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Abstract
This thesis focuses on discussing non-parametric estimators and their asymptotic behaviors for
indices developed to characterize bi-variate time series. There are typically two types of indices
depending on whether the distributional information is involved. For the indices containing the
distributional information of the bivariate stationary time series, we particularly focus on the
index called the tail order of maximal dependence (TOMD), which is an improvement of the
tail order. For the indices without distributional information of the bivariate time series, we
focus on an anomaly detection index for univariate input-output systems.

This thesis integrates three articles. The first article (Chapter 2) proposes the average block-
minima estimator for the TOMD and discusses theoretical aspects of this estimator under
the independently identically distribution (i.i.d.) assumption, including asymptotic behavior
and bias reduction. The performance of this estimator is justified by simulation studies us-
ing Marshall-Olkin copula and generalized Clayton copula, respectively. The second article
(Chapter 3) examines the performance of the average block-minima estimator on stationary bi-
variate time series using simulation studies. Applications of the estimator on three groups of
financial assets are employed to illustrate how the estimation method could be used in practice.
The third article (Chapter 4) generalizes an existing anomaly detection index for input-output
systems with i.i.d. inputs to those with stationary inputs. Theoretical evidence and illustra-
tive examples are provided to validate the performance of the existing index for systems with
stationary inputs.

Keywords: bivariate time series, copula, tail order of maximal dependence, non-parametric
estimation, anomaly detection.
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Summary for Lay Audience
Bi-variate time series is ubiquitous in real life such as financial risk management and reliability
assessment of input-output systems. Depending on the issue of interests, various indices are
proposed for bi-variate time series to serve the purpose of evaluation or comparison. Among all
these indices, we are particularly interested in the following two: 1) the tail order of maximal
dependence (TOMD); 2) an index of anomaly detection. The TOMD is an improvement of the
existing tail order which is used to measure the extreme co-movements of random variables
such as investment returns of assets. The index of anomaly detection is used to examine if the
inputs and outputs of systems with certain original order contain persistent anomalies that may
not change the regime such as network intrusion. In this research, we develop non-parametric
estimation method for the TOMD and index of anomaly detection when the underlying data-
generating process is bi-variate time series.

This research consists of three articles. The first article proposes the average block-minima
estimator of the TOMD for independently identically distributed random pairs. The perfor-
mance of the estimator is justified by both theoretical analysis and simulation studies. The
second article examines the performance of the average block-minima estimator of the TOMD
for stationary bi-variate time series using simulation studies. The third article extends the ex-
isting results for the anomaly detection index to the systems with bi-variate stationary inputs
with theoretical validation.
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Chapter 1

Introduction

This study focuses on the bi-variate series (Xt,Yt)t∈Z with (Xt,Yt)
d
= (X,Y) for every t ∈ Z. By

“focusing” we mean that the particular case that Xt is independent of Ys for every pair (s, t) ∈ Z2

is excluded automatically. Hence there remains two basic situations of our interest: the first
situation is that (Xt,Yt) has a common dependence structure for every t ∈ Z; the other situation
is that (Xt,Yt) does not only have a common dependence structure but also actually satisfies a
common function relationship.

For the first situation, the common dependence structure as well as its measurement are
usually of the interest. By assuming that (X,Y) is defined on the probability space (Ω,F ,P)
with continuous marginal cumulative distribution functions (CDF)

F(x) := P(X ≤ x) and G(y) := P(Y ≤ y)

for x, y ∈ R, there exists a unique bi-variate copula C : [0, 1]2 → [0, 1] such that

P(X ≤ x,Y ≤ y) = C(F(x),G(y))

[1]. This famous result leads to a great amount of interest particularly in the copula C.

In the recent decades, there is a continuously growing literature related to copulas due to
the fast development of risk management studies. Statistical and actuarial researchers are par-
ticularly interested in copulas because they usually have to deal with several random variables
simultaneously but have very limited information about the relation among those random vari-
ables beforehand. As the copulas determine the dependence among random variables, it is not
surprising that risk management researches focus on copulas in order to obtain seemingly in-
dependent categories of assets for risk diversification.

For the second situation, suppose the relation between two random variables are very well-
known, for example, the two random variables are known to be comonotone. In this case
no one would bother with the copula (because in this case we have C(u, v) = min(u, v) for
(u, v) ∈ [0, 1]2), instead, people may be more interested in monitoring the stationarity and re-
liability of this relationship. In this case, there is no longer risk diversification and hence the

1



2 Chapter 1. Introduction

copula plays no role. As a result, researchers in the fields such as system reliability may at-
tempt to develop analysis tools without copulas.

Note that whether or not to include the copula C, we are actually playing with functions. If
certain dimension reduction techniques may translate these functions into scalar indices with-
out loss of too much information, it would be more useful to risk management in practice not
only because scalars are comparable while functions are not, but also because estimators as
well as their inference results may be available given the observed data.

1.1 Indices based on the copula
Indices constructed based on functions are invented based on functionals. If the dependence
between X and Y is the research object, the indices usually defined solely by the copula C. In
the studies of risk management, there are typically two types of such indices. The first type is
defined via integrals on [0, 1]2, including the rank-based coefficients of dependence such as the
Spearman’s ρ:

ρ := ρ(C) = 12
∫ 1

0

∫ 1

0
[C(u, v) − uv] du dv,

Gini’s coefficient:

γ := γ(C) = 2
∫ 1

0

∫ 1

0

(
|u + v − 1| − |u − v|

)
dC(u, v),

and the Kendall’s τ:

τ := τ(C) = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1.

The rank-based coefficients of dependence are considered as remedies for the linear correlation
coefficient [2]. The other type is defined via taking limits, including all tail dependence coeffi-
cients (TDC). The most widely used and well-studied measures of extreme co-movements are
the tail dependence [3]:

λ := λ(C) = lim
u→0+

C(u, u)
u

,

the weak tail dependence [4]:

χ := χ(C) = lim
u→0+

2 log u
log C(u, u)

− 1,

and the tail order κ := κ(C) [5, 6] defined via

C(u, u) = ℓ(u)uκ

when u ↓ 0, where ℓ is a slowly varying at 0 function [e.g., 7].

Both types of indices are available for risk management arrangements such as risk diver-
sification. The integral type of indices might be considered when expected portfolio returns



1.2. Distribution free indices 3

are taken into account, for example, the portfolio optimization methods using rank correlation
[8, pp.158-171]. If only the extreme co-movements of asset returns are of interest, then the
limiting type of indices will be considered, for instance, the studies of financial contagion [9]
at the market level and portfolio diversification [10] at the asset level.

1.2 Distribution free indices
When the distribution of (X,Y) is not of interest, in particular, if the relation between X and Y
is systematically determined as

Y = h(X)

where h is a known function, then researches focus on the reliability of h, i.e. to check if
Y = h(X) really holds given the observed data. A typical example of this kind of problem
is the reliability of an input-output system. For such kind of systems, Gribkova and Zitikis
[11] propose an index that indicates the existence of anomalies if the index converge to 0.5 or
converge to some value other than 0.5 otherwise. The idea is roughly as follows: suppose h
has certain smoothness, for example, h is absolutely continuous with respect to the Lebesgue
measure on some interval [aX, bX] with its Radon-Nikodym derivative h∗ satisfying

h(b) − h(a) =
∫ b

a
h∗(x) dx

for all aX ≤ a ≤ b ≤ bX. Then the following fact:h∗+(x) − h∗−(x) = h∗(x)
h∗+(x) + h∗−(x) = |h∗(x)|

,

implies

h∗+(x) =
h∗(x) + |h∗(x)|

2
for every x on [aX, bX]. Hence we have∫ bX

aX
h∗+(x) dx∫ bX

aX
|h∗(x)| dx

=
1
2

1 +
∫ bX

aX
h∗(x) dx∫ bX

aX
|h∗(x)| dx

 = 1
2

1 + h(bX) − h(aX)∫ bX

aX
|h∗(x)| dx

 .
If ∫ bX

aX

|h∗(x)| dx = ∞

while
−∞ < h(bX) − h(aX) < ∞,

then we obtain ∫ bX

aX
h∗+(x) dx∫ bX

aX
|h∗(x)| dx

=
1
2
.



4 Chapter 1. Introduction

Hence an index for anomaly detection in an input-output system is conceptually given by:

I := I(h) =

∫ bX

aX
h∗+(x) dx∫ bX

aX
|h∗(x)| dx

.

Note that in practice there is no need to validate the exact relationship h between the input
X and the output Y when anomalies are the concern. The anomalies could be detected by
examining whether some of the properties of h are violated. For example, if h is of bounded
variation on [aX, bX] while anomalies behave like Brownian motions, then these anomalies
could be detected if the estimation of I is closed to 0.5.

1.3 Research objectives
This research focus on the non-parametric estimators for an improved variant of the tail order
κ as well as the distribution free index I. In particular, we are interested in the asymptotic
behaviors of our target estimators when our observed data are stationary bivariate time series.
The reason for studying bivariate time series is because the observed data are usually financial
time series when studying the dependence between risks while for input-output systems the
observed data may also show certain temporal dependent patterns such as seasonality.

The recently developed variant of the tail order is the tail order of maximal dependence
(TOMD) denoted as κ∗, which fixes the issue that the tail order may sometimes underestimate
the tail dependence between two random variables. However, κ∗ is not widely acknowledged in
practice due to lack of nonparametric estimation methods, while other TDCs do have suck kind
of methods [e.g., 12–14, and references therein]. This research proposes such a non-parametric
estimator for the TOMD and examines how this estimator works particularly for the bivariate
time series data.

For distribution free index I, the non-parametric version is given by Gribkova and Zitikis
[11], which also analyzes its asymptotic behaviors when the input-output pairs are identically
independently distributed (i.i.d.). In this research, we focus on generalized their results to bi-
variate time series data.

The articles integrated include the following: first, we develop a non-parametric estimation
method for κ∗ and test its performance in Chapter 2; next, we shall test the performance of
our proposed method using bivariate time series data in Chapter 3. In Chapter 4, we include
our extension to the results of Gribkova and Zitikis [11]. Chapter 5 lists potential future work
based on our findings.
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Chapter 2

A statistical methodology for assessing the
maximal strength of tail dependence

2.1 Introduction
Extreme co-movements manifest in a variety of problems associated with risk management
and are typically measured using tail dependence indices [e.g., 1–4, and references therein].
Definitions of these indices rely on the identity

C(u, u) = ℓ(u)uκ when u ↓ 0, (2.1.1)

where C : [0, 1]2 → [0, 1] is the bivariate copula of underlying dependent risks, ℓ is a slowly
varying at 0 function [e.g., 5], and κ ∈ [1,∞) is the lower tail order, which we pedantically call
the lower tail order of diagonal dependence. The corresponding upper tail order is obtained by
replacing C in definition (2.1.1) by the corresponding survival copula, and for this reason we
do not discuss this analogous “upper” case. Hence, throughout the rest of this chapter, we drop
the qualifier “lower” and simply call κ the tail order of diagonal dependence (TODD).

Equation (2.1.1) describes asymptotic behavior of the copula C when its arguments shrink
to the origin (0, 0) along the diagonal path (u, u)0≤u≤1, which may or may not reflect the maxi-
mal strength of tail dependence carried by the copula, as illustrated by Furman et al. [6]. Hence,
it becomes natural to seek for a path (e.g., Figure 2.1), called path of maximal tail dependence
(MTD), that gives rise to the tail order of maximal dependence, henceforth shorthanded as
TOMD and denoted by κ∗. When the diagonal path is not an MTD path, as is the case for
many copulas [6] including the Marshall-Olkin (M-O) copula, the classical measures of tail
dependence based on equation (2.1.1) inevitably underestimate the actual (i.e., maximal) tail
dependence. It therefore becomes natural and important (e.g., when assessing the strength of
co-movements of financial instruments), to aim at assessing the strength of tail dependence
based on an MTD path, which may or may not be unique, may or may not be diagonal.

Having said this, we ought to make it clear that the classical diagonal-based indices of
tail dependence, such as κ noted above, are enormously useful by conveying a wealth of in-
formation, as elucidated in many scholarly writings, such as the monographs by Nelsen [7],
Joe [4], Durante and Sempi [8], and Mcneil et al. [9]; see also the references therein. We also
note in this regard the recently introduced notion of p-concentration, which is a diagonal-based

6
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(d) MTD for (a, b) = (0.3529, 0.75).
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(f) MTD for (a, b) = (0.72, 0.9).

Figure 2.1: The M-O copula (left) and its MTD path (right) on a 10,000 point scatterplot for
the specified M-O parameters (a, b) with κ∗ = 1.80, 1.52, and 1.20 (top to bottom).

measure of dependence that plays a pivotal role in characterizing the risk measure Expected
Shortfall [10].
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The aforementioned κ as well as other tail dependence indices associated with equation
(2.1.1) have empirical estimators and well-established statistical inference theories [e.g., 11–
13, and references therein]. The tail order κ∗, as far as we are aware of, does not yet have
an empirical estimator and thus statistical inference theory. This hinders practical use of κ∗

when assessing the strength of tail dependence. The purpose of this chapter is to construct an
empirical estimator of the tail order κ∗ and discuss its practical implementation.

The main idea behind the construction hinges on the realization that it is possible to cir-
cumvent the need for having closed-form expressions for MTD paths. Explaining how this can
be done makes up the contents of Section 2.2, where we gradually introduce and discuss the
estimator. In Section 2.3 we explore statistical properties of the estimator, including its asymp-
totic properties, bias and its reduction. In the same section, we also test the performance of the
estimator on simulated independent and identically distributed (iid) pairs that arise from the
Marshall-Olkin copula. In Section 2.4 we explain how to mitigate the influence of slowly vary-
ing functions, such as ℓ in equation (2.1.1), on the TOMD estimator, where we also illustrate
the technique in a simulation study based on the generalized Clayton copula. Section 2.5 con-
cludes this chapter with a summary of main contributions and suggestions for future research.
Proofs and other technicalities with illustrative graphs are in Appendix 2.5.

2.2 Estimating the tail order of maximal dependence
This section is subdivided into three parts. In Section 2.2.1 we recall the definition of the tail
order κ∗ of maximal dependence, which we call TOMD for short. It is a counterpart of the
earlier discussed tail order κ of diagonal dependence, TODD for short. In Section 2.2.2 we in-
troduce the main idea of estimating κ∗ without relying on explicit expressions of the underlying
paths of maximal tail dependence. In Section 2.2.3 we propose an empirical estimator of κ∗.

2.2.1 Preliminaries: the TOMD
Let C : [0, 1]2 → [0, 1] be any copula. By definition [6], a path of tail dependence is
(φ(u), u2/φ(u))0≤u≤1, where φ : [0, 1] → [0, 1] is a function that satisfies the following ad-
missibility conditions:

1. φ(u) ∈ [u2, 1] for every u ∈ [0, 1];

2. φ(u)→ 0 and u2/φ(u)→ 0 when u ↓ 0.

For example, φ(u) = u is such a function, and it leads to the diagonal path (u, u)0≤u≤1 that we
mentioned earlier in relation to the classical tail order κ.

Let A denote the set of all admissible functions. An MTD path, which is not necessarily
unique, is (φ∗(u), u2/φ∗(u))0≤u≤1 that arises from φ∗ ∈ A given by

φ∗(u) = arg max
φ∈A

C
(
φ(u), u2/φ(u)

)
.

Denote
Π∗(u) = C(φ∗(u), u2/φ∗(u)).
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If there exists κ∗ such that
Π∗(u) = ℓ∗(u)uκ

∗

when u ↓ 0 (2.2.1)

for a slowly varying at 0 function ℓ∗, then κ∗ is called [6] the tail order of maximal dependence
(TOMD). As illustrated in the aforementioned paper, there can be several MTD paths but there
is only one TOMD. We also know from the paper that the TOMD may or may not coincide
with the TODD, and the Gaussian copula is one of those rare cases when the two tail orders
are the same [14].

2.2.2 Estimating the TOMD: an idea

To introduce an idea for estimating the TOMD, we focus on the case

Π∗(u) = uκ
∗

, u ∈ [0, 1], (2.2.2)

where κ∗ ≥ 1 is a parameter. That is, for the sake of simplicity, but only until Section 2.4,
we drop the slowly varying function ℓ∗ from our main considerations, although we shall touch
upon a practical aspect of this simplification sooner, at the end of the current section.

Property (2.2.2) is of course satisfied by the Marshall-Olkin (M-O) copula

Ca,b(u, v) = min(u1−av, uv1−b), u, v ∈ [0, 1], (2.2.3)

where a, b ∈ [0, 1] are parameters, and we shall therefore conveniently use it in a simulation
study, whose results will be reported in Section 2.3.2. Recall that the TOMD of this copula
is [6]

κ∗ = 2 −
2ab

a + b
. (2.2.4)

For theory and applications of the M-O copula with further references, we refer to Cherubini
et al. [15, 16], and Mcneil et al. [9]. For recent actuarial applications of the copula with
generalizations and related references, we refer to Su and Furman [17].

Next, under assumption (2.2.2), we have

κ∗ =
logΠ∗(u)

log u
≤

log C
(
φ(u), u2/φ(u)

)
log u

(2.2.5)

for all u ∈ [0, 1] and every φ ∈ A. With the notation x = φ(u) and y = u2/φ(u), we therefore
have

κ∗ ≤
log C(x, y)
log
√

xy
=

2 log C(x, y)
log x + log y

for all x, y ∈ [0, 1] such that xy = u2. The latter bound suggests that given random pairs
(U1,V1), . . . , (Un,Vn) ∼ C, which we assume to be independent throughout this chapter, the
TOMD κ∗ under model (2.2.2) can be estimated by

κ̂∗n := min
i=1,...,n

2 log Cn(Ui,Vi)
log Ui + log Vi

, (2.2.6)
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where

Cn(u, v) =
1
n

n∑
i=1

1 {Ui ≤ u,Vi ≤ v}

with 1 denoting the indicator function.
We shall find it more convenient, however, to work with a slight modification of the esti-

mator κ̂∗n. Namely, let

κ̂∗n(θ) := min
i=1,...,n

2Tθ ◦Cn(Ui,Vi)
log Ui + log Vi

, (2.2.7)

where

Tθ(t) =

(tθ − 1)/θ when θ > 0,
log(t) when θ = 0,

for all t ∈ (0, 1]. In the following paragraph we shall explain the technical aspect that has lead
us to the introduction of the function Tθ into considerations.

The estimator κ̂∗n(θ) is the ratio of a quantity based on Tθ for some small θ > 0 in the
numerator, and a quantity based on T0 = log in the denominator. Having this combination
of Tθ’s does not affect the numerical performance of the estimator but considerably simplifies
the proofs. To illustrate the technical challenges that we face, we can just look at the uniform
empirical distribution function Cn(u, 1), 0 < u < 1. To assess how close Tθ ◦ Cn(u, 1) and
Tθ ◦C(u, 1) are, we employ the mean value theorem and look at the smallness of

|Cn(u, 1) −C(u, 1)|
C(u, 1)1−θ(1 −C(u, 1))1−θ ,

uniformly over 0 < u < 1. When n → ∞, we have uniform convergence to 0 as long as
θ > 0, but there cannot be such convergence when θ = 0. These facts follow immediately from
classical results of Lai [18] on the weighted Glivenko-Cantelli Theorem. For a multivariate
version of this theorem, we refer to Mason [19]. For further references and advances on the
topic, we refer to Berghaus et al. [20].

We are now ready to discuss practical implications of working with model (2.2.2) instead
of (2.2.1). As we have seen, the simplification has helped us to elucidate the main idea of
the estimator, but from the practical point of view, one would of course like to work with a
great variety of copulas, and not just with the M-O copula, or its symmetrized version [e.g.,
6]. To see how to overcome this obstacle, we go back to general model (2.2.1) for which
statement (2.2.5) turns into

κ∗ =
logΠ∗(u) − log ℓ(u)

log u

≤
log C

(
φ(u), u2/φ(u)

)
log u

−
log ℓ(u)

log u
≈

log C
(
φ(u), u2/φ(u)

)
log u

(2.2.8)

with the approximation holding for sufficiently small u > 0, due to [e.g., 5, Proposition 1.3.6(i),
p. 16]

ϱ(u) :=
log ℓ(u)

log u
→ 0 when u ↓ 0. (2.2.9)
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The right-hand side of (2.2.8) is the same as that of (2.2.5). Hence, the above introduced esti-
mator of TOMD can work for general copulas as long as the ratio ϱ(u) is small, for which u > 0
has to be small. This can be achieved by using only those random pairs (U1,V1), . . . , (Un,Vn)
that are close to the origin (0, 0). We shall therefore employ a conditioning argument later in
this chapter.

We should point out right at the outset that the restriction of data to only those pairs that are
close to the origin (0, 0) is not an issue from the theoretical point of view but becomes a chal-
lenge from the practical point of view. Indeed, the closer we are to the origin, the fewer random
pairs we have, and thus we possibly have a large statistical estimation error. If, however, we
use all n observations, then the statistical error becomes minimal but the model bias due to
possibly large ratio ϱ(u) might be large, unless we of course deal with the M-O copula, for
which ϱ(u) = 0 for all u ∈ (0, 1). Hence, when dealing with real data, a very delicate balancing
act needs to be accomplished, but the task is certainly doable as we shall see in Section 2.4.

2.2.3 In pursuit of efficiency: an improved estimator
Simulations have shown that the estimators κ̂∗n and κ̂∗n(θ) do work, but they are rather inefficient.
For this reason, we next introduce a modification of κ̂∗n(θ).

Let the pairs (U1,V1), . . . , (Un,Vn) be iid, and since we are working under model (2.2.2),
we can utilize all the pairs. (Under model (2.2.1), we would need to restrict ourselves to
only those pairs that are in a neighbourhood of (0, 0); the smaller the neighbourhood, the
smaller the bias.) Next we choose any fixed m ∈ {1, . . . , n} and randomly assign the pairs
(U1,V1), . . . , (Un,Vn) into k = ⌈n/m⌉ groups, so that there can be at most one group (perhaps
none) with less than m pairs, whereas all the other groups contain exactly m pairs. Denote these
k groups by G1, . . . ,Gk. We define the average block-minima estimator of the TOMD κ∗ by

κ̂∗n(m, θ) =
1
k

k∑
j=1

min
i∈G j

2Tθ ◦Cn(Ui,Vi)
log Ui + log Vi

. (2.2.10)

Note that the earlier introduced estimator κ̂∗n(θ) is κ̂∗n(m, θ) when m = n, and thus k = 1. In view
of the aforementioned deficiencies of κ̂∗n(θ), however, in what follows (unless explicitly noted
otherwise) we work with fixed m, which can in principle be allowed to depend on n, but this
would require more complex arguments, which we wish to avoid at this stage of our research.

In a nutshell, the estimator κ̂∗n(m, θ) works because:

1. for every integer m ≥ 1 and real θ > 0, and when n→ ∞, the estimator κ̂∗n(m, θ) converges
to the limit

κ∗(m, θ) = E
[

min
i=1,...,m

2Tθ ◦C(Ui,Vi)
log Ui + log Vi

]
; (2.2.11)

2. the TOMD κ∗ can be written as

κ∗ = ess inf
2 log C(U,V)
log U + log V

≈ ess inf
2Tθ ◦C(U,V)
log U + log V

, (2.2.12)

with the approximation holding for small θ > 0.
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Thus, κ∗ can be approximated by κ∗(m, θ) for sufficiently large m ≥ 1 and small θ > 0.
Rigorous formulations and assumptions needed for the validity of the above two facts make

up the contents of two theorems in the next section. Namely, Theorem 2.3.1 deals with asymp-
totic results, whereas Theorem 2.3.5 deals with bias reduction. Their proofs, which are rather
involved, are in Appendix 2.5, where we also placed graphs that visualize the asymptotic dis-
tribution (i.e., normality) of the estimator.

2.3 Estimator’s statistical properties and performance
We split this section into two parts: Section 2.3.1 deals with theoretical aspects of the estimator
κ̂∗n(m, θ), and Section 2.3.2 illustrates the estimator’s performance on simulated data.

2.3.1 Theoretical results
Throughout, we use the function

g(u, v) =
1{0 < C(u, v) < 1}
C(u, v)(1 −C(u, v))

,

which is defined for all u, v ∈ [0, 1].

Theorem 2.3.1 Let C be positively quadrant dependent (PQD), that is, C(u, v) ≥ uv for every
u, v ∈ [0, 1], and let θ ∈ (0, 1) be any constant. If E[g(U,V)1−θ] < ∞, then for every integer
m ≥ 1, we have

κ̂∗n(m, θ)
p
→ κ∗(m, θ) (2.3.1)

when n→ ∞, where
p
→ denotes convergence in probability.

We next discuss how to verify the finiteness of E[g(U1,V1)1−θ], for which we employ
Kendall’s cumulative distribution function (cdf) KC [21]. It is the cdf of the random vari-
able C(U,V) when the pair (U,V) follows the joint cdf C. For example, when C is the M-O
copula, the Kendall’s cdf is (details in Appendix 2.A)

Ka,b(t) = t −
(
2 −

2
κ∗

)
t log(t) (2.3.2)

for all t ∈ (0, 1], where κ∗ is the TOMD given equation (2.2.4).

Note 2.3.2 The appearance of the TOMD κ∗ and not of the classical TODD κ = min{a, b} in
formula (2.3.2) for Ka,b lends additional support for the naturalness of the TOMD as an index
of tail dependence.

Lemma 2.3.3 Let KC denote the Kendall’s cdf, and let τ ∈ (0, 1) be any constant. If the
integral

∫
(0,1]

t−τ dKC(t) is finite, then the moment E[g(U,V)τ] is finite, where the random pair
(U,V) follows the joint cdf C.
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To illustrate, when C is the comonotonic copula, we have Π∗(u) = u and KC(t) = t, and
when C is the independence copula, we have Π∗(u) = u2 and KC(t) = t − t log t [22]. In both
cases, Lemma 2.3.3 and thus Theorem 2.3.1 apply. The following corollary to Lemma 2.3.3 is
convenient.

