
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-31-2022 11:00 AM 

Understanding Deep Learning with Noisy Labels Understanding Deep Learning with Noisy Labels 

Li Yi, The University of Western Ontario 

Supervisor: McLeod, A. Ian, The University of Western Ontario 

Co-Supervisor: Wang, Boyu, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Statistics and Actuarial Sciences 

© Li Yi 2022 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Yi, Li, "Understanding Deep Learning with Noisy Labels" (2022). Electronic Thesis and Dissertation 
Repository. 8863. 
https://ir.lib.uwo.ca/etd/8863 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F8863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F8863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8863?utm_source=ir.lib.uwo.ca%2Fetd%2F8863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract
Over the past decades, deep neural networks have achieved unprecedented success in im-

age classification, which largely relies on the availability of correctly annotated large-scale
datasets. However, collecting high-quality labels for large-scale datasets is expensive and
time-consuming or even infeasible in practice. Approaches to addressing this issue include:
acquiring labels from non-expert labelers, crowdsourcing-like platforms or other unreliable re-
sources, where the label noise is inevitably involved. It becomes crucial to develop methods
that are robust to label noise.

In this thesis, we study deep learning with noisy labels from two aspects. Specifically, the
first part of this thesis, including two chapters, is devoted to learning and understanding repre-
sentations of data with respect to label noise. In Chapter 2, we propose a novel regularization
function to learn noise-robust representations of data such that classifiers are more reluctant
to memorize the label noise. By theoretically investigating the representations induced by
the proposed regularization function, we reveal that the learned representations keep informa-
tion related to true labels and discard information related to corrupted labels, which indicates
the robustness of the learned representations. Unlike Chapter 2 which leverages noisy labels,
Chapter 3 studies representation learning without leveraging any label information, termed as
self-supervised representations, and focuses on a more realistic scenario where the label noise
is instance-dependent. From both theoretical analysis and empirical results, we show that
the self-supervised representations have two benefits: (1) the instance-dependent label noise
uniformly spreads over the representations; (2) the representations exhibit an intrinsic cluster
structure with respect to true labels. The benefits encourage learned classifiers to be aligned
better with the optimal classifiers.

The second part is devoted to understanding the connection between source-free domain
adaptation (SFDA) and learning with noisy labels. In Chapter 4, we study SFDA from the
perspective of learning with noisy labels and show that SFDA can be formulated as noisy label
problems. In particular, we theoretically show that one fundamental challenge in SFDA is that
the label noise is unbounded, which violates the basic assumption in conventional label noise
scenarios. Consequently, we also show that the label noise methods based on noise-robust loss
functions are not able to address it. On the other hand, we prove that the early-time training
phenomenon exists in unbounded label noise scenarios. We conduct extensive experiments
to demonstrate significant improvements to existing SFDA algorithms by leveraging the phe-
nomenon.

Keywords: Representation learning, noisy labels, self-supervised learning, label noise
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Summary for Lay Audience
Over the past decade, deep supervised learning has demonstrated its success in many ar-

eas, such as face detection, medical diagnosis, weather forecasting, customer discovery, etc.
The success of deep supervised learning is primarily due to correct annotations of large-scale
datasets. Existing algorithms of deep supervised learning are very sensitive to the reliabilities
of annotations. Incorrect annotations will significantly a↵ect the performance of these algo-
rithms. False relationships might be captured when there are incorrect annotations in datasets.
Collecting reliable annotations is time-consuming and expensive, so unreliable annotations are
pervasive in many datasets. Therefore, the purpose of this research is to understand these
unreliable annotations and build algorithms to prevent from obtaining false relationships.

In this thesis, we show that our algorithms can successfully avoid negative e↵ects from
unreliable annotations and we provide theoretical justifications for them. The benefits of these
algorithms can be applied to various fields such as medical image diagnosis and autonomous
driving. Both of these fields are likely to contain unreliable annotations from the human. Ap-
plying our algorithms can significantly reduce time and economic savings since collecting pure
clean annotations for data is no longer needed. We conduct extensive experiments to show the
e↵ectiveness of our algorithms.
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Chapter 1

Introduction

Deep neural network has demonstrated its success in varies areas such as computer vision
[57, 101], natural language processing [23, 47], speech recognition [34, 2], etc. However, the
success of deep neural networks largely rely on the availability of correctly labeled large-scale
data. For example, the ImageNet recognition data contain more than 14 million manually-
annotated images [22] that are time-consuming and expensive to collect. In recent years, there
are an increasing number of datasets that are annotated by machine and/or non-expert labelers
with minimum human supervision. One possible solution to quickly obtain the large-scale
labeled data is to collect them from the Internet and extract key words or the key surrounding
text as labels. For example, Clothing-1M (about 50% noise) contains 1 million clothing images
from online shopping websites and each image is automatically assigned with a noisy label
according to the key words ([141]). Food-101 (about 20% noise) is another data containing
300K food images with automatically assigned labels and researchers manually refine 4K of
them ([65]). WebVision contains more than 2M images crawled from the Flickr website and
Google Images search with no human supervision ([70]). Therefore, label noise is pervasive
and noise level varies across datasets.

During the last few decades, deep learning models have been adapted to help humans make
decisions. However, due to the existence of label noise in training datasets, deep learning
models may fail dramatically since the performance of deep learning models hinges on the
quality of collected data [114]. Underperformed models can mislead humans to make correct
decisions. The problem is more severe among tasks such as medical diagnosis, credit default
risk, etc. For these tasks, a minor mistake will be fatal to patients or society. Thus, it is crucial
to develop algorithms that are able to address issues of label noise.

This thesis is centered around understanding representation learning for noisy data and a
non-trivial application of label noise methods.

Representation Learning for Noisy Data
As our world has undergone drastic changes with the emergence of ”big data”, both the size
of the dimension of have reached a large scale. This is the case in genetics where millions
of genes are measured for a single individual, computer vision where a high resolution image
contains hundreds of thousands of pixels, and so on. Representation learning is intended to
map high-dimensional data to low-dimensions, making the model easier to discover patterns

1
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of each class. Learning and understanding representations of data achieves great progress in
supervised learning with clean labels, supervised learning with imbalanced datasets, supervised
knowledge distillation [55, 73, 124], and etc. However, it is not well-understood whether and
how representation learning can also benefit learning with noisy labels. Chapter 2 and Chapter
3 are devoted to learning and understanding representations of data with respect to label noise.
Since labels of data are corrupted, the learned data representations are no longer reliable. A
correctly labeled example and a mislabeled example are will mapped to nearby locations if
their annotated labels are the same.

In Chapter 2, we propose to learn representations that examples from the same category
are mapped to nearby locations and examples from di↵erent categories are mapped to distant
locations. With this representation structure, a linear classifier can hardly memorize mislabeled
examples, which is good for training reliable classifiers. We theoretically justified the optimal
representations learned by maximizing mutual information with respect to features and inputs
are robust to label noise. As indicated in [85] that some loss functions are robust to label noise
but also su↵er from underfitting problems. To this end, we also prove that the learned represen-
tations contain su�cient ground-truth label-related information to avoid underfitting. As the
existence of label noise, we cannot obtain the optimal representations above. To overcome the
e↵ects of label noise, we propose a novel and gradient motivated algorithm that can e↵ectively
learn representations with the help of pseudo labels.

In Chapter 3, our work focuses on the self-supervised representation learning without any
label information, whereas Chapter 2 focuses on the supervised representation learning with
the help of noisy labels. Besides that, in Chapter 3, we extend the label noise from instance-
independent to instance-dependent label noise, which is a more realistic label noise assump-
tion. We reveal that even without using label information to guide representation learning,
learning with label noise can still benefit from the learned self-supervised data representations.
To understand it, we construct a motivating example of instance-dependent label noise, and
theoretically find label noise are randomly distributed over the learned self-supervised repre-
sentations, making the label noise easier to be addressed. The underlying reason for this is
that the self-supervised representations can capture discriminative features of data, where label
noise is assumed to correlated to non-discriminative features. On the other hand, we prove
that self-supervised representations exhibit a good cluster structure that encourages the linear
classifiers aligned better with ground-truth classifiers in the presence of noisy labels.

Connecting Source-Free Domain Adaptation to Learning With Label Noise
Though collecting clean labels for large-scale unlabeled training data is prohibitively expen-
sive, collecting noisy labels (either from the Internet or from non-expert annotators) for them
is still not a↵ordable. In this case, one can resort to utilize the knowledge from other domains
to help predicting unlabeled data. For example, a university email system (model) is used to
prevent students from receiving junk emails tailored to them. To train such a model, a lot of
educational emails need to be labeled, which is extremely expensive. A feasible solution is to
buy an industrial spam email detection model to make it adapt to unlabeled educational emails.
Due to the potential distribution shift between the industrial emails and the educational emails,
directly deploying industrial model to the university email system without adaptation causes
large prediction error. Formally, this problem is named source-free domain adaptation. Source-
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free domain adaptation has been explored by many empirical methods such as regularizing the
cluster structure of unlabeled data or generating labeled images which have similar style to
unlabeled data. A theoretical understanding of this problem is quite limited.

Chapter 4 aims to understanding the source-free domain adaptation problem through a
perspective of learning with label noise. Theoretically, we show that the source-free domain
adaptation problems can be formulated as the problems of learning with label noise. Unlike
the label noise studied in Chapter 2 and Chapter 3, we prove that the label noise in source-
free domain adaptation (Chapter 4) does not meet the assumptions of conventional label noise.
Due to the discrepancy, many traditional label noise methods fail to generalize well to this
problem. However, under the new assumption, we prove that the label noise can be addressed
by leveraging early predictions. With and by leveraging this principle insights, existing source-
free domain adaptation methods can be further boosted over various benchmark datasets. More
precisely, by addressing the label noise existing in source-free domain adaptation, significant
improvements can be achieved.

The outline of the thesis is illustrated in Figure 1.1. Chapter 1 introduces the foundations
and background of learning with noisy labels. Chapter 2 proposes to learning representations
with noisy labels. Chapter 3 focuses on learning representations without label information.
Chapter 4 presents an understanding and connection between learning with noisy labels and
source-free domain adaptation. Chapter 5 shows the conclusion of the thesis and the future
research. The rest of the introductory chapter will include a part about related work.
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1.1 Literature Review
In this section, we first provide an in-depth review of existing approaches for learning with
label noise, and then we introduce the background of the contrastive learning which related to
our method.

We use uppercases X,Y to represent input and output random variables, calligraphic letters
X,Y to represent sample spaces. We use X to represent inputs,Y to represent clean labels,
and eY represent be noisy labels (which could be correct or incorrect). Let f : X ! Y be a
neural network with parameters ✓ and we omit the parameter ✓ for simplicity when the context
is clear. We denote eD by the noisy training data which consists of some mislabeled samples,
D by the clean data, and L : Y ⇥Y ! R by the objective function to minimize. The object is
to use f to predict labels for unseen test data. When the training data is noise-free, the learned
f usually performs well on the test data. When the training data is noisy, the performance of
the classifier f on the test data drops owing to the fact that the mismatch between the training
distribution eD and the test distributionD [35, 119].

Before we introduce approaches to solve noisy labels, we first introduce several noise types
that have been studied in the literature of learning with noisy labels.

Instance-independent label noise. This is the most commonly studied type of label noise.
It assumes Pr[eY = j|Y = i, X = x] = Pr[eY = j|Y = i] or Pr[eY = j|Y = i, X = x] = r, where Y,eY
are discrete. The former is the form of class-dependent label noise or asymmetric label noise,
and the latter is the form of random label noise or symmetric label noise. Intuitively, the first
one assumes that the corruptions exist between semantically-similar classes (e.g. dog and car,
or bird and airplane), while the second one simply assumes that the probability of corruption
is the same for every sample.

Instance-dependent label noise. Unlike instance-independent label noise, instance-
dependent label noise is more realistic and states that the label corruption is dependent of
X. However, without additional assumption, theoretically analyzing the instance-dependent la-
bel noise is impossible. Di↵erent samples could follow di↵erent label corruption distributions,
which makes it hard to model these distributions since only one data point is available for each
distribution.

1.1.1 Robust Regularization

For the deep learning domain, the deep neural networks are over parameterized, where the
number of parameters is larger than the number of training samples. To avoid the overfitting
problem, various regularization techniques have been implemented in neural networks. At first,
regularization techniques are not proposed to solve noisy label issues but to improve the gener-
alization ability. [156] shows that simple regularization techniques such as data augmentation,
weight decay [58], dropout [118], and batch normalization [50] are also helpful for reducing
memorization of noisy labels. However, their e↵ects are only limited to a small proportion of
noisy labels. More advanced regularization techniques are proposed for solving the e↵ects of
noisy labels.

[53] proposes an aggressive dropout regularization to encourage the neural network to learn
a noise model, while [17] proposes a nested dropout to keep meaningful representations and
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drop meaningless representations. [32] provides analysis about why the dropout makes the
neural networks perform better.

Label smoothing [98] is another commonly used regularization method. In conventional
classification tasks, the class label Y is represented as a one-hot vector. Label smoothing simply
mixes the one-hot vector with the uniform label vector. In particular:

YLS = ↵Y + (1 � ↵)YU ,

where Y is the original one-hot vector, YU = (1, 1, . . . , 1)>, and ↵ is a hyperparameter. A re-
cent study [82] shows that label smoothing is beneficial to learning with noisy labels, while
[136] justifies that the benefit of label smoothing vanishes when the noise level goes up. Mean-
while, [11] proposes a method called SLN, which adds Gaussian random variables to labels.
Specifically:

YSLN = Y + �ZY ,

where � is a hyperparameter and ZY ⇠ N(0, I|Y|⇥|Y|). Similarly, [40] adds Gaussian random
variables to the outputs f (X). From a high-level point of view, label smoothing and its variants
avoid overconfidence in label noise.

Both YLS and YSLN change the original label space from discrete to continuous, but this
wound not change the space of the output variable. Given the cross-entropy loss �Y> log f (X),
changing Y is simply as changing the weight for minimizing the loss between the Y and the
probabilistic prediction for X.

Data augmentation such as mixup [157] has also been found helpful to reduce memoriza-
tion of noisy labels. It is a linear interpolation between examples-labels pairs:

eDmix = {(x̄, ȳ)|x̄ = �xi + (1 � �)x j, ȳ = �yi + (1 � �)y j},

where (xi, y j), (x j, y j) are from the original dataset eD, � ⇠ Beta(↵,↵), and ↵ is a hyperpa-
rameter. Like label smoothing but more powerful than label smoothing, mixup can be easily
incorporated into any framework, and it has been used in many label noise methods to further
boost the performance [66, 90, 18, 75, 3, 152].

Early stopping has been theoretically proven to be robust to label noise when the noise
level is low [69]. It serves as an implicit regularization method that stops the training progress
before the training converges. [5] proposes to progressively stop training layers of neural net-
works from former layers to latter layers, while conventional early stopping stops training all
layers simultaneously. Similar to the idea of early stopping, [138] divides parameters of neural
networks into two groups: critical parameters and non-critical parameters. Then [138] only
allows training for critical parameters and stops training for non-critical parameters. [48] reg-
ularizes the whole parameters of neural networks by penalizing the distance between them to
their initial values, which is provably robust to noisy labels.
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Figure 1.2: An illustration of loss correction method. During the training phase, we plug in the
noise transition matrix T (X) to the outputs of neural networks and make the model learn the
correct probability Pr[Y |X]. During the test phase, T (X) is not embedded into the outputs of
neural networks.

1.1.2 Loss Correction
The principle behind the loss correction methods is the following equation

Pr[Ỹ = j|X] =
X

i

Pr[Ỹ = j,Y = i|X]

=
X

i

Pr[Ỹ = j|Y = i, X]|                 {z                 }
noise transition matrix

Pr[Y = i|X]|       {z       }
base model

.

We let T (X)i j = Pr[Ỹ = j|Y = i, X] for simplicity, and T (X) 2 R|Y|⇥|Y| is the transition matrix
for sample X. The high-level idea of the loss correction method is illustrated in Figure 1.2.

Since the noisy conditional probability can be disentangled into two terms: the correct
conditional probability and the noise transition matrix, we can model them independently.
As Figure 1.2 shows, the neural network is used to model the correct conditional probabil-
ity Pr[Y |X], and additional e↵ects to estimate the noise transition matrix. [95] terms this the
forward correction, and shows the theoretical result that the minimizer of the modified loss
EeDL

�
T (X)> f (X), Ỹ

�
is equivalent to the minimizer of EDL( f (X),Y). [95] also proposes back-

ward correction but empirically it performs worse than the forward correction.
Since the ground-truth labels are not given, directly calculating the noise transition ma-

trix is impossible. Some work focus on estimating the noise transition matrix when T (X) is
independent of sample X. [92] focuses on binary classification and tunes the noise transition
matrix by cross-validation. [76, 95] assumes that anchor examples exist, which means that
8 j 2 Y,9x0 j 2 X,Pr[Y = j|X0 j] = 1. Then

Pr[eY = k|X0 j] =
X

i

Tik Pr[Y = i|X0 j]

=T jk,

where in practice, the anchor examples are obtained by x0 j = arg maxx P̂r[eY = j|x] for each
j 2 Y. It shows that the noisy conditional probability for anchor examples produced by neural
networks can be used to estimate the noise transition matrix. This approach has been used a
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lot to estimate the noise transition matrix. [44] leverages a small proportion of clean dataset
to provide more accurate estimation of the noise transition matrix, but the small set of clean
examples are usually unavailable. Anchor examples play an important role in estimating the
noise transition matrix. On the one hand, [140] focuses on the scenario that there are no
anchor examples, which can lead to a poorly estimated noise transition matrix, and proposes
T-Revision to e�ciently learn the transition matrix. On the other hand, [151] improves the
estimation accuracy by factorizing the original transition matrix into the product of two easy-
to-estimate transition matrices. All of these methods focus on learning instance-independent
noise transition matrix T . [8] focuses on a more realistic case, where noise transition matrices
are dependent with instance X, and proposes to use neural networks to estimate T (X).

1.1.3 Label Correction
Label correction methods achieve great success in addressing the memorization of noisy labels.
The high-level idea behind the label correction is to replace wrong labels with correct labels
so that the neural networks can learn meaningful information without being a↵ected by noisy
labels.

[102] is the first to propose the idea of label correction by the following equation:

Ycorrected = ↵eY + (1 � ↵)Ŷ ,

where Ŷ is the probabilistic output from neural networks, and ↵ is a hyperparameter. [3]
dynamically updates ↵ by a beta mixture model, which is built upon the sample loss values.
Small ↵ is assigned to the sample if it has a larger loss value. [11] directly updates ↵ by
assigning normalized loss values instead of modeling it by a probabilistic model. [86] relates ↵
to local intrinsic dimensionality (LID) where small ↵ is assigned to the sample if it has a larger
LID value. [162] updates ↵ by leveraging a small set of clean samples.

Instead of using linear interpolation between predicted labels and original labels as pseudo
labels, [121] maintains a neural network to correct labels for noisy datasets. A similar idea
is also given by [152]. [66] first divides samples into two groups, where the first group is the
correctly labeled group and another is the incorrectly labeled group. Samples from the second
group are re-labeled by the neural networks.

Some label correction methods are related to the confidence of label predictions. [113]
found that consistent label predictions are likely to be correctly predicted and leverages this
observation to correct noisy labels. [160] uses a progressive label correction strategy that
only purifies labels for confident examples. [75] leverages the moving average of probabilistic
predictions of samples as pseudo labels by a regularization term.

1.1.4 Robust Loss Function
For conventional classification tasks, cross-entropy (CE) loss is widely used. When training
distribution is equivalent to test distribution, the neural network f trained from training data
can also perform well on test data. Since the training data can be noisy, the training distribution
is not equivalent to the test distribution. The learned f on noisy training data by using CE loss
can easily memorize noisy labels and cause overfitting problems, making it generalize poorly
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on test data [4, 87, 75]. Therefore, the key idea behind the robust loss function is to design a
new loss function that does not make f memorize noisy labels. Specifically:

arg min
f

EeD[L( f (X),eY)] = arg min
f

ED[L( f (X),Y)],

where L is a noise robust loss function. It states that the optimal classifier f minimizing the
loss L over noisy training data eD also minimizes the loss L over clean test dataD.

Under the mild noise assumption such as symmetric label noise or asymmetric label noise
assumption, [29] shows the mean absolute error (MAE) loss is noise robust:

LMAE(X,Y) = k f (X) � Yk1 ,

where k·k1 is the L1 norm. Since MAE loss cannot extract useful information from complicated
data, generalized cross entropy (GCE) [161] solves this problem by combining both MAE and
CE loss via Box-Cox transformation:

LGCE(X,Y) =
(1 � �

f (X)>Y
�
)q

q
,

where q 2 (0, 1] is a hyperparameter. Similar to GCE, SL [134] also proposes a noise-robust
loss:

LRCE(X,Y) = f (X)> log Y,

where one entry of Y is 1 and the rest entries of Y are 0 but the author defined log 0 = 1e�4.
and combines it with CE loss

LSL(X,Y) = ↵Y> log f (X) + �LRCE(X,Y),

where ↵, � are hyperparameters. As observed by [85], robust loss functions GCE and SL are
only partially robust to noisy labels because of CE loss. [85] proposes to normalize CE as
normalized CE loss is also robust to label noise. Unlike GCE, [24] proposes another robust
loss function called GJS, which is another interpolation between CE and MAE. Specifically:

LGJS(X,Y) =
MX

i=1

⇡iDKL(p(i),
MX

j=1

⇡ j p( j)),

where M = 3 in practice, ⇡2 = ⇡3 =
1�⇡1

2 . We note that ⇡1 is the hyperparameter, DKL(p, q) =
p> log p

q is the KL divergence, p(1) = Y , p(2) = f (X), p(3) = f (X+), and X+ is another view of
sample X. [26] takes the Taylor series of CE loss, and states that by adjusting the order of the
Taylor series, the adjusted CE loss can also be robust.

1.1.5 Sample Selection
We also discuss sample selection methods for learning with label noise. Here the sample
selection also includes soft sample selection such as adding weights to di↵erent examples. We
first discuss soft sample selection methods based on weights.
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Clothing1M datasets. Empirical results demonstrate that
the robustness of deep models trained by our proposed ap-
proach is superior to many state-of-the-art approaches. Fur-
thermore, the ablation studies clearly demonstrate the effec-
tiveness of Co-Regularization and Joint Training.

2. Related work
In this section, we briefly review existing works on learn-

ing with noisy labels.
Noise rate estimation. The early methods focus on es-

timating the label transition matrix [24, 25, 28, 37]. For ex-
ample, F-correction [28] uses a two-step solution to heuris-
tically estimate the noise transition matrix. An additional
softmax layer is introduced to model the noise transition
matrix [10]. In these approaches, the quality of noise
rate estimation is a critical factor for improving robustness.
However, noise rate estimation is challenging, especially on
datasets with a large number of classes.

Small-loss selection. Recently, a promising method of
handling noisy labels is to train models on small-loss in-
stances [30]. Intuitively, the performance of DNNs will be
better if the training data become less noisy. Previous work
showed that during training, DNNs tend to learn simple pat-
terns first, then gradually memorize all samples [1], which
justifies the widely used small-loss criterion: treating sam-
ples with small training loss as clean ones. In particular,
MentorNet [16] firstly trains a teacher network, then uses it
to select clean instances for guiding the training of the stu-
dent network. As for Co-teaching [12], in each mini-batch
of data, each network chooses its small-loss instances and
exchanges them with its peer network for updating the pa-
rameters. The authors argued that these two networks could
filter different types of errors brought by noisy labels since
they have different learning abilities. When the error from
noisy data flows into the peer network, it will attenuate this
error due to its robustness.

Disagreement. The “Disagreement" strategy is also ap-
plied to this problem. For instance, Decoupling [23] up-
dates the model only using instances on which the pre-
dictions of two different networks are different. The idea
of disagreement-update is similar to hard example mining
[33], which trains model with examples that are misclassi-
fied and expects these examples to help steer the classifier
away from its current mistakes. For the “Disagreement"
strategy, the decision of “when to update" depends on a
disagreement between two networks instead of depending
on the label. As a result, it would help decrease the di-
vergence between these networks. However, as noisy la-
bels are spread across the whole space of examples, there
may be many noisy labels in the disagreement area, where
the Decoupling approach cannot handle noisy labels explic-
itly. Combining the “Disagreement" strategy with cross-
update in Co-teaching, Co-teaching+ [41] achieves excel-
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Figure 1. Comparison of error flow among MentorNet (M-Net)
[16], Decoupling [23], Co-teaching+ [41] and JoCoR. Assume
that the error flow comes from the biased selection of training in-
stances, and error flow from network A or B is denoted by red
arrows or green arrows, respectively. First panel: M-Net main-
tains only one network (A). Second panel: Decoupling maintains
two networks (A&B). The parameters of two networks are up-
dated, when the predictions of them disagree (!=). Third panel: In
Co-teaching+, each network teaches its small-loss instances with
prediction disagreement (!=) to its peer network. Fourth panel:
JoCoR also maintains two networks (A&B) but trains them as a
whole with a joint loss, which makes predictions of each network
closer to ground true labels and peer network’s.

lent performance in improving the robustness of DNNs
against noisy labels. In spite of that, Co-teaching+ only
selects small-loss instances with different predictions from
two models so very few examples are utilized for training
in each mini-batch when datasets are with extremely high
noise rate. It would prevent the training process from effi-
cient use of training examples. This phenomenon will be
explicitly shown in our experiments in the symmetric-80%
label noise case.

Other deep learning methods. In addition to the afore-
mentioned approaches, there are some other deep learn-
ing solutions [13, 17] to deal with noisy labels, includ-
ing pseudo-label based [35, 40] and robust loss based ap-
proaches [28, 46]. For pseudo-label based approaches, Joint
optimization [35] learns network parameters and infers the
ground-true labels simultaneously. PENCIL [40] adopts la-
bel probability distributions to supervise network learning
and to update these distributions through back-propagation
end-to-end in each epoch. For robust loss based approaches,
F-correct[28] proposes a robust risk minimization method
to learn neural networks for multi-class classification by es-
timating label corruption probabilities. GCE [46] combines
the advantages of the mean absolute loss and the cross en-
tropy loss to obtain a better loss function and presents a the-
oretical analysis of the proposed loss functions in the con-
text of noisy labels.

Semi-supervised learning. Semi-supervised learning
also belongs to the family of weakly supervised learn-
ing frameworks [15, 18, 22, 26, 27, 31, 47]. There are
some interesting works from semi-supervised learning that
are highly relevant to our approach. In contrast to “Dis-
agreement" strategy, many of them are based on a agree-
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Clothing1M datasets. Empirical results demonstrate that
the robustness of deep models trained by our proposed ap-
proach is superior to many state-of-the-art approaches. Fur-
thermore, the ablation studies clearly demonstrate the effec-
tiveness of Co-Regularization and Joint Training.

2. Related work
In this section, we briefly review existing works on learn-

ing with noisy labels.
Noise rate estimation. The early methods focus on es-

timating the label transition matrix [24, 25, 28, 37]. For ex-
ample, F-correction [28] uses a two-step solution to heuris-
tically estimate the noise transition matrix. An additional
softmax layer is introduced to model the noise transition
matrix [10]. In these approaches, the quality of noise
rate estimation is a critical factor for improving robustness.
However, noise rate estimation is challenging, especially on
datasets with a large number of classes.

