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Abstract 

Cataract is the leading cause of blindness and vision loss globally. The 

implementation of artificial intelligence (AI) in the healthcare industry has been on the rise in 

the past few decades and machine learning (ML) classifiers have shown to be able to 

diagnose patients with cataracts. A systematic review and meta-analysis were conducted to 

assess the diagnostic accuracy of these ML classifiers for cataracts currently published in the 

literature. Retrieved from eight articles, the pooled sensitivity was 94.8% and the specificity 

was 96.0% for adult cataracts. Additionally, an economic analysis was conducted to explore 

the cost-effectiveness of implementing ML to diagnostic eye camps in rural Nepal compared 

to traditional diagnostic eye camps. There was a total of 22,805 patients included in the 

decision tree, and the ML-based eye camp was able to identify 31 additional cases of 

cataracts, and 2546 additional cases of non-cataract. 
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Summary for Lay Audience 

Cataract is an eye disease that many older adults get. A cataract is a buildup of 

cloudiness in the human eye lens that can result in blurry and reduced vision. Fortunately, 

through early and proper screening procedures, cataracts can easily be detected, and cataract 

surgery can be performed to gain back vision. There has been an increasing use and 

implementation of artificial intelligence (AI) in the healthcare field and machine learning 

(ML) which is a subset of AI. In the field of ophthalmology, there are many developments 

for the use of ML classifiers that can automatically detect eye diseases (such as cataracts) by 

processing images of the eye through a computer algorithm.  

In this thesis, a systematic review and meta-analysis were conducted to assess the 

diagnostic accuracy of current machine learning classifiers for cataracts in both published 

databases and unpublished literature. A total of 21 studies were included in the qualitative 

review, and a total of nine studies were included for the quantitative analysis. From the 

quantitative analysis, there was observed to be high diagnostic accuracy for identifying true 

cataract cases and true non-cataract cases, these values are known as sensitivity and 

specificity, respectively. For adult cataracts, there was a 94.8% sensitivity and 96.0% 

specificity.  

Utilizing these results from the meta-analysis, a cost-effective analysis was conducted 

to test the economic feasibility of a ML cataract screening program to be implemented in a 

rural region. In Nepal, rural Nepalis may have access to temporary village-level primary eye 

care centres known as “diagnostic-screening and treatment camps (eye camps)”. The 

objective of this second study was to conduct a cost-effectiveness analysis of the theoretical 

implementation of a ML-based cataract screening eye camp in rural Nepal in order to assess 
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if this new program is superior to the traditional eye camps. There was a total of 22,805 

patients in each arm of the decision tree, and the ML-based eye camp could identify 31 

additional cases of cataracts, and 2,546 additional cases of non-cataract. This suggested that 

the ML-based eye camp was a more cost-effective method than the traditional eye camp in 

rural Nepal. 
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1 Introduction 

According to a report by the World Health Organization (WHO) in 2010, cataracts 

account for approximate 50% of the world’s first cause of blindness.1,2 In fact, the rate and 

prevalence of cataracts globally and nationally is on the rise due to the world’s aging 

population, thus making cataracts a health priority and a disease of concern for health and 

aging. 3–5 There are significant social and economic costs associated with vision loss for both 

the patient population and the healthcare system, and new technologies are emerging to help 

meet the high patient demands.1,6 

 Within the field of ophthalmology, the rise of artificial intelligence (AI) and machine 

learning (ML) has grown substantially in the past decade.6,7  Many novel algorithms and 

applications of AI are currently being used in routine clinical practice that aid 

ophthalmologists and healthcare practitioners with the diagnosis and grading of certain eye 

diseases.  Various technology companies, such as Google and IBM, have invested in the 

growth and development of machine learning in ophthalmology, and most of the research has 

been conducted on diabetic retinopathy (DR).8 The success of these technologies has given 

the potential and hope for researchers to apply similar techniques to other common eye 

diseases such as glaucoma, age-related macular degeneration, and cataracts.9–11   

 For cataracts specifically, research in the use of AI and ML has shown the potential 

for these algorithms to be used for multiple purposes throughout the course of a patient’s 

cataracts diagnosis to cataracts treatment. Mainly, ML classifiers have been used to screen 

cataracts through training and validating fundus or slit-lamp eye images to provide a fast and 
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accurate diagnosis.12–14 Additionally, AI-based methods have also been used to create 

intraocular lens power calculations as part of the cataracts surgery process to determine a 

predictive error post-cataracts surgery.15,16 However, there are gaps in the literature on the 

aggregated diagnostic accuracy of these ML diagnostic programs, and its cost-effectiveness 

compared to in-person screening procedures. High diagnostic accuracy is important, but cost 

is also a substantial part of the decision-making process if these algorithms are to be 

routinely implemented in hospital settings, ophthalmology clinics, or rural diagnostic and 

screening eye camps. It is important to assess the current literature and body of evidence on 

cataracts, the cataracts screening and diagnosis process, and the applications of AI or ML in 

cataracts care and management. 

1.1 Structure of thesis 

This thesis is written in the integrated article format within the standards of Western 

University School of Graduate and Postdoctoral studies. Chapter 02 is a literature review on 

the background and current knowledge of cataracts, and machine learning applications in 

healthcare and ophthalmology. The literature review also discusses the methodology of a 

systematic review and meta-analysis used in Chapter 03 and the methodology of a cost-

effectiveness analysis used in Chapter 04. Chapter 02 also includes the thesis rationale and 

objectives. 

The thesis consists of two manuscripts. Chapter 03 is comprised of the first 

manuscript titled “The diagnostic accuracy of machine learning classifiers for cataracts: a 

systematic review and meta-analysis”. Chapter 04 is comprised of the second manuscript 

titled “The implementation of a machine learning-based cataract screening program in rural 
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Nepal: a cost-effectiveness analysis”. Chapter 05 includes an integrated discussion of the 

results of the thesis. 
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2 Literature Review, Thesis Rationale, and Thesis Objectives 

2.1 Literature Review 

2.1.1 Natural History of Cataracts 

A cataract is the opacification of the lens in the human eye which results in poor 

visual acuity and transparency. 1 Cataract can occur in one eye or both eyes.1 The opacity of 

the lens is caused by oxidative stress, and it primarily affects the growth and development of 

the lens epithelial cells.2 The lens is located positionally behind the iris and in front of the 

vitreous body and retina. The lens helps focus light into the eye to produce sharp images, but 

as the cataract develops, it blocks the light passing through the lens and prevents a sharp 

image from reaching the retina.1 As a result of the cataracts, the patient loses optical clarity 

and has a clouded vision.1,3  

Symptoms 

 Common symptoms that patients with cataracts experience can include clouded, 

blurred, or dimmed vision.3  A visual decline that can span over weeks, months, or years. 

Patients may be sensitive to light and glare, and halos can form around lights.1,4,5 

Additionally, changed experience in vision can result in the yellowing of images and 

decreased colour intensity. Corrective glasses do not help improve eyesight if the cataract is 

left untreated.  

Classification of Cataracts 
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Cataracts is often categorized by their cause-types which include age-related 

cataracts, congenital cataracts, and cataracts secondary to other causes.3,5,6 First, age-related 

cataracts can be divided into three types: nuclear, cortical, and posterior subcapsular.1 Often, 

patients can present with just one type or a combination of types of age-related cataracts. 

Nuclear cataract occurs when new fiber layers from the lens epithelial cells migrate towards 

the lens equator, and the lens nucleus becomes compressed (nuclear sclerosis) which creates 

an opacification. Cortical cataract starts at the cortex of the lens where cortical spokes can 

develop and cause discrete opacities.7 Cortical cataract can be located posteriorly or 

anteriorly of the lens, and it is often wedged-shaped.8 Posterior subcapsular cataract is in the 

axial posterior cortex where plaques and deposits develop.1,9,10  

In addition to age-related cataracts which are the most common, pediatric cataracts is 

also prevalent in infant populations. In congenital cataracts, the lens opacity would have been 

present at birth, but then manifested and developed within one year of the infant’s life.11 

Approximately one-third of patients with pediatric cataracts are due to inheritance. Pediatric 

cataracts can be classified as unilateral or bilateral cataracts.12  

2.1.2 Risk Factors 

Cataractogenesis – meaning the process of cataract formation – may be caused and 

influenced by a multitude of risk factors. The current evidence of other direct risk factors for 

cataracts can range from limited to strong evidence. These risk factors can be modifiable or 

non-modifiable.9,13,14  

Non-Modifiable Risk Factors 
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Age - The most common form of the development of cataracts is age-related, which 

makes this a disease a priority in the health and aging context.1 The onset of cataracts often 

begins at the age of 45-50 years because of oxidative stress, solubilization, and cross linking 

by the lens fibers.2 There is conclusive evidence that age is a personal risk factor for nuclear, 

cortical, and posterior subcapsular cataract. 

Sex - Many studies have shown that females are at a greater risk for cataracts than 

males, and females experience a higher cataract burden.15  

Genetics - Genetic effects are important and contributing factors to the development 

of cortical cataracts. Genetic modelling suggests that additive and dominant genes can 

suggest the causation of cortical cataracts based on the Twin Eye Study.16 Additionally, 

genetic factors can account for up to 50% of the variation in severity in nuclear cataract 

cases.  

Modifiable Risk Factors 

Diabetes - Patients with diabetes have an increased risk for developing cataracts. 

There is increased risk specifically for cortical and posterior subcapsular cataracts, but there 

is no significant association with nuclear sclerosis.17 Increased glucose levels in the lens are 

converted into sorbitol which can cause the lens to be opaquer and cloudier. Additionally, 

non-enzymatic damage to the lens protein (glycation) may be involved in the development of 

cataracts.3 

Alcohol intake - Strong evidence of increased risk for cataracts is found for 

individuals who are heavy drinkers. In a meta-analysis conducted by Gong et al., heavy 
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alcohol consumption significantly increases the risk of age-related cataracts, though 

moderate consumption of alcohol has been revealed to have some protective effects against 

cataracts.18 Heavy alcohol consumption was defined as consuming more than 20g of alcohol 

in a day.  

Trauma - Direct, blunt trauma to the eye is another cause of cataracts due to damaged 

lens fibres.3 Blunt trauma can cause the eye to swell, and fibres in the lens to thicken which 

causes increased opacity. Other sources of traumatic cataracts can be due to infrared lights, 

electric sparks, or head injuries.9,19  

Hypertension - A meta-analysis by Yu et al. found that high blood pressure can 

increase the risk of cataracts by 8-28%.20 Studies have suggested that the link between 

hypertension and cataract development is in part due to anti-hypertension medications that 

can disturb electrolyte balance around the lens fiber membrane. Additionally, hypertension 

may also cause lens capsules to have conformational changes which interferes with 

potassium ion transport.21,22 

Ultra-violet (UV) ray exposure - Another risk factor for cataracts is exposure to UV 

rays over time. UV light can damage lens proteins and cells in the lens, and it can continue to 

be damaged by oxidative stress. The Canadian Ophthalmological Society recommends that 

people and children at a young age should get into the habit of wearing sunglasses as 

preventative measures.23 
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 Toxins and chemicals in smoke can increase the risk of cataract development and 

increase opacities are reported. There is an increased odds of 1.41 for nuclear cataracts with 

individuals who have smoked in their life.24 

In pediatric cataracts, there is also a plethora of reasons for the development of 

cataracts in infants. As noted previously, the main driver of pediatric cataracts is due to 

hereditary factors and the inheritance of genetic factors that cause the opacification of the 

lens. 11 However, this claim is still scarcely researched, even if it is the commonly agreed 

stance. 

2.1.3 Epidemiology of cataracts 

Global Epidemiology 

According to the WHO, there are at least 2.2 billion people in the world who 

experience near or distance impaired vision, and 94 million of those cases are as a result of 

cataracts.25,26 More than 50% of the world’s first cause of blindness is due to cataracts and it 

is the leading cause of blindness. Based on a meta-analysis by Hashemi et al., the pooled 

prevalence estimate of any cataracts is approximately 17.20% in the world, with nuclear 

cataract leading with a prevalence of 8.22%, and cortical cataract with 8.05%.27 Hashemi et 

al. also found the pooled prevalence estimate of cataracts in females and males was around 

the same, with females at 33.67%, and males at 32.57%. The authors noted the geographic 

location (based on the six WHO regions) that had the highest prevalence of cataract was the 

South-East Asia region, followed by the Western Pacific, and Europe.27 
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 Globally, cataract has contributed to 17.7 million disability-adjusted life years 

(DALY) in adult populations. DALY is a common metric to describe the total number of 

years lost to disability or premature death.28 In Southeast Asia alone, the global health burden 

of cataract vision loss was approximately 125 disability-adjusted life years (DALYs) per 

100,000 people — the highest crude DALY rate out of all WHO regions.29,30 Unfortunately, 

the DALYs are expected to increase for the cataract population due to the world’s aging 

population, and lack of access to early care. Many people who live in rural or underserviced 

areas often receive a delayed cataract diagnosis or lack the facilities to receive cataracts 

surgery, which leads to blindness (a measure of disability).  

While cataract is commonly found in adult and elderly patients, pediatric cataract has 

an estimated prevalence of 4.24 per 10,000 live births, and it is the major causes of childhood 

blindness.31  

2.1.4 Clinical Assessment of Cataracts 

An early diagnosis of cataracts is often ideal because preventative measures can be 

immediately taken to delay and slow down the deterioration of vision.32,33 Correction glasses, 

anti-glare glasses, or magnifying lenses can be used when cataracts begin to interrupt daily 

activities before surgical intervention is needed. The standards for the cataract screening 

procedure with an optometrist or an ophthalmologist will vary based on location due to 

government policies, insurance coverage, economic status, healthcare costs, and access to 

care.6,34 Many factors influence the thoroughness and completeness of an eye examination 

depending on the availability and demand of such services. The clinical assessment and 

process of examining a patient’s eye in a high-income country will be very different than a 
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patient living in a rural or low-to-middle income country (LMIC) due to the scarcity of 

resources and trained personnel.35,36 

The Canadian Ophthalmological Society has published clinical practice guidelines for 

cataracts surgery which also outlines the suggested ophthalmic evaluation for the diagnosis 

of cataract.34 The guidelines for Ontario will be used to illustrate the full procedure of an eye 

examination for cataracts, although it may be not fully feasible in other under-serviced 

regions. It is noted that there is no single test or examination that adequately describes the 

effect that the cataract has on the patient’s visual status and functioning ability.33  

In Ontario, Canada, the Ontario Government has published a “Quality-Based 

Procedures Clinical Handbook: Cataract Day Surgery” which provides guidelines and 

standards that healthcare professions are to follow in the cataract setting.37 As part of the 

assessment and referral pathway in the handbook, annual eye exams should be performed in 

individuals who are over the age of 65, and anyone with current conditions of diabetes, 

glaucoma risk, or other eye conditions. It is important note that although everyone should 

receive annual exams, the current Ontario Health Insurance Plan (OHIP) only insures annual 

eye exams for people younger than 20 or over 65, if they have one or more ocular conditions, 

or if their primary healthcare provider necessitates an annual exam.37 This public insurance 

coverage is found to be similar in other provinces in Canada, though not all.  

To diagnose a patient with cataracts, the ophthalmologist will ask about the patient’s 

medical history and any symptoms that they are experiencing. A patient’s assessment will 

include their current medications and medical conditions, previous ophthalmic surgery, and 

risk factors that can affect the surgical plan.6,32,38 Additionally, an eye examination should be 
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conducted by an ophthalmologist, primary care physician, or optometrist. A complete eye 

exam should include a visual acuity test, slit lamp imaging exam, dilated eye exam, and a 

tonometry.6,34,37,39 The full ophthalmic evaluation for the diagnosis and treatment of cataract 

is displayed in Table 2.1.34 

Visual acuity tests 

 Visual acuity tests are used to test the patient’s ability to discern shapes and details in 

their vision and to rate the patient’s recognition of small details with precision. Eye charts — 

also known as optotypes — are used to test for visual acuity. If the patient is unable to read 

the eye charts at any distances, alternatives to the visual acuity test include counting fingers, 

hand motion, and light perception tests.40 

Most commonly, the Snellen chart is used for visual acuity tests, and it is widely used 

at the clinical level. It is especially commonly used for patients with myopia, hyperopia, or 

astigmatism, and for assessing vision problems in young children.41,42 The Snellen chart is a 

simple and effective way for physicians, ophthalmologists, or optometrists to recognize signs 

of vision loss and diagnosis of cataracts because it also considers the patient’s perspective for 

their visual function.42,43 The Snellen chart is a multi-letter chart with a variation in number 

of letters on each line of the chart; this presents the examinee with increasing difficulty to 

identify the letters. The examinee typically reads the chart 6 meters (20 feet) away, testing 

one eye at a time.42,43 The common term “20/20 vision” or “6/6 vision” refers to the patient’s 

ability to see clearly at 20 feet what should normally be seen at that distance.42 
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Despite the Snellen chart’s ease and universal use, its limitations include the lack of 

reproducibility and reliability in its results.41 There have been articles that criticizes the 

Snellen chart’s failure to test visual acuity at the right distance and under the recommended 

levels of illumination. As a result, newer charts such as the logMAR (logarithm of the 

minimum angle of resolution) became available to negate the disadvantages of the Snellen 

chart.44,45 The logMAR chart has letters that are of equal legibility, with the same number of 

letters on each row and uniform letter and row spacing. There is a logarithmic progression in 

the letter size which ensures test task standardization. The logMAR chart is less used in 

clinical practice, though it has become the standard in research settings. 