Corollary 2.3.4 If the derivative K′C of the Kendall’s cdf exists in a neighbourhood of 0 and is
regularly varying of order α ∈ (−1, 0], that is, K′C(t) = tαℓC(t), where ℓC is a slowly varying at
0 function, then the moment E[g(U,V)τ] is finite for all τ ∈ (0, 1 + α).

Theorem 2.3.1 does not imply that κ̂∗n(m, θ) is a consistent estimator of κ∗ because κ∗(m, θ) is
not generally equal to κ∗. Nevertheless, the following theorem shows that κ∗(m, θ) approaches
κ∗ when m gets sufficiently large and θ > 0 sufficiently small. This may suggest to use the
maximally large m, that is, m = n, but this would lead to k = ⌈n/m⌉ = 1 and thus turn the
estimator κ̂∗n(m, θ) into just one summand, thus effectively eliminating the important averaging
effect that reduces the estimator’s statistical error.

Theorem 2.3.5 Let C be PQD, and let the functions φ∗(u) and ψ∗(u) := u2/φ∗(u) be strictly
increasing. Then κ∗(m, θ) can be made as close to κ∗ as desired by taking sufficiently large
m ≥ 1 and sufficiently small θ > 0.

We next illustrate these theoretical results on simulated data.

2.3.2 An illustrative simulation study
To illustrate the performance of κ̂∗n(m, θ), we simulate data from the M-O copula (equation (2.2.3))
whose TOMD is given by equation (2.2.4). Hence, Π∗a,b(u) = uκ

∗

. Since

K′a,b(t) =
(

2
κ∗
− 1

)
−

(
2 −

2
κ∗

)
log(t) (2.3.3)

is slowly varying at 0, Theorem 2.3.1 applies. Furthermore, since the M-O copula is PQD,
Theorem 2.3.5 also applies. Based on these results, and always setting the parameter θ to

θ0 := 10−6,

we expect the simulated values of κ̂∗n(m, θ0) to be close to the true theoretical ones. We verify
this conjecture using a simulated experiment.

We set the M-O parameter (a, b) to the values specified in Table 2.1, with the corresponding

(a, b) (0.18, 0.225) (0.3529, 0.75) (0.72, 0.9)
κ∗ 1.80 1.52 1.20

MTD strength weak medium strong

Table 2.1: The parameter (a, b) choices with κ∗ values and MTD strength.

values of κ∗ calculated according to equation (2.2.4). Our adopted classification of the MTD
strength according to the values of κ∗ ∈ [1, 2] is of course subjective: we say that MTD is
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weak when κ∗ ∈ [5/3, 2], medium when κ∗ ∈ [4/3, 5/3], and strong when κ∗ ∈ [1, 4/3]. To
study the effect of m on the estimator κ̂∗n(m, θ0), we set m = 3, 5, 7, 10, and 20. We measure the
estimator’s performance using the mean (Mean) and the standard deviation (StDev) based on
1, 000 simulated values of κ̂∗n(m, θ0). We also calculate the p-values based on the Anderson–
Darling (A-D) and Cramér–von Mises (C-vM) goodness-of-fit tests when the simulated values
of κ̂∗n(m, θ0) are fitted to the normal distribution. The results for the sample sizes n = 10, 000
and n = 20, 000 are reported in Tables 2.2–2.3. The corresponding histograms and fitted

m k = ⌈n/m⌉ κ∗ Mean StDev A-D C-vM

3 3334
1.80 1.8267 0.0186 0.7448 0.6912
1.52 1.5466 0.0172 0.7114 0.5860
1.20 1.1946 0.0151 0.6905 0.7290

5 2000
1.80 1.8073 0.0191 0.6053 0.5469
1.52 1.5182 0.0181 0.3325 0.2770
1.20 1.1819 0.0165 0.1222 0.1910

7 1429
1.80 1.7969 0.0195 0.4578 0.4273
1.52 1.5065 0.0190 0.1679 0.1476
1.20 1.1761 0.0179 0.0221 0.0469

10 1000
1.80 1.7872 0.0200 0.2899 0.2859
1.52 1.4972 0.0203 0.0497 0.0502
1.20 1.1700 0.0200 0.0026 0.0075

20 500
1.80 1.7700 0.0219 0.0790 0.0959
1.52 1.4817 0.0244 0.0018 0.0040
1.20 1.1563 0.0258 0.0000 0.0002

Table 2.2: Summary statistics for κ̂∗n(m, θ0) based on iid data of size n = 10, 000 with the p-
values of the A-D and C-vM tests for normality shaded when they fall below 0.05.

normal densities are depicted in Figures 2.6–2.7. Based on these numerical results and graphs,
we make the following observations.

First, the simulated means are quite close to the corresponding values of κ∗. Note also
that the differences between them get larger when the values of κ∗ get smaller, which may
suggest that the stronger the tail dependence is, the more observations are needed to accurately
estimate κ∗. Tables 2.2–2.3 suggest that m = 3 is not sufficiently large for the cases κ∗ = 1.80
and κ∗ = 1.52, because the differences between the simulated means and the theoretical values
do not seem to diminish when the sample size increases. The choice m = 5 seems appropriate
as it leads to fairly accurate estimates of κ∗ in all the cases considered. Setting m larger than 5
does not seem to significantly improve the estimates. Furthermore, we see from Figures 2.6–
2.7 that the simulated distributions of κ̂∗n(m, θ0) exhibit uni-modality, even normality, which
suggests that the simulated means get reasonably close to the theoretical values of κ∗.
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m k = ⌈n/m⌉ κ∗ Mean StDev A-D C-vM

3 6667
1.80 1.8296 0.0132 0.7623 0.6902
1.52 1.5493 0.0124 0.9995 0.9984
1.20 1.1983 0.0109 0.4018 0.3724

5 4000
1.80 1.8117 0.0136 0.8813 0.8560
1.52 1.5226 0.0132 0.9594 0.9294
1.20 1.1878 0.0120 0.0515 0.0608

7 2857
1.80 1.8025 0.0139 0.8974 0.8980
1.52 1.5125 0.0138 0.5907 0.6090
1.20 1.1836 0.0130 0.0077 0.0128

10 2000
1.80 1.7944 0.0144 0.9443 0.9683
1.52 1.5052 0.0148 0.1778 0.2272
1.20 1.1793 0.0145 0.0006 0.0017

20 1000
1.80 1.7813 0.0158 0.8076 0.8567
1.52 1.4938 0.0178 0.0032 0.0088
1.20 1.1697 0.0187 0.0000 0.0000

Table 2.3: Summary statistics for κ̂∗n(m, θ0) based on iid data of size n = 20, 000 with the p-
values of the A-D and C-vM tests for normality shaded when they fall below 0.05.

2.4 Estimating the TOMD when ℓ is present

In this section, we adjust the methodology discussed in the previous sections in order to es-
timate TOMD when, unlike in the case of the M-O copula, a slowly varying function might
be present. At the core of this adjustment is a conditioning argument. Namely, we restrict
ourselves to only those observations that are near the origin (0, 0), which effectively shifts our
attention from the original copula to the one conditioned on observations below certain pre-
specified thresholds. Since the conditional copula is the ratio of probabilities, this leads us –
via equation (2.2.1) – to a ratio of the type ℓ(qu)/ℓ(q), where q > 0 is a small parameter whose
value could, for example, be a confidence level set by convention (e.g., 0.05), or by regulation
[e.g., 23, 24]. The ratio ℓ∗(qu)/ℓ∗(q) is close to 1 when q > 0 is small, due to the very definition
of slowly varying at 0 function [e.g., 5, Definition, p. 6].

2.4.1 Estimating the TOMD

In view of the equation Π∗(u) = ℓ∗(u)uκ
∗

when u ↓ 0, the conditional maximal tail probability
is

C(φ∗(qu), q2u2/φ∗(qu))
C(φ∗(q), q2/φ∗(q))

=
ℓ∗(qu)(qu)κ

∗

ℓ∗(q)qκ∗
≈ uκ

∗

when 0 < q ≈ 0. Hence, for any φ, we have the approximate bound

C(φ(qu), q2u2/φ(qu))
C(φ∗(q), q2/φ∗(q))

⪅ uκ
∗

.
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By letting ũ = φ(qu)/φ∗(q) and ṽ = u2φ∗(q)/φ(qu), where

φ∗(q) = arg max
x

C(x, q2/x),

the above approximate bound turns into

C(φ∗(q)ũ, q2ṽ/φ∗(q))
C(φ∗(q), q2/φ∗(q))

⪅ uκ
∗

.

Note the equation uκ
∗

= (ũṽ)κ
∗/2. With the notation

F∗q(ũ, ṽ) :=
C(φ∗(q)ũ, q2ṽ/φ∗(q))
C(φ∗(q), q2/φ∗(q))

,

we arrive at the bound

κ∗ ⪅
2 log F∗q(ũ, ṽ)

log ũ + log ṽ
.

Hence, given random pairs (U1,V1), . . . , (Un,Vn) and a small risk level q > 0, the TOMD κ∗

can be estimated via the following procedure:

1. using all the pairs available in the entire unit square [0, 1]2, compute an estimate of φ∗(q)
by maximizing Cn(x, q2/x) with respect to x ∈ [q2, 1], where Cn is the empirical copula
constructed from all the n pairs that are available in the entire unit square [0, 1]2;

2. extract the setMq,n of all those pairs (Ui,Vi) that are in the rectangle [0, φ∗(q)]×[0, q2/φ∗(q)],
and let mq,n := #(Mq,n) denote the number of pairs inMq,n;

3. randomly assign the pairs that are inMq,n into ⌈mq,n/m⌉ disjoint groups, whose index sets
we denote by G1, . . . ,G⌈mq,n/m⌉ ⊆ {1, 2, . . . , n}, and they are such that there is at most one
group with less than m elements, with all the other groups having exactly m elements;

4. compute the average block-minima estimator of the TOMD κ∗ by the formula

κ̂∗mq,n
(m, θ, q) =

1
⌈mq,n/m⌉

⌈mq,n/m⌉∑
j=1

min
i∈G j

2Tθ ◦ F∗q,Mq,n
(Ũi, Ṽi)

log Ũi + log Ṽi
,

where Ũi = Ui/φ
∗(q), Ṽi = Viφ

∗(q)/q2, and

F∗q,Mq,n
(u, v) =

1
mq,n

∑
(Uk ,Vk)∈Mq,n

1{Ũk ≤ u, Ṽk ≤ v}.

2.4.2 An illustrative simulation study
To demonstrate how the estimator κ̂∗mq

(m, θ, q) works in practice, we simulate n = 500, 000
independent pairs (Ui,Vi) ∼ Cγ0,γ1 from the generalized Clayton copula

Cγ0,γ1(u, v) = uγ1/γ
∗
(
u−1/γ∗ + v−1/γ0 − 1

)−γ0

, u, v ∈ [0, 1],
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where γ0 > 0 and γ1 ≥ 0 are the model parameters, with their values specified in Table 2.4, and
γ∗ := γ0 + γ1. As calculated by [6], the TOMD for this copula is

κ∗ = 1 +
γ1

γ1 + 2γ0
.

We repeat the procedure 1, 000 times and thus obtain 1, 000 values of κ̂∗mq
(m, θ0, q) with the

(γ0, γ1) κ∗ Mean StDev A-D C-vM
(0.1, 0.8) 1.8 1.7914 0.0366 0.9565 0.9507
(0.4, 0.8) 1.5 1.5071 0.0219 0.9596 0.9183
(0.4, 0.2) 1.2 1.2086 0.0127 0.8601 0.8792

Table 2.4: Summary of simulation results when m = 5 and q = 0.05.

parameter values set to m = 5 and q = 0.05. Summary statistics are reported in Table 2.4,
from which we see that the A-D and C-vM goodness-of-fit p-values retain the null hypothesis
of normality. Fits of the estimator values to the normal distribution are depicted in Figure 2.2.
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(c) m = 5, κ∗ = 1.2

Figure 2.2: Fits of simulated κ̂∗mq
(m, θ0, q) values to the normal distribution when m = 5 and

q = 0.05.

For comparison, using the same parameter (γ0, γ1) values as before, and the same m = 5
but now with the increased threshold q = 0.1 and thus a larger mq, we obtain 1, 000 values
of the TOMD estimator κ̂∗mq

(m, θ0, q) whose summary statistics are reported in Table 2.5. The

(γ0, γ1) κ∗ Mean StDev A-D C-vM
(0.1, 0.8) 1.8 1.8072 0.0200 0.9436 0.8645
(0.4, 0.8) 1.5 1.5142 0.0136 0.7527 0.7505
(0.4, 0.2) 1.2 1.2111 0.0081 0.7281 0.7883

Table 2.5: Summary of simulation results when m = 5 and q = 0.1.

A-D and C-vM goodness-of-fit p-values retain the null hypothesis of normality. Fits of the
estimator values to the normal distribution are depicted in Figure 2.3.

By increasing the risk level q from 0.05 to 0.1 we have increased the number mq of pairs
and thus potentially reduced the estimator’s statistical error, but this could have increased the
deterministic bias tackled in Theorem 2.3.5. As we have noted earlier, it is a delicate task to
strike the right balance between the competing forces of having small q > 0 and large mq.
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Figure 2.3: Fits of simulated κ̂∗mq
(m, θ0, q) values to the normal distribution when m = 5 and

q = 0.1.

2.5 Conclusion

We have proposed an empirical estimator of the tail order of maximal dependence. The esti-
mator successfully avoids the complexity of deriving explicit formulas of the underlying paths
of maximal tail dependence. To test the estimator’s practical performance, we have conducted
a simulation study and discussed our findings. There are still a number of interesting problems
for future research, including these:

1. Explore estimator’s statistical properties and practical performance under various dy-
namical DGP’s (i.e., data generating processes) such as those arising from short- and
long-range memory time series.

2. Relax the currently imposed fixedness of m by describing those sequences m = mn ∈

{1, . . . , n} which grow to infinity together with n → ∞ and maintain asymptotic unbi-
asedness of the proposed estimator.

3. When searching for efficient and reliable estimators, explore different block designs and
their combinations using, e.g., generalized means, as illustrated by Vovk and Wang [25]
in a statistically different but philosophically closely related context.

4. Explore the roles of the functions Tθ and T0 = log when defining estimators.

5. Derive asymptotic normality/distribution of the estimator, and explore ways for practical
assessment of its standard error.

6. In addition to κ∗, [6] also discuss other indices related to maximal tail dependence, such
as λ∗L and χ∗L. We have indications, but no proofs yet, that techniques of this chapter
could be adapted to estimate those indices as well.

Appendix

In Appendix 2.A we present a number of technical results that will later be used for proving
Theorems 2.3.1–2.3.5 in Appendix 2.B.
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2.A Auxiliary results
We start with three calculus-type propositions, which are included here to make the proofs in
subsequent appendices more self-contained and thus easier checked.

Proposition 2.A.1 For all real xi, yi ∈ R and integer m ≥ 1, we have∣∣∣∣ min
i=1,...,m

xi − min
i=1,...,m

yi

∣∣∣∣ ≤ max
i=1,...,m

|xi − yi|.

Proof Let j and k be those that satisfy the equations mini=1,...,m xi = x j and mini=1,...,m yi = yk. If
x j ≥ yk, then |x j − yk| = x j − yk ≤ xk − yk, but if x j < yk, then |x j − yk| = yk − x j ≤ y j − x j. This
finishes the proof.

Proposition 2.A.2 Let θ ∈ (0, 1). The bound x1−θ|yθ − xθ| ≤ |y − x| holds for all x, y ∈ (0,∞).

Proof Denote ∆ := x1−θ|yθ − xθ|. If y > x, then ∆ = x1−θyθ − x ≤ y − x = |y − x|, but if x > y,
then ∆ = x − x1−θyθ ≤ x − y = |y − x|. This finishes the proof.

Proposition 2.A.3 For all x ≤ 0, we have |ex − 1 − x| ≤ 0.5x2.

Proof The functions f (x) = ex − 1 − x and g(x) = 0.5x2 are non-negative, and satisfy f (0) =
0 = g(0). Furthermore, their difference g(x) − f (x) is non-increasing. Hence,

g(x) − | f (x)| = g(x) − f (x) ≥ g(0) − f (0) = 0,

which completes the proof.

For any copula C, its Kendall’s cdf is, by definition, the distribution of the random variable
C(U,V), where (U,V) follows the joint cdf C.

Proposition 2.A.4 The Kendall’s cdf Ka,b of the M-O copula Ca,b is given by formula (2.3.2).

Proof Let (U,V) denote the random pair whose joint cdf is the M-O copula Ca,b. Then [e.g.,
15, p. 128]

P(U ≤ u | V = v) = u1−a1{u ∈ [vb/a, 1]} + (1 − b)uv−b1{u ∈ [0, vb/a)}

for all u, v ∈ [0, 1]. Using this equation, we next derive formula (2.3.2) for the Kendall’s
cdf Ka,b by establishing the corresponding formula for the Kendall’s survival function Ka,b =

1 − Ka,b. Namely, for t ∈ (0, 1), we have

Ka,b(t) = P
(
Ca,b(U,V) > t

)
= P

(
U1−aV > t,UV1−b > t

)
=

∫ 1

t
P
(
U > max((t/v)1/(1−a), tvb−1) | V = v

)
dv
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=

∫ 1

t

(
1 −max(t/v, t1−av(b−1)(1−a))1{max((t/v)1/(1−a), tvb−1) ∈ [vb/a, 1]}

− (1 − b) max((t/v)1/(1−a), tvb−1)v−b1{max((t/v)1/(1−a), tvb−1) ∈ [0, vb/a)}
)

dv.

Since (t/v)1/(1−a) ≥ vb/a is equivalent to the bound t1/(b/a−b+1) ≥ v, and tvb−1 ≥ vb/a is also
equivalent to the same bound t1/(b/a−b+1) ≥ v, we have the following equivalence relationships:

max((t/v)1/(1−a), tvb−1) ∈ [vb/a, 1] ⇐⇒ t1/(b/a−b+1) ≥ v ⇐⇒ t/v ≥ t1−av(b−1)(1−a).

Hence,

Ka,b(t) = 1 − t − t
∫ t1/(b/a−b+1)

t
v−1 dv − (1 − b)t

∫ 1

t1/(b/a−b+1)
v−1 dv

= 1 − t − t
∫ 1

t
v−1 dv + bt

∫ 1

t1/(b/a−b+1)
v−1 dv

= 1 − t + t log(t) −
ab

a + b − ab
t log(t)

= 1 − t +
(
2 −

a + b
a + b − ab

)
t log(t)

= 1 − t +
(
2 −

2
κ∗

)
t log(t).

This completes the proof of formula (2.3.2) and establishes Proposition 2.A.4.

Proof of Lemma 2.3.3 Note that KC(t) ≥ t for all t ∈ (0, 1). Hence,

E[g(U,V)τ1{C(U,V) > 1/2}] =
∫

(1/2,1]

1
tτ(1 − t)τ

dKC(t)

≤ 2τ
∫

(1/2,1]

1
(1 − KC(t))τ

dKC(t) < ∞

for every τ ∈ (0, 1). The expectation E[g(U,V)τ1{C(U,V) < 1/2}] is finite whenever
∫

(0,1]
t−τ dKC(t) <

∞, which establishes Lemma 2.3.3.

Proposition 2.A.5 Let (U,V) follow the joint distribution C. If the moment E[g(U,V)τ] is finite
for some τ ∈ (0, 1), then, when n→ ∞,

∆n(τ) := sup
u,v∈[0,1]

g(u, v)τ|Cn(u, v) −C(u, v)|
p
→ 0.

Proof We begin by noting that for every sufficiently large constant c (e.g., c > 4τ), there exists
γc > 0 such that

c = (1/2 + γc)−τ(1/2 − γc)−τ,

and γc → 1/2 when c→ ∞. Hence, g(u, v)τ > c if and only if

C(u, v) ∈ (0, 1/2 − γc) ∪ (1/2 + γc, 1).



2.A. Auxiliary results 21

Therefore,
∆n(τ) ≤ cI1n(c) + I2n(c) + I3n(c), (2.A.1)

where

I1n(c) = sup
u,v∈[0,1]

|Cn(u, v) −C(u, v)|,

I2n(c) = sup
u,v∈[0,1]:C(u,v)<1/2−γc

g(u, v)τ|Cn(u, v) −C(u, v)|,

I3n(c) = sup
u,v∈[0,1]:C(u,v)>1/2+γc

g(u, v)τ|Cn(u, v) −C(u, v)|.

For every fixed c > 0, the two-dimensional version of the Glivenko-Cantelli theorem implies

I1n(c)
p
→ 0 (2.A.2)

when n→ ∞. As to I2n(c), we estimate it from above by Jn(c) + J(c), where

Jn(c) = sup
u,v∈[0,1]:C(u,v)<1/2−γc

g(u, v)τCn(u, v),

J(c) = sup
u,v∈[0,1]:C(u,v)<1/2−γc

g(u, v)τC(u, v).

To tackle Jn(c), we first note that when C(u, v) < 1/2−γc, the function g(u, v)τ is non-increasing
in each argument. Hence,

Jn(c) ≤
1
n

n∑
i=1

sup
u,v∈[0,1]:C(u,v)<1/2−γc

g(u, v)τ1{Ui ≤ u,Vi ≤ v}

≤
1
n

n∑
i=1

g(Ui,Vi)τ sup
u,v∈[0,1]:C(u,v)<1/2−γc

1{Ui ≤ u,Vi ≤ v}

≤
1
n

n∑
i=1

g(Ui,Vi)τ sup
u,v∈[0,1]:C(u,v)<1/2−γc

1{C(Ui,Vi) ≤ C(u, v)}

≤
1
n

n∑
i=1

g(Ui,Vi)τ1{C(Ui,Vi) < 1/2 − γc}.

By the law of large numbers, for every ϵ > 0 we can find a sufficiently large c < ∞ such that

P
(
Jn(c) ≥ ϵ

)
→ 0

when n → ∞, because γc → 1/2 when c → ∞ and thus E[g(U,V)τ1{C(U1,V1) < 1/2 − γc}]
can be made as small as desired due to E[g(U,V)τ] < ∞. Furthermore,

J(c) ≤ sup
u,v∈[0,1]:C(u,v)<1/2−γc

C(u, v)1−τ

(1 −C(u, v))τ
≤

(1/2 − γc)1−τ

(1/2 + γc)τ
→ 0

when c → ∞. Hence, for every ϵ > 0, we can find a sufficiently large c < ∞ such that, when
n→ ∞,

P
(
I2n(c) ≥ ϵ

)
→ 0. (2.A.3)
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Finally, to tackle I3n(c), we start with the bound I3n(c) ≤ Kn(c) + K(c), where

Kn(c) = sup
u,v∈[0,1]:C(u,v)>1/2+γc

g(u, v)τ(1 −Cn(u, v)),

K(c) = sup
u,v∈[0,1]:C(u,v)>1/2+γc

g(u, v)τ(1 −C(u, v)).

We have

Kn(c) ≤
1
n

n∑
i=1

sup
u,v∈[0,1]:C(u,v)>1/2+γc

g(u, v)τ
(
1{Ui > u} + 1{Vi > v}

)
.

When C(u, v) > 1/2 + γc, the function g(u, v)τ is nondecreasing in each argument and thus

Kn(c) ≤
1
n

n∑
i=1

g(Ui, 1)τ sup
u∈[0,1]:u>1/2+γc

1{Ui > u} +
1
n

n∑
i=1

g(1,Vi)τ sup
v∈[0,1]:v>1/2+γc

1{Vi > v}

≤
1
n

n∑
i=1

g(Ui, 1)τ1{Ui > 1/2 + γc} +
1
n

n∑
i=1

g(1,Vi)τ1{Vi > 1/2 + γc}.

By the law of large numbers, for every ϵ > 0 we can find a sufficiently large c < ∞ such that

P
(
Kn(c) ≥ ϵ

)
→ 0

when n → ∞, because γc → 1/2 when c → ∞ and thus the expectations E[g(U, 1)τ1{U >
1/2 + γc}] and E[g(1,V)τ1{V > 1/2 + γc}] can be made as small as desired, due to

E[g(U, 1)τ] = E[g(1,V)τ] = Beta(1 − τ, 1 − τ) < ∞.

Furthermore,

K(c) ≤ sup
u,v∈[0,1]:C(u,v)>1/2+γc

(1 −C(u, v))1−τ

C(u, v)τ
≤

(1/2 − γc)1−τ

(1/2 + γc)τ
→ 0

when c→ ∞. Consequently, for every ϵ > 0 we can find a sufficiently large c < ∞ such that

P
(
I3n(c) ≥ ϵ

)
→ 0 (2.A.4)

when n→ ∞. Bound (2.A.1) and statements (2.A.2)–(2.A.4) establish Proposition 2.A.5.