Small-loss selection. Recently, a promising method of
handling noisy labels is to train models on small-loss in-
stances [30]. Intuitively, the performance of DNNs will be
better if the training data become less noisy. Previous work
showed that during training, DNNs tend to learn simple pat-
terns first, then gradually memorize all samples [1], which
justifies the widely used small-loss criterion: treating sam-
ples with small training loss as clean ones. In particular,
MentorNet [16] firstly trains a teacher network, then uses it
to select clean instances for guiding the training of the stu-
dent network. As for Co-teaching [12], in each mini-batch
of data, each network chooses its small-loss instances and
exchanges them with its peer network for updating the pa-
rameters. The authors argued that these two networks could
filter different types of errors brought by noisy labels since
they have different learning abilities. When the error from
noisy data flows into the peer network, it will attenuate this
error due to its robustness.

Disagreement. The “Disagreement" strategy is also ap-
plied to this problem. For instance, Decoupling [23] up-
dates the model only using instances on which the pre-
dictions of two different networks are different. The idea
of disagreement-update is similar to hard example mining
[33], which trains model with examples that are misclassi-
fied and expects these examples to help steer the classifier
away from its current mistakes. For the “Disagreement"
strategy, the decision of “when to update" depends on a
disagreement between two networks instead of depending
on the label. As a result, it would help decrease the di-
vergence between these networks. However, as noisy la-
bels are spread across the whole space of examples, there
may be many noisy labels in the disagreement area, where
the Decoupling approach cannot handle noisy labels explic-
itly. Combining the “Disagreement" strategy with cross-
update in Co-teaching, Co-teaching+ [41] achieves excel-
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Figure 1. Comparison of error flow among MentorNet (M-Net)
[16], Decoupling [23], Co-teaching+ [41] and JoCoR. Assume
that the error flow comes from the biased selection of training in-
stances, and error flow from network A or B is denoted by red
arrows or green arrows, respectively. First panel: M-Net main-
tains only one network (A). Second panel: Decoupling maintains
two networks (A&B). The parameters of two networks are up-
dated, when the predictions of them disagree (!=). Third panel: In
Co-teaching+, each network teaches its small-loss instances with
prediction disagreement (!=) to its peer network. Fourth panel:
JoCoR also maintains two networks (A&B) but trains them as a
whole with a joint loss, which makes predictions of each network
closer to ground true labels and peer network’s.

lent performance in improving the robustness of DNNs
against noisy labels. In spite of that, Co-teaching+ only
selects small-loss instances with different predictions from
two models so very few examples are utilized for training
in each mini-batch when datasets are with extremely high
noise rate. It would prevent the training process from effi-
cient use of training examples. This phenomenon will be
explicitly shown in our experiments in the symmetric-80%
label noise case.

Other deep learning methods. In addition to the afore-
mentioned approaches, there are some other deep learn-
ing solutions [13, 17] to deal with noisy labels, includ-
ing pseudo-label based [35, 40] and robust loss based ap-
proaches [28, 46]. For pseudo-label based approaches, Joint
optimization [35] learns network parameters and infers the
ground-true labels simultaneously. PENCIL [40] adopts la-
bel probability distributions to supervise network learning
and to update these distributions through back-propagation
end-to-end in each epoch. For robust loss based approaches,
F-correct[28] proposes a robust risk minimization method
to learn neural networks for multi-class classification by es-
timating label corruption probabilities. GCE [46] combines
the advantages of the mean absolute loss and the cross en-
tropy loss to obtain a better loss function and presents a the-
oretical analysis of the proposed loss functions in the con-
text of noisy labels.

Semi-supervised learning. Semi-supervised learning
also belongs to the family of weakly supervised learn-
ing frameworks [15, 18, 22, 26, 27, 31, 47]. There are
some interesting works from semi-supervised learning that
are highly relevant to our approach. In contrast to “Dis-
agreement" strategy, many of them are based on a agree-
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Clothing1M datasets. Empirical results demonstrate that
the robustness of deep models trained by our proposed ap-
proach is superior to many state-of-the-art approaches. Fur-
thermore, the ablation studies clearly demonstrate the effec-
tiveness of Co-Regularization and Joint Training.

2. Related work
In this section, we briefly review existing works on learn-

ing with noisy labels.
Noise rate estimation. The early methods focus on es-

timating the label transition matrix [24, 25, 28, 37]. For ex-
ample, F-correction [28] uses a two-step solution to heuris-
tically estimate the noise transition matrix. An additional
softmax layer is introduced to model the noise transition
matrix [10]. In these approaches, the quality of noise
rate estimation is a critical factor for improving robustness.
However, noise rate estimation is challenging, especially on
datasets with a large number of classes.

Small-loss selection. Recently, a promising method of
handling noisy labels is to train models on small-loss in-
stances [30]. Intuitively, the performance of DNNs will be
better if the training data become less noisy. Previous work
showed that during training, DNNs tend to learn simple pat-
terns first, then gradually memorize all samples [1], which
justifies the widely used small-loss criterion: treating sam-
ples with small training loss as clean ones. In particular,
MentorNet [16] firstly trains a teacher network, then uses it
to select clean instances for guiding the training of the stu-
dent network. As for Co-teaching [12], in each mini-batch
of data, each network chooses its small-loss instances and
exchanges them with its peer network for updating the pa-
rameters. The authors argued that these two networks could
filter different types of errors brought by noisy labels since
they have different learning abilities. When the error from
noisy data flows into the peer network, it will attenuate this
error due to its robustness.

Disagreement. The “Disagreement" strategy is also ap-
plied to this problem. For instance, Decoupling [23] up-
dates the model only using instances on which the pre-
dictions of two different networks are different. The idea
of disagreement-update is similar to hard example mining
[33], which trains model with examples that are misclassi-
fied and expects these examples to help steer the classifier
away from its current mistakes. For the “Disagreement"
strategy, the decision of “when to update" depends on a
disagreement between two networks instead of depending
on the label. As a result, it would help decrease the di-
vergence between these networks. However, as noisy la-
bels are spread across the whole space of examples, there
may be many noisy labels in the disagreement area, where
the Decoupling approach cannot handle noisy labels explic-
itly. Combining the “Disagreement" strategy with cross-
update in Co-teaching, Co-teaching+ [41] achieves excel-
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Figure 1. Comparison of error flow among MentorNet (M-Net)
[16], Decoupling [23], Co-teaching+ [41] and JoCoR. Assume
that the error flow comes from the biased selection of training in-
stances, and error flow from network A or B is denoted by red
arrows or green arrows, respectively. First panel: M-Net main-
tains only one network (A). Second panel: Decoupling maintains
two networks (A&B). The parameters of two networks are up-
dated, when the predictions of them disagree (!=). Third panel: In
Co-teaching+, each network teaches its small-loss instances with
prediction disagreement (!=) to its peer network. Fourth panel:
JoCoR also maintains two networks (A&B) but trains them as a
whole with a joint loss, which makes predictions of each network
closer to ground true labels and peer network’s.

lent performance in improving the robustness of DNNs
against noisy labels. In spite of that, Co-teaching+ only
selects small-loss instances with different predictions from
two models so very few examples are utilized for training
in each mini-batch when datasets are with extremely high
noise rate. It would prevent the training process from effi-
cient use of training examples. This phenomenon will be
explicitly shown in our experiments in the symmetric-80%
label noise case.

Other deep learning methods. In addition to the afore-
mentioned approaches, there are some other deep learn-
ing solutions [13, 17] to deal with noisy labels, includ-
ing pseudo-label based [35, 40] and robust loss based ap-
proaches [28, 46]. For pseudo-label based approaches, Joint
optimization [35] learns network parameters and infers the
ground-true labels simultaneously. PENCIL [40] adopts la-
bel probability distributions to supervise network learning
and to update these distributions through back-propagation
end-to-end in each epoch. For robust loss based approaches,
F-correct[28] proposes a robust risk minimization method
to learn neural networks for multi-class classification by es-
timating label corruption probabilities. GCE [46] combines
the advantages of the mean absolute loss and the cross en-
tropy loss to obtain a better loss function and presents a the-
oretical analysis of the proposed loss functions in the con-
text of noisy labels.

Semi-supervised learning. Semi-supervised learning
also belongs to the family of weakly supervised learn-
ing frameworks [15, 18, 22, 26, 27, 31, 47]. There are
some interesting works from semi-supervised learning that
are highly relevant to our approach. In contrast to “Dis-
agreement" strategy, many of them are based on a agree-
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Figure 1.3: Selected sample flow for di↵erent sample selection methods, where A and B are
denoted by the two di↵erent initialized neural networks. In each mini-batch data, each network
will perform an update based on its updating strategy.

[76] uses importance weighting to learn the classifier f in the presence of noisy labels,
which follows:

ED
⇥L( f (X),Y)

⇤
= EeD

⇥PD(X,Y)
PeD(X,eY)

L( f (X),eY)
⇤
.

By the above equation, minimizing the weighted loss on noisy training data is equivalent to
minimizing the loss over clean data. [103] assigns weights wi to the examples (xi, ỹi), where
the weights wi is determined by a small set of clean samples. This method has also been used
in [162]. [49] chooses to use the confidence score of model outputs as weights wi.

For explicit sample selection methods, they aim to reduce the e↵ects of mislabeled samples
by only selecting clean data from noisy training data to update neural networks. [51] (M-Net)
trains an extra neural network with a known set of clean samples and use the network to select
clean samples from the noisy dataset. [88] (Decoupling) does not require extra clean data.
Instead, Decoupling trains two neural networks, and the mislabeled samples are decided if the
two neural networks give di↵erent predictions on these samples. [38] (Co-teaching) finds that
small loss examples are usually clean examples. Co-teaching maintains two neural networks
and mutually selects small loss examples to update the other neural network. While [154] (Co-
teaching+) adjusts the selection strategy of Co-teaching method by only choosing small loss
examples with di↵erent predictions given by two neural networks to update neural networks.
[135] (JoCoR) proposes to update two neural networks simultaneously instead of iteratively.
JoCoR reduces the diversity of two neural networks for better performance. The illustration
of these methods is shown in Figure 1.3. The idea of selecting small loss examples as clean
examples has been widely used. [113, 17] use the selection strategy the same Co-teaching.
[66] uses Co-teaching strategy to separate noisy training data as a clean labeled part and an
incorrectly labeled part.

In addition to these small loss selection methods, [83] proposes a Curriculum Loss and
uses it as a criterion to automatically and adaptively select samples for training. Similarly, [18]
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also designs a new selection criterion with theoretical guarantees. [90] finds that clean data
can form a low-rank Jacobian matrix, and it selects clean samples which have the low-rank
Jacobian.

1.1.6 Hybrid Approach
Most of above approaches can be jointly used with other approaches to obtain better perfor-
mance. Though robust regularization only provides marginal improvement to models in the
presence of noisy labels, it can be easily embedded into other methods to further boost model
performance. For example, [75, 18, 90, 66, 3] all report when jointly using their methods with
data augmentation technique mixup, the performance increases significantly. We also note that
weight decay, as a regularization method, has already been automatically used in every modern
neural network. [134] demonstrates the success when using label smoothing with a robust loss
function SL. [11] also shows the success that adding random variables to labels together with
simple label correction can bring significant improvement. Robust loss functions can also be
jointly used with other methods such as label correction and loss correction, which are shown
in [134, 153]. [113] shows the success of combining the sample selection method and label
correction method.

1.1.7 Contrastive Learning
Contrastive learning is one of the representation learning approaches, which focuses on learn-
ing meaningful data representations. Di↵erent contrastive learning methods have di↵erent but
similar objective functions to optimize [13, 14, 41, 91]. However, the high-level ideas of them
are the same. For supervised contrastive learning, the goal is to learning representations from
data, where representations from the same class forms a tight cluster, while clusters are pushed
away from each other. A typical supervised contrastive learning framework is [55]. Given an
image xi and an image x j from the same class. The supervised contrastive loss for this pair is
defined as:

Lsupcon = � log
exp

�
sim(xi, x j)/⌧

�
PN

k=1 {k , i} exp
�
sim(xi, xk)/⌧

� ,

where sim(xi, x j) is a cosine similarity function for the representations of xi and x j, ⌧ is a
hyperparameter. Minimizing this loss is equivalent to learn parameters of the representation
model such that the data representations from the same class are pulled together, and data
representations from di↵erent classes are pushed away.

As studied in [16, 36], by careful neural network frameworks design, the denominator of
the above fraction can be discarded, which results into objective functions that only focus on
regularizing representations from the same class. The pairs for them are termed positive pairs.



Chapter 2

On Learning Noise-Robust
Representations for Learning with Label
Noise

2.1 Introduction

The successes of deep neural networks [43, 104] largely rely on availability of correctly labeled
large-scale datasets that are prohibitively expensive and time-consuming to collect [141]. Ap-
proaches to addressing this issue includes: acquiring labels from crowdsourcing-like platforms
or non-expert labelers or other unreliable sources [145, 161] but while theses methods can
reduce the labeling cost, label noise is inevitable. Due to the over-parameterization of deep
networks [43], examples with noisy labels can ultimately be memorized with a cross entropy
loss[75, 4, 90], which is known as the memorization e↵ect [156, 87], leading to poor perfor-
mance. Therefore, it is important to develop methods that are robust to the label noise.

Cross entropy (CE) loss is widely used as a loss function for image classification tasks due
to its strong performance on clean training data [114] but it is not robust to label noise. When
labels in training data are corrupted, the performance drops [6, 7]. Given the memorization
e↵ect of deep networks, training on noisy data with the CE loss results in the representations of
the data clustered in terms of their noisy labels instead of the ground truth. Thus, the final layer
of the deep networks cannot find a good decision boundary from these noisy representations.

To overcome the memorization e↵ect, noise-robust loss functions have been actively stud-
ied in the literature [89, 161, 134, 26]. They aim to design noise-robust loss functions in a way
such that they achieve small loss on clean data and large loss on wrongly labeled data. However,
it has been empirically shown that being robust alone is not su�cient for a good performance
as it also su↵ers from the underfitting problem [85]. To address this issue, these noise-robust
loss functions have to be explicitly or implicitly jointly used with the CE loss, which brings
a trade-o↵ between non-robust loss and robust loss. As a result, the memorization e↵ect is
alleviated but still remains due to the non-robust CE loss.

In this chapter, we tackle this problem from a di↵erent perspective. Specifically, we investi-
gate contrastive learning and the e↵ect of the clustering structure for learning with noisy labels.
Owing to the power of contrastive representation learning methods [16, 36, 14, 55, 15], learn-
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Class 1

Class 2

Classifier Class 1
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Points (clean labels)
Points (wrong labels)

Figure 2.1: Illustration of the proposed method with noisy labels. Black curves are the best
classifiers that are learned during training. Left: Deep networks without contrastive regulariza-
tion. Right: Deep networks with contrastive regularization. Two classes are better separated
by deep networks that points with the same class are pulled into a tight cluster and clusters are
pushed away from each other.

ing contrastive representations has been extensively applied on various tasks [142, 117, 84].
The key component of contrastive learning is positive contrastive pair (x1, x2). Training a con-
trastive objective encourages the representations of x1, x2 to be closer. In classification tasks,
correct positive contrastive pairs are formed by examples from the same class. When label
noise exists, defining contrastive pairs in terms of their noisy labels results in adverse e↵ects.
Encouraging representations from di↵erent classes to be closer makes it even more di�cult to
separate images of di↵erent classes. Similar to our attempt to learn contrastive representations
from noisy data, previous work has focused on reducing the adverse e↵ects by re-defining con-
trastive pairs according to their pseudo labels [68, 19, 30, 67]. However, pseudo labels can be
unreliable, and then wrong contrastive pairs are inevitable and can dominate the representation
learning.

To address this issue, we propose a new contrastive regularization function that does not
su↵er from the adverse e↵ects. We theoretically investigate benefits of representations induced
by the proposed contrastive regularization function from two aspects. First, the representations
of images keep information related to true labels and discard information related to corrupted
labels. Second, we theoretically show that the classifier is hard to memorize corrupted labels
given the learned representations, which demonstrates that our representations are robust to
label noise. Intuitively, learning such contrastive representations of data helps combat the label
noise. If data points are clustered tightly in terms of their true labels, then it makes the classifier
hard to draw a decision boundary to separate the data in terms of their corrupted labels. We
illustrate this intuition in Figure 2.1.

Our main contributions are as follows.

• We theoretically analyze the representations induced by the contrastive regularization
function, showing that the representations keep information related to true labels and
discard information related to corrupted labels. Moreover, we formally show that repre-
sentations with insu�cient corrupted label-related information are robust to label noise.

• We propose a novel algorithm over data with noisy labels to learn contrastive represen-
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tations, and provide gradient analysis to show that correct contrastive pairs can dominate
the representation learning.

• We empirically show that our method can be applied with existing label correction tech-
niques and noise-robust loss functions to further boost the performance. We conduct
extensive experiments to demonstrate the e�cacy of our method.

2.2 Theoretical Analysis
In this section, we first introduce some notations and we then investigate the benefits of repre-
sentations learned by the contrastive regularization function.

2.2.1 Preliminaries
We use uppercases X,Y, . . . to represent random variables, calligraphic letters X,Y, . . . to rep-
resent sample spaces, and lowercases x, y, . . . to represent their realizations. Let X be input
random variable and Y be its true label. We use Ỹ to denote the wrongly-labeled random vari-
able that is not equal to Y . The entropy of the random variable Y is denoted by H(Y) and the
mutual information of X and Y is I(X,Y). We use p(·) to represent the density function and
overload pi as the probabilistic output for sample xi.

Contrastive learning aims to learn representations of data that only the data from the same
class have similar representations. In this chapter, we propose to learn the representations by
introducing the following contrastive regularization function over all examples {(xi, yi)} from
X ⇥Y and yi is the ground truth.

Lctr(xi, x j) = �
�h q̃i, z̃ ji + h q̃ j, z̃ii

� {yi = y j}, (2.1)

where q̃k =
qk
kqkk2 and z̃k =

zk
kzkk2 , and xi, x j are inputs. Following SimSiam [16], we define

q = h( f (x)), z = stopgrad( f (x)), f is an encoder network consisting of a backbone network
and a projection MLP, and h is a prediction MLP. Minimizing Eq. (2.1) wish respect to the
parameters of neural networks on {(xi, yi), (x j, y j)} pulls representations of xi and x j closer if
yi = y j. The designs of the stop-gradient operation and h applied on representations are mainly
to avoid trivial constant solutions.

2.2.2 The Benefits of Representations Induced by Contrastive Regular-
ization

We first relate the solutions that minimize Eq. (2.1) to a mutual information

I(Z; X+) =
"

p(z, x+) log
p(z|x+)

p(z)
dx+ dz,

where p(·) is a density function, z = f (x) and x+ is from the same class as x. The mutual in-
formation characterizes the information of one random variable contained when given another
random variable.
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Theorem 2.2.1. Representations Z learned by minimizing Eq. (2.1) maximizes the mutual in-
formation I(Z; X+), where the maximization is over the parameters of neural networks for
calculating Z.

The proof is provided in 2.B.1. Theorem 2.2.1 reveals the equivalence between the con-
trastive learning and mutual information maximization. Intuitively, Eq. (2.1) encourages to
pull representations from the same class together and push those from di↵erent classes apart.
The estimate of z conditioned on x+ is more accurate than random guessing because the repre-
sentation z of x is similar to the representation of x+. Thus the pointwise mutual information
log p(z|x+)

p(z) increases by minimizing Eq. (2.1).
We denote Z? = arg maxZ✓ I(Z✓, X+) by the representation that maximizes the mutual infor-

mation, where Z✓ is a representation of X parameterized by the neural network f with param-
eters ✓. To understand what Z? is learned from inputs and to show that Z? is noise-robust, we
introduce the notion of (✏, �)-distribution:

Definition 2.2.2 ((✏, �)-distribution). A distribution D(X,Y, Ỹ) is called (✏, �)-Distribution if
there exists � � ✏ > 0 such that

I(X; Y |X+)  ✏, (2.2)

and
I(X; Ỹ |X+) > �. (2.3)

Eq. (2.2) characterizes the connection between images and their true labels. If we already
know an image X+, then there is the limited extra information related to the true label by
additionally knowing X. We use a small number ✏ to restrict this additional information gain.
Eq. (2.3) characterizes the connection between those images and their corrupted labels. By
knowing an additional image X+, the information X contains about its corrupted label Ỹ is still
larger than �. The above condition � � ✏ > 0 states that images from the same class are much
more similar with respect to the true label than the corrupted label. As it is mentioned in [116],
if there is a perfect prediction of Y given X+, then ✏ = 0.

We illustrate the intuitions behind Definition 2.2.2 in Figure 2.2. We use the Grad-CAM
[109] to highlight the important regions in the images for predictions. The Grad-CAM maps
the computed gradients to the original image and the magnitudes of the gradients highlight
the important regions in the image. The highlighted regions captured by the model are most
related to labels. For images with the same clean labels, their information related to true labels
are similar. For example, when Cat 1 and Cat 2 in Figure 2.2 are labeled as “cat”, cat faces are
captured as the true label-related information and they all look alike. For images with corrupted
labels, their information related to corrupted labels are quite di↵erent. When Cat 1 and Cat 2
in Figure 2.2 are labeled as “dog”, the windows bars captured as the corrupted label-related
information for Cat 1 is di↵erent from the floor and wall for Cat 2.

With the notion of (✏, �)-distribution, the following theorem help us understand the benefits
of representations Z? in depth.

Theorem 2.2.3. Given a distribution D(X,Y, Ỹ) that is (✏, �)-Distribution, we have

I(X; Y) � ✏  I(Z?; Y)  I(X; Y), (2.4)
I(Z?; Ỹ)  I(X; Ỹ) � � + ✏. (2.5)
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Cat 1 Cat 2 Dog 1 Dog 2

Original

Noisy
Labels

Clean
Labels

Figure 2.2: An example of Grad-CAM [109] results of ResNet34 trained on noisy dataset with
40% symmetric label noise and clean dataset, separately. When there is label noise, information
related to corrupted labels captured by the model varies from image to image (e.g. window bars
in Cat 1 v.s. floor and wall in Cat 2). When there is no label noise, information related to true
labels are similar for images from the same class (e.g. cat face in Cat 1 v.s. cat face in Cat 2).

The proof is provided in 2.B.2. Given images X and their labels Y , the mutual information
I(X; Y) is fixed. The theorem states that the learned representations Z? keep as much true label-
related information as possible and discard much corrupted label-related information. Since the
corrupted label-related information is discarded from the representations Z?, memorizing the
corrupted labels based on Z? is diminished. Lemma 2.2.4 establishes the lower bound on the
expected error on wrongly-labeled data.

Lemma 2.2.4. Consider a pair of random variables (X, Ỹ). Let Ŷ be outputs of any classifier
based on inputs Z✓, and ẽ = {Ŷ , Ỹ}, where {A} be the indicator function of event A. Then,
we have

E[ẽ] � H(Ỹ) � I(Z✓; Ỹ) � H(ẽ)
log(|Ỹ|) � 1

.

The proof is provided in 2.B.3. Lemma 2.2.4 provides a necessary condition on the success
of learning with noisy labels based on representation learning and sheds new light on this
problem by highlighting the role of minimizing I(Z✓; Ỹ). To see this, note that small I(Z✓; Ỹ)
implies robustness to label noise since E[ẽ] is the expected error over the corrupted labels. On
the other hand, when minimizing Eq. (2.1), small I(Z?; Ỹ) can be achieved as indicated by the
upper bound in Eq. (2.12). In the meanwhile, the lower bound on I(Z?; Y) in Eq. (2.11) also
shows that Z? can retain the discriminative information of the data to avoid a trivial solution to
I(Z✓; Ỹ) minimization (i.e., Z✓ is a constant representation).

While Lemma 2.2.4 combined with Theorem 2.2.3 indicates that Z? is robust to label noise,
the following Lemma shows that Z? can also avoid underfitting. Specifically, it implies that
that a good classifier achieved under the clean distribution can also be achieved based on our
representations Z?.
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Figure 2.3: Results of memorization of label noise and performance on test data on CIFAR-
10 with 80% symmetric label noise (SYM) and 40% asymmetric label noise (ASYM). The
memorization is defined by the fraction of wrongly labeled examples whose predictions are
equal to their labels.

Lemma 2.2.5. Let R(X) = infg EX,Y[L(g(X),Y)] be the minimum risk over the joint distribution
X ⇥ Y, where L(p, y) =

PY
i=1 y(i) log p(i) is a CE loss and g is a function mapping from input

space to label space, p(i) with upper script i represents the ith entry for the probabilistic output
of X. Let R(Z?) = infg0 EZ?,Y[L(g0(Z?),Y)] be the minimum risk over the joint distribution
Z? ⇥ Y and g0 maps from representation space to label space. Suppose the joint distribution
D(X,Y, Ỹ) is (✏, �)-Distribution. Then,

R(Z?)  R(X) + ✏.

The proof is provided in 2.B.4. The ✏ comes from the definition of the joint distribution.
To show the robustness and performance of the contrastive (CTR) representation Z?, we

empirically compare it to the representation learned by the CE loss. We first use clean labels
to train neural networks with di↵erent loss functions. Then we initialize the parameters of
final linear classifiers and fine tune them with noisy labels. We denote the memorization by the
fraction of corrupted examples whose predictions are equal to their labels. Figure 2.3 illustrates
the improved performance and robustness in terms of test accuracy and reduced memorization
with the CTR representation.

Remark Figure 2.3 indicates that the memorization subsides down as the training progresses,
whereas in previous literature, the memorization increases as training progresses. We explain
that, conventionally, the memorization is observed and proved in over-parameterized models.
Under this setting, the fraction of examples that memorized by the model will increase as
training progresses. However, the memorization in this work is measured on a linear classifier
on top of frozen data representations, where ratio of number parameters and the sample size is
⇠ 0.1, which is underparameterized.

2.3 Algorithm
In practice, as we are only given a noisy data set, we do not know if a label is clean or not.
Consequently, simply minimizing Eq. (2.1) can lead to deteriorated performances. To see this,
note that Eq. (2.1) is activated only when {yi = y j} = 1. Thus, two representations from
di↵erent classes will be pulled together when there are noisy labels.
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Since deep networks first fit examples with clean labels and the probabilistic outputs of
these examples are higher than examples with corrupted labels [4, 69], one straightforward
approach to tackle this issue is to replace the indicator function with a more reliable criterion
{p>i p j � ⌧}:

L0ctr(xi, x j) = �
�h q̃i, z̃ ji + h q̃ j, z̃ii

� {p>i p j � ⌧}, (2.6)

where pi is the probabilistic output produced by linear classifier on the representation of image
xi and ⌧ is a confidence threshold. However, minimizing Eq. (2.6) only helps representation
learning during the early stage. After that period, examples with corrupted labels will dom-
inate the learning procedure since the magnitudes of gradient from correct contrastive pairs
overwhelm that from wrong contrastive pairs. In particular, given two clean examples xi, x j

with yi = y j and a wrongly labeled example xm with ỹm = yi = y j, during the early stage, repre-
sentations q̃>i q̃ j ! 1 and q̃>i q̃m ⇡ 0. After the early stage, deep networks starts to fit wrongly
labeled data. At this moment, the wrong contrastive pairs (xi, xm) and (x j, xm) are wrongly
pulled together and they impair the representation learning instead of the correct pair (xi, x j):

�����
@L0ctr(xi, xm)
@qi

�����
2

2
= ci(1 � q̃>i q̃m|    {z    }

⇡1

) � ci(1 � q̃>i q̃ j|    {z    }
⇡0

) =
������
@L0ctr(xi, x j)
@qi

������

2

2
, (2.7)

where ci = 1/ kqik22 and we take h as an identity function for simplicity. The proof is shown in
supplementary materials.

