R′).

Now we will show that Υ(R) can be written as a disjoint union of finite opens
with path-connected boundaries.

By the lemma 4.7.6 the interior of R splits into opens whose boundary is
path-connected. Since R is entirely included in D(x, r) its intersection with
D(x, r) stays path-connected as well.

Now that for every rhombus R, we defined Υ(R), we define Am,n, as the ring Rn

without all the Υ(R) with R being a rhombus centered at x′k, k′ ≤ m. Note that
using the lemma 4.7.3 Am,n is path-connected. It is also closed in R2, so compact.
Then An =

⋂
m≥1

Am,n is compact and path-connected by 4.7.4. Furthermore An is a

subset of Rn ∩H, since for every rhombus R, the interior of R∩ Rn is included in
Υ(R).

Now write
C =

⋃
n≥1

An

C is an increasing union of connected spaces, so is itself connected. It is a subset
of H \ {x} as it doesn’t contain x and each An is contained in H. Now let us show
that C ∪ {x} is a neighborhood of x in H.
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We will show that
B(x, r′) ∩H ⊆ C ∪ {x}

Take y ∈ B(x, r′) ∩ H. Take n ∈ N sufficiently large so that y /∈ B(x, rn). Let
us show that y ∈ An. To do that, we need to show that y is not in any Υ(R)
for every rhombus. By contradiction assume that there exists a rhombus R, such
that y ∈ Υ(R). In that case the open Υ(R) intersects the inner disc D(x, r′) and
therefore R does not intersect the outer disc D(x, r), in which case we know that
Υ(R) is equal to the interior of R intersected with the ring Rn. This implies that
y is in the interior of R, which is a contradiction, since y ∈ H. We have shown that
C∪{x} contains a non empty open ball centered at x, therefore it is a neighborhood
of x. Finally let us show that C ∪ {x} is connected. The set C contains all the x′n
belonging to the open ball B(x, r′) ∩H. Furthermore x′n is a dense sequence in H
so it is dense in an open of H, therefore x is in the topological closure of C into H
and therefore C ∪ {x} is connected.

Case 2: x is on one the boundary of D.
The approach is the same as in the previous case. First we take r > 0 small

enough so that D(x, r)∩H is included in the neighborhood U . The next step is just
like previously to take n0, such that for every n ≥ n0, the radius rn of the flower
centered at xn′ is less than r

3
. Then take r′ a radius small enough such that none

of the flowers up to rank n0 intersects B(x, r′). The illustration for the situation is
below.

Now we take r′n a sequence of radii converging to 0 and for a rhombus R, we
define Υ(R) either the interior of R if the rhombus does not intersect the edges for
D(x, r) or we take the connected component of ∂R closes to x and then take the
interior of that curve just like in the lemma 4.7.5. We can then proceed just like in
case 1: the only difference is: we have to show that Υ(R) is a subset of D, which
is not completely obvious if R intersects the edges of B(x, r). We take y a point in
B(x, r) that is not in D. Then the segment [xy] doesn’t intersect the boundary of
Υ(R), which is included in D. Since x is not in Υ(R) and hence the whole segment
is outside of Υ(R) and y /∈ Υ(R).

We can therefore just like in the previous case construct a sequence of connected
closed subsets An of U , such that

⋃
n≥1

An ∪ {x} is a connected neighborhood of x.

Case 3: x is on one of the rhombi say R0, without being any of the centers.
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Take r a radius small enough such that D(x, r) ∩H is contained in U such that
this disc intersects the boundary of the corresponding flower at two points as shown
below:

We then define V as D(x, r) without the interior of R0. Now just like in the two
previous cases, take n0 large enough, so that for all n ≥ n0, the radius rn is less that
r
3
. Now none of the flowers with ranks between 1 and n0 except potentially some n1

contain x, hence we take r′ < r
3
small enough so that for all k ∈ {1, · · · , n0} \ {n1},

none of the rhombi with center at x′k intersects B(x, r′). We define for a rhombus R
distinct from R0, Υ(R) just as previously. If it intersects the outer circle C(x, r),
we take P a point on R closest to x, l its connected component in D(x, r) and we
take Υ(R) the region delimited by the broken line l not containing x. Otherwise
define Υ(R) as D(x, r) \ B(x, r′) intersected with the interior of R. To show that
we are again in the same case, we just need to prove that Υ(R) is included in V
for every R distinct from R0. First if R doesn’t intersect the outer circle, then the
interior of R and R0 have an empty intersection, hence Υ(R) ⊆ V . If it intersects
the outer circle,just take y inside R0 ∩D(x, r). The segment [xy] doesn’t intersect
the boundary of Υ(R) and x is on the outside of Υ(R), hence y is on the outside
of Υ(R) as well.

We then construct again a sequence An ⊆ H of closed connected subsets of H,
such that

⋃
n∈N

An ∪ {x} is a connected neighborhood of x.

Now take x = x′m and U a neighborhood of x. Pick r > 0 small enough so that
B(x, r) ⊆ U and such that D(x, r) doesn’t contain any of the upper faces of the
rhombi as shown below:
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We also denote Vi for i between 1 and m as the m distinct connected components
of D(x, r) \ {x} without the interior of the flower centered at x. The next steps are
similar to what we did in the previous part of the proof: we take n0, such that for all
n ≥ n0,the radius rn is less than r

3
. Then we take r′ a radius small enough such that

none of the flowers centered at x′k with k ∈ {1, · · · , n0} \ {m} intersects B(x, r′).
The configuration is illustrated below:

Note that again none of the flowers except those centered at x can intersect both
the circle centered at x and of radius r and that of radius r′. Just like previously, if
a rhombus R centered at some xk with k 6= m intersects the outer circle C(x, r), we
take l are the connected component in the boundary of R \ D(x, r) of the closest
point to x and then we take Υ(R) the region inD(x, r) delimited by lnot containing
x. If R doesn’t intersect the outer circle, or intersects it only at one point, we take
Υ(R) to simply be the interior of R. We shall show that Υ(R) intersects at most
one Vi.

First we deal with the case when Υ(R) is simply the interior of R. Then if
Υ(R) intersected Vi and Vj, with i 6= j. take y in Vi ∩Υ(R) and y′ ∈ Vj ∩R. The
segment [yy′] is included in Υ(R) by convexity and therefore has to intersect one of
the rhombi R′ centered at x, since Vi and Vj are two different path components of
D(x, r) \ {x} without the interior of the flower centered at x. That implies that R
and R′ have a non trivial intersection, which is a contradiction.