Slit-lamp biomicroscope imaging 

Slit-lamp imaging is an important element of the eye examination because it captures 

physical elements of the eye that a visual acuity test cannot determine. Slit-lamp imaging 

must be done because the ophthalmologist needs to rule out other ocular diseases before 

diagnosing cataracts and suggesting cataract surgery. Slit-lamp microscopes get their name 

from the thin sheet of high-intensity light source that focuses and shines into the eye.32,34 Slit-

lamp microscopes are able see the details of the transparent, translucent, and opaque 

structures of the anterior and posterior segment of the human eye. Slit-lamp microscopes uses 

a variety of magnifications and angles to observe the patients and ophthalmologists can 

decide the type of cataracts based on what is exhibited in the lens.34 In most patients, 

ophthalmologists can determine if cataracts are responsible for the patient’s visual loss by 

comparing the slit lamp images with the patient’s symptoms. 



17 

 

 

The slit lamp can see what is manifested in the anterior segments of the eye, and 

examine the lens, vitreous, macula, peripheral retina, and optic nerve through a dilated pupil. 

For example, cortical cataracts can be diagnosed by observing the formation of vacuoles, 

clefts, wedges, or lamellar separations.  

Tonometry Test 

 A tonometry test is a procedure to determine the intraocular pressure (IOP) inside the 

eye.46 IOP is the fluid pressure of the eye, and it is formed from the balance between aqueous 

humour formation and outflow on the internal surface area of the anterior eye. The 

Goldmann applanation tonometry, using the Goldmann equation, is the most used method in 

the clinical setting. The Goldmann equation uses the aqueous flow rate, aqueous outflow, and 

episcleral nervous pressure to measure the change in the IOP.47 This method uses a flat-

tipped probe that presses against the surface of the eye; however, other types of methods are 

available called non-contact tonometry that uses air pressure.47,48 Pressures between 11 and 

21 mmHG are generally considered to be normal. A tonometry test is important in a full 

ocular examination because an elevated IOP is an indicator for glaucoma. By identifying the 

IOP, ophthalmologists or optometrists can confirm or rule out glaucoma.  

Cataract classification systems 

Currently, there are several systems that are commonly used to classify and grade lens 

opacities. Grading systems are important for clinical and research use, and for the 

communication between patient and physician.49 However, the variation in classification 

systems makes it very difficult for comparative studies to be performed due to the slightly 
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differing definitions and grading systems that are being used. In 1989, West and Taylor 

called for a standardized method of grading and classifying cataracts, thus the Oxford 

Clinical Grading System and the early versions of the Lens Opacity Classification System 

(LOCS) were created.50,51 Since then, these grading and classification systems have evolved. 

There are updated versions of the LOCS (LOCS II, and LOCS III) and other grading systems 

that have emerged including the Johns Hopkins system, and the Wisconsin Cataract Grading 

System.52 However, it is noted that the cataract classification system varies from country to 

country, often influenced by insurance coverage, and health priorities of the country. 

In these grading systems, the following elements are considered: anterior clear zone 

thickness, anterior subcapsular opacity, posterior subcapsular opacity, cortical spoke opacity, 

water clefts, vacuoles, retro-dots, focal dots, nuclear brunescence and white nuclear 

scatter.50,53 The LOCS III was updated in 1993 in order to better capture an early cataracts 

diagnosis by observing nuclear opalescence and nuclear colour on a scale from 1 to 6, 

cortical cataracts on a scale from 1 to 5, and posterior subcapsular cataracts on a scale from 1 

to 5.50, 53  

Clinical Assessment of Cataracts in Rural and Low-to-Middle Income Countries 

 In rural regions, villages, and LMIC, most people do not have the ability or luxury to 

seek out an eye care provider regularly because the closest eye care centres are in semiurban 

or urban areas which may be geographically far away from the villages, people may have to 

pay out of pocket for the healthcare services, and people may be unaware of such 

services.36,54  
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Additionally, the optometrist and ophthalmologist to general population ratio may be 

very low and below the standards set by WHO. For example, in Nepal, the ophthalmologist 

to population ratio is approximately 1:193,900, and 1:791,700 for optometrists.36 The 

recommendation set out by WHO is 1:100,000 for both ophthalmologists and optometrists.25 

To remedy many of these concerns in both Nepal, India and other LMICs, temporary village-

level primary eye care centres called “eye camps” have been implemented in the past few 

decades to reach to these rural patients.35,55 The goal of these eye camps is to eliminate any 

financial or geographical barriers that many rural patients may have to access their health 

services in more semiurban settings.   

These make-shift and temporary eye camps often employ only ophthalmic assistants, 

ophthalmic technicians, and/or nurses to operate the eye camps, and very minimal 

ophthalmic equipment is available for these workers.56,57 An ophthalmic assistant often 

conducts the assessment and makes clinical decisions in replacement of an ophthalmologist 

or optometrist. Therefore, it is not feasible to conduct a full eye examination (as they do by 

standard in Ontario, Canada) in these eye camps, but rather a simplified process that may 

include a Snellen chart, a slit-lamp microscope, a pen light, and/or a portable 

ophthalmoscope.58 When a rural patient is given a diagnosis of any grade and/or 

classification of cataract in diagnostic eye camps, they are automatically given a referral to an 

ophthalmologist.35 Typically, in the Ontario and Westernized context, a patient may have 

multiple follow-up appointments with an optometrist or eye specialist over a period before a 

referral to an ophthalmologist is given.34 
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2.1.5 Artificial Intelligence in Healthcare 

 The use of AI has revolutionized the way that healthcare can be provided to patients 

in these rural areas, and it has greatly supported the efforts and developments of tele-

medicine and more specifically, tele-ophthalmology.  

Evolution of AI healthcare 

AI is a branch of computer science that aims to simulate a human’s mental process 

through software programs and learn to solve problems similarly to the human brain.59 The 

use of AI has been on the rise in health care and biomedical research in the past decade. 

Substantive progress in this field of research has been made as healthcare providers, policy 

makers, and researchers because of the potential for its use in standard practice.59–61 

However, AI is not a completely new technology that has only recently existed. In fact, AI 

has been used in healthcare in the 1970s in the form of rule-based approaches. This early 

application of AI was used to interpret electrocardiograms, diagnose certain diseases, and 

provide simple clinical reasoning and interpretations for hypothesis generation.60 However, 

the performance of these systems was limited by their lack of comprehensive medical 

knowledge, and it required humans to be involved in every decision step. Despite the 

inefficiencies of the early AI technologies, they provided progress towards a fully 

autonomous system.60 

The healthcare sector has benefited from the emergence of AI because the increasing 

availability of healthcare data has made it possible for AI to flourish in this sector. Large 

amounts of healthcare data can be used in AI algorithms to assist in making clinical decisions 
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that can be cost and time efficient. AI is not intended to replace human physicians or 

healthcare providers, but to assist in clinical decisions and replace human judgement in 

certain areas of healthcare.59 Ideally, the ultimate goal for AI processes is to have a fully 

automated clinical system to make decisions and output results, but as these technologies are 

still emerging, AI can exist in the healthcare setting through conventional decision support 

systems, or integrative decision support systems.59,61–63  

AI research areas in the current literature are mostly done in the field of diagnostic 

imaging, genetics, electrodiagnosis, and physiologic monitoring.59,61 The leading disease 

types that have the most research conducted in AI in the literature are neoplasms, nervous 

system, cardiovascular, and urogenital. Since the 2010s, there has been a stark increase in the 

number of publications with the AI keyword in the databases.59 In the past decade, the use 

and application of AI algorithms have spanned across a plethora of disciplines and fields, 

notably in ophthalmology. 

Since the utilization and implementation of AI in healthcare is still relatively new, 

there continues to be many ethical and legal concerns surrounding its practice. There exist 

many issues regarding data privacy, data and algorithm bias that exists in AI which are 

debated by policy makers and researchers.64,65 These concerns are further addressed in the 

integrated discussion (Chapter 05).   

Machine Learning 

Machine learning (ML) is a sub-set of AI which describes the use of computer 

algorithms to learn and identify patterns in the data. Through training and validation, these 
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ML algorithms be given large amounts of healthcare data to perform a specific task.60 There 

exist many types of ML algorithms that are regularly used in healthcare applications 

including support vector machines (SVM), neural networks, logistic regression, random 

forests, and others. 60 SVM and neural networks are the two most researched and used 

algorithms.  

2.1.6 AI and ML in Ophthalmology 

Specifically in the field of ophthalmology, vast amounts of AI research have been 

conducted by Google Inc for diabetic retinopathy (DR).66 The Google Health team has 

developed a DR screening solution in which the team recruited a large team of 

ophthalmologists to screen through 100,000 retinal scans in order to train their AI 

algorithm.66,67 In their study conducted by Gulshan et al., the Google Health research team 

was able to train and validate an algorithm that had a 98.1% specific and 98% specificity for 

detecting referable DR.67 The purpose of this project was to create an AI-based application 

called the Automated Retinal Disease Assessment (ARDA) to assist clinicians and physicians 

to screen through retinal images in lower-to-middle income countries (LMIC) such as 

Thailand and Nepal. The ARDA screening program allows the user to upload a fundus image 

to the platform, and the application can give an instant analysis of diabetic retinopathy.67 In a 

matter of seconds, the algorithm can identify if DR exists in the image and the grade of the 

DR. The rise of this study gave potential to many researchers within the ophthalmology field 

to explore the use of AI in diagnosis and other aspects of healthcare delivery.68,69 

There have been numerous systematic reviews and meta-analyses that have 

investigated the use of ML classifiers for diagnoses in different eye diseases. In a meta-
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analysis by Cheung et al. that included 13 studies, they found that ML classifiers were able to 

detect age-related macular degeneration with a 91.8% sensitivity, and 88.8% specificity.70 In 

another meta-analysis conducted by Murtagh et al., the researchers assessed the accuracy of 

ML screening for glaucoma.71 Similarly to Cheung et al., they found high accuracy for the 

screening program with an area under the ROC (AUROC) value of 0.957 for fundal photos, 

and 0.923 for OCT images.71 Evidently, there is a lot of research conducted in diagnostic 

imaging, proving screening programs like ARDA can be translated to other eye diseases. 

The use of AI and ML have demonstrated effective use for offering diagnosis services 

to individuals in under-developed, under-serviced, and remote areas.72 For patients in these 

regions such as Indigenous communities where there are limited ocular specialists, the use of 

AI can provide patients with a quick and cost-effective diagnosis. An ophthalmic technician 

or a general practitioner can take an image of the patient’s eye and diagnose the patient using 

the AI screening program.72,73 This method of healthcare delivery prevents the need of 

patients to travel long distances to visit an ophthalmologist, and the patient is able to receive 

an early diagnosis. The healthcare sector benefits from this process due to reduced wait times 

that may exist in clinics, reduced travel times, and increased specialist referral rates.  

Additionally, in the field of ophthalmology, there exists high occupational burnout 

among ophthalmologists.74 Due to the increase in our aging population, there will inevitably 

be an increase in people with eye diseases such as glaucoma, cataracts, and AMD.75 The 

workload of ophthalmologists will need to increase in order to accommodate these patient 

demands. In the conventional method of ophthalmologists diagnosing every patient, this 

process can be very time consuming and expensive. There will be continual pressures faced 
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by ophthalmologists to keep up with the influx of patients. Thus, novel methods such as the 

implementation of AI should be implemented in the workplace to assist clinicians. 

Machine Learning Classifiers for Cataract Diagnosis 

 In the last decade, research teams around the world have researched the use of ML 

classifiers to automatically diagnosis and screen for cataracts. There have been studies 

published on this research since 2009 and new studies published in 2021.63 Acharya et al. 

published their study in 2009 based in India, and the research uses a backpropagation neural 

network as their ML classifier.69 As newer studies were published, there was a general trend 

of an increase in images used to train and validate the ML algorithms. This may be due to the 

increasing advancement of ML algorithms, coding, and infrastructure of the neural networks. 

In Wu et al., a total of 37,638 slit-lamp images were used to train and validate, and a 

convolutional neural network (CNN) was used in the study.76 With their CNN, they were 

able to accurately diagnose cataracts with a 92.0% sensitivity, and 83.9% specificity.  

There is a gap in current literature for a meta-analysis on the diagnostic accuracy of 

all ML classifiers for diagnosing cataracts. This type of study is needed to show the potential 

of ML classifiers for an accurate diagnosis so these technologies can be implemented in 

regular clinical settings. If the existing ML classifiers prove to be inaccurate with a low 

pooled sensitivity and specificity, then it informs researchers and computer scientists to 

develop better models and algorithms for cataract diagnosis.62 
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2.1.7 Thesis Methodologies 

This thesis will contain two studies (Chapter 03 and Chapter 04) that will use 

different methodologies. Chapter 03 will contain a systematic review and meta-analysis that 

will summarize the current literature on the diagnostic accuracy of machine learning 

classifiers for cataracts. Chapter 04 will contain a cost-effectiveness analysis using the results 

found from Chapter 03. 

Systematic Review 

A systematic review is a type of literature review that synthesizes all available 

scientific evidence with a specific methodology that limits bias on a certain topic.77 

Systematic reviews are a form of evidence synthesis that are reproducible and transparent in 

its methods and have a focused and well-defined research question – these are some elements 

that distinctly separates a systematic review from a narrative review.77 Systematic reviews 

are important because it is an evidence-based practice that uses the best available evidence in 

both published and grey literature. Systematic reviews are especially useful for policy 

makers, healthcare personnel, and researchers because it summarizes and collates all 

available literature on a research topic into one document.77 This type of review makes it 

very easy for individuals to be thoroughly informed on one research topic and make 

evidence-based decisions. This form of review increases the precision of result estimates by 

minimizing bias in the review, and it also judges the quality of the evidence included in the 

study. 



26 

 

 

Systematic reviews need to follow the PRISMA checklist which is a standardized 

process.78 The process of a systematic review begins with developing a strong and well-

defined research question. This is important to the review because a clear and strong 

objective will guide the researcher to developing useful results and analysis.77,79 Next, a 

comprehensive database search of published literature must be conducted to obtain relevant 

literature related to the research question.77 Keywords and MeSH terms should be formulated 

by the research team in order to yield the most relevant results for the selected database 

search. Additional searches consist of forward and backward citation tracing, manual 

searching, and grey literature through conference proceedings and unpublished literature. 

After retrieving all relevant literature, the study will go through study screening where the 

reviewers will do a multi-level title, abstract, and full-text screening. If the reviewers do not 

agree on an article’s eligibility towards the study inclusion criteria, then the reviewers may 

resolve conflicts with one another, or a third reviewer will step in and decide. 

The studies that have been included after the full-text review will then go through a 

risk of bias assessment to assess the bias and quality of the individual studies included.77,79 

There are many different types of risk assessments for different study types (ie. intervention 

studies, observational studies, diagnostic accuracy studies, etc.) which rates the individual 

studies. For diagnostic accuracy studies, the QUADAS-2 Tool is the most used assessment to 

assess each included study.80 After the risk of bias assessment, the finalized studies can go 

through data extraction where relevant study information such as study population, design, 

objectives, and results can be collected.77 

Meta-analysis 
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Meta-analysis is a form of statistical analysis that uses different techniques to pool 

and summarize data from different studies on a similar topic.81,82 When conducting a 

systematic review, the authors may additionally conduct a meta-analysis if the retrieved and 

included studies contain a consistent effect size across the studies to compute a summary 

effect. Effect size is a unit of currency in a meta-analysis, and it is a measure in a study that 

represents the impact of an intervention in a study.82 An effect size can represent any 

relationship between two variables in a study, or it can be an estimate of a single value. 

Effect sizes can be dichotomous (ie. Risk ratios, odds ratios, log ratios), continuous (ie. mean 

differences, response ratios), or correlational; analysis can be made with many types of 

data.82  

Meta-analyses are especially powerful when summarizing and quantifying effect 

sizes because each study included in the meta-analysis is given a different weight in the 

analysis. Studies with greater precision in its results are weighted more than studies with 

poor precision. Precision of a study is often driven by the sample size of the study, so most 

often, the greater the sample size the greater the study weight.81,82 However, precision is just 

one of many factors that can influence the weight of a study.  