To address this issue, we propose the following regularization function to avoid the negative
e↵ects from wrong contrastive pairs:

eLctr(xi, x j) =
✓

log
�
1 � h q̃i, z̃ ji

�
+ log

�
1 � h q̃ j, z̃ii

�◆ {p>i p j � ⌧}. (2.8)

Eq. (2.8) still aims to learn similar representations for data with the same true labels. Since the
minimum of Eq. (2.8) is the same as the maximum of Eq. (2.1), our theoretical results about
Z? still hold. Moreover, the gradient analysis of Eq. (2.8) is given by

�������
@eLctr(xi, x j)
@qi

�������

2

2

= ci(1 + q̃>i q̃ j), (2.9)

which indicates that the gradient in L2 norm increases if q̃i and q̃ j approach to each other.
In other words, the gradient from the correct pair (xi, x j) is larger than the gradient from the
wrong pair (xi, xm) (1 + q̃>i q̃ j > 1 + q̃>i q̃m ⇡ 1) during the learning procedure. Compared to
the gradient given by Eq. (2.7), our proposed regularization function does not su↵er from the
gradient domination by wrong pairs.

Finally, the overall objective function is given by

L = Lce + �eLctr, (2.10)

where eLctr serves as a contrastive regularization (CTRR) on representations and � controls the
strength of the regularization.
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Method
CIFAR-10

Sym. Asym.
0% 20% 40% 60% 80% 90% 40%

CE 93.97±0.22 88.51±0.17 82.73±0.16 76.26±0.29 59.25±1.01 39.43±1.17 83.23±0.59

Forward 93.47±0.19 88.87±0.21 83.28±0.37 75.15±0.73 58.58±1.05 38.49±1.02 82.93±0.74

GCE 92.38±0.32 91.22±0.25 89.26±0.34 85.76±0.58 70.57±0.83 31.25±1.04 82.23±0.61

Co-teaching 93.37±0.12 92.05±0.15 87.73±0.17 85.10±0.49 44.16±0.71 30.39±1.08 77.78±0.59

LIMIT 93.47±0.56 89.63±0.42 85.39±0.63 78.05±0.85 58.71±0.83 40.46±0.97 83.56±0.70

SLN 93.21±0.21 88.77±0.23 87.03±0.70 80.57±0.50 63.99±0.79 36.64±1.77 81.02±0.25

SL 94.21±0.13 92.45±0.08 89.22±0.08 84.63±0.21 72.59±0.23 51.13±0.27 83.58±0.60

APL 93.97±0.25 92.51±0.39 89.34±0.33 85.01±0.17 70.52±2.36 49.38±2.86 84.06±0.20

CTRR 94.29±0.21 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46 89.00±0.56

Table 2.1: The test accuracy on CIFAR-10 with di↵erent noise types and noise levels. All
method use the same model PreAct ResNet18 [43] and their results are reported over three
runs.

2.4 Experiments

Datasets. We evaluate our method on two artificially corrupted datasets CIFAR-10 [31] and
CIFAR-100 [31], and two real-world datasets ANIMAL-10N [113] and Clothing1M [141].
CIFAR-10 and CIFAR1-00 contain 50, 000 training images and 10, 000 test images with 10 and
100 classes, respectively. ANIMAL-10N has 10 animal classes and 50, 000 training images
with confusing appearances and 5000 test images. Its estimated noise level is around 8%.
Clothing1M has a million training images and 10, 000 test images with 14 classes. Its estimated
noise level is around 40%.

Noise generation. For CIFAR-10, we consider two di↵erent types of synthetic noise with
various noise levels. For symmetric noise, each label has the same probability of flipping to
any other classes, and we randomly choose r training data with their labels to be flipped for
r 2 {20%, 40%, 60%, 80%, 90%}. For asymmetric noise, following [11], we flip labels be-
tween TRUCK!AUTOMOBILE, BIRD!AIRPLANE, DEER!HORSE, and CAT$DOG.
we randomly choose 40% training data with their labels to be flipped according to the asym-
metric labeling rule. For CIFAR-100, we test our method with symmetric noise with the noise
level r 2 {20%, 40%, 60%, 80%}. From statistical point of view, if a sample is noisily la-
beled according to symmetric label noise, then its label follows uniform distribution. If a
sample is noisily labeled according to asymmetric label noise, then its label follows the distri-
bution where the probability of observed label given ground-truth is either 0 or 1, For example
Pr[Ỹ = j|Y = i] = ci j, where ci j is either 0 or 1.

Baseline methods. To evaluate our method, we mainly compare our robust loss function to
other robust loss function methods: 1) CE loss. 2) Forward correction [95], which corrects loss
values by a estimated noise transition matrix. 3) GCE [161], which takes advantages of both
MAE loss and CE loss and designs a robust loss function. 4) Co-teaching [38], which maintains
two networks and uses small-loss examples to update. 5) LIMIT [40], which introduces noise
to gradients to avoid memorization. 6) SLN [11], which adds Gaussian noise to noisy labels to



2.4. Experiments 19

Method
CIFAR-100

Sym. Asym.
0% 20% 40% 60% 80% 40%

CE 73.21±0.14 60.57±0.53 52.48±0.34 43.20±0.21 22.96±0.84 44.45±0.37

Forward 73.01±0.33 58.72±0.54 50.10±0.84 39.35±0.82 17.15±1.81 -
GCE 72.27±0.27 68.31±0.34 62.25±0.48 53.86±0.95 19.31±1.14 46.50±0.71

Co-teaching 73.39±0.27 65.71±0.20 57.64±0.71 31.59±0.88 15.28±1.94 -
LIMIT 65.53±0.91 58.02±1.93 49.71±1.81 37.05±1.39 20.01±0.11 -
SLN 63.13±0.21 55.35±1.26 51.39±0.48 35.53±0.58 11.96±2.03 -
SL 72.44±0.44 66.46±0.26 61.44±0.23 54.17±1.32 34.22±1.06 46.12±0.47

APL 73.88±0.99 68.09±0.15 63.46±0.17 53.63±0.45 20.00±2.02 52.80±0.52

CTRR 74.36±0.41 70.09±0.45 65.32±0.20 54.20±0.34 43.69±0.28 54.47±0.37

Table 2.2: The test accuracy on CIFAR-100 with di↵erent noise levels. All method use the
same model PreAct ResNet18 [43] and their results are reported over three runs.
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Figure 2.4: Illustration of our framework, where the Stopgrad is the stop gradient operator.

combat label noise. 7) SL [134], which uses CE loss and a reverse cross entropy loss (RCE)
as a robust loss function. 8) APL (NCE+RCE) [85], which combines two mutually boosted
robust loss functions for training.

Implementation. For CIFAR datasets, we use the model PreAct ResNet18. For ANIMAL-
10N, we use a random initialized model ResNet18. For Clothing1M, we use an ImageNet
pre-trained model ResNet18. The projection MLP is 3-layer MLP and the prediction MLP is
2-layer MLP as proposed in Simsiam [16]. We illustrate our framework in Figure 2.4. We
use weak augmentations Aw : X ! X including random resized crop and random horizontal
flip for optimizing the cross entropy loss Lce. Following SimSiam, we use a strong augmen-
tationAs : X ! X applied on images twice for optimizing the contrastive regularization term
eLctr. Specifically, {zi} = f

�As({xi})
�

and {qi} = h
�
f
�As({xi}

��
for every example xi, where one

strong augmented image is for calculating z and another is for calculating q. We include more
implementation details and algorithms in Appendix 2.A.
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Method ANIMAL-10N Clothing1M
CE 83.18±0.15 70.88±0.45

Forward 83.67±0.31 71.23±0.39

GCE 84.42±0.39 71.34±0.12

Co-teaching 85.73±0.27 71.68±0.21

SLN 83.17±0.08 71.17±0.12

SL 83.92±0.28 72.03±0.13

APL 84.25±0.11 72.18±0.21

CTRR 86.71±0.15 72.71±0.19

Table 2.3: Test accuracy on the real-world datasets ANIMAL-10N and Clothing1M. For
ANIMAL-10N, all methods use a random initialized ResNet18 and pre-trained ResNet18 for
Clothing1M. The results are based on three di↵erent runs.

Regularization Functions CIFAR-10
0% 20% 40% 60% 80% 90%

L0ctr(2.6) 93.58±0.11 86.05±0.33 82.34±0.25 74.35±0.54 54.83±1.00 40.96±0.99
eLctr(2.8) 94.29±0.21 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46

Table 2.4: The performance of the model with respect to di↵erent regularization functions.

2.4.1 CIFAR Results

Table 2.1 and Table 2.2 show the results on CIFAR-10 and CIFAR-100 with various label noise
settings. We use PreAct ResNet18 [43] for all methods and report the test accuracy for them
based on three runs. Our method achieves the best performance on all tested noise settings.
Especially when noise levels reach to 80% or even 90%, our method significantly outperforms
other methods. For example, on CIFAR-10 with r = 90%, CTRR maintains a high accuracy of
81.65% compared with the second best one 49.65%.

2.4.2 ANIMAL-10N & Clothing1M Results

Table 2.3 shows the results on the real-world datasets ANIMAL-10N and Clothing1M. All
methods use the same model and the results are reported over three runs. We use a random ini-
tialized ResNet18 and an ImageNet pre-trained ResNet18 on ANIMAL-10N and Clothing1M,
respectively, and the results are reported over three runs. For Clothing1M, following [66, 11],
we randomly sample a balanced subset of 20.48K images from the noisy training data and re-
port performance on 10K test images. Our method is superior to other baselines on the two
real-world datasets.
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Method 20% 40% 60% 80% 90%
Vanilla-SimSiam 90.76±0.12 88.14±0.23 83.35±0.39 78.66±0.29 75.70±1.04

CTRR (SimSiam) 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46

CTRR (SimCLR) 92.50±0.35 90.12±0.43 87.41±0.83 84.96±0.44 79.57±1.32

CTRR (BYOL) 93.31±0.16 92.12±0.16 88.71±0.52 86.99±0.59 84.31±0.66

Table 2.5: Comparison with other contrasitve learning methods.

2.5 Ablation Studies and Discussions
In this section, we first investigate the e↵ects of hyperparameters. Then we evaluate the regular-
ization functions Eq. (2.8) and Eq. (2.6), respectively. Lastly, we present two ways to enhance
our method.

Figure 2.5: Analysis of � and ⌧ on CIFAR-10 with 60% symmetric label noise

Label Correction CIFAR-10
Technique 20% 40% 60% 80%

7 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52

3 93.32±0.11 92.76±0.67 89.23±0.18 85.40±0.93

Table 2.6: 3/7 indicates the label correction technique is enabled/disabled.

The e↵ects of �:The hyperparameter � controls the strength of the regularization to repre-
sentations of data. A weak regularization is not able to address the memorization issue, while a
strong regularization makes the neural network mainly focus on optimizing the regularization
term and ignoring optimizing the linear classifier. Figure 2.5 (left) shows the test accuracy
with di↵erent �. The results are in line with the expectation that too strong and too weak
regularizations lead to poor performance.

The e↵ects of ⌧: The ⌧ is the confidence threshold for choosing two examples from the
same classes. Many wrong pairs are selected if ⌧ is set too low. Figure 2.5 (right) shows the
test accuracy with di↵erent ⌧. When we are too confident about any pairs (⌧=0), the model
performance is reduced significantly.

The e↵ects of eLctr: To study the e↵ect of the proposed regularization function, we compare
the performance of Eq. (2.8) to Eq. (2.6). Empirical results are consistent with the previous gra-
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Method CIFAR-10
20% 40% 60% 80%

GCE 91.22±0.25 89.26±0.34 85.76±0.58 70.57±0.83

CTRR 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52

CTRR+GCE 93.94±0.09 93.06±0.29 92.79±0.06 90.25±0.40

Table 2.7: The performance of the model with respect to GCE, CTRR and CTRR+GCE.

dient analysis and they are shown in Table 2.4. Our proposed regularization function Eq. (2.8)
outperforms Eq. (2.6) by a large margin across all noise levels.

2.5.1 Extending to Other Contrastive Learning Frameworks
We first evaluate the performance of vanilla-SimSiam in the presence of label noise, where
we pretrain SimSiam on CIFAR-10 without label information and then finetune the neural
network on noisy data. Then we evaluate the performance of CTRR under other contrastive
learning frameworks. While CTRR relies on SimSiam framework, the mutual information
maximization and the gradient analysis can be easily extended to other contrastive learning
frameworks, for example, SimCLR [13] and BYOL [36]. Table 2.5 shows that our method still
performs well on other frameworks.

2.5.2 Combination with Other Label Noise Methods
Furthermore, CTRR is orthogonal to label correction techniques [160, 75]. In other words,
our method can be integrated with these techniques to further boost learning performances.
Specifically, we use the basic label correction strategy following [11] that labels are replaced
by weighted averaged of both model predictions and original labels, where weights are scaled
sample losses. In Table 2.6, we show that the performance is improved after enabling a simple
label correction technique.

Note that GCE [161] is a partial noise-robust loss function implicitly combined with CE
and MAE. It is of interest to re-validate the loss function GCE along with our proposed regular-
ization function. We show the performance of a combination of our method and GCE in Table
2.7. With representations induced by our proposed method, there is a significant improvement
on GCE, which demonstrates the e↵ectiveness of the learned representations. Meanwhile, the
success of this combination implies that our proposed method is beneficial to other partial
noise-robust loss functions.

2.6 Conclusion
We present a simple but e↵ective CTRR to address the memorization issue. Our theoretical
analysis indicates that CTRR induces noise-robust representations without su↵ering from the
underfitting problem. The empirical results also demonstrate the e↵ectiveness of CTRR. We
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have discussed the two possible combinations of existing methods to improve model perfor-
mance. We believe that CTRR can be jointly used with other existing methods to achieve better
performance.
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2.A Experiment Details

2.A.1 Algorithm
According to our gradient analysis on two di↵erent clean images xi, x j with yi = y j and a noisy
image xm with ym = yi, apply the regularization function Eq. (2.8) can avoid representation
learning dominated by the wrong contrastive pair (xi, xm). The analysis does not cover the
same image with two di↵erent augmentations. When applying the strong augmentation twice,
each image x has two di↵erent augmentations x0, x00. The contrastive pair (x0, x00) will also
dominate the representation learning given the property of Eq. (2.8). However, focusing on
learning similar representations of (x0, x00) does not help to form a cluster structure in repre-
sentation space. As mentioned in [132], learning this self-supervised representations causes
representations of data distributed uniformly on the unit hypersphere. Hence, we want the gra-
dient from the pair (x0, x00) to be smaller when their representations approach to each other. We
use the original contrastive regularization to regularize the pair (x0, x00). The pseudocode of the
proposed method is given in Algorithm 1.

2.A.2 Hyperparameters
CIFAR. Our method has two hyperparameters � and ⌧. For each noise setting for CIFAR-10,
we select the best hyperparameters: � from {50, 130} and ⌧ from {0.4, 0.8}. For each noise
setting for CIFAR-100, we select the best hyperparameters: � from {50, 90} and ⌧ from {0.05,
0.7}. The batch size is set as 256, and the learning rate is 0.02 using SGD with a momentum of
0.9 and a weight dacay of 0.0005.

ANIMAL-10N & Clothing1M. For ANIMAL-10N, we set � = 50, ⌧ = 0.8 and batch size
is 256. The learning rate is set as 0.04 with the same SGD optimizer as the CIFAR experiment.
For Clothing1M, we set � = 90, ⌧ = 0.4 and batch size is 256. The learning rate is set as 0.06
with the same SGD optimizer as above.

2.B Proofs of Theoretical Results

2.B.1 Proof for Theorem 2.2.1
Theorem. Representations Z learned by minimizing Eq. (2.1) maximizes the mutual informa-
tion I(Z; X+).

Proof. We first decompose the mutual information I(Z; X+):

I(Z; X+) =EZ,X+ log
p(Z|X+)

p(Z)
=EX+EZ|X+[log p(Z|X+)] � EZ,X+[p(Z)]
= � EX+

⇥
H(Z|X+)⇤ + H(Z).

The first term EX+
⇥
H(Z|X+)⇤ measures the uncertainty of Z|X+, which is minimized when Z can

be completely determined by X+. The second term H(Z) measures the uncertainty of Z itself
and it is minimized when outcomes of Z are equally likely.
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Algorithm 1: CTRR Pseudocode in a PyTorch-like style
# Training
# f: backbone + projection mlp
# h: prediction mlp
# g: backbone + softmax linear classifier

for x, y in loader:
bsz = x.size(0)
x1, x2 = strong_aug(x), strong_aug(x) # strong random augmentation
x3 = weak_aug(x) # weak random augmentation
z1, z2 = f(x1), f(x2)
q1, q2 = h(z1), h(z2)
p = g(x3)

# compute representations
c1 = torch.matmul(q1, z2.t()) # B X B
c2 = torch.matmul(q2, z1.t()) # B X B

# compute contrastive loss for each pair
m1 = torch.zeros(bsz, bsz).fill_diagonal_(1) # identity matrix
m2 = torch.ones(bsz, bsz).fill_diagonal_(0) # 1-identity matrix
# - <i,i> + log(1-<i,j>)
c1 = -c1*m1 + ((1-c1).log()) * m2
c2 = -c2*m1 + ((1-c2).log()) * m2
c = torch.cat([c1, c2], dim=0) # 2B X B

# compute probability threshold
probs_thred = torch.matmul(p, p.t()).fill_diagonal_(1).detach() # B X B
mask = (probs_thred >= tau).float()
probs_thred = probs_thred * mask
# normalize the threshold
weight = probs_thred / probs_thred.sum(1, keepdim=True)
weight = weight.repeat((2, 1)) # 2B X B

loss_ctr = (contrast_logits * weight).sum(dim=1).mean(0)

We next show that Z can be completely determined by X+ when minimum of Eq. (2.1) is
achieved and uncertainty of Z itself is maintained by an assumption about the framework. By
the Cauchy-Schwarz inequality,

EX,X+
⇥Lctr(X, X+)

⇤ �EX,X+
⇥ kq̃k2

���z̃+
���

2

+
���q̃+

���
2 kz̃k2] = �2.

The equality is attained when q̃ = z̃+ and q̃+ = z̃ for all x, x+ from the same class. For any three
images x1, x2, x3 from the same class, we have:

f (x1) = g(x3), f (x2) = g(x3),

where g = h( f (·)). We can find f (x1) = f (x2) for any images x1, x2 from the same class.
The result can be easily extended to the general case: f (X1) = f (X2) for any (X1,Y1) ⇠
P(X,Y), (X2,Y2) ⇠ P(X,Y) with Y1 = Y2. Thus Z can be determined by X+ with the equa-
tion Z = f (X+), which minimizes EX+

⇥
H(Z|X+)⇤.

When p(Z = cy|Y = y) = 1
|Y| , the entropy H(Z) is maximized. With extensive empirical

results in Simsiam, we assume the collapsed solutions are perfectly avoided by using the Sim-
Siam framework. By this assumption, c j , ck for any j , k. The model learns di↵erent clusters
cy for di↵erent y and representations with di↵erent labels have di↵erent clusters. Therefore, for
a balanced dataset, the outcomes of Z are equally likely and it maximizes the second term
H(Z). In summary, the learned representations by Eq. (2.1) maximizes the mutual information
I(Z; X+).

⇤
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2.B.2 Proof for Theorem 2.2.3
Theorem. Given a distribution D(X,Y, Ỹ) that is (✏, �)-Distribution, we have

I(X; Y) � ✏  I(Z?; Y)  I(X; Y), (2.11)
I(Z?; Ỹ)  I(X; Ỹ) � � + ✏. (2.12)

Proof. The Theorem builds upon the Theorem 5 from [126]. We first provide the proof for
the first inequality, which can also be obtained from [126]. Then we provide the proof for the
second inequality.

For the first inequality, by adopting Data Processing Inequality in the Markov Chain Y $
X ! Z, we have I(X; Y) � I(Z; Y) for any Z 2 Z. Then, we have I(X; Y) � I(Z?; Y). Since
Z? = arg maxZ✓ I(Z✓; X+), and I(Z✓; X+) is maximized at I(X; X+), then I(Z?; X+) = I(X; X+)
and I(Z?; X+|Y) = I(X; X+|Y). Meanwhile, use the result I(Z?; X+; Y) = I(X; X+; Y), which is
given by

I(Z?; X+; Y) = I(Z?; X+) � I(Z?; X+|Y)
= I(X; X+) � I(X; X+|Y)
= I(X; X+; Y),

we have

I(Z?; Y) =I(X; X+; Y) + I(Z?; Y |X+)
=I(X; Y) � I(X; Y |X+) + I(Z?; Y |X+). (2.13)

Thus, by Eq. (2.13) and the Definition 2.2.2, we get

I(Z?; Y) � I(X; Y) � I(X; Y |X+) � I(X; Y) � ✏ (2.14)

Now we present the second inequality I(Z?; Ỹ)  I(X; Ỹ) � � + ✏.
Similarly, by Eq. (2.13), we have

I(Z?; Ỹ) = I(X; Ỹ) � I(X; Ỹ |X+) + I(Z?; Ỹ |X+) (2.15)
 I(X; Ỹ) � � + I(Z?; Ỹ |X+) (2.16)
 I(X; Ỹ) � � + I(Z?; Y |X+) (2.17)
 I(X; Ỹ) � � + ✏ (2.18)

, where the first and the third inequalities are by the definition 2.2.2; the second inequality is
by the Data Processing Inequality in the Markov Chain Ỹ  Y $ X ! Z.

⇤

2.B.3 Proof for Lemma 2.2.4
Lemma. Consider a pair of random variables (X, Ỹ). Let Ŷ be outputs of any classifier based
on inputs Z✓, and ẽ = {Ŷ , Ỹ}, where {A} be the indicator function of event A. Then, we
have

E[ẽ] � H(Ỹ) � I(Z✓; Ỹ) � H(ẽ)
log(|Ỹ|) � 1

.
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Proof. If we are given any two of {ẽ = 1}, Ŷ , Ỹ , the other one is known. By the properties of
conditional entropy, H(Ỹ , ẽ|Ŷ ,Z✓) can be decomposed into the two equivalent forms.

H(Ỹ , ẽ|Ŷ ,Z✓) = H(Ỹ |ẽ, Ŷ ,Z✓) + H(ẽ|Ŷ ,Z✓)
= H(Ỹ |ẽ, Ŷ ,Z✓)|         {z         }

0

+H(Ỹ |Ŷ ,Z✓) (2.19)

The first equality can also be decomposed into another form:

H(Ỹ , ẽ|Ŷ ,Z✓)
=H(Ỹ |ẽ, Ŷ ,Z✓) + H(ẽ|Ŷ ,Z✓)
=p(ẽ = 1)H(Ỹ |ẽ = 1, Ŷ ,Z✓)
+ p(ẽ = 0) H(Ỹ |ẽ = 0, Ŷ ,Z✓)|               {z               }

0

+H(ẽ|Ŷ ,Z✓)

=p(ẽ = 1)H(Ỹ |ẽ = 1, Ŷ ,Z✓) + H(ẽ|Ŷ ,Z✓) (2.20)

Relating Eq. (2.19) to Eq. (2.20), we have

E[ẽ] =
H(Ỹ |Ŷ ,Z✓) � H(ẽ|Ŷ ,Z✓)

H(Ỹ |ẽ = 1, Ŷ ,Z✓)

� H(Ỹ |Ŷ ,Z✓) � H(ẽ|Ŷ ,Z✓)
log (|Y| � 1)

� H(Ỹ |Ŷ ,Z✓) � H(ẽ)
log (|Y| � 1)

=
H(Ỹ) � I(Ỹ; Z✓, Ŷ) � H(ẽ)

log (|Y| � 1)

=
H(Ỹ) � I(Ỹ; Z✓) � H(ẽ)

log (|Y| � 1)
.

The first inequality is by H(Ỹ |ẽ = 1, Ŷ ,Z✓)  log (|Y| � 1), where Ỹ can take at most |Y| � 1
values. For the second inequality,

H(ẽ|Ŷ ,Z✓) = H(ẽ) � I(ẽ; Ŷ ,Z✓)
 H(ẽ).

For the last equality,

I(Ỹ; Z✓, Ŷ) =H(Z✓, Ŷ) � H(Z✓, Ŷ |Ỹ)
=H(Z✓) + H(Ŷ |Z✓)
� H(Z✓|Ỹ) � H(Ŷ |Z✓, Ỹ)
=I(Z✓, Ỹ) + I(Ŷ; Ỹ |Z✓)
=I(Z✓, Ỹ),



28 Chapter 2. On Learning Noise-Robust Representations for Learning with Label Noise

where I(Ŷ; Ỹ |Z✓) = 0 given the Markov Chain Ỹ  Y $ X ! Z ! Ŷ:

I(Ŷ; Ỹ |Z✓) =H(Ŷ |Z✓) � H(Ŷ |Z✓, Ỹ)
= H(Ŷ |Z✓) � H(Ŷ |Z✓) = 0.

⇤

2.B.4 Proof for Lemma 2.2.5

Lemma. Let R(X) = infg EX,Y[L(g(X),Y)] be the minimum risk over the joint distribution
X ⇥ Y, where L(p, y) =

PY
i=1 y(i) log p(i) is a CE loss and g is a function mapping from input

space to label space. Let R(Z?) = infg0 EZ?,Y[L(g0(Z?),Y)] be the minimum risk over the joint
distribution Z? ⇥ Y and g0 maps from representation space to label space. Then,

R(Z?)  R(X) + ✏.

Proof. The lemma is given by the variational form of the conditional entropy H(Y |Z?) =
infg0 EZ?,Y[L(g0(Z?),Y)] [68, 25]. According to a property of mutual information,

I(A; B) = H(A) � H(A|B),

we have R(Z?) = H(Y) � I(Z?; Y). By the results of Theorem 2.2.3,

R(Z?) H(Y) � I(X; Y) + ✏
=H(Y |X) = inf

g
EX,Y[L(g(X),Y)].

⇤

2.C Gradients of Contrastive regularization Functions
For the contrastive regularization function

L0ctr(xi, x j) = �
� qi

kqik2
· z j���z j

���
2

+
qj���qj

���
2

· zi

kzik2
�
,

we only consider the case {p>i p j � ⌧} = 1 becauseL0ctr(xi, x j) is not calculated in the algorithm
when {p>i p j � ⌧} = 0. We assume that h is an identity function and xi, x j are from the same
class for simplicity.

Let a = kqik2, b = qi, x = z j

kz jk2
and c = b

a . According to the equation a2 = b>b, we
di↵erentiate both side of the equation and get

2a da = 2b> db. (2.21)
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In the meanwhile,

@
�b>x

a
�
=

d(b>x)a � dab>x
a2

(2.21)
=

ax> db
a2 � b> dbb>x

a3

=
x> db

a
� a2c>xc> db

a3

=
1
a
�
x> � c>xc>

�
db.

Taking a, b, c and x back to the equation, we get the result

@L0ctr(xi, x j)
@qi

= � 1
kqik2

� qj���qj

���
2

� (
q>i q j

kqik2
���qj

���
2

)
qi

kqik2
�
.

Note that zi = Stopgrad(qi) because of the identity map h. Let ci = 1/ kqik22 and then we have
������
@L0ctr(xi, x j)
@qi

������

2

2
= ci(1 � (q̃>i q̃ j)2).

