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Abstract  

Neural activity in the primate lateral prefrontal cortex (LPFC) has been causally 

linked to working memory (WM) — the brief maintenance and mental manipulation of 

information. Primates use WM to perform tasks in complex contexts; however, neural 

mechanisms of WM and the pathophysiology related to WM deficits have traditionally 

been studied using simple tasks that deviate from naturalistic conditions. This raises 

the question, how is WM processed in naturalistic conditions? To explore this, I trained 

two macaque monkeys on a spatial WM task set in a naturalistic virtual environment. 

During the task, a target was presented in 1 of 9 locations in a virtual arena. The target 

then disappeared and following a 2-second delay period, subjects navigated to the 

cued target location using a joystick. I recorded single neuron activity using two 96-

channel Utah Arrays implanted in LPFC (areas 9/46 & 8a). 

During this task, single neurons are spatially selective for remembered target 

locations and neural populations contain large amounts of information about the target 

location over the duration of the task. Neural coding for WM is robust and distinct from 

signals related to perception and eye movement. Using ketamine to model the 

pathophysiology of schizophrenia, I demonstrate drastic deficits in WM performance. 

The decrease in performance is related to differential effects on putative excitatory 

and inhibitory neurons. Inhibitory neurons decrease their firing rate for their preferred 

location after ketamine injection, thus disinhibiting excitatory cells, resulting in 

distorted WM representations. Finally, I demonstrate a new neural code for 

maintaining WM in naturalistic conditions. Precise temporal patterns of population 

activity contain large amounts of information about target location and target 

trajectories in our virtual task. Ketamine distorts these neural sequences and their 

relationship to behavior. Together, these findings demonstrate that the LPFC relies on 

a robust neural code that uses firing rate and temporal information to maintain WM 

representations in the presence of incoming sensory signals and eye movement. 

These findings detail how the primate LPFC encodes WM representations in 

naturalistic conditions and models how WM deficits may arise in day-to-day life.  
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Summary for Lay Audience 

  Working memory is the cognitive process that allows us to maintain information 

from our environment for the span of seconds to a few minutes. For example, if I were 

to read you a phone number to dial, you must be able to briefly remember the number 

to successfully make the call. However, after the call is made and the information is 

no longer relevant to your task, the number will fade from memory.  

  For this thesis. I developed a working memory task set in a virtual environment 

that is meant to resemble how we use working memory in real life – in complex and 

dynamic environments. During this task, I recorded from neurons in the prefrontal 

cortex of macaque monkeys, an area clearly involved in working memory.  

  I demonstrate that neurons in the prefrontal cortex robustly represent the 

locations of targets after they disappeared. Moreover, neurons that represent working 

memory information are separate from neurons that represent eye position and visual 

perception, allowing for robust memory despite eye movement or potential distractors 

in the environment. Next, I explore how naturalistic working memory is affected by 

ketamine, a drug that mimics the symptoms of schizophrenia. Here, I show that 

ketamine reduces the specificity of neurons for representing target location so that 

neurons are similarly active for all targets – limiting the ability of animals to precisely 

remember a location. Finally, I explore the possibility that not only is the number of 

action potentials that neurons fire important, but also when the action potentials are 

fired. I explore temporal patterns of neural activity and show that single neurons fire 

around the same time in each trial and that the population of neurons form complex 

temporal patterns that were closely related to naturalistic working memory behavior.  

  Overall, I demonstrate how the brain processes working memory in naturalistic 

conditions and how working memory deficits may occur in patients in complex 

environments that reflect how they would use working memory in real life. 
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Chapter 1  

1 «General Introduction» 

1.1 « Working Memory in Non-Human Primates » 

1.1.1 Defining Working Memory 

  Whereas visual perception is defined as the ability to interpret the 

surrounding environment from signals entering the retinas, visual working memory 

(WM) is the ability to remember and manipulate, for short periods of time, an 

interpretation of the physical reality when the corresponding physical signals are 

no longer entering the retinas (Baddeley, 2010). WM representations persist upon 

the termination of sensory input and carry information about memorized objects or 

object properties. They are independent of sensory inputs and are resilient to 

distractors. They can be manipulated in mind and are independent from motor 

response. WM representations are also task-relevant - they are maintained long 

enough to guide behavior and decision-making but are not transferred to long-term 

storage. For example, you may use WM to maintain a phone number just long 

enough to dial it – this memory fades when the task is complete.  

  Although WM may superficially appear as a mere extension of visual 

perception, evidence that mnemonic representations are unique from perception 

and are separable in the brain originated from early investigations into patients 

with localized cortical damage. These case studies describe independent 

impairments in top-down driven mental representations or perception. Charcot and 

Bernard first described a patient in 1883 that could identify objects but was neither 

able to form mental representations of these objects nor envision them from 

memory (Charcot & Bernard, 1883). The opposite deficit has also been described 

in which patients are unable to perceive objects yet can describe them in detail 

based on clear mental representations. A well-known case of this, described in 

patient C.K, was presented by Behrmann and colleagues in the early 1990s. C.K 
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was unable to identify either simple or complex items but was able to produce clear 

and detailed drawings of those same items (Behrmann et al., 1992). Together, 

these studies propose that mental representations that underlie WM are unique 

from perception and must be processed independently in the brain. 

1.1.2 What is the Primate Prefrontal Cortex? 

  The differentiation between perception and mental processes like WM 

reflects the expansion of our mental world as primates. This expansion is 

associated with an expansion of the primate prefrontal cortex (PFC) (Passingham 

& Wise, 2012; Preuss & Wise, 2022). So, what is the primate PFC?  

  The cerebral cortex consists of several distinct regions, subdivided based 

on cortical thickness, layer-specific thickness, differences in the arrangement of 

cells into layers, and variations in cell properties like cell packing, density, size, 

and type (Petrides, 2005). During primate evolution, the cerebral cortex developed 

along the posterior to the anterior axis with the PFC notably expanded in humans, 

occupying 30% of the brain’s surface (Passingham & Wise, 2012; Preuss & Wise, 

2022; Kolk & Rakic, 2022).  

  The primate PFC is often divided into the medial prefrontal, lateral PFC 

(LPFC), and orbitofrontal cortex. Of which, the LPFC is most associated with 

visuospatial WM (primarily in the dorsolateral region). The dorsolateral PFC 

(dlPFC) was first labeled by Brodmann in 1905 as area 9. The main division 

between dlPFC and other prefrontal regions was the presence or absence of a 

granulated cortex defined by an expanded layer IV. The increased density of this 

layer results from thalamic projections that terminate in the region (Tobias, 1975). 

dlPFC is divided in reference to the two sulci within it, the principal sulcus, and the 

arcuate sulcus, as well as differences in tissue composition. Walker split this region 

into areas 9 and 46 (Walker, 1940) since area 46 displayed a highly developed 

granular layer IV. Area 46 was split again, adding area 9/46 based on the discovery 

of large pyramidal cells in layer III (Petrides & Pandya, 1999). 



4 

 

  In this dissertation, I refer to lateral prefrontal regions specified by Petrides 

and colleagues. This cortical parcellation considers comparative regions between 

macaques and humans (see a visual comparison in Figure. 1.1) based on 

similarities such as the expansion of layer IV and the presence of large pyramidal 

cells in layer III (Petrides, 2005; Petrides & Pandya,1994). I consider areas 

adjacent to the principal sulcus and anterior to the arcuate sulcus as lateral 

prefrontal regions. I consider the further division of regions into dorsal (i.e., located 

dorsally to the mid-anterior principal sulcus) and ventral (i.e., located ventrally to 

the mid-anterior principal sulcus). These regions, illustrated in Figure. 1.1, include 

9/46dv and 8Adv).   

  An equivalent of the dorsolateral PFC is notably absent in commonly used 

animal models like rodents (Laubach, 2018; Preuss & Wise, 2022). The evolution 

of this region follows a continuum within the primate taxa with humans showing the 

greatest expansion, followed by great apes, macaques, and new world monkeys 

like marmosets (Passingham & Wise, 2012; Preuss & Wise, 2022; Kolk & Rakic, 

2022). This expansion of PFC in primates and the parallel increase in cognitive 

ability is the reason macaques are used to study prefrontal processing of WM in 

this dissertation. 
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Figure. 1.1: Regions of the prefrontal cortex in humans and macaque monkeys  

a, Labelled regions of human PFC. b, Labelled regions of macaque PFC.  
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1.1.3 How Do We Assess Working Memory in Primates? 

  Before discussing how the brain processes WM, it is important to 

understand how WM is measured in non-human primates (NHPs). Research into 

short-term memory began when scientists became interested in stimuli-associated 

responses that occur after a stimulus is removed. The delayed response task was 

created in 1913 to examine this phenomenon in different species and was later 

used to study visuospatial WM in NHPs using the Wisconsin General Test 

Apparatus (Hunter, 1913; Harlow & Bromer, 1938) (see Figure. 1.2a, b). In this 

task, subjects face two wells, one of which is filled with food. The wells are then 

covered during a delay period. After the period of delay, subjects retrieve the food 

by remembering in which well it is located.  

  The oculomotor delayed response (ODR) task was later developed to 

increase experimental control during the testing of visuospatial WM in NHPs. 

During this task, animals are typically contained in a primate chair and head-fixed 

in front of a computer monitor. Trials begin with fixation on a central fixation point, 

followed by the presentation of a cue. The cue then disappears during a delay 

period (Figure. 1.2c). The ODR task is still one of the most commonly used tasks 

for studying visuospatial WM (Dang et al., 2022; Constantinidis et al., 2018; Leavitt 

et al., 2017a). Another frequently used task is the delay non-match-to-sample in 

which the subject is shown one sample item that disappears during delay. The 

sample and a novel item are shown after delay and the animal must select the 

novel item via saccade. Alternatively, either the sample or a novel item is shown 

and the animal must make a response if the item is novel or make no response if 

the item matches the sample (response is often a saccade and/or release of a 

lever) (Bachevalier & Mishkin, 1986).  

  Recently, there has been increasing interest in developing tasks that reflect 

naturalistic elements of WM. WM in real life is complex. For example, when trying 

to remember the location of an item on a grocery store shelf, the brain must be 

able to maintain a mental representation of the item’s location in the presence of 
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distracting stimuli (be it retail music or toddlers asking for treats) and changes in a 

visual scene caused by movement of the head and eyes. The aforementioned 

tasks explore WM using simple visual displays, stimuli, and responses. 

Contemporary studies have increased task complexity by introducing distractor 

stimuli during WM maintenance (Suzuki & Gottlieb, 2013; Parthasarathy et al., 

2019), incorporating rule-based responses (Ma et al., 2018), and presenting 

multiple stimuli or sequences of stimuli to be remembered (Lundqvist et al., 2018a; 

Xie et al., 2022).  

  In this dissertation, I describe a new method of measuring WM – one which 

incorporates more naturalistic elements while still maintaining a high level of 

control. This task takes place in a visually complex virtual environment. Animals 

are required to make their response via 3D navigation using a joystick (Figure. 1.2 

d-f). 
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Figure. 1.2: Methods of measuring working memory in primates  

a, illustration of a delayed response task being conducted in the Wisconsin General Test 

Apparatus. b, Depiction of a correct response during the delayed response task pictured 

in ‘a’. c, Illustration of an oculomotor delayed response task with 16 target locations. A 

saccadic response to the cued location is required. d, Virtual reality experimental setup 

(primate chair and head fixation not pictured).  e, Example of a virtual reality WM task with 

potential target locations outlined in the virtual arena. f, Timeline of a virtual WM task. 

Animals are required to navigate to cued targets using a joystick. 
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1.1.4 Working Memory in the Primate Prefrontal Cortex 

  There is no question that the PFC plays a pivotal role in WM processing in 

primates. Indeed, the importance of the PFC in WM can be traced to lesion studies 

conducted more than a century ago in humans and NHPs (reviewed fully in Roussy 

et al., 2021). These studies reported that damage to certain brain areas can 

produce selective deficits of WM while sparing visual perception. Jacobsen, 1936 

conducted the first series of lesion experiments in the PFC using different species 

of NHPs [Macaca mulatta (rhesus macaque), Cercocebus torquatus (mangabey), 

and Papio papio (baboon)], discovering that lesions produced selective 

performance deficits in delayed response tasks. Importantly, the animals could 

perform perceptual tasks without major difficulty (Jacobsen, 1936). These results 

suggested that lesions of the PFC predominantly affect WM while sparing 

perception.  

  In another study, Chow, Blum, and Blum conducted lesion experiments of 

the posterior association areas of the parieto-occipital temporal region and the 

prefrontal areas close to the frontal pole in macaque monkeys (Chow et al., 1951). 

They found that posterior lesions did not substantially alter performance in a 

delayed response task. On the other hand, prefrontal lesions did decrease the 

animals' WM performance without significantly impairing other discrimination 

abilities. They also concluded that the PFC plays a selective role in the delayed 

aspects of the task. 

  In 1969, Butters and Pandya (1969) refined the lesioned areas to localize 

WM function more precisely within PFC. They compared the performance of 

lesioned and control rhesus macaques in delayed alternation tasks. Lesions 

included bilateral inferior parietal cortex lesions and three types of prefrontal 

lesions around the principal sulcus. Animals with lesions of the anterior and 

posterior thirds of the principal sulcus as well as periarcuate and parietal lesions 

could re-learn the delay alternation task but animals with lesions of the central part 
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of the principal sulcus could not re-learn the task, thus resulting in permanent 

deficits.  

  In the second half of the twentieth century, spatially refined lesions, cooling-

based inactivation, and pharmaceutical inactivation studies in the PFC of macaque 

monkeys further demonstrated perturbation of visuospatial WM representations 

and sparing of perceptual representations (Fuster & Alexander, 1970; Sawaguchi 

& Goldman-Rakic, 1991; Funahashi et al., 1993; Iba & Sawaguchi, 2003; Upright 

et al., 2018). This work introduced the concept of mnemonic scotoma, a deficit in 

remembering the spatial location of a target within a specific area of the visual field 

during a delayed response task, caused by inactivating small regions of the LPFC 

(Funahashi et al., 1993). However, animals with mnemonic scotomas can make 

saccades to the affected region when the target remains visually available. The 

latter not only confirmed the results of previous studies but also emphasized the 

major role of the PFC in visual WM and a lesser role in visual perception.  

  Moreover, decades earlier, Malmo, 1942 and Orbach and Fischer, 1959 first 

reported the unique and essential role of the PFC in maintaining WM 

representations in the presence of irrelevant incoming visual signals. Without PFC, 

stored mental representations can be disrupted by incoming sensory signals. 

Thus, from lesion and inactivation studies, one may conclude the PFC is needed 

for maintaining information in WM, but it is not essential for visual perception (i.e., 

when visual information remains available). Figure. 1.3 provides a graphical 

summary of lesion literature. 
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Figure. 1.3: Summary of notable primate lesion studies that impact working memory  

A full summary table of lesion studies can be found in Roussy et al., 2021. 
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  With the development of single cell recording techniques in behaving 

animals (Hubel, 1957), researchers began to study the neurophysiology of WM. 

Fuster and Alexander (1971) recorded the responses of neurons in the LPFC and 

mediodorsal nucleus of the thalamus in macaque monkeys during a delayed 

response task. They discovered neurons in the LPFC that increased their firing 

rate during WM delay periods, representing remembered locations and features of 

visual stimuli. At this same time, Kubota and Niki (1971) also observed neurons in 

the macaque PFC that preferentially fired during the delay period of a delayed 

alternation task. These initial results have since been confirmed by a multitude of 

studies using various WM tasks (Fuster, 1973; Kojima & Goldman-Rakic, 1982; 

Funahashi et al., 1989; Constantinidis et al., 2018), thus establishing the role of 

the LPFC in neural coding of WM. 

1.2 « Neural Substrates of Working Memory » 

1.2.1 Persistent Activity Underlies Working Memory 

  WM representations are maintained in the absence of sensory inputs when 

the cue or sample stimulus disappears from the visual field. From the 

aforementioned work starting in the 1970s, we know that neurons in PFC exhibit 

delay activity - increased firing rate when stimuli are removed. There is little debate 

that this delay activity is associated with WM performance; however, the exact 

neural mechanism underlying WM maintenance is more contested.  

  The leading mechanism proposes that prefrontal neurons maintain WM 

representations by continuous, (i.e., persistent) activity over delay periods. 

Persistent activity is characterized by an increased firing rate that spans the 

duration of the delay period after a stimulus is removed as well as stimuli selectivity 

(i.e., differential firing for specific remembered stimuli properties like color or 

location). See example of location selective persistent activity during an ODR task 

in Figure. 1.4.  
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  Persistent activity is detached from signals for motor planning and 

preparation, evidenced by studies that require a separate oculomotor response 

from the cued target location (Takeda & Funahashi, 2002) and tasks in which the 

response is unknown during the delay period like in delayed match-to-sample 

tasks (Miller et al., 1996; Mendoza-Halliday & Martinez-Trujillo, 2017). Persistent 

activity is not vision-specific either – it has been documented for other sensory 

modalities such as somatosensory WM and auditory WM (Romo et al., 1999; 

Fuster et al., 2000). Persistent activity likely results from a combination of intrinsic 

neural properties and local circuit properties that support a controlled and task-

specific state of excitability for WM maintenance. 
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Figure. 1.4: Persistent activity in the prefrontal cortex 

Firing rate of an example neuron during a classic ODR task during the cue (C), delay 

(D), and response (R) epochs. This neuron shows increased activity during the delay 

period and spatial tuning for targets presented at 270°. Figure retrieved from Arnsten, 

2013 
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1.2.2 Prefrontal Circuits Support Persistent Activity  

  The primate cortex is not homogenous. Cortical architecture varies between 

early sensory and association areas like the PFC in terms of thickness of cortical 

layers, neuronal densities (Collins et al., 2010; Dombrowski et al., 2001), and 

proportion of different cell types (Torres-Gomez et al., 2020). Neurons differ in their 

morphology, receptor expression, and intracellular signaling, all of which contribute 

to the response and output properties of the cell (i.e., how a neuron responds to 

input and can interact with neurons in a network) (Llinás, 2001; Kepecs & Fishell, 

2014).  

  LPFC exhibits unique properties pertinent for persistent activity such as 

increased connectivity between excitatory neurons – with many pyramidal neurons 

forming dense recurrent connections (Melchitzky et al., 1998). For example, the 

human and macaque PFC has more spines than neurons in primary sensory 

regions. One study found that pyramidal cells in macaque PFC were up to 16 times 

more spinous than those in V1 (Elston et al., 2001). Layer III pyramidal neurons in 

monkeys form significant bidirectional connections with other cells in layer III (Levitt 

et al., 1993; Kritzer & Goldman-Rakic, 1995; Pucak et al., 1996). Indeed, one 

experiment found that over 95% of layer III pyramidal neurons terminate onto other 

layer III pyramidal neurons (Melchitzky et al., 1998).  

  A basic local circuit model indicates that these extensive connections 

between pyramidal cells are essential for the generation of persistent activity. 

Recurrent excitatory activity between reciprocally connected layer III pyramidal 

cells with similar stimulus selectivity maintains neural firing over delay periods 

(Figure. 1.5a) (see for review: Durstewitz et al., 2000; Goldman-Rakic, 1995; 

Constantinidis & Wang 2004).  

  This recurrent activity is thought to rely on the activation of glutamatergic 

NMDA receptors based on several advantageous features of these receptors 

(Wang, 1999; Wang et al., 2013). NMDA receptors exhibit long-time constants 

(activation time can last several hundred milliseconds) compared to AMPA 
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receptors that display rapid activation and decay (Lester et al., 1990). This may 

help stabilize WM circuits as fast excitation and slow inhibition is modelled to 

destabilize local circuits (Wang, 1999; Wang, 2001; Wang et al., 2013). 

Experimentally, EPSCs in macaque LPFC do display slower kinetics than V1 

(Medalla & Luebke, 2015). NMDA receptors, particularly, the GluN2B subunit 

fluxes high levels of calcium into the neuron which may be important for 

maintaining sustained activity by depolarizing the postsynaptic membrane for 

continued responsivity to excitatory inputs. The fact that NMDA receptors are 

voltage-dependent may increase the selectivity of excitation for a particular 

stimulus (e.g., a specific target location). A group of interconnected neurons with 

the same tuning may be more depolarized than other cells in the circuit with 

different tuning, allowing for a selective increase in neuron activation (Wang, 

2001).  

  Experimental evidence does point to a reliance on NMDA receptor for WM. 

WM-related delay activity in LPFC is significantly more disrupted by NMDA 

Receptor antagonism using iontophoresis than AMPA receptor antagonism (Wang 

et al., 2013). Moreover, this same study demonstrates similar neural outcomes 

using systemic NMDA Receptor antagonism which decreases performance of an 

ODR task. These findings were also confirmed by an independent research group 

also using iontophoresis (van Vugt et al., 2020). This discovery contrasts findings 

in V1 where the neuronal response to visual stimuli depends on AMPA receptors 

(Yang et al., 2018).  

  Recurrent excitation requires balance by inhibition for circuit stability and 

signal specificity (Wang et al., 2004). Interneurons exert this important inhibitory 

control within these circuits. Considering accumulating evidence in rodents and 

computational modeling, one type of neuron, parvalbumin (PV) expressing 

interneurons, plays a key role in the functionality of prefrontal circuits (Wang et al., 

2004; Homayoun & Moghaddam, 2007; Murray et al., 2015). PV interneurons are 

fast-spiking GABAergic neurons that strategically innervate the soma and proximal 

dendrites of excitatory pyramidal cells (Kawaguchi & Kubota, 1997). This allows 



17 

 

them to provide flexibility within cognitive circuits through dynamic inhibition of 

pyramidal neurons, which can serve to stabilize and refine circuit activity (Wang et 

al., 2004; Homayoun & Moghaddam, 2007; Murray et al., 2015).  

  One important role of interneurons may be to refine stimulus tuning during 

WM. One study reported similar saccadic direction tuning during an ODR task 

between spatially close pairs of pyramidal and putative interneurons, whereas 

neurons that were further away displayed opposite saccadic direction preferences 

(Rao et al., 1999). Local injection of bicuculline, a GABA receptor antagonist 

diminished saccadic directional tuning during an ODR task by increasing activity 

for non-preferred saccade directions, thus diminishing inhibitory control (Rao et al., 

2000). 

  Since cortical interneurons display great diversity in morphology and 

function (Kepecs & Fishell, 2014), Wang and colleagues have elaborated on the 

basic circuit model by incorporating interneuron types with different properties 

within the LPFC circuitry including PV neurons, calretinin (CR) positive and 

calbindin (CB) positive neurons (Wang et al., 2004). CR cells receive inputs from 

pyramidal cells and inhibit CB cells. The CB cells inhibit inputs into the dendrites 

of pyramidal cells (Figure. 1.5a). Thus, an increase in the number or activation 

strength of CR neurons or their synapses onto CB cells would enhance the 

activation of the pyramidal cells (Figure. 1.5c). A decrease in CR numbers or 

synaptic strength on their targets may have the opposite effect (Figure. 1.5b). 

Therefore, a high ratio of CR cells in LPFC relative to sensory areas may favor the 

emergence of persistent firing encoding WM via the facilitation of recurrent 

excitatory dynamics amongst pyramidal cells (Torres-Gomez et al., 2020). Indeed, 

a larger proportion of CR cells relative to other interneurons has been identified in 

macaque LPFC compared to visual area MT (Torres-Gomez et al., 2020). 

  One issue that remains unclear is why areas such as MST, where neurons 

also display persistent firing during WM tasks, do not exhibit the same increase in 

the ratio of CR neurons observed in the LPFC. One possibility is that this increase 
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is not directly related to the ability to produce persistent firing, but to the ability of 

a local circuit to protect task relevant activity from incoming distracting sensory 

signals through flexible “gating” of inputs into a pyramidal cell network. 

Computational modeling shows that dendritic inhibition mediated by CB cells may 

be more efficient than soma-based inhibition mediated by PV cells in the filtering 

of task-irrelevant information. In favor of this explanation, inactivation or lesioning 

of the LPFC, where CR interneurons are abundant, increases distracter 

interference during WM tasks (Suzuki & Gottlieb, 2013; Malmo, 1942; Orbach & 

Fischer, 1959). Neural activity in LPFC is also less disrupted by incoming 

distracting signals than in other regions that generate delay-associated persistent 

activity such as LIP (Suzuki & Gottlieb, 2013). 
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Figure. 1.5: Cellular circuits in the prefrontal cortex 

a, Diagram showing the structure of two nearby cortical columns and the four main cell 

types. Observe pyramidal cells have at least two distinct compartments, the apical (distal) 

dendrites (gray rectangles) and the cell body. Left: pyramidal neurons with the same 

spatial selectivity (360°) are shown within a functional column. Neurons within this column 

generate recurrent excitation when their preferred location is presented, whereas neurons 

in a different column with a different preferred location (180°) are inhibited.  Right: Soma-

targeting PV interneurons inhibit pyramidal cells and CR interneurons. CR interneurons 

are excited by pyramidal cells and inhibit CB interneurons that target pyramidal cell 

dendrites. b, c, Different architectures based on the proportion of CR and PV interneurons 

and the ability to produce persistent firing. The architecture in ‘c’ occurs in cells tuned for 

the presented target location. Activation of pyramidal cells increases the activity of CR 

interneurons which inhibit CB cells. Reduced inhibition on pyramidal cells further increases 

activity, thus resulting in recurrent activity observed in PFC. Figure retrieved from Roussy 

et al., 2021 
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1.2.3 Alternative Theories of Working Memory Coding  

  Despite over 50 years of evidence, an amount of controversy has been 

accumulating around the concept of persistent firing. For example, whether WM 

coding is sustained during the entire delay period by single neurons or populations, 

or whether it has a more complex temporal structure has been debated 

(Sreenivasan et al., 2014; Lundqvist et al., 2016, 2018b; Constantinidis et al., 

2018; Rainer & Miller, 2002). Recently, several research groups have suggested 

that persistent activity may be insufficient for coding of WM representations, 

especially when tasks increase in difficulty. This is based on observations that 

many neurons do not present with consistent firing during whole delay periods but 

instead display temporally diverse patterns of spiking within a trial (Batuev et al., 

1979; Shafi et al., 2007).  Some speculate that reported persistent activity is 

partially an artifact of trial averaging (Lundqvist et al., 2018b) and may not support 

the generation of observed dynamic neural states during WM (Spaak et al., 2017). 