 A meta-analysis can be classified under two types of models: a fixed-effect model, or 

a random-effects model. In a fixed-effect model, there is an assumption that there is just one 

common (true) effect amongst all the included studies.82 This implies that all factors that 

could influence the effect size will be the same and constant in all studies; the only difference 

and variation from study to study only exists from sampling error. 77, 82 However, the fixed-

effect model is often rarely used in practicality because the assumption of a true effect is 
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implausible and there is often variance and heterogeneity in the studies. There can be many 

differences in the studies in terms of study population, study demographics, and other factors 

that vary. Thus, the random-effects model is most often used. In the random-effects model, 

there is an assumption that the true effects are normally distributed, and the model tries to 

deal with both the within study variance, and the between-study variance.81,82 

 To test and quantify heterogeneity, Cochran’s Q test, T2, and !! statistics are 

computed.82 The Q score is a standardized measure which sums the squared deviation of each 

individual effect size from the mean, multiplied by the weighted inverse-variance for a 

particular individual study – this is also known as the weighted sum of squares. The use of 

the Q score is to compare with the expected weighted sum of squares to test the null and get 

an estimate of the excess variance.82,85 T2 (Tau-squared) measures the variance of the true 

effects, and it is used to assign the study weights in the random-effects model. Tau is also 

able to estimate the distribution of the true effects and evaluate the standard deviations.82,85  

!! represents the proportion of the observed variance with the real differences in the effect 

size. !! is a descriptive statistic that essentially measures the inconsistency of study results 

across all the studies.82,85 Higgins et al. (2003) gives recommendations on how to interpret 

the !!. They suggest that a value of 25%, 50%, and 75% may be considered as low, 

moderate, or high heterogeneity, respectively.82  

Meta-analysis of diagnostic accuracy studies 

In meta-analysis of diagnostic accuracy studies, the use of a hierarchical logistic 

regression is a common analysis. There are several methods to statistically analyze diagnostic 
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accuracy data which includes the use of the hierarchical summary receiver operating 

characteristic (HSROC) model, and the bivariate model.83,84 In many updated statistical 

packages that exist in statistical software, the statistical command often fits the model of both 

the HSROC and bivariate parameterizations called a hierarchical logistical regression, for 

example the “metandi” command in STATA.85 The advantage in using hierarchical logistic 

regression for the meta-analysis of diagnostic studies is its ability to perform statistical 

distributions at two levels. 83,84 The first level accounts for the within-study variability using 

binomial distributions by assessing the number of true positive and true negative cases. The 

second level accounts for between study variance using logistical (log-odds) transformation 

of the sensitivity and specificity.83,84 

In the instance of diagnostic accuracy studies, the effect size and the measurement 

required for the meta-analysis are the number of true positives (tp), false positives (fp), false 

negatives (fn), and true negatives (tn).86 These values are known as a confusion matrix, and it 

is regularly used to calculate the sensitivity and specificity for diagnostic tests. True positive 

refers to a positive diagnosis for a patient with the disease of interest, and a fp refers to a 

positive diagnosis for a patient free from the disease of interest. While tn refers to a negative 

diagnosis for a patient who is free of the disease of interest, and a fn refers to a negative 

diagnosis for a patient with the disease of interest.86 

The sensitivity refers to the proportion of individuals with a condition that received a 

positive result on the test. In an example considering cataract diagnosis, sensitivity is the 

proportion of confirmed cataract patients who received a cataract diagnosis. Whereas 

specificity refers to the proportion of individuals who do not have the condition of interest 
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that received a negative result on the diagnostic test; these are the non-cataractous patients 

who received a no-cataract diagnosis from the screening procedure.86 The calculations for 

sensitivity and specificity are shown in (1) and (2). 

(1)		&'()*+*,*+-	 = 	 +/
+/ + 1( 

(2)		&/'3*1*3*+-	 = +(
+( + 1/ 

Using the sensitivity and specificity values, a summary receiver operating 

characteristic (SROC) plot can be constructed in which the sensitivity on the y-axis is plotted 

against the specificity on the x-axis.85 Unlike a conventional receiver operating 

characteristics plot, there are no lines that connect the plots with each other because each plot 

is a different study rather than a different threshold within the same study. Each study in an 

SROC plot is indicated by a circle and the size of the circle represents the sample size of each 

study.85 

The HSROC model is based on an underlying SROC plot, and it makes the same 

normality assumptions as in a random-effects model.85 The parameters included in the 

HSROC model include the mean and variance of the accuracy parameter, a positivity 

parameter with a mean and variance, and a constant shape parameter. A plot of the fitted 

HSROC model will continue a summary curve, a summary operating point for the pooled 

sensitivity and specificity value, the 95% confidence region, and the 95% prediction region.85 

The 95% confidence region is the area for the point estimate of the sensitivity and specificity, 



31 

 

 

while the 95% prediction region is the confidence region for the forecasted sensitivity and 

specificity of future studies.85 

The bivariate model models the same parameters as the HSROC model, but it utilizes 

the log-odds transforms for a bivariate normal distribution between the included studies.83,85 

The output of these models will give the summary values and confidence intervals for 

sensitivity and specificity, and this can be graphically modelled back in the linear scale. 

Additionally, the diagnostic odds ratio (DOR), and positive and negative likelihood ratios 

(LR +/-) can be retrieved from the computed sensitivity and specificity values.86 

Economic Evaluations 

Through an economics perspective, resources are always scarce, and choices must be 

made towards the optimal allocation of resources.87 A healthcare economic evaluation is the 

analysis of the cost and effectiveness of at least two treatments, and it is an important 

decision-making consideration for healthcare officials and administrators. Economic 

evaluations involve placing a value on a certain course of action, and it can motivate a 

reallocation of resources.87,88 The goal of an economic evaluation is often to identify which 

program, treatment or intervention is most efficient and it begins with a desired policy 

objective.  

In Canada, where there is publicly financed health insurance (ie. OHIP in Ontario), 

economic evaluations are important for optimal resource allocation and to determine which 

health programs or interventions are funded and covered by the government.89 Often, based 

on the results of an evaluation, they determine which drugs and interventions are covered in 



32 

 

 

the public health insurance plan and included in the schedule of benefits. 90 In low-to-middle-

income countries (LMIC), knowing the most cost-effective intervention can inform on 

programs and interventions that can be implemented at a lower cost, and potentially serve a 

wider range of under-serviced populations.89  

In health economic evaluations, the consequence is a more complicated measure to 

obtain because different people have different views on how to assign social value towards a 

health gain or health loss.87 The consequences of a health program can reflect a change in 

health status of patient, change in health sector resources consumed, or change in non-health 

effects (ie. changes in productive working time, time saved).87,88 The three types of economic 

evaluations reflect these measures and preferences.92 

Within the healthcare sector, often the final policy objective is to produce the most 

health-related welfare by observing any changes to the health status of the patient – this may 

be looking at quality of life or disability adjusted life year measures.87 However, there are 

other intermediate outcomes that may reflect change in other important clinical indicators 

pertinent to other parties such as physicians, or family and caregivers of the patient. 

Therefore, the perspective (or viewpoint) that is used in an economic evaluation is important 

because a certain treatment or program may look unattractive when other perspectives are 

being considered.92 These perspectives can include the individual patient, a specific 

organization, the Ministry of Health, or a societal perspective.  

Another methodological consideration in an economic evaluation is the time horizon 

of the study. Many studies will capture the entire lifetime of a patient in order to assess both 

intended and unintended effects of a patient’s life as a result of health intervention.87,92 For 
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example, if a study was assessing the mortality of a patient after a certain medical treatment, 

a short time horizon may lead to an over optimistic view of the analysis. A longer time 

horizon which follows through the patient’s life course would be more beneficial and fully 

encompassing the patient’s experience.87 However, this is no standard time horizon in 

economic evaluations because each study has its own goals and scope. For economic studies 

that investigate benefits that occur in the shorter term such as the number of cases detected 

by a screening program or reduction in the number of medical visits by a patient, then a 

shorter time horizon may also be appropriate.87 

Methods of Economic Evaluations 

 There are three main types of economic evaluations: cost-effectiveness analysis 

(CEA), cost-utility analysis (CUA), and cost-benefit analysis (CBA). All analyses use similar 

monetary unit measurement, but the consequences may be differently reported and used in 

each type. Cost-minimization analysis is also another form of economic evaluation, although 

this method is more outdated and less robust than the other method. 

Cost-effectiveness analysis is a type of economic evaluation that assesses the cost per 

unit effect achieved – it measures the consequences in natural units (ie. life-years gained, 

cases averted, etc.).87,88 The purpose of a CEA can be to compare the costs of different 

medical treatment, programs, or interventions aimed at the same health problem, and 

evaluate the expected benefits, but a CEA does not place a social value to the consequence.88 

For example, if there is an alternative dialysis program that may prolong the life of a patient 

with renal failure, then the CEA would be interested in looking at the extra cost per life-year 

gained as a result of the new treatment program.88 For cancer screening programs, the cost of 
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a ‘detected case’, ‘case averted’, or ‘patient diagnosed’ by the screening intervention may be 

the more relevant outcome of interest.87 However, there are limitations to a CEA because it 

may be difficult to evaluate the opportunity costs and benefits forgone in other programs. 

Taking the cancer screening program for example again, although a CEA may be able to 

capture the number of cancers detected, the scope of the analysis does not account for the 

type of cancer or the stage of cancer which can have very different health effects on the 

individual patient.88  

A decision tree can be generated to compare two separate interventions, and case-base 

probabilities are inputted into the analysis. Through inputting the probabilities of an output 

with the costs and effectiveness, a simple cost-effectiveness measure can be computed to 

compare the interventions.87 An incremental cost-effectiveness ratio (ICER) describes the 

average incremental cost associated with one additional unit of the measure of effect, and 

there will be a dominated, dominant, or undominated intervention. An intervention is defined 

as dominated when the intervention is more costly and produces lower effects or 

consequence. The calculation of an ICER is expressed in (3) which describes the change in 

incremental resources required by the intervention, divided by the change in incremental 

health effects gained by the intervention.87,88 

(3)		!567 = 58)+	('9 − 58)+	8;<
611'3+	('9 − 611'3+	8;< 

 A CEA generates one of nine possible “dominance” outcomes when a new treatment 

or program is being compared to another (Table 2.2).87,88 In instances where there is clearly 

one program that is less costly and more effective, then this program is said to be 
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absolutely/strongly dominant. There are also outcomes that may be classified as “weak 

dominance” such that a program may be equally as effective as the comparator but costs 

more or less, or a program that is more or less effective but costs the same as the 

comparator.88 Finally, there are outcomes that are classified as “non-dominance” in which 

there is a trade-off between programs to see if the added effects generated are worth the extra 

costs, or if the lowered costs justify the lowered effects.88 

 The results of a CEA can also be shown on a cost-effectiveness plane which plots the 

ICER onto a plane with four quadrants: northeast, southeast, southwest, and northwest.93 The 

vertical axis represents the change in cost, and the horizontal axis represents the difference in 

effect. A positive ICER slope represents a trade-off for either intervention; the northeast 

quadrant represents that the new program is more effective and more costly than the 

comparator, and the southwest quadrant represents the new program is less effective and less 

costly than the comparator.87 A negative ICER slope needs to be interpreted with caution 

because it represents two extremes: the new program is dominant (southeast quadrant), or the 

new program is dominated (northwest quadrant).87,93  

A second type of economic evaluation is a cost-utility analysis (CUA) which values 

health outcomes and consequences in terms of a generic measure of health gain (ie. quality-

adjusted life years (QALY), disability-adjusted life years (DALY), healthy years 

equivalent).87,88 These estimates of health utility can quantify the quality of life and 

productiveness of a patient using a rating or valuation from 0 to 1.88 Using these ratings, each 

case that is considered in the CUA can be adjusted by the length of time affected by the 

disease of interest. The benefits to utilizing the health utility of the patient is that a patient’s 
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health status can be considered after the implementation of the new program or treatment.88 

If a patient with severe vision loss as a result of cataracts receives a successful cataract 

surgery and regains 20/20 vision, the QALY of the patient would inevitably increase post-

surgery. If the patient does not receive cataract surgery or has an unsuccessful surgery, then 

their vision will continue to deteriorate and their QALY may continue to decrease over the 

time horizon of the study.94 

 The third type of economic evaluation is a cost-benefit analysis (CBA) which is 

similar to a CUA, but the consequence is valued in money or willingness-to-pay (WTP).87,88 

The result of a CBA is often stated as a form of ratio of costs to benefits, or a sum of net 

benefits or loss of one program compared to the other. A CBA can indicate whether a 

program is worthwhile at all to be implemented. In a CBA, individuals express their 

hypothetical WTP which is a scenario where the individual can consider their willingness-to-

pay in a dollar amount to mitigate a certain health risk.88 Based on the pre-determined WTP, 

the WTP can be plotted on a cost-effectiveness plane to determine if the new program or 

treatment should be accepted. For example, if the WTP is $40,000/QALY, then this is the 

cost-effectiveness threshold that would be used to draw an acceptability curve to illustrate if 

one intervention is favoured over the other. It is noted that CBA is used more for feasibility 

studies rather than full program implementation purposes.88 

2.1.8 Conclusion 

 In conclusion, cataract is a global disease that requires attention and research. 

Cataracts is the leading cause of blindness in adults, and the aging population of Canada and 

the world will inevitably cause a massive increase in cataract cases.3 The diagnosis and 
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treatment of cataracts warrants research, and the use of AI and ML can assist clinicians in the 

care of cataracts. There is potential for AI screening programs for diagnosing eye diseases 

such as cataracts, as shown by the ARDS program by Google Health. Currently, there are 

many research teams who are investigating the use of ML classifiers for cataract diagnosis, 

and there is great potential for its regular clinical use. However, there remains a gap in the 

literature for a meta-analysis on the diagnostic accuracy of machine learning classifiers for 

cataracts, and a cost-effectiveness analysis for AI screening programs for cataracts in rural 

regions. 

2.2 Thesis Rationale 

The utilization and implementation of artificial intelligence and machine learning in 

the healthcare setting has been on the rise in the past few decades. Complex algorithms and 

software have been developed to resolve complex problems and processes within medical 

data and clinical decisions.59,63 The incorporation of these new and modern technologies has 

the ability to improve medical care delivery, and the patient experience in our healthcare 

system. The use of AI for telemedicine has shown benefits for patients in terms of access to 

care and healthcare equity. There continues to be large amounts of studies on AI and ML 

within the healthcare field published every year due to the increasing trend of digital 

medicine.61   

Additionally, currently in Nepal, there is approximately an 8.5% prevalence of any 

type of cataract among adults.36 Thus, many individuals are impacted by cataracts, and it is a 

very relevant aging health condition seen across many adults. The field of ophthalmology 

seems to be a very attractive field for AI development perhaps due to the readily available 
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datasets of ocular images. Large technology companies such as Google and IBM have 

invested in large research teams to make developments in these areas.59 Therefore, this thesis 

is important because it addresses key topics within artificial intelligence, ophthalmology, and 

global health that remains unanswered in the current body of literature. 

Many studies have claimed that the use of machine learning can provide an accurate 

and cost-effective alternative to regular clinical practice of treatments or interventions in the 

healthcare setting. However, there have not been any studies that prove this to be true for 

cataract diagnosis.91 It is hypothesized that ML screening programs will in fact be superior to 

human assessments in both the diagnostic accuracy and direct costs.  

This thesis will investigate, at a high level, the general diagnostic accuracy of all 

machine learning classifiers for cataracts that are currently in literature in both published and 

unpublished sources. To date, there are no systematic reviews or meta-analysis on the use of 

machine learning for cataract screening.91 By investigating and exploring the sensitivity and 

specificity of these novel algorithms, it can give more information to researchers and 

clinicians on whether more development of algorithms is warranted to produce better 

diagnostic accuracy, or if current algorithms are capable to be implemented to the regular 

clinical setting in hospitals and ophthalmology clinics.  

Equally as important to the ML diagnostic effectiveness is the financial and health 

economical consideration to this screening program. Health economic evaluations are also 

warranted to demonstrate the financial feasibility of these new interventions and to assess the 

long-term benefits of any investments. With human assessment of cataract diagnosis, it can 

involve costly personnel (ophthalmologists, eye specialists) in every step of the patient care. 
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There is currently a paucity of literature on the CEA of any AI-related interventions. In fact, 

in a systematic review by Wolff et al., the authors found only 6 studies that met their 

objective of summarizing cost-effectiveness studies dedicated to AI in healthcare.91 Out of 

the 6 studies, no studies were identified to have comprised of a methodologically complete 

cost impact analysis. To the best of our knowledge, the cost-effectiveness analysis in Chapter 

04 presents as one of the first cost-effectiveness analysis of a machine learning screening 

program for cataracts.  

In Nepal, there is currently no machine learning screening program readily available 

for diagnosing cataracts. Given the potential of machine learning diagnosis utilized for other 

diseases such as diabetic retinopathy, cataract diagnosis can benefit from the same 

developments and provide timely patient referrals. The thesis rationale is that a ML-based 

screening program for cataracts may be a feasible and viable alternative over the traditional 

diagnostic eye camps for cataracts by assessing the diagnostic accuracy and cost-

effectiveness. 

2.3 Thesis Objectives 

This thesis aims to evaluate the effectiveness of ML classifiers for the diagnosis of 

cataracts through two objectives: 1) assessing the diagnostic accuracy, and 2) determining the 

cost-effectiveness. 

Objective 1 – Diagnostic accuracy 

To systematically review and meta-analyze the diagnostic accuracy of ML classifiers 

for cataracts among all adult and pediatric eyes available in datasets to assess their accuracy 
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and reliability to be implemented in real clinical settings. Chapter 03 will aim to qualitatively 

and quantitatively summarize the existing body of knowledge pertaining to the accuracy of 

novel ML classifiers developed and compute a pooled-sensitivity and specificity estimate. 