Similarly, for the contrastive regularization function

eLctr(xi, x j) =
✓

log
�
1 � h qi

kqik2
,

z j���z j

���
2

i�

+ log
�
1 � h qj���qj

���
2

,
zi

kzik2
i�
◆
,

@eLctr(xi, x j)
@qi

=
1

1 � q̃>i q̃ j

@L0ctr(xi, x j)
@qi

=ci(1 + q̃>i q̃ j).



Chapter 3

How Self-Supervised Learning Helps
Learning with Label Noise

3.1 Introduction

Recent self-supervised learning (SSL) with contrastive learning paradigms has achieved great
success to learn meaningful data representations without label information [41, 14, 155, 10].
In SSL, any two augmented examples from the same image (referred as positive pairs) are
mapped to a nearby location in the embedding space, whereas two augmented images from
di↵erent images (referred as negative pairs) are mapped to a distant location. [93, 99, 13].
Empirical evidence demonstrates that representations learned by SSL can be easily adapted to
many downstream tasks such as image classification, objection detection, segmentation, and
learning with imbalanced datasets [36, 91, 163, 142, 73, 149].

Apart from these applications, in this chapter, we show that learning with label noise
can also benefit from representations learned by SSL. The previous methodology focuses on
instance-independent label noise, which is unrealistic in practice. For example, blurry im-
ages are likely to be mislabeled. We extend the instance-independent to the realistic instance-
dependent label noise. We firstly construct a motivating example of instance-dependent label
noise, then we prove that a classifier trained on representations learned by SSL with noisy
labels is optimal over clean data distribution. Then we systematically analyze the benefits
of representations learned by SSL and find two merits of SSL representations: (1) The label
noise uniformly spreads over the learned SSL representations. (2) The learned representations
exhibit an intrinsic cluster structure that is consistent with true labels.

For point (1), we theoretically show that the label noise is uniformly distributed across the
learned representations by SSL in the motivating example, which is easier to address in practice
[18, 11, 162]. We further extend the relationship between label noise and the representations
learned by SSL to a more general case and provide empirical validation.

As for the point (2), we empirically and theoretically justify that representations learned by
SSL exhibit a cluster structure with respect to true labels. Moreover, we show that such the
structure encourages the classifier trained on noisy data to be aligned with the optimal classifier
obtained from clean distribution.

We further empirically demonstrate that, compared to SSL representations, representations

30
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learned by supervised learning are neither making label noise uniformly distributed across them
nor forming a good cluster structure. In particular, representations learned with supervision still
depend on the label noise and the they exhibit clusters with respect to noisy labels instead of
true labels.

From the algorithmic perspectives, our analysis indicates that we can apply SSL representa-
tions as a complementary method to existing label noise methods for learning with label noise.
Specifically, we fix representations learned by SSL and then only maintain a linear classifier
on the frozen representations by label noise methods. We empirically combine SSL repre-
sentations with existing label noise methods including a noise-robust loss function method, a
sample selection method, and a label correction method, which demonstrates significant im-
provements.

The main contributions of this chapter are summarized as follows.

• We provide theoretical analysis in a motivating example to show that a classifier trained
on representations learned by SSL outperforms a classifier trained by supervised learning
in the presence of label noise.

• We systematically analyze why the representations learned by SSL are better to address
label noise, where we verify our explanations empirically and theoretically.

• We propose to apply SSL representations as a complementary method to existing la-
bel noise methods to handle the label noise, and we conduct extensive experiments to
demonstrate the e↵ectiveness of SSL representations.

3.2 Related Work
In this section, we briefly discuss some self-supervised learning work related to this chapter.
The literature review of learning with label noise can be found in Chapter 1.

3.2.1 Self-supervised Learning
Representations of images learned by SSL have achieved remarkable success. SimCLR [13]
requires a large batch size to contain su�cient in-batch negative pairs and domain-specific
augmentations such as Gaussian blur, color distortions, and color jittering. However, a large
batch size maybe be infeasible. MoCo [41] solves this issue by introducing a memory bank to
store representations of data from previous iterations. BYOL [36] and SimSiam [16] propose
new frameworks without using negative pairs so they are able to work with reasonable batch
size without using the memory bank. On the other hand, SSL relies on domain-specific image
augmentation. That is to assume that image augmentations such as changing colors of images
should not a↵ect labels of images in downstream tasks [126]. DACL [129] and I-MIX [64]
both leverage MixUp augmentation [157] as domain-agnostic augmentation and they find that
SSL methods with both domain-agnostic augmentation and domain-specific augmentations can
perform better. A theoretical work on SSL has shown that optimizing a contrastive loss asymp-
totically optimizes alignment and uniformity properties, where alignment encourages to map
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similar images to nearby locations in representation space and uniformity forces representa-
tions uniformly distributed on the unit hypersphere [132]. Our work is to study the benefits of
SSL representations to learning with label noise.

3.3 A Motivating Example
We first provide a motivating example to show that SSL can be significantly better than su-
pervised learning, which enables us to explore and investigate the benefits of representations
learned by SSL.

We first construct a binary classification problem with two linearly separable clusters,
where the samples from clusters are artificially flipped according to a label noise function.
We denote yi as the true label for xi, and assume it is a balanced sample from {�1,+1}. Then
the instance xi is decided in the following manner:

xi =

8>><
>>:

e1⇣i + e2⇠i, if yi = +1
�e1⇣i � e2⇠i, if yi = �1

where ⇣ ⇠ U[0,4], ⇠ ⇠ U[�1.75,2.25], and e1, e2 2 Rd are two orthogonal unit-norm vectors. We
assume �(x, y) = sign(yx>e2) as the instance-dependent label noise function. For each clean
example (xi, yi), the corresponding noisy example is (xi, ỹi), where ỹi = yi�(xi, yi). Then we can
compute that there are 43.75% mislabeled examples if the noise function �(x, y) is adopted.

We assume to use a simple linear classifier parameterized by!. We use the gradient descent
algorithm to learn the parameter ! over the noisy data {xi, ỹi}ni=1, with a logistic loss function.
Thus, in conventional supervised learning, we have the loss function:

L(!) =
1
n

nX

i=1

log
�
1 + exp

��ỹi!
>xi

��
.

In contrast, in the SSL framework, we first learn a linear representation model with param-
eter W 2 R1⇥d from {xi}ni in a self-supervised manner. Specifically, we adopt the linear SSL
objective function studied in [73, 39], which tends to pull two positive pairs (x + �, x + �0) to
nearby locations in the embedding space:

WSSL = arg min
W2R1⇥d

�Ê[(x + �)>W>W(x + �0)] +
1
2

���W>W
���2

F , (3.1)

where k·kF is the Frobenius norm, Ê is an empirical expectation over the data, with �, �0 are
independent and identical N(0, I) random variables. Once the optimal representation model
WSSL is obtained, we fix WSSL and then learn a linear classifier parameterized by ✓ on the top of
representations with noisy labels {(WSSLxi, ỹi)}i. Analogous to the supervised learning, we also
use the gradient descent with a logistic loss function L(✓) to train the classifier.

L(✓) =
1
n

nX

i=1

log
�
1 + exp

��ỹi✓
>WSSLxi

��
.

The following theorem states the behavior of linear classifiers on input data {(xi, ỹi)}i and
representations of inputs data {(WSSLxi, ỹi)}i, respectively.
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(a) SL (noisy labels) (b) SSL (noisy labels) (c) SL (true labels) (d) SSL (true labels)

Figure 3.1: T-SNE of 60% instance-dependent label noise on CIFAR-10. We train a ResNet34
on the noisy data by supervised learning (SL) and we visualize the representations learned by
SL in (a) and (c) with respect to noisy labels and true labels, respectively. We also train a
SSL representation model ResNet34 without label information and visualize the data represen-
tations in (b) and (d) with respect to noisy labels and true labels, respectively. We highlight
regions with solid polygons that lightly su↵er from the label noise in (a), where red points (la-
bel noise) are represented incorrectly labeled examples. In (b), the red points almost uniformly
spread over the data representations.

Theorem 3.3.1. Let !̃, ✓̃ be normalized optimal parameters via gradient descent with logistic
loss over the data {(xi, ỹi)}i and {(WSSLxi, ỹi)}i, respectively. Then the generalization accuracy
in supervised learning is upper bounded by:

Pr
(x,y)

[sign(!̃>x) = y]  9
16
+

2d
3n
, (3.2)

while the generalization accuracy in SSL is lower bounded by:

Pr
(x,y)

[sign(✓̃>WSSLx) = y] � 1 � 2e�n/128. (3.3)

The proof is provided in 3.B.2. Theorem 3.3.1 reveals two interesting facts in the presence
of label noise. (1) The prediction accuracy under SSL is guaranteed to be a high value via a
provable lower bound. The lower bound could further converge to 1 (perfect prediction without
error) when sample size n ! +1. (2) In contrast, in supervised learning, simply collecting
more samples does not guarantee a high accuracy, where the upper bound of the accuracy
converges to 9/16 as n! +1.

3.4 Why SSL Works
To show the benefits of SSL in learning with label noise, we start to analyze the learned repre-
sentation model WSSL from Eq. (3.1).

Proposition 3.4.1. The optimal solution WSSL in Eq. (3.1) converges in probability to ke1 with
the constant k > 0.

The proof is provided in 3.B.3. The solution WSSL is the span of the vector e1, which is
crucial for learning an optimal classifier in Eq.(3.3). Note that only e1 determines the true
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labels of data x. In fact, the injected label noise depends on non-discriminative feature e2 but
not the discriminative feature e1. If we orthogonally project data x onto the direction of e1,
the label noise is independent of and is uniformly distributed over the projected data points
spanned by e1. The representation model WSSL exactly maps the data x onto the direction of e1

orthogonally. Thus, the label noise is uniformly distributed over data representations WSSLx,
which makes the label noise easier to address. Specifically:

If the label noise is uniformly distributed across the inputs, the classifier trained on data with
this label noise can generalize well. Specifically, it can be verified that the optimal Bayes’s
classifier, h(x) = sign(e>1 x), is also the optimal classifier over the clean distribution. On the
other hand, the classifier trained with the supervised learning method from Theorem 3.3.1 is
forced to learn spurious correlations between the inputs e2 and the labels.

Besides, estimating a noise transition matrix is easier when the label noise is uniformly
distributed over inputs. In particular, the instance-dependent label noise can be characterized by
the noise transition matrix T (x) 2 R|Y|⇥|Y|, where T (x)i j measures the probability of observing a
corrupted label j given the true label i and an instance x. The issue of label noise is then solved
by estimating the noise transition matrix T (x) [141, 76, 95, 33]. Estimating T (x) for instance-
dependent label noise is practically challenging, since T (x) can be di↵erent for di↵erent x and
we may need to parametrize n di↵erent T (x) from the noisy dataset of size n by a neural network
[18, 139, 8]. In contrast, T is the same for all x for symmetric label noise (i.e, label noise is
uniformly distributed over data) [95] and we only need to estimate a constant noise transition
matrix. Therefore, by estimating a single noise transition matrix instead of parameterizing n
noise transition matrices by a neural network, the label noise is easier to solve.

3.4.1 Observations on Real-world Datasets

The benefits of the SSL are not only in the motivating example, but can also be observed in
real-world datasets. In this section, we empirically justify the benefits by investigating the
CIFAR-10 dataset [56] with 60% instance-dependent label noise. We train a ResNet34 [43]
over the noisy data through cross-entropy loss, and visualize the representations in Fig 3.1(a)
with respect to noisy labels. The SSL representations with respect to noisy labels are visualized
in Fig 3.1(b), where the representation model ResNet34 is trained with self-supervised method
MoCov2 [15]. Fig 3.1(a) shows that in the representations learned by supervised learning,
the label noise and representations are still dependent (the regions are highlighted by solid
polygons), whereas the SSL breaks such the dependency and makes the label noise uniformly
distributed across the data representations.

Besides, we also visualize these representations with respect to their true labels in Fig
3.1(c-d). We find that representations learned by SSL exhibit an intrinsic cluster structure that
is consistent with the true labels (Fig 3.1(d)). In contrast, Fig 3.1(c) shows that representations
learned by supervised learning do not exhibit a cluster structure with respect to true labels.
Thus, it further motivates us to explore how the cluster structure learned by SSL helps learning
with label noise.
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3.5 Cluster Structure and Learning with Label Noise
In this section, we investigate how the cluster structure can help mitigate the label noise. Con-
cretely, we show that for fixed representations, a good cluster structure encourages the classifier
to be aligned to the optimal classifier, resulting in better generalization performance.

For simplicity, we use a two-component Gaussian mixture model to describe the clusters
of representations, with each cluster representing one class. We assume that representations
from class +1 are sampled from N(µ,⌃) and representations from class �1 are sampled from
N(�µ,⌃), where µ 2 Rd and ⌃ 2 Rd⇥d. In this case, the distance between two clusters is
controlled by kµk and the variance of each cluster is controlled by the sum of eigenvalues of ⌃,
which is equivalent to the trace of ⌃.

We connect the cluster structure to �grL(!0)>µ̃, which can characterize the performance
of the linear classifier, where grL(!0) = rL(!0)

krL(!0)k , µ̃ =
µ
kµk , and rL(!0) is the gradient of the

logistic loss computed by the linear classifier (initialized by !0). The normalized gradient of
the loss �grL(!0) represents the direction of steepest descent in the loss function calculated on
the noisy data. Given that an optimal classifier obtained from the clean data is kµ for any scalar
k > 0, �grL(!0)>µ̃ can measure the cosine similarity between the gradient descent direction
and the direction where the optimal classifier points. After applying one-step gradient descent
to the classifier, the updated classifier is more correlated to the optimal classifier if the cosine
similarity is higher. More details can be found in Appendix 3.C.1. This intuitively explains
why �grL(!0)>µ̃ can be used to measure the performance of the linear classifier. Now we focus
on establishing the relationship between �grL(!0)>µ̃ and the cluster structure.

As shown in Section 3.4, label noise is uniformly distributed over the data representations.
Thus, we define the symmetric label noise function:

�(x, y) =

8>><
>>:
�1, with probability r
+1, with probability 1 � r

where 0 < r < 1 controls the noise level. Note that for symmetric label noise, the label
noise function �(x, y) is independent of the data. The relationship between �grL(!0)>µ̃ and the
cluster structure is presented in Theorem 3.5.1.

Theorem 3.5.1. If at least half of examples are clean (r < 1
2 )

�grL(!0)>µ̃ �
s

kµk2
cTr(⌃) + kµk2

(1 � 2r) + o(n�1/3), (3.4)

where Tr(⌃) is the trace of ⌃ and c > 0 is a constant.

The proof is provided in 3.C.2. Theorem 3.5.1 provides a lower bound for �grL(!0)>µ̃.
The larger lower bound means the updated classifier is more correlated to the optimal one. The
lower bound can be a↵ected by the noise level r and the following two cluster properties: 1) the
distance between two clusters kµk, 2) the variance of each cluster Tr(⌃). Without considering
any label correction techniques, the noise level r is fixed given a dataset. Therefore, by learning
clusters of data representations that are distant to each other (larger kµk) and/or by learning tight
representation clusters (smaller Tr(⌃)), the classifier generalizes better.
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Figure 3.2: Results of linear classifiers trained on synthetic datasets with 40% noise level.
We use the dash line to represent the performance of classifiers trained without su↵ering from
label noise and the solid line to represent that with label noise. The histograms are samples
loss values at epoch = 50 with respect to whether they are mislabeled.

Remark We remark that the spirits of encouraging a good cluster structure are the same
for other forms of label noise such as asymmetric label noise, though their expressions of
�grL(!0)>µ̃ are di↵erent. More details can be found in Appendix 3.C.2.

We empirically justify that linear classifiers achieve better performance when �grL(!0)>µ̃
becomes larger. Fig 3.2 shows performances of classifiers trained on data points with di↵erent
cluster structures given a fixed noise level 40%. Specifically, with the same variance, the
classifier trained on clusters with larger distance performs better (orange line v.s. red line).
While with the same distance, the classifier trained on tight clusters performs better (orange line
v.s. blue line). The two histograms demonstrate that the linear classifier with larger �grL(!0)>µ̃
(orange) fits clean examples better, compared with the linear classifier (red). It also highlights
that by learning representations with better cluster structure, the classifier generalizes better on
clean data distribution.

3.6 Learning Cluster Structure of Representations by SSL
In this section, we rigorously justify that the cluster properties characterized in Theorem 3.5.1
can be achieved by SSL. In particular, we focus on the SSL objective function Eq. (3.5) that
has been studied in [132]. Notably, the loss and its variants have been widely adopted in the
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SSL such as [13, 41, 15, 93, 39, 125, 94].

Lctr( f ) =
1
n

nX

i=1

Eui⇠P(u|xi)
u+i ⇠P(u|xi)

[
��� f (ui) � f (u+i )

���2]
|                             {z                             }

LAlign(i)

(3.5)

+ � log
 1
n(n � 1)

X

i, j

Eui⇠P(u|xi)
u j⇠P(u|x j)

⇥
e�k f (ui)� f (u j)k2⇤

|                         {z                         }
LUniform(i, j)

�
,

where � is a hyper-parameter. {x1, x2, · · · , xn} are input instances, P(u|x) denotes the condi-
tional distribution of an augmented instance u gievn x, and f (·) is a representation network
that takes u as an input. Intuitively, Eq. (3.5) aims to minimize the distance between two rep-
resentations of di↵erent views from the same instance, and the LUniform makes representations
uniformly distributed over the embedding space [132].

To characterize the cluster properties studied in Theorem 3.5.1, we introduce the notion of
�-cluster closeness.

Definition 3.6.1 (�-cluster closeness). Let S i be the support where P(u|xi) > 0 for any u 2 S i.
S i and S j are �-cluster close if P[u 2 S i \ S j|xi] � � for any two di↵erent instances xi, x j with
yi = y j.

The notion of �-cluster closeness is similar to the cluster assumption in [61, 105, 112].
Definition 3.6.1 reveals that the instance augmentations should be rich enough so that any two
di↵erent augmentation distributions from the same class can be overlapped. Following [129,
64], we apply mixup data augmentation on top of the conventional SSL data augmentations
[13] in order to have richer instance augmentations, making Definition 3.6.1 hold with a large
�.

With the notion of �-cluster closeness, we investigate the relationship between Eq. (3.5) and
cluster properties of representations: the distances between any two clusters and the variance
of each cluster.

To analyze the cluster properties, we decompose Lctr( f ) into three di↵erent components
and we study the e↵ects of them individually.

Lctr( f ) =
1
n

X

m2Y

X

i2Jm

LAlign(i)

+ � log
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X

m2Y,n2Y
m,n

X

i2Jm
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LUniform(i, j) +
1

n(n � 1)

X

m2Y

X

i, j2Jm
i, j

LUniform(i, j)
�, (3.6)

The following lemma indicates that a large distance between any two clusters can be
achieved by optimizingLUniform(i, j) for some i, j. We denote Jy by the index set corresponding
to true class y.
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Lemma 3.6.2. Let µ̂i =
P

k2Ji
f (uk)
|Ji | , µ̂ j =

P
k2J j

f (uk)
|J j | be sample means of cluster i and cluster j

with i , j. Without loss of generality, we assume |Ji| = |J j|. Then

E[
���µ̂i � µ̂ j

���
2] � � 1

|Ji|
X

k2Ji

log
�LUniform(k, g(k))

�

where the function g : Ji ! J j is any bijective function, and the expectation is over the data
augmentation.

The proof is provided in 3.D.1. Lemma 3.6.2 indicates that the distance between the clus-
ter i and the cluster j can be lower bounded by � log

�LUniform(k, g(k))
�

for k 2 Ji. Since
�LUniform(k, g(k)) measures the distance between f (uk) from cluster i and f (ug(k)) from cluster
j, minimizing LUniform(k, g(k)) for all k 2 Ji increases the distance between the cluster i and the
cluster j.

On the other hand, the objective function Eq. (3.5) also controls the variance of each cluster.
The following lemma helps us understand how the SSL objective function Eq. (3.5) controls
variance of each cluster.

Lemma 3.6.3. Let b⌃y =
1
|Jy |

P
i2Jy( f (ui) � µ̂i)( f (ui) � µ̂i)> be the sample covariance matrix.

Suppose Definition 3.6.1 holds. Then for any fixed � 2 (0, 1), we have

Tr(E[b⌃y])  2
�|Jy|

X

i2Jy

LAlign(i),

where the expectation is over the data augmentation.

The proof is provided in 3.D.2. Lemma 3.6.3 shows that the variance of cluster y is upper
bounded by the term

P
i2Jy LAlign(i), where the variance is measured by the sum of eigenvalues

for the sample covariance matrix computed by representations from the cluster y. In other
words, a small variance of cluster y can be achieved by minimizing

P
i2Jy LAlign(i).

Lemma 3.6.2 and Lemma 3.6.3 have shown the e↵ects of the first two components in
Eq. (3.6). The last component in Eq. (3.6) serves as a contradiction against the first component.
We note that minimizing LUniform(i, j) for i, j from the same cluster undesirably increases the
variance of that cluster. This intuition is justified by the following proposition.

Proposition 3.6.4. Suppose Definition 3.6.1 holds with a fixed �. Then

log[
1

n(n � 1)

X

m2Y

X

i, j2Jm
i, j

LUniform(i, j)] �

�↵
X

m2Y

X

i2Jm

LAlign(i),

where ↵ = 2(n/|Y|�1)
�n(n�1) > 0.

The proof is provided in 3.D.3. Proposition 3.6.4 indicates that minimizing the third term in
Eq. (3.6) forces the first term in to be larger, which makes the variance of clusters to be larger,
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where the strength is controlled by a factor ↵. We note that the third term is due to LUniform

of the instances from the same class and it cannot be eliminated since the label information
is not leveraged. The constraint strength is mitigated when ↵ decreases. It is small when
instance augmentations are rich enough (� is large), which also highlights the importance of
data augmentations in learning SSL representations.

3.7 Experiment
In this section, we apply SSL representations as a complementary method to existing label
noise methods to handle the label noise. We empirically demonstrate the e↵ectiveness of rep-
resentations learned by SSL. We consider two di↵erent self-supervised contrastive learning
frameworks: MoCov2 [15] and BYOL [36] to show whether results are sensitive to frame-
works. Compared to MoCov2, BYOL does not explicitly compute LUniform but may implicitly
compute these terms by designing an exponential moving average of the representation net-
work. Details for the experimental settings and more experiments can be found in Appendix
3.A.

Datasets. We validate our method on two artificially corrupted datasets CIFAR-10 and
CIFAR-100 [56] with di↵erent types of label noise: symmetric (SYM), asymmetric (ASYM),
instance-dependent label noise (IDN) More details about the noise generation approach can
be found in Appendix 3.A. We also validate our method on a more realistic real-world dataset
ANIMAL-10N [113] which consists of 50, 000 training images with confusing appearances
from 10 di↵erent classes.

Baseline. We evaluate the frozen representations by linear evaluation. In particular, we
maintain the linear classifier on the frozen representations with three di↵erent types algorithms:
robust loss function GCE [161], sample selection Co-teaching [38] and label correction ELR
[75]. GCE uses a loss function that aims to address the memorization issue for incorrectly
labeled examples. Co-teaching selects clean examples to update the neural network based on
the small-loss criterion. ELR introduces a regularization term for pseudo labels and model
predictions.

3.7.1 Main Results
Table 3.1 and Table 3.2 show the results of instance-independent label noise on CIFAR-10 and
CIFAR-100, respectively. While Table 3.3 and Table 3.4 show the results of instance-dependent
label noise on CIFAR-10 and CIFAR-100. All experiments on CIFAR datasets are conducted
by the neural network ResNet34. Table 3.5 shows the results on ANIMAL-10N with the neural
network ResNet50. Both MoCov2 and BYOL SSL representations can improve e�cacy to a
wide range of label noise methods: robust loss function methods, sample selection methods
and label correction methods. Results demonstrate that training a linear classifier on frozen
SSL representations over noisy datasets is significantly better for addressing label noise than
training a whole neural network over noisy datasets.

Cluster Structure. We evaluate our cluster structure of SSL representations learned by
MoCov2 on CIFAR-10. Learning SSL representations do not leverage the label information, so
the representations are invariant to label noise, whereas representations learned by supervised
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Table 3.1: Test accuracy on CIFAR-10 and CIFAR-100 datasets with SYM label noise over
di↵erent noise levels.

Dataset CIFAR-10 CIFAR-100

Noise Level 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%

GCE 93.16±0.18 90.11±0.27 82.35±0.29 74.95±0.51 54.34±0.81 71.71±0.09 67.72±0.19 59.5±0.43 35.8±0.62 14.04±0.97

MoCo-GCE 95.74±0.07 95.67±0.06 95.58±0.04 95.36±0.08 94.68±0.24 75.21±0.03 74.89±0.08 73.36±0.09 71.91±0.31 68.22±0.72

BYOL-GCE 95.55±0.02 95.46±0.05 95.32±0.06 95.11±0.08 94.66±0.16 73.53±0.03 72.04±0.04 71.43±0.09 69.40±0.20 65.94±0.26

CT 93.66±0.17 92.22±0.16 70.51±0.22 39.75±0.88 27.34±0.98 72.69±0.14 68.81±0.19 61.15±0.28 16.40±0.44 8.22±1.46

MoCo-CT 95.43±0.07 95.37±0.08 95.19±0.23 91.97±0.80 87.65±1.65 73.86±0.07 73.37±0.12 72.59±0.41 67.79±0.92 62.69±2.18

BYOL-CT 95.13±0.02 94.93±0.04 94.71±0.03 93.58±0.55 87.35±1.37 72.19±0.05 71.33±0.18 69.49±0.08 55.55±3.28 52.65±1.22

ELR 93.53±0.10 93.11±0.14 92.22±0.16 85.74±0.52 54.27±1.06 69.64±0.39 65.16±0.30 60.88±0.32 24.92±0.52 10.22±0.76

MoCo-ELR 95.88±0.05 95.81±0.04 95.74±0.03 95.65±0.02 95.60±0.09 72.89±0.39 72.74±0.06 71.74±0.11 70.47±0.19 66.75±0.22

BYOL-ELR 95.55±0.02 95.43±0.03 95.30±0.06 95.11±0.05 95.12±0.10 72.48±0.03 71.73±0.06 70.35±0.10 68.45±0.10 63.70±0.14

Table 3.2: Test accuracy on CIFAR-10 and CIFAR-100 datasets with ASYM label noise over
di↵erent noise levels.