2.B Proofs of Theorems 2.3.1–2.3.5
Proof of Theorem 2.3.1 Since there is at most one group G j whose cardinality is less than m,
without loss of generality we can, and thus do, assume n = mk. Denote

ξ̂i,n,θ =
2Tθ ◦Cn(Ui,Vi)
log Ui + log Vi

and ξi,θ =
2Tθ ◦C(Ui,Vi)
log Ui + log Vi

for all i = 1, . . . , n. By Proposition 2.A.1, for every j = 1, . . . , k, we have∣∣∣∣ min
i∈G j

ξ̂i,n,θ −min
i∈G j

ξi,θ

∣∣∣∣ ≤ max
i∈G j

∣∣∣ξ̂i,n,θ − ξi,θ

∣∣∣
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=
2
θ

max
i∈G j

∣∣∣∣∣∣Cn(Ui,Vi)θ −C(Ui,Vi)θ

log Ui + log Vi

∣∣∣∣∣∣
≤

2
θ

max
i∈G j

|Cn(Ui,Vi) −C(Ui,Vi)|
C(Ui,Vi)1−θ|log Ui + log Vi|

, (2.B.1)

where the last inequality is due to Proposition 2.A.2. Since C is PQD, we have uv ≤ C(u, v)
and thus | log(uv)| ≥ | log C(u, v)| for all u, v ∈ [0, 1]. Bound (2.B.1) implies∣∣∣∣ min

i∈G j
ξ̂i,n,θ −min

i∈G j
ξi,θ

∣∣∣∣ ≤ 2
θ

max
i∈G j

|Cn(Ui,Vi) −C(Ui,Vi)|
C(Ui,Vi)1−θ|log C(Ui,Vi)|

. (2.B.2)

Furthermore, since | log C(u, v)| ≥ 1 −C(u, v) for every u, v ∈ [0, 1], bound (2.B.2) implies∣∣∣∣ min
i∈G j

ξ̂i,n,θ −min
i∈G j

ξi,θ

∣∣∣∣ ≤ 2
θ

max
i∈G j

|Cn(Ui,Vi) −C(Ui,Vi)|
C(Ui,Vi)1−θ[1 −C(Ui,Vi)]

≤
2
θ
∆n(1 − θ) max

i∈G j
[1 −C(Ui,Vi)]−θ, (2.B.3)

where ∆n(·) is defined in Proposition 2.A.5. Hence,∣∣∣∣∣1k
k∑

j=1

min
i∈G j

ξ̂i,n,θ −
1
k

k∑
j=1

min
i∈G j

ξi,θ

∣∣∣∣∣ ≤ 1
k

k∑
j=1

∣∣∣∣ min
i∈G j

ξ̂i,n,θ −min
i∈G j

ξi,θ

∣∣∣∣
≤ ∆n(1 − θ)

2
kθ

k∑
j=1

max
i∈G j

[1 −C(Ui,Vi)]−θ

≤ ∆n(1 − θ)
2
kθ

k∑
j=1

∑
i∈G j

[1 −C(Ui,Vi)]−θ

≤ ∆n(1 − θ)
2m
nθ

n∑
i=1

[1 −C(Ui,Vi)]−θ. (2.B.4)

Since the moment E[g(U1,V1)1−θ] is finite by assumption, the quantity ∆n(1− θ) converges to 0
in probability. Hence, the entire right-hand side of bound (2.B.4) converges to 0 in probability
if the average n−1 ∑n

i=1[1 − C(Ui,Vi)]−θ converges to a finite number. This follows from the
classical law of large numbers because

E[(1 −C(U,V))−θ] =
∫

(0,1)

1
(1 − t)θ

dKC(t)

≤

∫
(0,1)

1
(1 − KC(t))θ

dKC(t) < ∞.

Therefore, the left-hand side of bound (2.B.4) converges to 0 in probability, which means

κ̂∗n(m, θ) −
1
k

k∑
j=1

min
i∈G j

ξi,θ
p
→ 0

when k → ∞ (n→ ∞), thus concluding the proof of Theorem 2.3.1.
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Proof of Theorem 2.3.5 First we show that for every m ≥ 1, we have

κ∗(m, θ)→ κ∗(m, 0) (2.B.5)

when θ ↓ 0. For this, we first employ Proposition 2.A.1 and have

|κ∗(m, θ) − κ∗(m)| ≤ E
(

max
i=1,...,m

∣∣∣∣∣∣2Tθ ◦C(Ui,Vi)
log Ui + log Vi

−
2T0 ◦C(Ui,Vi)
log Ui + log Vi

∣∣∣∣∣∣
)
. (2.B.6)

Next we apply Proposition 2.A.3 with x = θ log(C(Ui,Vi)) ≤ 0 and have

|κ∗(m, θ) − κ∗(m)| ≤ θE
(

max
i=1,...,m

∣∣∣∣∣ (log C(Ui,Vi))2

log Ui + log Vi

∣∣∣∣∣)
≤ θE

(
max

i=1,...,m

∣∣∣log(UiVi)
∣∣∣ ),

where the last inequality is due to C being PQD. Hence,∣∣∣κ∗(m, θ) − κ∗(m, 0)
∣∣∣ ≤ θE( max

i=1,...,m
(− log Ui)

)
+ θE

(
max

i=1,...,m
(− log Vi)

)
= 2mθ

∫ ∞

0
x(1 − e−x)m−1e−x dx.

For every m, the right-hand side of the latter bound can be made as small as desired by choosing
as sufficiently small θ > 0. This concludes the proof of statement (2.B.5).

We next prove that κ∗(m, 0) can be made as close to κ∗ as desired by choosing a sufficiently
large m. We start with the equation

κ∗(m, 0) =
∫ 2

0
P(ξ > x)m dx, (2.B.7)

where
ξ :=

2 log C(U,V)
log U + log V

∈ [0, 2] (2.B.8)

with (U,V) ∼ C. Since Π∗(u) = uκ
∗

for all u ∈ [0, 1] by assumption, we have

κ∗ ≤
2 log C(u, v)
log u + log v

for all u, v ∈ [0, 1], and thus κ∗ ≤ ess inf ξ. Hence, equation (2.B.7) becomes

κ∗(m, 0) = κ∗ +
∫ 2

κ∗
P(ξ > x)m dx, (2.B.9)

from which we see that we only need to show that the integral on the right-hand side converges
to 0 when m → ∞. In doing so, we can assume without loss of generality that κ∗ < 2, which
effectively eliminates the independence copula, that is, from now on we can, and thus do,
assume that C is not the independence copula.
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By the Lebesgue dominated convergence theorem, the integral converges to 0 provided that
P(ξ > x) ∈ (0, 1) for all x ∈ (κ∗, 2). In other words, we need to show that

P(ξ ≤ κ∗ + h) > 0 for every h ∈ (0, 2 − κ∗). (2.B.10)

We start with the bound

P(ξ ≤ κ∗ + h) = P
(

2 log C(U,V)
log U + log V

≤
2 log wκ∗+h

0

log w2
0

)
≥ P

(
(U,V) ∈ Bh

)
, (2.B.11)

where the area Bh (see Figure 2.4) is defined by the equation

u

v
1

1(0, 0)

(1,w2
0)

(w2
0, 1)

(1,wκ∗+h
0 )

(wκ∗+h
0 , 1)

(u1, v1)

(u2, v2)

Bh

Figure 2.4: The area Bh with its associated curves and points.

Bh =

{
(u, v) ∈ [0, 1]2 : uv ≤ w2

0, C(u, v) > wκ∗+h
0

}
.

Since C is PQD but not the independence copula, we can find u0, v0 ∈ (0, 1) such that

u0v0 < C(u0, v0) = (u0v0)κ
∗/2.

With the notation w0 =
√

u0v0, we have u0 = φ
∗(w0), v0 = w2

0/φ
∗(w0), and

C
(
φ∗(w0),w2

0/φ
∗(w0)

)
= wκ∗

0 .

Since κ∗ < 2, φ∗(w0) is neither w2
0 nor 1. Therefore, there is η ∈ (0, 2) such that φ∗(w0) = wη

0
due to w2

0 < φ
∗(w0) < 1. Define the function Φ∗w0

: [0, 2]→ [0, 1] by the formula

Φ∗w0
(x) = C

(
wx

0,w
2−x
0

)
.

Note the values:
Φ∗w0

(0) = w2
0, Φ∗w0

(η) = wκ∗

0 and Φ∗w0
(2) = w2

0.
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Moreover, for 0 ≤ x1 ≤ x2 ≤ 2, we have∣∣∣Φ∗w0
(x2) − Φ∗w0

(x1)
∣∣∣ ≤ |wx2 − wx1 | + |w2−x2 − w2−x1 |

= (wx1
0 + w2−x2

0 )(1 − wx2−x1
0 )

≤ 2(1 − wx2−x1
0 ),

which shows that Φ∗w0
is continuous and thus uniformly continuous on the compact interval

[0, 2]. Therefore, we can find x1 ∈ (0, η) and x2 ∈ (η, 2) such that

C(u1, v1) = C(u2, v2) = wκ∗+h
0

where ui = wxi
0 and vi = w2−xi

0 for i = 1 and 2. This implies that the curve uv = w2
0 and the

contour C(u, v) = wκ∗+h
0 intersect at the points (u1, v1) and (u2, v2).

We next show that into the area Bh we can squeeze a rectangle Eh of positive Lebesgue area
such that P

(
(U,V) ∈ Eh

)
> 0. In view of bound (2.B.11), this will imply statement (2.B.10)

needed to complete the proof of Theorem 2.3.5. Denote

uh = φ
∗(w(κ∗+h)/κ∗

0 ) and vh = w2(κ∗+h)/κ∗

0 /φ∗(w(κ∗+h)/κ∗

0 ). (2.B.12)

We have C(uh, vh) = Π∗(w(κ∗+h)/κ∗

0 ) = wκ∗+h
0 . Define the rectangle by the equation

Eh := (uh, u0] × (vh, v0] ⊂ Bh

(see Figure 2.5). The functions φ∗(u) and ψ∗(u) := u2/φ∗(u) are strictly increasing, and so

u

v
1

1(0, 0)

(1,w2
0)

(w2
0, 1)

(1,wκ∗+h
0 )

(wκ∗+h
0 , 1)

(u1, v1)

(u2, v2)
Eh

Figure 2.5: The rectangle Eh with its associated curves and points.

uh < u0, vh < v0. Moreover, since

w2(κ∗+h)/κ∗

0 ≤ φ∗(w(κ∗+h)/κ∗

0 ) ≤ 1,

we have
(uh, vh) = (wηh

0 ,w
2(κ∗+h)/κ∗−ηh
0 )
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for some ηh ∈ [0, 2(κ∗ + h)/κ∗]. Since uh < u0 and vh < v0, we have the bounds ηh > η and

2(κ∗ + h)
κ∗

− ηh > 2 − η,

which imply

η < ηh < η +
2h
κ∗
. (2.B.13)

Hence,

P
(
(U,V) ∈ Eh

)
= C(u0, v0) −C(u0, vh) −C(uh, v0) +C(uh, vh)

= wκ∗

0 −C(u0, vh) −C(uh, v0) + wκ∗+h
0

≥ wκ∗

0 − (wη
0w2(κ∗+h)/κ∗−ηh

0 )κ
∗/2 − (wηh

0 w2−η
0 )κ

∗/2 + wκ∗+h
0

= wκ∗

0 − wκ∗+h+κ∗(η−ηh)/2
0 − wκ∗−κ∗(η−ηh)/2

0 + wκ∗+h
0

= wκ∗

0 (1 − w−κ
∗(η−ηh)/2

0 ) + wκ∗+h
0 (1 − wκ∗(η−ηh)/2

0 )

= (wκ∗+κ∗(ηh−η)/2
0 − wκ∗+h

0 )(wκ∗(η−ηh)/2
0 − 1),

which is positive, because bounds (2.B.13) imply that the two factors on the right-hand side of
the bound are strictly positive. This completes the proof of Theorem 2.3.5.

2.C Histograms and normal fits

In this appendix we depict histograms and fitted normal densities of the values of κ̂∗n(m, θ0)
(given by equation (2.2.10)) that arise from simulated iid data, as discussed in Section 2.3.
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Figure 2.6: Fits of simulated κ̂∗n(m, θ0) to the normal distribution for iid data.
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Figure 2.7: Fits of simulated κ̂∗n(m, θ0) to the normal distribution for iid data.
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Chapter 3

Tail maximal dependence in bivariate
models: estimation and applications

3.1 Introduction
The phenomenon of extreme co-movements manifests in a variety of problems associated with
risk management. To illustrate, at the market level, this phenomenon arises when dealing with
financial contagion [1]. At the asset level, studies of extreme co-movements facilitate risk mit-
igation arrangements, such as portfolio diversification [2]. These and many other applications
have inspired prolific searches for, and studies of, methods for assessing dependence within
extreme co-movements [e.g., 3, 4, and references therein]. For this purpose, researchers have
often employed tail dependence indices [e.g., 5–9, and references therein]. Well-developed
statistical inference results for the indices [e.g., 10–12, and references therein] have greatly
facilitated their practical uses.

Definitions of the indices rely on the behaviour of the copula C : [0, 1]2 → [0, 1], which
arises from a pair of financial instruments, along the diagonal path (u, u)0≤u≤1 near the point
0 := (0, 0). In particular, the parameter κ ∈ [1,∞) in the equation

C(u, u) = ℓ(u)uκ, (3.1.1)

assuming that it holds with a slowly varying at 0 function ℓ [e.g., 13], is called the lower tail
order, which we henceforth call the tail order of diagonal dependence (TODD). The modifier
diagonal has been added to emphasize the equality of the two copula arguments on the left-
hand side of equation (3.1.1).

Indices of tail dependence such as κ have played prominent roles in quantifying risks, as
seen from the many scholarly writings on the topic, including the monographs by Nelsen [14],
Joe [8], Durante and Sempi [15], and McNeil et al. [9]. For a recently introduced notion of
p-concentration, which is a diagonal-based measure of dependence that has played a pivotal
role in characterizing the regulatory risk measure Expected Shortfall, we refer to Wang and
Zitikis [16] and references therein.

Interestingly, the asymptotic behaviour of C(u, u) may or may not reflect the maximal
strength of tail dependence, as has been pointed out and illustrated by Furman et al. [17, 18].
Hence, it becomes natural to seek a path, called a path of maximal tail dependence (MTD),
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along which the copula C behaves like ℓ∗(u)uκ
∗

for the smallest possible κ∗ and some slowly
varying at 0 function ℓ∗. We note that this MTD path may not be unique, and may not coincide
with the diagonal path (u, u)0≤u≤1. Henceforth, we call κ∗ the tail order of maximal dependence
(TOMD), whose rigorous description will be given in the next section.

For the TOMD κ∗, basic statistical inference results have been developed by Sun et al.
[19] for independent and identically distributed (iid) paired data. In practice, however, co-
movements often arise from time-indexed stochastic processes, such as time series [e.g., 4,
and references therein], whose generated data are inherently dependent. The iid-based results
of Sun et al. [19], therefore, need to be adjusted and even extended. Fortunately, the block-
structure of the estimator of Sun et al. [19] facilitates the task, due to the fact that practically
relevant time series give rise to nearly-independent data blocks when the gaps between the
blocks are sufficiently wide. Nevertheless, serious work remains to be done, and this is our
main goal in the current chapter.

The rest is organized as follows. In Section 3.2 we introduce TOMD and TODD estimators.
In Section 3.3 we discuss the estimators and prepare them for the analysis of real time series
data. In Section 3.4 we develop a dependent-data generating process and then illustrate and
assess the estimators’ performance. In Section 3.5 we explore the strength of extreme co-
movements of a number of financial instruments, such as historical exchange rates of several
currencies, stock market indices, and mixed financial instruments. Section 3.6 concludes this
chapter with a summary. To facilitate readability of this chapter, a number of statistical tests,
tables and graphs have been relegated to Appendix 3.6, which consists of Sections 3.A–3.C.

3.2 Tail-order estimators
For any bivariate copula C : [0, 1]2 → [0, 1], a path of tail dependence [17] is defined as
(φ(u), u2/φ(u))0≤u≤1 for any function φ : [0, 1] → [0, 1] that satisfies two admissibility condi-
tions:

1. φ(u) ∈ [u2, 1] for every u ∈ [0, 1],

2. φ(u)→ 0 and u2/φ(u)→ 0 when u ↓ 0.

Denote the set of all admissible functions byA.
An admissible function φ∗ ∈ A that maximizes the functional φ 7→ C(φ(u), u2/φ(u)) gives

rise to a path (φ∗(u), u2/φ∗(u))0≤u≤1 that we call a path of maximal tail dependence (MTD).
There can be several maximizing functions φ∗ and thus several MTD paths. For any of them,
define Π∗ : [0, 1]→ [0, 1] by

Π∗(u) = C(φ∗(u), u2/φ∗(u)).

If there exists κ∗ and a slowly varying at 0 function ℓ∗ such that

Π∗(u) = ℓ∗(u)uκ
∗

, (3.2.1)

then κ∗ is called the lower tail order of maximal dependence (TOMD). This κ∗ is unique for the
copula C, irrespective of the fact that there can be several admissible functions φ∗ leading to it.
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As illustrated by Furman et al. [17], the TOMD κ∗ may or may not coincide with the TODD κ,
with the Gaussian copula providing one of those rare examples when κ∗ = κ [18].

Intuitively, the role of a maximal path, written generally as (φ∗(u), ψ∗(u))0≤u≤1, is for each
u ∈ (0, 1] to define the rectangle

Ru(0) := [0, φ∗(u)] × [0, ψ∗(u)]

which

1. is a subset of the unit square [0, 1]2;

2. has the same area as [0, u]2, and thus necessarily implies ψ∗(u) = u2/φ∗(u);

3. when a large number of pairs are simulated from the copula C, the rectangle Ru(0) con-
tains at least as many simulated pairs as any other rectangle in the first quadrant of the
plane with one of its vertices being 0 and the area equal to u2.

We now introduce an empirical estimator of the TOMD κ∗. Suppose that the underlying
model is a bi-variate stationary time series (Xi,Yi), i ∈ Z, and let the pairs (X1,Y1), . . . , (Xn,Yn)
be observable. Hence, our data are (x1, y1), . . . , (xn, yn) ∈ R2. Next we separate the marginal
distributions from the dependence structure, about which we learn from the bivariate pseudo-
observations (u1, v1), . . . , (un, vn) ∈ [0, 1]2, which have been generated from the copula C.
These pseudo-observations give rise to a scatterplot in the unit square [0, 1]2, as well as to
the empirical copula

Cn(u, v) :=
1
n

n∑
i=1

1
{
ui ≤ u, vi ≤ v}, u, v ∈ [0, 1].

In order to mitigate the potential influence of ℓ∗ (equation (3.2.1)) on the TOMD estimation,
we focus on those observed pairs that fall into the rectangle

Rq,n(0) := [0, φ∗n(q)] × [0, q2/φ∗n(q)],

where
φ∗n(q) = arg max

x∈[q2,1]
Cn(x, q2/x).

Various choices of q ∈ (0, 1] will be discussed later in this chapter, for simulated and real data.
We now only note that when q = 1, the rectangle is the unit square [0, 1]2.

Hence, from all the pseudo observations (u1, v1), . . . , (un, vn) ∈ [0, 1]2, we single out those
that are in Rq,n(0). We identify them by their indices, which we collect into the set

Mq,n :=
{
i : (ui, vi) ∈ Rq,n(0)

}
⊆ {1, . . . , n}.

Let mq,n := #(Mq,n) denote the cardinality of Mq,n, that is, the number of the pairs (ui, vi)
residing in Rq,n(0). Obviously, mq,n ≤ n and so when we make the assumption that mq,n is
sufficiently large, we also implicitly say that the underlying sample size n is large. The quantity

Π∗n(q) :=
mq,n

n
=

1
n

n∑
i=1

1
{
(ui, vi) ∈ Rq,n(0)

}
is an empirical proxy for Π∗(q) = P

(
(U,V) ∈ Rq(0)

)
.
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Note 3.2.1 This chapter is long, and we have tried – whenever reasonable – to avoid pedantic
details of the proof. For example, results like Π∗n(q) being a proxy for Π∗(q) would normally go
without a proof, but to illustrate this instance, suppose that we wish to check the result. Since

Π∗n(q) = max
x∈[q2,1]

Cn(x, q2/x), Π∗(q) = max
x∈[q2,1]

C(x, q2/x)

for q ∈ (0, 1], we have

|Π∗n(q) − Π∗(q)| ≤ max
x∈[q2,1]

|Cn(x, q2/x) −C(x, q2/x)|

≤ sup
u,v∈[0,1]

|Cn(u, v) −C(u, v)|
p
→ 0

when n→ ∞, where
p
→ denotes convergence in probability. As we see from the classical results

of [20], and Kiefer et al. [21], the convergence holds even almost surely. Much work has been
done since these papers in order to relax the iid assumption, and we refer to, e.g., Dehling et al.
[22], Davydov and Zitikis [23], and Kontorovich and Weiss [24] for results and references on
the topic.

Next, we fix any m ≥ 1 such that m ≤ mq,n, which holds (Note 3.2.1) with as large a
probability as desired, assuming that n is sufficiently large. Then we assign the pairs (ui, vi), i ∈
Mq,n, into ⌈mq,n/m⌉ disjoint groups so that there can be at most one group with less than m pairs
and all the other groups containing exactly m pairs, where ⌈·⌉ is the classical ceiling function.
We collect the indices of the grouped pairs into the (disjoint) sets G j,q,n, 1 ≤ j ≤ ⌈mq,n/m⌉, thus
producing a partition ofMq,n. We note that choosing an appropriate value of m is a delicate
problem in practice, and we shall discuss it in great detail when working with simulated and
real data later in this chapter.

The average block-minima estimator of the TOMD κ∗ is [cf. 19]

κ̂∗mq,n
(m, θ, q) =

1
⌈mq,n/m⌉

⌈mq,n/m⌉∑
j=1

min
i∈G j,q,n

2Tθ ◦ Fq,Mq,n(ui, vi)
log ui + log vi − 2 log q

, (3.2.2)

where, for all u, v ∈ [0, 1],

Fq,Mq,n(u, v) =
1

mq,n

∑
i∈Mq,n

1
{
ui ≤ u, vi ≤ v}, (3.2.3)

and, for all t ∈ (0, 1],

Tθ(t) =

(tθ − 1)/θ when θ > 0,
log(t) when θ = 0.

Note 3.2.2 We may think of various other ways of combining the minima (or some other func-
tionals replacing them) that are on the right-hand side of definition (3.2.2). For an illuminating
discussion of a philosophically-related problem, we refer to Vovk and Wang [25].
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For comparison, we also estimate the TODD κ. Its estimator is defined as follows [cf. 26].
Denote

Nq,n =
{
i : (ui, vi) ∈ Sq(0)

}
⊆

{
1, . . . , n

}
,

where Sq(0) = [0, q]2. Let nq,n := #(Nq,n), the cardinality of Nq,n, that is, nq,n is the number
of pairs (ui, vi) in the square Sq(0). For each i ∈ Nq,n, denote wi := q min{u−1

i , v
−1
i }. Before

we introduce an estimator of TODD κ, we simplify the notation by re-enumerating wi, i ∈ Nq,n

into w1, . . . ,wnq,n whose order statistics we denote by w1:nq,n ≥ · · · ≥ wnq,n:nq,n . (Technically, we
would need to change the notation of the re-enumerated w’s but it worth leaving them as they
are for the sake of notational simplicity.) Note that nq,n = max{i : wi:nq,n ≥ 1}. We define the
estimator of the TODD κ by

κ̂OLS
nq,n
=

∑nq,n

i=1

(
log wi:nq,n − log w

)
log(i − 0.5)∑nq,n

i=1

(
log wi:nq,n − log w

)2 , (3.2.4)

where log w denotes the average of all log w1, . . . , log wnq,n . We refer to Gabaix and Ibragimov
[26] for an illuminating discussion of why 0.5 needs to be subtracted from i in log(i−0.5) when
defining the estimator.

3.3 Justification of the estimators
In practice we cannot know whether slowly varying functions are present or not in equa-
tions (3.1.1) and (3.2.1). This poses a challenge. In this section, therefore, we adjust the
methodology of Sun et al. [19] so that we could tackle TOMD and TODD estimation under the
uncertainty with respect to slowly varying functions. An important feature that will permeate
our following considerations is a conditioning argument, whose main idea is based on the fact
that extreme financial losses are those that are below a certain (small) threshold q ∈ (0, 1),
which could have been set by convention or regulation [e.g., 27, 28].

Hence, we are dealing with conditional copulas below q, which are ratios of probabilities.
Via equation (3.2.1), we reduce these ratios to quantities like ℓ∗(qu)/ℓ∗(q), which are close to
1 when q > 0 is small, due to the very definition of slowly varying at 0 functions [e.g., 13,
Definition, p. 6]:

ℓ∗(qu)
ℓ∗(q)

→ 1 when q ↓ 0, (3.3.1)

and this limit holds irrespective of u > 0.
When choosing a small q > 0 in practice, we should be mindful of the fact that the smaller

the threshold q, the smaller the number mq,n of pairs falling into the rectangle Rq,n(0). This
obviously impedes statistical inference, and so we need to strike a balance between the values
of q and mq,n. We shall give a considerable thought to this issue when dealing with real data
later in this chapter.

3.3.1 Estimating the TOMD
We first recall a procedure for estimating the TOMD κ∗ developed by Sun et al. [19]. By doing
so, we also introduce the necessary notation for our following considerations. We start with
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equation (3.2.1) and express the conditional maximal tail probability as

Π∗(qu)
Π∗(q)

=
C(φ∗(qu), q2u2/φ∗(qu))

C(φ∗(q), q2/φ∗(q))
=
ℓ∗(qu)(qu)κ

∗

ℓ∗(q)qκ∗
≈ uκ

∗

(3.3.2)

when 0 < q ≈ 0, due to statement (3.3.1). Hence, we have the approximate bound

C(φ(qu), q2u2/φ(qu))
C(φ∗(q), q2/φ∗(q))

⪅ uκ
∗

(3.3.3)

that holds for every φ ∈ A. With the notations ũ = φ(qu)/φ∗(q) and ṽ = u2φ∗(q)/φ(qu), we turn
approximate bound (3.3.3) into

C(φ∗(q)̃u, q2̃v/φ∗(q))
C(φ∗(q), q2/φ∗(q))

⪅ uκ
∗

.