Objective 2 – Cost-effectiveness 

To determine the cost-effectiveness of implementing a fully automated ML-based 

screening program in eye camps compared to the current standard eye camps for the 

diagnosis of cataracts for the adult population in rural Nepal. 
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2.5 Table 

Table 2.1 Ophthalmic evaluation for the diagnosis and treatment of cataract. (Table adapted 

from the Canadian Ophthalmological Society)34 

 

 

 

 

Evaluation Details 

Patient History - Patient’s assessment of functional status 

- Pertinent medical conditions 

- Current medications 

- Allergies to medications and latex 

- Risk factors that could affect the surgical plan 

- Previous ophthalmic surgery, including refractive surgery 

Measurements - Visual acuity with current correction at distance and at near 

- Best-corrected visual acuity, including under glare conditions 

- Intraocular pressure 

Examinations - External (lids, lashes, lacrimal apparatus, orbit) 

- Ocular alignment and motility 

- Slit-lamp biomicroscope of the anterior segment 

- Dilated examination of the lens, macula, peripheral retina, optic nerve, 
and vitreous; B-scan ultrasound of fundus if inadequate view clinically 

- Assessment of relevant aspects of the patient’s mental and physical status 
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Table 2.2 Possible results from a cost-effectiveness analysis – dominance chart 

  Incremental effectiveness of new program 
compared to control 

  More Same Less 

Incremental 
cost of new 
program 
compared to 
control 

More Non-dominance 
(trade-off) 

Weak 
dominance 
(reject new 
program) 

Strong 
Dominance 
(reject new 
program) 

Same Weak 
dominance 
(accept new 
program) 

Non-dominance 
(neutral) 

Weak 
dominance 
(reject new 
program) 

Less Strong 
Dominance 
(accept new 
program) 

Weak 
dominance 
(accept new 
program) 

Non-dominance 
(trade-off) 
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3 Diagnostic Accuracy of Machine Learning Classifiers for 

Cataracts: A Systematic Review and Meta-analysis 

3.1 Introduction 

3.1.1 Background 

A cataract is the opacification of the lens in the human eye which results in 

cloudiness and poor visual acuity.1,2 The development of cataracts is often related to age, 

trauma, and even congenital factors.2-5 According to a WHO report, more than 50% of the 

world’s first cause of blindness is due to cataracts and it continues to be the leading cause of 

blindness, especially in low to middle-income countries.6 While cataract is commonly found 

in adult and elderly patients, pediatric cataract has an estimated prevalence of 4.24 per 

10,000 live births, and it is the major causes of childhood blindness.4 On a global level, 

cataract has contributed to 17.7 million disability-adjusted life years, a measure that 

represents the total number lost to disability or premature death, and it is continuing to be 

increasing.7  

In current clinical practice, ophthalmologists commonly use several diagnostic tests 

for cataracts. Slit-lamp imaging is the most common imaging technology that utilizes an 

intense line of light to illuminate the eye and to look for abnormalities. Clinicians often use 

the Lens Opacities Classification System III for grading images of cataract.1,2 

The early diagnosis of patients with cataracts can often lead to improved visual 

outcomes because patients can quickly receive treatment and cataract surgery.8,9,10 However, 

this process is often stalled or delayed when people in remote and under-serviced areas such 
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as First Nations communities, rural regions, or low-to-middle income countries do not have 

access to ophthalmologists, treatment, or healthcare resources.11,12 Often, ophthalmologists or 

other trained eye specialists in urban settings will travel to these under-served areas to 

perform diagnosis, check-ups, and treatments.12 Considering the aging population, the 

increased number of cataract cases can potentially contribute to the demand of 

ophthalmologists to rise. Ophthalmologists are facing high prevalence of occupational 

burnout and they have high demands of patient care and overtime work.13,14 There is an 

evident need for the use of AI as it holds great potential for its application in clinical 

settings.11,12 

AI has been an emerging technology in the medical field, and it can be an influential 

modern technological innovation. The role of AI is to mimic and simulate a human’s mental 

process through computers to perform complex and sophisticated tasks. Machine learning is 

an application of AI, and its purpose is to automatically perform tasks through training and 

learning processes.15 Researchers have used ML to train computer algorithms to 

automatically detect eye diseases such as AMD, glaucoma, and diabetic retinopathy through 

processing large sets of fundus, optical coherence tomography, and slit-lamp images.16-21 

Machine learning classifiers such as support vector machines, convolutional neural networks 

and random forests have been used to obtain a cost-effective, simple, and fast diagnosis of 

eye diseases. 

3.1.2 Objective 

The applications of AI in the field of ophthalmology are growing rapidly and it is 

proven to be a powerful tool for the diagnosis of eye diseases. There have been numerous 
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systematic reviews published on the diagnostic accuracy of AI for glaucoma and diabetic 

retinopathy.22,23 It is to the best of our knowledge that this is the first systematic review of its 

kind. The objective of this study is to systematically review and meta-analyze the diagnostic 

accuracy of machine learning classifiers for cataracts among all pediatric and adult eyes 

available in databases to assess their accuracy and reliability to be implemented in real 

clinical settings. 

3.2 Methods 

This systematic review has been registered in PROSPERO (CRD42020219316) and it 

follows PRISMA guidelines (Appendix A).24 

3.2.1 Search Strategy 

 An initial scoping search was performed using PubMed, Google Scholar, and Web of 

Science. A systematic and comprehensive database search included MEDLINE/PubMed, 

EMBASE, CINAHL and ProQuest Dissertations and Theses to find articles on current 

artificial intelligence technologies used in the field of ophthalmology for the diagnosis of 

cataracts. The search was carried out using keywords and controlled terms for the following 

concepts: “Artificial intelligence” AND “Diagnosis” AND “Cataracts”. The search strategy 

and keywords for each database is detailed in Appendix B and the searches were conducted 

until September 12, 2021. The search was limited to English and human studies only. No 

limits were placed on publication date and study location to maximize our eligible studies. 

OVID AutoAlerts for MEDLINE and EMBASE databases were used to send weekly updates 

for any new published literature that the search strategy encompassed.  
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 In addition, grey literature searches were conducted in order to obtain a 

comprehensive search. Conferences held through the American Academy of Ophthalmology, 

the Association for Research in Vision and Ophthalmology, and the Canadian Society of 

Ophthalmology were searched in all available years. We searched through the conferences 

until September 12, 2021. Keywords that were used for the grey literature search consisted of 

“artificial intelligence” and “diagnosis”. The search strategy and search results for each 

conference is displayed in Appendix C.  Forward and backward citation tracing were carried 

out on studies that were included after the full-text screening. Refer to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram for 

more details.24  

3.2.2 Inclusion and Exclusion Criteria 

This systematic review included all studies that utilized artificial intelligence to 

diagnose cataracts on human eyes — there was no restriction in the age of the eyes. Any ML 

classifiers such as neural networks, Random Forests, adaptive boosting, or support vector 

machines that were able to differentiate between healthy and cataract eyes were included. 

The ML classifier must include a learning, training or validation processes when evaluating 

the images. If the study mentioned a computer assisted or automated process without the 

mention of AI or a learning process, then the study was excluded. We included studies that 

used AI algorithms to make a first diagnosis of cataracts from healthy eyes, or the AI was 

able to differentiate between cataract eyes and healthy eyes. Studies that investigated the use 

of AI for grading cataracts were excluded. 
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 Additionally, all imaging techniques were included in this review; this included 

fundus imaging, slit lamp imaging, or visible wavelength images. Studies that reported 

diagnostic performance indicators such as sensitivity and specificity were also included. The 

studies must also include a reference standard, confirmed, and validated by trained clinicians 

or ophthalmologists. Included publications must be primary studies, and there were no 

restrictions on study design; ophthalmology news articles, opinion pieces, and case reports 

were excluded. Only studies in English were included, and there was no restriction placed on 

study location or publication date.  

3.2.3 Screening 

 Database search results were all imported into Covidence systematic review software 

(Veritas Health Innovation, Melbourne, Australia). All duplicated articles were removed in 

Covidence and two levels of systematic screening were conducted by two independent 

reviewers (RC & SS). When consensus could not be reached between the two reviewers, all 

disagreements were resolved by discussion of the two reviewers. The first level of screening 

consisted of a broad title and abstract screening. If the study title and/or abstract mentioned 

the use of AI and the diagnosis of cataracts, the study was included and moved on to the 

second screening; the rest of the articles were excluded. The second level of screening was a 

full-text screening, and we examined each article to choose relevant studies that matched our 

research question. The article must consist of a first diagnosis of cataracts using an AI 

algorithm. However, the technology must be an advanced ML classifier that includes a 

training and processing element for the diagnosis of cataracts. The included studies moved on 
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to the risk of bias assessment. If data from the same study was discovered to be reported in 

multiple papers, only the report with higher quality was retained. 

Cohen’s kappa (κ) statistics were calculated at both screening levels before conflicts 

were resolved as shown in Appendix D. We reported kappa values based on the 

recommendations of Landis and Koch: greater than 0.75 represents excellent agreement 

beyond chance, below 0.40 represents poor agreement, and 0.40 to 0.75 represents 

intermediate to good agreement. 

3.2.4 Risk of Bias Assessment and Data Extraction 

 To assess the risk of bias of the included articles, the Quality Assessment of 

Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the level of bias and 

concerns of applicability.25 Two independent reviewers (RC & SS) conducted the risk of bias 

and any disagreements were resolved by discussion. QUADAS-2 considered 4 domains: 

patient selection, index tests, reference standard, and flow and timing. Each of the domain 

was given a risk of bias score to assess whether there was high, low, or unclear bias. The 

QUADAS-2 tool was not intended to provide a summary quality score. All studies were 

included for this systematic review. 

 A data extraction form was created to collect relevant data and details of each of the 

included studies. A pilot extraction form was first created for a subset of included studies in 

order to determine what information was most relevant and pertinent to this study. Study data 

were extracted by one reviewer (RC). The following data were extracted from each study: 

author, year of publication, study location, study design, ML classifier, type of imaging, 
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number of study participants, number of images used, training and testing process, database 

and datasets used, diagnosis reference standard, area under curve, sensitivity, specificity, and 

accuracy. Additionally, other outcomes that were extracted if reported in the studies were the 

tn, tp, fn, fp, and total number of images classified as healthy or cataractous. Data extraction 

table for the meta-analysis is outlined in Appendix E. 

3.2.5 Statistical Analysis 

Data was synthesized and analyzed using STATA 15.0 (STATA Corp, College 

Station, Texas, U.S.A.) for the diagnostic accuracy of machine learning for cataracts. The 

extracted data of interest were the sensitivity, specificity, and area under curve values of the 

ML classifiers used. A hierarchical bivariate random effects model was conducted. 

Hierarchical logistic regression was used to determine the pooled estimates of sensitivity and 

specificity of diagnostic accuracy. The summaries of the fitted Hierarchical Summary 

Receiver Operator Characteristic (HSROC) model, the summary receiver operating 

characteristics (SROC) curve, the 95% confidence interval and the 95% prediction region 

were plotted graphically. Sub-group analysis was conducted based on adult and pediatric 

cataracts.   

The positive/negative likelihood ratios (LR+/LR-) were calculated using bivariate 

models to generate estimates of the likelihood of a positive/negative test. From this result the 

diagnostic odds ratio (DOR) was calculated to determine the relative diagnostic 

effectiveness. DOR is the ratio of the odds of a positive screen test in a cataract case relative 

to the odds of a negative screen test in a non-cataract case. 
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Forest plots showing the within-study estimates and confidence intervals for 

sensitivity and specificity were plotted separately. For each study, the sensitivity and 

specificity were aggregated using the fixed or random-effects model based on the absence or 

presence of heterogeneity to estimate the summary effect. To test for heterogeneity, !! 

statistics, Q-value, and =!	statistics were computed. An !! value of less than 50% implies 

low heterogeneity, and in these cases, a fixed-effect model was computed. An !! statistics of 

50% or more represents high heterogeneity, and in these cases a random-effects model was 

calculated. Additionally, a high Z-value, a low p-value (< 0.01) and a large =! value implies 

significant heterogeneity and therefore, a random-effects model was computed.  

3.3 Results 

3.3.1 Search Results and Study Characteristics 

The inclusion and exclusion process are shown by Figure 3.1 using the PRISMA 

flow diagram. In total, the search strategy yielded 150 articles, and the grey literature search 

yielded 35 articles. However, 50 of those articles were identified as duplicates, resulting in 

135 articles entering the first level title and abstract screening. In the first level, 107 articles 

were excluded, and 28 studies moved onto the final level (full text) screening. After the full 

text screening, seven studies were excluded due to wrong study outcomes and comparators, 

and 21 studies met the inclusion criteria. The kappa statistics score was 0.72 and 0.84 at each 

stage of screening — this was considered to be moderate to high agreement from both 

reviewers. The studies that were included after the last screening went through a risk of bias 

assessment using the QUADAS-2 Tool. All 21 studies were included for the qualitative 

synthesis26–46 and 11 of those studies were included for the meta-analysis.26,27,34–36,38–42,45 
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 The study characteristics of the 21 included studies are displayed in Table 3.1. All 

included studies were conducted in Asian countries including China 27–29,33–36,38,40–45, 

Singapore30–32, India26,37,39, and Japan46. Nine of the studies used slit-lamp images26,30–32,34–

36,40,45, 11 studies used fundus images 27–29,33,38,39,41–44,46, and one used visible wavelength eye 

images39 for the testing and training process. Among all the studies, there was a varied use of 

different ML classifiers. The most common classifier used was support vector machines 

(SVM) which was used by six studies28,31,32,38,39,41, and convolutional neural networks which 

was also used by eight studies33,36,38,40,42,44–46. Other ML classifiers included backpropagation 

neural network26,27, discriminant analysis29, AdaBoost (adaptive boosting)35,43, CC-Cruiser34, 

and a novel ranking classifier.30 Each study had a unique training and testing process to teach 

their classifier to differentiate between the healthy and non-healthy images. 

In the included studies, there were multiple studies that overlapped in the use of 

certain datasets including the Singapore Malay Eye Study, Childhood Cataract Program of 

Chinese Ministry of Health, and the dataset from Beijing Tongren Eye Center of Beijing 

Tongren Hospital. However, all studies differed in their choice of ML classifier, and number 

of images used for training and testing. In studies Li et al. (2009) and Li et al. (2010), both 

uses the same ML classifier, imaging technique, and dataset to detect cataract. Lin et al. 

(2019), Lin et al. (2020), and Liu et al. (2017) investigated specifically on pediatric cataracts 

and used the same available database from the Childhood Cataract Program in China. Among 

pediatric cataracts, three studies contributed to four sensitivity and specific pairs in total. 

Whereas among the adult cataracts analysis, there were nine pairs of sensitivity and 

specificity pairs in total used for the quantitative analysis. All images that were used had 
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been confirmed by a human grader such as an ophthalmologist, clinician, or clinical grader to 

confirm the diagnosis of the eye. 

3.3.2 Risk of Bias Assessment 

Most of the studies that passed the full-text review had a low risk of bias in the four 

domains; it was low risk in patient selection (76.2%), index tests (95.2%), reference standard 

(95.2%), and flow and timing (76.2%). There was low concern of applicability in the patient 

selection (85.7%), index test (95.2%), and reference standard (95.2%). The study by Shimizu 

et al. was rated high risk across all domains because only its abstract was available. The risk 

of bias assessment and concerns about applicability for each study are summarized in 

Appendix F.  

3.3.3 Diagnostic Accuracy of Machine Learning Classifiers for Cataracts in 

Adults 

Eight studies were used for the meta-analysis to conduct the analysis of diagnostic 

accuracy for cataracts in adult patients. The SROC curve is represented in Appendix G 

which plots the sensitivity against the specificity of each study. The SROC curve shows that 

most of the included studies are scattered across the top right corner of the plot, and it 

demonstrates that there is a high specificity and sensitivity of various ML classifiers.  

Figure 3.2 shows the HSROC plot which illustrates the study estimates indicated by 

the circles, the HSROC curve or summary curve, a summary operating point or the summary 

value for sensitivity and specificity, the 95% confidence region (inner ellipse), and the 95% 

prediction region (outer ellipse) for the summary operating point. The HSROC curve appears 
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in the left upper quadrant and has a large area under the curve. This is an indication that ML 

classifiers are a relatively accurate method for diagnosis because the area under the HSROC 

curve is large. Four studies fall outside the 95% confidence interval of the summary estimate. 

The 95% prediction region is the estimate of future observations. The prediction region 

shows a wide prediction region for the true predictions of both specificity and sensitivity; 

there is a greater expected variability for the sensitivity.  

The summary estimate for sensitivity was 0.948 [95% CI: 0.815-0.987] and 

specificity was 0.960 [95% CI: 0.924-0.980] for cataracts screening using an ML classifier 

(Figure 3.3). The summary estimates indicate that ML classifier correctly detects 94.8% of 

cataract cases and correctly classifies 96.0% of those without cataract as cataract-negative. 

The distribution of the studies in the plot demonstrates the variability of both specificity and 

sensitivity amongst studies.  

The positive likelihood ratio was 23.837 [95% CI: 12.241-46.419], while the negative 

likelihood ratio was 0.054 [95% CI: 0.014-0.208] (Appendix H). This shows that the 

likelihood of a positive diagnosis in a cataract case is greater than the likelihood of negative 

diagnosis in a non-cataract case. The positive likelihood ratio is greater than one and it 

represents that the positive diagnosis is associated with cataract. Because the negative 

likelihood ratio is less than one, the ML classifier which gave a negative diagnosis is 

associated with the absence of cataract. The effectiveness of the diagnostic accuracy of the 

ML classifiers for cataract given by the diagnostic odds ratio is 442.248 [95% CI: 89.201-

2192.611] (Appendix H). This demonstrates that the relative odds of a positive screen test in 

cataract cases are 442.248 times more likely than a negative screen test in a non-cataract 
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case. Thus, the ML classifiers discriminate between the true negative and true positive 

cataract images correctly and accurately. 

3.3.4 Diagnostic Accuracy of Machine Learning Classifiers for Pediatric 

Cataracts 

A sub-group analysis was conducted for pediatric cataracts and a total of three studies 

were used for the quantitative analysis for assessing the diagnostic accuracy of ML classifiers 

for pediatric cataracts. Figure 3.4 shows the HSROC plot for pediatric cataracts. All four 

classifiers fall within the 95% confidence interval (inner ellipse) of the summary estimate. 

The 95% prediction region shows wide variability for the true predictions of both specificity 

and sensitivity. 