Critics further point to the inefficiency of a code that relies on the continuous firing 

of high energy-consuming action potentials – making persistent activity a 

metabolically expensive mechanism (Lundqvist et al., 2018b; Lennie, 2003).  

  A logical extension of the single neuron persistent activity hypothesis is that 

the activity of subpopulations of neurons, or neural ensembles, encode WM 

representations through collective and co-varied activity (e.g., noise correlations) 

(Leavitt et al., 2017b; Harris, 2005). Indeed, even a small number of neurons 

functioning as an ensemble is capable of encoding WM representations of space 

to a greater extent than single neurons (Leavitt et al., 2017b). At the population 

level, even temporally fluctuating WM activity can be stably read out, thus forming 

a stable representation (Meyers et al., 2008; Spaak et al., 2017; Stokes et al., 

2013; Druckmann & Chklovski, 2012). Within this dynamic activity, stable codes 

can be identified (Murray et al., 2017) in non-dynamic tasks. When distractors are 

presented, population codes may become more dynamic, evolving to address task 

dynamics while still representing mnemonic information (Parthasarathy et al., 

2017; Parthasarathy et al., 2019).  
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Neural code refers to properties of neural activity and interactions that can 

process and transmit information. For example, neural information during WM 

must be remembered above all incoming sensory signals and outgoing motor 

signals. The previously mentioned proposed mechanisms of WM coding rely on a 

firing rate-based code in which WM-related information is amplified above 

background activity through increased neuron firing. This code however does not 

take into account the timing of action potentials or possible information during 

interspike intervals, thus firing rate averaged over periods of time may be too 

simplistic to describe the complexity of brain activity – especially during complex 

behavior and cognition.  

 A secondary code has been proposed that relies on the timing of spikes 

rather than the overall spike rate – this is generally referred to as temporal coding. 

Temporal coding assumes a meaningful temporal structure in the neural response. 

Evidence for precise temporal firing has often been identified in primary sensory 

areas including V1 (Butts et al., 2007; Havenith et al., 2011). Precise temporal 

firing in PFC neurons was also identified during WM - around the same time as 

persistent activity (Batuev et al., 1979). The main reasoning for the efficacy of a 

temporal code is that spikes arriving at a specific time may be more effective at 

depolarizing downstream neurons.  

  It should be noted that temporal codes likely do not exist without some 

influence of rate-coding. One clear example of parallel codes exists in the 

gustatory system in which rate coding is used to determine tastant type (i.e., 

chemical sensed as flavor – sweet, salty, bitter) and a temporal code is used for 

specific differentiation (consider a craft IPA beer that temporally evolves in flavor) 

(Carleton et al., 2010). Co-functioning parallel codes may be the case for WM as 

well. 

  Sequential population activity codes, composed of tiled activity from 

transiently active single neurons further propose that the relative order of firing of 

single neurons in a population carries information. Early studies have 
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acknowledged that patterns of neural ensemble firing may carry information in PFC 

and have demonstrated techniques to attempt to uncover these spatiotemporal 

patterns in a limited number of simultaneously recorded neurons (Abeles & 

Gerstein, 1988). Since the development of high-density neural recording, 

sequential activity has been identified during complex movement, navigation, and 

tasks in rodents requiring short-term memory (Chi & Margoliash, 2001; Tang et al., 

2014; Srivastava et al., 2017; Okubo et al., 2015; Daliparthi et al., 2019; Itskov et 

al., 2011; Eichenbaum, 2014; Zhou et al., 2020; Harvey et al., 2012; Akhlaghpour 

et al., 2016). One may consider that sequential neural bursting may be related to 

WM coding in PFC in which temporally adjacent action potentials may trigger a 

heightened response in downstream neurons. 

  Another mechanism which has recently generated extensive attention is 

referred to as phase-of-firing coding. This proposes that neurons encode 

information based on spike rate with spike timing modulated by precise phases in 

network fluctuations (i.e., oscillations).  Essentially, neuron firing is modulated by 

oscillatory phase, causing neurons to fire with greater synchrony. This mechanism 

is often reported in the visual cortex. For example, in one experiment, LFP phase 

was recorded from V1 as it was modulated by naturalistic visual stimuli (i.e., a 

movie). The phase of low-frequency LFP added more information about the stimuli 

than spike count alone (Montemurro et al., 2008).  

  LFP activity separated into different frequencies has also been reported to 

represent aspects of WM in NHPs in which magnitude, frequency, and oscillatory 

phase have been connected to remembered stimuli (Siegel et al., 2009; Lundqvist 

et al., 2016; Lundqvist et al., 2018a, 2018b). For example, the Miller lab identified 

that bursts of narrow-band gamma oscillations were related to neural spiking and 

were associated with WM maintenance (Lundqvist et al., 2016; Lundqvist et al., 

2018a). Activity in the alpha and beta frequencies have been proposed to play 

inhibitory functions during WM as occurs in movement in which elevated beta 

activity is associated with movement inhibition (Lundqvist et al., 2018a; Zhang et 

al., 2008; Schmidt et al., 2019). Low-frequency theta has been proposed to 
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modulate gamma oscillations (Canolty et al., 2006) and may also be modulated by 

items held in WM (Jensen & Tesche, 2002). 

1.3 « Disorders of Working Memory » 

1.3.1 Schizophrenia 

  The expansion of the PFC has increased cognitive capacity and expanded 

the mental world of primates, with the greatest expansion occurring in humans. 

However, this expansion has also made the PFC more vulnerable, prompting the 

development of certain psychiatric disorders (Passingham & Wise, 2012). One 

such human-specific disorder is schizophrenia. Schizophrenia is a debilitating and 

chronic mental disorder that affects approximately 20 million people worldwide 

(Charlson et al., 2018). Symptoms are most often classified into three categories: 

positive, negative, and cognitive (NIMH, 2016). Positive symptoms include 

hallucinations and delusions, negative symptoms are the absence of typical 

emotion or behavior such as asociality and flattened affect, and cognitive 

symptoms include deficits in attention, WM, and executive functioning (NIMH, 

2016).  

  Cognitive dysfunction has recently gained recognition as a core symptom 

of schizophrenia and closely predicts functional disease outcomes since these 

deficits contribute to impaired social and vocational functioning (Bowie & Harvey, 

2006; Lepage et al., 2014). Many of the cognitive tasks in which patients perform 

poorly have some reliance on WM, specifically the ability to retain mnemonic 

information to perform an appropriate response. Accordingly, WM dysfunction is 

prevalent in schizophrenia (Forbes et al., 2009; Starc et al., 2017) and the PFC, 

which I have outlined earlier as an essential region for WM, has been identified as 

a central site of dysfunction in schizophrenia. More precisely, patients display 

abnormal LPFC activity during cognition (Smucny et al., 2022) and impairments in 

tasks associated with LPFC function like the Wisconsin Card Sorting Task 

(Weinberger et al., 1986) and the ODR task (Park & Holzman, 1992).  
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  Unfortunately, cognitive symptoms are challenging to treat using currently 

available therapies including treatment with typical and atypical antipsychotic 

medication (Gold, 2004). This is exacerbated by our limited understanding of the 

cause of cognitive dysfunction in patients. We do know that schizophrenia is likely 

caused by a myriad of genetic and environmental influences in which increasing 

genetic similarities increase the risk of developing schizophrenia (monozygotic 

twins show a 50% concordance rate) (Henriksen et al., 2017). Symptoms are 

associated with abnormalities in brain structure such as increased ventricle size 

(Kempton et al., 2010; van Erp et al., 2016), abnormal cortical folding 

(Palaniyappan & Liddle, 2012; Matsuda & Ohi, 2018), and small pyramidal neurons 

with lower dendritic spine density in PFC layer 3 (Pierri et al., 2001; Kolluri et al., 

2005). Additionally, studies have identified abnormalities in select neurotransmitter 

systems.  

  The dopamine hypothesis of schizophrenia was popularized after the 

discovery of first-generation antipsychotic drugs like haloperidol which treated 

positive symptoms through action on the dopaminergic system. Moreover, 

substances that increase dopamine levels, like amphetamines, are known to 

trigger psychosis (Bramness et al, 2012).  In support of this theory, postmortem 

studies have found altered cortical dopamine innervation and increased 

concentrations of dopamine D2 receptors in the brains of patients with 

schizophrenia (Seeman et al., 1990; Akil et al., 1999). However, typical 

antipsychotics that function on dopaminergic receptors do not treat negative or 

cognitive symptoms of schizophrenia, suggesting that other systems are involved.   

  An imbalance of excitation and inhibition has been proposed to contribute 

to the development of schizophrenia which may occur through dysfunction of 

inhibitory GABAergic and/or excitatory Glutaminergic systems. GABAergic PV 

interneurons in the PFC are largely vulnerable across many psychiatric diseases, 

including schizophrenia (Lewis et al., 2012). For example, a meta-anaylsis of 

postmortem concentrations of PV interneurons concluded that the density of PV 

interneurons is reduced in the frontal cortex of patients with schizophrenia (Kaar 
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et al., 2019). PV interneuron dysfunction is also evidenced to play a large role in 

symptom formation through abnormalities in the enzyme glutamate decarboxylase 

(GAD67) (responsible for the conversion of glutamate into GABA) (Erlander & 

Tobin, 1991). GAD67 mRNA is downregulated in the dlPFC of patients with 

schizophrenia (Akbarian et al., 1995; Mirnics et al., 2000; Volk et al., 2000). 

Moreover, this downregulation was primarily found in PV-positive neurons with low 

levels of PV expression (Hashimoto et al., 2003).  

  Complex cognitive functioning relies on the neural circuits within the PFC 

consisting of diverse cell types. GABAergic PV-expressing interneurons maintain 

normal circuit functioning by providing inhibition that both stabilizes and refines 

circuit activity, leading to balanced excitation and inhibition. Aberrant PV-positive 

neurons may then inefficiently inhibit pyramidal cells leading to hyperexcitation 

through decreased lateral inhibition and/or decreased dendritic inhibition through 

interactions with CR and CB interneurons (Lewis et al., 2012). 

  Abnormalities in glutamatergic systems may also contribute to the 

pathophysiology of schizophrenia. Glutamatergic receptors are downregulated in 

PFC (Konradi & Heckers, 2003) and dysfunction of specific NMDA receptor 

subunits in schizophrenia has been identified including the gene for the 2B subunit 

(GRIN2B) (Li & He, 2007; Akbarian et al., 1996). PV interneurons receive reduced 

excitatory input (Nakazawa et al., 2012), evidenced by the reduced density of 

excitatory synapses on PV expressing interneurons in patients with schizophrenia 

(Chung et al., 2016). There is also evidence that symptom treatment through 

antipsychotic drugs facilitates excitatory transmission, particularly, NMDA receptor 

neurotransmission after acute and prolonged exposure (Arvanov & Wang, 1999; 

Gemperle et al., 2003).  

  Diseases that specifically target NMDA receptors like anti-NMDA receptor 

encephalitis, caused by an antibody-mediated reduction of NMDA receptors, 

display symptoms that are remarkably akin to those of schizophrenia, so much so 

that this rare autoimmune disease is often first diagnosed as schizophrenia (Luo 
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et al., 2022). Patients with both conditions also experience similar WM deficits 

(Lynch et al., 2018; Stein et al., 2020). 

1.3.2 Ketamine as a Model of Schizophrenia 

  Several drugs can be used to mimic symptoms of schizophrenia, including 

amphetamines based on their aforementioned effect on dopaminergic systems 

and psychedelic drugs like LSD with hallucinogenic effects. In experimental 

settings, glutamatergic NMDA receptor antagonists like ketamine, phencyclidine 

(PCP), and dizocilpine (MK-801) are used to transiently produce multiple 

symptoms characteristic of schizophrenia including hallucinations, disassociation, 

and cognitive deficits (Javitt, 1987; Coyle, 1996; Ma et al., 2018; Olney et al., 

1999). Ketamine consistently elicits WM deficits in humans and animals (Frohlich 

& van Horn, 2014; Morgan et al., 2004; Malhotra et a., 1997; Wang et al., 2013) 

and exacerbates cognitive impairment in patients with schizophrenia (Malhotra et 

al., 1997). Ketamine administration can also trigger increased symptoms of 

psychosis in patients with schizophrenia (Krystal et al., 1994). 

  Ketamine primarily acts on NMDA receptors as a non-competitive 

antagonist. NMDA receptors are voltage gated calcium channels with a Mg2+ ion 

‘plug’ positioned inside the channel pore during its inactive state, preventing the 

inward flow of Ca2+. Upon depolarization and attachment of several essential 

ligands including glycine, the Mg2+ ion is dislodged, opening the ion channel, and 

allowing for an influx of Ca2+ (Kroemer et al., 1998). Ketamine binds to the PCP 

binding site within the ion channel, thus Ca2+ remains blocked even when the Mg2+ 

plug is dislodged (Figure. 1.6).  

  Despite ketamine acting as a glutaminergic receptor blocker, it is 

documented to increase overall neural excitation. For example, in vitro ketamine 

administration often leads to the production of spontaneous action potentials 

without EPSP input, suggested to result from increased NMDA receptor currents 

for sodium, thus causing neurons to be more excitable (Benoit et al., 1986). 

Increased excitation is further evidenced by reports of excitotoxicity of ketamine 



27 

 

and PCP (Plitman et al., 2014) as well as evidence of increased metabolic activity 

and increased neural excitation in the human PFC after ketamine administration 

(Breier et al., 1997; Vollenweider et al., 1997). 

  Ketamine has differential effects on cell types that may contribute to 

increased excitation and symptom formation. Ketamine reduces the activity of 

interneurons and increases the activity of pyramidal cells in rodents (Homayoun & 

Moghaddam, 2007). NMDA receptor antagonists decrease the expression of PV 

in the rodent PFC, relating NMDA receptor hypoactivity to PV interneuron 

dysfunction (Cochran et al., 2003). Moreover, administering a GABA agonist 

shortly after ketamine can reduce the behavioral effects of ketamine (Castner et 

al., 2010). 

  Increased excitation related to abnormal activity of interneurons, caused by 

ketamine administration, may disrupt local circuits for WM as previously described 

in schizophrenia. This provides a clear pathological mechanism for WM 

dysfunction consistent between schizophrenia and subanesthetic ketamine use. 

This evidence and the similarity in symptom formation support ketamine as a 

model of cognitive deficits in schizophrenia. 
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Figure. 1.6: Ketamine blockage of NMDA receptors 

NMDA receptor in an inactivated state (left), during which, a Mg2+ plug blocks the ion 

channel. Depolarization and binding of specific ligands remove this block. Ketamine acts 

as a receptor antagonist by binding to the PCP binding site within the ion channel (right). 

Even upon channel activation, ketamine continues to block the ion channel. 
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1.4 « Dissertation Overview » 

  The work presented in this dissertation uses high-density single neuron 

recording in rhesus macaque monkeys performing a novel task to examine how 

visuospatial WM is coded in LPFC in naturalistic conditions. This novel WM task is 

set in a visually complex virtual environment. Unlike previous experiments, animals 

are permitted free visual exploration and utilize 3D navigation using a joystick to 

perform the task. Since LPFC activity has not been recorded in this type of 

environment before, it is important to first explore animal behavior and basic neural 

coding during this task. Therefore, in chapter 2, I explore how rhesus macaques 

perform WM and visual perception tasks in this virtual environment. I explore 

navigation and eye movement behaviors as well as neural signals related to eye 

movement and gaze position. Furthermore, I explore how WM and perceptual 

neural coding remain robust and differentiable in this complex environment.  

  Part of my motivation for creating this novel task was to explore cognitive 

dysfunction associated with mental disorders in more naturalistic settings. Patients 

with ADHD, dementia, schizophrenia, and other conditions that decrease WM 

function must use WM in complex situations and contexts that occur in day-to-day 

life. Therefore, I wanted to examine how WM deficits that resemble those in 

schizophrenia occur in more natural settings - akin to how patients use WM in real 

life. In chapter 3, I use ketamine, an NMDA receptor antagonist that mimics many 

of the symptoms of schizophrenia including WM deficits. I explore how ketamine 

distorts WM representations in the naturalistic WM task caused by distinctive 

effects of ketamine on different cell types. 

  The naturalistic task that I developed includes complex spatiotemporal 

elements; therefore, the task is more dynamic than traditional WM tasks. Elements 

of the environment change based on task timing. For example, when the 

navigation period begins, visual scenery changes as animals move in the arena. 

During the delay period, items in the environment may also serve as distractors – 

requiring the utilization of a robust yet flexible code to maintain WM 
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representations. We hypothesized that an additional neural code, parallel to 

persistent activity, may be involved in supporting these WM representations during 

a complex task. Therefore, in chapter 4, I explore how temporal coding may 

support WM maintenance during a naturalistic WM task. Specifically, I examine 

precise patterns of neural population activity in which single neurons sequentially 

fire forming a continuous ‘tiling’ of activity that represents target locations as well 

as abstract target trajectories. Finally, in chapter 5, I reiterate the questions driving 

my dissertation and present limitations of my studies, commentary connected to 

the field at large, and future directions to explore. 
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Chapter 2  

2 « Stable Working Memory and Perceptual 

Representations in Macaque Lateral Prefrontal Cortex 

During Naturalistic Vision » 

  We have developed a novel perception and working memory task that takes 

place in a complex virtual environment. This task allowed us to explore how the 

primate prefrontal cortex represents the location of items held in working memory 

in realistic conditions. We show that despite eye movement and complex visual 

input, neurons maintain robust working memory representations of space which 

are distinct from neuronal representations for perception. We provide evidence for 

separate processing of working memory, perception, and eye movement in virtual 

reality. We further provide novel insight on the use of virtual environments to 

construct behavioral tasks for electrophysiological experiments. 

2.1 « Abstract » 

  Primates use perceptual and mnemonic visuospatial representations to 

perform everyday functions. Neurons in the lateral prefrontal cortex (LPFC) have 

been shown to encode both of these representations during tasks where eye 

movements are strictly controlled and visual stimuli are reduced in complexity. This 

raises the question of whether perceptual and mnemonic representations encoded 

by LPFC neurons remain robust during naturalistic vision — in the presence of a 

rich visual scenery and during eye movements. Here we investigate this issue by 

training macaque monkeys to perform working memory and perception tasks in a 

visually complex virtual environment that requires navigation using a joystick and 

allows for free visual exploration of the scene. We recorded the activity of 3950 

neurons in the LPFC (areas 8a and 9/46) of two rhesus macaques using multi-

electrode arrays, and measured eye movements using video tracking. We found 

that navigation trajectories to target locations and eye movement behavior differed 
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between the perception and working memory tasks suggesting that animals 

employed different behavioral strategies. Single neurons were tuned to target 

location during cue encoding and working memory delay and neural ensemble 

activity was predictive of the animals’ behavior. Neural decoding of the target 

location was stable throughout the working memory delay epoch. However, neural 

representations of similar target locations differed between the working memory 

and perception tasks. These findings indicate that during naturalistic vision, LPFC 

neurons maintain robust and distinct neural codes for mnemonic and perceptual 

visuospatial representations. 

2.2 « Introduction » 

  Seminal lesion studies in the early 20th century demonstrated that the 

primate lateral prefrontal cortex (LPFC) plays a pivotal role during delayed 

response tasks involving the maintenance of information in working memory (WM) 

(Baddeley, 1986; see Roussy, Mendoza-Halliday, & Martinez-Trujillo, 2021a for 

review). Neurons in the LPFC maintain WM representations of space (Funahashi, 

Bruce, & Goldman-Rakic, 1989; Goldman-Rakic, 1994; Leavitt, Mendoza-Halliday, 

& Martinez-Trujillo, 2017a; Constantinidis et al., 2018; Suzuki & Gottlieb, 2013; 

Miller, Erickson, & Desimone, 1996), as well as perceptual representations 

(Mendoza-Halliday, & Martinez-Trujillo, 2017; Roussy et al., 2021a). However, 

neurons in the LPFC are also thought to encode signals related to eye position 

(Bullock, et al., 2017; Hasegawa, Sawaguchi, Kubota, & Fuster, 1998; Boulay, 

Pieper, Leavitt, Martinez-Trujillo, & Sachs, 2016). Many of the previous studies of 

visual WM and perception in the LPFC that sampled neuronal activity have been 

conducted in conditions where gaze is constrained, and stimuli are shown on a 

homogenous computer screen. However, during natural vision, primates sample 

complex information via gaze shifts in visual scenes that contain multiple items and 

variable layouts. It is unclear whether perceptual and WM representations in LPFC 

neurons remain invariable or deteriorate under these naturalistic conditions.   
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 One of the most universally recognized spatial WM tasks is the oculomotor 

delayed response (ODR) task in which animals are required to saccade to a 

remembered cued location (Funahashi, Bruce, & Goldman-Rakic, 1989; Leavitt, 

Pieper, Sachs, & Martinez-Trujillo, 2018). During the cue presentation and delay 

epoch of the task, animals must maintain gaze on a fixation point. Breaking fixation 

results in an ‘error trial’ meaning that correct performance of the task is contingent 

on maintaining proper eye position during the delay epoch. This intentional and 

task pertinent eye fixation limits the possible effect of gaze shifts and eye position 

on the measured neuronal activity. However, this strict control of eye position 

during memory maintenance deviates from how WM is used in naturalistic 

conditions. In day-to-day life, we move our eyes while using WM, yet we can 

maintain robust WM representations of locations despite those changes in eye 

position. It is currently unclear how unrestrained eye position in a visually complex 

environment may affect the ability of neurons and neuronal ensembles in the LPFC 

to represent perceptual and mnemonic information.   

Here, we measure firing rates of neurons in the LPFC of two macaques 

during virtual WM and perceptual tasks while allowing the animals to freely view a 

rich visual environment. We recorded the activity of 3950 neurons in the LPFC 

(areas 8a and 9/46) (Petrides, 2005) of both animals while measuring eye position. 

Neuronal activity was predictive of target location during WM and perception 

despite changes in eye position. Eye position poorly predicted target location when 

compared to neuronal activity. Additionally, using linear classifiers, we found that 

coding of remembered and perceived targets does not generalize in LPFC 

neuronal populations.  
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2.3 « Results » 

2.3.1 Naturalistic Working Memory and Perception Tasks 

  We developed a naturalistic spatial WM task using a virtual reality engine 

(Unreal Engine 3, UDK). The task took place in a virtual arena that allowed for free 

navigation using a joystick. Importantly, to simulate natural behavior, animals were 

permitted free visual exploration (unconstrained eye movements) during the entire 

trial duration. On each trial, a target was presented for 3 seconds during the cue 

epoch at 1 of 9 locations in the virtual arena (Figure. 2.1a, b). In the WM task, the 

target then disappeared during a 2-second delay epoch. Navigation was disabled 

(i.e., joystick movements did not trigger any movement in the virtual arena) during 

the cue and delay epochs. Subsequently, navigation was enabled, and animals 

were required to virtually navigate to the target location within a 10-second 

response epoch to obtain a juice reward (Figure. 2.1c). We also developed a 

perceptual version of this task in which the target remains on screen for the trial 

duration (Figure. 2.1c). We trained two rhesus monkeys (Macaca mulatta) on both 

virtual tasks and recorded neuronal activity during task performance using two 96-

channel micro-electrode arrays (Utah Arrays) in each animal. Arrays were 

implanted in the left LPFC (area 8a and 9/46; one on each side of the principal 

sulcus, anterior to the arcuate sulcus) (Figure. 2.1d, e) (Petrides, 2005). 
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Figure. 2.1: Experimental setup 

a. Animal in task setup with joystick, reward system, eye recording system, and monitor 

displayed. b. Overhead view of the virtual environment indicating the start location and the 

nine target locations. c. Task timeline displaying the cue, delay, and response epochs for 

the working memory and perception tasks. The target remains on screen throughout the 

delay and response epochs during the perception task. d. 3D modeled brain image from 

an MRI of NHP B with Utah array locations in the left hemisphere indicated by pink 

squares. e. Surgical images showing implanted Utah arrays in both animals. 
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2.3.2 Task Performance and Animal Behavior 

  We analyzed behavior from 20 WM sessions (12 from NHP B, 8 from NHP 

T) and 19 perception sessions (14 from NHP B, 5 from NHP T). Both animals 

performed the tasks above chance (theoretical chance ~11%). Both animals 

performed significantly better on the perception (NHP B: Mean = 98%, NHP T: 

Mean = 95%) than the WM memory task (NHP B: Mean = 87%; NHP T: Mean = 

57%), reflecting the increased difficulty of including a memory delay epoch (Figure. 

2.2a). Response times for correct trials were consistent between animals and tasks 

(Figure. 2.2b). 

  We plotted animal trajectories to two example target locations to understand 

how animals were navigating in the virtual space (Figure. 2.2c). We divided the 

environment into a 16-cell grid and calculated the number of times that animals 

entered each cell as part of their navigation trajectory. Two example target 

locations averaged over all sessions are shown in Figure. 2.2d. We next calculated 

the trajectory of animals in the environment in each correct trial from their starting 

location to the location of the target to determine how precise animals navigated 

towards targets. This real trajectory length was divided by the optimal trajectory 

length (i.e., Euclidean distance from start to target location), resulting in a measure 

of deviation from optimal trajectory where a value of 1 indicates that animals took 

the shortest possible trajectory to a target. Trajectory lengths were similar between 

animals during perception (NHP B: Median = 1.0; NHP T: Median = 1.1) and during 

WM (NHP B: Median = 1.8; NHP T: Median = 1.9). However, trajectories were 

more optimal during the perception task than during the WM task, indicating less 

precise navigation to targets during WM, when the target was not visible (Figure. 