Since uκ
∗

= (̃ũv)κ
∗/2, this leads to

κ∗ ⪅
2 log F∗q (̃u, ṽ)

log ũ + log ṽ
, (3.3.4)

where F∗q : [0, 1]2 → [0, 1] is defined by

F∗q(u, v) =
C(uφ∗(q), vq2/φ∗(q))
C(φ∗(q), q2/φ∗(q))

. (3.3.5)

This gives a theoretical basis for building an empirical estimator of the TOMD κ∗.
Namely, given pseudo observations (u1, v1), . . . , (un, vn) ∈ [0, 1]2, and also a small and fixed

q > 0, the TOMD κ∗ is estimated using the following four-step procedure [cf. 19]:

1. using all the pairs available in the unit square [0, 1]2, compute an empirical estimate of
φ∗(q) by maximizing Cn(x, q2/x) with respect to x ∈ [q2, 1];

2. extract the set Pq,n of those pairs (uk, vk) that are in the rectangle Rq,n(0), then collect the
indices of the pairs into the setMq,n, and denote the cardinality ofMq,n by mq,n;

3. randomly assign the pairs of Pq,n into ⌈mq,n/m⌉ disjoint groups of pairs, whose indices
partitionMq,n into groups G1,q,n, . . . ,G⌈mq,n/m⌉,q,n with at most one of them having fewer
than m elements, while all the other groups having exactly m elements;

4. compute the average block-minima estimator of the TOMD κ∗ using formula (3.2.2).

To appreciate formula (3.2.2) in view of the above procedure, note that when i ∈ Mq,n we
have

Fq,Mq,n(ui, vi) =
1

mq,n
#
{
k ∈ Mq,n : uk ≤ ui, vk ≤ vi

}
= F∗q,Mq,n

(̃ui, ṽi),

where ũi = ui/φ
∗
n(q), ṽi = viφ

∗
n(q)/q2, and

F∗q,Mq,n
(u, v) :=

1
mq,n

∑
k∈Mq,n

1
{̃
uk ≤ u, ṽk ≤ v

}
. (3.3.6)

Hence, estimator (3.2.2) can be rewritten as

κ̂∗mq,n
(m, θ, q) =

1
⌈mq,n/m⌉

⌈mq,n/m⌉∑
j=1

min
i∈G j,q,n

2Tθ ◦ F∗q,Mq,n
(̃ui, ṽi)

log ũi + log ṽi
. (3.3.7)
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3.3.2 Estimating the TODD
For comparison, we estimate the TODD κ. With some modifications, we follow the spirit of
Section 3.3.1. Namely, in view of equation (3.1.1), we have

C(qu, qu)
C(q, q)

=
ℓ(qu)(qu)κ

ℓ(q)qκ
≈ uκ (3.3.8)

when 0 < q ≈ 0, due to statement (3.3.1). To see an analogy between equations (3.3.8) and
(3.3.2), set φ∗(u) = u in statement (3.3.2). Next, we rewrite approximate equation (3.3.8) as

P
(

max{U,V} ≤ qu | max{U,V} ≤ q
)
≈ uκ. (3.3.9)

With the notation z := u−1, equation (3.3.9) turns into

P
(
W ≥ z | W ≥ 1

)
≈ z−κ, (3.3.10)

where W = q min{U−1,V−1}.
To implement approximate equation (3.3.10) on data, we need its empirical version. For

this, modulus some adjustments, we follow the ideas of Gabaix and Ibragimov [26]. In terms of
the order statistics w1:nq,n ≥ · · · ≥ wnq,n:nq,n , the empirical version of statement (3.3.10) becomes

i/nq,n ≈ w−κi:nq,n
, i = 1, . . . , nq,n. (3.3.11)

Taking logarithms of both sides of approximate equation (3.3.11), we obtain

log i ≈ log nq,n − κ log wi:nq,n .

We now arrive at an estimator of κ as the slope of the least squares regression line fitted to the
scatterplot of the pairs

(
log(i − 0.5), log wi:nq,n

)
, i = 1, . . . , nq,n. This gives estimator (3.2.4).

3.3.3 Estimator’s performance justification
We use all n available pseudo observations (ui, vi) to get estimates of C, φ∗(q), Rq(0), andΠ∗(q).
Since in our applications the sample size n is large, it is reasonable to assume that the estimates
are close – or as close as we can possibly get them – to their population versions, and we thus
adopt the same notations for them, that is, we skip the subscript n.

The number mq of the observed pairs in the estimated rectangle is relatively small, and thus
their variability matters. We thus face the question of whether or not mq is sufficiently large in
order to make reliable statistical decisions. To answer this question, we theoretically explore
the convergence of the simplified estimator

κ̂∗mq
(m, 0, q) =

1
⌈mq/m⌉

⌈mq/m⌉∑
j=1

min
i∈G j,q

2T0

(
C(Ui,q,Vi,q)/Π∗(q)

)
log Ui,q + log Vi,q − 2 log q

(3.3.12)

when mq → ∞, where (Ui,q,Vi,q), i ∈ Mq, are random iid pairs, each following the conditional
cdf Fq : Rq(0)→ [0, 1] defined by

Fq(u, v) :=P
(
U ≤ u,V ≤ v | (U,V) ∈ Rq(0)

)
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=
1
Π∗(q)

C
(

min{u, φ∗(q)},min{v, q2/φ∗(q)}
)
.

Thus, Fq(u, v) = C(u, v)/Π∗(q) for all (u, v) ∈ Rq(0). By the law of large numbers, when
mq → ∞, we have

κ̂∗mq
(m, 0, q)

p
→ κ∗(m, 0, q) := E

min
i∈G1,q

2T0

(
C(Ui,q,Vi,q)/Π∗(q)

)
log Ui,q + log Vi,q − 2 log q

 . (3.3.13)

At first sight, assuming independence of the pairs (Ui,q,Vi,q), i ∈ Mq, might be alarming,
given that we aim at analyzing (dependent) time series data. However, since for reasons of
mitigating the influence of slowly varying function on the estimator, we shall use only those
observed pairs that are in a (small) neighbourhood of 0. This gives rise to nearly independent
data, as we shall see in Section 3.A. There is, of course, a gap between independent variables
and nearly independent (e.g., white noise) ones, but our estimator, with its block structure, is
fairly robust with respect to dependence (Section 3.4). Hence, we can comfortably assume that
the random pairs (Ui,q,Vi,q), i ∈ Mq, are iid.

The following theorem shows that by choosing m ≥ 1 and q > 0 appropriately, we can make
κ∗(m, 0, q) as close to the TOMD κ∗ as desired, and thus by statement (3.3.13), the estimator
κ̂∗mq

(m, 0, q) gets close to the TOMD κ∗.

Theorem 3.3.1 Let q ∈ (0, 1] be any, and let the cdf F∗q satisfy the bound

F∗q(u, v) ≥ uv for all u, v ∈ [0, 1]. (3.3.14)

Furthermore, let the functions φ∗(u) and ψ∗(u) := u2/φ∗(u) be strictly increasing. Then κ∗(m, 0, q)
can be made as close to κ∗ as desired by taking sufficiently large m ≥ 1 and sufficiently small
q > 0.

Proof The proof is long but necessary to present in order to show why and how the estimator
works. We note at the outset that the joint cdf F∗q may not have the uniform on [0, 1] marginal
distributions, and so bound (3.3.14) does not mean that F∗q is PQD. Nevertheless, it is this
bound that we need in the proof of Theorem 3.3.1, which we start by expressing κ∗(m, 0, q) in
terms of the survival function of the random variable

ξq :=
2 log(C(Uq,Vq)/Π∗(q))

log(UqVq/q2)
, (3.3.15)

where (Uq,Vq) follows the cdf Fq. That is, κ∗(m, 0, q) is equal to the integral
∫ ∞

0
P(ξq > x)m dx,

because the cardinality of the set G1,q is m and the pairs (Ui,q,Vi,q), i ∈ G1,q, are iid. With the
notation

(Ũq, Ṽq) :=
(

Uq

φ∗(q)
,

Vqφ
∗(q)

q2

)
,

we rewrite ξq as

ξq =
2 log(C(Uq,Vq)/Π∗(q))

log(Uq/φ∗(q)) + log(Vqφ∗(q)/q2)
=

2 log F∗q(Ũq, Ṽq)

log Ũq + log Ṽq

∈ [0, 2], (3.3.16)
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where the inclusion into the interval [0, 2] is due to the assumed bound (3.3.14). Hence,

κ∗(m, 0, q) =
∫ 2

0
P(ξq > x)m dx. (3.3.17)

Note 3.3.2 The meaning of equations (3.3.16) is to scale the pair (Uq,Vq) ∈ Rq(0) into (Ũq, Ṽq) ∈
[0, 1]2. This allows to shift our focus from the behaviour of random pairs with respect to q ↓ 0
toward the behaviour of F∗q and the scaling parameters φ∗(q) and q2/φ∗(q).

Since (Uq,Vq) ∈ Rq(0) and the functions φ∗ and z 7→ z2/φ∗(z) are increasing, we have

(Ũ∗q, Ṽ
∗
q) :=

(
φ∗(

√
UqVq)

φ∗(q)
,

(
√

UqVq)2/φ∗(
√

UqVq)
q2/φ∗(q)

)
∈ [0, 1]2.

Hence,

F∗q(Ũ∗q, Ṽ
∗
q) =

1
Π∗(q)

C
(
φ∗(

√
UqVq),UqVq/φ

∗(
√

UqVq)
)

=
1
Π∗(q)

sup
x∈[UqVq,1]

C
(
x,UqVq/x)

)
≥

1
Π∗(q)

C(Uq,Vq)

= F∗q(Ũq, Ṽq).

Since Ũ∗qṼ∗q = ŨqṼq = UqVq/q2 ∈ (0, 1), we therefore arrive at the bound

2 log F∗q(Ũ∗q, Ṽ
∗
q)

log Ũ∗q + log Ṽ∗q
≤

2 log F∗q(Ũq, Ṽq)

log Ũq + log Ṽq

. (3.3.18)

Note that

2 log F∗q(Ũ∗q, Ṽ
∗
q)

log Ũ∗q + log Ṽ∗q
=

2 log
(
C
(
φ∗(

√
UqVq), (

√
UqVq)2/φ∗(

√
UqVq)

)
/Π∗(q)

)
log(UqVq/q2)

=
2 log

(
Π∗(

√
UqVq)/Π∗(q)

)
log(UqVq/q2)

. (3.3.19)

Due to equation (3.2.1), we have

Π∗(
√

UqVq)
Π∗(q)

=
ℓ∗(

√
UqVq)

ℓ∗(q)

(
UqVq

q2

)κ∗/2
and thus, continuing with equations (3.3.19) and taking into account bound (3.3.18), we obtain

2 log F∗q(Ũq, Ṽq)

log Ũq + log Ṽq

≥
2 log(ℓ∗(

√
UqVq)/ℓ∗(q))

log(UqVq/q2)
+ κ∗. (3.3.20)
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With the notation

oq :=
2 log(ℓ∗(

√
UqVq)/ℓ∗(q))

log(UqVq/q2)
,

bound (3.3.20) takes the form
ξq ≥ max{0, oq + κ

∗}. (3.3.21)

We next prove oq
P
→ 0 when q ↓ 0.

With the notation Wq =
√

UqVq/q, the statement is equivalent to

oq =
log(ℓ∗(qWq)/ℓ∗(q))

log Wq

P
→ 0. (3.3.22)

Hence, we first fix any ϵ > 0. Then we take any δ > 0 and partition the sample space into three
events: {Wq < δ}, {δ ≤ Wq ≤ 1 − δ} and {Wq > 1 − δ}. We have the bound

P

(∣∣∣∣∣ log(ℓ∗(qWq)/ℓ∗(q))
log Wq

∣∣∣∣∣ > ϵ)
≤ P

(
sup

w∈[δ,1−δ]

∣∣∣∣∣ log(ℓ∗(qw)/ℓ∗(q))
log w

∣∣∣∣∣ > ϵ) + P (Wq < δ
)
+ P

(
Wq > 1 − δ

)
. (3.3.23)

Since ℓ∗ is slowly varying at 0, we have ℓ∗(qw)/ℓ∗(q)→ 1 when q ↓ 0 for every w ∈ (0, 1]. The
convergence is even uniform in w ∈ [δ, 1] for any fixed δ > 0 [e.g., 13, Theorem 1.2.1, p. 6],
which implies [29, Lemma 1, p. 310] that supw∈[δ,1] | log(ℓ∗(qw)/ℓ∗(q))| converges to 0 when
q ↓ 0. Hence, we conclude from bound (3.3.23) that, for any ϵ > 0 and δ > 0,

lim sup
q→0

P

(∣∣∣∣∣ log(ℓ∗(qWq)/ℓ∗(q))
log Wq

∣∣∣∣∣ > ϵ) ≤ lim sup
q→0

P
(
Wq < δ

)
+ lim sup

q→0
P
(
Wq > 1 − δ

)
. (3.3.24)

Note that the left-hand side of bound (3.3.24) does not depend on δ > 0. As to the first
probability on the right-hand side of bound (3.3.24), we have the following result:

P(Wq ≤ δ) = P(UqVq ≤ δφ
∗(q)δq2/φ∗(q))

≤ P(Uq ≤ δφ
∗(q)) + P(Vq ≤ δq2/φ∗(q))

=
1
Π∗(q)

(
C(δφ∗(q), q2/φ∗(q)) +C(φ∗(q), δq2/φ∗(q))

)
≤

2Π∗(q
√
δ)

Π∗(q)
→ 2δκ

∗/2 (3.3.25)

when q ↓ 0, where we have used equation (3.2.1) and property (3.3.1).
We tackle the second probability on the right-hand side of bound (3.3.24) in a different way,

starting as follows:

P(Wq > 1 − δ) = P(ŨqṼq > (1 − δ)2) ≤ P(F∗q(Ũq, Ṽq) > (1 − δ)2), (3.3.26)

where the bound holds because F∗q(u, v) ≥ uv for all u, v ∈ [0, 1]. With

K∗q(t) := P(F∗q(Ũq, Ṽq) ≤ t)
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we continue bound (3.3.26) and have

P(Wq > 1 − δ) = 1 − K∗q((1 − δ)2) ≤ 1 − (1 − δ)2 (3.3.27)

for every q ∈ (0, 1] because

K∗q(t) ≥ P(F∗q(Ũq, 1) ≤ t) = P(Gq(Ũq) ≤ t) = P(Ũq ≤ G−1
q (t)) = Gq ◦G−1

q (t) = t,

where Gq : [0, 1]→ [0, 1] denotes the cdf of Ũq given by

Gq(u) =
C(φ∗(q)u, q2/φ∗(q))
C(φ∗(q), q2/φ∗(q))

=
C(φ∗(q)u, q2/φ∗(q))

Π∗(q)
.

Hence, in view of bounds (3.3.25) and (3.3.27), the entire right-hand side of bound (3.3.24)
vanishes when δ ↓ 0. This concludes the proof of statement (3.3.22).

Fix any ϵ ∈ (0, κ∗). From equation (3.3.17), we have the upper bound

κ∗(m, 0, q) ≤ κ∗ + ϵ +
∫ 2

κ∗+ϵ

P(ξq > x)m dx. (3.3.28)

For the lower bound, we start as follows:

κ∗(m, 0, q) = κ∗ − ϵ −
∫ κ∗−ϵ

0
1 − P(ξq > x)m dx +

∫ 2

κ∗+ϵ

P(ξq > x)m dx

≥ κ∗ − ϵ − (κ∗ − ϵ)mP(ξq ≤ κ
∗ − ϵ) +

∫ 2

κ∗+ϵ

P(ξq > x)m dx. (3.3.29)

Using bound (3.3.21), we obtain

P(ξq ≤ κ
∗ − ϵ) ≤ P

(
max{0, oq + κ

∗} ≤ κ∗ − ϵ
)

= P
(
oq ≤ −ϵ, oq + κ

∗ > 0
)
+ P

(
oq + κ

∗ ≤ 0
)

= 2P(|oq| ≥ ϵ), (3.3.30)

which can be made as small as desired by choosing a small q > 0. Hence, due to bounds (3.3.28)–
(3.3.30), for any m ≥ 1 we can choose sufficiently small ϵ > 0 and q > 0 such that κ∗(m, 0, q)
becomes as close to κ∗ as desired, provided that the integral

∫ 2

κ∗
P(ξq > x)m dx can be made as

small as needed by choosing a sufficiently large m. We prove the latter fact next, without loss
of generality assuming that κ∗ < 2, which prevents F∗q from being the independence copula.

By the Lebesgue dominated convergence theorem, the integral
∫ 2

κ∗
P(ξq > x)m dx converges

to 0 when m→ ∞ provided that P(ξq > x) < 1 for all x ∈ (κ∗, 2). Hence, we need to show that

P(ξq ≤ κ
∗ + h) > 0 for every h ∈ (0, 2 − κ∗). (3.3.31)

The proof follows the idea of Sun et al. [19, Theorem 3.2], but there are substantial adjustments,
which we present next.
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Figure 3.1: The area Bq,h and associated curves.

We start with the bound

P(ξq ≤ κ
∗ + h) = P

(2 log F∗q(Ũq, Ṽq)

log Ũq + log Ṽq

≤
2 log wκ∗+h

0

log w2
0

)
≥ P

(
(Ũq, Ṽq) ∈ Bq,h

)
, (3.3.32)

where (see Figure 3.1)

Bq,h :=
{
(u, v) ∈ [0, 1]2 : uv ≤ w2

0, F∗q(u, v) > wκ∗+h
0

}
for some w0 ∈ (0, 1). With the notation w0 =

√uqvq, we have

uq = φ
∗(qw0)/φ∗(q), vq = w2

0φ
∗(q)/φ∗(qw0),

and

F∗q(uq, vq) =
ℓ∗(qw0)
ℓ∗(q)

wκ∗

0 ≈ wκ∗

0 > wκ∗+h
0 .

Hence, F∗q(uq, vq) > wκ∗+h
0 for sufficiently small q > 0 (depending on w0 and h). Note that

F∗q

(
φ∗(qw1+h/2κ∗

0 )
φ∗(q)

,
w2+h/κ∗

0 φ∗(q)

φ∗(qw1+h/2κ∗
0 )

)
=
Π∗(qw1+h/2κ∗

0 )
Π∗(q)

≈ wκ∗+h/2
0 .

We have

F∗q

(
φ∗(qw1+h/2κ∗

0 )
φ∗(q)

,
w2+h/κ∗

0 φ∗(q)

φ∗(qw1+h/2κ∗
0 )

)
> wκ∗+h

0

for sufficiently small q > 0 (depending on w0 and h). By denoting

uq,h =
φ∗(qw1+h/2κ∗

0 )
φ∗(q)

, vq,h =
w2+h/κ∗

0 φ∗(q)

φ∗(qw1+h/2κ∗
0 )

,
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Figure 3.2: The rectangle Eq,h ⊂ Bq,h and associated curves.

we have uq,hvq,h = w2+h/κ∗

0 < w2
0. Thus, (uq,h, vq,h) ∈ Bq,h. In particular, (uq,0, vq,0) = (uq, vq).

Since φ∗ and ψ∗ are strictly increasing functions, we have uq,h < uq and vq,h < vq, and so the
rectangle (see Figure 3.2)

Eq,h := (uq,h, uq] × (vq,h, vq]

is a non-empty subset of Bq,h. We have

P
(
(Ũq, Ṽq) ∈ Eq,h

)
= F∗q(uq, vq) − F∗q(uq, vq,h) − F∗q(uq,h, vq) + F∗q(uq,h, vq,h)

=
1
Π∗(q)

[
C(φ∗(qw0), ψ∗(qw0)) −C(φ∗(qw0), ψ∗(qw1+h/2κ∗

0 )

−C(φ∗(qw1+h/2κ∗

0 ), ψ∗(qw0)) +C(φ∗(qw1+h/2κ∗

0 ), ψ∗(qw1+h/2κ∗

0 ))
]

≥
wκ∗

0

ℓ∗(q)

[
ℓ∗(qw0) − 2ℓ∗(qw1+h/4κ∗

0 )wh/4
0 + ℓ

∗(qw1+h/2κ∗

0 )wh/2
0

]
→ wκ∗

0 (1 − wh/4
0 )2 > 0

when q ↓ 0. In summary, P((Ũq, Ṽq) ∈ Eq,h) > 0 for sufficiently small q > 0 (depending on w0

and h). This completes the proof of Theorem 3.3.1.

3.3.4 Illustrative insights into the cdf F∗q
In addition to F∗q, q ∈ (0, 1], we next also discuss – assuming that it exits – the limit

F∗0(u, v) := lim
q↓0

F∗q(u, v), u, v ∈ [0, 1],

which is an MTD version of the tail order function of Hua and Joe [7, Definition 3].

Example The Marshall-Olkin (M-O) copula Ca,b : [0, 1]2 → [0, 1] is defined by [30]

Ca,b(u, v) = min(u1−av, uv1−b)
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with parameters a, b ∈ [0, 1]. For every q ∈ [0, 1], we have [17] φ∗(q) = q2b/(a+b) and ψ∗(q) =
q2a/(a+b), and so Π∗(u) = uκ

∗

with the TOMD κ∗ = 2 − 2ab/(a + b). Consequently, in view of
definition (3.3.5), we have

F∗q(u, v) =
min{(q2b/(a+b)u)1−a(q2a/(a+b)v), (q2b/(a+b)u)(q2a/(a+b)v)1−b}

q2−2ab/(a+b)

= min{u1−av, uv1−b},

which is equal to Ca,b(u, v). Hence, F∗0 = Ca,b. This implies that both F∗q and F∗0 satisfy
bound (3.3.14), because the M-O copula Ca,b is PQD. For additional information on the M-O
copula, references, and applications in financial risk management, we refer to, e.g., Asimit
et al. [31, 32].

Example The generalized Clayton (GC) copula Cγ0,γ1 : [0, 1]2 → [0, 1] is defined by

Cγ0,γ1(u, v) = uγ1/γ
∗
(
u−1/γ∗ + v−1/γ0 − 1

)−γ0
(3.3.33)

with parameters γ0 > 0 and γ1 ≥ 0, and the notation γ∗ := γ0+γ1. For details on this copula, its
applications to financial risk management, and earlier references, we refer to Su and Furman
[33, 34]. In view of formula (3.3.33), we have

F∗q(u, v) = uγ1/γ
∗

(
(φ∗(q)u)−1/γ∗ + (ψ∗(q)v)−1/γ0 − 1
φ∗(q)−1/γ∗ + ψ∗(q)−1/γ0 − 1

)−γ0

= u
(
φ∗(q)−1/γ∗ + (ψ∗(q)v)−1/γ0u1/γ∗ − u1/γ∗

φ∗(q)−1/γ∗ + ψ∗(q)−1/γ0 − 1

)−γ0

≥ u
(
φ∗(q)−1/γ∗ + (ψ∗(q)v)−1/γ0 − 1
φ∗(q)−1/γ∗ + ψ∗(q)−1/γ0 − 1

)−γ0

≥ u
(
(ψ∗(q)v)−1/γ0

ψ∗(q)−1/γ0

)−γ0

= uv.

This shows that F∗q satisfies bound (3.3.14).
Note that φ∗(q) satisfies [17, Eq. (6.1)]

φ∗(q)−1/γ0(φ∗(q)−1/γ∗ − (γ1/γ
∗)) = (1 − (γ1/γ

∗))q−2/γ0 ,

which reduces to φ∗(q)−1/γ∗ − (γ1/γ
∗) = (1 − (γ1/γ

∗))ψ∗(q)−1/γ0 and gives

F∗q(u, v) = uγ1/γ
∗

(
((1 − (γ1/γ

∗))ψ∗(q)−1/γ0 + (γ1/γ
∗))u−1/γ∗ + (ψ∗(q)v)−1/γ0 − 1

(2 − (γ1/γ∗))ψ∗(q)−1/γ0 − (γ0/γ∗)

)−γ0

→ uγ1/γ
∗

(
[1 − (γ1/γ

∗)]u−1/γ∗ + v−1/γ0

2 − (γ1/γ∗)

)−γ0

=: F∗0(u, v)

when q ↓ 0.
We next relate F∗0 and the TOMD κ∗ via the bound

F∗0(u, v) ≤ (uv)κ
∗/2 (3.3.34)
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for all u, v ∈ [0, 1], where [17]
κ∗ = 1 +

γ1

γ1 + 2γ0
. (3.3.35)

For any q ∈ (0, 1), maximizing F∗0(x, q2/x) over x ∈ [q2, 1] is equivalent to maximizing

x 7→
γ1

γ∗
log x − γ0 log

(
[1 − (γ1/γ

∗)]x−1/γ∗ + (q2/x)−1/γ0

2 − (γ1/γ∗)

)
.

The first-order condition is

γ1

γ∗x
−
γ0[1 − (γ1/γ

∗)](−1/γ∗)x−1/γ∗−1 + q−2/γ0 x1/γ0−1

[1 − (γ1/γ∗)]x−1/γ∗ + (q2/x)−1/γ0
= 0,

which reduces to x−1/γ∗ = (q2/x)−1/γ0 and gives the solution x∗ = q2γ∗/(γ∗+γ0). Consequently,

max
x∈[q2,1]

F∗0(x, q2/x) = F∗0(q2γ∗/(γ∗+γ0), q2γ0/(γ∗+γ0))

= q2γ1/(γ∗+γ0)q2γ0/(γ∗+γ0)

= q1+γ1/(γ1+2γ0).

By Furman et al. [17, Eq. (6.2)], this implies bound (3.3.34).

3.4 An illustrative simulation study
The definition of κ̂∗mq

(m, θ, q) does not require observations (ui, vi), i ∈ Mq, to arise from in-
dependent pairs (Ui,Vi), although Sun et al. [19] established consistency and other statistical
properties under this assumption. Given that we are to apply the estimator on pairs arising from
time series, we wish to check the estimator’s robustness with respect to dependent data. The
underlying time series models that are suitable for financial instruments – such as foreign cur-
rency exchange rates, stock market indices, and treasury notes – are complex: they follow, e.g.,
ARIMA models for the conditional mean and GARCH or some other heteroscedastic models
for the conditional variance.