The summary estimate for sensitivity was 0.882 [95% CI: 0.696-0.961] and 

specificity was 0.891 [95% CI: 0.807-0.942] for cataracts screening using an ML classifier 

(Figure 3.5). The distribution of the studies in the plot demonstrates the variability of both 

specificity and sensitivity amongst studies. The positive likelihood ratio was 8.119 [95% CI: 

4.068-16.206], while the negative likelihood ratio was 0.133 [95% CI: 0.045-0.392] for 

cataracts in children (Appendix H). The effectiveness of the diagnostic accuracy of the ML 

classifiers for cataract given by the DOR is 61.200 [95% CI: 11.656-321.328] (Appendix H). 

The relative odds of a positive screen test in pediatric cataract cases are 61.2 times more 

likely than a negative screen test in a non-cataract case. Thus, the ML classifiers discriminate 

between the true negative and true positive images correctly and accurately in child eyes. 
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3.4 Discussion and Conclusion 

 This systematic review and meta-analysis included 21 full text articles for the 

qualitative synthesis and 11 full text articles for the quantitative synthesis. In the systematic 

review, 100,134 images were used for training and validation of the ML classifiers for 

diagnosing cataracts in human eyes. For the adult cataract meta-analysis, 74,188 images were 

used included for the analysis, and 5246 images were used for the pediatric cataract subgroup 

analysis. To the best of our knowledge, this is the first review of its kind to assess the 

diagnostic accuracy of ML classifiers for cataracts. ML classifiers are advantageous at 

detecting true positive cases of cataracts and they have very high DOR estimates. 

 Given the COVID-19 pandemic, the role of telemedicine — more specifically in 

teleophthalmology — has demonstrated a growing importance in healthcare, and the use of 

AI algorithms can further assist clinicians in making clinical decisions. The use of ML has 

demonstrated good use for offering cataract diagnosis services to people in under-developed 

and remote regions.11,12 This alternative method of receiving healthcare benefits both the 

patients and the healthcare system because there is reduced wait and travel times, increased 

specialist referral rates, and reduced patient costs. In urban settings, the use of ML for 

diagnosis can reduce patient load, wait times, and improve efficiency of ophthalmology 

clinics.12  

 The results of the pooled sensitivity and specificity estimates for diagnosing cataracts 

have shown that ML-classifiers perform with high accuracy for both true positive (tp) and 

true negative (tn) cases. It is also equally important to consider the number of cases that are 

classified as false negative (fn) and false positive (fp) in order to assess how many patients 
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may be underdiagnosed and in need of cataract treatment. A missed cataract diagnosis may 

significantly affect the patient’s quality of life and quality of vision, and it may result in a 

delayed cataract treatment and follow-up.8,9 When assessing the accuracy of the ML 

classifiers, both the sensitivity and specificity of the diagnostic technology must be fully 

considered.47 All included qualitative publications in this study reported an accuracy 

proportion in their article, however, single accuracy proportions do not indicate whether there 

is a trade-off between the sensitivity or specificity of the test. For future diagnostic accuracy 

studies, it is encouraged for all authors to report the sensitivity, specificity, tn, tp, fn, and fp 

values for researchers and clinicians to make better informed decisions. 

Additionally, meta-analysis of observational studies is influenced by inherent 

biases.48 Factors such as the hospital and study location, race and age of study participants, 

and type of imaging technique can influence the study results. The clinical diagnosis and 

confirmation of cataracts may also be subject to each ophthalmologist or retinal specialist 

and study location. All included studies had a reference standard which may be an 

ophthalmologist, an eye specialist, or a professional/clinical grader. However, not all studies 

explicitly stated the clinical guidelines or cataract classification systems that the reference 

standard used to provide a cataract diagnosis. An ophthalmologist’s number of years of 

experience in the field, and an ophthalmologist’s field of expertise in ophthalmology are 

additional factors that may influence the study results. 

 In training a machine learning algorithm in ophthalmology, there can be multiple 

imaging modalities that researchers may use including slit-lamp imaging, fundus imaging or 

OCT imaging. For cataracts, it is common to use slit-lamp or fundus imaging as shown in 
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Table 3.1. Due to the differing image modalities used by different studies, there may be 

potential bias in the results because each individual algorithm learns to read and process the 

image types differently — this may increase the between study heterogeneity. Despite the 

variation in ML classifiers within the slit lamp imaging and fundus cohorts, all the included 

studies for the quantitative analyses displayed consistent results. Based on this study’s 

inclusion and exclusion criteria, only two studies that used slit-lamp images would have been 

included for a potential subgroup analysis. Therefore, a subgroup analysis was not conducted 

due to the small sample size and insufficient power in the analysis. 

All included studies originated from three study countries: China, Singapore, and 

India. Due to the limited eye database and datasets available in these countries, there were 

database overlaps throughout the included studies. Datasets from Beijing Tongren Hospital 

and the Childhood Cataract Program of Chinese Ministry of Health (CCPCMOH) from 

China were most used. CCPCMOH was the only database used for the pediatric cataract 

subgroup, thus more images of pediatric eyes with cataract are needed for continued research 

in the future. The pediatric cataract results from this study should be interpreted with caution 

due to the limited number of studies available. This suggests that more expansive research is 

warranted in other regions and countries to retrieve more unique eyes for this analysis. 

In conclusion, the diagnostic accuracy of ML classifiers for adult and pediatric 

cataracts is very high and the diagnostic test performance shows very promising results. The 

prospects of using ML for the diagnosis of cataracts in real clinical settings is a possibility, 

although the extent of our findings and the timeline of this implementation still needs to be 

established. This study demonstrates only one facet of the application of artificial intelligence 
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in the healthcare field and ophthalmology. There are endless opportunities for the 

implementation of AI in medical care as novel research and new algorithms are developed. 
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Table 3.1 Study characteristics of the included studies 

Study  
Study 
Location 

Patient 
Type ML Classifier 

Imaging 
Technique 
and Model 

# Study 
Participants 

# 
Images 

Training and 
Testing Process Database and Datasets 

Reference 
Standard 

Acharya et 
al. (2009) India Adult 

Backpropagation 
Neural Network Slit Lamp 140 2520 

1620 images used for 
training, 900 images 
used for testing 

Department of 
Ophthalmology, Kasturba 
Medical College Hospital, 
Manipal, India Ophthalmologist 

Cao et al. 
(2020) China Adult 

Backpropagation 
Neural Network Fundus NR 1355 

452 images used for 
training, 903 images 
used for testing 

Beijing Tongren Eye 
Center of Beijing Tongren 
Hospital 

Two 
ophthalmologists 

Dong et al. 
(2017) China Adult SVM Fundus NR 7851 

5495 images used for 
training, 2356 images 
used for testing; 
repeated training and 
testing 50 times 

Department of 
Ophthalmology, Tsinghua 
University 

Professional 
doctors 

Guo et al. 
(2015) China Adult 

Discriminant 
analysis Fundus NR 445 

312 images used for 
training, 133 images 
used for testing; 
repeating the 
procedure 100 times 

Community clinics, remote 
rural hospitals and other 
hospitals, sharing the 
healthcare resources 
through the internet  

Ophthalmic 
experts or 
ophthalmologists 

Huang et 
al. (2009) Singapore Adult 

Novel Ranking 
Classifier 

Topcon 
DC-1 
Digital Slit 
Lamp 1000 1000 5-fold cross validation 

Singapore Malay Eye 
Study (SiMES) 

Ophthalmologists 
using Wisconsin 
cataract grading 
system 

Li et al. 
(2009) Singapore Adult SVM 

Topcon 
DC-1 
Digital Slit 
Lamp 3280 5820 

100 images used for 
training, 5490 images 
used for testing 

Singapore Malay Eye 
Study (SiMES) 

Human graders 
using the 
Wisconsin 
cataract grading 
system  
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Li et al. 
(2010) Singapore Adult SVM 

Topcon 
DC-1 
Digital Slit 
Lamp 3280 5850 

100 images used for 
training, 5550 images 
used for testing 

Singapore Malay Eye 
Study (SiMES) 

Human graders 
using the 
Wisconsin 
cataract grading 
system  

Li et al. 
(2018) China Adult 

CNN - 
ResNet50 Fundus 248 8030 

7030 images used for 
training, 1000 images 
used for testing 

Beijing Tongren Eye 
Center of Beijing Tongren 
Hospital 

Professional 
graders 

Lin et al. 
(2019) China Pediatric CC-Cruiser Slit Lamp 350 350 

CC-Cruiser is an 
ophthalmic AI 
platform developed by 
Zhongshan 
Ophthalmic Centre 
(ZOC) 

Childhood Cataract 
Program of Chinese 
Ministry of Health 
(CCPMOH) 

Senior 
Consultants 

Lin et al. 
(2020) China Pediatric 

Random Forest, 
AdaBoost 

Slit Lamp 
BX900 2005 2005 4-fold cross validation 

Childhood Cataract 
Program of Chinese 
Ministry of Health 
(CCPMOH) 

Two 
ophthalmologists 

Liu et al. 
(2017) China Pediatric CNN 

Slit Lamp 
BX900 NR 886 

4-fold cross 
validation; each test 
was performed with 
50 iterations 

Childhood Cataract 
Program of Chinese 
Ministry of Health 
(CCPMOH), Zhongshan 
Ophthalmic Centre Sun 
Yatsen University 

Two 
ophthalmologists 

Pratap & 
Kokil 
(2019) India Adult SVM Fundus NR 800 

400 images used for 
training, 400 images 
used for testing 

High resolution fundus 
(HRF) image database, 
structured analysis of the 
retina (STARE), standard 
diabetic retinopathy 
database (DIARETDB0), e-
ophtha: a color fundus 
image database, methods to 
evaluate segmentation and 
indexing techniques in the 
field of retinal 
ophthalmology 

Ophthalmologic 
Experts 
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(MESSIDOR) database, 
digital retinal images for 
vessel extraction (DRIVE) 
database, fundus image 
registration (FIRE) dataset, 
digital retinal images for 
optic nerve segmentation 
database (DRIONS-DB), 
Indian diabetic retinopathy 
image dataset (IDRiD), 
available datasets from Dr. 
Hossein Rabbani, and other 
internet resources  

Ran et al. 
(2018) China Adult 

CNN - Random 
Forest Fundus NR 5408 5-fold cross validation NR 

Two 
ophthalmologists 
and three 
experienced 
graders 

S V & R 
(2018) India Adult SVM 

Visible 
Wavelength 
Eye Image 64 228 

129 images used for 
training, 99 images 
used for testing 

Indira Gandhi Medical 
College and Research 
Institute, Puducherry  Ophthalmologist 

Shimizu et 
al. (2021) Japan Adult CNN Slit Lamp NR 18,596 NR NR Ophthalmologists 

Wu et al. 
(2019) China Adult CNN - ResNet 

Slit Lamp 
BX900, 
BQ900, 
OVSII, 
PSL-
Classic 16,611 37,638 

30132 images for 
training, 7506 images 
for testing 

Chinese cataract screening 
programme by the Chinese 
Medical Alliance for 
Artificial Intelligence 
(CMAAI) 

Three 
ophthalmologists 

Xu et al. 
(2021) China Adult CNN Fundus NR 8030 

5621 images or 
training, 2409 for 
testing 

Beijing Tongren Eye 
Center of Beijing Tongren 
Hospital Ophthalmologist 

Yang et al. 
(2016) China Adult 

SVM, 
Backpropagation 
Neural Network Fundus NR 1239 

Images divided into 3 
subsets. In each fold, 
one subset chosen as 
the testing set, the 

Picture Archiving and 
Communication System 
(PACS) Ophthalmologists 



82 

 

 

other 2 used for 
training. 

Zhang et al. 
(2017) China Adult CNN Fundus NR 5620 Cross validation 

Beijing Tongren Eye 
Center of Beijing Tongren 
Hospital 

Professional 
graders 

Zheng et al. 
(2014) China Adult AdaBoost Fundus NR 460 

10-fold cross 
validation; images 
divided into 10 
subsets. In each fold, 
one subset is testing 
set and another nine 
subsets as training set NR 

Professional 
ophthalmologists 

Zhou et al. 
(2020) China Adult DST-ResNet Fundus 1000 1355 

Images divided into 4 
subsets. In each fold, 
one subset is testing 
set and another 3 
subsets used as 
training set 

Beijing Tongren Eye 
Center of Beijing Tongren 
Hospital Clinical graders 

AdaBoost, Adaptive Boosting; CNN, convolutional neural network; DLS, deep learning system; SVM, support vector machine; LCP, Linear Configuration Patterns; NR, not reported 
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Figure 3.1 PRISMA flow diagram showing the study selection process and reasons for 

exclusion 
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Figure 3.2  Hierarchical summary receiver operating characteristic plot for cataracts in adults 
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Figure 3.3 Forest plot of the pooled sensitivity and specificity estimates for the ML 

classifiers for cataracts in adults 
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Figure 3.4 Hierarchical summary receiver operating characteristic plot for pediatric cataracts 

 

Figure 3.5 Forest plot of the pooled sensitivity and specificity estimates for ML classifiers 

for pediatric cataracts
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4 The Implementation of a Machine Learning-Based Cataract 

Screening Program in Rural Nepal: A Cost-Effectiveness 

Analysis 

4.1 Introduction 

Cataract is the opacification of the human lens in the eye, and it causes cloudiness and 

blurriness in the patient’s vision.1–3 Cataract is the leading cause of blindness and vision loss 

in many low-to-middle income countries (LMIC) due to many barriers to accessing eye care 

services.4–6 In Southeast Asia alone, the global health burden of cataract vision loss was 

approximately 125 disability-adjusted life years (DALYs) per 100,000 people — the highest 

crude DALY rate out of all WHO regions.7,8 In Nepal, the infrastructure to support eye care 

services and examinations have been growing in the past few decades, and there have been 

many improvements to provide Nepalis with an accurate cataract diagnosis.9–11 

 In 2015, Nepal promulgated a new constitution which replaced their original unitary 

government with a federal system of government consisted of three levels: federal, 

provincial, and local governments.12,13 In revamping the constitution, the Ministry of Health 

and Population in Nepal was also restructured to follow the new federal structure in hopes of 

improving the federal health infrastructure. However, the crux of federalization and the 

challenge in Nepal’s healthcare system is the means of financing health care.14 Based on 

statistics by the WHO in 2019, the annual health spending per capita in Nepal was $53 

USD.15 Nearly 60% of the total health expenditure came from out-of-pocket payments (OOP) 

and it was the principal means of financing health care in Nepal.15 This is commonly seen in 
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other low-to-middle income countries (LMIC) where there is a higher proportion of OOP and 

lower proportion of federal spending. Nepal’s healthcare has also heavily relied on foreign 

aid such as non-governmental organizations and international aid,14  

 Additionally, under this new constitution, Nepal has stated and addressed that health 

is a fundamental human right, and all citizens have the right to access basic healthcare 

services that are free of cost.12 Evidently in reality, there are many geographic and socio-

economic barriers towards access to care in Nepal which makes it very difficult to provide 

equitable care. In the total population, approximately only 60% of the population have access 

to a health facility within 30 minutes. However, disparity is observed when we compare 

urban populations (85.9%) with rural populations (59%) for access to a reasonably close 

health facility.14 It often may take hours for patients in villages or mountainous regions to 

travel to their closest health clinic and some patients may even need to travel more than 100 

kilometers away.10,16 Most private hospitals and pharmacies are concentrated in the central 

region of Nepal (most developed region), while the western region (less developed region) 

has no private hospitals.14 If Nepalis need access to a specific healthcare service, they will 

likely pay out-of-pocket at a private institution which creates a financial barrier to many rural 

populations.14 

Further, eye specialists are not common in general practice, and they often work in 

specialized eye hospitals or clinics, making access to eye care even more difficult. The 

ophthalmologist and optometrist to population ratio is very low in Nepal (ophthalmologist 

1:193,900; optometrist 1:791,700) and eye care is very underserviced.10 The WHO goal and 

norm for eye care is 1:100,000 for both ophthalmologists and optometrists.10 



90 

 

 

Therefore, outreach services to rural Nepal, often funded by non-governmental 

organizations, have arisen and many Nepalis may have access to temporary village-level 

primary eye care centres known as “diagnostic-screening and treatment camps” or “eye 

camps”.10,17,18 The implementation of eye camps in villages aim to reduce both the 

geographic and economic burden for these rural populations. 

These eye camps follow the Aravind Model which make use of trained healthcare 

professionals or tele-ophthalmology with eye hospitals and ophthalmologists in Nepal.17,19,20 

A team of ophthalmic assistants (OA), ophthalmic technicians (OT), or nurses make a day 

trip to a village in Nepal and provide basic eye care and examinations to patients. Often, the 

OA will identify and diagnose patients with cataracts and refer them to see an 

ophthalmologist at the base hospital.10,17 However, the agreement of a cataract diagnosis 

between an OA with an ophthalmologist is moderate (kappa = 0.623)11, and the OA’s 

diagnostic accuracy for identifying cataracts is also moderate (specificity = 0.838)19. As a 

result, there may be many patients with cataracts who do not receive a timely diagnosis or 

referral to an ophthalmologist in Nepal. Additionally, current eye camps are often described 

as “hectic” because the eye camps service hundreds of patients a day and many workers 

experience occupational burnout in these conditions.11 

Currently, there are various machine learning (ML) classifiers that can automatically 

detect and diagnose cataracts.21 ML classifiers have been proven to show high diagnostic 

accuracy for correctly identifying cataract and non-cataract cases, and these algorithms have 

proven to be a powerful diagnostic tool that clinicians have begun to use.22–24 In urban 

contexts, there are many benefits to using a ML screening program as it can reduce the 
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workload of healthcare providers, reduce the burden and wait times of the eye clinics, and 

also provide patients with a fast and accurate cataract diagnosis.25–29 These advantages may 

translate into rural eye camps and rural settings. 