Dataset CIFAR-10 CIFAR-100

Noise Level 10% 20% 30% 40% 45% 10% 20 30% 40% 45%

GCE 93.0±0.10 91.92±0.23 90.85±0.28 89.44±0.44 85.51±0.59 73.52±0.08 70.05±0.31 65.8±0.35 53.49±0.53 44.08±1.22

MoCo-GCE 95.63±0.04 95.37±0.08 95.00±0.31 93.30±0.26 88.31±0.41 74.54±0.04 73.60±0.12 72.63±0.13 66.27±0.24 56.12±0.68

BYOL-GCE 95.50±0.02 95.23±0.14 94.83±0.19 93.56±0.36 90.69±0.16 73.17±0.04 72.12±0.09 70.75±0.14 65.09±0.13 53.96±0.50

CT 94.40±0.03 93.32±0.11 90.27±0.15 69.47±0.21 66.08±0.32 73.88±0.04 69.88±0.21 64.64±0.68 55.22±0.71 48.22±1.00

MoCo-CT 95.37±0.07 95.25±0.09 94.33±0.16 92.29±0.32 86.79±0.52 73.48±0.11 72.02±0.26 69.36±0.41 63.30±0.73 55.70±1.58

BYOL-CT 95.48±0.03 94.14±0.72 94.04±0.24 90.72±0.72 87.33±1.23 72.01±0.08 70.46±0.04 66.22±0.37 54.97±0.94 46.62±1.24

ELR 93.90±0.08 93.26±0.10 92.52±0.13 90.93±0.16 88.49±0.24 73.89±0.07 73.44±0.20 72.90±0.19 70.62±0.34 65.62±1.31

MoCo-ELR 95.73±0.02 95.69±0.04 94.83±0.12 82.62±1.15 78.92±0.95 74.87±0.05 74.51±0.10 73.75±0.08 72.26±0.05 67.11±0.28

BYOL-ELR 95.59±0.03 95.49±0.07 95.40±0.03 94.72±0.04 86.91±1.73 73.44±0.05 72.95±0.04 71.81±0.05 69.18±0.08 63.27±0.12

learning (SL) are sensitive to label noise. We compare the cluster structure of SSL to that of
SL in di↵erent label noise settings in Figure 3.3. We find that SSL representations (red) have
a better cluster structure than SL representations obtained with di↵erent label noise. We note
that although the distances between clusters of SL representations (green) learned with IDN are
slightly larger than that of SSL representations, the variance of each cluster is 10 times larger.
We also highlight the baseline cluster structure with purple, which is trained by SL method
without label noise.

Fine-tuned Performance. Following [13], we fine-tune the MoCov2 representation net-
work on CIFAR-10 by GCE algorithm. For noise-free classification tasks, fine-tuning usually
outperforms linear evaluation on various classification datasets [13, 36]. However, Figure 3.4
illustrates that linear evaluation (orange) performs better than fine-tuning (blue) in the presence
of label noise. When there exists the label noise and the representations are not frozen, fine-
tuning degrades the performance of the neural network. We hypothesize that fine-tuning the
learned SSL representations destroys the cluster structure with respect to true labels, leading to
poor performance.

The e↵ects of MixUp augmentation. We study the importance of mixup data augmen-
tations. Our analysis indicates the importance of keeping larger � in Lemma 3.6.3 and Propo-
sition 3.6.4 by data augmentation. Without MixUp, the Definition 3.6.1 holds with smaller �.
With MixUp enabled, the bound in Lemma 3.6.3 is tighter and the negative e↵ects in Propo-
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Table 3.3: Test accuracy on CIFAR-10 and CIFAR-100 datasets with IDN label noise over
di↵erent noise levels.

Dataset CIFAR-10 CIFAR-100

Noise Level 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%

GCE 90.05±0.29 80.35±0.34 66.94±0.51 49.38±0.66 34.49±0.97 69.58±0.16 60.48±0.32 44.63±0.62 28.34±0.84 14.18±1.29

MoCo-GCE 95.41±0.07 95.05±0.10 94.35±0.21 91.87±0.33 87.72±0.28 74.19±0.04 72.48±0.09 70.47±0.14 66.67±0.46 61.67±0.48

BYOL-GCE 95.22±0.08 94.80±0.09 94.26±0.25 92.88±0.22 90.33±0.77 72.69±0.06 70.86±0.10 68.24±0.10 65.20±0.20 60.06±0.41

CT 91.50±0.35 85.95±0.38 74.09±0.52 30.79±0.82 22.35±0.92 69.81±0.18 62.59±0.31 52.11±0.65 16.10±0.70 7.91±0.57

MoCo-CT 95.23±0.37 94.68±0.31 94.07±0.58 83.91±0.62 77.87±2.69 73.39±0.22 72.15±0.27 70.14±0.54 66.26±1.08 58.34±0.68

BYOL-CT 94.97±0.07 94.52±0.18 94.11±0.14 89.09±0.08 71.72±1.47 71.59±0.04 70.15±0.15 66.73±0.72 57.79±0.45 49.88±1.23

ELR 93.54±0.04 93.20±0.18 92.07±0.20 73.27±0.55 41.39±0.80 70.11±0.32 67.16±0.70 58.11±0.67 21.96±0.74 10.28±1.07

MoCo-ELR 95.77±0.07 95.70±0.10 95.65±0.07 95.58±0.04 91.35±1.91 72.74±0.04 71.56±0.12 69.69±0.22 65.94±0.59 59.80±0.84

BYOL-ELR 95.45±0.02 95.25±0.03 95.08±0.04 95.07±0.06 94.91±0.10 72.11±0.18 70.64±0.32 68.72±0.24 63.75±0.50 57.54±0.48

Table 3.4: Test accuracy on CIFAR-10 and CIFAR-100 datasets with IDN-ASYM label noise
over di↵erent noise levels.

Dataset CIFAR-10 CIFAR-100

Noise Level 10% 20% 30% 40% 45% 10% 20 30% 40% 45%

GCE 87.02±0.16 77.40±0.29 68.63±0.68 57.85±0.81 54.01±0.92 71.01±0.12 62.42±0.18 52.48±0.33 44.69±0.78 40.02±0.65

MoCo-GCE 95.20±0.02 94.89±0.05 93.28±0.21 84.26±0.43 71.66±1.10 73.90±0.04 71.52±0.57 69.12±0.21 61.69±0.87 52.17±2.23

BYOL-GCE 95.19±0.05 94.85±0.10 93.66±0.21 85.57±0.37 70.44±1.44 71.58±0.14 69.61±0.13 67.22±0.08 59.33±0.77 50.37±1.57

CT 87.75±0.28 78.37±0.30 69.31±0.55 60.48±0.57 54.62±0.80 71.97±0.09 64.33±0.13 55.61±0.26 47.12±0.32 42.23±0.46

MoCo-CT 94.73±0.45 93.25±0.42 88.92±0.64 74.67±0.91 61.13±1.37 72.77±0.32 69.61±0.49 66.52±0.80 59.37±1.05 50.43±1.43

BYOL-CT 94.88±0.06 93.55±0.07 90.99±0.49 74.80±0.39 63.67±1.07 69.54±0.03 67.69±0.12 64.44±0.19 59.23±0.32 51.65±0.94

ELR 94.08±0.05 93.97±0.08 93.91±0.14 93.79±0.20 77.76±2.24 72.21±0.23 71.96±0.24 71.83±0.41 70.96±0.43 67.33±0.45

MoCo-ELR 95.72±0.05 95.60±0.04 95.46±0.03 95.23±0.09 95.04±0.20 73.90±0.68 73.16±0.57 72.69±0.35 70.11±0.64 64.51±1.09

BYOL-ELR 95.39±0.02 95.30±0.03 95.20±0.07 94.99±0.14 85.19±0.32 70.58±0.12 69.80±0.09 68.60±0.18 66.95±0.35 63.32±0.61

sition 3.6.4 is mitigated. Results in Figure 3.5 indicates that applying MixUp augmentation
significantly improves the performance on noisy datasets.

3.8 Conclusion
We provide a simple but e↵ective method to address label noise. We first construct a motivating
example to theoretically show that the classifier learned on SSL representations can generalize
well. By further investigating the SSL representations learned for label noise, we find that:
(1) the label noise is uniformly distributed over the data representations. (2) Representations
learned by SSL exhibits good cluster properties, which encourages the linear classifier to be
aligned with the optimal classifier. From algorithmic perspectives, we demonstrate that SSL
representations can be applied as a complementary method to existing label noise methods with
extensive experiments.
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(a) Distances between different clusters (b) Variation of clusters

Figure 3.3: Illustration of cluster structures for CIFAR-10 dataset. Representations are learned
in di↵erent label noise settings: ASYM (blue) means 40% asymmetric label noise; SYM (or-
ange) means 60% symmetric label noise; IDN (green) means 60% instance-dependent label
noise, and we visualize distances between two clusters in (a) and variance of each cluster in
(b). The cluster structure (purple) serves as a baseline that representations are trained by su-
pervised learning without label noise.

Table 3.5: Test accuracy on ANIMAL-10N

Method ANIMAL-10N Method ANIMAL-10N Method ANIMAL-10N
GCE 84.58±0.27 CT 86.93±0.29 ELR 86.52±0.32

MoCo-GCE 87.35±0.12 MoCo-CT 87.66±0.14 MoCo-ELR 88.51±0.12

BYOL-GCE 88.42±0.10 BYOL-CT 88.36±0.08 BYOL-ELR 88.68±0.15

(a) CIFAR-10 (b) CIFAR-100

Figure 3.4: Comparison of linear evaluation and fine-tuning with GCE algorithm.
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(a) CIFAR-10 (b) CIFAR-100

Figure 3.5: Comparison of SSL methods with and without MixUp component enabled on 80%
symmetric label noise.
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3.A Experiment Details

3.A.1 Noise Generation
For symmetric label noise, we randomly select a proportion of examples and then flip their
labels to all possible labels with equal probabilities. Following [11], for asymmetric label
noise in CIFAR-10, we randomly select a proportion of examples and flip their labels be-
tween TRUCK!AUTOMOBILE, BIRD!AIRPLANE, DEER!HORSE, and CAT$DOG.
For asymmetric label noise in CIFAR-100, we also randomly select a proportion of examples
and but flip their labels into the next class circularly. For instance-dependent label noise, we
follow the intuition that mislabeled images share visually similar patterns [141]. To this end,
we randomly choose an anchor image for each class, then we choose some similar images to the
anchor image and flip their labels like symmetric label noise, where the similarity is measure
by L2 norm. To demonstrate this instance-dependent label noise is reasonable, we visualize a
part of images from CIFAR-10 with similar visual patterns in Figure 3.6.

(a) Visually similar images (b) Randomly selected images

Figure 3.6: We artificially corrupted images with similar visual patterns. More specifically, we
first randomly choose an anchor point for each class, shown in the first column of (a), then we
corrupted images that are similar to these anchor images. In contrast, (b) shows the randomly
selected images for each class, which does not share similar patterns.

For IDN-SYM, we randomly assign labels to these visually similar images. Asymmetric
label noise is to flip labels between semantically-similar classes. For example, cats are inher-
ently more di�cult to be di↵erentiated from dogs than trucks. To this end, we combine IDN
with ASYM to generate more realistic label noise. Specifically, we choose similar images for
each class and then we flip their labels to the next class.

3.A.2 Implementation Details
For backbone network, we use ResNet34 for MoCov2 and BYOL on CIFAR datasets. For pro-
jection MLP, we use 2-layer MLP with batch normalization [50] in the middle for MoCov2 and
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Table 3.6: Test accuracy on CIFAR-10 datasets semantic label noise over di↵erent noise levels.

Dataset TYPE-1 TYPE-2

Noise Level 20% 40% 60% 80% 90% 10% 20% 30% 40% 45%

GCE 88.61±0.11 79.01±0.36 68.77±0.43 53.24±0.82 33.66±0.74 85.31±0.08 76.08±0.22 70.44±0.34 64.71±0.63 57.8±0.47

MoCo-GCE 95.39±0.04 94.80±0.10 89.94±0.16 83.13±0.95 71.84±0.59 90.92±0.05 83.10±0.12 76.41±0.17 69.60±0.29 66.68±0.55

BYOL-GCE 94.86±0.04 93.69±0.31 89.19±0.36 83.53±1.26 75.77±1.44 89.64±0.27 83.34±0.29 75.65±0.37 69.32±0.15 66.86±0.34

CT 91.06±0.33 72.78±0.35 44.30±0.47 25.37±0.18 17.30±0.23 85.52±0.12 76.11±0.12 65.36±0.20 55.54±0.81 48.64±0.38

MoCo-CT 95.02±0.43 89.84±0.67 84.70±0.96 73.34±1.84 59.22±3.11 89.00±0.45 83.23±0.77 76.55±0.92 72.41±1.53 66.66±1.98

BYOL-CT 94.58±0.07 91.56±0.42 86.19±0.70 73.27±0.61 64.75±1.95 91.06±0.47 83.10±0.20 76.50±0.18 68.57±1.23 63.82±1.58

ELR 94.19±0.05 91.75±0.51 82.72±0.43 70.86±0.46 39.05±0.72 86.69±0.02 79.06±0.08 71.02±0.11 62.09±0.27 58.02±0.26

MoCo-ELR 95.76±0.01 94.96±0.26 84.30±0.59 79.99±0.45 63.63±1.09 88.27±0.49 84.53±0.27 78.45±0.61 77.57±0.35 69.27±1.70

BYOL-ELR 95.66±0.02 95.35±0.07 88.91±0.31 77.83±0.42 76.98±0.60 89.41±0.87 85.83±0.70 78.30±0.55 77.10±0.62 71.64±1.50

BYOL. Since MoCov2 does not rely on the prediction MLP, we use 2-layer MLP with batch
normalization in the middle for the prediction MLP of BYOL. The input and output dimen-
sions for projection MLP and prediction MLP are set as 512. For ANIMAL-10N, we change
the backbone network to ResNet50. In the meanwhile, the input and output dimensions for pro-
jection MLP and prediction MLP are set as 2048. The code for training MoCov2 and BYOL is
adapted from https://github.com/kibok90/imix, where the data augmentations include
both strong image augmentation from [13] and MixUp from [64]. MixUp [157] has a hyper-
parameter � controls the strength of interpolation between data points, where we set � = 1 for
CIFAR datasets and � = 2 for ANIMAL-10. Once we trained the representation network, we
train a linear classifier by di↵erent label noise methods on this frozen representation network.

The linear classifier is trained for 100 epochs using SGD, where the learning rate starts
from {1, 5, 10, 20, 30} and it is reduced by a factor of 5 after 20, 30 and 40 epochs. For GCE
method [161], its parameter q is selected from {0.2, 0.4, 0.6, 0.8, 0.9}; for Co-teaching method
[38], the warmup parameters is selected from {5, 8, 10}; for ELR method [75], the parameter �
is selected from {0.7, 0.9} and the parameter � is selected from {3, 5, 7}.

3.A.3 Additional Results

Following [162, 12, 63], semantic label noise is a type of instance-dependent label noise which
follows the intuition that hard instances are more likely to be mislabeled, where the hard in-
stances are near the decision boundary of the model. To generate the semantic label noise, we
train a VGG-13 [111] on training datasets for 30 epochs. Following [12], we select instances
with highest mislabeling scores to corrupt. For the first case, we corrupt these instances with
random labels. For the second case, we corrupt these instances with predictions of the model
VGG-13. We term the former TYPE-1 label noise and the latter TYPE-2 label noise. The re-
sults for the two types of label noise are reported in Table 3.6. Therefore, extensive experiments
have demonstrated the e↵ectiveness of applying frozen SSL representations.

https://github.com/kibok90/imix
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3.B Proofs for Theorem 3.3.1 and Proposition 3.4.1

3.B.1 Lemma 3.B.1
Lemma 3.B.1. For any interval I� ⇢ [�1.75, 2.25] with the length � = 4(1�e�d�5), there exists
at least one of those {⇠i}ni=1 are within the interval I�. When n = Poly(d), the conclusion holds
with probability at least 1 � e�d5 .

Proof. Calculating event that there exist at least one of those {⇠i}ni=1 are within the interval I� is
equivalent to calculate the event that all {⇠i}ni=1 are not within the interval I�. Specifically

Pr[At least one] = 1 � Pr[None].

Since all {⇠i}ni=1 are sampled independently and we let n = d10

Pr[None] =[p(⇠i < I�)]n

[
4 � �

4
]n

=[e�d�5
]n

=e�d5
.

Then Pr[At least one] � 1 � e�d5 . ⇤

3.B.2 Theorem 3.3.1
Proof. With the similar proof for {⇣i}ni=1, the conclusion of this Lemma also holds for {⇣i}ni=1.

As pointed out in [115], the gradient descent with logistic loss over a linearly separable
data induces a maximum L2 margin solution. It indicates that the induced classifier separate
the data with respect to noisy labels and also satisfies the maximum L2 margin. Specifically,
!̃ = !?

k!?k2 , where !? is given by:

!? = argmin
!2Rd

k!k2 s.t. 8i : !>xiỹi � 1. (3.7)

The normalized optimal solution !̃ 2 {a1e1+a2e2 : a1 2 R, a2 2 R} since a3e3+ · · ·+aded is
orthogonal to data point xi for any aj 2 R, j 2 {3, 4, · · · , d} and any i 2 [n]. Let !̃ = ã1e1+ ã2e2.

By Lemma 3.B.1 with probability at least 1 � 2e�d5 , there exists a data point (x1 = e1⇣1 +
e2⇠2, ỹ1) where |⇣1| 2 [4 � �, 4], |⇠1| 2 [0,�]. We analyze the case where ⇣1 > 0, ⇠1 > 0. The
analysis for other cases ⇣1 < 0, ⇠1 > 0, ⇣1 > 0, ⇠1 < 0, and ⇣1 < 0, ⇠1 < 0 are similar. If
⇣1 > 0, ⇠1 > 0, then ỹ1 = 1.

Consider the worst data point with ⇣1 = 4�� and ⇠1 = � that decides the lowest prediction
accuracy of the classifier. To classify this point into the cluster ỹ = 1, we need at least ã1 >

��p
�2+(��4)2

and ã2 >
4��p
�2+(��4)2

. If there are other data points in this region, then the lower

bound for ã1 is higher than ��p
�2+(��4)2

and the lower bound for ã2 is higher than 4��p
�2+(��4)2

.

Similarly, for other three cases, we have that |ã1| < �p
�2+(��4)2

and ã2 >
4��p
�2+(��4)2

. Therefore,
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area of region misclassified by the classifier !̃ is at most 14 + 16�
4�� (the total area is 32). Since

the joint distribution of X ⇥ Y is uniform over the support, then the probability that a data is
misclassified (in the misclassified region) is at most 7

16 +
�

2(4��) , which is upper bounded by
7

16 +
�
6 . Thus, the probability

��� Pr(x,y)[sign(!̃>x) = y] � 0.5625
���  2

3 (1 � e�d�5)  2
3d5 .

For self-supervised learning, as it is shown in [73], the minimal solution WSSL to Eq. (3.1)
is equivalent to the minimal solution to minimize

���M �W>W
���2

F , where M = 1
n
Pn

i=1 xix>i . In
the meanwhile, by Eckart-Young-Mirsky theorem, the span of WSSL is the top 1 eigenvector of
M. Let the top 1 eigenvector be e = pe1 + qe1 with p2 + q2 = 1. The corresponding eigenvalue
is given by:

e>Me =
1
n

nX

i=1

⇥
(pe>1 + qe>2 )(⇣ie1 + ⇠ie2)(⇣ie>1 + ⇠ie

>
2 )(pe1 + ne2)

⇤

=
1
n

nX

i=1

⇥
p2⇣2

i + q2⇠2
i + 2pq⇣i⇠i

⇤

=
1
n

nX

i=1

⇥
(1 � q2)⇣2

i + q2⇠2
i + 2pq⇣i⇠i

⇤
(p2 + q2 = 1)

=
1
n

nX

i=1

⇣2
i �

q2

n

nX

i=1

(⇣2
i � ⇠2

i ) +
2pq

n

nX

i=1

⇣i⇠i

=
1
n

nX

i=1

⇣2
i �

q2

n

nX

i=1

(⇣2
i � ⇠2

i ) + 2pqE[⇣⇠] + o(n�1/3)

=
1
n

nX

i=1

⇣2
i � q2 1

n

nX

i=1

(⇣2
i � ⇠2

i )

|           {z           }
¨

+o(n�1/3).

When n is large enough, ¨ converges to its expectation. Let Z̄ = 1
n
Pn

i=1(⇣2
i � ⇠2

i ). By
Hoe↵ding’s inequality

P{|Z̄ � E[Z̄]| � 1}  2 exp
� � 2n

162

�
,

where E[Z̄] = 63
16 ⇡ 3.93. With probability at least 1 � 2e�n/128, Z̄ 2 [47

16 ,
79
16] and Z̄ � o(n�1/3).

Therefore, the eigenvalue corresponding to the eigenvector e is the largest when q = 0 and the
top 1 eigenvector is e = e1.

Without loss of generality, we let WSSL = e>1 . After applying self-supervised transformation
on inputs , the transformed data {(WSSLxi, ỹi)}ni=1 = {(yi⇣i, ỹi)}ni=1. We aim to learn any classifier
where ✓ > 0 to correctly predict all labels given inputs {yi⇣i}ni=1 since ⇣i > 0,8i 2 [n]. The
negative gradient of the logistic loss L(✓) over {(yi⇣i, ỹi)}ni=1 is given by:

�r✓L(✓) =
1
n

nX

i

exp
� � ỹiyi⇣i✓

�

1 + exp
� � ỹiyi⇣i✓

� ỹiyi⇣i.

Note that ỹ is independent with ⇣. And ỹiyi = 1 with probability 9/16 and ỹiyi = �1 with
probability 7/16. Then with high probability, �r✓L(✓) > 0. Eventually, there is a unique
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optimum ✓ = ✓0 �
P

i ↵ir✓L(✓i) > 0 that minimizes the loss over {(yi⇣i, ỹi)}ni=1. When ✓ >
0, the classifier gives the best decision boundary where sign(✓̃yi⇣i) = yi. Hence, we have
Pr(x,y)[sign(✓̃>WSSLx) = y] � 1 � 2e�n/128. ⇤

3.B.3 Proposition 3.4.1
Proof. The proof for Proposition 3.4.1 can be adapted from the proof for Theorem 3.3.1. The
optimal WSSL can be represented by the combination of e1 and e2. So we let WSSL = pne1+qne2,
where pn and qn are optimal solutions depended on the sample size n. By the definition of
convergence in probability, we need to show

Pr[kpne1 + qne2 � e1k2 > ✏]! 0 as n! 1,

for every ✏ > 0. When pn = 1 as n ! 1, the above condition holds since pn + qn = 1. From
the proof of Theorem 3.3.1, we have

Pr[pn = 1] � 1 � 2e�n/128.

Therefore

Pr[kpne1 + qne2 � e1k2 > ✏] =Pr[kpne1 + qne2 � e1k2 > ✏|pn = 1] Pr[pn = 1]
+ Pr[kpne1 + qne2 � e1k2 > ✏|pn , 1] Pr[pn , 1]
Pr[kpne1 + qne2 � e1k2 > ✏|pn = 1] + Pr[pn , 1]
2e�n/128 ! 0 as n! 1

⇤

3.C Proofs for Theorem 3.5.1

3.C.1 Gradient Descent Discussion
We discuss the behaviour of the linear classifier parameterized by !T given �grL(!0)>µ̃ > �,
where T is the time to stop training, and 0 < �  1. We first introduce the following lemma,
which is used to characterize the convexity of the logistic loss over the data.

Lemma 3.C.1. Logistic loss L(!) is �max+1
8 -smooth when n is large enough.

Proof. The derivative of L(!) is given by:

rL(!) =
1
n

X

i

(1 � 1
1 + exp(�ỹi!>xi)

)(�ỹixi).

Then, the hessian of L(!) is given by:

r(rL(!)) =
1
n

nX

i=1

xi�(i)(1 � �(i))x>i ,
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where �(i) = 1/
�
1 + exp(�ỹi!>xi)

�
, and �max is the largest eigenvalue of ⌃. Since x ⇠

N(0,⌃/2), and by the rates of convergence for law of large numbers, we have

r2L(!) �1
4

(⌃/2 + o(n�1/3)) � �max + 1
8

.

⇤

Based on the properties of smoothness:

(rL(!t+1) � rL(!t))>(!t+1 � !t)  L k(!t+1 � !t)k22 ,

where L = �max+1
8 . Given that the descent algorithm,

!t+1 = !t � ↵trL(!t)

By choosing appropriate learning rate ↵t (for example ↵t =
1

2L ), we then have

rL(!t+1)>rL(!t) �
1

4L
krL(!t))k22 > 0.

Or equivalently,

grL(!t+1)>grL(!t) �
krL(!t))k2

4L krL(!t+1))k2|               {z               }
�t

> 0.

For two unit vectors, grL(!0) and µ̃, the higher cosine similarity means the lower L2 dis-
tance: �����grL(!0) � µ̃

����
2

2
= 2 + 2grL(!0)>µ̃  2(1 � �).

Similarly, ����grL(!t+1) �grL(!t)
����

2

2
= 2 � 2grL(!t+1)>grL(!t)  2(1 � �t).

Therefore,
�����grL(!1) � µ̃

����
2

2
=

�����grL(!1) +grL(!0) �grL(!0) � µ̃
����

2

2

2
����grL(!1) �grL(!0)

����
2

2
+ 2

�����grL(!0) � µ̃
����

2

2

2(1 � �0) + 2(1 � �),

Equivalently,
�grL(!1)>µ̃ � 2(� + �0 � 1).

This can be easily generalized the equation to time t > 1.
This can intuitively explain how larger �grL(!0)>µ̃ > 0 a↵ects the performance of the

classifier !T . The conclusion with more rigorous justification can be found in Theorem 1 in
[75].
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From another perspective, to intuitively understand why �grL(!0)>µ̃ > � guarantees the
behaviour of !T for 0 < �  1, we first decompose the gradient into two parts:

rL(!) =
1
n

X

i

(1 � 1
1 + exp(�ỹi!>xi)

)(�ỹixi)

=
1
n
⇥X

i2Ic

(1 � 1
1 + exp(�!>xi)

)

|                          {z                          }
clean coe�cients

(�xi) +
X

i2In

(1 � 1
1 + exp(!>xi)

)

|                        {z                        }
mislabeled coe�cients

(xi)
⇤
,

where the density of x is N(µ,⌃), and Ic is the index set of clean examples and In is the index
set of mislabeled examples. The first part is computed by weighted instances with clean labels,
and we term the weights clean coe�cients. Similarly, we term the weights for the second part
mislabeled coe�cients.

At the beginning (t = 0), clean samples dominate the gradient so we get the classifier
closer to the optimal as �grL(!0)>µ̃ > �. Based on Proposition 5 in [75], the clean coe�cients
decrease and the mislabeled coe�cients increase as the training progresses,. Eventually, they
will achieve the balance, which leads to small rL(!t). Given that both the magnitude of
rL(!t) and the learning rate ↵t are small at time t, according to the gradient descent algorithm,

!t+1 = !t � ↵trL(!t)

the learning will stop. Before that time, the learning is still dominated by clean examples and
and the performance of the classifier improves until convergence.

3.C.2 Theorem 3.5.1
Proof. By the rates of convergence for law of large numbers

rL(!) =
1
n

X

i

(1 � 1
1 + exp(�ỹi!>xi)

)(�ỹixi)

=E[rL(!)] + o(n�1/3).

In this case of the symmetric label noise, the label noise function � = �1 with probability r
and � = 1 with probability 1 � r, where r controls the noise level.

We decompose the expected gradient into the following form

E[rL(!0)] =E[E[rL(!0)]|Y, �]

=
1 � r

2
E[rL(!0)|Y = 1, � = 1] +

r
2
E[rL(!0)|Y = 1, � = �1]

+
1 � r

2
E[rL(!0)|Y = �1, � = 1] +

r
2
E[rL(!0)|Y = �1, � = �1],

where the derivative of L(!) is given by:

rL(!) =
1
n

X

i

(1 � 1
1 + exp(�ỹi!>xi)

)(�ỹixi). (3.8)
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To simplify the mathematical derivation, we assume that !0 is initialized at 0. Based on this,
the expected gradient can be simplified:

E[rL(!0)] =
r
2
E[X|Y = 1, � = �1] � 1 � r

2
E[X|Y = 1, � = 1]

=(r � 1
2

)E[X].