2.2e). Overall, these results indicate that both animals used similar behavioral 

strategies to perform the tasks based on similar response times and trajectories. 
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Figure. 2.2: Task behavior 

a. Percent of correct trials for the working memory and perception tasks for each session. 

b. Response time for correct trials for the working memory and perception tasks for each 

animal. Dark gray lines represent mean values and each data point represents a session. 

c. Animal trajectories plotted for an example session and two example target locations (in 

pink) in which green trajectories indicate correct trials and black trajectories indicate 

incorrect trials. Example sessions are included for working memory and perception tasks 

as well as both animals. d. The virtual arena divided into 16 regional cells. The number of 

times each cell is entered (i.e. the number of trajectory points within each cell) is shown 

averaged over sessions for two example locations (in pink). Examples are included for 

working memory and perception tasks as well as both animals. e. Optimal trajectory 

measures how optimal the trajectory to correct target locations is based on path length in 

which a value of one, marked by the gray dashed line, reflects the shortest possible path. 

The optimal trajectory is plotted for the working memory and perception tasks for each 

animal. Dark gray lines represent median values and each data point represents a 

session. p < 0.01=*, p < 0.001=**, p < 0.0001=***. 
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2.3.3 Eye Behavior During Naturalistic Working Memory and 

Perception 

  Our virtual reality setup allowed for precise tracking of eye movement and 

gaze position; therefore, we measured eye movement behavior during both tasks. 

First, we calculated the proportion of eye position data points falling within the 

presentation screen. ‘Eyes off screen’ occurs when the animals close their eyes or 

most often, when they look away from the screen. The proportion of eye data points 

falling within screen boundaries differed between task epochs and between the 

WM and perception tasks. During WM, animals maintained eye position on the 

screen less during the delay epoch (Mean = 86.0%) than during the cue (Mean = 

92.9%) or response epochs (Mean = 95.0%). During perception, animals 

maintained their eyes on the screen less during the response epoch (Mean = 

81.0%) than during the delay (Mean = 89.9%) or cue epochs (Mean = 92.6%). 

Unlike during WM, the percentage of eye position on-screen during perception cue 

and delay epochs showed no significant difference (Figure. 2.3a). 

   We categorized eye movement into fixations, saccades, and smooth 

pursuits (Corrigan, Gulli, Doucet, & Martinez-Trujillo, 2017). Example traces 

displaying the categorization can be found in Figure. 2.3b, c. We compared the 

proportion of eye movements that fall within each category between task epochs 

during perception and WM. The proportion of eye movements classified as 

fixations significantly differed between trial epochs and between WM and 

perception tasks (Figure. 2.3d). During WM, animals made the most fixations 

during the cue epoch with fewer made during the delay and response epochs (Cue: 

Mean = 46.2%; Delay: Mean = 44.3%; Response: Mean = 33.3%). During 

perception, animals also fixated the least during the response epoch with more 

fixations made during the cue and delay epochs (Cue: Mean = 47.3%; Delay: Mean 

= 46.2%; Response: Mean = 35.9%). 

  The proportion of eye movements classified as saccades significantly 

differed between trial epochs and between WM and perception tasks. During WM, 
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the proportion of saccades was highest in the response epoch with fewer occurring 

in the cue epoch and fewest during the delay epoch (Cue: Mean = 37.2%; Delay: 

Mean = 36.9%; Response: Mean = 41.8%) (Figure. 2.3d, left panel). During 

perception, animals also made the highest proportion of saccades during the 

response epoch (Mean = 36.7%) with fewer occurring during the cue (Mean = 

33.5%) and delay epochs (Mean = 27.6%) (Figure. 2.3d, right panel). Between WM 

and perception response epochs, there was a larger proportion of smooth pursuits 

during perception (Mean = 30.4%) than during WM (Mean = 28.1%). The latter 

may be linked to the presence of the target during perception but not during WM. 

  During the WM task delay epoch, there was a larger proportion of eye 

movements classified as saccades than during the corresponding epoch of the 

perception task (Figure. 2.3d). There was also a larger percentage of eye 

movements onscreen during the response epoch of the WM task than during the 

corresponding epoch of the perception task (Figure. 2.3a). During the WM task 

response epoch, there was also a larger proportion of eye movements classified 

as saccades than during the corresponding epoch of the perception task (Figure. 

2.3d).  

To further explore saccadic activity, we calculated the main sequence, 

reflecting the relationship between saccade peak velocity and amplitude (see 

methods) (Figure. 2.3e). Saccade velocity was significantly different (higher peak 

velocities as a function of saccade amplitude) in the response epoch compared to 

the cue and delay epochs during perception for all amplitude bins (t-test, p < 0.05, 

effect size > 0.2). The increased velocity of saccades during perception response 

may reflect the use of saccades to track the target during navigation which does 

not occur during WM when the targets were no longer present (Figure. 2.3e). It 

may also signify an increase in arousal during navigation, which would be more 

demanding than the other task epochs. We also compared the main sequences 

between saccades that land on target and off-target during the delay epoch 

(Figure. 2.3f). We found that on-target saccades resulted in larger peak velocities; 

however, these differences were more pronounced and were only significant 
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during the perception task (WM: t-test, p > 0.05; Perception, t-test, 6 bins, p < 

0.05). Therefore, saccades that land on target versus those that land off-target 

show a greater difference when the target was physically present compared to 

when it was removed during the WM delay. 

These behavioral results indicate a difference in animal behavior during 

different task epochs and between WM and perception. In particular, less time 

spent looking onscreen during the delay epoch of the WM task combined with 

fewer fixations, and no significant differences in saccade amplitude to targets 

compared to off-targets suggests that animals were less focused on the target 

location - likely due to its removal. It is possible that animals searched for 

landmarks that could serve as references for the target location. Decreased 

fixation and increased number of saccades during the response epoch as well as 

an increase in saccade peak velocity may suggest a similar strategy as well as 

reflect the dynamic nature of the task’s response epoch in which the visual 

environment changes as the animal changes position in the arena.  
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Figure. 2.3: Eye movement behavior 

a. Left column: the percent of eye data points that fall within the boundaries of the screen 

during the cue, delay, and response epochs shown for working memory sessions. Each 

data point represents a session. Right column: the percent of eye data points that fall 

within the boundaries of the screen during the cue, delay, and response epochs shown 

for perception sessions. Each data point represents a session. b. Eye traces over trial time 

categorized into fixations (orange), saccades (green), and smooth pursuits (purple) for an 

example working memory trial and an example perception trial. c. All eye traces 

categorized into fixations (orange), saccades (green), and smooth pursuits (purple) in 

screen coordinates for an example working memory trial and an example perception trial. 

d. Percent of eye movement events classified as fixations or saccades during the different 

task epochs for working memory and perception sessions. Error bars represent the 

standard error of the mean. Asterisks on the left represent significance between the cue 

and delay epochs, asterisks in the middle represent significance between the cue and 

response epochs, and asterisks on the right represent significance between the delay and 

response epochs. Asterisk color corresponds to eye movement type. e. Main sequence 

for the working memory and perception task during different task epochs. Asterisks 

represent significance at each amplitude bin. Blue asterisks represent significance 

between the cue and delay epochs. Green asterisks represent significance between the 

cue and response epochs. Pink asterisks represent significance between the delay and 

response epochs. f. Main sequence for the working memory and perception tasks for 

saccades landing on and off of target location. Asterisks represent significance between 

on-target and off-target saccades at each amplitude bin. Error bars are SEM. p < 0.01=*, 

p < 0.001=**, p < 0.0001=***. 
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2.3.4 Neural Spatial Selectivity 

  We recorded the activity of 3950 units between the dorsally (1992 units) and 

ventrally (1958 units) placed multi-electrode arrays. Many units in this sample 

displayed delay activity. Figure. 2.4a, b shows activity patterns of two neurons that 

selectivity increased their activity during the delay epoch for preferred target 

locations. Tuning for target location was identified in the population for cue and 

delay epochs (Cue: Ventral: Mean = 22%, Dorsal: Mean = 16%; Delay: Ventral: 

Mean = 14%, Dorsal: Mean = 12%) and many neurons were tuned during both the 

cue and delay epochs (Ventral: Mean = 37%; Dorsal: Mean = 48%) (Figure. 2.4c, 

d).  

At the population level, neurons with the same spatial tuning exhibited 

increased delay activity during single trials when their preferred target location was 

presented. Populations of neurons with different spatial tuning from the target 

presented displayed a lower magnitude of activity (Figure. 2.5). 
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Figure. 2.4: Neural coding for remembered locations 

a. Neural activity for an example neuron recorded by the dorsally located electrode array. 

The spike density function in the left panel displays the neuron’s activity over trial time for 

the nine target locations. The inlet displays normalized firing rate for all target locations. 

The right panel displays a raster for the same neuron in which trials are sorted by preferred 

to least-preferred target locations. The delay period is indicated by the salmon-colored 

column. b. Neural activity for an example neuron recorded by the ventrally located 

electrode array. c. The proportion of tuned neurons during the cue (blue), delay 

(pink/salmon), and during both the cue and delay epochs (orange) recorded in the dorsally 

located array. d. The proportion of tuned neurons recorded in the ventrally located array. 
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Figure. 2.5: Single trial population activity 

Delay neuron population activity plotted for single-trial examples for each target location 

during an example session. The delay period is indicated by the salmon-colored column. 

The target location for each trial is indicated by the arena inlet (white circle). Blue lines 

represent the population activity of delay neurons that prefer the target presented in the 

trial and gray lines represent the population activity of all other delay neurons tuned for 

other locations. The inlet displays the average delay activity for both populations. Error 

bars are SEM. n-values represent neurons in the blue population. 
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  To determine how much information about the remembered target locations 

was contained in the population of neurons, we used a linear classifier (SVM - 

Support Vector Machine) to decode the target location from neuronal firing rates 

within 500 ms time bins. We used a best ensemble method in which the most 

informative unit was found and was paired with all other neurons in the population 

until the best pair was found. The best pair was grouped with all neurons in the 

population until the best trio was found. This process was continued until the 

ensemble contains 20 neurons (Leavitt, Pieper, Sachs, & Martinez-Trujillo, 2017b). 

To achieve a sample size required for training and testing the classifier for all 

sessions, we combined trials from all targets located on the right, left, and center 

of the environment so decoding was performed using three classes.  

We were able to decode the target location in single trials from the neural 

activity during delay using linear classifiers. An example session in Figure. 2.6a 

shows decoding accuracy for different ensemble sizes during the delay epoch 

divided into four 500 ms time segments. Decoding accuracy over time was above 

chance (33.33%) for all time windows, ranging from 68% during the last 500 ms of 

the included response epoch to 87% towards the end of the cue epoch (Figure. 

2.6b). The decoding accuracy was consistent over the delay epoch (Figure. 2.6b), 

indicating robust information content for remembered locations during our 

naturalistic task.  
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Figure. 2.6: Decoding of remembered locations 

a. Decoding accuracy for one example session during the delay period divided into four 

500 ms temporal segments using neural ensembles of different sizes. The inlet illustrates 

the grouping of targets into three classes. The dashed gray line represents chance 

decoding performance. Dots represent the decoding accuracy of individual neurons. b. 

Median decoding accuracy over trial time. The salmon-colored column represents the 

delay period and the gray dashed line represents chance decoding. The yellow bars on 

top of the figure represent significance from chance performance for each time window (t-

test, p < 0.05). Error bars are SEM. c. Decoding trial outcome. Dots represent data per 

session and the gray dashed line indicates chance performance (50%). d. Decoding 

accuracy using correct or incorrect trials. Dots represent data from different sessions and 

gray solid lines connect data from the session. The gray dashed line represents chance 

decoding.  
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We tested whether the firing rate of the recorded neuronal population during 

the delay period provided enough information to distinguish between correct and 

incorrect trials. Using linear SVM classification, we were able to predict trial 

outcome above chance (50%) based on delay epoch population activity (Mean = 

61.4%, Median = 63.2%; t-test, p = 9.19e-07) (Figure. 2.6c). To determine whether 

decoding performance of remembered target location relates to task performance, 

we used linear SVM classification to predict target location (left, center right) using 

either all correct or all incorrect trials. We balanced the number of correct and 

incorrect trial samples in order to make a comparison between the two trial types. 

Decoding accuracy was significantly higher for correct trials compared to incorrect 

trials (correct trials: Mean = 67.05%; incorrect trials: Median = 41.86%; t-test, p = 

4.71e-04) (Figure. 2.6d). This indicates that population activity during delay was 

more predictive of target location in correct trials than in incorrect trials. 

2.3.5 Fixation on the Target Location 

  One potential issue in allowing for natural eye movements is that animals 

could maintain their gaze on the empty cued location during the delay or visually 

‘rehearse’ their movement plan. We explored this possibility by analyzing gaze 

behavior on the targets. We plotted all fixation points on the screen for one session 

for two example target locations (Figure. 2.7a). Fixation points span the horizontal 

extent of the screen (constitutes the task-relevant area). Figure. 2.7b shows heat 

maps of fixation locations averaged over all sessions for two example target 

locations during the delay epoch. Gaze was not limited to the location in which the 

target was presented. It was also directed to non-target stimuli in the environment 

such as the tree, as would occur in naturalistic contexts.  

  To examine if increased fixation on the cued target location was used as a 

behavioral strategy to improve performance, we calculated the percent of fixations 

falling within the bounds of the target’s location. Overall, the percentage of fixations 

on the target location was very low during the delay epoch (Median = 3%). There 

was no significant difference between correct and incorrect trials suggesting that 
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increased fixation on cued target locations during the delay epoch may not be an 

effective strategy in correctly performed trials. (Correct: Median = 3.5%; Incorrect: 

Median = 2.6%; Wilcoxon Rank-Sum, p > 0.05) (Figure. 2.7c). 

   To determine how predictive fixation location was of the target location, we 

divided the screen into 16 cells and calculated the number of fixation points that 

fell within each cell during the cue and delay epochs. We trained an SVM classifier 

with a linear kernel to predict which of the nine target locations was presented 

based on where on screen the animal was fixating. The classifier performed above 

chance (11.11%) during both epochs but performed significantly better during the 

cue epoch (Median Decoding Accuracy = 31.4%) compared to the delay epoch 

(Median Decoding Accuracy = 20.8%), suggesting reduced patterns of target-

specific fixation during the delay (Figure. 2.7d).  

To determine whether eye fixation was similar between cue and delay 

epochs of the WM task, we trained classifiers using eye fixation positions during 

the cue epoch and tested the classifiers using eye fixation positions from the delay 

epoch. We similarly trained classifiers on delay data and tested them on cue data. 

Decoding accuracy was close to chance level (11.11%) when classifiers were 

cross-trained between epochs of the WM task and it was significantly lower than 

training and testing on congruent epochs (Figure. 2.7d). This shows that the 

position of fixations (i.e., gaze position) were different between the cue and delay 

epochs during the WM task. 

  Previous studies have shown that LPFC neurons encode information 

related to eye movements and gaze position (Bullock, Pieper, Sachs, & Martinez-

Trujillo, 2017). To corroborate these findings, we examined whether neuronal 

activity in our sample of LPFC neurons contained information about the animals’ 

gaze position and planned saccade direction. We designed multiple linear 

regression models to predict firing rate for each neuron during delay epoch eye 

fixation periods from saccade direction, amplitude, and fixation position (Figure. 

2.7e).  
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After fitting the model to a neuron, we obtained the residual values. These 

values represent the residual firing rates that are not accounted for by the model. 

We repeat the procedure for neurons within the same population (i.e., same 

recording session). We then trained linear SVM classifiers to predict target location 

using either the firing rate residual values or the raw firing rates from the same 

population of neurons during the same fixation periods. Decoding accuracy was 

similar using either type of data (residual: Mean = 21.39; real firing rate: Mean = 

24.95; t-test, p = 0.26) (Figure. 2.7f) and both were significantly higher than chance 

(11.11%) (real firing rate: t-test, p = 8.6e-06; residual: t-test, p = 1.7e-04), indicating 

that saccade amplitude, direction, and eye position information were not the main 

contributors to the decoding of the remembered target location. 
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Figure. 2.7: Fixations on screen and target locations 

a. All fixations for an example session plotted on screen for the cue period (blue) and delay 

period (green) for two example target locations. b. Heat maps averaged over working 

memory sessions showing fixation locations on-screen during the delay period for two 

example target locations. c. The percentage of total fixations that fall within the target 

location during the delay period for correct and incorrect trials. Dark gray lines represent 

median values, and each data point represents a session. d. Decoding accuracy for 

predicting target location from the location of eye fixations on-screen during the cue and 

delay epochs. Classifiers are trained on the first epoch listed in the x-axis label and tested 

on the second epoch. The dashed line represents chance decoding accuracy. e.  Added 

variable plot for a linear regression model predicting firing rate during periods of eye 

fixation during delay epochs from eye position and saccade direction and amplitude for an 

example neuron. The solid black line represents the model fit and the dashed lines 

represent 95% confidence bounds of the fit. f. Decoding accuracy for predicting target 

location from real population firing rates during fixation periods and for predicting target 

location from residual values after fitting the model exemplified in ‘e’ to each neuron in a 

population. Dots represent data per session, dark gray lines represent mean values, and 

the dashed line represents chance decoding performance (11%). g. Outlined regions of 

the screen encompassing four target locations that are separable onscreen. h. Median 

decoding accuracy predicting eye position within the outlined regions shown in panel ‘g’ 

using neural population data during fixation periods during the cue and delay epochs. The 

gray dashed line represents chance decoding accuracy. Error bars are SEM. p < 0.01=*, 

p < 0.001=**, p < 0.0001=***. 
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2.3.6 Decoding of Gaze Position from Neural Activity in Prefrontal 

Neurons 

  To further examine neural activity related to gaze; particularly, fixation on 

task-relevant stimuli, we next examined neural activity during fixation on target 

locations. We selected four targets shown in Figure. 2.7g that were non-

overlapping on the screen and measured neuronal firing rates while animals 

fixated on each one of the target locations. We used SVM classification and found 

that we could decode the gaze position from neural activity. The decoding 

accuracy was significantly higher during the cue epoch (Median Decoding 

Accuracy = 65.4%) of the WM task compared to the delay epoch (Median 

Decoding Accuracy = 35.0%) (Figure. 2.7h), suggesting that more information was 

available to the neuronal population when animals fixate on a target that was 

present on screen compared to when the target was no longer present. Indeed, 

the decoding accuracy during the delay epoch was close to chance (25%) 

suggesting that firing rates during fixation in the delay period carried little 

information about the remembered target location. One possible explanation for 

this finding is that decoding during the cue epoch may have been dominated by 

visual responses to the target. During the delay epoch, when no visual cue was 

present, eye position contributes poorly to decoding. These findings suggest that 

eye position signals do not necessarily contribute to the ability of many LPFC 

neurons to encode WM representations in complex and dynamic environments. 

2.3.7 Separation Between Coding for Working Memory and 

Perception 

Unlike the WM task, during the perception task, the target was accessible 

throughout the trial. Thus, it is possible that some neurons respond to the target 

only when it was present in the perception task (perceptual neurons) and some 

neurons are only active during the delay period of the WM task (mnemonic 

neurons) (Mendoza-Halliday et al., 2017; Roussy et al., 2021a). Therefore, we 

hypothesized that neural population activity profiles differ during the perception 
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and WM tasks. To test this hypothesis, we collected neuronal data from 13 

sessions in which animals performed both the WM and perception tasks. The same 

population of simultaneously active neurons were recorded during both tasks 

during these sessions. This allowed us to use SVM classification to cross-train 

neural data between WM and perception to predict the 9 target locations. We 

specifically tested the prediction that SVM classifiers trained in one task will not 

generalize the performance to the other task. 

   Decoding performance was similar between WM and perception when 

classifiers were trained and tested on congruent tasks (i.e., trained on WM and 

tested on WM) (Figure. 2.8a, b). The same population of neurons can maintain 

similar amounts of information about the target location whether targets remain on 

screen (perception) or disappear (WM) (Perception: Median Decoding Accuracy = 

71.5%; WM: Median Decoding Accuracy = 68.1%). Although the same neurons 

were recorded during each task, decoding performance dropped close to chance 

level (11.11%) when the classifiers were trained on perception trials and tested on 

WM trials or when the classifiers were trained on WM trials and tested on 

perception trials (Figure. 2.8a, b). In comparison, classifiers trained on one-half of 

the WM trials and tested on the other half resulted in performance well above 

chance levels (Median Decoding Accuracy = 51.3%) (Figure. 2.8c). The latter 

indicates that our results were not an artifact of using different sets of trials for 

testing and training the classifiers but were an effect of task type (perception vs 

WM). 
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Figure. 2.8: Neural coding for working memory and perception 

a. Decoding accuracy for predicting target location for the perception and working memory 

tasks during the cue epoch. Classifiers are trained on the task that appears first in the x-

axis label and tested on the task that appears second. Asterisk color represents significant 

differences with the condition of that color. Dark gray lines represent median values. The 

dashed gray line represents chance decoding. b. Decoding accuracy for predicting target 

location for the perception and working memory tasks during the delay epoch. c. Decoding 

accuracy for the working memory task during the delay epoch using all trials for classifier 

training and testing or training on half of the trials and testing on half of the trials. The red 

lines represent median values and the bottom and top edges of the box indicate the 25th 

and 75th percentiles. The whiskers extend to non-outlier data points (within 1.5 std). d. 

Cross-epoch median decoding accuracy for the working memory task. e. Decoding 

accuracy when classifiers are cross-trained between 500 ms time windows. p < 0.01=*, p 

< 0.001=**, p < 0.0001=***. 
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We also conducted cross-epoch decoding for WM in which we trained and 

tested on combinations of cue, delay, and response epochs. Decoding 

performance was greatest when the classifiers were trained and tested with data 

from the same epoch and lowest when it was trained and tested on data from 

response and cue epochs (Train on cue - test on response: Median Decoding 

Accuracy = 11.0%; Train on response - test on cue: Median Decoding Accuracy = 

12.3%) and when data was trained on the delay epoch and tested on the cue epoch 

(Median Decoding Accuracy = 17.0%) (Figure. 2.8d). We also conducted cross-

temporal decoding in which we trained and tested classifiers between congruent 

and incongruent time windows of 500 ms. These results indicate higher decoding 

accuracy when classifiers were trained and tested between temporally-near time 

windows within the same trial epoch (Figure. 2.8e). This data suggests that 

different neural activity profiles support LPFC neural codes for WM and perception.  

2.4 « Discussion » 

  By using complex virtual reality tasks, we were able to explore visuospatial 

WM and perception in naturalistic settings - incorporating natural eye movements 

and virtual navigation. We found that animals were able to accurately perform both 

tasks and identified distinct navigation strategies and eye movement behavior that 

occur during WM and perception. Whereas animals used a visually guided strategy 

in the perception task, they necessarily switched their strategy during WM. We also 

demonstrate the suitability of naturalistic WM tasks for neuronal recording in the 

LPFC, particularly those that allow for natural eye movements. We found that 

neurons in the primate LPFC are strongly tuned for target location during cue and 

delay epochs and that the amount of information during delay about target location 

remains consistent within the population of neurons on the single-trial level. We 

also found that neuronal activity during fixation on target location is less predictive 

of target location during the delay epoch compared to the cue epoch indicating that 

eye position information does not necessarily contribute to decoding of target 

location during WM tasks. Information about target location encoded by the same 

neuronal population during the perception delay was not predictive of target 
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location during the memory delay, indicating different patterns of population activity 

during perception and WM. Different population dynamics also exist between 

target encoding and memory epochs in the WM task. 

2.4.1 Influence of Naturalistic Task Elements 

  One unique element of our task is the complex virtual environment in which 

it takes place since it contains non-relevant task stimuli. Based on the robust WM 

signals we describe, the LPFC may allow for the encoding of representations that 

are uniquely dissociated from distracting stimuli. Indeed, previous studies 

demonstrate that LPFC differs from areas such as the posterior parietal cortex 

where WM representations are perturbed by visual distractors (Suzuki, & Gottlieb, 

2013; Jacob & Nieder, 2014). Evidence collected decades earlier from Malmo 

(1942) and Orbach and Fischer (1959) also report the importance of the PFC in 

maintaining WM representations in the presence of irrelevant incoming visual 

signals. However, we must be cautious when defining non-relevant stimuli, 

particularly in our virtual WM task where some of the elements of the environment 

(e.g., tree) may potentially be used as landmarks to estimate the target location 

during navigation.  

  Importantly, despite unconstrained eye movements, animals perform well 

on our WM task and the neuronal population maintains target selectivity and 

information about remembered location throughout the delay epoch. These 

findings may seem to contradict some previous literature showing that forced 

saccadic eye movements during memory delay reduces WM performance in 

human subjects (Postle, Idzikowski, Sala, Della, Logie, & Baddeley, 1999) and 

differentiates the LPFC from regions like the frontal eye fields where shifts in gaze 

disrupt WM signals (Balan, Ferrera, 2003). However, a distinction between our 

task and previous research is the production of forced versus naturally occurring 

saccades. Because the latter may be spontaneously and voluntarily triggered by 

the subjects, they may not interfere with performance in the same manner as task-

dependent saccades. Indeed, before the widespread use of the ODR and other 
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oculomotor dependent tasks, simple delayed response tasks were used that 

displayed two targets and relied on an arm motor response through the use of the 

Wisconsin General Test Apparatus or button pressing. Although eye movements 

were not controlled in these classic experiments, studies reported neurons in the 

PFC that displayed clear delay activity and spatial selectivity (Fuster, & Alexander, 

1971; Kojima, & Goldman-Rakic, 1982). 

2.4.2 Natural Eye Behavior and Visuospatial Working Memory 

  Although our experimental paradigms aimed to approach natural behavior, 

potential concerns may arise surrounding the decision to not control eye position. 

For example, one may argue that animals would simply visually rehearse the target 

location by maintaining gaze fixation on the target of interest. We found substantial 

evidence against this behavioral strategy. Eye behavior differed between periods 

when the target was available compared to times when the target was unavailable 

like during the WM delay and response epochs. During WM delay, animals spent 

significantly less time looking onscreen, suggesting eye movement behavior that 

is less focused on specific elements in the environment such as target location. 