If on the other hand we suppose that Υ(R) intersects C(x, r) at more than one
point, let us show again that Υ(R) intersects at most one Vi. First assume that
there exists y ∈ Υ(R) ∩ Vi for some i. Let us show that then Υ(R) ⊆ Vi. Let l′ be
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the boundary of Vi it is then a broken line passing by x with extremities intersecting
C(x, r) and Vi is a convex region delimited by l′. We have the situation illustrated
below:

We know that x is on the exterior of Υ(R), therefore the segment [xy] must
intersect the boundary of Υ(R) at some point z. By convexity, z belongs to Vi.
Since the boundary of Υ(R): l and l′ don’t intersect each other, the whole l is
inside Vi. The point x is on the exterior of both l and l′, hence by the lemma 4.7.5
Υ(R′) is included in Vi.

Now take r′n a sequence of radii monotonely converging to 0 with r′0 = r′. Define
An as D(x, r) \ B(x, rn) without all the Υ(R) with R all rhombi not containing x
and without the interior of the flower centered at x. Just like previously one can
show that An ⊆ H \ {x} and that

⋃
n∈N

An ∪ {x} is a neighborhood of x. Let us show

that Vi ∩
⋃
n∈N

An are the connected components of
⋃
nN
An. Write for every i between

1 and m, Bn,i = An ∩Vm. Using the fact that Υ(R) is included inside Vm if it has a
non empty intersection, we can prove using the lemma 4.7.3 that Bn,i is connected
for every n. We therefore get that Bi =

⋃
n∈N

Bn,i is connected as an increasing union

of connected spaces. Now to prove that it is a connected component, let us show
that it is a clopen. It is closed as an intersection of the closed subset Vi with

⋃
n∈N

An.

Now Vi \ {x} is open in H \ {x}, which contains
⋃
n∈N

An therefore Vi ∩
⋃
n∈N

An is open

in
⋃
n∈N

An. Now simply define C =
⋃
n∈N

An ∪ {x}. C is a neighborhood of x. It is

also a union of connected spaces that have the point x in common therefore is itself
connected. Finally C \ {x} has m connected components which all have the point
x in their closure in C.

We have finally proven all the properties of H we need to show that it is a de
Groot space. Take now a, b ∈ H two opposite points on D. As a reminder we need
to prove that

• H is compact Hausdorff and locally connected.

• H \ {a, b} is connected.

• If U ⊂ H is an open and f : U → H is a continuous injective open map, then
∀x ∈ U, f(x) = x.
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We already know that H is compact Hausdorff and locally connected. Now let
us prove that H \ {a, b} is connected. Since H is compact Hausdorff, there exists
U ′ ⊆ H and open neighborhood of a and V ′ an open neighborhood of b, such that
U ∩ V = ∅. Now take C ⊆ U ′ connected neighborhood of a, such that C \ {a} is
connected and C ′ ⊆ V ′ a connected neighborhood of b. Now take U ⊆ C an open
neighborhood of a and V ⊆ C ′ an open neighborhood of b. For every x ∈ H \ {a, b}
take Cx ⊆ H\{a, b} a connected neighborhood of x containing an open neighborhood
of Ux of x. The set {Ux|x ∈ H \{a, b}}∪U∪V is an open covering of H, therefore by
compactness it has to have a finite subcovering Ux1 , · · · , Uxn , U, V . We then write

U0 = U, Un+1 = V and Ui = Ux1 for i ∈ {1, · · · , n}
C0 = C, Cn+1 = C ′ and Ci = Cxi for i ∈ {1, · · · , n}

Now let W be the connected component of H \ {a, b} containing C1. Let us show
that W = H \ {a, b}. Let m ≤ n + 1 be maximal, such that up to permutation

U ∪
n⋃
k=1

Uxk ⊆ W . By contradiction, assume that m < n+ 1. Then U0 ∪ · · · ∪ Um is

an open in H and not all Ui with i > m can be disjoint with it, otherwise H could
be written as a disjoint union of two opens. Up to permutation we may therefore
assume that Um+1 ∩ (U1 ∪ · · · ∪ Um) 6= ∅. We therefore have that there exists an
i ≤ m, such that Ui ∩Um+1 6= ∅. The set W contains therefore an element of Cm+1,
which is connected. Furthermore W is connected hence W contains Cm+1 and in
particular it contains Um+1. Finally by the same reasoning we can prove that W
contains U0 \ {a} and Un+1 \ {b}.

Now the final step is to prove that if f : U −→ H is an injective continuous
and open map for some U open in H, then ∀x ∈ U, f(x) = x. To prove it we shall
first prove that if x′m ∈ U , then f(x′m) = x′m and then conclude by density of the
sequence (x′n)n≥1. Consider y = f(x′m). We have that f(U) is an open neighborhood
of y since f is an open map, therefore there exists C ′ a neighborhood of y contained
in f(U), such that C ′ \ {y} has n connected components with the property that for
every A ⊆ C ′ \ {y} connected component of C \ {y}, y ∈ A. Now f−1(C ′) is an
open neighborhood of xm, therefore there exists C ⊆ C ′ a connected neighborhood
of xm, such that C \ {xm} has m + 1 connected components. Let us prove that
m + 1 ≤ n. To prove it we shall show that there exists a continuous map from
C \ {x′m} to Z that has at least n values. Take u : C ′ \ {y} −→ Z having a different
value on each connected component. This map is continuous. Now consider the
map u ◦ f : C −→ Z. It is continuous as a composition of two continuous maps.
Furthermore it has at least n values. Indeed if we pick A a connected component of
C ′ \ {y}, we know that f(C) is a neighborhood of y, hence f(C) ∩A 6= ∅. We then
pick a ∈ C, such that f(a) ∈ A. In that case u(f(a)) will have the same value as
u does on A. This implies in particular that n ≥ 2, since m + 1 ≥ 2. We therefore
get that f(x′m) has to get sent on a x′m′ , with m′ ≥ m. But by the same reasoning
f−1 has to send x′m′ onto xm′′ , with m′′ ≥ m′ and therefore m = m′. We therefore
conclude that f fixes all the x′n that are in U . Now the sequence (x′n) is dense in
H, therefore it is dense in U as well. We can therefore conclude by continuity that
f fixes all the elements of U .
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Now we are almost ready to prove the Morris and Hofmann conjecture, but
before we will need the following lemma:

Lemma 4.7.8. Let Γ be a profinite graph and d ∈ {o, t} an incidence map. Let
x ∈ V (Γ) and let U be a neighborhood of x in Γ containing the set d−1({x}). There
exists then N a clopen neighborhood of x in V (Γ), such that d−1(N) ⊆ U .