And,

E[rL(!0)>µ] = (r � 1
2

) kµk22 (3.9)

Then we compute krL(!0)k2. By Jensen’s inequality,

krL(!0)k2 =
1
2

�������
1
n

X

i

�ixi

�������
2

�i is either +1 or -1

 1
2n

X

i

kxik2

1
2

q
kµk22 + cTrace(⌃),

where the last inequality is by the concentration property of sub-gaussian random vector and
c > 0 is a constant.

Since �rL(!0)>µ > 0 by Eq. (3.9) given a su�cient number of examples, the condition
� rL(!0)>µ
krL(!0)k2kµk2 is then given by:

� rL(!0)>µ
krL(!0)k2 kµk2

=
(1

2 � r) kµk22 + o(n1/3)
krL(!0)k2 kµk2

� (1 � 2r) kµk2q
kµk22 + cTrace(⌃)

+ o(n1/3).

When the label noise is asymmetric, the results are the same though the mathematical
expression is slightly di↵erent. For asymmetric label noise, we denote the label noise function
�(y) = �1 with probability r when y = �1, �(y) = 1 with probability 1 � r when y = �1,
�(y) = �1 with probability 2r when y = 1, and �(y) = 1 with probability 1 � 2r when y = 1.
Following similar derivations for the symmetric label noise,

E[rL(!0)] =E[E[rL(!0)]|Y, �]

=
1 � r

2
E[rL(!0)|Y = �1, � = 1] +

r
2
E[rL(!0)|Y = �1, � = �1]

+
1 � 2r

2
E[rL(!0)|Y = 1, � = 1] +

2r
2
E[rL(!0)|Y = 1, � = �1]

=
3r � 1

2
E[X|Y = 1].
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And,

E[rL(!0)>µ] =
3r � 1

2
⇥
Z +1

�1
(kµk22 +W) dPW

⇤

=
3r � 1

2
kµk22 .

Therefore,

� rL(!0)>µ
krL(!0)k2 kµk2

=
(1

2 � 3r
2 ) kµk22 + o(n1/3)

kE[rL(!0)]k2 kµk2
� (1 � 3r) kµk2q
kµk22 + cTrace(⌃)

+ o(n1/3).

⇤

3.D Proofs for Lemma 3.6.2, Lemma 3.6.3 and Proposition
3.6.4

3.D.1 Lemma 3.6.2
Proof. The function � logE[et] is concave since for any t1, t2, and ↵ 2 [0, 1]

� logE[e↵t1+(1�↵)t2] = � logE[(et1)↵(et2)1�↵]
= � logE[m↵1m1�↵

2 ],

where m1 = et1 ,m2 = et2 . By Holder’s inequality, the above equality is further given by

� logE[m↵1m1�↵
2 ] � � log

�
(E[m1])↵(E[m2])1�↵�

= � ↵ logE[et1] � (1 � ↵) logE[et2].

Therefore,

� 1
|Ji|

X

k2Ji

logE[e�k f (uk)� f (ug(k))k2
2]  � logE[e�

1
|Ji |

P
k2Jik f (uk)� f (ug(k))k2

2]

 � logE[e�
���� 1
|Ji |

P
k2Ji ( f (uk)� f (ug(k)))

����
2

2]

 � E[log e�
���� 1
|Ji |

P
k2Ji ( f (uk)� f (ug(k)))

����
2

2]

=E
�������

1
|Ji|

X

k2Ji

( f (uk) � f (ug(k)))

�������

2

2

�

=E[
���µi � µ j

���2
2].

Note that � k·k22 is concave and � log(·) is convex. The proof is complete since

� 1
|Ji|

X

k2Ji

logE[e�k f (uk)� f (ug(k))k2
2] = � 1

|Ji|
X

k2Ji

log
�LUniform(k, g(k))

�
.

⇤
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3.D.2 Lemma 3.6.3
Proof. Let the region Ri j = S i \ S j.

E⇥ ��� f (ui) � f (u+i )
���2

2

⇤
=E⇥ ��� f (ui) � f (u+i )

���2
2 |u
+
i 2 Ri j

⇤
Pr[u+i 2 Ri j]

+ E⇥ ��� f (ui) � f (u+i )
���2

2 |u
+
i < Ri j

⇤
Pr[u+i < Ri j]

��E⇥ ��� f (ui) � f (u+i )
���2

2 |u
+
i 2 Ri j

⇤
(3.10)

It shows that controlling the variance of a random variable controls the expected distance. For
any di↵erent indices i, j 2 Jy, with Eq.(3.10), we have for any ui j 2 Ri j

E[
��� f (ui) � f (uj)

���2
2] 2E[

��� f (ui) � f (ui j)
���2

2] + 2E[
��� f (uj) � f (ui j)

���2
2]

2
�
E[

��� f (ui) � f (u+i )
���2

2] +
2
�
E[

��� f (uj) � f (u+j )
���2

2], (3.11)

where we omit the subscriptions for expectation for simplicity when the context is clear.
The sample variance of the cluster y is given by

b⌃y =
1
|Jy|

X

i2Jy

( f (ui) �
P

j2Jy f (uj)
|Jy|

)( f (ui) �
P

j2Jy f (uj)
|Jy|

)>

By the property Trace(AB) = Trace(BA),

Trace(E[b⌃y]) =
1
|Jy|3

E
X

i2Jy

��������

X

j2Jy

( f (ui) � f (uj))

��������

2

2

 1
|Jy|2

E
X

i2Jy

X

j2Jy

��� f (ui) � f (uj)
���2

2

 2
|Jy|�

X

i2Jy

E[
��� f (ui) � f (u+i )

���2
2] by Eq. (3.11)

=
2
�|Jy|

X

i2Jy

LAlign(i)

⇤

3.D.3 Proposition 3.6.4
Proof. We assume |Jy| for all y 2 Y are same as it is the most convenient and clear way to
represent our results. We allow the di↵erent sizes for clusters and our results is una↵ected.
Note that logE[et] is convex, following the spirits of proof from Lemma 3.6.2, we have

log[
1

n(n � 1)

X

m2Y

X

i, j2Jm
i, j

LUniform(i, j)] � � 1
n(n � 1)

X

m2Y

X

i, j2Jm
i, j

Eui⇠P(u|xi)
u j⇠P(u|x j)

⇥ ��� f (ui) � f (uj)
���2

2

⇤
(3.12)
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We replace terms in the right hand side of Eq.(3.12) associated with the the bound in
Eq.(3.11), then we get

� 1
n(n � 1)

X

m2Y

X

i, j2Jm
i, j

Eui⇠P(u|xi)
u j⇠P(u|x j)

⇥ ��� f (ui) � f (uj)
���2

2

⇤ � � 2
�n(n � 1)

X

m2Y
(|Jm � 1|)

X

i2Jm

E[
��� f (ui) � f (u+i )

���2
2]

= �2(n/|Y| � 1)
�n(n � 1)

X

m2Y

X

i2Jm

E[
��� f (ui) � f (u+i )

���2
2]

= �2(n/|Y| � 1)
�n(n � 1)

X

m2Y

X

i2Jm

LAlign(i)

⇤



Chapter 4

When Source-Free Domain Adaptation
Meets Learning with Noisy Labels

4.1 Introduction

Deep learning demonstrates strong performance on various tasks across di↵erent fields. How-
ever, it is limited by the requirement of large-scale labeled and independent, and identically
distributed (i.i.d) data. Unsupervised domain adaptation (UDA) is thus proposed to mitigate
the distribution shift between the labeled source and unlabeled target domain. Due to the data
privacy issue, accessing labeled source data is prohibitive. In view of the importance of data
privacy, it is important to be able to adapt a source model to the unlabeled target domain with-
out accessing the private source data.

The recent state-of-the-art SFDA methods [71, 147, 148] mainly focus on learning mean-
ingful cluster structures in the feature space, and the quality of the learned cluster structures
hinges on the reliability of pseudo labels generated by the source model. Among these meth-
ods, SHOT [71] purifies pseudo labels of target data based on nearest centroids, and then the
purified pseudo labels are used to guide the self-training. G-SFDA [148] and NRC [147] en-
courage similar predictions to the data point and its neighbors. For a single target data point,
when most of its neighbors are correctly predicted, these methods [71, 147, 148] can provide
an accurate pseudo label to the data point. However, as we illustrate the problem in Figure
4.1(a-b), when the majority of its neighbors are incorrectly predicted to a category, it will be
assigned with an incorrect pseudo label, misleading the learning of cluster structures. Since
existing SFDA algorithms are not able to address this problem, the prediction error will accu-
mulate as the training progresses.

In this chapter, we address the above problem by formulating the SFDA problem as learn-
ing with label noise (LLN). First, we show that there is a fundamental di↵erence between the
label noise in SFDA and conventional LLN scenarios. In conventional LLN scenarios studied
in previous chapters, the label noise is generated by human annotators or image search engines
[95, 141, 138], where the underlying distribution assumption is that the mislabeling rate for a
sample is bounded. However, in the SFDA scenarios, the label noise is generated by the source
model, where we prove that the mislabeling rate for a sample can approach 1. We term the
former label noise in LLN as bounded label noise and the latter label noise in SFDA as un-
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Figure 4.1: Overview of the SFDA problem and our method. (a) The SFDA problem can be
formulated as an LLN problem. (b) The existing SFDA algorithms [71, 147, 148] leveraging
the local cluster information cannot address label noise due to the unbounded label noise (see
Section 4.3 for details). (c) We prove that ETP exists in SFDA, which can be leveraged to
address the unbounded label noise (see Section 4.4 for details).

bounded label noise. Moreover, we theoretically show that most existing LLN methods, which
rely on bounded label noise assumption, are unable to address the label noise in SFDA due to
the fundamental di↵erence.

To this end, we propose to leverage an observation in SFDA that classifiers can success-
fully predict mislabeled samples with high accuracy during the early-time training stage, which
is termed as early-time training phenomenon (ETP) [75], for addressing the unbounded label
noise to improve the e�ciency of existing SFDA algorithms. Although ETP has been pre-
viously observed in [75], it has only been studied in the bounded random label noise in the
conventional LLN scenarios. The bounded random label noise is a common assumption in the
conventional LLN scenario [75, 161, 134, 95], but it is not realistic in the SFDA scenario. In
SFDA, we rigorously establish using a high-dimensional Gaussian model that ETP also exists
in the unbounded label noise scenario. Hence we can empirically justify that by leveraging
ETP, existing SFDA algorithms can be substantially improved by embedding a simple regular-
ization term into the SFDA objective functions. For this purpose, we choose ELR [75] from
the conventional LLN domain as the regularization term to improve SFDA algorithms. As a
comparison, we also apply other existing LLN methods, including GCE [161], SL [134], GJS
[24] and PLC [160], to SFDA. Our empirical evidence shows that they are inappropriate for
addressing the label noise in SFDA. This is also consistent with our theoretical results.

The main contributions of this chapter are summarized as follows.

• We establish the connection between the SFDA domain and the LLN domain. Compared
with the conventional LLN problem that assumes bounded label noise, the problem in
SFDA can be viewed as the problem of LLN with the unbounded label noise.

• We theoretically and empirically justify that ETP exists in the unbounded label noise
scenario.
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• We conduct extensive experiments to show that ETP can be utilized to improve many
existing SFDA algorithms by a large margin across many SFDA benchmark datasets.

4.2 Related Work And Problem Setting

In this section, we first briefly discuss some work related to domain adaptation. Then we
introduce some notations and the SFDA problem setting. The literature review of learning
with label noise can be found in Chapter 1.

4.2.1 Related Work

Unsupervised domain adaptation. UDA has been extensively studied in the past, and the
main idea is to mitigate the distribution discrepancy of di↵erent domains. Concretely, existing
methods follow two schemes: explicit distribution distance alignment and adversarial training.
Explicit distribution distance alignment calculates an explicit statistical distance between two
domains such as the maximum mean discrepancy (MMD) [80, 127], the Wasserstein distance
[110, 62], and the contrastive similarities [54]. Adversarial training implicitly aligns distri-
butions of di↵erent domains by playing a min-max game through a domain discriminator as
done in DANN [28]. Various designs have been proposed to estimate the domain discrepancy
by domain discriminator or task classifiers [108, 79, 158, 45, 131]. However, the above ap-
proaches generally require access to source data which is not applicable in source-free domain
adaptation.
Source-free domain adaptation. Recently, SFDA are studied for data privacy. The first branch
of research is to leverage the target pseudo labels to conduct self-training to implicitly achieve
adaptation [72, 123, 1, 148]. SHOT [71] introduces k-means clustering and mutual information
maximization strategy for self-training. NRC [147] further investigates the neighbors of target
clusters to improve the accuracy of pseudo labels. The other branch is to utilize the generative
model to synthesize target-style training data [100, 77]. Some methods also explore the SFDA
algorithms in various settings. USFDA [59] and FS [60] design methods for universal and
open-set UDA. In this chapter, we regard SFDA as the LLN problem, and we aim to ameliorate
the label noise to improve SFDA algorithms.

4.2.2 Problem Setting

Given n source data points {(xs
i , y

s
i )}ni=1 sampled from the source distribution DS and m unla-

beled target data points {xt
j}mi=1 sampled from the target distribution DT . For the source-free

domain adaptation problem, the goal is to train a target classifier fT to predict accurate labels
for the target domain. Due to the data privacy issue, we cannot access to the source data.
Instead, we have the source classifier fS trained on the source data to minimizing the cross-
entropy loss. Thus, the target classifier fT can only be learned by adapting from the source
classifier fS with the help of some unlabeled data {xt

j}mi=1. In this chapter, we relate this classic
SFDA problem to the LLN problem, and we propose to solve it by LLN methods.
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4.3 Label Noise In SFDA

The presence of label noise on training datasets has been shown to degrade the model perfor-
mance [88, 38]. In SFDA, existing algorithms rely on pseudo-labels produced by the source
model, which are inevitably noisy due to the domain shift. The SFDA methods such as
[71, 147, 148] cannot tackle the situation when some target samples and their neighbors are
all incorrectly predicted by the source model. We formulate the SFDA as the problem of LLN
to address this issue. We show that the label noise in SFDA is unbounded. In contrast, the label
noise in conventional LLN domain is bounded.

We first analyze the fundamental di↵erence between the label noise in the SFDA and that
in conventional LLN scenarios. Then, we prove that most existing LLN methods that rely on
the bounded assumption cannot address the label noise in SFDA due to the di↵erence.

Label noise in conventional LLN settings: In conventional label noise settings, the in-
jected noisy labels are collected by either human annotators or image search engines [65, 70,
141]. The label noise is usually assumed to be either independent of instances (i.e. symmetric
label noise or asymmetric label noise) [95, 76, 145] or dependent of instances (i.e. instance-
dependent label noise) [8, 139]. The underling assumption for them is that a sample x has the
highest probability of being in the correct class y, i.e. Pr[Ỹ = i|Y = i, X = x] > Pr[Ỹ = j|Y =
i, X = x], 8x 2 X, i , j, where Ỹ is the noisy label and Y is the ground-truth label for input X.
Equivalently, it assumes a bounded noise rate. For example, given an image to annotate, the
mislabeling rate for the image is bounded by a small number, which is realistic in conventional
LLN settings [139, 18]. When the label noise is generated by the source model the underlying
assumption of these types of label noise do not hold.

Label noise in SFDA settings: As for the label noise generated by the source model, the
quality of generated labels is inherently controlled by the magnitude of the distribution shift
between two domains. When the distribution shift is larger, the mislabeling error is larger.
More importantly, the mislabeling rate for an image can approach 1, that is, Pr[Ỹ = j|Y =
i, X = x]! 1, 9S ⇢ X, 8x 2 S, i , j.

First, we we focus on explaining the relationship between the label noise and the distri-
bution shift. We consider a two-component Gaussian mixture distribution with equal priors
for both domains. Let the first component (y = 1) of the source domain distribution DS be
N(µ1,�2Id), and the second component (y = �1) ofDS be N(µ2,�2Id). For the target domain
distributionDT , let the first component (y = 1) ofDT beN(µ1+�,�2Id), and the second com-
ponent (y = �1) ofDS be N(µ2 + �,�2Id), where � 2 Rd is the shift of the two domains. The
underlying assumption for the two domains is the covariate shift assumption, which is the most
commonly used one that assumes the conditional probability of labels given instances for two
domains is unchanged during the domain shift [35, 119]. The following theorem characterizes
the relationship between the labeling error and the distribution shift.

Remark: Here we choose two Gaussian distributions with equivalent variance to deliver
our theoretical results. However, the results are not restricted to these limitations. We can
have have Gaussian distributions with di↵erent variance or even t-distribution. The reason for
choosing Gaussian is that it is simple and straightforward to deliver our results.

Theorem 4.3.1. Without loss of generality, we assume that the � is positively correlated with
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the vector µ2 � µ1. Let fS be the Bayes optimal classifier for the source domain S . Then

Pr
(x,y)⇠DT

[ fS (x) , y] =
1
2
�(�d1

�
) +

1
2
�(�d2

�
), (4.1)

where d1 =
���µ2�µ1
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��� sign(

���µ2�µ1
2

����kck), d2 =
���µ2�µ1

2 + c
���, c = (µ2 �µ1)�

>(µ2�µ1)
kµ2�µ1k2

, and � is the
standard normal cumulative distribution function.

The proof is provided in 4.A. Theorem 4.3.1 indicates that the labeling error for the target
domain can be represented by a function of the domain shift �. The projection of the domain
shift � on the vector µ2 � µ1 is given by c. We note that the mislabeling error is degraded to
the Bayes error when the source and target domains are the same. Specifically, the labeling
error in Eq. (4.1) is minimized when c = 0, which is the Bayes error and the error cannot be
reduced [27]. Since c is on the direction of µ2 � µ1, c can also be represented by a(µ2 � µ1),
where a 2 R characterizes the magnitude of the domain shift. By taking the gradient on the
Eq. (4.1) with respect to ↵, we can find that the labeling error increases when ↵ increases. It
implies the larger the domain shift, the greater the mislabeling error. We defer the proof and
details to Appendix 4.A.

While Theorem 4.3.1 shows that the label noise is inherently controlled by �, the following
theorem characterizes that the label noise is unbounded.

Theorem 4.3.2. Without loss of generality, we assume that the � is positively correlated with
the vector µ2 � µ1. For (x, y) ⇠ DT , if x 2 R, then

Pr[ fS (x) , y] � 0.99, (4.2)

where R = R1
T

R2, R1 = {x :
���x � µ1 � �

���  �(
p

d
2 �

log 99p
d

)}, and R2 = {x : x>1d >

(�d + 2µ>1 1d)/2}. Meanwhile, R is non-empty when ↵ > (log 99)/d, where ↵ = �
>(µ2�µ1)
kµ2�µ1k2

> 0 is
the magnitude of the domain shift along the direction µ2 � µ1.

The proof is provided in 4.B. Conventional LLN methods assume that the label noise is
bounded Pr[ fH(x) , y] < c0, 8(x, y) ⇠ DT , where fH is the labeling function, and c0 = 0.5 if
the number of clean samples of each component are the same [18]. However, Theorem 4.3.2
indicates that the label noise generated by the source model is unbounded for any x 2 R. In
practice, region R is non-empty as neural networks are usually trained on high dimensional
data such that d � 1, so ↵ > (log 99)/d ! 0 is easy to satisfy. The probability measure on
R = R1

T
R2 (i.e. Pr(x,y)⇠DT [x 2 R]) increases as the magnitude of the domain shift ↵ increases,

meaning more data points contradict the conventional LLN assumption. More details about this
can be found in Appendix 4.B.

Given that the unbounded label noise exists in SFDA, the following Lemma establishes that
many existing LLN methods [134, 89, 24, 85], which rely on the bounded assumption, are not
noise tolerant in SFDA.

Lemma 4.3.3. Let the risk of the function h : X ! Y under the clean data be R(h) =
Ex,y[`LLN(h(x), y)], and the risk of h under the noisy data be eR(h) = Ex,ỹ[`LLN(h(x), ỹ)], where
the noisy data follows the unbounded assumption, i.e. Pr[ỹ , y|x 2 R] = 1 for a subset R ⇢ X.
Then the global minimizer h̃? of eR(h) disagrees with the global minimizer h? of R(h) on data
points x 2 R.
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The proof is provided in 4.C. We denote `LLN by the existing LLN methods in [134, 89, 24,
85]. When the noisy data follows the bounded assumption, these methods are noise tolerant as
the minimizer h̃? converges to the minimizer h?. We defer the proof and details to Appendix
4.C.

4.4 Learning With Label Noise in SFDA
Given the fundamental di↵erence between the label noise in SFDA and the label noise in con-
ventional LLN scenarios, existing LLN methods, whose underlying assumption is bounded
label noise, cannot be applied to solve the label noise in SFDA. This section focuses on inves-
tigating how to address the unbounded label noise in SFDA.

Motivated by the recent studies [75, 4], which observed an early-time training phenomenon
(ETP) on noisy datasets with bounded random label noise. We find that ETP does not rely on
the bounded random label noise assumption, and it can be generalized to the unbounded label
noise in SFDA. ETP describes the training dynamics of the classifier that has higher prediction
accuracy for mislabeled samples during the early-training stage. To theoretically prove ETP in
the presence of unbounded label noise, we first describe the problem setup.

We still consider a two-component Gaussian mixture distribution with equal priors. We
denote y by the true label for x, and assume it is a balanced sample from {�1,+1}. The instance
x is sampled from the distribution N(yµ, �1d), where kµk = 1. We denote ỹ by the noisy label
for x. We observe that the label noise generated by the source model is close to the decision
boundary revealed in Theorem 4.3.2. So, we let ỹ = y�(x, y), where �(x, y) = sign( {yx>µ >
r} � 0.5) is the label flipping function, and r controls the mislabeling rate. If �(x, y) < 1, then
the data point x is mislabeled. Meanwhile, the label noise is unbounded by adopting the label
flipping function �(x, y): Pr[ỹ , y|yx>µ  r] = 1, where R = {x : yx>µ  r}.

We study the early-time training dynamics of gradient descent on the linear classifier. The
parameter ✓ is learned over the unbounded label noise data {xi, ỹi}ni=1 with the following logistic
loss function:

L(✓t+1) =
1
n

nX

i=1

log
�
1 + exp

��ỹi✓
>
t+1xi

��
,

where ✓t+1 = ✓t � ⌘r✓L(✓t), and ⌘ is the learning rate. Then the following theorem builds the
connection between the prediction accuracy for mislabeled samples at an early-training time
T .

Theorem 4.4.1. Let B = {x : ỹ , y} be a set of mislabeled samples. Let (B; ✓) be the prediction
accuracy calculated by the ground-truth labels and the predicted labels by the classifier with
parameter ✓ for mislabeled samples. If at most half of the samples are mislabeled (r < 1), then
there exists a proper time T and a constant c0 > 0 such that for any 0 < � < c0 and n ! 1,
with probability 1 � op(1):

(B; ✓T ) � 1 � exp{� 1
200

g(�)2}, (4.3)

where g(�) =
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R x
0 e�t2 dt.
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The proof is provided in Appendix 4.D. Compared to ETP found in [75], where the label
noise is assumed to be bounded, Theorem 4.4.1 presents that ETP also exists even though the
label noise is unbounded. At a proper time T, the classifier trained by the gradient descent
algorithm can provide accurate predictions for mislabeled samples, where its accuracy is lower
bounded by a function of the variance of clusters �. When � ! 0, the predictions of all
mislabeled samples equal to their ground-truth labels (i.e. (B; ✓T )! 1). When the classifier is
trained for a su�ciently long time, it will gradually memorize mislabeled data. The predictions
of mislabeled samples are equivalent to their incorrect labels instead of their ground-truth labels
[75, 87]. Based on these insights, the memorization of mislabeled data can be alleviated by
leveraging their predicted labels during the early-training time.

Theorem 4.4.1 rigorously justifies that the classifier can also have higher prediction ac-
curacy for mislabeled samples with the unbounded label noise at proper epoch number T . To
leverage the predictions during the early-training time, we adopt a recently established method,
early learning regularization (ELR) [75], which encourages model predictions to stick to the
early-time predictions for x. Since ETP exists in the scenarios of the unbounded label noise,
ELR can be applied to solve the label noise in SFDA. The regularization is given by:

LELR(✓t) = log(1 � ȳ>t f (x; ✓t)), (4.4)

where we overload f (x; ✓t) to be the probabilistic output for the sample x, and ȳt = �ȳt�1 + (1�
�) f (x; ✓t) is the moving average prediction for x, where � is a hyperparameter. To see how ELR
prevents the model from memorizing the label noise, we calculate the gradient of Eq. (4.4) with
respect to f (x; ✓t), which is given by:

dLELR(✓t)
d f (x; ✓t)

= � ȳt

1 � ȳ>t f (x; ✓t)
.

Note that minimizing Eq. (4.4) forces f (x; ✓t) to close to ȳt. When ȳt is aligned better with
f (x; ✓t), the magnitude of the gradient becomes larger. It makes the gradient of aligning f (x; ✓t)
with ȳt overwhelm the gradient of other loss terms that align f (x; ✓t) with noisy labels. As the
training progresses, the moving averaged predictions ȳt for target samples gradually approach
their ground-truth labels till the time T . Therefore, Eq. (4.4) prevents the model from memo-
rizing the label noise by forcing the model predictions to stay close to these moving averaged
predictions ȳt, which are very likely to be ground-truth labels.

Some existing LLN methods propose to assign pseudo labels to data or require two-stage
training for label noise [18, 164, 160]. Unlike these LLN methods, Eq. (4.4) can be easily
embedded into any existing SFDA algorithms without conflict. The overall objective function
is given by:

L = LSFDA + �LELR, (4.5)

where LSFDA is any SFDA objective function, and � is a hyperparameter.

Empirical Observations on Real-World Datasets. We empirically verify that target classi-
fiers have higher prediction accuracy for target data during the early training stage. We propose
leveraging this benefit to prevent the classifier from memorizing the noisy labels. The obser-
vations are shown in Figure 4.2. The parameters of classifiers are initialized by source models.
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(a) VisDA-C (b) DomainNet (c) O�ce-Home (d) O�ce-31

Figure 4.2: Training accuracy on various target domains. The source models initialize the
classifiers and annotate unlabeled target data. As the classifiers memorize the unbounded label
noise very fast, we evaluate the prediction accuracy on target data every batch for the first 90
steps. After the 90 steps, we evaluate the prediction accuracy for every 0.3 epoch. We use
the CE and ELR to train the classifiers on the labeled target data, shown in solid green lines
and solid blue lines, respectively. The dotted red line represents the accuracy of labeling target
data. Eventually, the classifiers memorize the label noise, and the prediction accuracy equals
the labeling accuracy (shown in (c-d)). Additional results on transfer pairs can be found in
Appendix 4.E.

Labels of target data are annotated by the initialized classifiers. We train the target classifiers
on target data with the standard cross-entropy (CE) loss. The solid green lines represent the
training accuracy of optimizing the classifiers with CE loss, while the solid blue lines repre-
sent that with ELR loss. The dotted red lines represent the labeling accuracy of the initialized
classifiers. Considering that the classifiers memorize the unbounded label noise very fast, we
evaluate the prediction accuracy on target data every batch for the first 90 steps. After 90 steps,
we evaluate the prediction accuracy for every 0.33 epoch. The green lines show that ETP ex-
ists in SFDA, which is consistent with our theoretical result. Meanwhile, in most scenarios
(3 out of 4 datasets), green lines also show that classifiers provide higher prediction accuracy
during the first a few iterations. After a few iterations, they start to memorize the label noise.
Eventually, the classifiers are expected to memorize the whole datasets. For conventional LLN
settings, it has been empirically verified that it takes a much longer time before classifiers start
memorizing the label noise [75, 138]. We provide further analysis in Appendix 4.G. We high-
light that PCL [160] leverages ETP at every epoch, so it cannot capture the benefits of ETP and
is inappropriate for unbounded label noise due to the fast memorization speed in SFDA. As a
comparison, we choose ELR since it leverages ETP at every batch. The blue lines show that
leveraging ETP via ELR can address the memorization of noisy labels in SFDA.