The number of fixations to target locations during WM delay only comprised 3% of 

fixations and there was no significant difference between the number of fixations 

on target between correct and incorrect trials, suggesting that fixation on target 

location during delay was not used as a successful behavioral strategy. From these 

results, one may infer the LPFC maintains an allocentric representation of the 

remembered location that is independent from gaze or fixation position. This issue, 

however, needs further exploration. 

  Using linear classifiers, we also identified that eye position on-screen was 

significantly more predictive of target location during the cue epoch compared to 

the delay epoch. Classifiers that were trained on eye position data from the cue 

epoch and tested on eye position data from the delay epoch resulted in decoding 

accuracy below chance level suggesting different eye movement patterns between 

target encoding and memory maintenance.  
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   Saccade characteristics are influenced by external motivations like task 

reward (Takikawa, Kawagoe, Itoh, Nakahara, & Hikosaka, 2002). Increases in 

peak velocities have been observed for task-related saccades - when fixating on 

a target is needed for information processing - compared to saccades without a 

task-related motivation (Bieg, Bresciani, Bülthoff, & Chuang, 2012). This increased 

saccadic speed may be used to gather task-related information quicker. Saccades 

to target locations may be considered task-relevant compared to non-target 

saccades, thus supporting correct task completion and reward. We found that 

saccades that land on targets versus those that land off-target show a greater 

difference in velocity when the target is physically present during the cue epoch or 

perception task compared to when it is removed during the WM delay. In fact, there 

were no significant differences in saccade speed to targets compared to non-

targets during the WM delay. This may suggest that saccades to target locations 

during memory delay were influenced less by task-relevant motivation and 

information seeking than those made during the cue encoding period. Alternatively, 

it may reflect the fact that visually guided saccades to a target show higher peak 

velocities than to an ‘empty’ location in space (Edelman, Valenzuela, Barton, 

2006). 

Another potential issue is contamination of WM signals by signals related 

to eye movement. We explored the amount of information contained by neural 

activity about target location during fixation on target locations during the cue and 

delay epochs. We found significantly lower decoding accuracy during the delay 

epoch compared to the cue epoch, suggesting that more information was available 

to the neuronal population when animals fixate on a target that is present 

compared to when the target is absent. Indeed, the decoding accuracy during the 

delay epoch was close to chance (25%), suggesting that animals did not receive 

substantial spatial information about the target location during periods of target 

location fixation during delay. These results may be due to the activation of visual 

neurons by the presence of a visual target during the cue epoch. 
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  Although saccadic responses are seen in the PFC, the task and type of 

motor response required by the task have been shown to alter neuronal responses 

(Quintana, Yajeya, & Fuster. 1988; Sakagami, & Niki, 1994; Yajeya, Quintana, & 

Fuster, 1988; Johnston & Everling, 2006; Warden & Miller, 2010). Neuronal 

responses to eye movements like saccades in the PFC are often identified during 

trials of tasks that are contingent on an oculomotor response. Neuronal responses 

to saccades are however notably absent when saccades are spontaneous and 

task-independent such as during inter-trial intervals (Funahashi, 2014).  

2.4.3 Perception and Working Memory in Areas 8a and 9/46 

  The separation of perception and WM has been recognized since 1883 

when neurological conditions were described in which patients exclusively lost 

either the ability to perceive objects or picture them in mind (Bernard, 1883; 

Behrmann, Moscovitch, & Winocur, 1994). Early lesion studies also point to a 

separation of these functions in LPFC in which large lesions consistently produced 

WM deficits while retaining perceptual discrimination functions (Reviewed in 

Roussy et al., 2021a). Moreover, pharmacological manipulations using muscimol 

produce WM deficits without altering perceptual performance (Sawaguchi, & Iba, 

2001). 

  Here, we found that population codes for perception and WM 

representations of target location are not interchangeable. This finding is 

supported by previous work from Mendoza-Halliday et al, who found separate 

populations of LPFC neurons that code for either perception or WM for visual 

motion direction (Mendoza-Halliday et al., 2017). After combining neurons into a 

pseudo-population, they further demonstrated that a decoder using population 

activity patterns could discriminate whether neuronal representations were 

perceptual or mnemonic, suggesting different patterns of neuronal activity 

corresponding to each function. That study, however, used pseudo populations of 

neurons rather than simultaneously recorded neurons to examine WM for motion 

direction and did not use naturalistic virtual tasks in which gaze is unconstrained. 
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Our results expand on and validate the results of that study for naturalistic 

visuospatial WM.  

  How is it possible for the LPFC to represent perceived visual features 

without confounding WM representations? One possibility is that patterns of 

activity remain separate through the activation of perceptual, mnemonic, and 

mixed neurons. Activity patterns of perception and WM cells may help the brain 

monitor and discriminate between the internal (WM) and external (perception) 

representations. Abnormal patterns of activation may cause disruptions in internal 

and externally driven representations triggering hallucinations for example if 

perceptual neurons are activated without visual input.  

2.4.4 Conclusion 

  Our findings provide evidence of robust perceptual and WM representations 

in the macaque monkey LPFC during naturalistic tasks in virtual environments in 

which eye movements are unconstrained and the visual scene contains complex 

stimuli. We find minimal impact of natural eye movement on WM performance or 

neuronal coding for WM. Finally, we provide evidence for different neural codes 

for perceptual and mnemonic representations in the LPFC. 
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2.5 « Supplemental Results » 

 

Figure. S2.9: Neural recording setup 

a, Graphic of presurgical planning procedure showing 3D reconstructed skull and brain 

based on CT and MRI scans. Electrode array positioning is illustrated in blue with a red 

outline. The craniotomy is outlined by the larger red box. b,c, 3D modeled brain with 

electrode array placement in pink. d, Example of spike sorting for one electrode channel. 

Upper panel represents PCA space and the lower panel represents individual threshold 

crossing event waveforms. The blue and red clusters represent what we would classify as 

a single unit. The green cluster would be classified as a multiunit. e, Example of spike 

sorting for one electrode channel. The blue cluster would represent a single unit. The 

green cluster would represent multiunit activity.  

Headpost

b c

Pedestal

Cap Implant

a

d e
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2.6 « Methods » 

Additional statistical information is outlined in appendix 1. 

The same two male rhesus macaques (Macaca mulatta) were used in both tasks 

(age: 10, 9; weight: 12, 10 kg). 

2.6.1 Ethics Statement 

  Animal care and handling including basic care, animal training, surgical 

procedures, and experimental injections were pre-approved by the University of 

Western Ontario Animal Care Committee. This approval ensures that federal 

(Canadian Council on Animal Care), provincial (Ontario Animals in Research Act), 

and other national CALAM standards for the ethical use of animals are followed. 

Regular assessments for physical and psychological well-being of the animals 

were conducted by researchers, registered veterinary technicians, and 

veterinarians. 

2.6.2 Task 

  The current task takes place in a virtual environment that was created using 

Unreal Engine 3 development kit (UDK, May 2012 release; Epic Games). The nine 

targets were arranged in a 3 × 3 grid spaced approximately 0.5 seconds apart 

(movement speed during navigation was fixed). For the working memory task, the 

target is present only during the cue epoch. For the perception task, the target is 

present in the cue, delay, and response epochs. Detailed descriptions of this 

platform and the recording setup can be found in Doucet, Gulli, and Martinez-

Trujillo, 2016. 

2.6.3 Experimental Setup 

  During the task training period, animals were implanted with custom fit, 

PEEK cranial implants which housed the head posts and recording equipment 

(Neuronitek). See Blonde et al, 2018 for more information (Figure. S2.9a-c). 
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Subjects performed all experiments while seated in a standard primate chair 

(Neuronitek) located in an isolated radiofrequency (RF) shielded room with the only 

illumination originating from the computer monitor. Animals were head posted 

during experiments and were delivered juice reward through an electronic reward 

integration system (Crist Instruments). The task was presented on a computer LDC 

monitor positioned 80 cm from the animals’ eyes (27" ASUS, VG278H monitor, 

1024 × 768 pixel resolution, 75 Hz refresh rate, screen height equals 33.5 cm, 

screen width equals 45 cm). Eye position was tracked using a video-oculography 

system with sampling at 500 Hz (EyeLink 1000, SR Research). 

2.6.4 Microelectrode Array Implant 

  We chronically implanted two 10×10 microelectrode Utah arrays (96 

channel, 1.5 mm in length, separated by at least 0.4 mm) (Blackrock 

Microsystems) in each animal located in the left LPFC (area 8a dorsal and ventral, 

anterior to the arcuate sulcus and on either side of the principal sulcus) (Petrides, 

2005). Electrode arrays were placed and impacted approximately 1.5 mm into the 

cortex. Reference wires were placed beneath the dura and a grounding wire was 

attached between screws in contact with the pedestal and the border of the 

craniotomy. 

2.6.5 Processing of Neuronal Data 

  Neuronal data was recorded using a Cerebus Neuronal Signal Processor 

(Blackrock Microsystems) via a Cereport adapter. The neuronal signal was 

digitized (16 bit) at a sample rate of 30 kHz. Spike waveforms were detected online 

by thresholding at 3.4 standard deviations of the signal. The extracted spikes were 

semi-automatically resorted with techniques utilizing Plexon Offline Sorter (Plexon 

Inc.) (see Figure. S2.9d, e). Sorting results were then manually refined. We 

collected behavioral data across 20 WM sessions (12 in NHP B, 8 in NHP T) and 

neuronal data from 19 WM sessions. Behavior was recorded from 19 perception 
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sessions (14 in NHP B, 5 in NHP T). Neuronal data was analyzed from 13 sessions 

in which the WM and perception tasks were performed during the same session. 

2.6.6 Task Performance 

  Percent of correct trials was calculated for both the WM and perception 

tasks. Response time was calculated for correct trials as the duration between the 

start of navigation and the time in which animals reach the correct target location. 

The task arena was divided into a 4 x 4 grid forming 16 area cells. The trajectory 

of the animal was calculated for each trial consisting of x and y coordinates 

sampled every 0.002 seconds. We calculated the number of samples that fell 

within each cell – this determined which cells the animals entered during navigation 

as well as how much of the total trajectory fell within each cell (related to time spent 

in cells). Our optimal trajectory measure is calculated by dividing the real length of 

the trajectory (the Euclidean distance from each x, y positional data point) by the 

true optimal distance (determined by the Euclidean distance from the start location 

to the target location for a particular trial). A value of 1 indicates the shortest 

possible (i.e., most optimal) trajectory length. 

2.6.7 Characterizing Eye Movement 

  The percent of eye data points on-screen is calculated as the number of 

data points that fall within the screen limits divided by the total number of eye data 

points during a given epoch. Off-screen data points occur when the animal looks 

outside of the defined screen limits or when the animal closes its eyes (i.e., during 

blinking).  

  We characterized eye movements as saccades, fixations, or smooth 

pursuits based on methods outlined in Corrigan et al. (2017). Eye movement data 

were first cleaned by removing blinks, periods of lost signal, or corneal-loss spikes 

(occurs when corneal reflection is lost and regained). The clean eye signal was 

smoothed with a second-order Savitzky-Golay filter with a window of 11 samples. 

Saccades were identified by periods of high angular acceleration of the eye of at 
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least 10 ms. Individual saccades were determined by intersaccadic intervals of at 

least 40 ms. Saccade start and endpoints were determined by consistent direction 

and velocity considering a threshold of continuous change of > 20° for at least 

three samples, or an acute change of > 60° at one sample.  Foveations were 

classified as fixations or smooth pursuits based on sample direction and ratios of 

distances. Dispersion of samples, consistency of direction, total path 

displacement, and the total spatial range were considered. 

  We calculated the percentage of total eye movement events classified as 

fixations or saccades for each epoch during WM and perception and the 

percentage of smooth pursuits for the response epoch. 

2.6.8 Main Sequence Calculation 

  The main sequence reflects the relationship between the amplitude of the 

saccade and the peak velocity of the eye rotation towards the saccade’s endpoint. 

Saccade amplitude and velocity can change based on the value of the saccade 

target (Bendiksby & Platt, 2006) or the alertness of the subject (Di Stasi, Catena, 

Cañas, Macknik, & Martinez-Conde, 2013). To calculate the main sequence, we 

separated saccades into bins of 3° of amplitude, starting at 2°, and computed the 

average peak velocity for each bin. Saccades within the same amplitude bins were 

matched between tasks to account for the influence of saccade start location and 

direction (direction with a tolerance of ±13°, and the starting location within 7°). 

2.6.9 Spatial Tuning 

Tuning for spatial location was computed in all units (3950, 3092 in NHP B, 

858 in NHP T) in 19 WM sessions using Kruskal–Wallis one-way analysis of 

variance on epoch-averaged firing rates with target location as the independent 

variable. A neuron was defined as tuned if the test resulted in p < 0.05. 



82 

 

2.6.10 Decoding Target Location from Neuronal Ensembles 

We used a linear classifier (SVM) (Libsvm 3.14) (Fan, Chang, Hsieh, Wang, 

& Lin 2008) with 5-fold cross-validation to decode target position from z-score 

normalized population-level responses using both single units and multiunits on a 

single trial basis. We grouped targets based on location in the virtual arena into 

three groups: right targets, center targets, and left targets leaving us with 3 classes 

(33.33% chance level). We used the best ensemble method detailed in Leavitt et 

al. (2017b), in which we determined the highest performing neuron, paired this 

neuron with all others in the population to achieve the best pair and combined the 

best pair iteratively with all other neurons to form the best trio. This was repeated 

until we reached a best ensemble of 20 neurons. The classifiers used firing rates 

calculated over 500 ms time windows. Decoding accuracy at each time window 

was compared to chance performance using t-tests.  

We used 13 sessions for the comparison between decoding of target 

column (left, right, center) using either correct or incorrect trials. These sessions 

were used because they contained samples from each target condition for 

incorrect trials. The number of trial observations was balanced between correct 

and incorrect trials for each session using data sampling. Results were averaged 

over 10 iterations of random sampling without replacement. 

2.6.11 Gaze Analysis 

We calculated the total fixation time during the delay epoch as well as the 

fixation time on the trial-specific target location for correct trials and incorrect trials. 

We compared the proportion of fixation time on the target location related to all 

fixation time during delay (target location fixation duration / total fixation duration) 

between correct and incorrect trials. 
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2.6.12 Decoding Target Location Using Eye Position 

The screen was divided into 16 cells of equal dimensions. The number of 

foveations classified as fixations was calculated within each cell during the cue 

and delay epochs. We used a linear classifier (SVM) with 5-fold cross-validation to 

determine whether the target location could be predicted by the number of fixations 

within each area of the screen under the assumption that animals gather 

information from the virtual environment during such fixation periods (Corrigan et 

al., 2017). 

2.6.13 Decoding Eye Position from Neuronal Data 

To examine the influence of saccade direction, amplitude, and fixation 

(gaze) position, we calculated the firing rate, fixation location, saccade direction 

and amplitude during fixation periods in the delay epoch. We designed a linear 

regression for each neuron using firing rate during the fixation as the response 

(dependent variable) and binned saccade direction (binned into 8 bins spanning 

45 degrees of a 360 degrees direction circular space), saccade amplitude in 

degrees of visual angle, and fixation position (x, y coordinates) as predictors 

(independent variables).  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜖 

In which y = single neuron firing rate during all fixations over a session, 𝛽1 

= saccade direction (categorical predictor derived by dividing the visual field into 8 

sections - binning saccade direction by degrees), 𝛽2 = saccade amplitude (in 

degrees of visual angle), 𝛽3 = fixation position (x-screen coordinate), and 𝛽4 = 

fixation position (y-screen coordinate).  

We then used the residual firing rates from this model for each neuron as 

input into an SVM linear classifier with 5-fold cross-validation to predict the target 

condition. We used a SVM classifier with the same parameters to also predict the 

target location from the raw firing rates during the same fixation periods.  
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We used a linear classifier (SVM) with 5-fold cross-validation to decode eye 

position on screen based on neuronal firing rates during periods of eye fixation. 

Four target locations were selected as part of this analysis since their locations 

were non-overlapping on screen. Fixation periods occurring in either the cue or 

delay epoch that fell within these regions were used. Short fixation periods were 

removed (amplitude < 6 ms). The firing rate was calculated for each neuron during 

each fixation period and were z-score normalized. Neuronal populations included 

single units and multiunits. 

2.6.14 Decoding Target Location for Working Memory and 

Perception 

We used a linear classifier (SVM) with 5-fold cross-validation to decode 

target location (9 targets) based on population neuronal activity. We used 13 

sessions in which animals performed both the WM and perception tasks so that 

we could use the same population of neurons. We altered training and testing 

conditions so that classifiers were either trained on population activity during 

congruent tasks or incongruent tasks (e.g., trained on WM and tested on 

perception).  

We divided WM trials into two random and separate datasets and tested/ 

trained classifiers on one-half of the trials and trained on the other half. For the 

WM task, we trained classifiers on either congruent or incongruent task epochs 

(e.g., train during cue and test during delay). 
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Chapter 3  

3 « Ketamine Disrupts Naturalistic Coding of Working 

Memory in Primate Lateral Prefrontal Cortex Networks» 

3.1 « Abstract » 

Ketamine is a dissociative anesthetic drug, which has more recently 

emerged as a rapid-acting antidepressant. When acutely administered at 

subanesthetic doses, ketamine causes cognitive deficits like those observed in 

patients with schizophrenia, including impaired working memory. Although these 

effects have been linked to ketamine’s action as an N-methyl-D-aspartate receptor 

antagonist, it is unclear how synaptic alterations translate into changes in brain 

microcircuit function that ultimately influence cognition. Here, we administered 

ketamine to rhesus monkeys during a spatial working memory task set in a 

naturalistic virtual environment. Ketamine induced transient working memory 

deficits while sparing perceptual and motor skills. Working memory deficits were 

accompanied by decreased responses of fast spiking inhibitory interneurons and 

increased responses of broad spiking excitatory neurons in the lateral prefrontal 

cortex. This translated into a decrease in neuronal tuning and information encoded 

by neuronal populations about remembered locations. Our results demonstrate 

that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs 

the excitation inhibition balance within prefrontal microcircuits and ultimately leads 

to selective working memory deficits. 

3.2 « Introduction » 

Ketamine was developed as a dissociative anesthetic but more recently, at 

subanesthetic doses, it is used in medical practice as a rapid action 

antidepressant. It is additionally used as a recreational drug (Pribish, Wood, & 

Kalava, 2020; Gerhard et al., 2020; Wei, Chang, & Hashimoto, 2020; Sassano‐

Higgins, Baron, Juarez, Esmaili, & Gold, 2016;  Domino, 2010). Through its action 
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as an N-methyl-D-aspartate receptor (NMDAR) antagonist, it has been long known 

to induce a trance-like state providing pain relief, sedation, and memory loss 

(Pribish, Wood, & Kalava, 2020; Domino, 2010; Frohlich, & Van Horn, 2014). 

Ketamine is also observed to induce negative, positive, and cognitive symptoms 

of schizophrenia (Frohlich, & Van Horn, 2014; Morgan, Mofeez, Brandner, 

Bromley, & Curran, 2004; Breier, Malhotra, Pinals, Weisenfeld, & Pickar, 1997; 

Malhotra et al., 1997). Despite its widely observed effects, how ketamine induced 

blockage of NMDARs in individual synapses translate to cognitive and behavioral 

changes is still unclear. 

  For the particular case of ketamine induced cognitive deficits, some studies 

have hypothesized that ketamine decreases the stability of mental representations 

maintained by the primate lateral prefrontal cortex (LPFC) (Wang et al., 2013; 

Murray et al., 2014). Neuronal populations in the LPFC are thought to encode 

mental representations that are dissociable from sensory and motor signals and 

are therefore essential to processes like working memory (WM). However, 

because this part of the brain appears de novo in anthropoid primates and has a 

unique architecture relative to other phylogenetically older areas such as the 

medial prefrontal cortex, this hypothesis has been difficult to test in commonly used 

animal models, including rodents (Passingham & Wise, 2012). Illuminating how 

ketamine affects the function of primate lateral prefrontal microcircuits could 

explain its effects on human cognition as well as provide cautionary guidelines for 

its use in medical practice or as a recreational drug. 

  One prominent cognitive function that is impaired by ketamine is WM: the 

ability to temporarily hold and manipulate information relevant to a task (Baddeley, 

1986) This function is widely supported to depend on the activity of PFC neurons 

(Funahashi, Chafee, & Goldman-Rakic, 1993; Suzuki & Gottlieb, 2013; Miller, 

Erickson, & Desimone, 1996; Mendoza-Halliday & Martinez-Trujillo, 2017; 

Jacobsen & Nissen, 1937; Funahashi, Bruce, & Goldman-Rakic, 1989, Leavitt, 

Mendoza-Halliday, & Martinez-Trujillo, 2017). Previous studies have reported that 

NMDAR blockade by ketamine modulates single neuron activity within the LPFC 
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during WM, leading to reduced neuronal tuning (Wang et al., 2013; Ma, 

Skoblenick, Seamans, & Everling, 2015). However, these studies have employed 

behavioral tasks involving simple visual displays relative to the complexity of 

natural environments and have strictly controlled for eye movements. This 

contrasts real-life settings, when WM representations must be held during dynamic 

viewing of natural scenes through saccades. Currently, it remains unknown 

whether neuronal population in LPFC can support WM function in ethologically 

valid settings and whether ketamine has any effect on WM function and brain 

microcircuit dynamics in these conditions. Here, we aimed to clarify this issue. 

  We used a virtual reality engine to build a virtual arena featuring a 

naturalistic visual scene. We trained two rhesus monkeys (Macaca mulatta) on a 

visuospatial WM task that took place in this arena (Figure. 3.1a, b). As during 

natural behavior, animals were permitted free visual exploration (unconstrained 

eye movements), as well as free spatial navigation using a joystick. During task 

trials, a target was presented for 3 s at 1 of 9 locations in the arena. The target 

then disappeared during a 2 s delay epoch. During the target and delay epoch, 

navigation was disabled. Subsequently, navigation was enabled, and animals 

were required to virtually approach the target location within 10 s to obtain a juice 

reward (Figure. 3.1c). We recorded neuronal activity during this task using 96-

channel microelectrode arrays (Utah Arrays). Two arrays were implanted in each 

animal in the left LPFC, one on each side of the principal sulcus (Figure. 3.1d, e) 

(Petrides, 2005). 

  In order to block NMDARs, we administered ketamine intramuscularly. 

NMDARs are evidenced to be critically involved in balancing prefrontal circuit 

interactions between pyramidal cells and inhibitory interneurons that are crucial for 

WM processing (Wang et al., 2013; Wang, 1999; Wang, Tegnér, Constantinidis, 

Goldman-Rakic, 2004; Lisman, Fellous, & Wang, 1998). Ketamine is reported to 

impair WM performance through primarily blocking NMDARs, which are highly 

expressed in the human prefrontal cortex (Frohlich & Van Horn, 2014; Breier, 

Malhotra, Pinals, Weisenfeld, & Pickar, 1997; Wang et al., 2013; Lisman, Fellous, 
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& Wang, 1998; Uhlén et al., 2015). Local administration of NMDAR antagonists 

into the primate LPFC is also sufficient to perturb WM signals (Wang et al., 2013). 

Accordingly, it is reasonable to assume that low doses of systemically 

administered ketamine would produce the greatest effect on prefrontal neuronal 

activity (Breier, Malhotra, Pinals, Weisenfeld, & Pickar, 1997; Anticevic et al., 

2015). 

  We recorded neuronal responses during the task in three blocks of trials, 

which were defined relative to the injection time. Blocks were chosen based on 

ketamine’s intramuscular post-injection peak plasma point (5 min) and observed 

time of action (3–30 min) (Zanos et al., 2018). Trial blocks were therefore defined 

as: before subanesthetic ketamine (0.25–0.8 mg/kg) or saline injection (pre-

injection period), 30 min post injection (early post-injection period), and 30 min post 

injection to 1 h post injection (late post-injection period) (Figure. 3.1f). In some 

sessions, we used a control task in which targets remained on screen for the 

duration of the trial (ketamine-perception variant). Here, the animals did not have 

to remember the target location; therefore, WM was not required to complete the 

trials. This control variant of the task allowed us to separate the effect of ketamine 

on WM function from potential effects on processes like perception and movement. 

  We hypothesized that neuronal populations in LPFC would robustly encode 

WM information in our naturalistic WM task. We further hypothesized that ketamine 

would selectively impair WM performance by disrupting the tuning of single 

neurons as well as the amount of information encoded by neuronal populations 

about remembered locations. 

3.3 « Results » 

3.3.1 Ketamine Impairs Behavioral Performance in a Naturalistic 

Working Memory Task 

  The following results are divided based on the three injection periods 

defined by their temporal relationship to the injection time: pre-injection (prior to 



93 

 

injection), early-post injection (up to 30 min post injection), and late-post injection 

(30 min post injection to 1 h post injection). Both animals performed significantly 

above chance (~11%, nine locations) on all task variants before ketamine 

injections (pre-injection period, p < 0.001), indicating proficiency in the task. 

Performance differed significantly between injection periods (Two-way ANOVA, 

F(2,69) = 4.3, p = 0.017) and between saline and ketamine sessions (Two-way 

ANOVA, F(1,69) = 9.57, p = 0.003). In ketamine-WM sessions, performance 

decreased significantly during the early post-injection period compared to the pre-

injection period (Two-way ANOVA, post hoc, p < 0.0001), to subsequently recover 

during the late post-injection period compared to the early post-injection period 

(Two-way ANOVA, post hoc, p = 0.002). Performance did not significantly change 

between injection periods in saline-WM sessions (Two-way ANOVA, post hoc, pre-

injection and early post-injection, p = 0.999). Importantly, ketamine injections did 

not significantly alter performance between injection periods in perception 

sessions (ANOVA, F(2,6) = 0.25, p = 0.786), indicating that the ketamine induced 

performance deficit was specific to the WM task (Figure. 3.1g). 

