Detection of gold cysteine thiolate complexes on gold nanoparticles with time-of-flight secondary ion mass spectrometry

Running title: ToF-SIMS of nano-gold cysteine thiolate
Running Authors: Nie et al.

Heng-Yong Nie
Surface Science Western, The University of Western Ontario, 999 Collip Circle, London, Ontario N6G 0J3, Canada
Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada

Elena Romanovskaia
KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm, Sweden
Belarusian State Technological University, Department of Chemistry, Technology of Electrochemical Production and Electronic Engineering Materials, 220006, Sverdlova st., 13, Minsk, Belarus

Valentin Romanovski
Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072, Surganova st., 9/1, Minsk, Belarus
Science and Research Centre of Functional Nano-Ceramics, National University of Science and Technology "MISIS", 119049, Lenin av., 4, Moscow, Russia

Jonas Hedberg
Surface Science Western, The University of Western Ontario, 999 Collip Circle, London, Ontario N6G 0J3, Canada
KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm, Sweden

Yolanda S. Hedberg
Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Surface Science Western, The University of Western Ontario, 999 Collip Circle, London, Ontario N6G 0J3, Canada
KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm, Sweden

a)Electronic mail: Heng-Yong Nie hnie@uwo.ca; Yolanda Hedberg yhedberg@uwo.ca
FIG. S1. Images of (a) AuS\(^-\), (b) AuM\(^-\), (c) Au\(_2\)[M-H]\(^-\) and Au[M-H]\(_2\)\(^-\) of the 5-nm Au NPs loaded Al foil immersed for 1 day in 5 mM L-cysteine solution and rinsed with ultrapure water, where M represents cysteine molecule SC\(_3\)H\(_7\)NO\(_2\).
Fig. S2. Negative secondary ion mass spectra that are (a) isolated from the gold-rich areas and (b) the entire rastered area shown in Fig. 5. The red broken line shows m/z 120.02 for dehydrogenated cysteine molecular ion $\text{SC}_3\text{H}_6\text{NO}_2^-$. The two blue lines in (b) indicate the area used to map the $\text{SC}_3\text{H}_6\text{NO}_2^-$ image shown in Fig. 5c.
FIG. S3. Images of two cysteine ions $\text{C}_2\text{H}_8\text{N}^+$ (a and c) and SC_2H_3^+ (b and d) with (a and b) and without (c and d) rinse with ultrapure water for the 5-nm Au NPs loaded Al foil immersed for 1 day in 5 mM L-cysteine solution.
FIG. S4. Images of Au₃⁻ (a), Au₃S⁻ (b), SC₃H₆NO₂⁻ (c), S₂C₆H₁₁N₂O₄⁻ (d), Au₃⁺ (e), AuSC₃H₇NO₂⁺ (f), SC₃H₈NO₂⁺ (g) and S₂C₆H₁₃N₂O₄⁺ (h) of the 50-nm Au NPs-loaded Al foil immersed in 5 mM L-cysteine solution followed by rinsing for the removal of excessive cysteine molecules. The rastered area for (a)-(h) is 100 μm × 100 μm.