However, since we are concerned with co-movements of extreme losses, which are few
and far between inside the original time series, the extreme losses follow models fairly close
to white noise. We shall check this conjecture in Section 3.A using a number of portmanteau
tests. Hence, in order to check the performance of the TOMD estimator when the iid assump-
tion is (slightly) violated, we conduct a simulated experiment when the observed pairs (ui, vi)
arise from a time series which is not too far away from being a bivariate white noise [e.g., 35].
Specifically, we next describe a simulation procedure for random pairs whose intra-pair depen-
dence is governed by the generalized Clayton copula and the inter-pair dependence arises from
an AR(1) time series model.

To generate (Ui,Vi) ∼ Cγ0,γ1 , we start with the conditional cdf of U given V = v, which has
the expression

P(U ≤ u | V = v) =
∂

∂v
Cγ0,γ1(u, v) = uγ1/γ

∗
(
u−1/γ∗v1/γ0 + 1 − v1/γ0

)−γ0−1
.
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With the notation z = u−1/γ∗ − 1, this gives

P
(
U ≤ (z + 1)−γ

∗

| V = v
)
= (z + 1)−γ1

(
zv1/γ0 + 1

)−γ0−1

= P(Y > z)P(X > z | V = v)

= P
(

min{X,Y} > z | V = v
)
,

where the random variables Y ∼ Lomax(γ1, 1) and [X | V = v] ∼ Lomax(γ0 + 1, v−1/γ0) are
independent. Hence, to simulate a stationary sequence (Ui,Vi) ∼ Cγ0,γ1 , i ∈ Z, we:

1. generate Zi ∼ F using a time series model;

2. set Vi := F(Zi);

3. generate independent Xi ∼ Lomax(γ0 + 1,V−1/γ0
i ) and Yi ∼ Lomax(γ1, 1);

4. calculate Ui = (1 +min{Xi,Yi})−γ
∗

.

For step (1), we simulate Zi’s using the strictly stationary and causal AR(1) time series

Zi = ϕZi−1 + ϵi, (ϵi)
iid
∼ N(0, 1), (3.4.1)

where ϕ ∈ (−1, 1) regulates the departure of the sequence (Zi) from the white noise (ϵi); if
ϕ = 0, then they coincide. Since we want (Zi) to carry some dependence, we set ϕ = 0.6.
Hence, the standard deviation is σ = 1/

√
1 − ϕ2 = 1.25, and the autocovariance is ϕn/(1− ϕ2),

n ≥ 0.
Following steps (1)–(4), we simulate {(ui, vi) : 1 ≤ i ≤ n := 500, 000} one thousand times,

where each pair (ui, vi) arises from the generalized Clayton copula Cγ0,γ1 with parameter choices
specified in Table 3.4.1. The TOMD κ∗ is calculated using formula (3.3.35). Table 3.4.1 also

(γ0, γ1) κ∗ Mean StDev A-D C-vM
(0.1, 0.8) 1.8 1.7920 0.0381 0.7136 0.6853
(0.4, 0.8) 1.5 1.5084 0.0221 0.6982 0.6217
(0.4, 0.2) 1.2 1.2090 0.0127 0.9758 0.9352

Table 3.4.1: Summary of simulation results when q = 0.05.

contains various summary statistics under the parameter choices m = 5, which is the number
of groups G j,q, and q = 0.05, which is the threshold that serves our working definition of
“extreme.” Note that the reported p-values of the Anderson-Darling (A-D) and Cramér-von
Mises (C-vM) tests for normality retain the null hypothesis of the simulated estimator values.
The fits of these values to the normal distribution are depicted in Figure 3.3. When simulating,
we always set θ to θ0 := 10−6.

For comparison, we use the same m = 5 and parameters (γ0, γ1) but enlarge the threshold
to q = 0.1. This increases the number of pairs in the estimated rectangle Rq(0). Summary
statistics are reported in Table 3.4.2, with the A-D and C-vM p-values retaining the null of
normality. The fits of the simulated values to the normal distribution are depicted in Figure 3.4.
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Figure 3.3: Fits of simulated κ̂∗mq
(5, θ0, 0.05) to the normal distribution when q = 0.05.

(γ0, γ1) κ∗ Mean StDev A-D C-vM
(0.1, 0.8) 1.8 1.8064 0.0197 0.9900 0.9948
(0.4, 0.8) 1.5 1.5149 0.0129 0.9807 0.9514
(0.4, 0.2) 1.2 1.2112 0.0085 0.9322 0.9373

Table 3.4.2: Summary of simulation results when q = 0.1.
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Figure 3.4: Fits of simulated κ̂∗mq
(5, θ0, 0.1) to the normal distribution when q = 0.1.

3.5 Extreme co-movements of financial instruments

We now explore extreme co-movements of exchange rates of currencies (i.e., CAD/USD,
GBP/USD, and JPY/USD), stock market indices (i.e., Dow Jones, S&P 500, and NASDAQ),
and diverse financial instruments (i.e., JPY/USD, 10-year Treasury, and NASDAQ) during var-
ious periods of time, which have been determined by data availability and/or the date at which
we conducted their analyses. Since several data points were missing, we removed the corre-
sponding values from the other time series relevant to our statistical analysis. For the resulting
time series (x0

t ), we then calculated (xt) defined by

xt = log(x0
t ) − log(x0

t−1),

which are depicted in the left-hand panels of Figures 3.8–3.10. We have estimated the TOMD
κ∗ using the procedure described in Section 3.3.1. To compare, we have also estimated the
TODD κ using the procedure described in Section 3.3.2. To measure the difference between
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the two orders, we have calculated the relative difference in percentages:

RD :=
(

tomd1
TODD

− 1
)
100%.

From the theoretical point of view, RD is always either negative or zero, but its empirical
version can sometimes become positive, and we shall encounter a few such cases below.

In Figures 3.5–3.7, the upper-triangle panels depict the pairs (ui/φ
∗(q), φ∗(q)vi/q2), i ∈

Mq, and the lower-triangle panels depict the pairs (ui/q, vi/q), i ∈ Nq, with specially chosen
thresholds q ∈ (0, 1) to be specified and discussed below. In all the examples, we have tested
the reasonableness of the PQD assumption for paired extreme pseudo-observations (ui, vi) using
several hypothesis tests, with findings reported in Section 3.B.

3.5.1 Foreign currency exchange rates

We analyze co-movements of exchange rates of the Canadian and US dollars (CAD/USD),
the pound sterling and the US dollar (GBP/USD), and the Japanese yen and the US dollar
(JPY/USD) during the period from January 4, 1971, to October 25, 2019 [36]. The differenced
log-exchange rates (xt) are depicted in the three left-hand panels of Figure 3.8. For typo-
graphical simplicity, we abbreviate CAD/USD, GBP/USD, JPY/USD into CAD, GBP, JPY,
respectively. We couple these exchange rates and analyze the strength of their co-movements
in regions (determined by q) of extreme losses. In Figure 3.5, the thresholds q = 0.075, 0.085,
and 0.1 have been set for the pairs (JPY, CAD), (JPY, GBP), and (CAD, GBP), respectively.
Their TOMD and TODD estimates are reported in Table 3.5.1. Note the relative differences:

JPY 1.3455 0.9026
123 CAD 1.5488
64 57 GBP

(a) TOMD κ̂∗mq
(5, θ0, q) and mq.

JPY 1.2967 0.8917
112 CAD 1.7759
64 53 GBP

(b) TODD κ̂OLS
nq

and nq.

Table 3.5.1: The upper-triangle entries of each panel report estimated tail orders, and the lower-
triangle entries report the corresponding sample sizes.

(JPY, CAD) : RD = 3.76%
(JPY, GBP) : RD = 1.22%

(CAD, GBP) : RD = −12.79%

Although theory says that TOMD is always smaller than TODD, allowing for 5% variability
makes the reported positive percentages unsurprising. We therefore conclude that (JPY, CAD)
and (JPY, GBP) must have fairly similar maximal and diagonal tail orders, thus implying strong
dependence within the pairs. The remaining third pair (CAD, GBP) shows an almost 13%
relative decrease in the value of TOMD, thus indicating a notable increase in tail dependence
when measured by TOMD if compared to TODD.
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Figure 3.5: Scatterplots of pseudo observations of foreign currency exchange rates.

3.5.2 Stock market indices

We analyze extreme co-movements of the Dow Jones, S&P 500, and NASDAQ during the
period from January 4, 1971, to February 28, 2020 [37, 38]. The differenced log-time-series
(xt) are depicted in the three left-hand panels of Figure 3.9. We pair these time series and
analyze the strength of their co-movements in regions of extreme losses. In Figure 3.6, the
thresholds q = 0.0075, 0.01, and 0.0075 have been set for the pairs (Dow Jones, S&P 500),
(Dow Jones, NASDAQ), and (S&P 500, NASDAQ), respectively. Their TOMD and TODD

Dow Jones 0.8329 0.9816
77 S&P 500 0.9422
68 53 NASDAQ

(a) TOMD κ̂∗mq
(5, θ0, q) and mq.

Dow Jones 1.0788 0.9874
77 S&P 500 0.9710
61 44 NASDAQ

(b) TODD κ̂OLS
nq

and nq.

Table 3.5.2: The upper-triangle entries of each panel report estimated tail orders, and the lower-
triangle entries report the corresponding sample sizes.

estimates are reported in Table 3.5.2. Note the relative differences:

(Dow Jones, S&P 500) : RD = −22.79%
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Figure 3.6: Scatterplots of pseudo observations of stock market indices.

(Dow Jones, NASDAQ) : RD = −0.59%
(S&P 500, NASDAQ) : RD = −2.97%

All the values of TOMD are smaller than the corresponding ones of TODD. The pair (Dow
Jones, S&P 500) shows an almost 23% decrease in the value of TOMD if compared to the
diagonal case, and thus increase in tail dependence when measured by TOMD. Allowing for
5% variability, we conclude that (Dow Jones, NASDAQ) and (S&P 500, NASDAQ) have quite
similar TOMD and TODD, thus implying strong dependence within the pairs.

3.5.3 Diverse financial instruments

We analyze pairwise extreme co-movements between daily returns of three different financial
instruments: JPY/USD [36], US 10-year Treasury shorthanded as US10YT, and NASDAQ
[38], which belong to the categories of exchange rates, treasury notes, and stock market indices,
respectively. The historical data are from February 5, 1971, to March 3, 2020. The differenced
log-time-series (xt) are depicted in the three left-hand panels of Figure 3.10. We pair these
time series and analyze the strength of their co-movements in regions of extreme losses. In
Figure 3.7, the thresholds q = 0.05, 0.05, and 0.025 have been set for the pairs (JPY/USD,
US10YT), (JPY/USD, NASDAQ), and (US10YT, NASDAQ), respectively. Their TOMD and
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Figure 3.7: The pseudo observations under consideration of diverse financial instruments.

JPY/USD 1.1648 1.4002
89 US10YT 0.8516
87 47 NASDAQ

(a) TOMD κ̂∗mq
(5, θ0, q) and mq.

JPY/USD 1.3146 1.5276
85 US10YT 1.1292
80 47 NASDAQ

(b) TODD κ̂OLS
nq

and nq.

Table 3.5.3: The upper-triangle entries of each panel report estimated tail orders, and the lower-
triangle entries report the corresponding sample sizes.

TODD estimates are reported in Table 3.5.3. Note the relative differences:

(JPY/USD, US10YT) : RD = −11.40%
(JPY/USD, NASDAQ) : RD = −8.34%
(US10YT, NASDAQ) : RD = −24.58%

All the values of TOMD are smaller than the corresponding ones of TODD, and all the pairs
show considerable decrease in the values of TOMD if compared to the diagonal case.
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3.6 Conclusion
In this chapter we have developed a substantial extension of the procedure of Chapter 2 for
assessing the maximal strength of co-movements of extreme losses when original data fol-
low dependent dynamical models. We have explored the performance of the modification on
simulated bivariate time series. The study has shown that the block-wise construction of the
estimator of maximal tail dependence successfully handles time series structures of data sets
and, in turn, from them arising extreme co-movements.

We have tested the validity of underlying theoretical assumptions using statistical tests, and
also discussed ways for calculating critical values. In addition, we have provided an extensive
study of thresholds below which time-series data give rise to what we deem to be extreme
losses.

The strength of maximal dependence as well as of the classical diagonal dependence have
been explored and compared for a number of financial instruments, such as foreign exchange
rates of several major currencies, stock market indices, and treasury notes.

Appendix

3.A Thresholds and pseudo observations
In Figures 3.8–3.10 we have depicted the differenced log-time-series xt = log(x0

t ) − log(x0
t−1)

(left-hand panels) and the extreme pseudo-observations (right-hand panels) that arise from the
time series data specified in Section 3.5.

With thresholds q ∈ (0, 1) reported in Table 3.A.1, the time series give rise to paired extreme

Threshold q

Pairs 0.0075 0.01 0.025 0.05 0.075 0.085 0.1
(JPY, CAD) ... ... ... ... 100(123) ... ...
(JPY, GBP) ... ... ... ... ... 90(64) ...
(CAD, GBP) ... ... ... ... ... ... 95(57)
(Dow Jones, S&P 500) 60(77) ... ... ... ... ... ...
(Dow Jones, NASDAQ) ... 77(68) ... ... ... ... ...
(S&P 500, NASDAQ) 76(53) ... ... ... ... ... ...
(JPY/USD, US10YT) ... ... ... 100(89) ... ... ...
(JPY/USD, NASDAQ) ... ... ... 100(87) ... ... ...
(US10YT, NASDAQ) ... ... 88(47) ... ... ... ...

Table 3.A.1: The percentages of p-values retaining the null of white noise at the significance
level α = 0.05 alongside the sample sizes mq (in parentheses) for appropriate choices of q.

pseudo-observations that resemble white noise; see the right-hand panels of Figures 3.8–3.10.
To substantiate this claim, we have run several portmanteau tests for the null hypothesis

H0 : ΓL = 0, L = 1, . . . , 20,
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Figure 3.8: Original xt’s (left-hand panels) and the pairs of extreme pseudo-observations (right-
hand panels) for foreign currency exchange from January 4, 1971, to October 25, 2019.

where ΓL = Cov(εt, εt−L) and (εt)
mq

t=1 are the residuals obtained by fitting the original data to
the time series model VARMA for sufficiently many lags [39]. The selected portmanteau tests
include those of [39], [40], [41], [42], and [43]. The percentages of p-values above the 5%
significance level (meaning that the null of white noise is retained) are reported in Table 3.A.1,
where we also report the sample sizes mq.

The different choices of q ∈ (0, 1) warrant an explanation. First, we want to work with as
small q > 0 as possible, mainly due to two reasons: first, the estimator’s deterministic bias
becomes small (recall Theorem 3.3.1), and second, the two-dimensional time series of extreme
pseudo-observations becomes nearly white-noise. Working close to white noise is important
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Figure 3.9: Original xt’s (left-hand panels) and the pairs of extreme pseudo-observations (right-
hand panels) for stock market indices from January 4, 1971, to February 28, 2020.

in order to reliably calculate critical values of hypothesis tests for bound (3.3.14), which verify
the applicability of Theorem 3.3.1.

3.B Testing the validity of bound (3.3.14)

In all the real time-series examples that we explore, we statistically test the reasonableness of
bound (3.3.14) for the cdf F∗q defined in equation (3.3.5). For this, we adapt the Kolmogorov-
Smirnov (K-S), Cramér-von Mises (C-vM), Anderson-Darling (A-D) one-sided statistics [cf.
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Figure 3.10: Original xt’s (left-hand panels) and the pairs of extreme pseudo-observations
(right-hand panels) for diverse financial instruments from February 5, 1971, to March 3, 2020.

44]:

√
mq sup

(u,v)∈[0,1]2
{uv − F∗q,Mq

(u, v)}+, (3.B.1)

mq

∫
[0,1]2

(
{uv − F∗q,Mq

(u, v)}+
)2

dF∗q,Mq
(u, v), (3.B.2)

mq

∫
[0,1]2

(
{uv − F∗q,Mq

(u, v)}+
)2

u(1 − u)v(1 − v)
dF∗q,Mq

(u, v), (3.B.3)
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respectively, where F∗q,Mq
is defined in equation (3.3.6). Specifically, we use these statistics to

test the null hypothesis H0 of having bound (3.3.14) versus the alternative H1 of not having the
bound: :

H0 : F∗q(u, v) ≥ uv for all (u, v) ∈ [0, 1]2

H1 : F∗q(u, v) < uv for some (u, v) ∈ [0, 1]2

The critical values of these tests are obtained by sampling from the pairs of pseudo observa-
tions. Namely, we calculate the test statistics, repeat the procedure N = 10, 000 times obtain
so many values of the test statistics, and finally calculate the 95th percentiles of the respective
test-statistic values. The decision rule is to retain the null hypothesis H0 if the test statistic is
smaller than the critical value, and to reject it otherwise. Specifically, we have adopted the
following four-step procedure [cf. 45]:

1. choose the independence copula as the reference, because it is the closest to the alterna-
tive;

2. draw N independent samples, each of size n, from the independence copula;

3. calculate K-S, C-vM, and A-D test statistics for each sample, thus obtaining three sets,
each of cardinality N, of numerical values;

4. given a significance level α, define the critical values of the three tests as the 95th per-
centiles of the K-S, C-vM, and A-D values obtained in the previous step.

The obtained results are summarized in Tables 3.B.1–3.B.3, where the abbreviations “Stat,”
“Crit,” and “Deci” stand for the test statistic value, the critical value, and the decision, respec-
tively. The decision is to retain the null H0 when the statistic is smaller than the critical value.

(JPY, CAD) (JPY, GBP) (CAD, GBP)
q = 0.075, mq = 123 q = 0.085, mq = 64 q = 0.1, mq = 57

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 0.0189 1.2119 H0 0.0404 1.1195 H0 0.5781 1.0989 H0

C-vM 0.0000 0.2013 H0 0.0000 0.1844 H0 0.0330 0.1737 H0

A-D 0.0008 28.7139 H0 0.0064 23.9732 H0 6.0110 24.5422 H0

Table 3.B.1: Testing H0 vs H1 of pseudo observations of foreign currency exchange rates.

In every case, the three tests have retained the null H0.
To gain additional insight, in next Section 3.C we also test the null of the eqaution F∗q(u, v) =

uv for all (u, v) ∈ [0, 1]2, which is a “boundary” case for H0.

3.C Testing the boundary case of bound (3.3.14)

In the examples of Section 3.B, all of which retained the null H0 for the cdf F∗q, we now sta-
tistically test the reasonableness of the boundary case F∗q(u, v) = uv for all (u, v) ∈ [0, 1]2. For
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(Dow Jones, S&P 500) (Dow Jones, NASDAQ) (S&P 500, NASDAQ)
q = 0.0075, mq = 77 q = 0.01, mq = 68 q = 0.0075, mq = 53

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 0.0000 1.1474 H0 0.0000 1.1350 H0 0.0000 1.0905 H0

C-vM 0.0000 0.1922 H0 0.0000 0.1900 H0 0.0000 0.1786 H0

A-D 0.0000 26.5523 H0 0.0000 24.7340 H0 0.0000 22.9812 H0

Table 3.B.2: Testing H0 vs H1 of pseudo observations of stock market indices.

(JPY/USD, US10YT) (JPY/USD, NASDAQ) (US10YT, NASDAQ)
q = 0.05, mq = 89 q = 0.05, mq = 87 q = 0.025, mq = 47

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 0.0000 1.1715 H0 0.1913 1.1766 H0 0.0000 1.0739 H0

C-vM 0.0000 0.1889 H0 0.0007 0.2004 H0 0.0000 0.1794 H0

A-D 0.0000 25.2966 H0 0.6637 26.5172 H0 0.0000 23.8698 H0

Table 3.B.3: Testing H0 vs H1 of pseudo observations of diverse financial instruments.

the task, we employ the Kolmogorov-Smirnov (K-S), Cramér-von Mises (C-vM), Anderson-
Darling (A-D) one-sided statistics [cf. 46]:

√
mq sup

(u,v)∈[0,1]2
{F∗q,Mq

(u, v) − uv}+, (3.C.1)

mq

∫
[0,1]2

(
{F∗q,Mq

(u, v) − uv}+
)2

dF∗q,Mq
(u, v), (3.C.2)

mq

∫
[0,1]2

(
{F∗q,Mq

(u, v) − uv}+
)2

u(1 − u)v(1 − v)
dF∗q,Mq

(u, v), (3.C.3)

respectively. Specifically, we use statistics (3.C.1)–(3.C.3) to test the hypothesis:

H∗0 : F∗q(u, v) = uv for all (u, v) ∈ [0, 1]2

H∗1 : F∗q(u, v) > uv for some (u, v) ∈ [0, 1]2

Note 3.C.1 We already noted that the cdf F∗q does not, in general, have uniform marginal
distributions, and so the null hypothesis H∗0 does not, in general, mean the null of independence.
However, it is not too far away from being such a hypothesis. Indeed, if C is the independence
copula, then, as immediately follows from equation (3.3.5), we have F∗q(u, v) = uv for all
(u, v) ∈ [0, 1]2. Hence, if we reject H∗0, this means that we also reject the null of independence.
Of course, the opposite may not be true: if we retain H∗0, then this does not, in general, mean
that we retain the null of independence. We shall come back to this at the very end of this
section, given certain numerical values of TOMD.
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Coming now back to our main discussion, we note that the procedures for calculating crit-
ical values for any of the three tests for H∗0 vs H∗1 based on statistics (3.C.1)–(3.C.3) are anal-
ogous to those we used in Section 3.B in the case of H0 vs H1. The decision to retain the null
H∗0 is, of course, taken when the statistic is smaller than the critical value. Our findings are
summarized in Tables 3.C.1–3.C.2.

(JPY, CAD) (JPY, GBP) (CAD, GBP)
q = 0.075, mq = 123 q = 0.085, mq = 64 q = 0.1, mq = 57

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 1.4859 1.3546 H∗1 1.4837 1.3386 H∗1 0.9139 1.3231 H∗0
C-vM 0.5874 0.2969 H∗1 0.6968 0.3198 H∗1 0.0782 0.3299 H∗0
A-D 25.6607 44.9833 H∗0 91.2540 50.1569 H∗1 4.0293 49.6459 H∗0

Table 3.C.1: Testing H∗0 vs H∗1 of pseudo observations of foreign currency exchange rates.

(Dow Jones, S&P 500) (Dow Jones, NASDAQ) (S&P 500, NASDAQ)
q = 0.0075, mq = 77 q = 0.01, mq = 68 q = 0.0075, mq = 53

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 2.4058 1.3441 H∗1 1.7760 1.3335 H∗1 1.6858 1.3208 H∗1
C-vM 2.9460 0.3107 H∗1 1.3744 0.3269 H∗1 1.3100 0.3343 H∗1
A-D 90.9184 47.4610 H∗1 61.2180 49.3820 H∗1 51.2729 51.2274 H∗1

Table 3.C.2: Testing H∗0 vs H∗1 of pseudo observations of stock market indices.

(JPY/USD, US10YT) (JPY/USD, NASDAQ) (US10YT, NASDAQ)
q = 0.05, mq = 89 q = 0.05, mq = 87 q = 0.025, mq = 47

Test Stat Crit Deci Stat Crit Deci Stat Crit Deci
K-S 1.8927 1.3442 H∗1 0.8564 1.3465 H∗0 2.1463 1.3158 H∗1
C-vM 1.0709 0.3092 H∗1 0.2266 0.3142 H∗0 1.4086 0.3345 H∗1
A-D 79.7641 49.0677 H∗1 33.5631 48.3546 H∗0 71.3135 52.2009 H∗1

Table 3.C.3: Testing H∗0 vs H∗1 of pseudo observations of diverse financial instruments.

Hence, independence of the first and second coordinates of the pairs (CAD, GBP) and
(JPY/USD, NASDAQ) has not been rejected (recall Note 3.C.1) by any of the three tests, but
the estimated TOMDs are equal to 1.5488 and 1.4002, respectively, as seen from Tables 3.5.1
and 3.5.3. These TOMD values suggest that the coordinates of the two aforementioned pairs
may actually be fairly dependent.
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Chapter 4

Detecting systematic anomalies affecting
systems when inputs are stationary time
series

4.1 Introduction

Control systems are often exposed to errors, intrusions, and other anomalies whose detection in
a timely fashion is of paramount importance. Computer systems monitor and control a myriad
of physical processes, and their protection against random errors, deliberate intrusions [e.g.,
1–4], false data injections [e.g., 5], and other disruptors is of much interest.

A vast number of methods have been proposed for the purpose. For example, we find
methods based on deep learning [e.g., 6], probabilistic arguments [e.g., 7, 8], artificial neural
networks [e.g., 9], and Fourier techniques [e.g., 10]. Chen et al. [11] discuss the effects of
an early warning mechanism on system’s reliability. For a recently developed LSTM-based
intrusion detection system for in-vehicle can bus communications, we refer to [12].

For complementary reviews of anomaly detection, we refer to Chandola et al. [13], Bhuyan
et al. [14], Fisch [15]. For general information on various facets of risk and with them associ-
ated problems, we refer to, e.g., Aven et al. [16], Zio [17]. For more specialized discussions on
the topic, we refer to, e.g., Cheng et al. [18], Liang et al. [5].

The emphasis in the present chapter is on temporal aspects and dependence structures that
arise in this area of research. There have been a number of studies tackling these issues from
several perspectives. For example, Barahona and Poon [19] present a computational procedure
capable of robust and sensitive statistical detection of deterministic and chaotic dynamics in
short and noisy time series. Hu et al. [20] explore the role of dependence when assessing
quantities such as system-compromise probabilities and the cost of attacks, which are then
used to develop optimization strategies. Dasgupta and Li [21] tackle the problem of assessing
whether temporal clusters in randomly occurring sequences of events are genuinely random.