  Navigation time to the remembered target location also significantly varied 

between injection periods (ANOVA, F(2,250) = 16.81, p < 0.0001). Navigation time 

increased significantly after ketamine injection compared to the pre-injection 

period (ANOVA, post hoc, p < 0.0001) and decreased in the late post-injection 

period compared to the early post-injection period (ANOVA, post hoc, p < 0.0001). 

No significant changes were found between injection periods in saline-WM 

(ANOVA, F(2,108) = 1.71, p = 0.186) or ketamine-perception sessions (ANOVA, 

F(2,60) = 0.22, p = 0.800) (Figure. 3.1h). 

  Trajectories to remembered targets also became more dispersed after 

ketamine injections in the early post-injection period compared to the pre-injection 

period (Figure. 3.1i). To quantify this observation, we divided the task environment 

into a 5 × 5 grid creating 25 regional cells (see Figure. 3.1j) and calculated the 

percent of trials in which each cell was entered during navigation to a target 

location (Figure. 3.1k). The difference in the percent of trials in which cells were 
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entered between pre and post-injection periods in ketamine-WM and saline-WM 

sessions was then calculated. In ketamine-WM sessions, more cells were visited 

in more trials in the early post-injection compared to the pre-injection period 

relative to saline-WM sessions (Two-way ANOVA, post hoc, animal T, p = 0.002; 

animal B, p = 0.004). Fewer cells were visited in the late post-injection period 

compared to the early post-injection period in ketamine-WM sessions compared 

to saline-WM sessions (Two-way ANOVA, post hoc, animal T, p = 0.001; animal 

B, p = 0.044) (Figure. 3.1l). We observed less dispersion of the trajectories in the 

post-injection period relative to the pre-injection period during ketamine perception 

sessions compared to ketamine WM sessions (Figure. 3.1k last row, Two-way 

ANOVA, post hoc, p < 0.0001). These results indicate that ketamine selectively 

impaired the animals’ ability to maintain the location of the target in WM. 
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Figure. 3.1: Virtual working memory task and behavioral performance 

a, Illustration of experimental setup. b, Overhead view of task arena in virtual 

environment. c, Trial epoch timeline. d, Depiction of Utah array locations. e, Surgical 

images of Utah arrays in LPFC. f, Injection period timeline in which the pre-injection period 

refers to trials occurring before the time of injection, early post-injection period refers to 

injection time to 30 min post injection, and late post-injection period refers to 30 min post 

to 1 h post-injection time. Data from pre-injection period represented by green, early post-

injection period by blue, and late post-injection period by orange. g, Average percent of 

correct trials for ketamine-WM sessions (pink), saline-WM sessions (gray), and ketamine-

perception sessions (blue). h, Average response time for correct trials for all session 

types. i, Trajectories to example target location (red) in one ketamine-WM session for 

correct (green) and incorrect (black) trials. j, Task arena divided into 5 × 5 grid. k, Percent 

of trials in which each cell of the arena is entered for example target location (pink) 

averaged over sessions. l, Average difference (increase) in percent of trials in which cells 

are entered between injection periods (green = early post-injection – pre-injection; 

gray = late post-injection – pre-injection; purple = early post-injection – late post-injection) 

compared between ketamine-WM and saline-WM sessions. All error bars are SEM. 

*<0.05, **<0.01, ***<0.001. 

 



96 

 

3.3.2 Ketamine Decreases Tuning of Single Neurons for 

Remembered Locations 

To investigate the neuronal correlates of the behaviors illustrated in Figure. 

3.1, we recorded the activity of 2906 units (1814 single neurons and 1092 

multiunits) during 17 ketamine-WM sessions (8 in animal T, 9 in animal B). We 

recorded an additional 1117 units (674 single units and 443 multiunits) during 

seven saline-WM sessions (3 in animal T, 4 in animal B). Single neurons exhibited 

spatial tuning for cued locations during the delay epoch in the pre-injection period 

(example neurons in Figure. 3.2a, b). We compared the proportion of tuned units 

between injection periods during ketamine-WM and saline-WM sessions. In 

ketamine sessions, the proportion of spatially tuned neurons significantly 

decreased in the early post-injection period compared to the pre-injection period 

(Chi-Square, X2 = 128.67, p < 0.0001) and significantly increased in the late post-

injection period compared to the early-post injection period (Chi-Square, 

X2 = 126.52, p < 0.0001) (Figure. 3.2c). There were no significant differences in 

the proportion of tuned single neurons between pre-injection and early post-

injection periods during saline-WM sessions (Chi-Square, X2 = 1.44, p = 0.231) 

(Figure. 3.2d). 

  We additionally analyzed tuning functions of single neurons by ranking their 

responses per target location during the delay epoch in the three injection periods. 

We computed the slope of a straight line fitted to the responses (Figure. 3.2e 

shows data pooled across neurons from one example session). Slope magnitude 

changed significantly between injection periods (Kruskal–Wallis, H(2,48) = 13.48, 

p = 0.001). The slopes significantly decreased in magnitude during the early post-

injection period compared to the pre-injection period (Kruskal–Wallis, post hoc, 

p = 0.001) (Figure. 3.2f, g). This was not the case for the saline control sessions 

(Kruskal–Wallis, H(2,18) = 5.7, p = 0.058). These results demonstrate that single 

neurons in LPFC encode spatial WM signals in naturalistic conditions and that low 

doses of ketamine significantly impair single neuron tuning. 
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Figure. 3.2: Ketamine decreases tuning of single neurons for remembered 

locations 

a, Firing rate of an example neuron for a ketamine-WM session. On the left, spike density 

functions (SDFs) over the pre-cue interval (gray column), cue, delay (yellow), and 

response epochs. Preferred locations and least-preferred locations are bolded. Center, 

firing rates during the delay epoch for all target locations. Right, firing rates fitted to a 

polynomial plane. b, Firing rate of a second example neuron during a ketamine-WM 

session. c, Average proportion of tuned single units during the cue epoch (pink), delay 

epoch (orange), or during both (purple) for each injection period for ketamine-WM 

sessions. d, Average proportion of tuned single units during each epoch for saline-WM 

sessions. e, Example session indicating firing rate averaged over neurons for target 

locations ranked from preferred to least-preferred locations. Black lines represent 

slope. f, Fitted slope for each injection period averaged over sessions. g, Firing rate for 

each target location ranked and averaged over sessions for each injection period. All error 

bars are SEM. *<0.05, **<0.01, ***<0.001. Red center lines indicate median, the bottom 

and top edges of the box indicate the 25th and 75th percentiles. The whiskers extend to 

non-outlier data points (approximately within 2.7 std) and the outliers are plotted using ‘+’. 
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3.3.3 Ketamine Disrupts Population Decoding of Remembered 

Locations 

  Single neuron tuning is essential for information coding. However, the 

information encoded by a neuronal population also depends on the correlated 

activity of neurons and can only be accurately estimated by examining the activity 

of simultaneously recorded neurons (Leavitt, Mendoza-Halliday, & Martinez-

Trujillo, 2017; Nogueira, Peltier, Anzai, DeAngelis, Martinez-Trujillo, & Moreno-

Bote, 2020). We used a linear classifier (Support Vector Machine, SVM) to predict 

from neuronal ensemble activity whether targets were presented on the left, right, 

or center of the virtual arena on a single trial basis. We pooled locations in order 

to reach a sufficient sample size (trials) to use cross-validation procedures. 

Decoding accuracy for different ensemble sizes was higher than chance (33%) in 

all analyzed experimental sessions (Figure. 3.3a, b). Decoding accuracy 

decreased after ketamine injection between pre-injection and early post-injection 

periods (Figure. 3.3a), predominantly during the delay and response epochs (16 

neuron ensemble, Kruskal–Wallis, post hoc: delay; p = 0.015, response; 

p = 0.023). The classifier made systematically more errors after ketamine injection. 

Similar results were observed when using only correct trials or decoding 9 target 

locations in sessions with sufficient sample sizes (Figure. S3.6). On the other hand, 

decoding accuracy remained stable between injection periods in saline-WM 

sessions (16 neuron ensemble, Kruskal–Wallis: delay; H(2,18) = 1.12, p = 0.571, 

response; H(2,18) = 1.36, p = 0.507) (Figure. 3.3b). These results indicate that 

LPFC neuronal ensembles encode spatial WM in naturalistic settings and that 

ketamine disrupts these ensemble codes. 
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Figure. 3.3: Neuronal population decoding of target locations 

a, Median decoding accuracy for ketamine-WM sessions for pre-injection (green), early 

post-injection (blue), and late post-injection periods (orange) for trial epochs. Chance 

performance is indicated by dashed gray line and shuffled results are indicated by solid 

gray line. Confusion matrices for each injection period indicate classifier performance for 

each target location. Gray bars near the top of the plot indicate ensemble sizes showing 

a significant reduction in decoding accuracy from pre-injection to early post-injection 

periods (Kruskal–Wallis, p < 0.05). b, Same as (a), for saline-WM sessions. All error bars 

are SEM. 
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3.3.4 Ketamine Has Differential Effects on Excitatory and Inhibitory 

Cell Types 

  Ketamine induces a variety of effects on individual neurons (Wang et al., 

2013; Homayoun & Moghaddam, 2007). A loss of neuronal tuning may result from 

neurons increasing their response to least-preferred locations (see example 

neuron Figure. 3.2a) or decreasing their response to preferred locations (see 

example neuron Figure. 3.2b). One possible explanation for this heterogeneity is 

that different cell types (e.g., excitatory pyramidal cells and inhibitory interneurons) 

may be differentially affected by ketamine. To test this hypothesis, we divided 

neurons that were tuned during the delay epoch into narrow and broad spiking 

(BS) based on waveform peak-to-trough duration (width) (Figure. 3.4a, b). In 

mouse neocortex, BS neurons are largely putative pyramidal cells or in a smaller 

proportion, vasoactive intestinal peptide expressing (VIP) neurons. On the other 

hand, narrow spiking neurons are largely parvalbumin (PV) expressing, or in a 

smaller proportion, somatostatin expressing inhibitory interneurons (Torres-

Gomez et al., 2020). 

  We then calculated the firing rates for each neuron’s preferred and least-

preferred target locations during the pre-injection and post-injection periods. After 

ketamine injection (early post-injection), narrow spiking neurons showed a loss of 

tuning during the delay epoch due to a decrease in firing for their preferred 

locations compared to the pre-injection period (Wilcoxon Rank-sum, p = 0.049) 

with no significant change for their least-preferred locations (Wilcoxon Rank-sum, 

p = 0.546) (Figure. 3.4c, d). In contrast, BS neurons showed a loss of tuning due 

to a significant increase in firing for their least-preferred locations compared to the 

pre-injection period (Wilcoxon Rank-sum, p = 0.006) with no significant change for 

their preferred locations (Wilcoxon Rank-sum, p = 0.649) (Figure. 4e, f; see change 

in firing rate per condition in Figure. S3.7c, d). Such changes were not observed 

during saline-WM sessions (Figure. S3.7a, b).  
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  Considering that our populations of NS and BS neurons are dominated by 

PV and pyramidal cells respectively, our findings align with a proposed 

pathophysiological mechanism for WM dysfunction: reduced NMDAR 

conductance on inhibitory PV interneurons, amounting to generalized disinhibition 

of pyramidal cells and resultant loss of tuning (Murray et al., 2014; Homayoun & 

Moghaddam, 2007). Indeed, ketamine has high affinity for GluN2B NMDAR 

subunits which are expressed in PV interneurons (Gerhard et al., 2020; Kelsch et 

al., 2014). Loss of pyramidal cell tuning reduces the spatial specificity of WM 

representations, the PS, and encoded information by a population of neurons 

regarding remembered target location. 
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Figure. 3.4: Cell type specific effects of ketamine on working memory signals 

a, Waveforms of narrow and broad spiking neurons. b, Distribution of waveform widths 

(microseconds) fitted with a 2-Gaussian model. Boundary line between narrow and broad 

spiking neurons is at the intersection point between Gaussians (275, dotted line). 

Gaussian at the lower width boundary indicates narrow spiking neurons (blue) and the 

upper boundary indicates broad spiking neurons (dark gray). c, Normalized average 

population SDFs for cue and delay (yellow) epochs for delay tuned narrow spiking 

neurons. d, Median population SDF for narrow spiking neurons over the delay epoch. 

Data points represent value per electrode array for each session. e, Normalized average 

population SDF for cue and delay epochs (yellow) for delay tuned broad spiking 

neurons. f, Median population SDF for broad spiking neurons over the delay epoch. All 

error bars are SEM. *<0.05, **<0.01, ***<0.001. 
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3.3.5 Ketamine Did Not Affect Gaze Behavior 

A proportion of neurons in the LPFC encode signals related to gaze 

(Bullock, Pieper, Sachs, & Martinez-Trujillo, 2017). Since gaze was unconstrained 

in our task, it is possible that the coding of remembered locations predominantly 

reflect systematic biases in eye position signals. To explore this possibility, we first 

determined whether animals showed biases in eye position toward the target 

location (see example target locations in Figure. 3.5a). We calculated the duration 

in which the position of eye fixation was directed to the target location during the 

delay epoch divided by total time in which animals were fixating during the delay. 

We found that only 3.6% of fixation time during the delay epoch was spent looking 

at the target location in the pre-injection period. There were no significant 

differences between injection periods or between saline and ketamine sessions 

(Two-way ANOVA, drug, F(1,69) = 1.73, p = 0.193, injection period, F(2,69) = 1.42, 

p = 0.248, interaction, F(2,69) = 1.35, p = 0.267 (Figure. 3.5b). 

  As an additional measure, we used a linear classifier to predict target 

location from the position of eye fixations on the screen. We divided the screen 

into 16 cells and calculated the number of fixations falling within each cell. During 

the pre-injection period, the accuracy for decoding remembered locations from 

fixations was significantly higher than chance, indicating a target specific gaze bias 

(cue: t-test, T(15) = 8.38, p < 0.0001, delay: T(15) = 8.53, p < 0.0001; Figure. 3.5c, 

d). Such a bias was less pronounced during the delay relative to the cue epoch 

(Wilcoxon Rank-sum, p = 0.002; Figure. 3.5c). However, decoding accuracy for 

remembered locations from eye position was significantly lower than decoding 

accuracy of a classifier that uses neuronal firing rate and the same number of 

features (n = 16) (Kruskal–Wallis, cue: H(1,30) = 14.78, p = 0.0001; delay: 

H(1,30) = 22.91, p < 0.0001; Figure. 3.5d). Together, this data suggests that biases 

in eye position signals are not sufficient to account for the amount of information 

encoded by the population activity regarding target location. 
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  After ketamine injections (early post-injection), decoding accuracy for 

remembered locations from eye position remained stable compared to the pre-

injection period, Kruskal–Wallis; cue, H(2,45) = 4.01, p = 0.135, delay, 

H(2,45) = 4.59, p = 0.101; Figure. 3.5c). On the other hand, decoding accuracy for 

remembered locations from neuronal activity significantly decreased after 

ketamine injection (delay: Kruskal–Wallis, H(2,45) = 11.26, p = 0.004, post hoc, 

p = 0.015) (Figure. 3.3a). These results indicate that biases in eye position cannot 

account for the effects of ketamine on decoding of target locations from neuronal 

activity and suggest a dissociation between eye position and WM signals within 

LPFC microcircuits. 

  Finally, we calculated the proportion of single units tuned for eye position in 

both retinocentric and spatiocentric reference frames using Kruskal–Wallis 

analysis of variance. Using the retinocentric reference frame, saccade landing 

position was determined relative to the starting point of the saccade, independent 

from the landing location on the screen. In a spatiocentric reference frame, 

saccades were characterized according to their landing position on the screen, 

independent from the saccade starting position (Martinez-Trujillo, Medendorp, 

Wang, & Crawford, 2004). During the delay epoch, 9% of the neurons showed 

tuning for saccades in a retinocentric reference frame and 11% in a spatiocentric 

frame. However, only 2% of single units were tuned for both target location and 

saccades in the retinocentric frame and 3% of single units were tuned both for 

target location and saccades in spatiocentric frame (Figure. 3.5e). These results 

indicate that only a small number of neurons were tuned for eye position, and from 

those, only a small fraction were tuned for WM representations of target location. 

These results further argue against eye position related activity as the explanation 

for the coding of target position during the delay epoch. 
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Figure. 3.5: Effect of ketamine on gaze behavior 

a, Heat maps indicating eye fixation locations for two example target locations during the 

different injection periods. b, Proportion of fixation time falling on the target location 

compared to all fixation time during the delay epoch for ketamine and saline 

sessions. c, Comparison of decoding accuracy for target locations using eye fixation 

position between pre, early, and late- post ketamine-injection periods for the cue and delay 

epochs. d, Comparison between decoding target location accuracy using neuronal 

ensemble activity (green) and eye fixation position on screen (gray) during the ketamine 

pre-injection period for the cue and delay epochs. e, Proportion of single units tuned for 

target location during the delay epoch and tuned for saccade position in retinocentric or 

spatiocentric reference frames. Red center lines indicate median, the bottom and top 

edges of the box indicate the 25th and 75th percentiles. The whiskers extend to non-outlier 

data points (approximately within 2.7 std) and the outliers are plotted using ‘+’. *<0.05, 

**<0.01, ***<0.001. 
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3.4 « Discussion » 

We used multielectrode arrays to simultaneously record the responses of 

single units in the macaque LPFC (pre/periarcuate areas 8 A/46) (Petrides, 2005) 

before and after administering subanesthetic doses of ketamine. We report three 

major findings: (1) ketamine selectively perturbs WM representations of targets in 

a naturalistic spatial WM task, (2) this effect is mediated by reduced spatial tuning 

of individual neurons leading to a loss of encoded information regarding target 

location at a neuronal population level, (3) ketamine induced changes in neuronal 

tuning were due to different effects on narrow and BS neurons; response decrease 

in the former and response increase in the latter. 

  Our study shows that macaque LPFC neurons encode WM representations 

during naturalistic tasks, regardless of potential interference by sensory and motor 

signals generated during natural behavior. Thus, the LPFC differs from areas such 

as the posterior parietal cortex where WM representations are perturbed by visual 

distractors (Suzuki & Gottlieb, 2013) and the frontal eye fields where shifts in gaze 

disrupt WM signals (Balan & Ferrera, 2003). Indeed, previous studies exploring 

the effects of ketamine on prefrontal neuronal activity while maintaining strict 

control of eye position show similar results to ours. Using the traditional spatial WM 

oculomotor delayed response task, which controls for eye position, Wang et al. 

(Wang et al., 2013) found that persistent activity in a small sample of delay cells 

was abolished and that spatial tuning was reduced after administration of specific 

NMDAR antagonists as well as systemic ketamine. In a rule-based WM task that 

restricted eye position, systemic ketamine decreased the rule signal during the 

delay epoch (i.e., differences in neuronal responses to prosaccade and anti-

saccade trials) (Ma et al., 2015). 

  The granular LPFC, an anthropoid primate specialization, may allow for the 

encoding of representations that are uniquely dissociated from distraction and 

action. This seems to differ from the rodent prefrontal cortex, where neurons 

primarily encode prospective information about movement plans (Tsutsui, Oyama, 
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Nakamura, & Iijima, 2016). Thus, the granular LPFC may have allowed expanding 

the mental world of primates; consequently, enhancing their adaptability to 

changing environments (Passingham & Wise, 2012; Miller & Cohen, 2001). 

However, it may have also brought about new vulnerabilities upon which particular 

types of mental diseases develop as well as susceptibility to certain drugs. 

  One may argue that a limitation of our study was that ketamine was 

administered systemically, and since we recorded from LPFC, we may have not 

been able to observe effects in other brain regions. This is possible; however, the 

observed effects of ketamine were specific to WM and resembled those of early 

lesion studies in the same region (Jacobsen & Nissen, 1937). Moreover, local 

iontophoresis of NMDAR blocker, MK-801, produces similar changes in single 

neuron tuning and firing rate in the macaque prefrontal cortex during spatial WM 

tasks as systemically administered ketamine (Wang et al., 2013). In addition, 

ketamine shows the greatest effects on prefrontal activity in imaging studies (Breier 

et al., 1997; Anticevic et al., 2015). One possibility is that changes in the 

architecture of LPFC circuits, such as expansion of layers 2/3 and increase in the 

size and number of spines on pyramidal cells with an abundance of NMDARs, 

makes the LPFC more vulnerable to the effects of ketamine relative to other areas. 

Indeed, the density of dendritic spines in pyramidal cells is higher in LPFC relative 

to LIP (González-Burgos et al., 2019). Although systemic administration of a drug 

may produce similar concentrations across brain vascular networks, 

idiosyncrasies in receptor distribution and their molecular regulation may allow 

heterogeneity of dose dependent local effects (Datta & Arnsten, 2018). 

  The effects of ketamine reported here resemble results of previous studies 

using NMDAR blockers that have examined changes in neuronal activity during 

cognitive tasks. For example, using MK-801, a specific NMDAR blocker, Wang et 

al. (Wang et al., 2013) reported reduced neuronal tuning during a spatial WM task. 

Homayoun and Moghaddam (Homayoun & Moghaddam, 2007) also demonstrated 

differential effects of NMDAR blockage using MK-801 on narrow and BS cells in 

rodents, which are similar to what we report here using ketamine. Finally, Zick et 
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al. (Zick et al., 2018) showed that phencyclidine reduced cognitive performance in 

macaque monkeys when administered systemically. The latter was accompanied 

by reduction in synchronous firing between neurons and reduced effective 

connectivity within prefrontal microcircuits. 

  We show that ketamine impaired the animals’ performance in the WM task. 

However, it did not do so in the perceptual task when animals had continuous 

visual access to the target. Moreover, ketamine neither impaired the ability of the 

animals to make saccades or navigate the virtual environment. These results 

suggest that in low doses, similar to the ones used in medical practice to treat 

depression (Fava et al., 2018), ketamine mainly affects mental representations. 

The latter corresponds with the common use of ketamine to mimic symptoms of 

schizophrenia (Frohlich & Van Horn, 2014; Morgan et al., 2004; Malhotra et 

al.,1997; Wang et al., 2013; Ma et al., 2015). Interestingly, WM deficits are one of 

the most prevalent symptoms of schizophrenia and are also hypothesized to result 

from NMDAR hypofunction, which may explain how ketamine so closely replicates 

symptoms of the disorder (Frohlich & Van Horn, 2014; Malhotra et al., 1997; Lee 

& Park, 2005). 

  In our study, spatial tuning of pyramidal cells was diminished by an increase 

in responses to the least-preferred locations, so one could speculate that mental 

representations were not abolished by ketamine, but they became less precise or 

distorted. Indeed, our decoding analysis indicated less reliable neuronal population 

codes for discriminating between remembered locations (see confusion matrices 

in Figure. 3.3a). This may explain the documented cases of ketamine causing 

perceptual distortions and hallucinations, especially in cases with decreased 

feedforward input from sensory cortices and enhanced top-down feedback 

signaling emanating from prefrontal mental representations (Domino, 2010; 

Powers, Gancsos, Finn, Morgan, & Corlett, 2015). Higher reliance on distorted 

representations may cause perceptual aberrations, explaining early descriptions 

of ketamine’s dissociative properties (Sassano‐Higgins et al., 2016). 
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  Ketamine continues to gain popularity for the treatment of conditions like 

depression (Pribish et al., 2020; Wei et al., 2020). Patients with depression also 

suffer from WM deficits (Shiroma, Albott, Johns, Thuras, Wels, & Lim, 2014). So 

how could ketamine improve WM in patients with depression but cause WM 

deficits in healthy subjects? One explanation is that the mechanism of WM deficits 

during depression are associated with a decrease in the overall activity of LPFC 

microcircuits mediated by a decrease in excitatory neurotransmission or an 

imbalance of inhibition/excitation (Lener et al., 2017). We show that ketamine 

increases the level of activity of certain neuron types (e.g., BS excitatory cells). 

This increased activity may cause deficits in healthy subjects but ‘restore’ activity 

levels in patients with depression; however, this explanation requires specific 

testing. Nonetheless, our findings call for a careful evaluation on the impact of 

therapeutically administered ketamine on prefrontal cortex mediated cognition. 

  Finally, our results suggest that population codes for mental representations 

in LPFC rely on a delicate balance between the activation of excitatory and 

inhibitory neuron types mediated by NMDARs. A break-down of this balance may 

explain cognitive symptoms found in schizophrenia and other brain diseases 

exhibiting LPFC abnormalities and NMDAR hypoactivity (Frohlich & Van Horn, 

2014; Malhotra et al., 1997; Wang et al., 2013; Lee & Park, 2005), as well as the 

disparate actions of ketamine on cognition and behavior. 
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3.5 « Supplementary Data » 

 

 

 

 

 

 

 

 



112 

 

 

 

Figure. S3.6: Ensemble decoding for correct trials and nine target locations   

a, Decoding target location from neuronal ensembles using correct trials. Decoding 

accuracy for ketamine-WM sessions for pre-injection (green), early post-injection (blue), 

and late post injection periods(orange) for trial epochs. Chance performance is indicated 

by dashed grey line. b, Comparison between decoding accuracy using correct trials and 

using all trials for trial epochs and injection periods. c, Decoding nine target locations from 

neuronal ensembles. Decoding accuracy for ketamine-WM sessions for pre-injection 

(green), early post-injection (blue), and late post-injection periods (orange) (n = 3 

sessions) for trial epochs. Data points represent decoding accuracy per session. Chance 

performance is indicated by dashed grey line. Red center lines indicate median, the 

bottom and top edges of the box indicate the 25th and 75th percentiles. The whiskers 

extend to non-outlier data points (approximately within 2.7 std) and the outliers are plotted 

using '+'. *<0.05, **<0.01, ***<0.001. 
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Figure. S3.7: Changes in narrow and broad neuron firing rates per subject  

 
a, Firing rates for saline-WM sessions for narrow spiking neurons averaged over the 

delay epoch for preferred and least-preferred locations. b, Firing rates for saline-WM 

sessions for broad spiking neurons averaged over the delay epoch for preferred 

locations and least-preferred locations. Data points represent values per electrode array 

for each session. c, Difference in firing rate (pre-post injection) for delay tuned narrow 

spiking neurons for target locations ranked from preferred to least-preferred. d, 

Difference in firing rate (pre post injection) for delay tuned broad spiking neurons for 

target locations ranked from preferred to least- preferred. 
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Figure. S3.8: Gaze behavior  

a, Duration of eyes on screen during the cue epoch for ketamine-WM. b, Eyes on screen 

during the delay epoch for ketamine-WM. c, Eyes on screen during the cue epoch for 

saline-WM. d, Eyes on screen during the delay epoch for saline-WM. e, Eyes on screen 

during the cue epoch for ketamine-perception. f, Eyes on screen during the delay epoch 

for ketamine-perception. Data points represent values per session. g, Percentage of 

fixations on target location during the cue epoch for ketamine-WM. h, Percentage of 

fixations on target location during the delay epoch for ketamine-WM. i, Percentage of 

fixations on target location during the cue epoch for saline-WM. j, Percentage of fixations 

on target location during the delay epoch for saline-WM. k, Percentage of fixations on 

target location during the cue epoch for ketamine-perception. l, Percentage of fixations on 

target location during the delay epoch for ketamine- perception. Red center lines indicate 

median, the bottom and top edges of the box indicate the 25th and 75th percentiles. The 

whiskers extend to non-outlier data points (approximately within 2.7 std) and the outliers 

are plotted using '+'. *<0.05, **<0.01, ***<0.001. 
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3.6 « Methods » 

Two adult male rhesus macaques (Macaca mulatta) were used in this 

experiment (age: 10, 9; weight: 12, 10 kg). We chose to use two animals in order 

to minimize the number of non-human primates used in the experiment and to 

ensure reproducibility between at least two animals. The n value for each analysis 

was determined individually as the smallest unit of observation, which was most 

often session. Results shown in the main text and figures represent results across 

subjects unless otherwise specified. 