Proof. Since V (Γ) is a profinite set, we can find N be a system of clopen neighbor-
hoods of x in V (Γ), such that

⋂
N∈N

N = {x}. In that case we get that
⋂
N∈N

d−1(N) =

d−1({x}). Since d−1({x}) ⊆ U , we then get that
⋂
N∈N

d−1(N) \ U is an empty inter-

section of closed sets in Γ. By compactness of Γ, there exists then an N ∈ N, such
that d−1(N) \ U = ∅ and therefore d−1(N) ⊆ U .

Theorem 4.7.9. Let Γ be a profinite graph. There exists a compact Hausdorff
space Γ̃, such that the group of automorphisms of Γ is isomorphic to the group of
autohomeomorphisms of Γ̃. Furthermore if we assume Γ to be connected, then Γ̃ is
connected as a topological space.

Originally, I proved this theorem with the assumption that the set of edges in Γ
is closed. That was incompatible with the theorem 4.6.8, since the resulting profinite
graph with no colors doesn’t have a closed set of edges since the compactifying points
at infinity are in the topological closure of the set of edges. The main difficulty in
proving the general version

Proof. Take (H, a, b) a doubly pointed de Groot space. Take ∼ an equivalence
relation on Γ×H, such that the equivalence classes are as follows:

(u, x) =


{(u, x)} if x 6= a, b and u ∈ E(Γ)

{(u′, a)|o(u′) = o(u)} ∪ {(u′, b)|t(u′) = o(u)} ∪ {(o(u), x′)|x′ ∈ H} if x = a

{(u′, a)|o(u′) = t(u)} ∪ {(u′, b)|t(u′) = t(u)} ∪ {(t(u), x′)|x′ ∈ H} if x = b

{(u′, a)|o(u′) = u} ∪ {(u′, b)|t(u′) = u} ∪ {(u, x′)|x′ ∈ H} if u ∈ V (Γ)

Now define Γ̃ = Γ×H�∼. We need to show that Γ̃ has the desired properties. We
will now define here all the important notations that we will use throughout the
proof:

• π the natural projection of Γ×H onto Γ̃.

• V (Γ̃) = π(Γ× {a, b}) and E(Γ̃) = Γ̃ \ V (Γ̃).

• H1, H2 two disjoint connected opens of H, such that a ∈ H1 and b ∈ H2.

The idea of the proof is that we replace the edges by ”intervals”, which is called
the topological realization of the graph. However what we require out of these
intervals is that they have no local homeomorphisms besides identity, in that way
we do not create additional homeomorphisms that would simply act on the intervals
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themselves. That means instead of taking intervals in R like it is traditionally done
with topological graphs, we will take the de Groot space H. Furthermore we require
that a homeomorphism of the new space Γ̃, does not jump between intervals and
stays on the same one. That will be guaranteed by the fact that our graphs are
profinite, hence totally disconnected, thus it is impossible to jump continuously
from edge to edge, since our interval H is connected.

The proof proceeds in the following steps:

• Step 1: Show that V (Γ̃) and V (Γ) are homeomorphic by a homeomorphism
α. That way the extremities of the edges correspond to vertices of V (Γ).

• Step 2: Show that every homeomorphism g sends V (Γ̃) onto V (Γ̃)

• Step 3: Show that every homeomorphism g sends an open interval π({e}×H)
onto an open interval π({eg ×H}) for all e ∈ E(Γ)

• Step 4: Using the fact that H has no non trivial local homeomorphisms,
show that for every homeomorphism g of Γ̃, every edge e ∈ E(Γ) and every
x ∈ H \ {a, b} g((e, x)) = (eg, x).

• Step 5: Using the continuity of g, conclude that for every x this time in H, al-
lowing the extremities, we get g((e, x)) = (eg, x). That sufficiently determines
the structure of the automorphisms to proceed with the rest of the proof.

• Step 6: Define the isomorphism from Aut(Γ) to Aut(Γ̃) and its inverse.

• Step 7: Prove that if Γ is connected, then Γ̃ is connected.

We have π−1(V (Γ̃)) = Γ× {a, b} ∪ V (Γ)×H, therefore V (Γ̃) is closed in Γ̃ and
therefore compact. Now define

α =


V (Γ̃) −→ V (Γ)

u 7→


o(e) if u = (e, a) and e ∈ E(Γ)

t(e) if u = (e, b) and e ∈ E(Γ)

v if u = (v, x) ∈ π(V (Γ)×H)

Let us show that α is a well defined continuous and bijective function. The fact that
it is well defined is because of how the equivalence relation works. Now let us prove
the continuity of α. Let u ∈ V (Γ̃) and U and open neighborhood of α(u) in V (Γ).
Now let U1 = o−1(U) and U2 = t−1(U), which are two opens in Γ by continuity of
the origin and terminus maps. Now let U ′ = π(U1×H1∪U2×H2∪(U1∩U2)×H). To
show that U ′ is open, we will show that π−1(U ′) = U1×H1∪U2×H2∪(H1∩H2)×H.
Let (u, x) be such that there exists (u′, x′) ∈ U1 × H1 ∪ U2 × H2 ∪ (U1 ∩ U2) × H
such that (u, x) = (u′, x′). Let us differentiate all the possible cases:

• Case 1 u ∈ V (Γ): We have that: o(u) = t(u) = u ∈ U ,therefore u ∈
(U1∩U2)×H. For the rest of the cases, we are going to assume that u ∈ E(Γ).
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• Case 2: x′ 6= a, b.

In that case we simply get u = u′ and x = x′ and (u′, x′) is in U1 ×H1 ∪ U2 ×
H2 ∪ (U1 ∩ U2)×H, then so is (u, x).

• Case 3: x = a , x′ = b

Then we get that t(u′) = o(u). Now t(u′) ∈ U and therefore o(u) ∈ U
and so u ∈ U1 = o−1(U) and therefore (u, x) ∈ U1 × H1. To prove that
(u, x) ∈ U1 × H1 ∪ U2 × H2 for the remaining cases, the approach is very
similar, so we will simply list them here for the sake of completeness.

• Case 4: x′ = b and x = a.

• Case 5: x′ = a and x = a.

• Case 6: x′ = b and x = b.