Furthermore, Fisch et al. [22] propose what is called the collective and point anomalies
(CAPA) method for detecting point anomalies (i.e., outliers in the statistical language) as
well as anomalous segments, or collective anomalies. The method is suitable when collec-
tive anomalies are characterised by either a change in mean, variance, or both, ant it is capable
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of distinguishing collective anomalies from point anomalies. This and several other methods
have been implemented in an R package by Fisch et al. [23], where we also find the multi-
variate collective and point anomaly (MVCAPA) method of Fisch et al. [24], the proportion
adaptive segment selection (PASS) method of Jeng et al. [25], the Bayesian abnormal region
detector (BARD) of Bardwell and Fearnhead [26], and also sequential versions of CAPA and
MVCAPA by Fisch et al. [27]. Fisch [15] provides the state of the art on statistical anomaly
detection, together with a guide for computational implementation.

The present chapter is devoted to another anomaly-detection method that works irrespective
of whether systems are being affected at the input or output stage, or at both stages simulta-
neously. The important feature that distinguishes our method from the earlier ones is that it
can detect persistent anomalies that may not change the regime (e.g., mean, variance, and/or
autocorrelations) of data in an abrupt fashion during the period of observation. Hence, those
statistical techniques that have been designed to detect outliers and other aberrations become
ineffective in such situations.

As in many previous studies, we also consider dependent random inputs and, in turn, de-
pendent outputs. This enables us to use the method in a myriad of applications. We have
carefully proven the underlying theoretical results and illustrated the method using stationary
time series under various contamination by anomalies scenarios. It is useful to recall at this
point that historical data as well as subject-matter knowledge are helpful in deciding how to
reduce non-stationary random sequences to stationary ones, and transformations such as dif-
ferencing and de-periodization can especially be helpful [see, e.g., 28, 29]. We shall rely on
such transformations in our real-world illustrative examples in Section 4.3.

The departure from the earlier explored by Gribkova and Zitikis [30] case of independent
and identically distributed (iid) inputs to the herein tackled dependent random inputs and thus
outputs requires considerable technical innovation and have given rise to notions such as p-
reasonable order and temperate dependence, whose connections to classical notions such as
phantom distributions have been illuminated. We note that the just mentioned parameter p is
related the p-th finite moment of inputs, and thus to the tail heaviness of the input distribution.

The rest of this chapter is organized as follows. In Section 4.2 we introduce and discuss
basic notation. In Section 4.3 we analyze two actual examples that illustrate the anomaly-
detection method what we develop in subsequent sections. In Section 4.4 we introduce an
experiment that further illustrates and guides our technical considerations. In Section 4.5 we
lay out a foundation for our anomaly-detection method. In Section 4.6 we illustrate the perfor-
mance of the method graphically. In Section 4.7 we explain how the method acts in anomaly-
free orderly systems, whereas in Section 4.8 we show how the method detects anomalies when
they are present. Section 4.9 concludes this chapter with a brief summary of main results and
several suggestions for future studies. Although some graphical illustrations are already given
in the main body of this chapter, Appendix 4.A contains more extensive illustrations. Technical
details such as lemmas and proofs are in Appendix 4.B.
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4.2 Setting the stage: basic notation

Throughout this chapter, we assume the existence of a function h : R1+d → R, called transfer
function, that connects inputs Xt ∈ R and outputs Yt ∈ R via the equation

Yt = h(Xt, εt), (4.2.1)

where εt ∈ R
d are d-dimensional exogenous random variables, called anomalies. They can of

course be equal to 0 := (0, . . . , 0) ∈ Rd, meaning that the system is free of anomalies. In this
case the transfer function reduces to h0 : R→ R defined by

h0(x) = h(x, 0),

which we call the baseline function. When we wish to emphasize that outputs Yt arise from
this anomaly-free case, we use the notation

Y0
t = h0(Xt). (4.2.2)

To illustrate, let d = 2, in which case we have εt = (ε1,t, ε2,t). We may think of ε1,t as
anomalies affecting the inputs Xt before they enter the control system, and ε2,t as anomalies
affecting the (already affected) inputs when they exit the system. Thinking in this fashion,
we arrive at the following transfer functions h : R3 → R, which we use in our numerical
experiment later in this chapter:

TF1: h(x, y, 0) := h0(x + y) when the system is affected by anomalies only at the input stage;

TF2: h(x, 0, z) := h0(x) + z when the system is affected by anomalies only at the output stage;

TF3: h(x, y, z) := h0(x+y)+ z when the system is affected by anomalies at the input and output
stages.

Besides the additive model, there are other models and thus other transfer functions that
link inputs with exogenous variables [e.g., 31–34]. Arguments in favour of using one model
over another can be found in studies by, e.g., Perote et al. [35], Su [36], Semenikhine et al.
[37], Guo et al. [34], and Guo et al. [38].

Model (4.2.1) arises in many areas, including regression analysis, classification, and, gen-
erally, in machine learning [e.g., 39]. It also relates our research to the so-called strategy-proof
estimation in regression [e.g., 40, 35].

Note 4.2.1 Visually, model (4.2.1) may give the impression that the outputs depend only on the
current value of inputs, but Xt, at least in the case of causal time series, is a linear combination
of the contemporary and historical values of the underlying white noise. That is, Xt is the
inner product ⟨β,Zt⟩ of a (finite or infinite) sequence β = (βi)i≥0 of parameters and a (finite or
infinite) sequence Zt = (Zt−i)i≥0 of uncorrelated random variables. We shall elaborate more on
this topic in Section 4.9, in the context of potential future work.
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Although the function h might be known to, e.g., the control system’s manufacturer, its
precise formula may not be known to those working in the area of anomaly detection (e.g.,
company’s IT personnel). The transfer function might even deviate from its original specifica-
tions due to, e.g., wear and tear. Furthermore, in the context of, say, economic variables, which
we shall encounter in the next section, their relationships might be postulated by academics but
in actuality, the true relationships (i.e., the transfer mechanisms from one to another) usually
deviate from any model. In addition, the relationships might be, and usually are, affected by
exogenous economic and other variables. Hence, to accommodate various scenarios associ-
ated with model uncertainty, we shall aim at deriving results for very large classes of transfer
functions, that is, under very mild assumptions.

4.3 Two actual illustrations
This section is devoted to two real-world illustrations, which make up the contents of the
following two subsections. The illustrations are based on pairs (Xt,Yt) of economic variables,
which are observed only for 1 ≤ t ≤ n for some sample sizes n. The inputs and outputs are
dependent. With some luck, one of these variables can be assessed from the values of another
variable, although not precisely because the transfer mechanism (i.e., the transfer function h)
is not known, except of course in academic models. This, however, is not of concern to us
because our primary interest is in finding out whether exogenous economic or other variables
are systematically affecting the relationship between Xt and Yt. That is, we want to answer the
following question:

Question 4.3.1 Are there εt’s in model (4.2.1)?

At this point, we may instinctively start to debate as to the extent of smoothing of the scat-
terplot (X1,Y1), . . . , (Xn,Yn), assuming that we want to do it: extreme undersmoothing would
result in a wiggly function h with no errors εt, whereas too much smoothing would result in
a nice function h but with large errors εt. Hence, the researcher’s subjectively chosen level of
smoothing determines whether or not there are errors in the model, and how large they are. We
therefore do not do any smoothing. Our task is to find out if the hypothetical transfer function
from one economic variable to another is affected by exogenous systematic variables, whatever
they might be.

4.3.1 Dow Jones and Australian All Ordinaries Indices
The data [41, Example 8.1.1] consist of the closing values of the Dow Jones Index (DJ) and the
Australian All Ordinaries Index of Share Prices (AO) recorded at the termination of trading on
251 successive trading days up to August 26, 1994. From the original data, we calculate the
percentage relative price changes, known as percentage returns, and plot them in Figure 4.1.

To answer Question 4.3.1, we employ an index In, whose mathematical definition will
be introduced in Section 4.5. At the moment, what really matters and interests us are the
conclusions that we can reach, for which we use the following decision rules:

Decision 1: If the transition from inputs to outputs is accomplished without systematic inter-
ference, then, when the sample size n grows, the index In stays away from 1/2.
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Figure 4.1: The percentage returns of DJ and AO.

Decision 2: If, however, the transition is exposed to systematic interference, then, when the
sample size n grows, the index In tends to 1/2.

Due to limited sample sizes n or some other reasons, it may not always be clear whether or
not the index In tends to 1/2. In such cases we additionally calculate another index, denoted
by Bn,2, whose mathematical definition will be given in Section 4.5. The meaning of the index
Bn,2 relies on its growth to infinity, and it supplements Decisions 1 and 2 in the following way:

Supplement 1: If the transition from inputs to outputs is accomplished without systematic
interference, then, when the sample size n grows, the index Bn,2 stays asymptotically
bounded, that is, Bn,2 = OP(1) in mathematical terms.

Supplement 2: If, however, the transition is exposed to systematic interference, then, when
the sample size n grows, the index Bn,2 tends to infinity.

Equipped with these indices In and Bn,2, we can now look at the closing values of DJ
and AO. The first question that arises is which of the two variables should be the “input.”
The answer is naturally related to causality, but to avoid any prejudicial statement and thus
controversy, we do our analysis both ways: first we take DJ as the input and thus AO as the
output, and then interchange their roles. The two cases with their respective indices In and Bn,2

are visualized in Figure 4.2.
The graphs suggest that there is exogenous interference when transferring DJ to AO, and

also the other way around, although there is a little dip below 1/2 on the right-hand side of
Figure 4.2c, which may not be of importance given its small value. The index Bn,2 sends the
same message as In. Hence, we comfortably conclude the existence of interference, although
more data might overturn the conclusion.

Note that in Figure 4.2 we always start graphing the panels at n = 20. This is so because
for small values of n, the index In fluctuates wildly between 0 and 1, as it should, which will
be clearly seen from the mathematical definition of In. Hence, by starting at n = 20, we are
able to better depict the behaviour of In near 1/2, which is what really matters for our anomaly-
detection method.
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(b) Bn,2 when (X,Y) = (DJ,AO).
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(d) Bn,2 when (X,Y) = (AO,DJ).

Figure 4.2: The indices In and Bn,2 corresponding to DJ and AO with respect to the sample
sizes n = 20, . . . , 149.

4.3.2 Sales with a leading indicator

The data [41, Example 8.1.2] consist of 150-day sales with a leading indicator, plotted in
Figure 4.3. The data are non-stationarity, and so we difference it at lag 1. The transformed
data are plotted in Figure 4.4. We set the differenced leading indicator as the input and the
differenced sales as the output. There are two reasons for this choice: first, it makes economic
sense, and second, the differenced leading indicator exhibits stationarity whereas differenced
sales seem to hint at some periodicity. Having thus made these choices, we next calculate the
indices In and Bn,2, which are depicted in Figure 4.5. The index In does not tend to 1/2 and
the index Bn,2 stops rising at about n = 120. These observations suggest the lack of exogenous
interference when transiting from the inputs to the outputs, that is, from the leading variable to
the sales.
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Figure 4.3: The original 150-day data of the leading indicator and the sales.
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Figure 4.4: The 1-lag differences of the leading indicator and the sales.

4.4 Introducing a controlled experiment

To explore how the anomaly-detection method works, we have designed an experiment based
on a simple (from the statistical modeling perspective) control system, which is the automatic
voltage regulator (AVR) that has been an active research area with a considerable number of
innovative designs and algorithms proposed in the literature. For details, we refer to the recent
contributions by, e.g., Çelik and Durgut [42], Gozde [43], and extensive references therein.

In its simplest form, the AVR intakes voltages Xt and outputs more stable voltages Yt within
a pre-specified service range [a, b]. When it is known that the system is free of anomalies, the
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Figure 4.5: The indices In and Bn,2 of the 150-day sales data with respect to n = 20, . . . , 149.

outputs are

Y0
t = (Xt ∧ b − a)+ + a =


a when Xt < a,
Xt when a ≤ Xt ≤ b,
b when Xt > b.

Hence, using the “clamped” baseline function (see Figure 4.6)

hc(x) = (x ∧ b − a)+ + a, (4.4.1)

the outputs are Y0
t = hc(Xt). Note that the clamped function hc is Lipschitz continuous but not

110 115 120 125 130 135 140

110

115

120

125

130

Figure 4.6: The transfer function hc with a = 114 and b = 126 corresponding to the automatic
voltage regulator with the transfer window 120 ± 6 volts (i.e., ±5%).

continuously differentiable, and we shall keep this example in mind when deriving results in
Sections 4.7 and 4.8 so that to avoid making assumptions that would exclude functions such as
hc.



4.5. Anomaly detection: a foundation 71

Note 4.4.1 Transfer functions similar to the one in Figure 4.6 appear naturally in various
reinsurance treaties, where direct insurers and reinsurers calculate their risk transfers using
formulas resembling (4.4.1) with pre-determined deductibles and policy limits as parameters,
very much like a and b in equation (4.4.1). Determining whether or not anomalies (e.g., pro-
cessing errors) are affecting such transfers is of interest to all parties involved.

In the numerical experiment in Section 4.6, we shall use the clamped function hc as the
baseline function h0, and then use the transfer functions TF1–TF3 (Section 4.2) as h. The
anomaly-free inputs Xt in the experiment are assumed to follow the ARMA(1, 1) time series,
with the input anomalies δt and the output anomalies ϵt being independent within and among
them, and coming from a certain parametric distribution. Note that such anomalies can be
interpreted as genuinely unintentional; they may arise from, e.g., systematic measurement-
errors due to faulty equipment. In Section 4.7 we shall develop results for the anomaly-free
outputs Y0

t = h0(Xt). In Section 4.8 we shall do the same for the anomaly affected case, that is,
when εt = (δt, ϵt) ∈ R2 and thus Yt = h(Xt, δt, ϵt).

Note 4.4.2 When the inputs Xt are iid random variables, which is a very special case of the
present chapter, anomaly detection in systems with δt = 0 has been studied by Gribkova and
Zitikis [30], with ϵt = 0 by Gribkova and Zitikis [44], and with arbitrary anomalies (δt, ϵt) by
Gribkova and Zitikis [45]. In the present chapter we extend those iid-based results to scenarios
when inputs are governed by stationary time-series models, which is a highly important feature
from the practical point of view. To achieve these goals, a considerable technical work has to
be done, which we present in Appendix 4.B.

We are now ready to familiarize with the anomaly-detection method, and in particular with
mathematical definitions of (dis)orderly systems and of the indices In and Bn,2, as well as of the
more general index Bn,p.

4.5 Anomaly detection: a foundation
Let X1, . . . , Xn be the observable part of a stationary sequence of inputs Xt, whose marginal
cumulative distribution functions (cdf’s) are the same; we denote them by F. With these ob-
servable inputs, there are associated outputs Y1, . . . ,Yn, and so we are dealing with the random
input-output pairs (X1,Y1), . . . , (Xn,Yn). Based on them, we wish to determine whether the
system transferring the inputs into the outputs is functioning as intended or is systematically
affected by anomalies. To successfully tackle this problem, we first need to rigorously define
(dis)orderly systems.

Let the cdf F be continuous, which allows us without loss of generality to state that all the
inputs X1, . . . , Xn are different. Hence, their order statistics

X1:n < X2:n < · · · < Xn:n

are strictly increasing. This facilitates unambiguous definition of the concomitants of the out-
puts Y1, . . . ,Yn, which are denoted by Y1,n, . . . ,Yn,n and defined by the equation

Yt,n =

n∑
s=1

Ys1{Xs = Xt:n},
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where 1 is the indicator: it is equal to 1 when the condition Xs = Xt:n is satisfied and 0 other-
wise. We are now in the position to define (dis)orderly systems.

Definition We say that the outputs and thus the system are in p-reasonable order with respect
to the inputs for some p > 0 if

Bn,p :=
1

n1/p

n∑
t=2

|Yt,n − Yt−1,n| = OP(1)

when n → ∞. If, however, Bn,p →P ∞, then we say that the outputs and thus the system are
out of p-reasonable order with respect to the inputs.

Although this definition is a technicality that is necessary for our anomaly-detection method,
it is also natural from the practical point of view. Indeed, detection of anomalies in disorderly
systems can hardly be a task worth pursuing. As to the parameter p, its role in Definition 4.5 is
to control tail heaviness of the outputs, and we shall later see that this is achieved by controlling
tail heaviness of the inputs. Roughly speaking, we can view p as the order of finite moments.
Note that when the outputs are in p-reasonable order, the outputs are in r-reasonable order for
all r ≤ p. On the other hand, if the outputs are out of p-reasonable order, the outputs are out
of r-reasonable order for all r ≥ p. Hence, we can say that for any given system, there is a
threshold p delineating the sets of in-order and out-of-order outputs.

To successfully detect anomalies affecting a system, we of course need to know that the
brand new system was in orderly state. For a rigorous definition of the latter notion, we slightly
adjust Definition 4.5 as follows.

Definition The anomaly-free outputs and thus the anomaly-free system are in p-reasonable
order with respect to the inputs for some p > 0 if

B0
n,p :=

1
n1/p

n∑
t=2

|Y0
t,n − Y0

t−1,n| = OP(1)

when n → ∞. (For obvious reasons, we do not consider systems that are out of order when
they are free of anomalies.)

To illustrate the anomaly-free case, that is, when all εt’s are equal to 0, if all the inputs
happen to be equal to the same constant, say c, then the system is in p-reasonable order for
every p > 0, because B0

n,p = 0. More generally, next Theorem 4.5.1 will show that if the
transfer function h is sufficiently smooth (e.g., Lipschitz continuous), then the system is in
p-reasonable order for some p > 0 even when the inputs are random, although not too heavy
tailed. We need to introduce additional notation before we can formulate the theorem.

Let aX and bX be the endpoints of the support of the cdf F, that is,

aX = sup{x ∈ R : F(x) = 0},
bX = inf{x ∈ R : F(x) = 1}.

These endpoints can of course be infinite, but they never coincide because the cdf F is assumed
to be continuous. Therefore, the open interval (aX, bX) is never empty.
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Next, we recall that h0 is called absolutely continuous if there is a function h∗0, called the
Radon-Nikodym derivative of h0, that satisfies the equation

h0(v) − h0(u) =
∫ v

u
h∗0(x) dx

for all u ≤ v. Now we are ready to formulate the theorem that describes the circumstances
under which the anomaly-free system is orderly.

Theorem 4.5.1 The anomaly-free outputs are in p-reasonable order with respect to the inputs
for some p ≥ 1 if there is α ∈ [1, p] such that E(|X1|

p/α) < ∞ and one of the following conditions
holds:

(i) If α = 1, then the baseline function h0 is Lipschitz continuous, that is, there is a constant
K ≥ 0 such that, for all x, y ∈ [aX, bX],

|h0(x) − h0(y)| ≤ K|x − y|.

(ii) If α > 1, then the baseline function h0 is absolutely continuous on the interval [aX, bX]
and its Radon-Nikodym derivative h∗0 satisfies∫ ∞

−∞

|h∗0(x)|α/(α−1) dx < ∞.

Next are two facts (to be proven later) upon which we base our anomaly-detection method:

Fact 1: If the anomaly-free outputs are in p-reasonable order with respect to the inputs, then,
under some fairly weak assumptions on the inputs and the transfer function h (details in
Section 4.7), the index

I0
n :=

∑n
i=2(Y0

i,n − Y0
i−1,n)+∑n

i=2 |Y
0
i,n − Y0

i−1,n|
(4.5.1)

converges, when n→ ∞, to a limit other than 1/2.

Fact 2: If, due to anomalies, the outputs are out of p-reasonable order with respect to the
inputs, then (details in Section 4.8) the index

In :=
∑n

i=2(Yi,n − Yi−1,n)+∑n
i=2 |Yi,n − Yi−1,n|

(4.5.2)

converges to 1/2 when n→ ∞.

Establishing these two facts rigorously is a complex and lengthy exercise, which we do in
Sections 4.7 and 4.8, as well as in Appendix 4.B. To show that the task is worth the effort, in
the next section we show how the anomaly-detection method actually works in the case of the
AVR-based experiment that we introduced in Section 4.4.
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Figure 4.7: ARMA(1, 1) inputs (Xt)t∈Z as specified by model (4.6.1).

4.6 The experiment: parameter choices and results
To illustrate the anomaly-detection method, and in particular Facts 1 and 2 formulated in the
previous section, we use the AVR-based experiment with the following parameter choices.

First, the anomaly-free inputs Xt (see Figure 4.7) follow the ARMA(1, 1) time series model

(Xt − 120) = 0.6(Xt−1 − 120) + ηt + 0.4ηt−1, (4.6.1)

where the white noise sequence ηt consists of iid, mean zero, normalN(0, σ2
η) random variables

with the variances

σ2
η =

32(1 − 0.62)
1 + 2(0.6)(0.4) + 0.42 =

5.76
1.64

≈ 3.512195.

Under these specifications [e.g., 28, Eq. (3.4.7), p. 79] the input time series Xt has the marginal
normal distribution with mean 120 and variance 9, that is,

Xt ∼ N(120, 9)

for every t ∈ Z.
Next, the input anomalies δt are iid Lomax(α, 1) with shape parameter α > 0 [e.g., 46,

Section 2.3.11, pp. 23–24], and the output anomalies ϵt are also iid Lomax(α, 1). Both the
input and output anomalies are independent of each other, and they are also independent of
the inputs Xt. (Such anomalies can be interpreted as genuinely unintentional.) Hence, the
anomalies are independent, non-negative, random variables with the means

E(δt) = E(ϵt) =
1

α − 1
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and the variances

Var(δt) = Var(ϵt) =

 α
(α−1)2(α−2) when α > 2,
∞ when 1 < α ≤ 2.

We set the following values for the shape parameter α:

• α = 11, which gives E(δt) = E(ϵt) = 0.1 and Var(δt) = Var(ϵt) = 0.0122, thus making, in
average, the anomalies look small if compared to the nominal voltage 120;

• α = 1.2, which gives E(δt) = E(ϵt) = 5 and infinite variances, thus making, in average,
the anomalies look moderate in size if compared to the nominal voltage 120.

We shall see that in both cases the method detects the anomalies with remarkable easiness,
although the required sample size when α = 11 needs to be, naturally, larger than when α = 1.2
in order to reach the same conclusion. A few clarifying notes follow.

Note 4.6.1 The terms “small” and “moderate” that we used to describe anomalies with aver-
age values 0.1 and 5, respectively, are our terms and may not coincide with what the reader
might think about such anomalies. Nevertheless, it seems to us that the terms “small” and
“moderate” correlate well with the accepted notions of “strict” and “satisfactory” AVR ser-
vice ranges, which are 120 ± 3 and 120 ± 6, respectively.

Note 4.6.2 Among the two choices of α made above, one leads to a finite variance and another
to infinite. These two distinct scenarios are of practical interest. Indeed, based on empirical
evidence, there has been a considerable discussion in the literature as to what distribution
tails (and related dependence structures) could be suitable for modelling, e.g., data traffic and
cyber risks. For details and further references on the topic, we refer to, e.g., Heath et al.
[47], Maillart and Sornette [48], Edwards et al. [49].

To proceed with the set-up of our AVR-based experiment, we next introduce three service
ranges, among which “satisfactory” and “strict” are commonly used terms in practice, and
“precise” is an artefact.

Satisfactory:
[a, b] = [114, 126],

which is 120 ± 6 (i.e., ±5%) and is considered a standard supply range in, e.g., Canada
(recall Figure 4.6), with 120 being the nominal voltage.

Strict:
[a, b] = [117, 123],

which is 120 ± 3 (i.e., ±2.5%).

Precise:
[a, b] = [120, 120] = {120}.

The anomaly-detection method in the case of the clamped transfer function hc correspond-
ing to these three service ranges is illustrated in the next three subsections, with a more ex-
tensive set of illustrative graphs provided in Appendix 4.A. For space considerations, we only
consider the case p = 2. We start with the precise service range.
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4.6.1 Precise service range
When the AVR service range is precise, which is an artefact created only for illustrative pur-
poses, the clamped function is constant, that is,

hc(v) = 120.

Since h0 = hc in this experiment, all the three transfer functions TF1–TF3 in the anomaly-free
case yield

B0
n,2 = 0,

thus implying that the system is orderly. The index I0
n is undefined, as it is the ratio 0/0. These

notes also apply to the anomaly-affected case h(x, y, 0), as it is equal to hc(x + y), which is
120, a constant. In the remaining two anomaly-affected cases h(x, 0, z) and h(x, y, z), which are
identical and given by the equations

h(x, 0, z) = 120 + z = h(x, y, z),

the output anomalies affect the system. Figure 4.8 depicts In and Bn,2 for various sample sizes
n. Note that the index In initially fluctuates but quickly starts to tend to 1/2, whereas Bn,2 is
increasing with respect to the sample size. These two observations suggest that anomalies are
affecting the system, which is indeed the case given the experimental design.

4.6.2 Strict service range
When the AVR service range is strict, the clamped function is

hc(v) = (min{123, v} − 117)+ + 117 =


117 when v < 117,
v when 117 ≤ v ≤ 123,
123 when v > 123.

Figure 4.9 depicts the anomaly-free indices I0
n and B0

n,2 for various sample sizes n. Looking
at the graphs, we safely infer that B0

n,p = OP(1), which implies that the anomaly-free system
is orderly with respect to the inputs, and we also see that I0

n does not converge to 1/2, which
confirms that the system is free of anomalies.

When, however, the system is affected by anomalies at the input and/or output stages, the
behaviour of In and Bn,2 changes drastically. We see from Figures 4.11 (when α = 1.2) and
4.12 (when α = 11) that the index In tends to 1/2. Naturally, it tends to 1/2 faster when α = 1.2
than when α = 11, simply because the anomalies in the latter case are less noticeable. For both
α values, the index Bn,2 has the tendency to grow. These observations suggest that the system
is being affected by anomalies, which is indeed the case.