3.6.1 Ethics Statement 

Animal care and handling including basic care, animal training, surgical 

procedures, and experimental injections were pre-approved by the University of 

Western Ontario Animal Care Committee. This approval ensures that federal 

(Canadian Council on Animal Care), provincial (Ontario Animals in Research Act), 

regulatory bodies (e.g., CIHR/NSERC), and other national standards (CALAM) for 

the ethical use of animals are followed. Regular assessments for physical and 

psychological well-being of the animals were conducted by researchers, registered 

veterinary technicians, and veterinarians. 

3.6.2 Task and Experimental Setup 

The current task takes place in a virtual environment. This environment was 

developed using Unreal Engine 3 development kit, utilizing Kismet sequencing and 

UnrealScript (UDK, May 2012 release; Epic Games). More about this platform and 

the recording setup can be found in Doucet et al. (Doucet, Gulli, & Martinez-Trujillo, 

2016) Within this virtual environment, target locations were arranged in a 3 × 3 grid 

and spaced 290 unreal units apart (time between adjacent targets is ~0.5 s). 

Movement speed was fixed throughout navigation. 

The task was presented on a computer LDC monitor positioned 80 cm from 

the subjects’ eyes (27” ASUS, VG278H monitor, 1024 × 768 pixel resolution, 75 Hz 
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refresh rate, screen height equals 33.5 cm, screen width equals 45 cm). Subjects 

performed the experiment in an isolated room with no illumination other than the 

monitor. The walls, doors, and ceiling of the room were RF shielded and contained 

no AC power lines. Cables providing power to the setup equipment entered the 

room through a small aperture in a wall and were shielded to minimize interference 

with the recordings. Eye positions were monitored using a video-oculography 

system with sampling at 500 Hz (EyeLink 1000, SR Research). A custom computer 

program-controlled the stimulus presentation (through Unreal Engine 3), reward 

dispensation, and recorded eye position signals and behavioral responses. 

Subjects performed the experiment while seated in a standard enclosed primate 

chair (Neuronitek) and were delivered juice reward through a tube attached to the 

chair and an electronic reward integration system (Crist Instruments). Prior to the 

experiments, subjects were implanted with custom fit, PEEK cranial implants which 

housed the head posts and recording equipment (Neuronitek). See Blonde et al. 

(Blonde, Roussy et al, 2018) for more information. The head posts were attached 

to a head holder to fix the monkeys’ heads to the primate chair during training and 

experimental sessions. 

3.6.3 Microelectrode Array Implant 

Surgical procedures were conducted under general anesthesia induced by 

ketamine and maintained using isoflurane and propofol. Two 10 × 10, 

microelectrode Utah arrays (96 channels, 1.5 mm in length and separated by at 

least 0.4 mm) (Blackrock Microsystems) were chronically implanted in each 

animal. They were located in the left LPFC (anterior to the arcuate sulcus and on 

either side of the posterior end of the principal sulcus) (Petrides, 2005) . Brain 

navigation for surgical planning was conducted using Brainsight (Rogue Research 

Inc.). Arrays were placed and impacted ~1.5 mm into the cortex. Reference wires 

were placed beneath the dura and a grounding wire was attached between screws 

in contact with the pedestal and the border of the craniotomy. Electrode placement 

was approximated using CT imaging post-operatively. 
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3.6.4 Neuronal Recordings and Spike Detection 

Neuronal data was recorded using a Cerebus Neural Signal Processor 

(Blackrock Microsystems) via a Cereport adapter. The neural signal was digitized 

(16 bit) at a sample rate of 30 kHz. Spike waveforms were detected online by 

thresholding at 3.4 standard deviations of the signal. The extracted spikes were 

semi-automatically resorted with techniques utilizing Plexon Offline Sorter (Plexon 

Inc.). Sorting results were then manually supervised. Multiunits consisted of 

threshold-crossing events from multiple neurons with action potential-like 

morphology that were not isolated well enough to be classified as a well-defined 

single unit. We collected behavioral data across 18 ketamine-WM sessions (nine 

in animal T, nine in animal B) and neuronal data from 17 ketamine-WM sessions 

with one session from animal T removed due to incomplete synchronization of 

neuronal data during the recording. This yielded a total of 2906 units recorded 

during ketamine-WM sessions: 1814 single neurons (259 in animal T, 1555 in 

animal B) and 1092 multiunits (533 in animal T, 559 in animal B). Behavior and 

neuronal data was recorded from seven saline-WM sessions resulting in 1117 

units in total: 674 single units (48 in animal T, 626 in animal B) 443 multiunits (126 

in animal T, 317 in animal B). Behavioral data from four ketamine-perception 

sessions were analyzed (two in animal T, two in animal B). 

3.6.5 Ketamine Injection 

Both animals experienced all experimental conditions. The sessions in 

which either ketamine or saline was administered were randomized. Animals were 

trained to voluntarily receive injections in the primate chair while in the 

experimental setup. An intramuscular injection of either ketamine (0.25, 0.4, or 

0.8 mg/kg) or saline (0.25 mg/kg) was administered in the hamstring muscles by a 

registered veterinary technician. The ketamine doses were titrated so they did not 

induce visible behavioral changes in the animals such as nystagmus or 

somnolence. Ketamine injections were spaced at least 2 days apart to allow for 

washout of the drug (Zanos et al., 2018). 
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3.6.6 Behavioral Analysis 

Correct trials are trials in which subjects reach the correct target location 

within 10 s. The percent of correct trials was compared to chance (11%) for each 

session using binomial tests. 

The percent of correct trials over time was calculated using 15 equally sized 

trial bins for each injection period. The resulting 45 data points per session were 

averaged over all ketamine-WM and saline-WM sessions for each animal and then 

combined across subjects. Statistical analysis was conducted by comparing the 

percent of correct trials binned over the three injection periods (pre, early post, and 

late post-injection periods) for ketamine-WM and saline-WM sessions. Response 

time was calculated for correct trials as the duration between navigation onset and 

end of trial for each experimental condition (target location) for each recording 

session. 

Analyses of animals’ trajectories within the navigation period are conducted 

on trials in which the animals cross a predetermined line that divides the start 

enclave from the main body of the task arena. The task environment was divided 

into a 5 × 5 grid containing 25 regional cells of equal dimensions. The grid was 

sized so that cells tightly enclose target locations. For each trial, we calculated 

whether the subject entered each cell during navigation resulting in either 1 

(entered) or 0 (not entered) per cell. The number of trials in which each cell was 

entered was then divided by the total number of trials. This resulted in a percent 

value for each cell for each target location condition (25*9 conditions, n = 225 per 

session) that was then averaged over all ketamine-WM or saline-WM sessions. 

We then calculated increases in average percent values for each cell between 

injection periods (values above 0 included). 

3.6.7 Spatial Selectivity 

Single units (2488 from 17 ketamine-WM and seven saline-WM sessions) 

were tested for selectivity for target location during a given epoch for all trials by 
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computing a one-way analysis of variance on epoch-averaged firing rates with 

target location as the independent variable. A unit was defined as selective if the 

test resulted in p < 0.05. A neuron’s preferred location was defined as the location 

that elicited the largest response during the epoch of interest. The least-preferred 

location was defined as the location that elicited the smallest response. 

To ensure consistent sample size between injection periods, we 

subsampled trials without replacement to the minimal number of trials between the 

pre, early post and late post-injection periods. This was repeated 50 times and the 

median values from all iterations was calculated. The proportion of tuned single 

units for each task epoch (cue and delay) were compared between injection 

periods for ketamine-WM and saline-WM sessions using Chi-Square tests. 

3.6.8 Ranked Target Selectivity 

Neurons were ranked from their preferred to least-preferred location based 

on average firing rate. This was repeated for each injection period. We then 

calculated the slope of a linear regression model fitted to the ranked responses 

averaged across neurons in a session for each of the nine target locations. A 

higher negative slope indicates higher firing rate for preferred locations (higher 

ranked) compared to less preferred locations (lower ranked) which gives a proxy 

of tuning. This was calculated for each injection period in each session (n = 17). 

3.6.9 Plane Fitting 

In order to visualize neuronal responses to different target locations within 

the 2D space, we fit a second order polynomial surface to the mean normalized 

firing rate for the 9 target location conditions to the x- and y- coordinates of each 

target location. Firing rate was normalized by the maximum firing rate in the 

ketamine pre-injection period. This method was used for visualization, not for 

quantitative analysis. 

𝑓(𝑥, 𝑦) = p0,0  +   p1,0 𝑥  +  p0,1 𝑦  +   p2,0𝑥2   +   p0,2𝑦2  +  p1,1 𝑥𝑦   
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3.6.10 Neuronal Ensemble Decoding 

We used a linear SVM (Libsvm 3.14) (Fan, Chang, Hsieh, Wang, & Lin, 

2008) with fivefold cross-validation to extract task-related activity from z-score 

normalized population-level responses using both single units and multiunits on a 

single trial basis. The regularization parameter used was the optimal penalty 

parameter C (refer to Eq. 1 in Fan et al. (Fan et al., 2008)). The classifiers used 

firing rates calculated over epoch durations (cue, 3000 ms; delay, 2000 ms; 

response first 2000 ms) from ensembles of neurons simultaneously recorded 

within each session to predict target location for correct and incorrect trials within 

the virtual arena (left, center, right). 

For each session, we calculated decoding performance for neuronal 

ensembles with a maximum of 16 neurons since decoding performance plateaued 

around this point. We began building ensembles by selecting the neuron with 

highest individual performance for decoding target location. This neuron was then 

paired with all remaining neurons to find the pair of neurons that maximized 

decoding performance. We then used this pair and combined it iteratively with all 

remaining neurons to find the best trio. This procedure was repeated until 16 

neurons were reached. 

We pooled target locations across depth in order to have a sufficient number 

of trials for training and testing the classifiers. We chose to combine trials based 

on target direction in the environment (left, center, right) based on observations 

that neurons tended to show more similar responses to targets located in the same 

direction compared to targets located at the same depth within the environment. 

Observations were balanced between classes using subsampling (without 

replacement) which was repeated 20 times. 

We maintained the same neurons in ensembles (for ensembles of 16 

neurons) and used the same procedure to calculate chance performance obtained 

by randomizing class labels (all other data features remained unaltered). We 

repeated this shuffling procedure 10 times for each session. Subsampling was 
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conducted 20 times in each iteration. Using this procedure, the shuffled decoding 

accuracy for one ketamine-WM session from animal T was higher than expected 

by chance; therefore, this session was removed from the analysis. Decoding 

accuracy between injection periods for ketamine-WM and saline-WM sessions 

was compared for each neuronal ensemble size. We ran the decoding procedure 

a second time restricting to correct trials only (in sessions with a sufficient number 

of samples for cross-validation). Finally, a third decoding analysis was conducted 

using all 9 target locations from neuronal data on a single trial basis using SVM 

with fourfold cross validation (in sessions with a sufficient number of samples: one 

session in animal T, two sessions in animal B). 

3.6.11 Waveform Classification 

Single units were classified as either narrow (NS) or BS based on action 

potential width measured as peak-to-trough interval duration (Torres-Gomez et al., 

2020). Average waveforms for each unit were interpolated with a cubic spline fit to 

increase the resolution of the data (×100). The duration between waveform peak 

and trough was then calculated based on time stamps from the minimal and 

maximal voltage values. Waveform widths for all neurons were plotted in a 

histogram. After removing outlier widths (>675 microseconds), 2314 units 

remained and are included in the analysis. A bimodal distribution was visualized 

and then quantified by fitting the data with either a single (1-Gaussian) or sum of 

two Gaussian functions (2-Gaussian) to determine optimal fit. The goodness of fit 

for both functions was determined using Akaike Information Criterion (Akaike, 

1974) with the lowest value determined for 2-Gaussians indicating bimodality. 

The threshold dividing NS and BS (275 microseconds) was determined by 

setting a boundary at the inflection point of the two Gaussian fitted distributions 

(Torres-Gomez et al., 2020; McCormick, Connors, Lighthall, & Prince, 1985). 

Waveform amplitudes were normalized to the difference between the highest and 

lowest amplitudes for each unit waveform and waveforms were aligned at 

threshold crossing for visualization. Based on this threshold, 161 neurons were 
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classified as NS and 2153 neurons were classified as BS. 750 delay tuned BS 

neurons were included for further analysis for ketamine-WM sessions and 246 

delay tuned units were included for saline-WM sessions. 41 delay tuned narrow 

spiking neurons were included for ketamine-WM sessions and 11 delay tuned 

neurons were included for saline-WM sessions. 

3.6.12 Firing Rate for Preferred and Non-Preferred Locations 

Spike density functions (SDFs) using Gaussian kernels (150 ms std) were 

calculated for NS and BS neurons that were significantly tuned for target locations 

during the delay epoch (ANOVA, p < 0.1). We specifically obtained the SDFs for 

these neurons for their preferred and least-preferred locations during the delay 

epochs before ketamine or saline injection. We then calculated SDFs for these 

same locations in the post-injection period. Population activity was calculated by 

averaging SDFs between simultaneously recorded single units within the same 

electrode array and responses were normalized by the maximum population 

response. These population responses for each electrode array were then 

averaged over all ketamine-WM or saline-WM sessions. Firing rates were 

averaged during the delay epoch and were statistically compared using 1-tailed 

Wilcoxon Rank-sum tests between pre and early post-injection periods for 

preferred and least-preferred locations. 

In addition, we used the same procedure as the preferred and least-

preferred analysis but included responses to all target locations ranked from 

preferred (1) to least-preferred (9). We compared the firing rates from the pre-

injection and post-injection periods for each target condition using 1-tailed 

Wilcoxon Rank-sum tests. 

3.6.13 Gaze Analysis 

Gaze position was computed from eye tracking signals synchronized with 

the neuronal recordings and behavioral performance measurements (Corrigan, 

Gulli, Doucet, & Martinez-Trujillo, 2017). The amount of time that gaze fell within 



123 

 

the screen boundaries was calculated during the cue and delay epochs of the task 

and were statistically compared before and after ketamine or saline injection 

(Figure. S3.8a-f). 

Eye movements were classified as saccades, fixations, or smooth pursuits 

based on previously published methods for eye movement classification in virtual 

environments in which periods of high acceleration approximate saccade epochs 

and movement patterns were used to determine precise saccade onset and offset. 

Foveations are classified as fixations or smooth pursuits based on measures of 

spatial range (see Corrigan et al. (Corrigan et al., 2017) for detailed method). The 

proportion of fixations falling within the trial specific target location compared to 

other potential target locations on the screen was calculated (Figure. S3.8g-l). 

We calculated the total fixation time during the delay epoch as well as the 

fixation time on the trial specific target location for correct trials. We compared the 

proportion of fixation time on the target location related to all fixation time during 

delay (target location fixation duration / total fixation duration) between the three 

injection periods for ketamine and saline sessions using 2-way analysis of variance 

with injection period and drug (saline or ketamine) as factors. 

To decode target location using eye position during the cue and delay 

epochs, the screen was divided into 16 cells of equal dimensions. The number of 

foveations classified as fixations were calculated within each cell under the 

assumption that animals gather information from the virtual environment during 

such fixation periods (Corrigan et al., 2017). We used a linear classifier (SVM) with 

fivefold cross-validation to determine whether target location could be predicted on 

a single trial basis by the number of fixations within each cell (i.e., the extent to 

which animals fixate in each part of the visual environment). This analysis was 

compared with a decoding analysis using neuronal ensembles utilizing the same 

number of features (16 neuron ensembles). 

To calculate the proportion of single units tuned for eye position in both 

retinocentric and spatiocentric reference frames, we assessed saccade position in 
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both retinocentric and screen centered coordinates. We used a quadrant binning 

pattern for a 40° × 30° field. To keep reference frames for a particular neuron 

consistent, we made sure that both reference frames had the same Fpower by 

ordering the bins from highest saccade count to lowest, then pairing them across 

reference frames, and then dropping saccades from the bin that had more out of 

the pair. A bin had to have at least ten saccades to be acceptable and sessions 

had at least three acceptable bins. Neurons with sufficient data were then analyzed 

using Kruskal–Wallis analysis of variance. 
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Chapter 4  

4 « Neural Sequences in Primate Prefrontal Cortex 

Encode Working Memory in Naturalistic Environments » 

4.1 « Abstract » 

  Working memory is the ability to remember and manipulate information ‘in 

mind’ for short time periods. Candidate brain mechanisms for encoding working 

memory include persistent firing of neurons selective for memorized items, 

oscillations, and synaptic storage. Here we demonstrate a mechanism for working 

memory coding in which populations of prefrontal neurons dynamically represent 

memory content in a naturalistic environment through sequential activation of 

single neurons. We simultaneously recorded the activity of hundreds of neurons in 

the lateral prefrontal cortex of macaque monkeys during a naturalistic visuospatial 

working memory task in a virtual environment. We found that the sequential 

activation of single neurons encoded trajectories to target locations held in working 

memory. Neural sequences were not a mere activation of cells with memory fields 

at spatial locations, but an abstract representation of the subject’s trajectory to the 

target. Sequences were not found during working memory tasks lacking the 

spatiotemporal structure of the naturalistic task. Finally, ketamine administration 

distorted neural sequences, selectively decreasing working memory performance. 

Our results indicate that neurons in the lateral prefrontal cortex causally encode 

working memory in naturalistic conditions via complex and temporally precise 

activation patterns.  

4.2 « Introduction » 

  Working memory (WM) is the ability to briefly maintain and manipulate 

information ‘in mind’ to achieve a current goal (Baddeley, 1986). Brain circuits 

supporting WM differ from those for sensory processing in that they must represent 

precise information in naturalistic contexts in the absence of sensory inputs (see 



131 

 

Roussy et al., 2021 for review). They also differ from long-term memory circuits in 

that the information is only maintained for short time intervals - just long enough to 

complete a specific task. Despite five decades of study, the neural mechanisms 

underlying WM remain controversial. 

       The primate lateral prefrontal cortex (LPFC) has been widely implicated in 

WM function as evidenced by previous lesion and electrophysiological studies in 

macaque monkeys (Leavitt et al., 2017a; Roussy et al., 2021). A long-supported 

mechanism for coding of WM representations in LPFC of primates during delayed 

response tasks is persistent firing in single neurons selective for the memorized 

information (Fuster & Alexander, 1971; Constantinidis et al., 2018). During such 

tasks, subjects must remember the location or features of a sample item for a few 

seconds after its disappearance, and then produce a behavioral response, e.g., a 

saccade to a remembered location. However, most delayed response tasks used 

to explore the neural mechanisms of WM lack the spatiotemporal structure of 

naturalistic behavior (i.e., they use simple stationary displays and constrain eye 

movements during memory maintenance). During many natural behaviors 

involving WM the visual scenery is rich, dynamic, and eye gaze is unconstrained. 

       Studies using delayed response tasks with increased spatiotemporal 

complexity report few single neurons with persistent firing during the entire delay 

period. Instead, many neurons fire transiently, during brief time intervals (Batuev 

et al., 1979; Lundqvist et al., 2016). Thus, researchers have proposed alternative 

mechanisms to persistent firing, such as short-term synaptic storage (Stokes et al., 

2015; Pals et al., 2020), or oscillatory dynamics (Lundqvist et al., 2016). However, 

evidence in favor of such mechanisms is highly debated (Wang, 2021). 

       Here, we hypothesize that coding of WM during natural behavior, in the 

presence of eye movements and rich visual displays, relies on sequential 

activation of neurons in primate LPFC. Neuronal sequences, consisting of 

temporally precise patterns of neural activity, have been reported to encode the 

varying spatiotemporal structure of motor signals in the high vocal center (HVC) of 
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songbirds (Chi et al., 2001; Tang et al., 2014; Srivastava et al., 2017; Okubo et al., 

2015; Daliparthi et al., 2019), and of spatial trajectories to remembered locations 

during navigation in the parietal cortex (Harvey et al., 2012) and the hippocampus 

of rodents (Itskov et al., 2011; Eichenbaum et al., 2014; Zhou et al., 2020). Early 

investigations in macaque monkeys suggested that the spiking activity of a few 

single neurons in LPFC could have a precise spatiotemporal structure (Abeles, 

1993). However, sequences of single unit spiking activity have not been directly 

observed or causally linked to WM during naturalistic behavior in primates (Wang, 

2021).  

       We tested this using high-density microelectrode arrays to record neuronal 

activity in LPFC of macaque monkeys during a naturalistic WM task set in a 3D 

virtual environment. We find that temporally precise sequential patterns of neural 

activity, extending over behaviorally relevant timescales of several seconds, in 

LPFC represent important task variables for the successful maintenance of and 

navigation to remembered target locations in the 3D environment. These neural 

sequences are adept at robustly and flexibly representing trajectories to 

remembered locations during shifts in eye positions toward various elements of 

the environment. Sequences were not found during standard tasks used to explore 

WM in previous studies. Further, pharmacological blockade of NMDA receptors 

with sub-anesthetic doses of ketamine demonstrates a causal link between 

sequences and WM. 

4.3 « Results » 

We trained two rhesus macaque monkeys on a visuospatial working 

memory task that took place in a virtual circular arena containing naturalistic 

elements (see Figure. 4.1a, b). We recorded neuronal activity using two 96-

channel microelectrode Utah Arrays (Blackrock Neurotech, UT, USA) implanted in 

the left LPFC of both animals (Brodmann area 8a, 9/46 (Petrides, 2005)) (see 

Figure. 4.1c). The task began with a three-second presentation of a target in one 

of nine possible locations in the arena (cue epoch). The target then disappeared 



133 

 

and after a two-second delay period, the animal was required to navigate towards 

the cued target location using a joystick (see Figure. 4.1d). Virtual navigation within 

the environment was exclusively available during the navigation epoch. Animals 

were able to successfully perform this naturalistic WM task (average correct trial 

rates across sessions were: NHP B: Mean = 87%, NHP T: Mean = 57%; chance = 

~11%) (Figure. 4.1e). 

4.3.1 Neural Sequences in Prefrontal Neurons 

Although precise patterns of neural activity appear to be a fundamental 

mechanism for  representing complex processes (Buzsáki, 2010), such patterns 

have not been identified during visuospatial WM tasks in primates. We hypothesize 

that WM representations during our naturalistic task are maintained by temporally 

precise neural sequences (Figure. 4.1f). We observed that LPFC neurons 

exhibited consistent brief elevations of spike rate at specific points during the task. 

To identify potentially relevant patterns in these elevations of spike rate, we sorted 

neurons by their normalized peak firing times (Figure. 4.1g, h). 
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a, An animal depicted in the virtual reality experimental setup.  b, Overhead view of the 

nine target locations in the virtual environment. c, Locational representation and surgical 

image of the two Utah arrays implanted in the left LPFC of NHP T. d, Working memory 

trial timeline. e, Percent of correct trials for NHP B and NHP T. The dark gray lines 

represent mean values per animal and the gray dashed line represents chance 

behavioral performance. Data points represent data from individual sessions. f, 

Illustration of temporally tiled activation of individual neurons which may generate 

sequential patterns of activity at the population level. g, Normalized firing rates for 

simultaneously recorded neurons over trial time in one trial. h, Raster plot for the same 

example trial as ‘g’ in which each small vertical line represents an action potential. 

 

 

 

Figure. 4.1: Experimental design 
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A code that relies on neural sequences implies precise temporal activation 

of single neurons within subpopulations (see Figure. 4.2a for schematic) (Buzsáki, 

2010; van der Meij & Voytek, 2018). We examined the firing properties of 3543 

neurons in 17 recording sessions (Mean of 208, Median of 229 simultaneously 

recorded neurons per session). Many neurons transiently fired during the same 

time in different trials of the same target condition (Figure. 4.2b, c, d, more 

examples in Figure. S4.8).  To quantify this regularity, we calculated the standard 

deviation (time consistency) of peak firing time between trials of the same condition 

for each neuron (Figure. S4.9a). 20% of neurons (699 neurons) demonstrated a 

standard deviation (std) below 1000 ms and 65% (2297 neurons) demonstrated a 

std below 1500 ms.  