Now that we know that U ′ is open, we get that U ′∩V (Γ̃) is an open neighborhood
of u. Now let us prove that α(U ′∩V (Γ̃)) ⊆ U . Let v ∈ U ′∩V (Γ̃). If v = (e, a) with
e ∈ E(Γ), then e ∈ o−1(U) and so α(v) = o(e) ∈ U . If v = (e, b) with e ∈ E(Γ),
then α(v) = t(e) ∈ U . Finally if v = (v′, x) with v′ ∈ V (Γ), then v′ = o(v′) = t(v′)
and v′ ∈ U . That concludes the proof of continuity of α.

Now let us prove that α is injective. Suppose that α(v) = α(v′). Write for
example u = (e, a) and u′ = (e′, b) with e, e′ ∈ E(Γ) (all the other cases are similar).
In that case o(e) = t(e) and by definition of the equivalence relation u = u′. The
surjectivity of α simply comes from the fact that α((u, a)) = u for every u ∈ V (Γ).
Note that since α is a bijective continuous map between two compact spaces, it is a
homeomorphism.

Now that we have properly defined the map α, we shall investigate the structure
of the autohomeomorphisms of Γ̃. We shall prove that for every g ∈ Aut(Γ) and for
every e ∈ E(Γ), there exists eg ∈ E(Γ), such that ∀x ∈ H, g((e, x)) = (eg, x).

First let us start by proving that g(V (Γ̃)) ⊆ V (Γ̃). By contradiction assume that
there exists a (u, x) ∈ V (Γ̃) with u ∈ V (Γ), e′ ∈ E(Γ) and x′ ∈ H \ {a, b} such that
g((u, a)) = (e′, x′). Then by the continuity of g, there exists U a neighborhood of
(u, a), such that g(U) ⊆ π(E(Γ)×H \ {a, b}), since π(E(Γ)×H \ {a, b}) is an open
neighborhood of (e′, x′). We will distinguish three cases:

• Case 1: The vertex u is isolated. Then for every h ∈ H, π−1(U) is a neigh-
borhood of (u, h), therefore there exists Uh an open neighborhood of u and Ih
an open neighborhood of h, such that π(Uh× Ih) ⊆ U . The set H is compact,
therefore we can find h1, · · · , hn ∈ H, such that H = Ih1∪· · ·∪Ihn . Now write

U ′ =
n⋂
k=1

Uhk

Which is an open neighborhood of u. Since u is isolated, we have d−1({u}) =
{u} with d being the origin or the terminus map and thus o−1({u})∪t−1({u}) ⊆
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U ′. By the lemma 4.7.8, there exists V an open neighborhood of u, such that
o−1(V ) ∪ t−1(V ) ⊆ U ′.

If (o−1(V ) ∪ t−1(V )) ∩ E(Γ) = ∅, then the set π((o−1(V ) ∪ t−1(V )) × H) is
an open neighborhood of (u, a). By continuity of g−1 ◦ π, there exists H ′ an
neighborhood of x′, such that

∀x ∈ H ′, g−1((e′, x)) ∈ π((o−1(V ) ∪ t−1(V ))×H) ⊆ V (Γ̃)

By local connectedness of H, there exists a C ⊆ H ′ a connected neighborhood
of x′. Now define

φ =

{
C −→ V (Γ)

x 7→ α(g−1((e′, x)))

It is a continuous map from a connected set C into a totally disconnected set
V (Γ), therefore it is constant. However φ has to also be injective, which is a
contradiction.

Now if we assume instead that (o−1(V ) ∪ t−1(V )) ∩ E(Γ) is non empty, then
take e ∈ E(Γ), such d(e) ∈ U with d either the origin or the terminus map.
The vertex d(e) is not isolated and we have g(d(e), a) ∈ π(E(Γ)×H \ {a, b}),
therefore g(d(e), a) /∈ V (Γ̃) and we may defer to the cases that follow to obtain
a contradiction.

• Case 2: There exists e ∈ E(Γ), such that o(e) = u. Remember that the set U
is open in Γ̃ and that g(U) ⊆ π(E(Γ)×H \ {a, b}).
There exists then N an open neighborhood of e and I a connected neighbor-
hood of a not containing b, such that π(N × I) ⊆ U .

Now define a map φ as:

φ =

{
I −→ E(Γ)

x 7→ e′′ | (e′′, x′′) = g((e, x))

The map φ is well defined since the projection π is injective on E(Γ)×H\{a, b}.
It is a continuous map from a connected set I to the totally disconnected set
Γ, hence it is constant, thus equal to e′ at all points.

Now let I ′ ⊆ I be an open neighborhood of a. Let us define a map ψ by

ψ =

{
I ′ −→ H

x 7→ x′′ | g((e, x)) = (e′, x′′)

It is an injective continuous and open map since g is a homeomorphism. By
the property of rigidity of H, we have that ∀x ∈ I, ψ(x) = x: in particular
ψ(a) = a, which is the desired contradiction, since ψ can only take values in
H \ {a, b}.
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• Case 3: There exists e ∈ E(Γ̃), such that t(e) = u. This case is essentially the
same as the case 2, therefore will be omitted.

We conclude therefore that g(V (Γ̃)) ⊆ V (Γ̃) and thus g sends “vertices” on
“vertices”. By bijectivity of g, we then get that g(E(Γ̃)) ⊆ E(Γ̃).

The next step is to show that

∀e ∈ E(Γ),∃e′ ∈ E(Γ),∀x ∈ H \ {a, b},∃y ∈ H \ {a, b}, g((e, x)) = (e′, y)

Consider

φ =

{
H \ {a, b} −→ E(Γ)

x 7→ e′ |∃y ∈ H \ {a, b}, g((e, x)) = (e′, y)

Let us show that φ is well defined and continuous. The map φ is well defined simply
because

g(π({e} ×H \ {a, b})) ⊆ π(E(Γ)×H \ {a, b})

Now to show that φ is continuous, suppose that g((e, x)) = (e′, y) and let V be an
open neighborhood of e′. Then π(V ×H \ {a, b}) is an open neighborhood of (e′, y)
in Γ̃. By continuity of g, there exists U an open neighborhood of (e, x), such that
g(U) ⊆ π(V ×H\{a, b}). By continuity of π at (e, x), there existsW a neighborhood
of x not containing a, b, such that π({e} ×W ) ⊆ U . Let us show that φ(W ) ⊆ V .
Let x′ ∈ W . Then g((e, x′)) ∈ π(V × H \ {a, b}) and so there exists e′′ ∈ V and
y′ ∈ H \ {a, b}, such that g((e, x′)) = (e′′, y′). We therefore get that φ(x′) = e′′ ∈ V
as expected. The map φ is a continuous map from the connected set H \ {a, b}
to E(Γ), which is totally disconnected and therefore is constant. We denote eg its
value.