4.5 Experiments
We aim to improve the e�ciency of existing SFDA algorithms by using ELR to leverage ETP.
We evaluate the performance on four di↵erent SFDA benchmark datasets: O�ce-31 [106],
O�ce-Home [128], VisDA [97] and DomainNet [96]. Due to the limited space, the results on
the dataset O�ce-31 and additional experimental details are provided in Appendix 4.F.

Evaluation. We incorporate ELR into three existing baseline methods: SHOT [71], G-
SFDA [161], and NRC [147]. SHOT uses k-means clustering and mutual information maxi-
mization strategy to train the representation network while freezing the final linear layer. G-



4.5. Experiments 63

Table 4.1: Accuracies (%) on O�ce-31 for ResNet50-based methods.

Method SF A!D A!W D!W W!D D!A W!A Avg
MCD [108] 7 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [79] 7 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [158] 7 90.4 90.4 98.7 99.9 75.0 73.7 88.0
BNM [20] 7 90.3 91.5 98.5 100.0 70.9 71.6 87.1
DMRL [137] 7 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG [146] 7 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC [52] 7 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [122] 7 95.8 95.7 99.2 100.0 76.7 77.1 90.8
RWOT [144] 7 94.5 95.1 99.5 100.0 77.5 77.9 90.8
RSDA-MSTN [37] 7 95.8 96.1 99.3 100.0 77.4 78.9 91.1

Source Only 3 80.8 76.9 95.3 98.7 60.3 63.6 79.3
+ELR 3 90.9 89.0 98.2 100.0 67.1 64.1 84.9

SHOT [71] 3 94.0 90.1 98.4 99.9 74.7 74.3 88.6
+ELR 3 94.9 91.6 98.7 100.0 75.2 74.5 89.3

G-SFDA [148] 3 85.9 87.3 98.6 99.8 71.4 72.1 85.8
+ELR 3 86.9 87.8 98.7 99.8 71.4 72.9 86.2

NRC [147] 3 93.7 93.8 97.8 100.0 75.5 75.6 89.4
+ELR 3 93.8 93.3 98.0 100.0 76.2 76.9 89.6

SFDA aims to cluster target data with similar neighbors and attempts to maintain the source
domain performance. NRC also explores the neighbors of target data by graph-based methods.
ELR can be easily embedded into these methods by simply adding the regularization term into
the loss function to optimize without a↵ecting existing SFDA frameworks. We average the
results based on three random runs.

Results. Tables 4.1-4.4 show the results before/after leveraging the early-time training
phenomenon, where Table 4.1 is shown in Appendix 4.F. Among these tables, the top part
shows the results of conventional UDA methods, and the bottom part shows the results of SFDA
methods. In the tables, we use SF to indicate whether the method is source free or not. We
use Source Only + ELR to indicate ELR with self-training. The results show that ELR itself
can boost the performances. As existing SFDA methods are not able to address unbounded
label noise, incorporating ELR into these SFDA methods can further boost the performance.
The four datasets, including all 31 pairs (e.g., A ! D) of tasks, show better performance
after solving the unbounded label noise problem using the early-time training phenomenon.
Meanwhile, solving the unbounded label noise on existing SFDA methods achieves state-of-
the-art on all benchmark datasets. These SFDA methods also outperform most methods that
need to access source data.

Analysis about hyperparameters � and �. The hyperparameter � is chosen from {0.5,
0.6, 0.7, 0.8, 0.9, 0.99}, and � is chosen from {1, 3, 7, 12, 25}. We conduct the sensitivity study
on hyperparameters of ELR on the DomainNet dataset [96], which is shown in Figure 4.3(a-b).
In each Figure, the study is conducted by fixing the other hyperparameter to the optimal one.
The performance is robust to the hyperparameter � except � = 0.99. When � = 0.99, classifiers
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Table 4.2: Accuracies (%) on O�ce-Home for ResNet50-based methods.

Method SFAr!ClAr!PrAr!RwCl!ArCl!PrCl!RwPr!ArPr!ClPr!RwRw!ArRw!ClRw!Pr Avg
MCD [108] 7 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [79] 7 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN [143] 7 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
Symnets [159] 7 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD [158] 7 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TADA [133] 7 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
BNM [20] 7 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG [146] 7 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
SRDC [122] 7 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
RSDA-MSTN [37] 7 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9

Source Only 3 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
+ELR 3 52.4 73.5 77.3 62.5 70.6 71.0 61.1 50.8 78.9 71.7 56.7 81.6 67.3

SHOT [71] 3 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
+ELR 3 58.7 78.9 82.1 68.5 79.0 77.5 68.2 57.1 81.9 74.2 59.5 84.9 72.6

G-SFDA [148] 3 55.8 77.1 80.5 66.4 74.9 77.3 66.5 53.9 80.8 72.4 59.7 83.2 70.7
+ELR 3 56.4 77.6 81.1 67.1 75.2 77.9 65.9 55.0 81.2 72.1 60.0 83.6 71.1

NRC [147] 3 56.3 77.6 81.0 65.3 78.3 77.5 64.5 56.0 82.4 70.0 57.1 82.9 70.8
+ELR 3 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6

Table 4.3: Accuracies (%) on VisDA-C (Synthesis! Real) for ResNet101-based methods.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
DANN [28] 7 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [78] 7 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
ADR [107] 7 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [79] 7 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN [143] 7 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [62] 7 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MDD [158] 7 - - - - - - - - - - - - 74.6
MCC [52] 7 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR [81] 7 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT [144] 7 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0

Source Only 3 60.9 21.6 50.9 67.6 65.8 6.3 82.2 23.2 57.3 30.6 84.6 8.0 46.6
+ELR 3 95.4 45.7 89.7 69.8 94.1 97.1 92.9 80.1 89.7 52.8 83.3 4.3 74.6

SHOT [71] 3 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
+ELR 3 95.8 84.1 83.3 67.9 93.9 97.6 89.2 80.1 90.6 90.4 87.2 48.2 84.1

G-SFDA [148] 3 96.0 87.6 85.3 72.8 95.9 94.7 88.4 79.0 92.7 93.9 87.2 43.7 84.8
+ELR 3 97.3 89.1 89.8 79.2 96.9 97.5 92.2 82.5 95.8 94.5 87.3 34.5 86.4

NRC [147] 3 96.9 89.7 84.0 59.8 95.9 96.6 86.5 80.9 92.8 92.6 90.2 60.2 85.4
+ELR 3 97.1 89.7 82.7 62.0 96.2 97.0 87.6 81.2 93.7 94.1 90.2 58.6 85.8
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hyperparameter �

Figure 4.3: (a)-(b) show the test accuracy on the DomainNet dataset with respect to hyperpa-
rameters of ELR. (c) shows the test accuracy of incorporating various existing LLN methods
into the SFDA methods on the DomainNet dataset.

(a) O�ce-31 (b) O�ce-Home (c) VisDA (d) DomainNet

Figure 4.4: Evaluation of label noise methods on SFDA problems. We use source models as
an initialization of classifiers trained on target data and also use source models to annotate
unlabeled target data. Then we treat the target datasets as noisy datasets and use di↵erent label
noise methods to solve the memorization issue.

are sensitive to changes in learning curves. Thus, the performance degrades since the learning
curves change quickly in the unbounded label noise scenarios. Meanwhile, the performance is
also robust to the hyperparameter � except when � becomes too large. The hyperparameter �
is to balance the e↵ects of existing SFDA algorithms and the e↵ects of ELR. As we indicated
in Tables 4.1-4.4, barely using ELR to address the SFDA problem is not comparable to these
SFDA methods. Hence, a large value of � makes neural networks neglect the e↵ects of these
SFDA methods, leading to degraded performance.

4.5.1 Discussion on Existing LLN Methods

As we formulate the SFDA as the problem of LLN, it is of interest to discuss some existing
LLN methods. We mainly discuss existing LLN methods that can be easily embedded into the
existing SFDA algorithms. Based on this principle, we choose GCE [161], SL [134] and GJS
[24] that have been theoretically proved to be robust to symmetric and asymmetric label noise,
which are bounded label noise. We highlight that a more recent method GJS [24] outperforms
ELR in real-world noisy datasets. However, we will show that GJS is inferior to ELR in SFDA
scenarios, because the underlying assumption for GJS does not hold in SFDA. Besides ELR,
which leverages ETP, PCL is another method to leverage the same phenomenon, but we will
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Table 4.4: Accuracies (%) on DomainNet for ResNet50-based methods.

Method SFR!CR!PR!SC!RC!PC!SP!RP!CP!SS!RS!CS!P Avg
MCD [108] 7 61.9 69.3 56.2 79.7 56.6 53.6 83.3 58.3 60.9 81.7 56.2 66.7 65.4
DANN [28] 7 63.4 73.6 72.6 86.5 65.7 70.6 86.9 73.2 70.2 85.7 75.2 70.0 74.5
DAN [78] 7 64.3 70.6 58.4 79.4 56.7 60.0 84.5 61.6 62.2 79.7 65.0 62.0 67.0
COAL [120] 7 73.9 75.4 70.5 89.6 70.0 71.3 89.8 68.0 70.5 88.0 73.2 70.5 75.9
MDD [158] 7 77.6 75.7 74.2 89.5 74.2 75.6 90.2 76.0 74.6 86.7 72.9 73.2 78.4

Source Only 3 53.7 71.6 52.9 70.8 49.5 58.3 85.2 59.6 59.1 30.6 74.8 65.7 61.0
+ELR 3 70.2 81.7 61.7 79.9 63.8 67.0 90.0 72.1 66.8 85.1 78.5 68.8 73.8

SHOT [71] 3 73.3 80.1 65.8 91.4 74.3 69.2 91.9 77.0 66.2 87.4 81.3 75.0 77.7
+ELR 3 78.0 81.9 67.4 91.1 75.9 71.0 92.6 79.3 68.0 88.7 84.8 77.0 79.7

G-SFDA [148] 3 65.8 78.9 60.2 80.5 64.7 64.6 89.3 69.9 63.6 86.4 78.8 71.1 72.8
+ELR 3 69.4 80.9 60.6 81.3 67.2 66.4 90.2 73.2 64.9 87.6 82.1 71.0 74.6

NRC [147] 3 69.8 81.1 62.9 83.4 74.4 66.3 90.3 73.4 65.2 88.2 82.2 75.8 76.4
+ELR 3 75.6 82.2 65.7 91.2 77.2 68.5 92.7 79.8 67.5 89.3 85.1 77.6 79.4

show that it is also inappropriate for SFDA.
To show the e↵ects of the existing LLN methods under the unbounded label noise, we test

these LLN methods on various SFDA datasets with target data whose labels are generated by
source models. As shown in Figure 4.4, GCE, SL, GJS, and PCL are better than CE but still
not comparable to ELR. Our analysis indicates that ELR follows the principle of ETP, which is
theoretically justified in SFDA scenarios by our Theorem 4.3.2. Methods GCE, SL, and GJS
follow the bounded label noise assumption, which does not hold in SFDA. Hence, they perform
worse than ELR in SFDA, even though GJS outperforms ELR in conventional LLN scenarios.
PCL [160] utilizes ETP to purify noisy labels of target data, but it performs significantly worse
than ELR. As the memorization speed of the unbounded label noise is very fast, and classifiers
memorize noisy labels within a few iterations (shown in Figure 4.2), purifying noisy labels
every epoch is inappropriate for SFDA. However, we notice that PCL has a relatively better
performance in the DomainNet dataset [96] than in other datasets. The reason behind it is that
the memorization speed in the DomainNet dataset is relatively slow than other datasets, which
is shown in Figure 4.2. In conventional LLN scenarios, PCL does not su↵er from the issue
since the memorization speed is much lower than the conventional LLN scenarios.

In Figure 4.3(c), we also evaluate the performance by incorporating the existing LLN meth-
ods into the SFDA algorithms SHOT [71] and NRC [147]. Since PCL and SHOT assign pseudo
labels to target data, PCL is incompatible with some existing SFDA methods and cannot be eas-
ily embedded into some SFDA algorithms. Hence, we only embed GCE, SL, GJS, and ELR
into the SFDA algorithms. The figure illustrates that ELR still performs better than other LLN
methods when incorporated into SHOT and NRC. We also notice that GCE, SL, and GJS pro-
vide marginal improvement to the vanilla SHOT and NRC methods. We think the label noise
in SFDA datasets is the hybrid noise that consists of both bounded label noise and unbounded
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label noise due to the non-linearity of neural networks. The GCE, SL, and GJS can address the
bounded label noise, while ELR can address both bounded and unbounded label noise. There-
fore, these experiments demonstrate that using ELR to leverage ETP can successfully address
the unbounded label noise in SFDA.

4.6 Conclusion
We propose solving SFDA as the problem of LLN to address unbounded label noise in SFDA.
We theoretically prove that the unbounded label noise exists as long as domain shift exists. We
show that ETP exists in unbounded label noise, which can be leveraged to address the label
noise. On the other hand, as a comparison, we also show that many existing LLN methods are
unable to address unbounded label noise. Extensive experiments demonstrate that ETP can be
exploited to improve the e↵ects of many existing SFDA algorithms by ELR.
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4.A Proofs for Theorem 4.3.1
Proof. The Bayes classifier fS predicts x to the first component when

log
Pr[y = 1|X = x]

Pr[y = �1|X = x]
> 0. (4.6)

Since the distributions of the two components with the same priors for the source domain
are given by N(µ1,�2Id) and N(µ2,�2Id), respectively. Based on Bayes’ rule, Eq. (4.6) is
equivalent to

log
Pr[X = x|y = 1]

Pr[X = x|y = �1]
> 0 (4.7)

Solving the left hand side of Eq. (4.7) by using the knowledge of two multivariate Gaussian
distributions, we get

hS (x) B log
Pr[X = x|y = 1]

Pr[X = x|y = �1]
=

x>(µ1 � µ2)
�2 � kµ1k22 � kµ2k22

2�2 . (4.8)

So fS predicts x to the first component when hS (x) > 0 and fS predicts x to the second compo-
nent when hS (x)  0 The decision boundary is z such that hS (z) = 0. When there is no domain
shift � = 0, we haveDS = DT , and the mislabeling rate is the Bayes error, which is given by:

Pr
(x,y)⇠DS

[ fS (x) , y] =
1
2

Pr
x⇠N(µ1,�2Id)

[hS (x) < 0|y = 1] +
1
2

Pr
x⇠N(µ2,�2Id)

[hS (x) > 0|y = �1] (4.9)

We first study the first term in Eq. (4.9):

Pr
x⇠N(µ1,�2Id)

[hS (x) < 0|y = 1]

=

(

{x|x>(µ1�µ2)< kµ1k22�kµ2k22
2 }

1
(2⇡�2) d

2
exp

 
�kx � µ1k22

2�2

!
dx1dx2 · · · dxd

=

(

{x|�1<x1,x2,...,xd�1<1,d0<xd}

1
(2⇡�2) d

2
exp

0
BBBB@�

Pd
i=1 x2

i

2�2

1
CCCCAdx1dx2 · · · dxd

=

Z 1

d0

1
2⇡�2 exp

 
�

x2
d

2�2

!
dxd

=�(�d0

�
),

where the second equality is because of the rotationally symmetric property for isotropic Gaus-
sian random vectors, � is the cumulative distribution function of the standard Gaussian distri-
bution, and d0 = k(µ2 � µ1)/2k2. Applying the similar mathematical steps for the second term
in Eq. (4.9), and take them into Eq. (4.9):

Pr
(x,y)⇠DS

[ fS (x) , y] = �(�kµ2 � µ1k2
2�

). (4.10)
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When there is no domain shift, the labeling error is the Bayes error, which is expressed by
Eq. (4.10).

Then we consider the case when � , 0. The distributions of the first and the second
component are N(µ1 + �,�2Id) and N(µ2 + �,�2Id), respectively. Notice that the decision
boundary z is the a�ne hyperplane. Any shift paralleled to this a�ne hyperplane will not
a↵ect the final component predictions. The domain shift � can be decomposed into the sum
of two vectors: the one is paralleled to this a�ne hyperplane, and another is perpendicular to
the hyperplane. It is straightforward to verify that µ2 � µ1 is perpendicular to the hyperplane.
Thus, we project the domain shift � onto the vector µ2 � µ1 to get the component of � that is
perpendicular to the hyperplane, which is given by:

c = (µ2 � µ1)
�>(µ2 � µ1)
kµ2 � µ1k22

. (4.11)

Since we assume � is positively correlated to the vector µ2 � µ1, ↵ = �
>(µ2�µ1)
kµ2�µ1k22

can be regarded
as the magnitude of the domain shift along the direction µ2 �µ1. Note that the results also hold
for the case where � is negative correlated to µ2 � µ1. The whole proof can be obtained by
following the very similar proof steps for the positively correlated case.

The mislabeling rate of the optimal source classifier fS on target data is:

Pr
(x,y)⇠DT

[ fS (x) , y] =
1
2

Pr
N(µ1+�,�2Id)

[hS (x) < 0|y = 1] +
1
2

Pr
N(µ2+�,�2Id)

[hS (x) > 0|y = �1] (4.12)

We first calculate the first term of Eq. (4.12). Following the same tricks discussed above:

Pr
x⇠N(µ1+�,�2Id)

[hS (x) < 0|y = 1]

= Pr
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where d1 =
���µ2�µ1

2 � c
���

2 sign(
���µ2�µ1

2

���
2 � kck2).

Similarly, the second term is given by:

Pr
x⇠N(µ2+�,�2Id)

[hS (x) > 0|y = �1] =�(�d2

�
), (4.14)

where d2 =
���µ2�µ1

2 + c
���

2.
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Taking Eq. (4.13) and Eq. (4.14) into Eq. (4.12), we have

Pr
(x,y)⇠DT

[ fS (x) , y] =
1
2
�(�d1

�
) +

1
2
�(�d2

�
). (4.15)

⇤

4.B Proofs for Theorem 4.3.2
Proof. Without loss of generality, we choose to assume µ2 = µ1 + �1d as the convenient way
to present our results. From the proof for Theorem 4.3.1, we know that x0 =

µ1+µ2
2 + � is at the

decision boundary such that hT (x0) = 0, where

hT (x) =
x>(µ1 � µ2)
�2 � kµ1 + �k22 � kµ2 + �k22

2�2 .

Let fT be the optimal Bayes classifier for the target domain, which can be obtained the
same way as fS mentioned in 4.A. The equation hT (x0) = 0 implies that

Pr
(x,y)⇠DT

[y = 1|X = x0] = Pr
(x,y)⇠DT

[y = �1|X = x0].

Note that x0 is on the a�ne hyperplane z where hT (z) = 0. Any data points on this hyper-
plane will have the equal probabilities to be correctly classified. We start from this hyperplane
and calculate another point x1, where Pr(x,y)⇠DT [y = 1|X = x1] is at least 99 Pr(x,y)⇠DT [y =
�1|X = x1]. Thus, for any points that are mislabeled and far away from x1 will result in
Pr(x,y)⇠DT [y = 1|X = x1] � 0.99. We first aim to find such a data point x1. Let x1 = x0 �m0�1d,
where m0 is the scalar measures the distance between the point x1 to the hyperplane z. We need
to find m0 such that

PT (x1|y = 1)
PT (x1|y = �1)

�99, (4.16)

where

PT (x1|y = 1)
PT (x1|y = �1)

= exp
� �

���x1 � µ1 � �
���2

2

2�2 +

���x1 � µ2 � �
���2

2

2�2

�

= exp
� �

���µ2�µ1
2 � m0�1d

���2
2

2�2 +

���µ2�µ1
2 + m0�1d

���2
2

2�2

�

= exp (m0d) (4.17)

Taking Eq. (4.17) into Eq. (4.16), we get m0 � (log 99)/d. Since the isotropic Gaussian
random vectors has the rotationally symmetric property, we can transform the integration of
multivariate normal distribution to standard normal distribution with di↵erent intervals of in-
tegration. Then any data points from a region that have at most kx1 � µ1 � �k2 distance to its
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mean µ1+� will have at least 0.99 probability coming from the first component. Let the region
R1 be:

R1 = {x :
���x � µ1 � �

���
2  kx1 � µ1 � �k2}

Equivalently, taking R1 can be simplified:

R1 = {x :
���x � µ1 � �

���
2  �(

p
d

2
� log 99p

d
)}

The region R1 is valid when data dimension d is large. This is realistic in practice. Since
neural networks are usually dealing with high dimension data, for example d � (1), the region
R1 is valid.

On the other hand, we aim to find a region R2 where all data points are mislabeled. From
the proof for Theorem 1, the source classifier hS is given by

hS (x) =
x>(µ1 � µ2)
�2 � kµ1k22 � kµ2k22

2�2 . (4.18)

Any data points are classified to the second component if hS (x) < 0. Hence

R2 = {x : x>1d >
�d + 2µ>1 1d

2
}

We take the intersection of R1 and R2, all data points from this intersection are (1) having
at least 0.99 probability coming from the first component, and (2) being classified to the second
component. Formally, for (x, y) ⇠ DT , if x 2 R1

T
R2, then

Pr[ fS (x) , y] � 0.99, (4.19)

We note that x 2 R1
T

R2 is non-empty when (log 99)/d < ↵, where ↵ = �>(µ2�µ1)
kµ2�µ1k22

is the
magnitude of the domain shift along with the direction µ2 � µ1. Since x1 is chosen from R1, to
verify that R1

T
R2 is non-empty, we only need to verify that x1 also belongs to R2.

x1 2 R2 if and only if:

x>1 1d >
�d + 2µ>1 1d

2

(µ1 + c + �
2

1d � m0�1d)>1d >
�d + 2µ>1 1d

2

(µ1 + ↵�1d +
�

2
1d � m0�1d)>1d >

�d + 2µ>1 1d

2
(↵ � m0)�d >0,

where c = (µ2 � µ1)�
>(µ2�µ1)
kµ2�µ1k22

.
Therefore, if ↵ > m0 � (log 99)/d, R1

T
R2 is non-empty.

Next, we show Pr(x,y)⇠DT [x 2 R] increases as ↵ increases.
Let event A0 be a set of x such that they are mislabeled by fS (i.e. fS (x) , y). Let event

A1 be a set of x such that they are from the first component but are mislabeled to the second
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component with a probability Pr[ fS (x , y)] < 0.99. Let event A2 be a set of x such that they
are from the second component but are mislabeled to the first component with a probability
Pr[ fS (x , y)] < 0.99. Thus

Pr
(x,y)⇠DT

[x 2 R] = Pr
(x,y)⇠DT

[A0] � Pr
(x,y)⇠DT

[A1] � Pr
(x,y)⇠DT

[A2] (4.20)

Let event A3 be a set of x such that they are from the first component such that Pr[ fS (x ,
y)] < 0.99 or Pr[ fS (x = y)] < 0.99. Let event A4 be a set of x such that they are from the
second component but are mislabeled to the first component. For Pr[A3],

Pr
(x,y)⇠N(µ1+�,�2Id)

[A3] = Pr
(x,y)⇠N(µ1+�,�2Id)

[R{
1],

which does not change as the domain shift � varies. Meanwhile,

Pr
(x,y)⇠N(µ2+�,�2Id)

[A4] = �(�
���µ2�µ1

2 + c
���

2

�
),

which is given by Eq. (4.14). By our assumption, the domain shift � is positively correlated
with the vector µ2 � µ1. So when ↵ increases, Pr(x,y)⇠N(µ2+�,�2Id)[A4] decreases.

Since A1 ✓ A3 and A2A4, the probability measure on R is given by:

Pr
(x,y)⇠DT

[x 2 R] = Pr
(x,y)⇠DT

[A0] � Pr
(x,y)⇠DT

[A1] � Pr
(x,y)⇠DT

[A2]

� Pr
(x,y)⇠DT

[A0] � Pr
(x,y)⇠DT

[A3] � Pr
(x,y)⇠DT

[A4], (4.21)

where the first term is the mislabeling rate that increases as ↵ increases (given by Theorem
4.3.1); the second term is a constant; the third term decreases as as ↵ increases. The equality
in Eq. (4.21) holds when ↵ ! 1. Therefore, when the magnitude of the domain shift ↵
increases, the lower bound of Pr(x,y)⇠DT [x 2 R] increases, which forces more points to break
the conventional LLN assumption.

⇤

4.C Proofs for Lemma 4.3.3
Proof. We first introduce the background of noise-robust loss functions. As indicated in [85],
the loss function ` is defined to be noise robust if

PK
j=1 `(h(x), j) = C, where C is a positive

constant. Existing noise robust loss functions such as mean absolute error (MAE) [89], reverse
cross entropy (RCE) [134], normalized cross entropy (NCE) [85], and normalized focal loss
(NFL) satisfy this condition. Note that generalized cross entropy (GCE [161]) extends MAE
and symmetric loss (SL [134]) extends RCE. So we study GCE and SL in our experiments
instead studying MAE and RCE. Another noise robust loss function GJS [24] is shown to be
tightly bounded around

PK
j=1 `(h(x), j). All these methods have shown to be noise tolerant un-

der either bounded random label noise or bounded class-conditional label noise with additional
assumption that R(h?) = 0. We show that under the same assumption with unbounded label
noise datasets, these methods are not noise tolerant.
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Let ⌘yk(x) be the Pr[Ỹ = k|Y = y, X = x] probability of observing a noisy label k given the
ground-truth label y and a sample x. Let ⌘y(x) =

P
k,y ⌘yk(x). The risk of h under noisy data is

given by

eR(h) =Ex,ỹ[`LLN(h(x), ỹ)]
=ExEy|xEỹ|x,y[`LLN(h(x), ỹ)]

=Ex,y


(1 � ⌘y(x))`LLN(h(x), y) +

X

k,y

⌘yk(x)`LLN(h(x), k)
�

=Ex,y


(1 � ⌘y(x))

� KX

k=1

`LLN(h(x), k) �
X

k,y

`LLN(h(x), k)
�
+

X

k,y

⌘yk(x)`LLN(h(x), k)
�

=Ex,y


(1 � ⌘y(x))

�
C �

X

k,y

`LLN(h(x), k)
�
+

X

k,y

⌘yk(x)`LLN(h(x), k)
�

=Ex,y


(1 � ⌘y(x))C

�
� Ex,y

X

k,y

�
1 � ⌘y(x) � ⌘yk(x)

�
`LLN(h(x), k)

�
. (4.22)

Since Eq. (4.22) holds for both h̃? and h?, we have

eR(h̃?) = Ex,y


(1 � ⌘y(x))C

�
� Ex,y

X

k,y

�
1 � ⌘y(x) � ⌘yk(x)

�
`LLN(h̃?(x), k)

�
(4.23)

and

eR(h?) = Ex,y


(1 � ⌘y(x))C

�
� Ex,y

X

k,y

�
1 � ⌘y(x) � ⌘yk(x)

�
`LLN(h?(x), k)

�
. (4.24)

As h̃? is the minimizer of eR(h), eR(h̃?)  eR(h?). Then we combine Eq. (4.23) and Eq. (4.24),
we have

Ex,y

X

k,y

�
1 � ⌘y(x) � ⌘yk(x)

��
`LLN(h?(x), k) � `LLN(h̃?(x), k)

��  0. (4.25)

We note that `LLN(h̃?(x), k) � `LLN(h?(x), k) implies pk(x) = 0 and py(x) = 1 for k , y,
where pk(x) is the probability output by h̃? for predicting the sample x to be the class k. This
argument is proved given by [134, 89, 148, 85] (Theorem 1&2 in [89], Theorem 1 in [134],
Lemma 1&2 in [85] and Theorem 1&2 in [24]).