We additionally shuffled the peak firing times for each neuron across trials 

to generate random firing time estimates within each trial. The distributions of stds 

for correct trials were shifted to lower values relative to the corresponding shuffled 

distributions (example session in Figure. 4.2e, f). The area of non-overlapping 

between the lower tails of the real and shuffled distributions represents the neurons 

with peak firing times occurring more regularly than expected by chance. On the 

other hand, the real and shuffled distributions overlapped considerably for incorrect 

trials (example session in Figure. 4.2e), suggesting that neurons’ peak firing 

occurred at less consistent times during single trials of the same condition when 

animals made mistakes. Indeed, the difference between means of the real and 

shuffled distributions (Figure. 4.2f) was lower for incorrect trials than correct trials 

(correct: Median = 270.9, incorrect: Median = 71.4. Wilcoxon Signed-Rank Test, p 

= 0.001) (Figure. 4.2g; Figure. S4.9b, c).  
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a, Depiction of neural ensembles that are activated at different time points throughout a 

trial. Activity of a single neuron within the ensemble is represented by a bump in activity 

at a precise time point. Black arrows represent recording electrodes. b, Single trial raster 

showing the activity of all simultaneously recorded neurons. The green and pink 

horizontal lines highlight two example neurons. c, Example neuron one. The raster plot 

displays action potentials over trial time for this neuron over all trials in a certain 

condition. The inlet histogram shows the number of trials in which the max firing time 

falls within a certain trial time. d, Represents the same information as ‘c’ for a second 

example neuron. e, Real and shuffled distributions of correct and incorrect trial-trial 

standard deviations of max firing time for all neurons in an example session. f, same as 

‘e’ for correct trials. Dashed gray lines represent distribution means and the orange line 

indicates the difference in distribution means. g, Difference in real and shuffled 

distribution means for correct and incorrect trials. Dark gray lines represent median 

values per group and each dot represents data from a different session. *p<0.05, 

**p<0.01, ***p<0.001. 

Figure. 4.2: Time consistent neurons underlie sequence formation 
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Using 11 sessions in which there are sufficient correct and incorrect trials in 

all nine conditions, we show that the std of neurons (n = 2051) during correct trials 

is significantly lower than incorrect trials (1-way ANOVA, post hoc, p = 3.8E-09; 

Figure. S4.9a). This suggests that consistent temporal firing in single neurons is 

needed for correct task performance. 

4.3.2 Neural Sequences are Predictive of Trajectory to Remembered 

Targets  

We have demonstrated a pattern of sequential activity that spans the trial 

duration and is driven by temporally consistent firing of single neurons. Next, we 

examined whether these identified sequences are related to WM; more precisely, 

whether sequences can encode the contents of WM during memory delay. 

Therefore, we developed a computational method to analyze spike sequences in 

single trials, allowing for efficient unsupervised discovery of neural sequences that 

are consistent within the same target condition. We represented individual 

sequences of peak firing during the delay epoch in each trial across the population 

of recorded neurons as complex-valued vectors.  We performed dimensionality 

reduction on the resulting correlation matrix (Figure. 4.3a). The resulting 

component values are projected into a 3-dimensional space where each colored 

circle represents a cluster centroid for a different target condition (Figure. 4.3b, c).  
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a, Representation of max firing times per neuron during delay being converted to 

complex phase values and used in our complex vector dimensionality reduction 

method. b, 3D projection of neural sequence data. Large dots represent projected 

target centroids in 3D space. Smaller dots represent individual trials. c, 3D projection 

of neural sequence data. Large dots represent projected column centroids in 3D 

space. Columns contain pooled trials between right, left, and center targets. Smaller 

dots represent individual trials. d, Supervised classification of target location using 

centroid distances. Each line represents decoding accuracy over number of 

dimensions considered for one session. Bold lines represent median values over 

sessions. e, Supervised classification performance for predicting target column 

averaged over sessions per NHP using three dimensions. Gray dashed line is 

theoretical chance performance. f, Unsupervised classification of target column (left, 

right center) using centroid distances. Each line represents decoding accuracy over 

number of dimensions considered for one session. Bold lines represent median values 

over sessions 

 

Figure. 4.3: Classification using sequential coding 
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Using a supervised distance-based classifier on a single trial level, we 

demonstrated that centroids can correctly predict target condition (9 locations: 

median = 15% above chance; see Methods – Projection Classification Analysis) 

(Figure. 4.3d). We then observed that the condition centroids reliably clustered into 

three groups based on the three general trajectory directions to targets (left, center, 

right) (Figure. 4.3c).  Based on this observation, we then hypothesized that this 

clustering may relate to task behavior. A supervised classifier based on this 

hypothesis can correctly predict target condition column (left, center, right) based 

on delay-epoch sequence activity on single trials (Median = 41% above chance) 

(Figure. 4.3e). Further, an unsupervised classifier developed from our analysis 

could predict target column in a single trial based on the emergent clustering of 

projected data into column-based clusters - without any training required (Median 

= 33% above chance) (Figure. 4.3f). Taken together, these results demonstrate 

that these patterns of spiking activity contain a unique temporal structure for 

different trial conditions that may be related to remembered target locations. 

To explore the direct relationship between sequences and task-relevant 

behavior during WM, we compare distance between centroids during the memory 

delay epoch to distances between target trajectories (i.e., representing the 

trajectories navigated towards the remembered target location). We calculated the 

Spearman correlation between matrices containing the Euclidean distance 

between condition centroids (Figure. 4.4b), and the Frechet distance between 

average traveled trajectories to targets in the virtual arena (see Figure. 4.4c, d; 

Figure. 4.4e, f) (see Figure. S4.10a-c for alternative methods). The Frechet 

distance between two trajectories is a measure of similarity between them that 

takes into account the location and ordering of the points along the trajectories (Alt 

& Godau, 1995). The distance matrices were more positively correlated compared 

to those obtained when shuffling the target locations, suggesting that the 

separation between neural sequences in multidimensional space parallels the 

discriminability between trajectories to targets held in WM (observed: Median = 

0.50, shuffle: Median = 0.34, Wilcoxon Signed-Rank Test: p = 0.02). Moreover, the 

relationship between sequences and target location relates to whether information 
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is successfully maintained during WM delay, with higher positive correlations for 

correct than incorrect trials (correct: Mean = 0.45, incorrect: Mean = 0.30. t-test, p 

= 0.0005) (Figure. 4.4g).  

We also compared the correlations during the WM delay period with that 

during a temporally equivalent period of a perceptual task, where the target did not 

disappear, thus the animals did not need to represent the trajectory in WM. The 

correlation is higher during the WM delay epoch than during the perceptual control 

delay epoch  (Figure. 4.4h; WM: Mean = 0.51 perception: Mean = 0.33, t-test, p = 

1.4E-05), indicating that sequences were more correlated to behavior during WM.  
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a, Representation of max firing times per neuron during delay being converted to 

complex phase values and used in our complex vector dimensionality reduction method. 

b, Condition cluster centroids projected in 3D space. Centroid colors correspond with 

their position in the virtual environment (see inlet). c, Depiction of trajectories to two 

target locations. d, Example trajectories to the 9 target locations. Each line represents 

a trial. e, Coefficient matrix of Euclidean distances between condition centroids. f, 

Coefficient matrix of Frechet distances between average target trajectories for each 

target location. g, Correlation values for all sessions for correct and incorrect trials 

colored by animal. Dots represent individual sessions and matching sessions are 

connected by lines. h, Correlation values for all WM and perception sessions colored 

by animal. Dots represent individual sessions and matching sessions are connected by 

lines. *p<0.05, **p<0.01, ***p<0.001. 

 

 

 

Figure. 4.4: Neural sequences represent working memory content 
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Furthermore, sequences during WM were unique from those that occur 

during the cue and navigation epochs (Figure. 4.5 a-c) and they were most 

predictive of target column condition (cue: Median decoding performance = 52%, 

delay: Median decoding performance = 66%, navigation: Median decoding 

performance = 52%; 1-way ANOVA, p = 0.03) (Figure. 4.5d). Sequences are also 

more correlated to target trajectories when we limit a neuron’s contribution to a 

sequence to one epoch (i.e., one neuron is only allowed to participate in a single 

epoch sequence – considering a single max firing time) compared to contributing 

to multiple epoch sequences (i.e., allows for multiple peak firing times) (single: 

Mean = 0.48, multiple: Mean = 0.37; t-test, p = 0.006) (Figure. S4.10c). This latter 

result indicates sequences are most informative when different neurons contribute 

to different epochs, suggesting unique contributions of neurons over trial states. 

4.3.3 Neural Sequences are Specific to Naturalistic Working Memory   

Neural sequences may operate when information held in WM has a 

spatiotemporal structure. To test this prediction, we conducted the same set of 

analyses exploring macaque LPFC single neuron temporal precision and 

population sequences in an oculomotor delayed response task (ODR) (Figure. 

S4.11a, b). In this task, animals must remember a spatial location during a delay 

period and make a saccade when a central fixation point disappears (Leavitt, 

2017b, Leavitt, 2018). The task we used included 16 possible target locations. 

Saccades are ballistic movements and there is no path ‘traveled’ towards the 

location during the saccade execution. As opposed to the VR navigation task, 

when neurons during the ODR task were ordered by peak firing time, the patterns 

of activation were often disrupted or incomplete (Figure. S4.11c), suggesting that 

the organization of spiking activity may be different from the VR task. This may be 

related to neurons during the ODR delay epoch exhibiting less temporally 

consistent peak firing times from trial to trial. For many instances, real and shuffled 

distributions of standard deviations were overlapping (Figure. S4.11d). Indeed, the 

difference in means between real and shuffled distributions was significantly 

smaller in the ODR task compared to our naturalistic VR task (ODR1: Median = 
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93.22. ODR2: Median = 31.57, VR: Median = 270.93; Kruskal Wallis, p = 1.2e-06) 

(Figure. S4.11e).  

To further explore this issue, we applied the complex-valued dimensionality 

reduction analysis described above to the ODR task data. Condition centroids 

were interestingly clustered in quadrants based on position of target location as 

reported previously using spike rate-based analysis (Leavitt, 2018) (Figure. 4.5e). 

We calculated the correlation between the matrices of centroid distances and 

target location Euclidean distances. The correlation was significantly smaller in the 

ODR than in the naturalistic VR task (ODR: Median = 0.21, VR: Median = 0.43. 

Wilcoxon Rank Sum, p = 0.004) (Figure. 4.5f). 

These results indicate that sequences are more correlated to behavior 

during the naturalistic VR task than during the classic ODR task. The naturalistic 

VR task is different in several ways. First, it measures visuospatial WM in a 

dynamic and more spatiotemporally complex environment. Second, it allows for 

free visual exploration via saccades. Third, it requires 3D navigation to a target 

location. Neural sequences may be best utilized in the dynamic spatiotemporal 

context of our WM task. 
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a, Representation of max firing times per neuron during the three task epochs being 

converted to complex phase values and used in our complex vector dimensionality 

reduction method. b, Epoch specific sequences projected in 3D space. Colored dots 

correspond to epochs and represent a single trial. c, Decoding accuracy using 

unsupervised classifiers for predicting task epoch. Dots represent data from different 

sessions. d, Decoding accuracy using unsupervised classifiers for predicting target 

column (left, middle, right) for sequences during task epochs. e, Condition cluster 

centroids for an ODR task projected in 3D space. Centroid colors correspond with their 

position in the virtual environment (see inlet). f, Correlation values for centroid distance 

and the distance between target locations for the virtual reality task and the ODR task. 

Dots represent data per session. *p<0.05, **p<0.01, ***p<0.001. 

 

 

Figure. 4.5: Working memory sequences are unique to naturalistic behavior 
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4.3.4 Neuronal Sequences Represent Abstract Trajectories  

The previous analysis demonstrates that WM sequences contain information 

about the trajectories to remembered target locations, suggesting that sequences map 

into behavioral paths. Condition centroids were more highly correlated to the Frechet 

distance between the trajectories to target locations (Median = 0.50) than to the 

Euclidean distance between target locations (Median = 0.43); therefore, sequences 

more strongly represent trajectories to target locations than target location alone. Real 

trajectories are also more correlated to condition centroids than ideal trajectories to 

targets (calculated by Euclidean distance from the start location to the target location) 

(Figure. 4.6a) (Median = 0.42). Here one must consider that traveled trajectories are 

imperfect and can be distinct from ideal trajectories. Real trajectories reflect 

idiosyncrasies of remembered trajectories and the virtual environment which may reflect 

perceived curvature of the arena and obstacles in space (i.e., arena walls)(see Figure. 

4.6b for example trajectories). 

One may argue that the observed sequences represent activation of neurons with 

mnemonic ‘place fields’ similar to sequential activity of place cells in the hippocampus 

(Itskov, 2011; Eichenbaum, 2014; Zhou, 2020). Inconsistent with this idea, the 

sequences are differentiable between memory delay and navigation, evidenced through 

classification analysis (Mean decoding = 76%, Median decoding = 87%, compared to 

chance (33%): t-test, p = 9.2e-08) (Figure. 4.5b,c), suggesting that WM sequences are 

not a direct representation of space that is rehearsed and played-back during 

navigation.  

We explored trajectories to different locations that contain overlapping spatial 

segments (primarily occurs for center targets). We wanted to test whether sequences 

corresponding to these overlapping trajectories contain similar neurons (Figure. 4.6b, 

c). During the delay epoch, the neural sequences corresponding to pairs of these similar 

trajectories had no more neurons in common than pairs of trajectories with any direction, 

depth, or curvature (delay epoch: Means: similar-center = 0.40, all = 0.37, p = 0.7) 

(Figure. 4.6d). The correlation between sequences for ideal overlapping trajectories was 
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similar to correlations between sequences for all trajectories when using all neurons, 

and even when considering only neurons shared between the trajectories (1-way 

ANOVA, post hoc; all neurons: ideal - all trajectories, p = 1; shared neurons ideal - all 

trajectories, p = 0.15) (Figure. 4.6e). This shows that sequences likely do not represent 

a direct spatial path as occurs in hippocampal place cells. Instead, sequences may 

reflect a task condition-specific abstract spatial representation of the environment in 

reference to the target location.  

If sequences were caused primarily by motor planning during the delay period or 

neural replay of planned trajectories during the response period, we could expect neural 

sequences during the delay and response epochs from the same trial to be highly 

correlated, and this correlation would be higher than sequences from different trials. 

This was not the case. Delay and navigation epoch sequences were equally correlated 

between different trials as they were within the same trial (Figure. 4.6f, g). These results 

indicate that neural sequences in macaque LPFC represent remembered trajectories to 

target locations, and that such representations are different from those found in other 

brain areas.  
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a, Correlation between condition centroids and target location, ideal trajectories (i.e., 

Euclidean distance from start location to targets), or actual trajectories to target 

locations. Dots represent data per session. b, Trajectory examples within a session to 

the nine possible locations. c, Ideal trajectory reflecting situations in which a shorter 

trajectory falls precisely within the same path as a longer trajectory. d, Percent of 

neurons during the delay epoch in shorter sequences that are also active in longer 

sequences for all trajectories, all center target trajectories, and all ideal trajectories. e, 

The correlation between shorter and longer sequences during the delay epoch for all 

trajectories, all center target trajectories, and all ideal trajectories. Presented for the full 

population of neurons and for neurons shared between shorter and longer sequences. 

f, The correlation between delay and navigation epoch neural sequences between trials 

for an example session. The diagonal represents sequence correlations within the same 

trial. If neural sequences repeated between delay and response epochs in the same 

trial, a clear diagonal of increased correlation values would be present. g, Correlation 

between delay and navigation neural sequences within the same trial and between 

different trials for all sessions. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

 

 

 

 

Figure. 4.6: Trajectory analysis  



149 

 

4.3.5 Ketamine Disrupts Neuronal Sequences and Impairs Working 
Memory Performance  

In order to demonstrate a causal link between neuronal sequences and WM 

in our naturalistic task, one must conduct a causal manipulation. We used 

ketamine, a N-methyl-D-aspartate (NMDA) receptor non-competitive antagonist 

that  induces selective WM deficits in humans and animals (Frohlich, 2014, Wang, 

2013). We injected subanesthetic doses of ketamine (0.25 mg/kg - 0.8 mg/kg) 

intramuscularly while animals performed the task (see experimental timeline in 

Figure. 4.7a). Ketamine drastically reduced performance of our virtual WM task 

without affecting performance on a perception control task. WM performance 

recovered 30 minutes to 1-hour post-injection in the late post-injection period (Pre-

Injection: Median = 77%, Early Post-Injection: Median = 28%, Late Post-Injection: 

Median = 66%; Kruskal Wallis, p = 8.5e-05) (Figure. 4.7b; Figure. S4.12a, b).  

After ketamine injection, the differences in std distribution means for peak 

firing times between the real and shuffled data decreased suggesting that neurons 

fired with less temporal consistency after ketamine (Pre-Injection: Median = 171.6, 

Early Post-Injection: Median = 40.2, Late Post-Injection: Median = 100.4; Kruskal 

Wallis, post hoc, p = 0.001) (Figure. 4.7c; Figure. S4.12c, d). Behaviorally relevant 

groupings of condition centroids were similar between the non-injection data set 

and the pre-injection ketamine data set (Figure. 4.4b; Figure. 4.7d). This grouping 

was lost after ketamine injection but was regained 1 hour later as behavioral 

performance recovered (Figure. 4.7d).  
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Figure. 4.7: Ketamine manipulation distorts neural sequences and working 

memory 

a, Experimental timeline for ketamine injection. Pre-injection period is depicted in green, 

early-post injection in blue, and late-post injection (recovery) in pink. b, Task 

performance as percent of correct trials for each injection period. Color dots represent 

median values per injection period for WM data and gray dots represent median values 

per injection period for perception control data. Asterisks indicate significance between 

WM injection periods. c, Difference in real and shuffled distribution means between 

ketamine injection periods. d, Condition centroids projected in 3D space. Centroid 

colors correspond with their position in the virtual environment (see inlet). Ellipsoids are 

illustrated guides to indicate behaviorally relevant groupings of targets in the pre-

injection and late post-injection periods. These groupings are notably absent in the post-

injection period. e, Spearman correlation values for each ketamine injection period. Dots 

represent individual sessions and matching sessions are connected by lines. *p<0.05, 

**p<0.01, ***p<0.001. 
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We also saw that the correlation between condition centroid distances and 

target trajectory distances decreased after ketamine injection and then recovered 

when behavioral performance recovered. This indicates that sequences were less 

associated with remembered target location following ketamine injection (Pre-

Injection: Mean = 0.39, Early Post-Injection: Mean = 0.29, Late Post-injection: 

Mean = 0.34. 1-way ANOVA, post hoc, p = 0.04) (Figure. 4.7e; Figure. S4.12e, f). 

There was no change in any of the described measures in a saline control condition 

(Figure. S4.12g, h). These results indicate a causal link between NMDA receptor 

dysfunction caused by ketamine and disruption of neuronal sequences leading to 

deficits in WM. 

4.4 « Discussion » 

We recorded the responses of hundreds of single neurons in the macaque 

LPFC during a complex visuospatial WM task set in a naturalistic virtual 

environment. We report three major findings: (1) sequences of population activity 

represented trajectories to remembered locations in the environment (2) neural 

sequences of single neurons spiking activity were predictive of behavioral 

performance (3) NMDA receptor antagonism by ketamine disrupted neuronal 

sequences, selectively impairing WM performance. 

4.4.1 Neural Sequences and Working Memory Coding 

Prefrontal neural activity during tasks that require holding a single item in 

WM during a delay response period have demonstrated persistent activity that 

represents the memoranda (Leavitt et al., 2017a). One major shortcoming of the 

persistent firing hypothesis is that it may not be able to support WM 

representations with rich spatiotemporal structure (Steveninck et al., 1997; 

Lestienne & Strehler, 1987; Lundqvist et al., 2016). Indeed, in tasks during which 

sequences of multiple items need to be held in WM, persistent firing is scarce 

(Lundvisqt et a., 2016). A recent study reported that during a multi-item spatial WM 

task in which monkeys had to remember a series of spatial locations in sequential 
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order, temporally organized neuronal populations represented the order in which 

items were remembered (Xie et al., 2022). These studies demonstrate that 

additional mechanisms may be needed to support coding of WM representations 

when the memoranda have spatiotemporal structure.  

Our paradigm differs from those used in previous studies. We did not use 

multiple memoranda, instead; our subjects remembered a single target location 

and the trajectory to the location in a 3D virtual naturalistic environment. 

Importantly, our study did not restrain eye position, allowing for naturalistic 

exploration of the scene while information is being held in WM. The rationale 

behind studies restraining eye position is to avoid the interference caused by eye 

position signals and changes in the retinal image and consequently, in visual inputs 

on the WM representations (Suzuki & Gottlieb, 2013). However, in naturalistic 

conditions WM coding must be robust to such changes. To our knowledge, WM 

coding has not been tested under these conditions. 

 Previous studies in macaques have tried to approach the idea of transiently 

active neurons maintaining WM through shared temporal relationships by 

exploring spike chain patterns of several neurons. However, due to methodological 

constraints, these studies were unable to record large numbers of simultaneously 

active neurons and thus, unable to demonstrate sequence coding (Prut et al., 

1998). Our study has overcome this limitation by recording from hundreds of 

simultaneously active neurons, revealing precise sequences of single unit spiking 

activity that encode specific WM content.  

Studies in mice that simultaneously record from many neurons have 

reported neuronal activation sequences during short-term memory tasks in the 

posterior parietal cortex and dorsomedial striatum (Harvey et al., 2012; 

Akhlaghpour et al., 2016). In the rodent hippocampus, sequences of place cell 

activation signal trajectories to remembered locations that are stored in long-term 

memory (Skaggs & McNaughton, 1996). Thus, sequential activation of neurons to 
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encode spatiotemporal episodes appears to be a general coding mechanism 

across species.  

However, the sequences we report in this study are different from those 

previously described. First, they occur in the LPFC, a brain area that appears de 

novo in anthropoid primates (Passingham & Wise, 2012). More specifically, the 

sequences reported here occur within the expanded supragranular layers 2 and 3, 

where WM representations have been reported (Bastos et al., 2018; Finn et al., 

2019). The abstract WM representations we have described here may allow 

primates to represent short-term spatiotemporal episodes ‘in the mind’. Such 

episodes can be dissociated from sensory and motor signals and may be key to 

the enhanced cognitive control and planning observed in primates (Passingham & 

Wise, 2012). 

4.4.2 Ketamine Selectively Decreases Working Memory Performance 

and Disrupts Sequences 

Through pharmaceutical manipulation, we identify that sequence 

generation relies on NMDA receptor function. The interactions between inhibitory 

interneurons and excitatory pyramidal cells plays an important role in LPFC 

prefrontal circuits during WM tasks (Wang, 2004). Therefore, the precise activation 

of pyramidal cells may be dependent on a temporally coordinated ‘release of 

inhibition’ by interneurons (Cannon, 2015; Kosche, 2015). We have demonstrated 

in past research that NMDA receptor antagonism decreases the firing of narrow 

spiking neurons and decreases the selectivity of firing for putative pyramidal cells 

resulting in decreased neuronal tuning (see Chapter 3).  

Here, we show that NMDA receptor antagonism also decreases the 

consistency of single neuron timing and makes sequences less differentiable 

between target conditions. Similar to how neuronal tuning is broadened, population 

sequences become less precise. Thus, it is likely that failures of inhibitory control 

by interneurons in individuals with NMDA receptor dysfunction like patients with 
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schizophrenia and NMDA-receptor encephalitis causes the reported WM deficits 

in these populations. However, this issue requires further investigation.  

Sequential activity does not discredit persistent activity as a mechanism for 

WM maintenance. Temporal variations in delay period activity can still result in 

stable working memory representation as seen in Chapter 2 in which decoding 

accuracy for target location using firing rate over time remains stable throughout 

the delay epoch. In fact, we believe that these two forms of coding coexist. There 

is evidence that neurons display temporally precise firing during WM in which 

individual neurons are consistently spatially tuned during a small temporal window 

during the delay epoch (Papadimitriou, 2021). The potential relationship between 

spike rate-based selectivity and spike timing should be explored in future research. 

Sequential population activity patterns serve to benefit WM coding. For 

example, a temporally based code would be more energy efficient than one that 

relies solely on continuous spiking activity. A code that does not rely solely on 

continuous activity may also be robust to distraction as would occur in a naturalistic 

environment or to neuronal injury. The robust nature of sequential activity is 

exemplified by removing a percentage of neurons from the population. The 

correlation between neural sequences and target location during correct trials 

remains stable even after removing 70% of neurons from the population. 80 - 90% 

of neurons must be removed for this correlation to significantly change, at which 

point, the correct trial correlation becomes equal to the incorrect trial correlation 

(Figure. S4.10d, e). Temporal specificity may also add complexity to prefrontal 

networks, allowing for higher dimensional representations and flexible cognition. 

4.4.3 Conclusions 

These results reveal a mechanism in which neural populations encode WM 

representations in the primate LPFC via neuronal activation sequences. We 

demonstrate robust and behaviorally relevant temporal organization of spiking 

activity. Our task requires filtering of distractors, internal manipulation of spatial 

representations due to dynamic visual scenes, and online rerouting of trajectories 
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to remembered target locations. Indeed, under these naturalistic conditions, 

requiring complex spatiotemporal elements, population sequential activity 

underlies WM maintenance. 
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a-f, Example single neurons. Left column represents the activity of a neuron over trial 

time over all trials of a certain condition. Pink lines separate task epochs. Right column 

shows a histogram of max firing times per trial. 

 

 

 

 

 

 

Figure. S4.8: Example time consistent neurons 
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a, Trial-trial standard deviation in max firing time for each neuron across sessions during 

correct and incorrect trials. The Red crosses indicate group means. b, Difference in real 

and shuffled distribution of the deviation in neuron action potential timing between trials. 

Presented for correct and incorrect trials for NHP T. The red lines represent median 

values. Dots represent data for individual sessions. c, Difference in real and shuffled 

distribution of the deviation in neuron action potential timing between trials. Presented 

for correct and incorrect trials for NHP B. The red lines represent median values. Dots 

represent data for individual sessions. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

 

 

 

 

 

Figure. S4.9: Standard deviation of peak firing times 
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Figure. S4.10: Deviations of correlation method 

a, Method summary outlining different ways to calculate sequences. Crossed-out 

epochs indicate epoch data that was not used as part of the complex vectors for a given 

method. The asterisk indicates the method used in the main figures and text.  b, 

Correlation based on each method outlined in ‘a’. Dots represent data per session. 