Now we will show that ∀x ∈ H \ {a, b}, g((e, x)) = (eg, x). Define

ψ =

{
H \ {a, b} −→ H \ {a, b}
x 7→ y |g((e, x)) = (eg, y)

The relation ψ is a well defined function. It is injective, because g is injective
and it is open and continuous due to g being a homeomorphism. Then we get
∀x ∈ H\{a, b}, ψ(x) = x. As such we indeed have ∀x ∈ H\{a, b}, g((e, x)) = (eg, x).

Now we shall prove that g((e, a)) = (eg, a) and that g((e, b)) = (eg, b). Since the
proofs of these two statements are similar, we will only do one of them.

Write u = α(g((e, a))). By contradiction assume that u 6= o(eg). Then there
exists U a neighborhood of u, such that o(eg) /∈ U . By continuity of g, there exists
V a neighborhood of (e, a), such that

∀q ∈ V, g(q) ∈ π( o−1(U)×H1 ∪ t−1(U)×H2 ∪ (o−1(U) ∩ t−1(U)×H )

By continuity of π, there exists W a neighborhood of a contained in H1, such that

∀x ∈ W, (e, x) ∈ V
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Now pick an x ∈ W distinct from a. We then have

g((e, x)) = (eg, x) ∈ π(o−1(U)×H1 ∪ t−1(U)×H2 ∪ (o−1(U) ∩ t−1(U))×H)

Since x /∈ H2, we get that (eg, x) ∈ o−1(U) × H1 ∪ (o−1(U) ∩ t−1(U)) × H. Hence
o(eg) ∈ U , which is a contradiction. As such, we conclude that

∀e ∈ E(Γ),∃eg ∈ E(Γ),∀x ∈ H, g((e, x)) = (eg, x)

Now that we have a description of the autohomeomorphisms of Γ̃, we can prove
that Aut(Γ) is isomorphic to Aut(Γ̃) as a topological group.

Define

Φ =


Aut(Γ) −→ Aut(Γ̃)

g 7→

{
Γ̃ −→ Γ̃

(u, x) 7→ (g(u), x)

First we need to prove that Φ is well defined. Take g ∈ Aut(Γ). Now consider g̃ the
map from Γ × H to Γ̃, given by g̃(u, x) = (g(u), x). The map g̃ is continuous as a
composition of a continuous map on Γ×H with the natural projection π. Because
g is an automorphism of a graph, g̃ is compatible with the equivalence relation ∼
and therefore factors into a continuous map from Γ̃ to Γ̃ , Φ(g). The map Φ is
a morphism of groups. Now we need to prove that Φ is continuous for the open
compact topology.
For that we take K a compact and U an open in Γ̃, such that Φ(g)(K) ⊆ U . Now
we write Γ as a projective limit of some Γi indexed by a directed set I and pi the
natural projections. For i ∈ I and u ∈ Γ, we denote Pi(u) = {u′ ∈ Γ|pi(u′) = pi(u)}
Now if (u, x) ∈ π−1(Φ(g)(K)), then (u, x) ∈ U and therefore by the continuity of π,
there exists ie,x ∈ I and He,x ⊆ H, such that π(Pie,x(e) × He,x) ⊆ U . The Pie,x ×
He,x cover π−1(Φ(g)(K)), so by compactness there exists a finite family Pie1,x1 ×
He1,x1 , · · · , Pin,xn ×Hen,xn covering π−1(g(K)) as well. For simplicity we will denote
Pk = Piek,xk and Hk = Hek,xk . Now let i be an upper bound of {i1, · · · , in} and
let g′ ∈ Aut(Γ), such that pi ◦ g = pi ◦ g′. Let us prove that φ(g′)(K) ⊆ U . Let
(u, x) ∈ K. Then (g(u), x) ∈ Ψ(g)(K), therefore there exists an m, such that
(g(u), x) ∈ Pm ×Hm. Now pi ◦ g = pi ◦ g′ and therefore pm(g′(u)) = pm(g(u)), from
which we get that (g′(u), x) ∈ Pm×Hm and thus Φ(g′)((u, x)) = (g′(u), x) ∈ U . We
therefore conclude that Φ is a continuous map. To finish the proof that Aut(Γ) and
Aut(Γ̃) are isomorphic, we will define a continuous inverse of Φ.

To define the inverse, we take a x0 ∈ H \ {a, b}. We define a map

β =

{
π(E(Γ)× {x0}) −→ E(Γ)

(e, x0) 7→ e

This map is a homeomorphism. Now write

Ψ =


Aut(Γ̃) −→ Aut(Γ)

g 7→


Γ −→ Γ

u 7→

{
α ◦ g ◦ α−1(u) if u ∈ V (Γ)

β ◦ g ◦ β−1(u) if u ∈ E(Γ)
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This is where the main difference between assuming that the set of edges E(Γ) is
closed in Γ or not lies. The difficulty here is that while neighborhoods of edges are
essentially the same between Γ̃ and Γ, it is not the case for the neighborhoods of
vertices. In case of vertices, every edge that is incident to the vertex has to be in its
neighborhood. If we assume the set of edges to be closed, we can circumvent this
problem by dealing with vertices and edges separately and using the fact that α and
β are isomorphisms. If on the other hand, we do not make this assumption, we will
have to add the edges incident to a vertex and their neighborhoods and use them
when proving continuity.

Let us now prove Ψ(g) is continuous for all g. Let u ∈ Γ. To prove that Ψ(g) is
continuous at u, we distinguish two cases.

• Case 1: u ∈ E(Γ). Let V ⊆ E(Γ) be a neighborhood of Ψ(g)(u). By continuity
of β ◦ g ◦ β−1, there exists U a neighborhood of u, such that Ψ(g)(U) ⊆ V .

• Case 2: u ∈ V (Γ). Let U be a clopen neighborhood of Ψ(g)(u).