To let `LLN(h̃?(x), k) � `LLN(h?(x), k) holds for all inputs x, previous studies assume the
bounded label noise, which is given by

1 � ⌘y(x) � ⌘yk(x) > 0 8x s.t. P(X = x) > 0. (4.26)

For random label noise which assumes that the mislabeling probability from the ground-
truth label to any other label is the same for all inputs, i.e. ⌘ ji(x) = a0 8i , j, where a0 is a
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constant. Let ⌘ = (K � 1)a0, then Eq. (4.26) is degraded to

1 � ⌘ � ⌘

K � 1
> 0

1 >
K

K � 1
⌘

⌘ < 1 � 1
K
.

This bounded assumption is commonly assumed by [134, 89, 148, 85] (Theorem 1 in [89],
Theorem 1 in [134], Lemma 1 in [85] and Theorem 1 in [24]).

For class-conditional label noise, which assumes the ⌘ ji(x1) = ⌘ ji(x2) for any inputs x1 and
x2. Let ⌘ ji(x) = ⌘ ji, Then the bounded assumption Eq. (4.26) is degraded to

⌘yk < 1 � ⌘y.

This bounded assumption is also commonly assumed, and it can be found in Theorem 2 in [89],
Theorem 1 in [134], 2 in [85] and Theorem 2 in [24].

However, in SFDA, we proved that there exists R ⇢ X and for x 2 R, Pr[ỹ , y|x 2 R] = 1.
As the label noise is unbounded for x 2 R,

1 � ⌘y(x) � ⌘yk(x) = 1 � 1 � ⌘yk(x) < 0 8x 2 R. (4.27)

Given the result in Eq. (4.27), and combined it with the Eq. (4.25), we have

`LLN(h̃?(x), k)  `LLN(h?(x), k).

Note that only `LLN(h̃?(x), k) � `LLN(h?(x), k) means pk(x) = 0 for k , y and py(x) = 1 for
k , y. It means that the optimal classifier h̃? from noisy data can make correct predictions on
any inputs, which is consistent with the optimal classifier h? obtained from clean data.

As for the condition `LLN(h̃?(x), k)  `LLN(h?(x), k), we can get pk(x) = 1 for a k , y,
which means that the optimal classifier h̃? from noisy data cannot make correct predictions
on samples x 2 R. To verify this, we use the robust loss function RCE `RCE as an example,
and it can be easily generalized to other robust los functions mentioned above. Based on the
definition of the RCE loss [134], we have

`RCE(h̃?(x), k) =CRCE(1 � pk(x))
`RCE(h?(x), k) =CRCE,

where CRCE > 0 is a constant. The above equations show that any 0  pk(x)  1 can make the
condition `LLN(h̃?(x), k)  `LLN(h?(x), k) hold. Meanwhile, h̃? is the global minimizer of the
risk over the noisy data, which makes h̃? memorize the noisy dataset.

Therefore, h̃? makes incorrect predictions for x 2 R such that pk(x) = 1 for a k , y, and
h? is the global optimal over clean data, which gives correct predictions for x 2 R such that
pk(x) = 1 for a k = y. That completes the proof as h? makes di↵erent predictions on x 2 R
compared to h̃?.

⇤
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4.D Proofs for Theorem 4.4.1
The proof for Theorem 4.4.1 is partially adopted from [75]. Note that we are dealing with
unbounded label noise, whereas the bounded label noise is considered in [75]. As indicated in
[75], T is set as the smallest positive integer such that ✓>Tµ � 0.1, and T = ⌦(1/⌘) with high
probability. Parameters ✓ is initialized by Kaiming initialization [42] that ✓0 ⇠ N(0, 2

d Id), and
|✓>0 µ| converges in probability to 0. For simplicity, we assume ✓0 = 0 without loss of generality.
The proof consists of two parts. The first part is to show that ✓T�1 is highly positively correlated
with the ground truth classifier. The second part is to show that the prediction accuracy on
mislabeled samples can be represented as the correlation between the learned classifier and the
ground truth classifier.

Proof. To begin with, we show the first part. Let samples xi = yi(µ��zi), where z ⇠ N(0, Id).
The gradient of the logistic loss function with respect to the parameter ✓ is given by:

r✓L(✓t) =
1

2n

nX

i=1

xi
�
tanh(✓>t xi) � ỹi

�

=� 1
2n

nX

i=1

ỹixi

|         {z         }
¨

+
1

2n

nX

i=1

xitanh(✓>t xi)

|                  {z                  }
(4.28)

Then we will show that �µ>r✓L(✓t) is lower bounded by a positive number. We first
show the bound on ¨in Eq. (4.28). Since xi is sampled from standard normal distribution,
1
n
Pn

i=1 ỹiµ>xi has limited variance. By the law of large number, 1
n
Pn

i=1 ỹiµ>xi converges in
probability to its mean. Therefore,

E[ỹx>µ] =E[ỹµ>x {yx>µ  r}] + E[ỹµ>x {yx>µ > r}]
=E[E[ỹµ>x {yx>µ  r}]|y]
+ E[E[ỹµ>x {yx>µ > r}]|y]
=E[�µ>x {x>µ  r}|y = 1] + E[µ>x {x>µ > r}|y = 1]

Note that x|y = 1 is a Gaussian random vector with independent entries, we have x>µ d
=

w + 1, where w ⇠ N(0,�2). Therefore, the above expectation is equivalent to

E[ỹx>µ] = �
Z r�1

�1
(w + 1) dPw +

Z 1

r�1
(w + 1) dPw

= �
Z r�1

�1
w dPw +

Z +1

r�1
w dPw �

Z r�1

�1
dPw +

Z +1

r�1
dPw

=

Z 1�r

r�1
dPw �

Z r�1

�1
w dPw +

Z +1

r�1
w dPw

=Erf[
1 � rp

2�
] + 2

�p
2⇡

exp
� � (r � 1)2

2�2

�
, (4.29)
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where Erf[x] = 2p
⇡

R x
0 e�t2 dt. Note that r < 1, which means that most half of samples are

mislabeled. Thus

1
2
E[ỹiµ

>xi] =
1
2

Erf[
1 � rp

2�
] +

�p
2⇡

exp
� � (r � 1)2

2�2

�
> 0.

Now we deal with the in in Eq. (4.28).

1
2n
|µ>�

nX

i=1

tanh(✓>t xi)
�| = 1

2n
|q>p|

 1
2n
kqk2 kpk2 , (4.30)

q = (µ>x1,µ>x2, . . . ,µ>xn) 2 Rn, and p = (tanh(✓>t x1), tanh(✓>t x2), . . . , tanh(✓>t xn)) 2 Rn.
By triangle inequality of the norm,

kqk2 = kq � 1 + 1k2  kq � 1k2 + k1k2 =
p

n + kq � 1k2 ,

where q � 1 is a random vector with Gaussian coordinates. By Lemma 4.D.1,

kq � 1k2 /�  2�
p

n (4.31)

with probability 1 � � when n � c1 log 1/�, where c1 is a constant.
On the other hand,

���p � tanh(✓>t µ)1n + tanh(✓>t µ)1n

���
2 

���tanh(✓>t µ)1n

���
2 +

���p � tanh(✓>t µ)1n

���
2


���tanh(✓>t µ)1n

���
2 + k✓tk2 kq � 1k2

=tanh(✓>t µ)
p

n + 2�
p

n k✓tk2 , (4.32)

where the second inequality is by Lemma 9 from [75], the last inequality by Lemma 4.D.1.
Then we take Eq. (4.30) and Eq.(4.32) together, and then take them and Eq.(4.29) into

�µ>r✓L(✓t), which gives us:

�r✓L(✓t)>µ �
1
2

Erf[
1 � rp

2�
] +

�p
2⇡

exp
� � (r � 1)2

2�2

� � �(tanh(✓>t µ) + 2� k✓tk2) (4.33)

By Lemma 8 from [75], we have sup✓2Rd kr✓L(✓)k2  1 + 2�. Therefore, Eq. (4.33) can be
rewritten as:

�r✓L(✓t)>µ
kr✓L(✓t)k2

�
Erf[ 1�rp

2�
] + 2 �p

2⇡
exp

� � (r�1)2

2�2

�

1 + 2�
� �(tanh(✓>t µ) + 2� k✓tk2)

1 + 2�

� b0

1 + 2�
� �(tanh(✓>t µ) + 2� k✓tk2)

1 + 2�
, (4.34)

where we let b0 =
1
2Erf[ 1�rp

2�
] + �p

2⇡
exp

� � (r�1)2

2�2

�
.

Then we prove �r✓L(✓t)>µ
kr✓L(✓t)k2 �

1
10

b0
1+2� by mathematical induction, which can help us get rid of

the dependence on ✓t for the lower bound in Eq. (4.34).
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For t = 0, the inequality holds trivially. By the gradient descent algorithm, ✓t+1 = �⌘
Pt

i=0 r✓L(✓i),
where �µ>r✓L(✓i)/ kr✓L(✓i)k2 � 1

10
b0

1+2� .

✓>t+1µ

k✓t+1k2
��⌘

Pt
i=0 µ

>r✓L(✓i)
⌘
���Pt

i=0 r✓L(✓i)
���

2

�
1
10

b0
1+2� (

Pt
i=0 kr✓L(✓i)k2)

Pt
i=0 kr✓L(✓i)k2

� 1
10

b0

1 + 2�

As t + 1 < T , we have k✓t+1k2  101+2�
b0
✓>t+1µ  1+2�

b0
. Taking it into Eq. (4.34), we have

�r✓L(✓t)>µ
kr✓L(✓t)k2

� b0

1 + 2�
�
�(0.1 + 1+2�

b0
)

1 + 2�

To show �r✓L(✓t)>µ
kr✓L(✓t)k2 is lower bounded by 1

10
b0

1+2� , we need to have

h(�) =
9

10
b0

1 + 2�
� �(0.1 +

1 + 2�
b0

) > 0

It is straightforward to verify that h(� = 0) > 0 and it can be verified that when 0 < � < c0,
we have h0(�) > 0. Therefore, for 0 < � < c0 and any t < T � 1

�r✓L(✓t)>µ
kr✓L(✓t)k2

� 1
10

b0

1 + 2�

Hence by gradient descent algorithm ✓T = �⌘
PT�1

i=0 r✓L(✓i) and the same proof above, we have

✓>Tµ

k✓T k2
� 1

10
b0

1 + 2�
(4.35)

For the second part: the prediction accuracy on mislabeled sample set B converges in
probability to its mean. Therefore, the expectation of the prediction accuracy on mislabeled
samples is given by

E[ {sign(✓>T x) = y}] =E[ {sign(y✓>T (µ � �z)) = y}]
=E[ {sign(✓>T (µ � �z)) = 1}]
=Pr[�✓>T z > ✓>Tµ] (4.36)

Note that z is a standard Gaussian vector, ✓>T z is distributed as N(0, k✓T k22) Thus, Eq. (4.36) is
equivalent to �( ✓

>
T µ

�k✓T k2 ).
By the inequality 1 � �(x)  exp{�x2/2} for x > 0, then we have

�(
✓>Tµ

� k✓T k2
) � 1 � exp{�

( ✓
>
T µ

�k✓T k2 )2

2
} � 1 � exp{� 1

200
� b0

(1 + 2�)�
�2}
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We denote g(�) by:

g(�) =
Erf[ 1�rp

2�
]

2(1 + 2�)�
+

exp (� (r�1)2

2�2 )
p

2⇡(1 + 2�)
,

where g(�) > 0 for any � > 0. Note that g(�) ! 1 when � ! 0, and g(�) is monotone
decreasing as � increases since g0(�) < 0 for � > 0.

⇤

Lemma 4.D.1. Let X = (X1, X2, . . . , Xn) 2 Rn be a random vector with independent, Gaussian
coordinates Xi with E[Xi] = 0 and E[X2

i ] = 1 < 1. Then

Pr[| kXk2 �
p

n| �
p

n]  2 exp
� � an

�
,

where a > 0 is a constant.

Proof. The Gaussian concentration result is taken from Proposition 5.34 in [130], which will
be used here for proving Theorem 4.4.1. ⇤

4.E Additional Learning Curves
We provide additional learning curves on DomainNet dataset, shown in Figure 4.5. The dataset
contains 12 pairs of tasks showing: (1) target classifiers have higher prediction accuracy during
the early-training time; (2) leverage ETP by using ELR can alleviate the memorization of
unbounded noisy labels generated by source models.

4.F Experimental Details
Datasets. We use four benchmark datasets to verify the e↵ectiveness of leveraging the early-
time training phenomenon to address unbounded label noise. O�ce-31 [106] contains 4, 652
images in three domains (Amazon, DSLR, and Webcam), and each domain consists of 31
classes. O�ce-Home [128] contains 15, 550 images in four domains (Real, Clipart, Art, and
Product), and each domain consists of 65 classes. VisDA [97] contains 152K synthetic images
and 55K real object images with 12 classes. DomainNet [96] contains around 600K images in
six di↵erent domains (Clipart, Infograph, Painting, Quickdraw, Real and Sketch). Following
previous work [120, 74], we select 40 the most commonly-seen classes from four domains:
Real, Clipart, Painting, and Sketch.

Implementation. We use ResNet-50 [43] for O�ce-31, O�ce-Home and DomainNet,
and ResNet-101 [43] for VisDA as backbones. We adopt a fully connected (FC) layer as
the feature extractor on the backbone and another FC layer as the classifier head. The batch
normalization layer is put between the two FC layers and the weight normalization layer is
implemented on the last FC layer. We set the learning rate to 1e-4 for all layers except for
the last two FC layers, where we apply 1e-3 for the learning rate for all datasets. The training
for source models are set to be consistent with the SHOT [71]. The hyperparameters for ELR
with self-training, ELR with SHOT, ELR with G-SFDA, and ELR with NRC on four di↵erent
datasets are shown in Table 4.5. We note that for ELR with self-training, there is only one
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Figure 4.5: The source models are used to initialize the classifiers and annotate unlabeled target
data. As the classifiers memorize the unbounded label noise very fast, we evaluate the predic-
tion accuracy on target data every batch for the first 90 steps. After the 90 steps, we evaluate
the prediction accuracy for every 0.3 epoch. We use the CE and ELR to train the classifiers on
the labeled target data, shown in solid green lines and solid blue lines, respectively.

hyperparameter � to tune. The hyperparameters for existing SFDA algorithms are set to be
consistent with their reported values for O�ce-31, O�ce-Home, and VisDA datasets. As
these SFDA algorithms have not reported their performance for DomainNet dataset, We follow
the hyperparameter search strategy from their work [71, 147, 148], and choose the optimal
hyperparameters � = 0.3 for SHOT, K = 5 and M = 5 for NRC, and k = 5 for G-SFDA.

4.G Memorization Speed Between Label Noise in SFDA and
in Conventional LLN settings

Although ETP exists in both SFDA and conventional LLN scenarios, the memorization speed
for them is still di↵erent. Specifically, the target classifiers memorize noisy labels much faster
in the SFDA scenario. It has already been shown that it takes many epochs before classifiers
start memorizing noisy labels in conventional LLN scenario [75, 138]. We highlight that the
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Table 4.5: Optimal Hypermaraters (�/�) on various datasets.

Hyperparameters: �/� O�ce-31 O�ce-Home VisDA DomainNet
ELR only 0.9/� 0.99/� 0.99/� 0.9/�

ELR + SHOT 0.7/1.0 0.6/3.0 0.6/25 0.7/7.0
ELR + G-SFDA 0.8/1.0 0.9/1.0 0.5/7.0 0.8/12.0

ELR + NRC 0.5/1.0 0.6/3.0 0.5/3.0 0.8/3.0

main factor causing the di↵erence is the label noise. To show it, we replace the unbounded la-
bel noise in SFDA with bounded random label noise, and we keep the other settings unchanged
as introduced in 4.4. To replace the unbounded label noise with bounded random label noise,
we use the source model to identify mislabeled target samples, then we assign random labels to
these mislabeled samples. Figure 4.6 and Figure 4.7 show the learning curves on O�ce-Home
and O�ce-31 datasets with unbounded label noise and random bounded label noise. To better
visualize the learning curves with unbounded label noise, we re-plot Figures 4.6-4.7 with dif-
ferent y scale in Figures 4.8-4.9. These figures demonstrate that target classifiers memorizing
noisy labels with unbounded label noise is much faster than noisy labels with random bounded
label noise. The classifiers with bounded label noise (colored in red) are expected to memorize
all noisy labels eventually. As illustrated in Figures 4.8-4.9, the classifiers with unbounded
label noise (colored in green) show that the noisy labels are already memorized. We note that
for the first 90 steps, the prediction accuracy is evaluated every batch, while the prediction
accuracy is evaluated every 0.3 epoch after that time. Therefore, for unbounded label noise,
target classifiers start memorizing the noisy labels within the first epoch (consisting of more
than 90 batches).

There are some existing LLN methods such as PCL [160] to purify noisy labels every
epoch based on ETP. Due to this di↵erence, these LLN methods are not helpful to solving label
noise in SFDA as they are not able to capture the benefits of ETP. Our empirical results in
Section 4.5.1 can support this argument. We also note that PCL does not su↵er from the fast
memorization speed and is able to capture the benefits of ETP in conventional LLN settings. As
we indicated in Figures 4.6-4.7, it takes much longer time (more than a few epochs) for target
classifiers to start memorizing bounded noisy labels. We hope these insights can motivate the
researcher to consider memorization speed and design algorithms better for SFDA.
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Figure 4.6: Training accuracy on O�ce-Home dataset. The solid green lines represent the
unbounded label noise in SFDA, whereas the solid red lines represent the bounded label noise.
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Figure 4.7: Training accuracy on O�ce-31 dataset. The solid green lines represent the un-
bounded label noise in SFDA, whereas the solid red lines represent the bounded label noise.
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Figure 4.8: Figure 4.6 with di↵erent y-scale to better show learning details of the unbounded
label noise.
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Figure 4.9: Figure 4.7 with di↵erent y-scale to better show learning details of the unbounded
label noise.



Chapter 5

Conclusion and Future Work

Learning with noisy labels is a problem of great practical importance. In this thesis, we studied
learning with noisy labels under various scenarios. First, we focused on learning noise-robust
representations from examples with noisy labels. Second, we studied the benefits of self-
supervised representations that are learned from examples without label information. Third,
we connected the learning with label noise field to the source-free domain adaptation (SFDA)
field and focused on studying the label noise in SFDA, whose distribution is quite di↵erent
from conventional label noise settings. Below we will present the main contributions of each
work.

In Chapter 2, we theoretically studied the robustness of learned contrastive representa-
tions, and we develop a novel algorithm to learn such representations from noisy training data
without accessing true labels. In Chapter 3, we rigorously analyzed that the self-supervised
representations, which are learned without accessing any label information, exhibit a better
cluster structure that the linear classifier performs better on these representations. In Chapter
4, we solved the problem of SFDA and we showed that it can be formulated as the problem of
learning with label noise. We also analyzed that the label noise in SFDA is quite di↵erent from
label noise in conventional settings, and then we proposed a theoretically motivated approach
to address it.

5.1 Future Work

5.1.1 Learning With Imperfect Data
With the recent emergence of large-scale datasets, noisy labels are not the only issue that make
the performance of the model drop.

Imbalanced datasets are also the obstacles to obtaining reliable models [150, 46, 21]. A
natural extension of learning with label noise is learning with both label noise and imbalanced
data. The work related to this topic is very scarce. [9] studied both learning with label noise
and learning with imbalanced data together. However, it only focuses on analyzing random
label noise, which is not realistic in practice. The recent work about learning with label noise
lies in studying more practically instance-dependent label noise [160, 18]. In future research,
studying more realistic label noise in imbalanced datasets would be interesting and valuable.

85



86 Chapter 5. Conclusion and FutureWork

Besides imbalanced datasets, out-of-distribution samples (OOD) also a↵ects the model
learning and they are very common, especially for datasets collected from the Internet. For ex-
ample, the researcher aims to train a model to classify di↵erent fruits, and the training dataset
is collected from the web. There are very likely that some images do not belong to any target
categories. For example, a car with orange paint might be collected as an orange. When both
OOD samples and mislabeled samples are in the training datasets, there should be two di↵er-
ent procedures to deal with them independently. One is for correcting labels and another is for
removing OOD samples. [67] is the one that considered both mislabeled samples and OOD
samples by simply treating less confident samples as OOD samples. Since models also lack
confidence about hard examples with clean labels, which are important for models to learn a
good decision boundary, simply filtering out low-confident samples can degrade the models’
performance. As a result, a better approach to address issues from both OOD samples and
mislabeled can be explored in future research.

5.1.2 Beyond Deep Classification Tasks
This thesis focused on deep learning with classification tasks. In this setting, we considered
that a label y 2 Y can be incorrectly labeled by another label ỹ 2 Y, where Y is a set of
integers. Existing techniques for dealing with label noise focus on categorical labels. Given
that many real-world tasks involve continuous target values, label noise also exists in deep
regression tasks. There are many scenarios that are also common in the field of deep learning
and are related to regression tasks.

Object detection and segmentation are another popular tasks in the field of deep learning,
which require very intensive labeling work. Object detection should identify di↵erent objects
and their locations in each image, and segmentation partitions an image into multiple pieces.
For object detection, annotators should label the category of the object and its position, where
both the category and the position might be mislabeled. That is y 2 Z ⇥ R4 ! ỹ 2 Z ⇥ R4,
where we assume Z is a set of integers. Since the position is a continuous variable, the problem
can be formulated as learning with label noise for both classification and regression tasks. For
segmentation, annotators should label each pixel in the image with a category label, where
humans will more likely to mislabel pixels around the boundaries between di↵erent objects.
That is y 2 RM ! ỹ 2 RM, where M is the number of pixels (e.g. M = 50176 for 224 by 224
images). Given that the label space is changed drastically, it is a valuable direction to dig in.

5.1.3 Other Data Structures
This thesis mainly focused on image classification tasks. It would be very exciting to extend the
image classification method to other data structures such as natural language, speech signals,
and tabular data, where tabular data is organized in a table with rows being the id and columns
being the features. As [4] indicated, deep neural networks are prone to fit images with simple
patterns first from the noisy training data, where the simple patterns of images are highly
correlated with images with clean labels. Most image classification methods implicitly or
explicitly leveraged this observation. As this observation might not exist when we replace
image data with tabular data, natural language or signal data, we cannot simply apply existing
image classification methods to other data structures. The hybrid data structure is a more
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complicated data structure, for example, which may consist of both images and language. To
this end, it will be quite interesting to explore a unified approach that can address noisy label
issues for both image data and other types of data.



Bibliography

[1] S. M. Ahmed, D. S. Raychaudhuri, S. Paul, S. Oymak, and A. K. Roy-Chowdhury.
Unsupervised multi-source domain adaptation without access to source data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10103–10112, 2021.

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end speech recognition
in english and mandarin. In International conference on machine learning, pages 173–
182. PMLR, 2016.

[3] E. Arazo, D. Ortego, P. Albert, N. O’Connor, and K. McGuinness. Unsupervised label
noise modeling and loss correction. In International Conference on Machine Learning,
pages 312–321. PMLR, 2019.

[4] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio, et al. A closer look at memorization in deep net-
works. In International Conference on Machine Learning, pages 233–242. PMLR, 2017.

[5] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu, and T. Liu. Understanding and
improving early stopping for learning with noisy labels. Advances in Neural Information
Processing Systems, 34, 2021.

[6] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A
theory of learning from di↵erent domains. Machine learning, 79(1):151–175, 2010.

[7] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, et al. Analysis of representations for
domain adaptation. Advances in neural information processing systems, 19:137, 2007.

[8] A. Berthon, B. Han, G. Niu, T. Liu, and M. Sugiyama. Confidence scores make instance-
dependent label-noise learning possible. In International Conference on Machine Learn-
ing, pages 825–836. PMLR, 2021.

[9] K. Cao, Y. Chen, J. Lu, N. Arechiga, A. Gaidon, and T. Ma. Heteroskedastic and im-
balanced deep learning with adaptive regularization. arXiv preprint arXiv:2006.15766,
2020.

[10] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsuper-
vised learning of visual features by contrasting cluster assignments. arXiv preprint
arXiv:2006.09882, 2020.

88



BIBLIOGRAPHY 89

[11] P. Chen, G. Chen, J. Ye, jingwei zhao, and P.-A. Heng. Noise against noise: stochastic
label noise helps combat inherent label noise. In International Conference on Learning
Representations, 2021.

[12] P. Chen, J. Ye, G. Chen, J. Zhao, and P.-A. Heng. Beyond class-conditional assump-
tion: A primary attempt to combat instance-dependent label noise. arXiv preprint
arXiv:2012.05458, 2020.

[13] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

[14] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised
models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[15] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297, 2020.

[16] X. Chen and K. He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–
15758, 2021.

[17] Y. Chen, X. Shen, S. X. Hu, and J. A. Suykens. Boosting co-teaching with compression
regularization for label noise. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2688–2692, 2021.

[18] H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, and Y. Liu. Learning with instance-dependent
label noise: A sample sieve approach. arXiv preprint arXiv:2010.02347, 2020.

[19] M. Ciortan, R. Dupuis, and T. Peel. A framework using contrastive learning for classi-
fication with noisy labels. Data, 6(6):61, 2021.

[20] S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, and Q. Tian. Towards discriminability and
diversity: Batch nuclear-norm maximization under label insu�cient situations. CVPR,
2020.

[21] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on
e↵ective number of samples. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9268–9277, 2019.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.



90 BIBLIOGRAPHY

[24] E. Englesson and H. Azizpour. Generalized jensen-shannon divergence loss for learning
with noisy labels. arXiv preprint arXiv:2105.04522, 2021.

[25] F. Farnia and D. Tse. A minimax approach to supervised learning. Advances in Neural
Information Processing Systems, 29:4240–4248, 2016.

[26] L. Feng, S. Shu, Z. Lin, F. Lv, L. Li, and B. An. Can cross entropy loss be robust to label
noise? In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pages 2206–2212, 2021.

[27] K. Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

[28] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky. Domain-adversarial training of neural networks. The Journal
of Machine Learning Research, 17(1):2096–2030, 2016.

[29] A. Ghosh, H. Kumar, and P. Sastry. Robust loss functions under label noise for deep
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 2017.

[30] A. Ghosh and A. Lan. Contrastive learning improves model robustness under label
noise. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2703–2708, 2021.

[31] X. Glorot and Y. Bengio. Understanding the di�culty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceed-
ings, 2010.

[32] P. Goel and L. Chen. On the robustness of monte carlo dropout trained with noisy
labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2219–2228, 2021.

[33] J. Goldberger and E. Ben-Reuven. Training deep neural-networks using a noise adapta-
tion layer. 2016.

[34] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pages 6645–6649. Ieee, 2013.

[35] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Co-
variate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5, 2009.
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