4.1.1 Objective 

The objective of this study was to conduct a cost-effectiveness analysis (CEA) of the 

theoretical implementation of a ML-based cataract screening eye camp in rural Nepal in 

order to assess if this new technology was superior to the traditional eye camps. Our primary 

interest was to evaluate the additional cost per correctly detected case from a healthcare 

perspective to assess if the program could improve the detection of cataract and non-cataract 

patients. 

4.2 Methods 

 This study followed the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) checklist (Appendix I).30 

4.2.1 Study Setting and Population 

 This cost-effectiveness analysis was developed to fit the Chitwan and Nawalparasi 

Districts of South-central Nepal which are located within the Lumbini and Narayani Zones, 

respectively. The total population of the Chitwan and Nawalparasi Districts was 

approximately 1,223,492 according to the 2011 National Census, and this population 

represented 20.9% of the total population in the Lumbini and Narayani Zones.10,16 The 

Bharatpur Eye Hospital was used as the base hospital for this study, and it is in the border of 
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the two districts. The base hospital functions as a central location where the eye camps stem 

from, and most of the employees at the eye camps are also employed from the base hospital. 

Often, the ophthalmologist at the base hospital will be involved with referral triage, 

treatment, and follow-up of the patients from the eye camps. 

The adult cataract population was the study’s main interest (aged 20 or older), and 

only participants who were screened by an eye camp in these regions were included 

(n=22,805).10  

4.2.2 Model Design 

A decision tree was constructed using TreeAgePro Suite 2022 R1.0 (TreeAge 

Software, Inc, Williamstown, Massachusetts) to compare the traditional diagnostic and 

screening eye camps and machine learning-based eye camps (Figure 4.1). Variable inputs 

and definitions are listed in Appendix J. In the decision tree framework, the implementation 

of a machine learning assessment was assumed to be a fully automated system that replaces 

the diagnostic assessment of an OA. There was a strength to assuming a fully automated 

model in order to assess the full potential of an ML-based screening program. 

The model’s health outcome of interest was the detection of any type of cataract in at 

least one eye (<6/18 to 6/60 in worse eye and 6/60 in the better eye) in adults referrable to an 

ophthalmologist in Nepal.18 These classifications are distance vision impairment scales, and 

it refers to the severity of visual acuity in each eye. For example, 6/18 refers to the patient’s 

ability to see clearly at 6m what should normally be seen at 18m distance. This diagnostic 

outcome was chosen because it is consistent with both the diagnostic criteria set by 
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Venkataswamy et al., Cheung et al., and the Nepal Blindness Survey Guideline.9,19,21 

Additionally, this CEA was conducted from a third-party healthcare perspective, and it was 

tailored to have a health policy and program implementation focus. Current eye camps that 

exist in Nepal and surrounding regions are often funded by non-governmental organizations 

which run the camps for non-profit. Therefore, to mimic reality, a narrower viewpoint was 

utilized to include costs incurred by third-party organizations that would implement machine 

learning into existing eye camps. The effectiveness measure used for the CEA was the cost of 

an accurately ‘detected case’ of cataract and non-cataract.31 

4.2.3 Interventions 

Traditional eye camp (Arm 1) 

We designed this economic model for patients in the rural areas and villages of the 

Chitwan and Nawalparasi Districts in Nepal where eye hospitals and or clinics were not 

easily accessible to patients. In a typical eye camp, pamphlets, radio announcements, and 

verbal support from village leaders are implemented to promote and publicize the operation 

of the eye camps on the designated day of visit. The typical eye camp uses the Aravind 

model where a team of OA, OT, and nurses are hired for the duration of the camp. In the 

camps, the OA conducts a simplified eye examination and a referral to an ophthalmologist at 

the base hospital was given if any cataract was detected.  

Cataract patients who were referred to an ophthalmologist receive transportation to 

Bharatpur Eye Hospital if they consented to further assessment and treatment.1013,15 Patients 

who received a true-negative or false-positive diagnosis by the OA are considered to be free 
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of cataracts. There are substantive health related implications for patients who are given a 

false negative result because they are then living with an undiagnosed cataract which can 

result in a lower quality of life due to lowered visual acuity.  

ML-based eye camp (Arm 2) 

 The ML-based eye camp model resembled the traditional eye camp model in terms of 

logistics and operations, location, and publicity. The ML-based eye camp required a slit-lamp 

microscope, and ML software to process the slit-lamp images. In this model, we followed the 

feasibility of eye camps from Kandel et al. and assumed 75 eye camps operated in one year, 

which employed one OA and one nurse to take slit-lamp photos of the patient’s eyes.10 The 

ML algorithm instantaneously provided the OA and patient a result of whether they were 

positive or negative for cataracts. Patients who received a positive diagnosis would receive a 

referral to an ophthalmologist at the base hospital. It was assumed that all images taken by 

the OA were readable by the algorithm.32 

4.2.4 Model Probabilities and Cost Data 

The base-case model probabilities are shown in Table 4.1. The prevalence of any 

cataract (8.5%) in the Nepali population was retrieved from the 2011 Nepal Blindness 

Survey.9 Based on a study by Soellener & Koenigstorfer, the authors found that patient 

compliance with a machine learning diagnostic program is higher than human assessment.33 

Therefore, for the purposes of this model, we assumed that there was full patient compliance 

to ML assessment – this followed our assumption for a fully automated model. We also 

assumed full patient compliance to the traditional eye camp arm. The population at the root 



95 

 

 

node of the decision tree were patients who signed up and consented to be screened at an eye 

camp. 

Estimates for the diagnostic accuracy of ML classifiers were obtained by our meta-

analysis (Chapter 03) which reported the pooled sensitivity and specificity values from 9 

studies.21 The study investigated the diagnostic performance of ML classifiers for cataracts, 

and the authors computed the estimated pooled sensitivity and specificity values. Another 

study by Venkataswamy et al. was used to retrieve the diagnostic performance of OA for 

diagnosing cataracts under the Aravind model.19 

Data sources for estimates of cost included published literature and official 

government reports. Direct costs were incorporated into our analysis and the costs were 

adjusted to 2021 USD. The total costs of 75 eye camps are estimated in Table 4.2 and the 

ranges used for the sensitivity analysis. Due to the implementation of ML, we assumed that 

there would be a reduction in the need of workers at the ML-based eye camps compared to 

the traditional eye camp labour and therefore a reduction in the labour costs ($683.42 vs 

$1847.37).10 These costs were retrieved and estimated from the costs reported by Kandel et 

al. when there was a reduction from four staff working at the eye camp to two staff based on 

varying eye camp models.10 In past Aravind camp models, only two workers were employed 

at the eye camps, therefore it is feasible to assume that one OA and one nurse were hired per 

ML-based eye camp.10 Additionally to the salary for OA and nurses, a wage supplement was 

included to the total labour costs in the analysis. The purpose of the wage supplement is to 

incentivize the OA and nurses who regularly work at the base hospital to take part in working 

at eye camps that may be in a more rural and distant location than the hospital.  
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Based on literature, we did not include start-up costs with the development of the 

algorithm in the model – these assumptions were fair and had been utilized in other studies. 32 

Further, it was assumed that within the equipment and other consumable costs, a slit lamp 

microscope, and computer with a compatible software for ML was included. Logistical costs 

in both types of camps were fixed which includes both publicity and transportation costs. The 

eye camps in the villages in Nepal are often temporary, one-day camps which requires 

publicity and promotion to the villages in advance. Health promotion is crucial to rural 

populations for them to understand the importance of eye care management and to utilize 

these eye services.10,19 Transportation costs include the vehicle and cost of gas to transport 

the equipment and staff between villages and to the base hospital.10 The cost of running an 

eye camp was the total cost of labour, capital, and logistical expenses. 

4.2.5 Effectiveness Measures 

There were two effectiveness measures that were of interest to this study: (1) the 

probability of a true positive (tp) cataract case correctly detected and (2) the probability of 

the of a tp cataract cases or true negative (tn) non-cataract cases correctly detected by the OA 

and ML classifier. These proportions were calculated by taking the probability of the 

screened patient population being truly positive or negative for cataracts and receiving a true 

or false diagnosis. An incremental cost-effectiveness ratio (ICER) was calculated and 

generated to assess the cost associated with an additional correctly detected (1) case of 

cataract or (2) case of cataract and non-cataract after the implementation of the ML 

assessment. 
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4.2.6 Deterministic Sensitivity Analysis 

Variable parameters included in the model that were considered as drivers were 

included in the sensitivity analyses. Each variable had an effect measure, and ranges were 

applied to the variables either based on their 95% confidence intervals, or an upper and lower 

25% limit was applied.  The sensitivity analyses only reported the cost per correctly detected 

case (true cataract and non-cataract case) per year. One-way sensitivity analyses were 

conducted in order to assess each variable’s uncertainty to the model outputs. Additionally, 

multiway sensitivity analyses with combined model variables were also analyzed to generate 

extreme cases. 

4.3 Results 

4.3.1 Base-case Analysis 

 The base-case analysis considered a total population of 22,805 patients who were 

screened at one of the 75 eye camps over the period of one year in Nepal. The ML-based eye 

camp could correctly detect an additional 31 cases of cataract (tp), and 2546 additional cases 

of non-cataract diagnosis (tn) (Table 4.3). In total, the ML-based eye camp can identify 2577 

additional correct cases. The average cost-effectiveness ratios per cataract case detected were 

$23.87 with the ML-based eye camps and $45.89 with the traditional eye camps; the cost per 

correctly detected case was $0.24 and $0.51 respectively (Table 4.4).  In both cost-

effectiveness analyses, the traditional eye camp was absolutely (strongly) dominated, this 

demonstrated that the ML-based eye camp was the more cost-effective method than the 
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traditional eye camp (Figure 4.2). The traditional eye camp is said to be dominated because 

it is more costly and identifies less correctly detected cases compared to the ML eye camps. 

4.3.2 Sensitivity Analysis 

One-way sensitivity analysis 

 The sensitivity analysis evaluated a range of model parameters including the 

prevalence of cataracts in Nepal, the diagnostic accuracy of ML classifiers and OA, and the 

labour and capital costs of eye camps.  The multiple one-way deterministic sensitivity 

analysis results are outlined in Table 4.5 and presented as a tornado diagram (Figure 4.3). A 

one-way sensitivity analysis was conducted for every input in the decision tree and 17 

intervals were used to assess the change in ICER and dominance from the lower to upper 

bound of each parameter’s uncertainty. The tornado diagram was plotted to visually display 

the results from Table 4.5 – the ICER tornado reports the range of ICERs generated for each 

parameter’s uncertain range. Overall, the one-way sensitivity analysis demonstrated that all 

parameters were stable in all variations, and no variables changed the outcome that ML-

based eye camps were the most cost-effective program option.  

We observed that the parameter of greatest uncertainty for the model was the cost of 

labour in the traditional eye camps ($2,444.94 to $4,074.89) which ranged from $0.44 to 

$0.57 per correctly detected case in traditional eye camp (Table 4.5). The next greatest 

uncertainty for the one-way analysis was the specificity of ML classifiers, and then the cost 

of labour in ML eye camps. However, it was observed that all one-way sensitivity scenarios 

continued to favour the ML-based eye camps as it was the dominant approach in all intervals 
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of the analysis. To test the parameters of diagnostic accuracy of the OAs and ML classifiers, 

we used the lower and upper 95% confidence intervals into the analysis which continued to 

demonstrate ML as undominated. 

Another important parameter that may influence the analysis is the prevalence of 

cataracts in Nepal. Based on the 2011 Nepal Blindness Survey, the prevalence of cataracts in 

the entire population is around 8.5%.9 However, it is acknowledged that there may be varying 

distributions and prevalence of cataracts in different regions within a country such as the 

Chitwan and Nawalparasi districts. The one-way sensitivity analysis evaluated the lower and 

upper bounds of the cataract prevalence rate (6.63% to 10.63%) and found that the ML eye 

camps continued to be the cost-effective intervention at $0.23 to $0.25 per correctly detected 

case, respectively. 

Two-way and multi-way sensitivity analysis 

A two-way sensitivity analysis was also conducted to estimate any joint influences 

that two parameters may have together on the cost-effectiveness analysis. We considered 

multiple joint parameters including the cost of traditional and ML eye camp labour, and the 

sensitivity of OA and ML classifiers. Similar to the one-way sensitivity analysis, all two-way 

scenarios demonstrated that ML-based eye camps were dominant (Appendix K).  

We also conducted a multi-way analysis to produce an extreme scenario case analysis 

where we varied the multiple parameters at once. The parameters for the variables used for 

each scenario are outlined in Appendix L. In the best-case scenario for ML eye camps, the 

diagnostic accuracy of ML classifiers was set to the upper 95% CI (sensitivity = 0.987, 
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specificity = 0.980), and the diagnostic accuracy of OAs was set to their lower limits 

(sensitivity = 0.909, specificity = 0.830). The labour and capital costs of ML-based eye 

camps were set to their lower limits, while the labour and capital costs of traditional eye 

camps were set to their higher bound. In the best-case scenario, ML-based camps remained t 

dominant with the ICER being -$0.89 per additional case detected. 

Alternatively, in the worst-case scenario for ML eye camps, the diagnostic accuracy 

of ML classifiers was set to the lower limits (sensitivity = 0.924, specificity = 0.815), and the 

diagnostic accuracy of OAs was set to their upper limits (sensitivity = 0.942, specificity = 

0.858). Labour and capital costs of the ML-based eye camps were also set to their upper 

limits, and traditional eye camps was set to their lower limits. In the worst-case scenario, the 

ICER was $1.21 and there was no dominance in either strategy. Only in this worst-case 

scenario did we find that the ML eye camps were less effective, but less costly. 

4.4 Discussion and Conclusion 

To the best of our knowledge, this study is the first to economically evaluate the use 

of ML classifiers for cataract diagnosis.32,34 The analysis showed that the ML-based eye 

camps could have lower personnel costs (and in total costs), while detecting more correctly 

diagnosed cases. While the ML-based eye camp was able to identify 31 additional cases of 

cataract in the Nepali population, its power and effectiveness came from its ability to 

correctly identify an additional 2546 of patients without cataracts that would have been over-

diagnosed in a traditional eye camp.  
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Further, the one-way, two-way, and best-case multiway analysis demonstrated that 

despite the influences of branch probabilities and costs, ML-based eye camps remain to be 

the cost-effective strategy. In these specific instances, the negative ICER value depicts that 

ML-based eye camp was more effective, and less costly; the ICER lies in the southeast 

quadrant within the cost-effectiveness plane because the ML eye camps were less costly and 

more effective. Whenever an alternative lies in the southeast quadrant, that intervention is 

always accepted.35,36 Only in the worst-case multiway sensitivity analysis did we find that the 

ML-based eye camps and traditional camps to have no dominance given by an ICER of 

$1.21. In this worst-case scenario, the ML eye camps were less effective than the traditional 

camps due to its lowered sensitivity and specificity, however it still demonstrated to be less 

costly. Both the sensitivity and specificity of the ML eye camps were lower than the 

traditional camps which suggest that overall, the screening program would detect fewer tn 

and tp cases. The worst-case scenario for the ML eye camps would be in the southwest 

quadrant of the cost-effectiveness plane which implied there may be a trade-off between the 

eye camps.35  

Eye care services in rural Southeast Asia is scarce, and blindness from cataracts 

continues to be a pervasive issue due lack of access to eye care services in villages and 

mountainous regions.4,6,37,38 A more timely and quick diagnosis of cataracts in rural Nepal 

can provide patients with better management and treatment of cataracts, and thus lead to an 

improved quality of life with vision.  Although large efforts in Nepal have been made 

through the implementation of eye camps in the past few decades, the additional 

implementation of ML may further reduce labour costs, reduce healthcare worker burnout at 
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the camps, and could provide diagnostically accurate results for patients.25,39,40 Additionally, 

evaluating the reduced wait times, workload, and patient satisfaction of rural eye camps may 

be warranted in future studies to assess the full benefits of ML.  

Our study should be interpreted within the context of certain limitations. First, the 

probabilities and assumptions used in the decision tree is based on the current availability of 

the literature and some uncertainties may exist due to the scarce information on health 

economics of the use of artificial intelligence.34 Due to low literacy rates and low levels of 

education among the population in Nepal, patients may not fully understand or be compliant 

to the use of ML and there may be hesitancy or low adherence to the ML assessment.16 

Therefore, it is important for patients in the ML eye camp arm to be educated on ML derived 

medical decisions in order to gain trust and patient compliance.33 The uncertainties for the 

model inputs and variables were attempted to be remedied by the multiple sensitivity 

analyses conducted.  

Further limitations related to the uncertainties were the choice of sensitivity analyses 

conducted for this study. A one-way, two-way, and multi-way sensitivity analysis were 

included in this paper; however, a probabilistic sensitivity analysis (PSA) was not used. PSA 

is a method for accounting parameter uncertainty where samples are repeatedly drawn from 

each distribution to be used as the decision inputs.41,42 The benefit of using PSA is that it 

explores joint uncertainty (ie. uncertainty resulting from all parameters simultaneously). In a 

future cost-effectiveness analysis for ML implementation, PSA can be used as the preferred 

analysis for parameter uncertainties.41 Also, another limitation, for the sensitivity analysis in 

this paper, we applied an upper and lower 25% bound for the probability and cost inputs. 
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The sensitivity and specificity values of the ML classifier that were retrieved from 

Chapter 03 was also subject to limitations in this study. The ML diagnostic accuracy values 

from the meta-analysis were an aggregate of all imaging modalities available from the 

literature which included slit-lamp, fundus, and visible wavelength images.  For the ML-

based eye camp model in this study, we assumed that only slit-lamp microscopy was 

performed for each patient to take an image of the anterior segment of the patients’ eyes. 