4.6.3 Satisfactory service range
When the AVR service range is satisfactory, the clamped function is

hc(v) = (min{126, v} − 114)+ + 114 =


114 when v < 114,
v when 114 ≤ v ≤ 126,
126 when v > 126.



4.7. Anomaly-free systems 77

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample size

I n

(a) In with Lomax(1.2, 1) anomalies

0 50 100 150 200 250 300

0
1
0
0

3
0
0

5
0
0

7
0
0

Sample size

B
n

(b) Bn,2 with Lomax(1.2, 1) anomalies
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(c) In with Lomax(11, 1) anomalies
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(d) Bn,2 with Lomax(11, 1) anomalies

Figure 4.8: The anomaly-affected indices In and Bn,2 for the precise service range with respect
to the sample sizes 2 ≤ n ≤ 300 for ARMA(1, 1) inputs.

Figure 4.10 resembles Figure 4.9, and Figures 4.13–4.14 convey essentially the same informa-
tion as Figures 4.11–4.12.

4.7 Anomaly-free systems

In this section we specify conditions under which the index I0
n given by equation (4.5.1) con-

verges to a limit other than 1/2. We note at the outset that since the positive part z+ of any real
number z ∈ R can be expressed as (|z| + z)/2, the index I0

n can be re-written as

I0
n =

1
2

(
1 +

Y0
n,n − Y0

1,n∑n
i=2 |Y

0
i,n − Y0

i−1,n|

)
. (4.7.1)
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Figure 4.9: The anomaly-free indices I0
n and B0

n,2 for the strict service range with respect to the
sample sizes 2 ≤ n ≤ 300 for ARMA(1, 1) inputs.
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Figure 4.10: The anomaly-free indices I0
n and B0

n,2 for the satisfactory service range with respect
to the sample sizes 2 ≤ n ≤ 300 for ARMA(1, 1) inputs.

Hence, our goal becomes to understand when and where the numerator and the denominator of
the ratio

Λn :=
Y0

n,n − Y0
1,n∑n

i=2 |Y
0
i,n − Y0

i−1,n|
(4.7.2)

converge. These are the topics of the following two subsections.

4.7.1 Asymptotics of the Λn numerator

We start with a definition.
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Definition We say that the inputs Xt having the same continuous marginal cdf F are temper-
ately dependent if, for every x ∈ (aX, bX) and when n→ ∞,

P(X1:n ≥ x)→ 0 and P(Xn:n ≤ x)→ 0. (4.7.3)

A few clarifying notes follow. First, the open interval (aX, bX) is not empty because the
cdf F is continuous. Second, our use of the term temperately dependent is natural because
property (4.7.3) is simultaneously related to 1-minimally and n-maximally dependent random
variables in the terminology used by Gascuel and Caraux [50]. To clarify, consider two extreme
cases:

• If Xt is a sequence of iid random variables, then P(X1:n ≥ x) = (1 − F(x−))n and P(Xn:n ≤

x) = F(x)n, where x 7→ F(x−) is the left-continuous version of F. Since for all x ∈
(aX, bX), both F(x) and F(x−) are in the interval (0, 1), property (4.7.3) holds.

• If Xt is a sequence of super-dependent random variables, that is, if there is a random
variable X such that Xt = X for all t ∈ Z, then X1:n = X = Xn:n and so neither of the two
probabilities in property (4.7.3) converges to 0.

Finally, we note that the concept of temperate dependence is closely related to the existence
of phantom distributions, which originate from the work of O’Brien [51]. For further details,
examples, and extensive references on this topic, we refer to Jakubowski [52], Bradley [53],
Doukhan et al. [54]. Phantom distributions for non-stationary random sequences have been
tackled by Jakubowski [55].

Theorem 4.7.1 Let the inputs Xt be strictly stationary and temperately dependent. If the base-
line function h0 is absolutely continuous on the interval [aX, bX] and its Radon-Nikodym deriva-
tive h∗0 is integrable on [aX, bX], then

Y0
n,n − Y0

1,n →P h0(bX) − h0(aX) (4.7.4)

when n→ ∞.

Recall that a strictly stationary time series Xt is α-mixing (i.e., strongly mixing) if

αX(t) := sup
∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣→ 0

when t → ∞, with the supremum taken over all A ∈ F 0
−∞ and B ∈ F∞

t , where the two
σ-algebras are defined as follows:

F 0
−∞ = σ(Xu, u ≤ 0) and F∞

k = σ(Xv, v ≥ t).

We refer to Lin and Lu [56], Bradley [53], Rio [57] for details and references on various notions
of mixing. In the context of the present chapter, a particularly important random sequence is
the strictly stationary ARMA(p, q) time series Xt. We refer to Mokkadem [58] who has shown,
among other things, that a strictly stationary ARMA time series is β-mixing (i.e., completely
regular) and thus α-mixing (i.e., strongly mixing).

Theorem 4.7.2 If the inputs Xt are strictly stationary and α-mixing, then they are temperately
dependent.

The proofs of Theorems 4.7.1 and 4.7.2 are in Appendix 4.B.
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4.7.2 Asymptotics of the Λn denominator
We start with a definition, which is a weak (i.e., in probability) form of the classical Glivenko-
Cantelli theorem.

Definition We say that the inputs Xt having the same marginal cdf F satisfy the Glivenko-
Cantelli property if

∥Fn − F∥ := sup
x∈R

∣∣∣Fn(x) − F(x)
∣∣∣→P 0, (4.7.5)

where Fn is the empirical cdf based on the random variables X1, . . . , Xn.

The classical Glivenko-Cantelli theorem says that statement (4.7.5) (with convergence in
probability replaced by almost surely) holds for iid random sequences. Establishing the Glivenko-
Cantelli property for dependent sequences has been a challenging but fruitful task. In particular,
results by Cai and Roussas [59, Corollary 2.1, p. 49] and Rio [57, Proposition 7.1, p. 114] tell
us that if a strictly stationary sequence Xt is α-mixing and there exists a constant ν > 0 such
that

αX(t) = O(t−ν) (4.7.6)

when t → ∞, then the Glivenko-Cantelli property holds.
Consider now the stationary ARMA(p, q) time series Xt that follows the dynamical model

p∑
i=0

ϕiXt−i =

q∑
j=0

θ jηt− j, t ∈ Z,

with ϕ0 = 1 and some parameters ϕi, θ j ∈ R such that the absolute values of all the roots of the
characteristic polynomial z 7→

∑p
i=0 ϕizi are (strictly) greater than 1. Hence, the time series is

causal.

Note 4.7.3 There is a clash of notation between the p in ARMA(p, q) and the p in the earlier
introduced definition of p-reasonable order. The two p’s are unrelated, and we do not expect
them to cause any confusion. We have simply run out of different notation, especially given the
deeply rooted traditions in the literature, such as those in time series analysis.

Mokkadem [58, Theorem 1] has proved that if the white noise sequence ηt is iid with
absolutely continuous (with respect to the Lebesgue measure) marginal distributions, then the
time series Xt is geometrically completely regular. That is, there exists ρ ∈ (0, 1) such that

βX(t) = O(ρt) (4.7.7)

when t → ∞, where βX(t) is the complete regularity coefficient [60] defined by

βX(t) = E
(

sup
∣∣∣P(B | F 0

−∞) − P(B)
∣∣∣),

where the supremum is taken over all B ∈ F∞
t . As noted by [58], the bound

αX(t) ≤ βX(t)

holds, and thus statement (4.7.7) implies (4.7.6) for any ν > 0, which in turn establishes the
Glivenko-Cantelli property for the sequence Xt.

We are now in the position to formulate the main result of this subsection concerning the
denominator on the right-hand side of equation (4.7.1).
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Theorem 4.7.4 Let the inputs Xt be strictly stationary, temperately dependent, satisfy the
Glivenko-Cantelli property, and have finite p-th moments E(|Xt|

p) < ∞ for some p > 2. Let
the cdf F and its quantile function F−1 be continuous. Finally, assume that the baseline func-
tion h0 is absolutely continuous on [aX, bX] and such that its Radon-Nikodym derivative h∗0 is
continuous on a finite interval [a, b] ⊆ [aX, bX] and vanishes outside [a, b]. Then

n∑
t=2

|Y0
t,n − Y0

t−1,n| →P

∫ b

a
|h∗0(x)| dx (4.7.8)

when n→ ∞.

The restriction of the support of the Radon-Nikodym derivative h∗0 to only a finite interval
[a, b] is due to two reasons:

1) those real-life examples (automatic voltage regulators, insurance layers, etc.) that initiated
our current research are based on finite transfer windows;

2) dealing with finite intervals [a, b] considerably simplifies mathematical technicalities, which
is an appealing feature, especially because we do not have a solid practical justification that
would warrant further technical complexities.

4.7.3 Back to the index I0
n

The following corollary to Theorems 4.7.1 and 4.7.4 is the main result of entire Section 4.7.
Since the conditions of Theorem 4.7.1 make up only a subset of the conditions of Theo-
rem 4.7.4, we thus impose the latter set of conditions when formulating the corollary.

Corollary 4.7.5 Under the conditions of Theorem 4.7.4, we have

I0
n →P I0

∞
:=

∫ b

a
(h∗0(x))+ dx∫ b

a
|h∗0(x)| dx

(4.7.9)

when n→ ∞.

Note the representation (recall equation (4.7.1))

I0
∞ =

1
2

(
1 + Λ(h0)

)
, (4.7.10)

where
Λ(h0) =

h0(b) − h0(a)∫ b

a
|h∗0(x)| dx

.

We shall see in the next section that for anomaly-affected systems, the empirical index In con-
verges to 0.5. To distinguish this case from the limit I0

∞ in the currently discussed anomaly-free
case, we need to assume Λ(h0) , 0, which is tantamount to assuming h0(b) , h0(a), because
the numerator ofΛ(h0) is positive. This is natural from the practical point of view as it excludes
those transfer functions (which are usually non-decreasing) whose values at the end-points of
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the transfer window [a, b] coincide. Moreover, given model uncertainty, we need to ensure that
h0 belongs to a class of functions for which Λ(h0) is sufficiently distant from 0 so that in the
presence of statistical uncertainty we could still – with high confidence – be able to see whether
the empirical index In converges to 0.5 or some other number.

Note 4.7.6 The ratio on the right-hand side of statement (4.7.9) arises as a normalized dis-
tance in a functional space [61], which after a discretization gives rise to the index I0

n and
thus, in turn, to the index In [62]. For a generalization of these indices to multi-argument
functions with further applications, we refer to Davydov et al. [63]. For related mathematical
considerations, we refer to Polyak [64].

4.8 Anomaly-affected orderly systems
If the system is out of p-reasonable order, then the index In tends to 1/2, as shown in the next
theorem.

Theorem 4.8.1 Let the outputs Yt be identically distributed random variables with finite p-th
moments E(|Yt|

p) < ∞ for some p ≥ 1. If the outputs are out of p-reasonable order with respect
to the inputs, then

In →P
1
2

when n→ ∞.

To apply Theorem 4.8.1 for detecting non-degenerate anomalies εt, we need to assume that
when all εt’s are equal to 0, then the system is in p-reasonable order. Hence, our task in this
section is this: Assuming that the system with anomaly-free outputs Y0

i = h0(Xi) = h(Xi, 0)
is in p-reasonable order for some p > 0, we need to show that the system becomes out of
p-reasonable order when the outputs Yt are equal to h(Xt, εt) with non-degenerate at 0 random
anomalies εt. In other words, assuming B0

n,p = OP(1) when n → ∞, we need to show that
Bn,p →P ∞ when εt’s are non-degenerate at 0.

To avoid overloading arguments with mathematical complexities, from now on we set d =
2 and work with the three transfer functions TF1–TF3 (Section 4.2). Consequently, in the
anomaly-free case we have

B0
n,p =

1
n1/p

n∑
t=2

|h0(Xt:n) − h0(Xt−1:n)|. (4.8.1)

We refer to Theorem 4.5.1 for a description of those inputs Xt and the baseline function h0 for
which the anomaly-free system is in p-reasonable order. Our next theorem deals with the case
when the input anomalies δt are absent.

Theorem 4.8.2 Let δt = 0 for all t ∈ Z, and let the anomaly-free outputs Y0
t be in p-reasonable

order with respect to the inputs for some p > 0. The outputs Yt are out of p-reasonable order
with respect to the inputs if and only if the output anomalies ϵt are out of p-reasonable order
with respect to the inputs.
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To illustrate Theorem 4.8.2, consider the case when the output anomalies ϵt and the inputs
Xt are independent. Assume also that the output anomalies ϵt are iid and have finite first mo-
ments. (Such anomalies can be interpreted as genuinely unintentional.) In this case, the joint
distribution of the concomitants (ϵ1,n, . . . , ϵn,n) is the same as the joint distribution of the anoma-
lies (ϵ1, . . . , ϵn) themselves. Consequently, the output anomalies ϵt are out of p-reasonable order
with respect to the inputs if and only if

1
n1/p

n∑
t=2

|ϵt − ϵt−1| →P ∞ (4.8.2)

when n → ∞. Statement (4.8.2) holds (see Lemma 4.B.5) whenever the distribution of ϵ1 is
non-degenerate (at any one point). Hence, we have the following corollary to Theorem 4.8.2.

Corollary 4.8.3 Let δt = 0 for all t ∈ Z, and let the anomaly-free outputs Y0
t be in p-reasonable

order with respect to the inputs. The outputs Yt are out of p-reasonable order with respect to
the inputs for every p > 1 whenever the output anomalies ϵt are iid, non-degenerate, and
independent of the inputs.

For a special but important case of Corollary 4.8.3, recall that by Theorem 4.5.1, the
anomaly-free outputs Y0

t are in p-reasonable order with respect to the inputs when the baseline
function h0 is Lipschitz continuous. We shall encounter the latter assumption in the following
two theorems.

First, we tackle the case when the output anomalies ϵt are not present.

Theorem 4.8.4 Let ϵt = 0 for all t ∈ Z, and let the baseline function h0 be Lipschitz continuous.
Furthermore, let the inputs Xt be strictly stationary, α-mixing, and have finite p-th moments
E(|Xt|

p) < ∞ for some p > 1. Then the outputs Yt are out of p-reasonable order with respect to
the inputs whenever the following conditions hold:

(i) the input anomalies δt are iid and independent of the inputs Xt;

(ii) E
(
|h0(X1 + δ2) − h0(X1 + δ1)|

)
> 0.

A sufficient condition for assumption (ii) can be obtained via Lemma 4.B.5 and the ele-
mentary bound

E
(
|h0(X1 + δ2) − h0(X1 + δ1)|

)
≥ E

(
|g0(δ2) − g0(δ1)|

)
,

where
g0(y) = E(h0(X1 + y)). (4.8.3)

That is, assumption (ii) is satisfied whenever the distribution of g0(δ1) is non-degenerate.
Finally, we tackle the case when the two anomalies δt and ϵt are non-degenerate.

Theorem 4.8.5 Let the baseline function h0 be Lipschitz continuous. Furthermore, let the
inputs Xt be strictly stationary, α-mixing, and have finite p-th moments E(|Xt|

p) < ∞ for some
p > 1. Then the outputs Yt are out of p-reasonable order with respect to the inputs whenever
the following conditions hold:
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(i) the input anomalies δt are iid, the output anomalies ϵt are also iid, they are independent
of each other, and are also independent of the inputs Xt;

(ii) E
(
|h0(X1 + δ2) + ϵ2 − h0(X1 + δ1) − ϵ1|

)
> 0.

Assumption (ii) is satisfied when the random variable g0(δ1) + ϵ1 is non-degenerate, where
g0 is the same function as in equation (4.8.3).

4.9 A summary and potential extensions
In this chapter we have explored a method for detecting systematic anomalies affecting systems
when genuine anomaly-free inputs belong to a large class of stationary time series, or can be
reduced to such. The anomalies may mimic (from the distributional point of view) the genuine
inputs so closely that the contaminated system may not exhibit any visual aberrations, yet they
can be detected using the herein proposed method. Supporting probabilistic and statistical
results have been rigorously derived, and conditions under which they hold carefully specified.
This rigour facilitates confidence when interpreting results and thus when making decisions.

To illustrate how the method works in practice, we have illustrated it using actual time series
and also included a numerical experiment under various model and anomaly specifications.
The results have shown that the method is robust and is able to detect even tiny systematic
anomalies, although, naturally, under longer periods of observation. The method covers light-
and heavy-tailed inputs, thus showing its versatility in applications, including those that are
associated with data traffic and cyber risks.

Several interesting topics for future study naturally arise from the present chapter, through-
out which we have so far concentrated on the model

Yt = h(Xt, εt) (4.9.1)

with one-dimensional inputs Xt ∈ R and outputs Yt ∈ R, and d-dimensional anomalies εt ∈ R
d.

With the time series structure of inputs, contemporary and historical observations enter into
the model via the equation Xt = ⟨β,Zt⟩. This point of view together with naturally occurring
multidimensional predictors in regression, classification, and, generally, in machine learning
lead us to the model

Yt = h(Xt, εt) (4.9.2)

with k-dimensional predictors Xt ∈ R
k for some k ∈ N ∪ {+∞}. More generally, problems

associated with anomaly detection in parallel computer systems, electrical grid, and wireless
communication architectures such as SISO, SIMO, etc. [e.g., 65, 66] lead us to the model

Yt = h(Xt, εt) (4.9.3)

with q-valued (q ∈ N) transfer function h : Rk+d → Rq and thus q-dimensional outputs Yt.
The transition from the univariate inputs Xt to the multivariate ones Xt gives rise to serious

mathematical challenges, particularly because of the lack of total ordering in multi-dimensional
Euclidean spaces. We feel that the coordinate-wise ordering might lead to a useful anomaly-
detection method, but at this moment it looks ad hoc, lacking geometric interpretation and thus
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intuitive appeal. The optimization problems tackled by Davydov and Zitikis [61], Davydov
et al. [63] might give a clue as to what path to take. Alternatively, studies by Koshevoy [67],
Mosler [68] on ordering multi-dimensional elements could give rise to an effective solution.

The multivariate nature of outputs Yt also creates serious statistical-testing and decision-
making problems, but we feel that with some effort, such problems can be tackled with the help
of e-values studied by Vovk and Wang [69] and the multiple testing procedures developed by
Wang and Ramdas [70]. The e-values are expectation-based versions of the classical p-values.
They are simpler to use, thus facilitating multiple hypothesis testing and, in turn, decision mak-
ing. Hence, the e-values can give rise to impressively powerful and convenient statistical tools
in the context of systematic-anomaly detection in, e.g., parallel computer systems, electrical
grid, wireless communication architectures, and so on.

Finally, we conclude with the note that anomaly detection problems involve adversarial
aspects (e.g., adversarial signal processing, adversarial hypothesis testing) which involve ad-
versaries (intruders) who change their strategies over time. For a glimpse of such research
areas, we refer to [71], [72], [73], [74]. Naturally, machine learning techniques play a pivotal
role in these areas.

Appendix

4.A Graphical illustrations
In this appendix we illustrate the behaviour of In and Bn,2 when genuine, anomaly-free inputs
follow the ARMA(1, 1) time series and the system is affected by iid Lomax(α, 1) anomalies
at the input and/or output stages. In the figures that follow, the system is always affected by
anomalies. Hence, the index In always tends to 1/2 whereas Bn,2 grows together with the
sample size n. Note also that convergence of In to 1/2 is slower when anomaly averages are
smaller, meaning that anomalies are less noticeable. This suggests, naturally, that larger sample
sizes are needed to reach desired confidence when making decisions.
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(b) Bn,2 for h(Xt, 0, ϵt).
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(c) In for h(Xt, δt, 0).
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(d) Bn,2 for h(Xt, δt, 0).
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(e) In for h(Xt, δt, ϵt).
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(f) Bn,2 for h(Xt, δt, ϵt).

Figure 4.11: The anomaly-affected indices In and Bn,2 for the strict service range with respect
to 2 ≤ n ≤ 300 for ARMA(1, 1) inputs and iid Lomax(1.2, 1) anomalies.

4.B Technical details

To prove Theorem 4.5.1, we need a lemma, which we shall also use when proving other results.
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(a) In for h(Xt, 0, ϵt).

0 50 100 150 200 250 300

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Sample size

B
n

(b) Bn,2 for h(Xt, 0, ϵt).
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(c) In for h(Xt, δt, 0).
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(d) Bn,2 for h(Xt, δt, 0).
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(e) In for h(Xt, δt, ϵt).
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(f) Bn,2 for h(Xt, δt, ϵt).

Figure 4.12: The anomaly-affected indices In and Bn,2 for the strict service range with respect
to 2 ≤ n ≤ 300 for ARMA(1, 1) inputs and iid Lomax(11, 1) anomalies.

Lemma 4.B.1 Let ξt, t ∈ Z, be identically distributed random variables such that E(|ξt|
p) < ∞

for some p ≥ 1. Then
n−1/p

(
E(ξn:n) − E(ξ1:n)

)
= O(1) (4.B.1)
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(b) Bn,2 for h(Xt, 0, ϵt).
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(c) In for h(Xt, δt, 0).
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(d) Bn,2 for h(Xt, δt, 0).
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(e) In for h(Xt, δt, ϵt).
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(f) Bn,2 for h(Xt, δt, ϵt).

Figure 4.13: The anomaly-affected indices In and Bn,2 for the satisfactory service range with
respect to 2 ≤ n ≤ 300 for ARMA(1, 1) inputs and iid Lomax(1.2, 1) anomalies.

when n → ∞, and thus n−1/p(ξn:n − ξ1:n) = OP(1), where ξ1:n ≤ ξ2:n ≤ · · · ≤ ξn:n are the order
statistics of ξ1, ξ2, . . . , ξn.
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(a) In for h(Xt, 0, ϵt).
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(b) Bn,2 for h(Xt, 0, ϵt).
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(c) In for h(Xt, δt, 0).
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(d) Bn,2 for h(Xt, δt, 0).
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(e) In for h(Xt, δt, ϵt).
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(f) Bn,2 for h(Xt, δt, ϵt).

Figure 4.14: The anomaly-affected indices In and Bn,2 for the satisfactory service range with
respect to 2 ≤ n ≤ 300 for ARMA(1, 1) inputs and iid Lomax(11, 1) anomalies.

Proof Using bounds (7) of Gascuel and Caraux [50] and then applying Hölder’s inequality, we
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have

E(ξn:n) − E(ξ1:n) ≤ n
∫ 1

1−1/n
F−1
ξ (y) dy − n

∫ 1/n

0
F−1
ξ (y) dy

≤ n
∫ 1

1−1/n
|F−1

ξ (y)| dy + n
∫ 1/n

0
|F−1

ξ (y)| dy

≤ cn
( ∫ 1

0
|F−1

ξ (y)|p dy
)1/p

n−1/q

≤ cn1/p
(
E(|ξ1|

p)
)1/p

,

where Fξ denotes the cdf of ξ1, and q ∈ [1,∞] is such that p−1 + q−1 = 1. (When p = 1, we set
q = ∞.) This proves statement (4.B.1). To prove the concluding part of the lemma, we choose
any constant λ > 0 and write the bounds

P(n−1/p(ξn:n − ξ1:n) > λ) ≤
n−1/p

λ

(
E(ξn:n) − E(ξ1:n)

)
≤

c
λ

with a finite constant c < ∞ that does not depend on n and λ. This finishes the entire proof of
Lemma 4.B.1.

Gascuel and Caraux [50, bounds (8)] allow different distributions of ξt’s, and only simple
though space consuming modifications of Theorem 4.8.1 and its proof (to be later given in this
appendix) are required to accommodate this case. This is significant because it implies high
robustness of convergence of In to 1/2 with respect to possibly varied (i.e., non-stationary)
marginal distributions of the outputs Yt.

Proof of Theorem 4.5.1 We first prove part (i). Using Lipschitz continuity of h0, we have

1
n1/p

n∑
t=2

|Y0
t,n − Y0

t−1,n| ≤
K

n1/p

n∑
t=2

(Xt:n − Xt−1:n)

=
K

n1/p (Xn:n − X1:n). (4.B.2)

Lemma 4.B.1 with Xt’s instead of ξt’s gives us the statement n−1/p(Xn:n − X1:n) = OP(1) and
completes the proof of part (i).

To prove part (ii), we start with the bound

1
n1/p

n∑
t=2

|Y0
t,n − Y0

t−1,n| =
1

n1/p

n∑
t=2

|h0(Xt:n) − h0(Xt−1:n)|

=
1

n1/p

n∑
t=2

∣∣∣∣∣ ∫ Xt:n

Xt−1:n

h∗0(x) dx
∣∣∣∣∣

≤
1

n1/p

∫ Xn:n

X1:n

|h∗0(x)| dx. (4.B.3)
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Applying Hölder’s inequality on the right-hand side of bound (4.B.3) with β such that α−1 +

β−1 = 1, we have

1
n1/p

n∑
t=2

|Y0
t,n − Y0

t−1,n| ≤
1

n1/p (Xn:n − X1:n)1/α
( ∫ Xn:n

X1:n

|h∗0(x)|β dx
)1/β

≤
c

n1/p (Xn:n − X1:n)1/α. (4.B.4)

To show that the right-hand side of bound (4.B.4) is of order OP(1), we fix any λ > 0 and write
the bound

P

(
1

n1/p (Xn:n − X1:n)1/α > λ

)
≤

1
λα

n−α/p
(
E(ξn:n) − E(ξ1:n)

)
. (4.B.5)

Lemma 4.B.1 with Xt’s instead of ξt’s and with p/α instead of p shows that the right-hand side
of bound (4.B.5) can be made as small as desired by choosing a sufficiently large λ and for all
sufficiently large n. This completes the proof of part (ii), and that of Theorem 4.5.1 as well.