For every edge e ∈ (o−1({u}) ∪ t−1({u})), take Ve ⊆ E(Γ) a clopen neigh-
borhood of e. The family (Ve)e∈D with D = (o−1({u}) ∪ t−1({u})) ∩ E(Γ)
together with U covers o−1({u}) ∪ t−1({u}), therefore by compactness there
exist e1, · · · , en ∈ D, such that o−1({u}) ∪ t−1({u}) ⊆ U ∪ Ve1 ∪ · · · ∪ Ven . By
the lemma 4.7.8, let then U ′ be a neighborhood of Ψ(g)(u), such that

o−1(U ′) ⊆ U ∪ Ve1 ∪ · · · ∪ Ven

and
t−1(U ′) ⊆ U ∪ Ve1 ∪ · · · ∪ Ven

Now define U1 = o−1(U ′) and U2 = t−1(U ′). Let V be the set

V = π(U1 ×H1 ∪ U2 ×H2 ∪ (U1 ∩ U2)×H)

The set V is then open in Γ̃ and therefore by continuity of g, there exists
N a neighborhood of (u, x0), such that g(N) ⊆ V . Furthermore the set

π
(
(
n⋃
k=1

Vek) × {x0}
)
is closed in Γ̃, thus by continuity of g, the set g−1(Γ̃ \

π(
n⋃
k=1

Vek × {x0})) is an open neighborhood of (u, x0). Write then

N ′ = N \ g−1
(
π(

n⋃
k=1

Vek × {x0})
)

By continuity of the natural projection, there exists then A a neighborhood of
u and I a neighborhood of x0, such that π(A× I) ⊆ N ′. Observe that

ψ(g)(A) ⊆ U1 ∪ U2 ⊆ U ∪ Ve1 ∪ · · · ∪ Ven
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Furthermore if (e, x0) ∈ N ′ with e ∈ E(Γ), then by definition

g((e, x0)) /∈ π(
n⋃
k=1

Vek × {x0})

and therefore Ψ(g)(e) /∈
n⋃
k=1

Vek . This proves that

∀u′ ∈ A,Ψ(g)(u′) /∈
n⋃
k=1

Vek

We then get that

Ψ(g)(A) ⊆ U ′ \ (Ve1 ∪ · · · ∪ Ven) ⊆ U

We conclude therefore that Ψ(g) is continuous at u.

We now need to prove that for all g, Ψ(g) is compatible with the origin and
terminus map. We will only prove it for origin as the proof for terminus is essentially
the same. Take e ∈ E(Γ). We have

Ψ(g)(o(e)) = α(gα−1(o(e))) = α(g((e, a))) = α((Ψ(g)(e), a)) = o(Ψ(g)(e))

Finally to conclude that Aut(Γ̃) and Aut(Γ) are isomorphic, we need to prove that
Ψ is a continuous map. For that let K be a compact in Γ and U an open in Γ, such
that Ψ(g)(K) ⊆ U . For each u ∈ K, we construct a clopen set Nu ⊆ Γ as follows:

First if u ∈ E(Γ), we take Nu ⊆ E(Γ) a clopen subset of Γ, such that Ψ(g)(Nu) ⊆
U ∩ E(Γ).

If u ∈ V (Γ) denote u′ = Ψ(g)(u), by what we have seen when proving the
continuity of Ψ(g), we can construct a clopen Au ⊆ E(Γ) and an open neighborhood
of u′ in V (Γ) Bu, such that

o−1(Bu) ∪ t−1(Bu) ⊆ U ∪ Au

Observe that U \Au is a neighborhood of u′ and take Nu to be a clopen neighborhood
of u, such that Ψ(g)(Nu) ⊆ U \Au. Since Nu form an open cover of K, therefore by
compactness of K, there exist u1, · · · , un ∈ Γ, such that

K ⊆ Nu1 ∪ · · · ∪Nun

Now let i be an integer between 1 and n: we will distinguish two cases:

• Case 1: ui is an edge.

Then we have

g(π(Nui × {x0})) ⊆ (U ∩ E(Γ))×H \ {a, b}
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• Case 2: ui is a vertex.

Then we have

g(π(Nui × {x0})) ⊆ S(Bui) \ π(Aui × {x0}) ∪ π((U ∩ E(Γ))×H \ {a, b})

With

S(Bui) = π(o−1(Bui)×H1 ∪ t−1(Bui)×H2 ∪ (o−1(Bui) ∩ t−1(Bui)×H))

These inclusions define an open neighborhood of g in the open compact topology
which we shall call V. Let us now show that ∀g′ ∈ V,Ψ(g′)(K) ⊆ U . Take g′ ∈ V

and let u ∈ K. Then there exists i, such that u ∈ Nui .
If ui is an edge, then by definition: g′((u, x0)) ∈ (U ∩E(Γ))×H \{a, b} and thus

Ψ(g′)(u) ∈ U .
If on the other hand ui is a vertex, then we have two possibilities.
We can have g′((u, x0)) ∈ S(Bui)\π(Aui×{x0}), in which case we conclude that

either t(Ψ(g′)(u)) or o(Ψ(g′)(u)) is in Bu. If that is the case we get that ψ(g)(u) is
in U \ Aui . The other possibility is that g′((u, x0)) ∈ (U ∩ E(Γ) × H \ {a, b}), in
which case Ψ(g′)(u) ∈ U .

We therefore conclude that Ψ is a continuous map and we have that Aut(Γ) and
the autohomeomorphisms of Γ̃ are isomorphic as topological groups.

Finally let us prove that Γ̃ is connected if Γ is connected. To prove it, we take f
a continuous map from Γ̃ to {0, 1}. Since H is a connected set and f a continuous
map, we have that

∀u ∈ Γ,∀x, x′ ∈ H, f
(
(u, x)

)
= f

(
(u, x′)

)
Define

φ =

{
Γ −→ {0, 1}
u 7→ f((u, x0))

Let us show that φ is a continuous qmorphism from Γ to the discrete graph {0, 1}.
To prove that it is a qmorphism, we just observe that

∀e ∈ E(Γ), f
(
(e, a)

)
= f

(
(e, x0)

)
= f

(
(e, b)

)
To prove the continuity of φ, we take a u ∈ Γ and show that φ is constant on a

neighborhood of u. By the continuity of f , there exists U a neighborhood of (u, x0),
such that f is constant on U . Now by continuity of the natural projection π, there
exists U ′ a neighborhood of u in Γ, such that π(U ′) ⊆ U . We then have that φ is
constant on U ′.

Since φ is a continuous qmorphism from Γ to {0, 1}, we have that φ is constant.
Given that for every u ∈ Γ, f is constant on π({u} ×H), we can conclude that f is
a constant function and thus Γ̃ is connected.

As a corollary of this result, we have the theorem:
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Theorem 4.7.10. Let G be a profinite group. Then there exists a compact connected
Hausdorff set X, such that G is isomorphic to the group of autohomeomorphisms of
X with the open compact topology.

Proof. In case G is the singleton {1G}, just pick X to be the de Groot space H
constructed earlier.