Therefore, there may be limitations that exist in those results due to the heterogeneous nature 

of the diagnostic performance of ML. In future analysis, we hope that there are more 

diagnostic accuracy studies of ML classifiers that uses slit-lamp images in order for a 

subgroup meta-analysis with sufficient power to be conducted.  

Additionally, this CEA took on a health policy and program implementation 

perspective, therefore the effectiveness measure was the ability to identifying a correctly 

detected case (tp and tn).  In future studies, it would be beneficial to also assess the visual 

deterioration in these patients by considering their quality-adjusted life year measure in order 

to assess the full effectiveness of the ML-based eye camps.   

The results of this study may only be able to capture rural locations where access to 

eye care services is extremely limited, and there is no public insurance or health coverage for 

these types of ophthalmic services. Additionally, the population and regions that this study 

considers was the Chitwan and Nawalparasi Districts of South-central Nepal, so the results 

may not be generalization. However, this methodology could be applied for the provincial 

level if respective data is gathered. Therefore, further studies can assess the ability to 
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implement ML classifiers for cataracts outside of the eye camp framework, and into other 

clinics and locations in semiurban to urban regions. 

In conclusion, the results of this study demonstrated the practical and economic 

feasibility for a ML-based screening program to be implemented in existing eye camps in 

rural Nepal over the existing eye camp models. The implementation of ML in the Aravind 

eye camps may be utilized in other rural regions and LMICs. Both the patients and healthcare 

workers at the eye camps could benefit from the implementation of this program, and 

healthcare organizations in Nepal could consider investing in this type of program because of 

its cost savings. 
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4.6 Tables and Figures 

Table 4.1 Base case model parameters and parameter ranges 

Parameter Value Range 

Fixed Data elements    

Patients screened in study setting10 22,805 patients - - 

Patient compliance to OA-based 
decision30 100% - - 

Patient compliance to AI-based 
decision30 100% - - 

Variable data elements    

Prevalence of any cataract in Nepal9 8.50% 6.38% 10.63% 

ML assessment parameters17    

Sensitivity 0.948 0.815 0.987 

Specificity 0.96 0.924 0.98 

OA parameters15    

Sensitivity 0.932 0.909 0.942 

Specificity 0.838 0.83 0.858 
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Table 4.2 Estimated costs for traditional eye camps and ML-based eye camps 

Item Cost of 
Traditional 
DST Camp 

Range Cost of AI-
based DST 
Camp 

Range 

Labour Costs 

    

Salary for OA and Nurses $1,847.37 $1,385.53 - 
$2,309.21 

$683.42 $512.57 - 
$854.28 

Wage supplement for OA and nurses 
for rural initiative 

$1,412.54 $1,059.40 - 
$1,765.68 

$711.30 $533.47 - 
$889.12 

Capital Costs 

    

Equipment and other consumables $116.56 $87.42 - $ 
145.70 

$116.56 $87.42 - 
$145.70 

Maintenance, repairs, insurance $629.52 $472.14 - 
$786.90 

$629.52 $472.14 - 
$786.90 

Logistical Costs 

    

Publicity $262.97 - $262.97 - 

Transportation $1,895.72 - $1,895.72 - 

Total Costs $6,164.69 

 

$4,299.49 
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Table 4.3 Diagnostic test outcomes of traditional eye camps and ML-based eye camps per 

22,805 patients in the study model 

Measure 
Traditional eye camp 
(OA Assessment) 

ML-based eye camp (ML 
Assessment) 

Total patients screened 22805 22805 

True-positive (tp) result 1807 1838 

True-negative (tn) result 17486 20032 

False-positive (fp) result 132 101 

False-negative (fn) result 3380 835 

 

Table 4.4 Incremental cost-effectiveness results for traditional eye camps vs ML-based eye 

camp 

Eye camp  Cost per 
patient 
($) 

Increme
ntal cost 

Effectiveness 
(probability 
of a case 
detected) 

Incremental 
effectiveness 

Cost 
effective
ness 

ICER Dominance 

Cost per cataract case detected (true-positive cases) 

ML-based 
eye camp 

0.189  0.006493  23.87  Undominate
d 

Traditional 
eye camp 

0.288 0.099 0.006276 -0.000217 45.89 -457.76 Absolutely 
dominated 

Cost per case correctly detected (true-positive and true-negative cases) 

ML-based 
eye camp 

0.189  0.777  0.243  Undominate
d 

Traditional 
eye camp 

0.288 0.099 0.567 -0.210 0.510 -0.475 Absolutely 
dominated 
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Table 4.5 One-way deterministic sensitivity analysis results 

Parameter 
Base-case 
Value Range 

ICER ($/case 
correctly detected) 

Prevalence of any cataract 0.085 0.0638 to 0.1063 -$0.40 to -$0.51 

Diagnostic accuracy of ophthalmic 
assistants    

Sensitivity 0.932 0.909 to 0.942 -$0.47 to -$0.48 

Specificity 0.838 0.830 to 0.858 -$0.45 to -$0.57 

Diagnostic accuracy of machine 
learning classifiers    

Sensitivity 0.948 0.815 to 0.987 -$0.48 to -$0.47 

Specificity 0.96 0.924 to 0.980 -$0.67 to -$0.41 

Labour Costs    

Traditional Eye Camp $3,259.91  $2,444.94 to $4,074.89 -$0.29 to -$0.66 

ML-based Eye Camp $1,394.72 $1,046.04 to $1743.40 -$0.55 to -$0.40 

Capital Costs    

Traditional Eye Camp $746.08  $559.56 to $ 932.60 -$0.43 to -$0.52 

ML-based Eye Camp $746.08 $559.56 to $ 932.60 -$0.51 to -$0.44 



114 

 

 

 

 

Figure 4.1 Decision tree showing the competing alternatives for cataract diagnosis and screening camps. Arm 1 illustrates the traditional 

eye camps; Arm 2 illustrates to the ML-based eye camps evaluated in the model. A square represents a decision node, a circle is a chance 

node, and the triangle represents the terminal node. 
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Figure 4.2 Cost-effectiveness plane of traditional eye camps vs introduction of ML-based 

eye camps. The traditional eye camp program is absolutely dominated by the ML-based eye 

camps. The blue circle represents the traditional eye camps which is dominated, and the red 

square represents the ML-based eye camps.  
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Figure 4.3 Tornado diagram of the one-way deterministic sensitivity analysis with critical 

variables. The vertical line represents the final ICER (-0.475). All the variables crossed the 

final ICER value which demonstrates that none of the parameters disturbs the final result 

from the base-case. The blue bar represents the change in direction from the baseline ICER 

of the lower bound, and the red bar represents the change of the upper bound of each 

parameter. 
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5 Integrated Discussion 

5.1 Overview 

This chapter will discuss the interpretations and implications of the results from the 

meta-analysis of diagnostic studies, and the health economic analysis of the implementation 

of ML classifiers for cataract diagnosis. The objectives of this thesis were to (1) assess the 

diagnostic accuracy of ML classifiers, and (2) use the findings from objective 1 to explore 

the cost-effectiveness of ML assessment versus a traditional assessment in diagnostic and 

screening eye camps in rural Nepal. 

5.2 Integrated Discussion of Results 

Chapter 03 was the first study that investigated the diagnostic accuracy of machine 

learning classifiers for cataracts based on the current literature available. The study aimed to 

systematically review the current body of knowledge for the types of machine learning 

classifiers that researchers are using, and to meta-analyze the pooled sensitivity and 

specificity of these classifiers. The most recent database search conducted by the review was 

on September 12, 2021, and no limits were placed on the publication date of the studies.  

Based on literature from both published and unpublished sources, 21 studies met the 

inclusion criteria, and 11 of those studies were used for the meta-analysis. The primary 

analysis of the study was investigating the adult cataract population, and a secondary analysis 

(sub-group analysis) was conducted for the pediatric cataract population. In both analyses 

through a hierarchical logistic regression, we observed high diagnostic accuracy in both the 

sensitivity and specificity of machine learning classifiers. The summary estimate for 
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sensitivity was 0.948 [95% CI: 0.815-0.987] and specificity was 0.960 [95% CI: 0.924-

0.980] for adult cataracts screening using a ML classifier. Additionally, similar results were 

found for pediatric cataracts. Compared to the diagnostic accuracy of OA in eye camps 

(sensitivity = 0.932, specificity = 0.838), the ML classifier outperforms the OA with higher 

sensitivity and specificity.1 This suggests the potential for machine learning that could be 

used to screening patients with cataracts in rural settings.2  

Using the results obtained from Chapter 03, the cost-effectiveness analysis in Chapter 

04 utilizes the pooled sensitivity and specificity of machine learning classifiers to be 

implemented in eye camps in rural Nepal. These estimates and probabilities inserted into the 

decision tree was suitable for the model because all studies were identifying for “any 

cataract” (<6/18 to 6/60 in the worse eye and 6/60 in better eye).3 Specifically, in the 

Chitwan and Nawalparasi Districts of Nepal, existing eye camps have been implemented in 

the past few decades In order to provide rural Nepalis with eye care services.4 The CEA in 

Chapter 04 demonstrated that ML provides a cheaper and effective outcome over the 

traditional eye camp Aravind model. Sensitivity analyses were conducted to consider the 

variability of certain parameters included in the economic model. 

 We observed that the use of ML in eye camps in rural Nepal can identify 2577 

additional correct cases. The cost per correctly detected case was $0.24 and $0.51 for the 

ML-based and traditional eye camp, respectively. The sensitivity analyses showed that in all 

scenarios except the worse-case scenario, ML-based eye camps were dominant. The 

assumption that a fully automated ML assessment in the current population could be likely 

because OAs are burning out in their current working conditions and eye care specialists are 
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almost non-existent in these rural and mountainous regions.5,6 The ICER was negative in all 

cases which suggests that we could accept this form of eye care delivery.7 This study shows 

the potential and the feasibility for this type of technology to be implemented in rural Nepal.  

5.3 Thesis Limitations 

 Brief limitations of each study were discussed in Chapter 03 and Chapter 04 

respectively, but this following section provides additional limitations to consider in both 

studies. 

5.3.1 Limitations in Chapter 03 

 Firstly, the limitation of a meta-analysis exists in its inclusion criteria and there are 

inherent biases in observational studies that could exist as stated by Egger et al.8 In the body 

of literature in ML diagnosis for cataracts, there is a limited number of studies published, 

thus we included all studies regardless of risk of bias domains being scored as medium or 

high in the QUADAS-2 tool. Fortunately, all 21 included studies generally presented with 

low risk of bias, with only a few studies receiving a medium or high risk of bias in the ‘flow 

and timing’ and ‘patient selection’ domains.9  

 Additionally, as mentioned in Chapter 03, a random-effects model was utilized for the 

meta-analysis due to the high heterogeneity found across studies. Heterogeneity across the 

studies could exist due to location of the study (geographical locations), varying effect sizes 

across studies, precision of each effect size, methodology of each study, and study design.8,10 

It is noted, however, that regardless of the heterogeneity found from the analysis, a random-

effects model would have been utilized. 
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In our statistical analysis, all types of ML classifiers were included and aggerated. 

Each type of algorithm has different methodological considerations. Additional subgroup 

analysis could be conducted if there were more studies found and included in the meta-

analysis for each type of classifier. Future research could focus on sub-group analysis by type 

of ML classifier. We included both slit-lamp imaging and fundus imaging in our analysis, 

and we recognize that the types of images used to train an algorithm could be different. 

5.3.2 Limitations in Chapter 04 

 As mentioned in Chapter 04, this study was the first CEA of any diagnostic ML 

algorithm for cataracts and there is limited availability of literature, thus assumptions were 

made to develop the economic model. We assumed that all images that were taken by the 

slit-lamp microscope were readable by the algorithm. An error can occur when the algorithm 

cannot produce an output because the images are blurry and cannot detect an image properly. 

The assumption was that the ophthalmic nurses or OA were properly trained, which would be 

the case, to take clear images to input them into the algorithm and would retake an image if 

done improperly. Due to the high demand for eye care services in villages, we assumed that 

patients would be compliant with a machine learning assessment as an OA assessment.11  

In addition, we took a health policy and program implementation approach for this 

analysis, thus the effectiveness measured the number of cases correctly detected. This clinical 

outcome describes an intermediate end point for economic studies. Typically, life-years 

gained, and quality of life measures are used as final end point outcomes, to assess the 

patient’s benefits or burdens by the program or intervention.12 The critique in having an 

intermediate end point in a CEA is the difficulty of establishing a relationship between the 
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intermediate and final end points. However, as stated by Drummond et al., there may be 

value in an intermediate end point for diagnostic tests when a long-term cost-effectiveness 

may be achieved from the intermediate outcome.12  

Further, this study did not consider the patient-specific benefits of implementing an 

ML-based eye camp such as decreased patient wait times, decreased patient anxiety, stress 

and burden, increased patient productivity and economic opportunity, and quick and accurate 

diagnostic outcome.13–15  

For this study, we only considered rural regions for the implementation of ML 

classifiers due to the existing nature of temporary eye camps. It may not be feasible to 

implement this program in locations such as Ontario where the public health insurance 

covers annual eye examinations for certain groups of people.  

5.3.3 Limitations in the Applications of Artificial Intelligence 

Although there is great potential for AI, there are also pitfalls in the use of these 

algorithms in the healthcare setting including algorithm bias. Algorithm bias and data privacy 

are examples are the increasing concerns with the full implementation of AI and ML in 

healthcare settings.16,17  

Algorithm bias refers to the unwarranted skewing of the output results of an 

algorithm due to problems from the initial algorithm development and design.18,19 The type 

of data that the algorithm is being taught and validated can make a large impact on the output 

that the algorithm produces. 17,18,20 Algorithm bias presents as a critical consideration when 

implementing AI technologies into the healthcare setting because there are evident examples 
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of discrimination and bias of race, sex, and socio-economic status in the algorithm’s 

outputs.21 These biased (and perhaps discriminatory) outputs may exclude certain 

intersections of patients from receiving a necessary treatment or intervention and can prevent 

certain groups of people to have reasonable access to insured hospital and physician services, 

simply due to the inadequate dataset that is initially inputted into the algorithm.21 If these 

people are discriminated against by the algorithms, then there are barriers to their access to 

care and health services.22 

Commonly, a working algorithm can be sold or shared globally without considering 

the source of the training inputs.23 Therefore, an AI algorithm that is developed and trained in 

one country can be used in another country with different patient characteristics and 

demographics. This presents a critical challenge when implementing an algorithm in the 

healthcare setting because the algorithm can provide an inaccurate diagnosis of a certain 

disease for a population of a different race, ethnicity, or body type.18,23 

However, there is added strength in the sensitivity and specificity estimates that were 

obtained from the meta-analysis because the meta-analysis included studies that contained 

databases of populations that many come from the neighbouring countries of Nepal such as 

China and India. The included studies come from these Asian countries, which may increase 

the validity of our results to the Nepali population.  

 Additionally, this study tries to remedy the issues of algorithm bias through the 

distribution of benefits and burdens of the diagnostic outcomes and probabilities. A term 

called “distributive justice” is common in the realm of algorithm bias when referring to 

having action towards fairness — this can in the form of modification, adjustment, and 
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redress of the algorithm.21 In order to clearly outline the benefits or burdens of a diagnostic 

algorithm, a single accuracy proportion does not suffice. Often in many diagnostic accuracy 

studies of ML classifiers, only the F-score or F1-score is reported as the accuracy value for 

the classifier.21 The F-score is a function of the positive predictive value (PPV) and the 

sensitivity which are derived from the tp, fp, and fn values. Therefore, the tn value is often 

disregarded in many accuracy studies of ML classifiers and it can bring a very important 

insight on the effectiveness of the screening program as a whole. Reporting all the true 

negative, true positive, false negative, and false positive values is very beneficial for policy 

driven data because it considers all aspects of the diagnostic accuracy.19 This allows for the 

data to be transparent, and values have been clearly outlined throughout the thesis in both 

Chapter 03 and Chapter 04.  

5.4 Conclusions and Future Directions 

 In conclusion, this thesis found that ML classifiers are more diagnostically accurate 

for cataracts than ophthalmic assistants and the implementation of a ML-based eye camp is 

more cost-effective than traditional eye camps in rural Nepal. Due to the high heterogeneity 

of the meta-analysis, and the assumptions made for the CEA, we should be cautious of the 

results. It may be feasible for existing eye camps in rural regions to implement ML in their 

eye camps if there is a safe and approved ML algorithm publicly available for cataracts. 

Health policymakers and healthcare organizations could continue to consider the benefits of 

digital medicine, and the positive impact that it can have on both the healthcare and patient 

perspective. In addition to the current guidance and implementation of ML for cataracts in 
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the standard clinical setting, this thesis emphasizes the potential, feasibility, and need for ML 

classifiers to be expanded to other ocular diseases.  