Proof of Theorem 4.7.1 Since the baseline function h0 is absolutely continuous on [aX, bX],
there is an integrable on [aX, bX] function h∗0 such that h0(v) − h0(u) =

∫ v

u
h∗0(x) dx for all u, v ∈

[aX, bX] such that u ≤ v. Hence,

Y0
n,n − Y0

1,n −
(
h0(bX) − h0(aX)

)
= h0(Xn:n) − h0(X1:n) −

(
h0(bX) − h0(aX)

)
= −

∫ bX

Xn:n

h∗0(x) dx −
∫ X1:n

aX

h∗0(x) dx

= −

∫ bX

aX

1{x ≥ Xn:n}h∗0(x) dx −
∫ bX

aX

1{x < X1:n}h∗0(x) dx.

Consequently, for every λ > 0, using Markov’s inequality we have

P
(∣∣∣Y0

n,n − Y0
1,n −

(
h0(bX) − h0(aX)

)∣∣∣ > λ) ≤ 1
λ
E
(∣∣∣Y0

n,n − Y0
1,n −

(
h0(bX) − h0(aX)

)∣∣∣)
≤

1
λ

∫ bX

aX

P(Xn:n ≤ x)|h∗0(x)| dx

+
1
λ

∫ bX

aX

P(X1:n > x)|h∗0(x)| dx. (4.B.6)

Since the inputs Xt are temperately dependent and
∫ bX

aX
|h∗0(x)| dx < ∞, the Lebesgue dominated

convergence theorem implies that the two integrals on the right-hand side of bound (4.B.6)
converge to 0 when n→ ∞. This completes the proof of Theorem 4.7.1.

Proof of Theorem 4.7.2 Fix any t ∈ N and let n ≥ t. We have

FXn:n(x) = P(X1 ≤ x, . . . , Xn ≤ x)
≤ P(Xt ≤ x, X2t ≤ x, . . . , X⌊n/t⌋t ≤ x)
≤ P(Xt ≤ x)P(X2t ≤ x, . . . , X⌊n/t⌋t ≤ x) + αX(t)
= F(x)P(X2t ≤ x, . . . , X⌊n/t⌋t ≤ x) + αX(t)
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≤ F(x)2P(X3t ≤ x, . . . , X⌊n/t⌋t ≤ x) + αX(t)
(
1 + F(x)

)
≤ · · ·

≤ F(x)⌊n/t⌋ + αX(t)
(
1 + F(x) + · · · + F(x)⌊n/t⌋−1

)
= F(x)⌊n/t⌋ +

αX(t)
(
1 − F(x)⌊n/t⌋

)
1 − F(x)

.

When x < bX, we have F(x) < 1 and so

lim sup
n→∞

FXn:n(x) ≤
αX(t)

1 − F(x)
.

Letting t → ∞, we have
lim sup

n→∞
FXn:n(x) = 0

and so FXn:n(x)→ 0 when n→ ∞. This establishes the second part of property (4.7.3).
When x > aX, we set ξt := −Xt for all t ∈ Z. By the previous case, we know that Fξn:n(z)→ 0

for all z < bξ. Since X1:n = −ξn:n and aX = −bξ, we have P(X1:n ≥ −z)→ 0 for all −z > aX. This
establishes the first part of property (4.7.3) and concludes the entire proof of Theorem 4.7.2.

To prove Theorem 4.7.4, we need a lemma.

Lemma 4.B.2 Let the inputs Xt be strictly stationary, temperately dependent, and satisfy the
Glivenko-Cantelli property. If the cdf F and the corresponding quantile function F−1 are con-
tinuous, then for any finite subinterval [a, b] of [aX, bX], we have

max
1≤t≤n+1

(
Zt,n − Zt−1,n

)
→P 0 (4.B.7)

when n→ ∞, where Z0,n := a, Zn+1,n := b, and, for all t = 1, . . . , n,

Zt,n := hc(Xt:n) =


a when Xt:n < a,
Xt:n when a ≤ Xt:n ≤ b,
b when Xt:n > b.

Proof Since aX ≤ a and the inputs Xt are temperately dependent, we have X1:n →P aX and so
Z1,n−a→P 0. Likewise, since b ≤ bX, we have Xn:n →P bX and so b−Zn,n →P 0. Consequently,
statement (4.B.7) holds provided that

max
2≤t≤n

(
Zt,n − Zt−1,n

)
→P 0. (4.B.8)

Note that we only need to consider those t’s for which Xt:n > a and Xt−1:n ≤ b. These two
restrictions are equivalent to F−1

n (t/n) > a and F−1
n ((t − 1)/n) ≤ b, respectively. Note that

F−1
n (t/n) > a is equivalent to t/n > Fn(a), and F−1

n ((t − 1)/n) ≤ b is equivalent to (t − 1)/n ≤
Fn(b). Due to the Glivenko-Cantelli property, we therefore conclude that for any (small) δ > 0
and for all sufficiently large n, all those t’s for which the bounds Xt:n > a and Xt−1:n ≤ b hold are
such that (1 − δ)F(a)n ≤ t ≤ (1 + δ)F(a)n. For typographical simplicity, we rewrite the latter
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bounds as αn ≤ t ≤ βn, where α := (1− δ)F(a) and β := (1+ δ)F(a). Hence, statement (4.B.8)
follows if

max
αn≤t≤βn

(
Zt,n − Zt−1,n

)
→P 0. (4.B.9)

Since Zt,n − Zt−1,n ≤ Xt:n − Xt−1:n for all t = 2, . . . , n, statement (4.B.9) follows if

max
αn≤t≤βn

(
Xt:n − Xt−1:n

)
→P 0. (4.B.10)

To prove the latter statement, we write

max
αn≤t≤βn

(
Xt:n − Xt−1:n

)
= max

αn≤t≤βn

(
F−1

n (t/n) − F−1
n ((t − 1)/n)

)
≤ max

αn≤t≤βn

(
F−1(t/n) − F−1((t − 1)/n)

)
+ max

αn≤t≤βn

∣∣∣F−1
n (t/n) − F−1(t/n)

∣∣∣
+ max

αn≤t≤βn

∣∣∣F−1
n ((t − 1)/n) − F−1((t − 1)/n)

∣∣∣. (4.B.11)

The first maximum on the right-hand side of bound (4.B.11) converges to 0 because F−1 is
continuous on (0, 1) and thus uniformly continuous on every closed subinterval of (0, 1). As to
the second and third maxima on the right-hand side of bound (4.B.11), they converge to 0 in
probability because

Γn := sup
t∈[t0,t1]

∣∣∣F−1
n (t) − F−1(t)

∣∣∣→P 0 (4.B.12)

for every closed interval [t0, t1] ⊂ (0, 1), because the Glivenko-Cantelli property holds. To
show that the just noted implication is true, we proceed as follows.

Statement (4.B.12) means that, for any fixed γ > 0, the probability of the event Γn ≤ γ
converges to 1 when n → ∞. This event has at least the same, if not larger, probability as the
event

F−1(t) − γ < F−1
n (t) ≤ F−1(t) + γ for all t ∈ [t0, t1], (4.B.13)

which is equivalent to

Fn(F−1(t) − γ) < t ≤ Fn(F−1(t) + γ) for all t ∈ [t0, t1].

The latter event has at least the same, if not larger, probability as the event

F(F−1(t) − γ) + ∥Fn − F∥ < t ≤ F(F−1(t) + γ) − ∥Fn − F∥ for all t ∈ [t0, t1]. (4.B.14)

Since t = F(F−1(t)), event (4.B.14) has at least the same, if not larger, probability as the event

−∆1(γ) + ∥Fn − F∥ < 0 ≤ ∆2(γ) − ∥Fn − F∥, (4.B.15)

where
∆1(γ) := inf

t∈[t0,t1]

(
F(F−1(t)) − F(F−1(t) − γ)

)
and

∆2(γ) := inf
t∈[t0,t1]

(
F(F−1(t) + γ) − F−1(F−1(t))

)
.



94 Chapter 4. Detecting systematic anomalies

Since the cdf F is strictly increasing (because we have assumed that F−1 is continuous), the
quantities ∆1(γ) and ∆2(γ) are (strictly) positive for every γ > 0. We therefore conclude that
statement (4.B.15) holds with as large a probability as desired, provided that n is sufficiently
large. This, in turn, implies that event (4.B.13) can be made as close to 1 as desired, provided
that n is sufficiently large. The proof of Lemma 4.B.2 is finished.

Proof of Theorem 4.7.4 Since the baseline function h0 is absolutely continuous on [aX, bX]
and its Radon-Nikodym derivative h∗0 vanishes outside the interval [a, b], we have

|Y0
t,n − Y0

t−1,n| =

∣∣∣∣∣ ∫ Xt−1:n

Xt:n

h∗0(x) dx
∣∣∣∣∣

=

∣∣∣∣∣ ∫
[Xt−1:n,Xt:n]∩[a,b]

h∗0(x) dx
∣∣∣∣∣ = |h∗0(ξt,n)|(Zt,n − Zt−1,n),

where, due to the mean-value theorem, the right-most equation holds for some ξt,n ∈ [Zt−1,n,Zt,n]
with Zt,n’s defined in Lemma 4.B.2. Consequently,

Θn :=
n∑

t=2

|Y0
t,n − Y0

t−1,n| −

∫ b

a
|h∗0(x)| dx

=

n∑
t=2

|h∗0(ξt,n)|(Zt,n − Zt−1,n) −
∫ b

a
|h∗0(x)| dx.

Obviously, Zt,n ∈ [a, b] for all t = 2, . . . , n. We also have Z0,n = a and Zn+1,n = b. By
Lemma 4.B.2,

max
1≤t≤n+1

(Zt,n − Zt−1,n)→P 0. (4.B.16)

Furthermore,

Θn =

n+1∑
t=1

|h∗0(ξt,n)|(Zt,n − Zt−1,n) −
∫ b

a
|h∗0(x)| dx −

∑
t∈{1,n+1}

|h∗0(ξt,n)|(Zt,n − Zt−1,n)

=

n+1∑
t=1

|h∗0(ξt,n)|(Zt,n − Zt−1,n) −
∫ b

a
|h∗0(x)| dx + oP(1), (4.B.17)

where the last equation holds when n → ∞ because the function h∗0 is bounded, and Z1,n −

a →P 0 and b − Zn,n →P 0 when n → ∞, which we verified at the beginning of the proof of
Lemma 4.B.2. Hence, equation (4.B.17) holds, and in order to prove Θn →P 0, we need to
show

Θ∗n :=
n+1∑
t=1

|h∗0(ξt,n)|(Zt,n − Zt−1,n) −
∫ b

a
|h∗0(x)| dx→P 0. (4.B.18)

In other words, we need to show that, for every γ > 0,

P
(
|Θ∗n| ≥ γ

)
→ 0 (4.B.19)

when n→ ∞. For this, we first rewrite statement (4.B.16) explicitly: for every λ > 0,

P
(

max
1≤t≤n+1

(Zt,n − Zt−1,n) ≥ λ
)
→ 0 (4.B.20)
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when n→ ∞. Hence, statement (4.B.19) follows if, for any γ > 0, we can find λ > 0 such that

P
(
|Θ∗n| ≥ γ, max

1≤t≤n+1
(Zt,n − Zt−1,n) < λ

)
→ 0 (4.B.21)

when n→ ∞. We now recall the very basic definition of Riemann integral, according to which,
for any γ > 0, we can find λ > 0 such that∣∣∣∣∣ n+1∑

t=1

|h∗0(ζt,n)|(zt,n − zt−1,n) −
∫ b

a
|h∗0(x)| dx

∣∣∣∣∣ < γ
whenever

max
1≤i≤n+1

(zt,n − zt−1,n) < λ, (4.B.22)

where z0,n := a, zn+1,n := b, zt−1,n ≤ zt,n for t = 1, . . . , n + 1, and ζt,n ∈ [zt−1,n, zt,n]. Hence, with
the same λ > 0 as in statement (4.B.22), probability (4.B.21) is equal to 0. This establishes
statement (4.B.19) and finishes the proof of Theorem 4.7.4.

Proof of Corollary 4.7.5 By Theorems 4.7.1 and 4.7.4, we have

I0
n →P

1
2

(
1 +

h0(bX) − h0(aX)∫ b

a
|h∗0(x)| dx

)
when n→ ∞. Furthermore, we have

h0(bX) − h0(aX) = h0(b) − h0(a) =
∫ b

a
h∗0(x) dx

because the Radon-Nikodym derivative h∗0 of h0 vanishes outside the interval [a, b] and the
positive part z+ of every real number z ∈ R can be written as (|z| + z)/2. This concludes the
proof of Corollary 4.7.5.

Proof of Theorem 4.8.1 Since z+ = (|z| + z)/2 for every real number z ∈ R, we have

In =
1
2

(
1 +

Yn,n − Y1,n∑n
t=2 |Yt,n − Yt−1,n|

)
.

Lemma 4.B.1 with Yt’s instead of ξt’s says that n−1/p(Yn:n − Y1:n) = OP(1). Since the system
is out of p-reasonable order, we have n−1/p ∑n

t=2 |Yt,n − Yt−1,n| →P ∞ when n → ∞ and thus
In →P 1/2. This concludes the proof of Theorem 4.8.1.

To prove Theorem 4.8.2, we need a formula for Bn,p analogous to equation (4.8.1).

Lemma 4.B.3 The concomitants Y1,n, . . . ,Yn,n of the outputs Yt = h(Xt, εt), t = 1, . . . , n, with
respect to the inputs X1, . . . , Xn are given by

Yt,n = h(Xt:n, εt,n),
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where ε1,n, . . . , εn,n are the concomitants of the anomalies ε1, . . . , εn with respect to X1, . . . , Xn,
that is,

εt,n =

n∑
s=1

εs1{Xs = Xt:n}.

Consequently,

Bn,p =
1

n1/p

n∑
t=2

∣∣∣h(Xt:n, εt,n) − h(Xt−1:n, εt−1,n)
∣∣∣. (4.B.23)

Proof Since the cdf F of each input Xt is continuous, we can assume without loss of generality
that all the inputs X1, . . . , Xn are unequal. Hence, we can write the equation

εt =

n∑
s=1

εs1{Xs = Xt}.

This implies that the concomitants of the outputs Y1, . . . ,Yn with respect to the inputs X1, . . . , Xn

can be expressed as follows:

Yt,n =

n∑
s=1

Ys1{Xs = Xt:n}

=

n∑
s=1

h(Xs, εs)1{Xs = Xt:n}

=

n∑
s=1

h(Xs:n, εs,n)1{Xs:n = Xt:n}

= h(Xt:n, εt,n).

This establishes equation (4.B.23) and concludes the proof of Lemma 4.B.3.

Note 4.B.4 Kim and David [75, Section 4] use the notation ε[t] instead of εt,n, in which case
the equation Yt,n = h(Xt:n, εt,n) turns into Yt,n = h(Xt:n, ε[t]). We prefer the notation εt,n as it
reminds us that the anomaly concomitants depend on the sample size n.

Proof of Theorem 4.8.2 Since the anomaly-free outputs Y0
t are in p-reasonable order with

respect to the inputs Xt for some p > 0, we have B0
n,p = OP(1). By Lemma 4.B.3, we have

Bn,p =
1

n1/p

n∑
t=2

|h(Xt:n, 0, ϵt,n) − h(Xt−1:n, 0, ϵt−1,n)|

=
1

n1/p

n∑
t=2

|h0(Xt:n) + ϵt,n − h0(Xt−1:n) − ϵt−1,n|

≥
1

n1/p

n∑
t=2

|ϵt,n − ϵt−1,n| −
1

n1/p

n∑
t=2

|h0(Xt:n) − h0(Xt−1:n)|

=
1

n1/p

n∑
t=2

|ϵt,n − ϵt−1,n| + OP(1).
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Hence, if the output anomalies ϵt are out of p-reasonable order with respect to the inputs,
meaning that

1
n1/p

n∑
t=2

|ϵt,n − ϵt−1,n| →P ∞,

then Bn,p →P ∞ when n→ ∞.
Conversely, if Bn,p →P ∞ when n→ ∞, then the bound

Bn,p ≤
1

n1/p

n∑
t=2

|ϵt,n − ϵt−1,n| +
1

n1/p

n∑
t=2

|h0(Xt:n) − h0(Xt−1:n)|

=
1

n1/p

n∑
t=2

|ϵt,n − ϵt−1,n| + OP(1)

implies that the output anomalies ϵt are out of p-reasonable order with respect to the inputs.
This concludes the proof of Theorem 4.8.2.

Lemma 4.B.5 If random variables ξt are iid and have finite first moments, then

1
n1/p

n∑
t=2

|ξt − ξt−1| →P ∞ (4.B.24)

whenever the distribution of ξ1 is non-degenerate.

Proof Since the summands |ξt − ξt−1|, t = 2, 3, . . . , are 1-dependent, splitting the sum into the
sums with respect to even and odd t’s yields statement (4.B.24) for every p > 1 if the moment
E(|ξ2 − ξ1|) is (strictly) positive. Since ξ2 and ξ1 are iid, the aforementioned moment is positive
whenever the distribution of ξ1 is non-degenerate.

Proof of Theorem 4.8.4 Since the baseline function h0 is Lipschitz continuous, Theorem 4.5.1
implies that the anomaly-free outputs Y0

t are in p-reasonable order with respect to the inputs
Xt. Consequently, B0

n,p = OP(1). By Lemma 4.B.3, we have

Bn,p =
1

n1/p

n∑
t=2

|h(Xt:n, δt,n, 0) − h(Xt−1:n, δt−1,n, 0)|.

Using Lipschitz continuity of h0 and also Lemma 4.B.1 with Xt instead of ξt, we have

Bn,p =
1

n1/p

n∑
t=2

|h0(Xt:n + δt,n) − h0(Xt:n + δt−1,n) + h0(Xt:n + δt−1,n) − h0(Xt−1:n + δt−1,n)|

≥
1

n1/p

n∑
t=2

|h0(Xt:n + δt,n) − h0(Xt:n + δt−1,n)| −
K

n1/p

n∑
t=2

(Xt:n − Xt−1:n)

=
1

n1/p

n∑
t=2

|h0(Xt:n + δt,n) − h0(Xt:n + δt−1,n)| −
K

n1/p (Xn:n − X1:n)
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=
1

n1/p

n∑
t=2

|h0(Xt:n + δt,n) − h0(Xt:n + δt−1,n)| + OP(1).

Hence, with the notation
ξt = |h0(Xt + δt) − h0(Xt + δt−1)|,

we are left to check the statement

1
n1/p

n∑
t=2

ξt →P ∞. (4.B.25)

That is, we need to show that for every λ < ∞, we have

P

(
1

n1/p

n∑
t=2

ξt ≤ λ

)
→ 0

when n → ∞. Since the moment µ := E(ξ1) = E(ξt) is strictly positive by assumption (ii), for
all sufficiently large n we have

P

(
1

n1/p

n∑
t=2

ξt ≤ λ

)
≤ P

(
−

∣∣∣∣∣ 1
n1/p

n∑
t=2

(ξt − µ)
∣∣∣∣∣ + n1−1/pµ ≤ λ

)
= P

(∣∣∣∣∣ 1
n1/p

n∑
t=2

(ξt − µ)
∣∣∣∣∣ ≥ n1−1/pµ − λ

)
≤

1
(n1−1/pµ − λ)2E

(∣∣∣∣∣ 1
n1/p

n∑
t=2

(ξt − µ)
∣∣∣∣∣2)

≤
c
n2E

(∣∣∣∣∣ n∑
t=2

(ξt − µ)
∣∣∣∣∣2). (4.B.26)

The use of the second moment for bounding the probability was prudent because ξt’s are
bounded by a constant, which follows because the baseline function h0 is bounded. Hence,
our task becomes to prove

1
n2E

(∣∣∣∣∣ n∑
t=2

(ξt − µ)
∣∣∣∣∣2)→ 0. (4.B.27)

Since the sequence ξt is strictly stationary, by Rio [57, Corollary 1.2, p. 10] we have

E

(∣∣∣∣∣ n∑
t=2

(ξt − µ)
∣∣∣∣∣2) = n∑

t=2

Var(ξt) + 2
∑

2≤s<t≤n

Cov(ξs, ξt)

= (n − 1)Var(ξ0) + 2
n−2∑
t=1

(n − 1 − t)Cov(ξ0, ξt)

≤ c(n − 1)αξ(0) + c(n − 2)αξ(1) + c
n−2∑
t=2

(n − 1 − t)αξ(t), (4.B.28)
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where c is a finite constant that depends on h0. Next, for every t ≥ 2, we have

αξ(t) = sup
{∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣ : A ∈ σ(ξu, u ≤ 0), B ∈ σ(ξv, v ≥ t)
}

≤ sup
{∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣ : A ∈ σ(Xu, δu, δu−1, u ≤ 0), B ∈ σ(Xv, δv, δv−1, v ≥ t)
}

≤ sup
{∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣ : A ∈ σ(Xu, u ≤ 0), B ∈ σ(Xv, v ≥ t)
}
, (4.B.29)

where the last inequality holds because∣∣∣P(A ∩C ∩ B ∩ D) − P(A ∩C)P(B ∩ D)
∣∣∣ = ∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣P(C ∩ D)

≤
∣∣∣P(A ∩ B) − P(A)P(B)

∣∣∣
for all A ∈ σ(Xu, u ≤ 0), B ∈ σ(Xv, v ≥ t), and all C ∈ σ(δu, u ≤ 0), D ∈ σ(δv, v ≥ t − 1), upon
recalling that A and B are independent of C and D, and also C and D are independent of each
other as long as t ≥ 2. Note that the right-hand side of bound (4.B.29) is equal to αX(t), and so
we have the bound αξ(t) ≤ αX(t) for all t ≥ 2. This result together with bound (4.B.28) imply

1
n2E

(∣∣∣∣∣ n∑
t=2

(ξt − µ)
∣∣∣∣∣2) ≤ c

n
αX(0) +

c
n
αX(1) +

c
n2

n−2∑
t=2

(n − 1 − t)αX(t)

with a finite constant c. The right-hand side of the latter bound converges to 0 when n → ∞,
provided that αX(t) converges to 0 when t → ∞, which is true because the inputs Xt are α-
mixing. This concludes the proof of Theorem 4.8.4.

Proof of Theorem 4.8.5 Since the baseline function h0 is Lipschitz continuous, Theorem 4.5.1
implies that the anomaly-free outputs Y0

t are in p-reasonable order with respect to the inputs
Xt. Consequently, B0

n,p = OP(1). By Lemma 4.B.3, we have

Bn,p =
1

n1/p

n∑
t=2

|h(Xt:n, δt,n, ϵt,n) − h(Xt−1:n, δt−1,n, ϵt−1,n)|.

Proceeding analogously as in the proof of Theorem 4.8.4, we have

Bn,p ≥
1

n1/p

n∑
t=2

ζt + OP(1)

when n→ ∞, where

ζt = |h0(Xt + δt) + ϵt − h0(Xt + δt−1) − ϵt−1|.

The rest is analogous to the proof of Theorem 4.8.4 starting with statement (4.B.25), and we
thus skip the details. This finishes the proof of Theorem 4.8.5.
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Chapter 5

Future work

5.1 About the TOMD κ∗

In this research, we propose the average block-minima estimator for the TOMD κ∗ using ob-
served data. This estimator successfully avoids the complexity of involving information of
the underlying paths of maximal dependence. However, there are still possibilities to im-
prove the average block-minima estimator at the current stage, for example, the block size m
of the average block-minima estimator is currently fixed. It is very likely that by selecting
m = mn ∈ {1, . . . , n} given the available sample size n the average block-minima estimator may
converge faster, which is actually very important in the application of this estimator because
converging faster means fewer observations are needed to achieve a reasonable estimation re-
sult given that majority of the observations will be excluded even before applying the average
block-minima estimation methods when estimating a TOMD in practice.

Based on our numerical examples we could roughly conclude that the average block-
minima estimator works well even for observations with stationary time series strucutre. How-
ever, as the readers may notice, the construction of the average block-minima estimator consists
of many steps while we do not give theoretical analysis for each of the steps, which include

1. How to determine the risk level q ∈ (0, 1) in order to make the temporal dependence
structure of the extracted data within Rq,n(0) close to white noise;

2. The properties of the optimized φ∗n(q) given the risk level q ∈ (0, 1) and the total sample
size n;

3. Whether the asymptotic behavior of the average block-minima estimator κ̂mq,n(m, θ, q)
holds if all values (φ∗(q),Π∗(q)) in proof of Theorem 2.3.5 are substitued by their empir-
ical versions (φ∗(q)n,Π

∗
n(q));

4. The asymptotic normality of the average block-minima estimator, which seems to hold
according to our simulation studies while has not been validated yet.

Besides, there are some other aspects for estimating the TOMD which may be of our inter-
est, for example, when searching for efficient and reliable estimators, explore different block
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designs and their combinations using, e.g., generalized means, as illustrated by Vovk and Wang
[1] in a statistically different but philosophically closely related context. Moreover, there are
technique issues in this research such as exploring the roles of the functions Tθ and T0 = log
when defining estimators.

5.2 About the anomaly detection index I

In this research, we explore the performance of the index proposed by Gribkova and Zitikis
[2] when the input-output system has stationary series inputs. Theoretically, we prove that the
index In still converges to 0.5 if the system if out of order. Unlike statistical outliers, system
anomalies such as cyber intrusions are very difficult to observe at a first glance. Hence it is
not surprising that the index In is constructed based on continuously monitoring of the outputs.
However, the earlier the anomalies such as cyber intrusions are detected, the less losses will
occur. Thus, more theoretical properties of the index In need to be explored in order to set up a
standard to identify whether anomalies exist in earlier stage. For example, a hypothesis-testing
type standard may be established if the asymptotic distribution of In or Bn could be determined.

Another interesting aspect related to In is that if we could develop such kind of indices
for more complex systems. Currently our research object is the index In for univariate inputs
and univariate outputs. However, complex systems such as parallel computing systems usually
have multivariate inputs and outputs with anomalies ocurring in various forms. In this case, the
major challenge might be about how the order of the inputs may be defined since there is no
simple order statistics for multivariate random variables.
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