In case G is a finite group that is not a singleton, take S to be the set G \ {1G}
and Γ to be the Cayley graph Cay(G,S) together with its standard colors. Next
take Γ′ to be the colorless graph whose group of automorphisms is that of Γ i.e.
G. Finally by 4.7.9 let X be a compact Hausdorff connected space whose group of
autohomeomorphisms is Aut(Γ′) = G.

Finally in case G is an infinite group, pick N an open proper normal subgroup
of G. Such a group exists, since otherwise G would have to be finite. Furthermore
let x1, · · · , xn be representatives of the classes in G�N ,with x1 ∈ N and x1 6= 1G.
Consider then S = x2N ∪ {x1, · · · , xn}. The set S is closed in G as a union of a
closed and a finite set. Furthermore it generates G as an abstract group, so the
graph Γ = Cay(G,S) is not only connected as a profinite graph, but in fact path-
connected. Now by the theorem 4.6.8 take Γ′ to be a colorless connected graph,
such that G = Autc(Γ) ∼= Aut(Γ′). We then take by the theorem 4.7.9 X to be
the connected compact Hausdorff space, whose group of autohomeomorphisms is
isomorphic to Aut(Γ′) ∼= G.

As mentioned earlier, I proved originally this result for only finitely generated
profinite groups. It is worth mentioning that in case of finitely generated groups the
theorem does not extend an already proven result due to Gartside and Glyn in [18].
They proved it for the case of metric profinite groups and as we will show in the next
section finitely generated profinite groups are in fact metric. Our approach followed
rather the ideas of Hoffmann and Morris in [25] and by adopting the language
of profinite graphs and introducing the notion of colors and color substitution, I
expanded on those ideas and proven the general case. Finally we give an example of
the construction of the space X for the group Z3×Z3, with Z3 being the three-adic
numbers.
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Example 4.7.11. The illustration of the Cayley graph of Z3 × Z3 is below with
blue corresponding to translation by (0, 1) and red by (1, 0):

It is composed of all the disjoint components corresponding to the cosets. While
this graph is not path-connected, with the topology of a profinite graph, we can
approach any element of it by a sequence in the component corresponding to Z2.

For example, (1
2
, 0), can be approached by the sequence ((1+

n∑
k=0

3k, 0))n∈N. We then

substitute the colors by the paths as follows:

Note that the color substitution here is slightly simplified compared to the general
one in 4.6.6, but in this context it still works and is slightly clearer.
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After the color substitution is done, we will get that the group of continuous
automorphisms of the new profinite graph is isomorphic to Z3 × Z3. The final step
is to replace each oriented edge by a doubly pointed deGroot curve and the group of
autohomeomorphisms of the resulting space will be isomorphic to the group Z3×Z3

as a topological group.

4.8 Finitely generated profinite groups are metric
To establish this result, we will prove that the open subgroups of a finitely generated
profinite group are countable and then we will use it to construct a valuation on
such profinite groups.

Proposition 4.8.1. For every finitely generated profinite group G and every index
n ∈ N, the set of open subgroups of G of index n is finite.

Proof. This proof can be found in [26] Proposition 1.6. Let m be the number of
generators. Then we can inject the continuous functions from G to Sn(the symmetric
group with discrete topology) into Smn . Now by axiom of choice, for each H open
subgroup of G of index n, choose fH a bijection between G�H and {1, · · · ,m}, such
that fH(H) = 1.

Furthermore for an open subgroup H and each g ∈ G, we can define a per-
mutation on G�H, given by the formula: g′ · g−1 = g′g−1. Such a permutation is
well defined: indeed if g′ = g′′, we get that (g′g−1)(g′′g−1)−1 = g′g′′−1 ∈ H and so
g′g−1 = gg′′−1. Now for every H, we define

Φ(H) =


G −→ Sn

g 7→

{
{1, · · ·n} −→ {1, · · · , n}
k 7→ fH(f−1

H (k) · g−1)

Let us show that Φ(H) is a continuous morphism. We have for k ∈ {1, · · · , n} and
g, g′ ∈ G that Φ(H)(gg′) = fH(f−1

H (k)(gg′)−1) = fH(f−1
H (k)g′−1g−1) = Φ(H)(g)(Φ(H)(g′)(k))

and so Φ(H) is indeed a morphism. Now let us show that it is continuous by proving
its kernel is the open H. We get that Φ(H)(g) = id if and only if for every k between
1 and n, fH(f−1

H (k) · g−1) = k, which since fH is a bijection is equivalent to saying
that for every g′ ∈ G, g′g−1 = g′, which is equivalent to g being in H.

Finally let us prove that Φ is an injective function. Suppose that Φ(H) = Φ(H ′).
Let us prove that H ⊆ H ′. Let h ∈ H. Since Φ(H)(h) = Φ(H ′)(h), we get that
Φ(H ′)(h)(1) = 1. And therefore fH(H ′ · h−1) = 1, thus H ′ · h−1 = H ′, which proves
that h ∈ H ′. Since H,H ′ have symmetric roles we conclude that H = H ′ and that
Φ is an injective function.

Since Homc(G,Sn) is finite and Φ is an injection from Xn to Homc(G,Sn), we
conclude that Xn is finite.

From this follows immediately the:
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Corollary 4.8.1.1. Let G be a finitely generated profinite group. Then the set of
opens in G is countable.

Now we can conclude that a finitely generated profinite group is metrizable by
the Urysohn metrization theorem stating that every regular Hausdorff space such
that every point has a countable basis of neighborhoods is metrizable. We can
however provide a more straightforward proof written below.

Proposition 4.8.2. Let G be a finitely generated profinite group, then G is metriz-
able.

Proof. We take (Nn)n∈N a sequence of all open normal subgroups, which is possible
since open subgroups of G are countable. Now we will define a valuation on the
group G, which will induce our metric.

We define Un =
n⋂
k=0

Nk, which is an open normal subgroup of G. Now for g ∈ G,

we define v(g) = min{n ∈ N∪ {∞}|g /∈ Un}. Let us prove that v is a valuation, i.e:

• ∀g, g′ ∈ G, v(gg′−1) ≥ min(v(g), v(g′))

• ∀g ∈ G, v(g) =∞⇔ g = 1G

For more details about valuations on groups see [43].
Let n = v(g) and m = v(g′). Assume by contradiction that v(gg′) < n and

v(gg′) < m. Without loss of generality, we may assume that n ≤ m. In that case
gg′−1 /∈ Uv(gg′−1) and g, g′ inUn−1. Since Un−1 is a subgroup of Uv(gg′−1), we get that
gg′−1 ∈ Uv(gg′−1), which is a contradiction. Furthermore we have that v(1G) = ∞,
since as subgroups, all Un have to contain 1G. Finally we know that since G is
profinite

⋂
n∈N

Nn = {1G}, hence if v(g) =∞, then g = 1G.