 Although this thesis has identified gaps in the literature, and it has summarized the 

current body of literature on all ML classifiers for cataracts, there is still research and further 

investigations warranted. When there exists more research on ML classifiers and their 

diagnostic performance, further studies with multiple sub-group analyses based on ML 

classifier type and imaging modality can evaluate which presents the highest accuracy. It is 

also encouraged for future authors to report their tn, tp, fp, and fn values for the results to be 

properly aggregated by the meta-analysis if possible. Additionally, the CEA is applicable 

towards rural eye camps. Therefore, future economic analysis may be interested in testing the 

feasibility of ML being implemented in more urban areas in order to evaluate whether the 

benefits seen in villages are equivalent. 
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APPENDICES 

Appendix A: PRISMA Checklist 

Section/topic  # Checklist item  Reported 
on page #  

TITLE   
Title  1 Identify the report as a systematic review, meta-analysis, 

or both.  
50 

ABSTRACT   
Structured 
summary  

2 Provide a structured summary including, as applicable: 
background; objectives; data sources; study eligibility 
criteria, participants, and interventions; study appraisal 
and synthesis methods; results; limitations; conclusions 
and implications of key findings; systematic review 
registration number.  

n/a 

INTRODUCTION   
Rationale  3 Describe the rationale for the review in the context of what 

is already known.  
51 

Objectives  4 Provide an explicit statement of questions being 
addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS).  

52 

METHODS   
Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be 
accessed (e.g., Web address), and, if available, provide 
registration information including registration number.  

52 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of 
follow-up) and report characteristics (e.g., years 
considered, language, publication status) used as criteria 
for eligibility, giving rationale.  

52 

Information 
sources  

7 Describe all information sources (e.g., databases with 
dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched.  

53 

Search  8 Present full electronic search strategy for at least one 
database, including any limits used, such that it could be 
repeated.  

54 

Study selection  9 State the process for selecting studies (i.e., screening, 
eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis).  

54 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., 
piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from 
investigators.  

54 
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Data items  11 List and define all variables for which data were sought 
(e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

56 

Risk of bias in 
individual studies  

12 Describe methods used for assessing risk of bias of 
individual studies (including specification of whether this 
was done at the study or outcome level), and how this 
information is to be used in any data synthesis.  

55 

Summary 
measures  

13 State the principal summary measures (e.g., risk ratio, 
difference in means).  

56 

Synthesis of 
results  

14 Describe the methods of handling data and combining 
results of studies, if done, including measures of 
consistency (e.g., I2) for each meta-analysis.  

56 

Section/topic  # Checklist item  Reported 
on page #  

Risk of bias 
across studies  

15 Specify any assessment of risk of bias that may affect 
the cumulative evidence (e.g., publication bias, selective 
reporting within studies).  

56 

Additional 
analyses  

16 Describe methods of additional analyses (e.g., sensitivity 
or subgroup analyses, meta-regression), if done, 
indicating which were pre-specified.  

56 

RESULTS   
Study selection  17 Give numbers of studies screened, assessed for 

eligibility, and included in the review, with reasons for 
exclusions at each stage, ideally with a flow diagram.  

57 

Study 
characteristics  

18 For each study, present characteristics for which data 
were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations.  

57 

Risk of bias within 
studies  

19 Present data on risk of bias of each study and, if 
available, any outcome level assessment (see item 12).  

58 

Results of 
individual studies  

20 For all outcomes considered (benefits or harms), 
present, for each study: (a) simple summary data for 
each intervention group (b) effect estimates and 
confidence intervals, ideally with a forest plot.  

59 

Synthesis of 
results  

21 Present results of each meta-analysis done, including 
confidence intervals and measures of consistency.  

59 

Risk of bias 
across studies  

22 Present results of any assessment of risk of bias across 
studies (see Item 15).  

58 

Additional 
analysis  

23 Give results of additional analyses, if done (e.g., 
sensitivity or subgroup analyses, meta-regression [see 
Item 16]).  

60 

DISCUSSION   
Summary of 
evidence  

24 Summarize the main findings including the strength of 
evidence for each main outcome; consider their 

61 
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Appendix B: Database searches and keywords 

 

Appendix C. Search strategy and results for grey literature 

ProQuest Dissertations & Theses 

relevance to key groups (e.g., healthcare providers, 
users, and policy makers).  

Limitations  25 Discuss limitations at study and outcome level (e.g., risk 
of bias), and at review-level (e.g., incomplete retrieval of 
identified research, reporting bias).  

62 

Conclusions  26 Provide a general interpretation of the results in the 
context of other evidence, and implications for future 
research.  

63 

FUNDING   
Funding  27 Describe sources of funding for the systematic review 

and other support (e.g., supply of data); role of funders 
for the systematic review.  

n/a 

Concept EMBASE MEDLINE CINAHL Keywords 

Artificial Intelligence Exp artificial 
intelligence/ or exp 
machine learning/ or exp 
deep learning/ or 
artificial neural network/ 

Exp artificial 
intelligence/ or exp 
machine learning/ or 
exp deep learning/ or 
exp Neural Networks, 
Computer 

(MH “Artificial 
Intelligence+”) or (MH 
“Deep Learning”) or 
(MH “Neural Networks 
(Computer)”) or (MH 
“Machine Learning+”) 

Artificial intelligence.mp. or 
machine learning.mp. or 
deep learning.mp. or neural 
network.mp. 

Diagnosis Exp diagnosis/ or exp 
prediction/ 

Exp diagnosis/ (MH “Diagnosis”) Diagnos*.mp. or 
prediction.mp. 

Cataract Exp cataract/ Exp cataract/ (MH “Cataract”) cataract.mp. 

No Limits 110 40 19  

Limit to Humans and 
English Language 

91 31 19  

Searches Results 

noft(artificial intelligence) AND noft(diagnosis) AND noft(ophthalmology) 5 
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Conference Searches 

 

Appendix D. Kappa statistics calculation 

Title and Abstract Screening     

Review Authors RC 

SS 

  Include Exclude Unsure Total 

Include 22 2 0 24 

Exclude 4 100 2 106 

Unsure 0 5 0 5 

Total 26 107 2 135 

      

P0 0.903704     

PE 0.657119     

Conference  Link  Years searched  Search terms Results/Comments  

ARVO https://arvojournals.org/solr/searchr
esults.aspx?q=meeting%20abstract
%20AND%20artificial%20intellige
nce%20AND%20cataracts&restype
id=1 

 

All years “meeting 
abstract” AND 
“artificial 
intelligence” 
AND “cataracts” 

Searched through 
meeting abstracts  

 

23 results 

AAO https://secure.aao.org/aao/meeting-
archive 

All years “artificial 
intelligence” 

Event type: Paper 

Searched through all 
meetings and scientific 
posters 

 

5 results 

COS https://www.cos-sco.ca/cpd/annual-
meeting/ 

 

 All years available 

 

 

 

“artificial 
intelligence” 

“machine 
learning” 

“diagnosis” 

Searched through 
abstracts and 
presentations  

 

2 results 
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kappa 0.719155     
      

Full Text Screening      

Review Authors RC 

SS 

  Include Exclude Unsure Total 

Include 18 0 0 18 

Exclude 2 8 0 10 

Unsure 0 0 0 0 

Total 20 8 0 28 

      

P0 0.928571     

PE 0.561224     

kappa 0.837209     
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Appendix E. Simplified data extraction table 

Study  Year 
# Images 
used 

# Images 
Labeled Normal 

# Images Labeled non-
normal Accuracy Sensitivity Sensitivity SD Specificity 

Specificity 
SD 

Acharya et 
al. 2009 2520 1080 1440 0.9 0.977  1  

Cao et al. 2020 1355 433 922 0.9483 0.9544  0.9353  

Dong et al. 2017 7851 4671 2176 0.847     

Guo et al. 2015 445 199 246 0.909     

Huang et al. 2009 1000   0.914     

Li et al. 2009 5820   0.95     

Li et al. 2010 5850   0.95     

Li et al.  2018 8030   0.972     

Lin et al. 2019 350 243 107 0.874 0.897  0.864  

Lin et al. 2020 2005 731 1274 0.81 0.79 0.02 0.82 0.04 

  2005 731 1274 0.79 0.78 0.03 0.81 0.03 

Liu et al.  2017 886 476 410 0.9707 0.9683 0.0002 0.9728 0.0001 

Pratap & 
Kokil 2019 800 200 600 1     

Ran et al. 2018 5408 1948 3460 0.9704 0.9726  0.9692  
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S V & R 2018 228 100 128 0.9696 0.97  0.99  

Wu et al. 2019 37638 4508 33130 0.8879 0.92 
95% CI: 
0.8733-0.9536 0.8385 

95% CI: 
0.7637-0.8971 

Xu et al. 2021 8030 2212 5818 86.24 0.9010  0.8495  

Yang et al. 2016 1239 767 472 0.905 0.892  0.916  

  1239 767 472 0.899 0.89  0.907  

Zhang et al. 2017 5620 3269 2351 0.9352 0.9253  0.9484  

Zheng et al. 2014 460 158 302 0.9522     

Zhou et al. 2020 1355 433 922 0.94     
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Appendix F. Results of the risk of bias assessment for studies included in the systematic 

review using QUADAS-2 Tool 

 Domain 1 Domain 2 Domain 3 Domai
n 4 

Study  Risk of 
Bias 

Concerns 
about 
applicability 

Risk of 
Bias 

Concerns 
about 
applicability 

Risk of 
Bias 

Concerns 
about 
applicability 

Risk of 
Bias 

Acharya et al. (2009) unclear low low low low low unclear 

Cao et al. (2020) low low low low low low low 

Dong et al. (2017) low low low low low low low 

Guo et al. (2015) unclear low low low low low unclear 

Huang et al. (2009) low  low low low low  low low 

Li et al. (2009) low  low low low low  low low 

Li et al. (2010) low low low low low low low 

Li et al. (2018) low  low low low low low low 

Lin et al. (2019) low  low low low low low low 

Lin et al. (2020) low low low low low low low 

Liu et al. (2017) unclear unclear low low low low unclear 

Pratap & Kokil 
(2019) 

unclear unclear low low low low unclear 

Ran et al. (2018) low  low low low low low low 

S V & R (2018) low  low low low low low low 

Shimizu et al. (2021) High High High High High High high 

Wu et al. (2019) low  low  low  low  low  low  low  

Xu et al. (2021) Low Low Low Low Low Low low 

Yang et al. (2016) low  low  low  low  low  low  low  

Zhang et al. (2017) low low low low low low low 

Zheng et al. (2014) low  low low low low low low 

Zhou et al. (2020) low  low low low low low low 
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Appendix G. SROC Curve 
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Appendix H. Hierarchical logistic regression results 

Hierarchical Logistic Regression Results for Cataracts in Adults 

Log likelihood   = -104.8943                      Number of ML classifiers = 9 

---------------------------------------------------------------------- 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+-------------------------------------------------------- 

Bivariate    | 

  E(logitSe) |   2.908078   .7267127                      1.483747    4.332409 

  E(logitSp) |   3.183793   .3507146                      2.496405    3.871181 

Var(logitSe) |   4.443394   2.541721                      1.448133   13.63393 

Var(logitSp) |   1.059711   .5134012                      .4100188   2.73887 

Corr(logits) |   .0321894   .3461407                     -.5695972    .6115086 

-------------+-------------------------------------------------------- 

HSROC        | 

      Lambda |   6.588162   .8886644          4.846412    8.329912 

       Theta |  -1.261845   .6828454          -2.600197    .0765079 

        beta |   -.716711   .3742015    -1.92   0.055    -1.450132     .0167104 

     s2alpha |   4.479614   2.383515                      1.578821    12.71008 

     s2theta |   1.050054   .5113627                      .4042848    2.727318 

-------------+-------------------------------------------------------- 

Summary pt.  | 

          Se |   .9482443   .0356649                      .8151379    .9870344 

          Sp |   .9602198   .0133965                      .9238894    .9795914 

         DOR |    442.248    361.246                       89.2011    2192.611 

         LR+ |   23.83709   8.105484                      12.24091    46.4187 
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         LR- |   .0538998   .0371738                      .0139485   .2082796 

       1/LR- |   18.55293   12.79565                      4.801237   71.69223 

---------------------------------------------------------------------- 

Covariance between estimates of E(logitSe) & E(logitSp)    .008058 

 

Hierarchical Logistic Regression Results for Pediatric Cataracts 

Meta-analysis of diagnostic accuracy 

Log likelihood   = -41.703961                     Number of ML Classifiers =        4 

------------------------------------------------------------------------------ 

             |      Coef.            Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Bivariate    | 

  E(logitSe) |   2.008967   .6020843                      .8289034     3.18903 

  E(logitSp) |   2.105182   .3449474                      1.429097    2.781266 

Var(logitSe) |   1.407823    1.03089                      .3351572    5.913536 

Var(logitSp) |   .4422734    .356941                      .0909328    2.151103 

Corr(logits) |   .5943803   .3564424                     -.3763867     .943022 

-------------+---------------------------------------------------------------- 

HSROC        | 

      Lambda |   4.315963   .8600888                       2.63022    6.001706 

       Theta |  -.6539444    .525611                     -1.684123    .3762343 

        beta |  -.5789356   .4568128    -1.27   0.205    -1.474272    .3164009 

     s2alpha |   2.516177   1.870604                      .5860463    10.80315 

     s2theta |   .1600326   .1334146                       .031231     .820032 

-------------+---------------------------------------------------------------- 

Summary pt.  | 

          Se |   .8817353   .0627842                       .696123    .9604194 
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          Sp |   .8914058   .0333914                      .8067606    .9416551 

         DOR |   61.20009   51.78098                      11.65618    321.3275 

         LR+ |   8.119543   2.862963                      4.068147    16.20565 

         LR- |   .1326721   .0733519                      .0448917    .3920966 

       1/LR- |   7.537381   4.167278                      2.550392    22.27583 

------------------------------------------------------------------------------ 

Covariance between estimates of E(logitSe) & E(logitSp)   .1171897 

 

Appendix I: CHEERS Checklist 

Topic No. Item 

Location 
where item 
is reported 

Title    

1 Identify the study as an economic 
evaluation and specify the interventions 
being compared. 

82 

Abstract    

2 Provide a structured summary that 
highlights context, key methods, results, 
and alternative analyses. 

n/a 

Introduction    

Background and 
objectives 

3 Give the context for the study, the study 
question, and its practical relevance for 
decision making in policy or practice. 

82 

Methods    

Health economic analysis 
plan 

4 Indicate whether a health economic 
analysis plan was developed and where 
available. 

85 

Study population 5 Describe characteristics of the study 
population (such as age range, 
demographics, socioeconomic, or clinical 
characteristics). 

85 
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Topic No. Item 

Location 
where item 
is reported 

Setting and location 6 Provide relevant contextual information 
that may influence findings. 

85 

Comparators 7 Describe the interventions or strategies 
being compared and why chosen. 

85 

Perspective 8 State the perspective(s) adopted by the 
study and why chosen. 

85 

Time horizon 9 State the time horizon for the study and 
why appropriate. 

85 

Discount rate 10 Report the discount rate(s) and reason 
chosen. 

84 

Selection of outcomes 11 Describe what outcomes were used as the 
measure(s) of benefit(s) and harm(s). 

85 

Measurement of 
outcomes 

12 Describe how outcomes used to capture 
benefit(s) and harm(s) were measured. 

85 

Valuation of outcomes 13 Describe the population and methods used 
to measure and value outcomes. 

85 

Measurement and 
valuation of resources 
and costs 

14 Describe how costs were valued. 86 

Currency, price date, and 
conversion 

15 Report the dates of the estimated resource 
quantities and unit costs, plus the 
currency and year of conversion. 

86 

Rationale and description 
of model 

16 If modelling is used, describe in detail and 
why used. Report if the model is publicly 
available and where it can be accessed. 

87 

Analytics and 
assumptions 

17 Describe any methods for analysing or 
statistically transforming data, any 
extrapolation methods, and approaches for 
validating any model used. 

85-90 

Characterising 
heterogeneity 

18 Describe any methods used for estimating 
how the results of the study vary for 
subgroups. 

91 

Characterising 
distributional effects 

19 Describe how impacts are distributed 
across different individuals or adjustments 
made to reflect priority populations. 

91 
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Topic No. Item 

Location 
where item 
is reported 

Characterising 
uncertainty 

20 Describe methods to characterise any 
sources of uncertainty in the analysis. 

91 

Approach to engagement 
with patients and others 
affected by the study 

21 Describe any approaches to engage 
patients or service recipients, the general 
public, communities, or stakeholders (such 
as clinicians or payers) in the design of the 
study. 

90 

Results    

Study parameters 22 Report all analytic inputs (such as values, 
ranges, references) including uncertainty 
or distributional assumptions. 

91 

Summary of main results 23 Report the mean values for the main 
categories of costs and outcomes of 
interest and summarise them in the most 
appropriate overall measure. 

91 

Effect of uncertainty 24 Describe how uncertainty about analytic 
judgments, inputs, or projections affect 
findings. Report the effect of choice of 
discount rate and time horizon, if 
applicable. 

92 

Effect of engagement 
with patients and others 
affected by the study 

25 Report on any difference patient/service 
recipient, general public, community, or 
stakeholder involvement made to the 
approach or findings of the study 

92 

Discussion    

Study findings, 
limitations, 
generalisability, and 
current knowledge 

26 Report key findings, limitations, ethical or 
equity considerations not captured, and 
how these could affect patients, policy, or 
practice. 

96 

Other relevant 
information 

   

Source of funding 27 Describe how the study was funded and 
any role of the funder in the identification, 
design, conduct, and reporting of the 
analysis 

n/a 
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Topic No. Item 

Location 
where item 
is reported 

Conflicts of interest 28 Report authors conflicts of interest 
according to journal or International 
Committee of Medical Journal Editors 
requirements. 

n/a 

  

Appendix J: Base model variable inputs and definitions 
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Appendix K: Two-way sensitivity analysis 
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Appendix L: Multi-way sensitivity analysis 

Best case scenario: 

 

Worst case scenario: 
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