Now let us show that v defines a metric. Write

d(g, g′) =

{
2−v(gg′−1) if v(gg′−1) 6=∞
0 else

Let us check that d verifies the three axioms of an ultrametric.

• Let g, g′ ∈ G. We have that d(g, g′) = 0 ⇔ v(gg′−1) = ∞ ⇔ gg′−1 = 1G ⇔
g = g′.

• We have v(gg′−1) = v(g′g−1) for all g, g′ ∈ G, so d(g, g′) = d(g′, g).

• Let g, g′, g′′ ∈ G. We have v(gg′′−1) = v((gg′−1)(g′′g′−1)−1) ≥ min(v(gg′−1), v(g′′g′−1)).
We therefore get that d(g, g′) ≤ max(d(g, g′), d(g′, g′′)), since x 7→ 2−x is a de-
creasing function.

The valuation v defines therefore a metric and more precisely an ultrametric on
G. Now we just need to prove that the topology induced by v is the profinite
topology on G. To prove that the topologies are the same, we will now show that
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the neighborhoods for both topologies coincide. Let then V be a neighborhood of
g0 ∈ G for the profinite topology. Then there exists n ∈ N, such that g0 · Nn ⊆ V
and so g0 · Un ⊆ V . Now

Un = {g ∈ G|v(g) > n}

so g0Un is an open neighborhood of g0 for the topology induced by the valuation
and thus V is an open neighborhood of g0 for the valuation topology. Now on the
other hand let us suppose that V is a neighborhood of g0 for the valuation topology.
Then there exists ε > 0, such that {g ∈ G|v(g0g

−1) > log2(−ε)} ⊆ V . Now take
n ∈ N, such that n > log2(−ε). Now let us show that Un · g0 ⊆ V . Take g ∈ Un.
Now v(g0(gg0)−1) = v(g−1) = n > log2(−ε). Therefore d(g0, gg0) < ε and Ung0 ⊆ V
and since Ung0 is open for the profinite topology, we get that V is a neighborhood
of g0 for the profinite topology. We therefore conclude that G is metrizable.
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Conclusion

The original motivation of this thesis for studying graphs was Galois theory. The
main motivation was to find connections between Galois groups: permutations on
roots of polynomials fixing algebraic equations and automorphisms of graphs: per-
mutations on vertices preserving edges. In the first chapter we saw an example of
how graphs can be used to solve a Galois theory question: by the theorem of János
Kollár and Ervin Fried, proving that every finite group is a group of automorphisms
of some finite extension of Q. This theorem uses an old theorem known as the the-
orem of Frucht that establishes that every finite group is a group of automorphisms
of a finite graph. It is proved by starting with a Cayley graph and by substituting
edges of certain colors by graphs. In Galois theory not only Galois groups but their
actions on roots as well are of interest, hence we extended Cayley graphs to not only
represent the group itself, but as well the action of a group on a set: we called such
an extension the group action Cayley graphs.

In the second chapter we saw another way of creating links between graph the-
ory and Galois theory using a tool coming from algebraic topology called covering
graphs. We have shown how covering graphs are analogous to field extensions,
normal covering graphs to normal field extensions and deck transformations to au-
tomorphisms of field extensions.

Since this thesis uses many different kind of profinite structures such as: profinite
sets, profinite groups, profinite rings and profinite modules, in the third chapter
we grouped their common properties into one categorical notion called a profinite
structure.

Their profinite topology is an important property in the study of infinite Galois
groups. Hence in order to generalize the links between Galois theory and Graph
theory that we explored in the first two chapters, we needed to equip the graphs
with a profinite topology as well in order to obtain the profinite graphs studied
in the fourth chapter. We explored the notions of Galois coverings for profinite
graphs as well as generalizations of notions such as homology and connectedness to
profinite graphs. We constructed the profinite group action Cayley graphs, which
can represent the action of a profinite group on a profinite set. We then defined
a notion of a color on a the edges of a profinite graph and we have seen two color
substitution theorems on profinite graphs with a closed set of edges. The first
theorem deals with graphs with a closed set of edges and finitely many colors. After
substituting the edges in such a graph with finite graphs, we obtain a graph without
colors whose set of edges is still closed. The second theorem deals with graphs with
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a closed set of edges and infinitely many colors. After substituting the edges in such
a graph with infinite and compactified graphs, we obtain a graph without colors, but
whose set of edges is no longer closed. Those two theorems make it possible to for
instance drop the colors in the profinite group action Cayley graphs and represent
an action of a profinite group on a profinite set by a profinite graph without colors.
As seen in the Chapter 3, since etale algebras can be represented as actions of the
absolute Galois group on a profinite set, we can then represent any etale algebra
by a profinite graph. Last application of the first color substitution theorem we
gave is to prove the Morris-Hofmann conjecture stating that every profinite group
is a group of autohomeomorphisms of a Hausdorff connected compact space. We it
using the profinite Cayley graphs and the color substitutions theorems.

Let us finally mention some possible areas of research.
The first observation to be made is that the infinite substitution theorem does

not preserve the property of having closed set of edges: it would be interesting to find
a substitution that can preserve such a property. Furthermore the construction we
gave is non canonical, increases in size very quickly and doesn’t use the fact that the
set of colors is profinite. One could possibly find a more suitable family of profinite
graphs to substitute the colored edges with than just compactified Sabidussi graphs.

Another possible research suggested to me by Professor Ribes would be to in-
vestigate which graphs have an automorphism group with the property to be pro-p
and I believe a possible way to start investigating this question would be to start
with finite graphs and work out if there is a relation between sizes of orbits of the
natural action of the autmorphism group and the relation of being a p-group.

Trough the substitution of colors we have seen one example where we start with
classical theorems on graphs and we generalize them to the case of profinite graphs.
It would be very interesting to see what other notions from graph theory could be
generalized to profinite graphs. One such potential example of study would be the
graph spectrum. We know that profinite groups are limit of finite graphs. Could
there be for instance in the case of profinite metric graphs be a way to study how
the spectrum of these finite graphs evolve as the precision increases? Another line
of research that could be explored would be to study the Galois theory of etale
algebras using profinite graphs. The starting point for such an approach would be
the representation of an etale algebra by a profinite graph we saw in the Chapter
4. In this way a number of ideas from both graph theory, Galois theory, algebraic
geometry, topology and combinatorics of covering spaces can be promoted for their
mutual benefit.
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