Colored dots represent mean and correspond to the table in ‘a’. c, Correlation when 

neurons are only considered in one epoch sequence or when all neurons participate in 

all sequences. This reflects the possibility of one instance of peak activity versus 

multiple occurrences of increased firing. Dots represent data per session. d, Spearman 

correlations for correct trials between delay neural sequences and target trajectories 

after removing 10 - 90% of neurons from the sequence. e, The difference between 

spearman correlations for correct and incorrect trials after removing 10 - 90% of neurons 

from delay sequences. The dashed gray line represents 0 difference. *p < 0.05, **p < 

0.01, ***p < 0.001. 
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a, Depiction of ODR task with 16 targets. b, Surgical images showing location of Utah 

arrays implanted in left LPFC of NHP JL and NHP F. c, Two trial examples of 

simultaneously recorded population activity. Normalized firing rate for each neuron is 

arranged by max firing time. d, Real and shuffled distributions of max firing time trial-to-

trial deviation for an example session. e, Difference in the means between real and 

shuffled distributions for the virtual reality task and the ODR task. Gray lines indicate 

median values and dots represent data per session. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

 

 

Figure. S4.11: Temporal organization of neural activity during oculomotor delayed 

response task 
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a, Percent of correct trials for ketamine and saline sessions over injection periods for 

NHP T. Dots represent data for individual sessions and error bars are SEM. b, Percent 

of correct trials for ketamine and saline sessions over injection periods for NHP B. Dots 

represent data for individual sessions and error bars are SEM. c, Difference in the 

means between real and shuffled distributions of standard deviation values for neuron 

max firing time between trials. Presented for each ketamine injection period for NHP T. 

Dots represent data for each session. d, Difference in means between real and shuffled 

distributions for each ketamine injection period for NHP B. Dots represent data for each 

session. e, Correlation between the distance between condition cluster centroids and 

distance between target trajectories. Correlation values are presented for ketamine 

injection periods for NHP T. Dots represent data per session. f, Correlation values for 

ketamine injection periods for NHP B. Dots represent data per session. g, Difference in 

mean values between real and shuffled distributions for saline injection periods. Dots 

represent data for each session (NHP T and NHP B combined). h, Correlation between 

the distance between condition cluster centroids and distance between target 

trajectories. Correlation values are presented for saline injection periods for both 

animals combined. *p < 0.05, **p < 0.01, ***p < 0.001. 

Figure. S4.12: Ketamine and saline control analysis 
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4.5 « Methods » 

We used the same two adult male rhesus macaques (Macaca mulatta) in 

the main experiment as well as the ketamine and saline experiments (age: 10, 9; 

weight: 12, 10 kg). The oculomotor delayed response task was recorded from two 

different male macaques using one multielectrode Utah array implanted in each 

animal (Leavitt, 2017b, Leavitt, 2018).  

4.5.1 Ethics Statement 

Animal care and handling (i.e., basic care, animal training, surgical 

procedures, and experimental injections) were pre-approved by the University of 

Western Ontario Animal Care Committee. This approval ensures that federal 

(Canadian Council on Animal Care), provincial (Ontario Animals in Research Act), 

regulatory bodies (e.g., CIHR/NSERC), and other national standards (CALAM) for 

the ethical use of animals are followed. The oculomotor delayed response task 

experiment was in agreement with Canadian policies and regulations and was 

preapproved by the McGill University Animal Care Committee ( Leavitt, 2017b, 

Leavitt, 2018). Regular assessments for physical and psychological well-being of 

the animals were conducted by researchers, registered veterinary technicians, and 

veterinarians. 

4.5.2 Experimental Setup 

Animals performed the task in an isolated room with no illumination other 

than the monitor. The room contained no AC power lines and was RF shielded. 

The task was presented on a computer LDC monitor positioned 80 cm from the 

subjects’ eyes (27" ASUS, VG278H monitor, 1024 × 768 pixel resolution, 75 Hz 

refresh rate, screen height equals 33.5 cm, screen width equals 45 cm). Eye 

positions were monitored using a video-oculography system with sampling at 500 

Hz (EyeLink 1000, SR Research). Stimulus presentation was controlled through a 

custom computer program (through Unreal Engine 3). Subjects were seated in a 

standard enclosed primate chair (Neuronitek) during the experiment and were 
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delivered juice through an electronic reward integration system (Crist Instruments). 

Prior to the experiments, subjects were implanted with custom fit, PEEK cranial 

implants which housed the head posts and recording equipment (Neuronitek). See 

Blonde et al. for more information. The head posts were attached to the primate 

chair for head fixation.  

The experimental setup for the oculomotor delayed response task is outlined in 

both Leavitt et al. 2017b and Leavitt et al., 2018.  

4.5.3 Task 

The virtual task environment was developed using Unreal Engine 3 

development kit, utilizing Kismet sequencing and UnrealScript (UDK, May 2012 

release; Epic Games). Details about this platform and the recording setup can be 

found in Doucet et al. 2016. Movement speed through the environment was 

fixed.Target locations within the virtual arena were arranged in a 3 × 3 grid and 

spaced 290 unreal units apart (time between adjacent targets is approximately 0.5 

seconds). The perception control variation of the task was identical to the WM 

version except that the targets remained onscreen through the trial. 

The oculomotor delayed response task was separated into four epochs: 

fixation, stimulus presentation, delay, and response. The animal began a trial by 

fixating on a fixation dot and by pressing a lever. The duration of the fixation period 

was either 482, 636, or 789 ms. A sine-wave grating target then appeared at 1 of 

16 randomly selected locations positioned in a 4x4 grid for 505 ms. This was 

followed by a delay period ranging from 494–1500 ms. The fixation point was 

removed, cueing the animal to make a saccade to the location of the previously 

presented target and then to release the lever. 

4.5.4 Surgical Procedure 

Custom PEEK implants which housed recording hardware and a headpost 

were developed and implanted in each animal (Blonde, Roussy et al., 2018). Brain 
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navigation for surgical planning was conducted using Brainsight (Rogue Research 

Inc.). Two 10×10, microelectrode Utah arrays (96 channels, 1.5 mm in length and 

separated by at least 0.4 mm) (Blackrock Neurotech) were chronically implanted 

in each animal. Electrodes were implanted in the left LPFC (anterior to the arcuate 

sulcus and on either side of the posterior end of the principal sulcus). Arrays were 

impacted approximately 1.5 mm into the cortex. Reference wires were placed 

beneath the dura and a grounding wire was attached between screws in contact 

with the pedestal and the border of the craniotomy. Surgical procedures were 

conducted under general anesthesia induced by ketamine and maintained using 

isoflurane and propofol.   

For the oculomotor delayed response task data, a 96-channel Utah array 

was implanted in each monkey’s left LPFC in the same region that electrodes were 

implanted for recording during performance of the virtual WM task. Detailed 

surgical methods can be found in Leavitt et al. (2017b, 2018). 

4.5.5 Task Performance 

Correct trials are trials in which the animal reaches the correct target 

location within 10 seconds. An incorrect trial occurs if the animal does not reach 

the target location within 10 seconds. Percent of correct trials is calculated as the 

number of correct trials divided by the total number of trials.  

4.5.6 Spike Processing 

Neuronal data was recorded using a Cerebus neuronal Signal Processor 

(Blackrock Microsystems) via a Cereport adapter. The neuronal signal was 

digitized (16 bit) at a sample rate of 30 kHz. Spike waveforms were detected online 

by thresholding at 3.4 standard deviations of the signal. The extracted spikes were 

semi-automatically resorted with techniques utilizing Plexon Offline Sorter (Plexon 

Inc.). Sorting results were then manually supervised. Multiunits consisted of 

threshold-crossing events from multiple neurons with action potential-like 
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morphology that were not isolated well enough to be classified as a well-defined 

single unit.  

4.5.7 Time Consistent Neurons 

To quantify time consistent neurons, we created spike density functions 

(SDFs) combined between electrodes arrays over the entire trial time using 

neurons with firing rates above 0.5 Hz. SDFs were created for each condition that 

contained at least five trials. We calculated the peak firing time for each neuron in 

the population, calculated the standard deviation of the peak firing time for each 

neuron over all trials in a condition and created a probability distribution from the 

standard deviation values. We shuffled the peak firing times for each neuron from 

trial to trial so that the peak firing time no longer aligned for any one neuron. We 

created a shuffled probability distribution. We calculated the difference in mean 

values between the real and shuffled distributions to get the mean difference value.  

To calculate the standard deviation values plotted in Figure. S4.9a, we 

calculated trial-trial standard deviation of peak spike time for the target condition 

in which each neuron fired the most consistently during correct trials (i.e., lowest 

trial-trial deviation). The same conditions were used for shuffled data and for 

incorrect trials. 

To match the task structure of the VR task, we did not use data from the 

ODR fixation period. Since the ODR task had jittered delay epoch timing, we used 

trials with delay periods > 1000 ms and analyzed the first 1000 ms of the epoch. 

4.5.8 Complex Vector Decomposition 

In a related work, we introduce a complex valued dimensionality reduction 

technique focused on LFPs and spike trains. In brief, it is used to find repeated 

patterns in time series of phase variables. Here, we applied it to the spike trains to 

create a three-dimensional representation of the data. Each point in this three-

dimensional projection represents a single trial, which corresponds to a target 
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location l ∈[1,9] and a task outcome, correct or incorrect, which are considered 

separately. The locations of the points in the 3D-space were determined by the 

relative similarity of the spike trains (More precisely, by the correlation between the 

complex-valued sequences of spikes, which were created by mapping the peak 

firing time of each neuron to a phase between -π and π).  

The points corresponding to a specific target location defined a cluster, and 

the centroids were computed, resulting in one coordinate triple, 

 𝑐𝑙 = (𝑥𝑙, 𝑦𝑙, 𝑧𝑙) ∈ 𝑅3, corresponding to each target location. The matrix, D, of 

Euclidean distances between each pair of centroids was then computed, with 

𝐷𝑖,𝑗 = 𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑐𝑗) =  √((𝑥𝑗 − 𝑥𝑖)2 − (𝑦𝑗 − 𝑦𝑖)
2 + (𝑧𝑗 − 𝑧𝑖)

2) 

For each recording session, mean trajectories followed by the subject to 

each target location were obtained by averaging the group of correct trajectories 

to that target (excluding outlier trajectories with zscore > 1 of mean Frechet 

distance to other trajectories in the group). A 9x9 distance matrix was then created 

from the Frechet distances between each of the mean trajectories.  

In this way, each recording session was described by two 9x9 normalized 

distance matrices, one representing the relationships between target centroids in 

3D-space, and the other representing distances between behavioral trajectories to 

the target locations in the virtual environment. The correlation between the two 

distance matrices was then computed, which measures the similarity between the 

neuronal representations of the targets and the physical trajectories to them. Since 

centroids of targets in the same column tended to cluster together, a null model for 

comparison was created by shuffling the target columns while preserving the target 

rows, thereby destroying the correlation while preserving more of the structure of 

the data.  

When repeating the analysis for the oculomotor delayed response task, 16 

targets were included so the data was reduced to a 16×16 distance matrix 

describing the relationships between the neuronal representations of the target 
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locations. Furthermore, since the ODR task does not contain a navigation 

component, the distance matrix of the projection centroids was compared to the 

matrix of Euclidean distances between targets (rather than a Frechet distance 

matrix). 

4.5.9 Projection Classification Analysis  

We used a simple classifier based on our computational approach with 5-

fold cross-validation to classify sequences on a single trial basis. The classifier 

assigns labels to points in the projected 3D-space, assigning each trial in the test 

set to the centroid of trials in the training set which has the minimum Euclidean 

distance to the trial in question. In the supervised version, the training set centroids 

are determined using the trial condition labels. The unsupervised version uses K-

means clustering to determine the training set centroids. The same method is used 

to classify both trial condition and trial epoch (in which case each trial is split into 

three sequences, one for each epoch, prior to creating the projection). 

4.5.10 Trajectory Analysis 

We repeated the centroids analysis described above but replaced the 

distance matrix describing mean trajectories with two other task-relevant 

measures. First, we constructed geometrically ‘ideal’ trajectories straight from the 

start location to each target and repeated the analysis using Frechet distance 

between trajectories. Second, we used the matrix of Euclidean distances between 

target locations. Unlike the mean trajectory analysis, these measures only 

described the task set up and did not include behavioral data.  

We then considered the subset of correct trials during one recording session 

which corresponded to the most direct trajectories to center targets. These trials 

defined a group of similar trajectories with no curvature, similar direction, and three 

lengths, so that many trajectories overlapped, and some longer trajectories 

contained shorter trajectories from other trials. For each pair of neural sequences 

corresponding to trials in this group, we computed three measures: 1) the fraction 
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of cells active in the shorter sequence that were also active in the longer sequence, 

2) the circular-circular correlation between the sequences, 3) the circular-circular 

correlation between the sequences when only the shared neurons were 

considered. We then computed the same measures for all pairs of correct trials in 

the recording session (i.e., pairs in which the trajectories could have any direction, 

depth, or target location). We also computed the same measures for 12 pairs of 

overlapping trajectories, where the shorter trajectories were completely contained 

within longer trajectories 
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5 General Discussion  

5.1 « Overview » 

 Everyday functions like cooking a recipe, having a conversation, or 

calculating a tip at a restaurant use working memory (WM). You may easily 

envision a situation in which you manage to read and remember multiple steps of 

a recipe while kids are running around the house, a dog is barking, or you take 

breaks to clean the kitchen as you cook. During this time, you are maintaining a 

functional mental representation of those instructions while faced with a multitude 

of incoming sensory signals. How do we manage this?  

  The lateral prefrontal cortex (LPFC) evolved to process information and 

guide behavior in a world with complex and interacting elements. However, WM 

research in macaques traditionally aims to isolate single task features using simple 

visual stimuli and responses. Previous experiments have maintained a high level 

of control to elucidate specific elements of WM but deviate from the naturalistic 

use of WM. Therefore, it is unclear how LPFC neurons encode WM 

representations in naturalistic contexts - in the presence of incoming visual stimuli, 

distractors, eye movement, and 3D navigation. 

In this dissertation, I explored how the primate PFC processes WM in such 

complex, naturalistic conditions. Naturalistic conditions were achieved through the 

development of a novel visuospatial WM task and matching perceptual control task 

that takes place in a complex virtual environment. There are several naturalistic 

elements to this task: 1) The virtual environment is visually complex, containing 3D 

stimuli and cues for depth perception, 2) animals are permitted free visual 

exploration of the environment, and 3) The task response requires 3D navigation. 

I was able to provide a level of experimental control through control of task timing 

and by maintaining a constant environment trial-to-trial. Elements that were not 

controlled such as animal movement in the environment and eye movement were 

continuously recorded.  
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In  Chapter 2, I first explored animal behavior during the naturalistic task. 

Animals were able to perform both the perception and WM variants of the task. 

Task performance was lower during WM than perception, and trajectories to 

targets were less optimal, reflecting the increased difficulty of the WM task. Eye 

movement and gaze behavior differed between perception and WM, implying a 

visually guided strategy during perception that was not utilized when the targets 

were during WM.  

I demonstrate robust coding of WM in prefrontal neurons during the 

naturalistic task. Single neurons displayed selective firing for specific target 

locations, similar to activity observed during traditional tasks like the ODR task 

(Levitt et al 2017). Populations of neurons encoded stable mnemonic 

representations of target location on a single trial level in the presence of potential 

distractors, changing visual scenery, and changes in eye position.  

Representations for target location were unaffected by removing neural 

signals associated with saccade direction and amplitude and gaze location. 

Additionally, the population of neurons tuned for saccade landing position and 

neurons tuned for remembered target location do not overlap (presented in chapter 

3). These findings suggest distinct processing for visuospatial WM and eye-related 

signals in LPFC. At the population level, neural activity also differentiates between 

mnemonic and perceptual representations of target location. As demonstrated in 

chapter 3, ketamine also distorts WM representations and decreases WM task 

performance without significantly impacting eye movement behavior or decreasing 

performance of the perceptual task variant. 

In chapter 3, I use ketamine, an NMDA receptor antagonist, to produce 

selective WM deficits. Ketamine caused WM deficits by decreasing neuron firing 

selectivity (i.e., distorted neural tuning). This resulted in weakened population-level 

representations of target location evidenced by decreased decoding performance. 

Different effects of ketamine on putative interneurons and pyramidal cells indicate 

a potential mechanism in which reduced firing of interneurons results in 
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disinhibition of excitatory cells thus, broadening spatial selectivity and distorting 

representations of space.  

Finally, in chapter 4, I investigate a parallel code for WM coding that may 

support WM in complex, dynamic environments. I show that neurons fire 

transiently during the task and that this firing is temporally consistent between trials 

of the same target location condition. Together, the firing of these neurons created 

neural sequences -  patterns of tiled population activity that spanned the duration 

of a trial. Using a novel computational method, I demonstrate that these sequences 

of neural activity robustly represent target location and target trajectory selectively 

during WM. Moreover, causal manipulation using ketamine distorts these 

sequences, leading to WM deficits.  

5.2 « What Unique Role does the Prefrontal Cortex Play in 

Naturalistic Working Memory? »  

In the visual system, there exists a hierarchical flow of visual information 

between regions of the cortex. These regions successively elaborate on 

representations derived by processing in earlier visual areas and begins to 

integrate this information to generate recognizable perceptual representations. For 

example, neurons in V1 evaluate edges which are used by specialized cells to 

detect corners and then used by neurons in association regions to represent visual 

perceptions of shapes and objects (Grill-Spector & Malach, 2004). Perceptions of 

our visual world can also be maintained after stimuli are removed, as occurs in 

WM.  

Along this path of visual information processing, mnemonic representations 

of visual stimuli develop. Leavitt, et al, 2017 conducted a thorough investigation 

into regional specification of delay activity, the findings of which suggest a gradient 

within the primate visual system in which properties that support WM emerge in 

the brain from sensory regions to the PFC. The appearance of WM-related 

persistent activity in the brain is first observed in association areas like the medial 
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superior temporal region (MST) or parietal region LIP/ 7a and are most prevalent 

in PFC. Functional boundaries appear to exist along both the dorsal and ventral 

visual pathways in which persistent activity and WM representations emerge 

(Mendoza-Halliday et al., 2014; Leavitt et al., 2017). See Figure. 5.1 for an 

illustration of visual information flow through the cortex.  
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Figure. 5.1: Flow of visual information in the brain 

This figure illustrates the flow of visual and mnemonic information in the macaque 

cortex. Shapes represent the type of visual information primarily stored in each region 

and the color denotes the ratio of mnemonic to perceptual encoding. Representation of 

mnemonic information begins to appear in MST and IT, with the greatest mnemonic 

representation occurring in PFC.  
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Although other regions exhibit delay-related activity, the PFC presents 

functional differences from other association areas (Katsuki et al., 2014). For 

example, the relative proportion of neurons showing selectivity for perceptual and 

mnemonic visual attributes changes along the hierarchy of visual processing. For 

representations of motion direction, the proportion of cells encoding mnemonic 

relative to perceptual representations is lowest in MT with 100% of cells 

representing perception and lower in MST (93% of cells represent perception, 36% 

of cells represent WM) than LPFC (70% of cells represent perception, 55% of cells 

represent WM). The same trend is also evident during the performance of an ODR 

task in which LPFC contains a higher proportion of exclusively delay selective 

neurons and parietal area 7ip contains a higher proportion of exclusively cue 

selective neurons (Chafee, & Goldman-Rakic, 1998).  

The LPFC also contains neurons that exclusively encode motion direction 

during a perceptual delayed match-to-sample task as well as neurons that 

exclusively encode memory representations of the same motion direction 

(Mendoza-Halliday and Martinez-Trujillo, 2017). A study found that about 1/3 of 

the neurons encoded perceptual representations of motion direction but not 

mnemonic representations, another 1/3 encoded mnemonic representations but 

not perceptual representations, and another 1/3 encoded a mix of both perceptual 

and mnemonic representations (Mendoza-Halliday & Martinez-Trujillo, 2017). I 

present similar findings for visuospatial WM in chapter 2 in which separate 

populations of single neurons are tuned for either mnemonic or perceptual 

representations of space or display a mix of selectivity for both types of 

representation.  

  The existence of subpopulations of perceptual and mnemonic neurons 

within the LPFC circuitry provide evidence for a system unique to LPFC in which 

separate substrates for perception and WM are “concentrated” within a single brain 

area microcircuit. Unlike observations in sensory areas such as MT where neurons 

are topographically organized according to their RF location and motion direction 

they encode (Born & Bradley, 2005), perceptual and mnemonic cells are 
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distributed within area 9/46 without any apparent clustering by the type of 

representation (perceptual or mnemonic), suggesting a spatial integration of 

mnemonic and perceptual neurons. Functional clustering also could not be found 

in my electrode arrays based on spatial tuning or representation type. Instead, cells 

with different response properties created a speckled salt-and-pepper pattern 

within the spatial resolution of the recording electrodes (electrodes are 400 

micrometers apart), consistent with previous findings in my lab using Utah arrays 

in LPFC (Backen et al., 2017).  

  Despite the spatial integration, the functional segregation of the different 

populations (perceptual and mnemonic) within LPFC still allows a linear decoder 

to use single neuron activity to estimate whether a direction of motion is held in 

WM or is visually presented (perception-memory decoder) as well as which 

direction is perceived or memorized (direction decoder) (Mendoza-Halliday & 

Martinez-Trujillo, 2017). I present a similar result in chapter 2 in which cross-

training of perception and WM results in poor decoding accuracy, signifying a 

distinct population code. In chapter 4, I also demonstrate that neural sequences 

differ between cue presentation and WM delay. This indicates that perceptual and 

mnemonic signals as well as the features they encode can be discriminated, with 

reasonable accuracy, from the activity of neurons within the LPFC circuitry. 

One potential benefit of a local system capable of representing both WM 

and perception while maintaining functional segregation is that a “read-out” of the 

population activity in the LPFC can provide a substrate for rapidly “identifying” the 

nature of the representation (perceptual or mnemonic). This may be important for 

protecting mnemonic representations from incoming sensory signals and the 

ability to differentiate between internally and externally generated representations. 

The importance of which is highlighted in patients with schizophrenia that lose the 

ability to differentiate between perceptual and mental representations (e.g., during 

hallucinations and delusions). WM deficits are also common in patients with 

schizophrenia and abnormal LPFC activity is consistently reported (Glahn et al., 

2005; Forbes et al., 2009; Callicott et al., 2000; Callicott et al., 2000). As reported 
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in chapter 3, ketamine causes WM deficits by distorting mental representations. A 

similar distortion of mental representations may occur in schizophrenia.  

Another unique function of PFC is protection from distraction which is 

essential in a naturalistic task. LPFC activity for task-relevant information remains 

robust during WM in the presence of incoming sensory signals and task-irrelevant 

information (Constantinidis & Steinmetz, 1996; Qi et al., 2010; Suzuki & Gottlieb, 

2013). Since my task allows for free visual exploration, every eye movement may 

result in new incoming sensory signals which could act as distractors - potentially 

eroding WM representations. However, in chapter 2, I demonstrate robust 

population encoding of remembered target locations. Decoding accuracy for 

predicting target location remains stable throughout the delay period when using 

neural ensembles or the full population of recorded neurons. This may occur by 

populations maintaining a stable subspace that we did not examine (Murray et al., 

2017; Parthasarathy et al., 2019) or that a stable representation is maintained 

through an additional temporal code that binds spatial representations over trial 

time. 

5.3 « Utility of Sequential Activity »  

In chapter 4, I present evidence for an additional neural code that appears 

to support WM in naturalistic environments. I propose that precise patterns of 

population activity may, along with persistent activity, support WM in complex 

spatiotemporal conditions. As outlined in the introduction, types of sequential 

activity are well known to support complex behaviors in other animals and brain 

regions. Here, I demonstrate for the first time that they can represent WM in the 

primate LPFC as well (expressed by Wang, 2021).           

Sequential population activity patterns potentially serve to benefit WM 

coding in several ways: 1) An element of temporal coding may increase the amount 

of information that can be conveyed within a circuit since information could be 

transmitted through spike rate (firing over time) as well as alterations in spike 
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timing or spatiotemporal firing patterns of a group of neurons, thus potentially 

allowing for more complex computations. 2) A code that does not rely on 

continuous activity may be robust to distraction as would occur in a naturalistic 

environment. If an individual neuron changes its firing pattern in response to a 

distractor, thus losing its tuning for a target location, the population can still 

maintain a similar temporal pattern. Indeed, in chapter 4 I detail a neural ablation 

experiment in which temporal patterns of population activity can still represent 

target trajectory when 70% of neurons are removed from the population. 3) This 

code is robust to trial-trial differences in firing rate. Using this code, the magnitude 

of firing matters less than the relative timing of peak firing in relation to the 

population. 4) This code may maintain the temporal relationship and timing 

consistency in the population despite changes in environment (e.g., changes in 

visual scene after eye movements). A temporal code may propagate task related 

information over trial time creating temporal consistency, through which delay 

information could be integrated over the delay period for a stable and uniform 

representation in spite of complex task dynamics. This may also result in the 

tracking of temporal order – an overall representation of task structure or states 

over time (cue, delay, navigation). In chapter 4, neural sequences do appear to 

represent task state in which epoch can be predicted with high accuracy.  

5.4 « Mechanisms of Sequential Activation»  

Neuronal sequences have been reported to underlie temporally precise 

behaviors in other species such as song production in songbirds (Long et al., 

2010). One proposed mechanism is a feedforward network in which activity linearly 

propagates from one group of neurons to the next, resembling synfire chain circuit 

models (Abeles, 2009). However, this mechanism does not consider complex 

interactions between cell types (e.g., excitatory and inhibitory interneurons). 

Previous studies point to the importance of interneurons in WM circuits (Wang, 

2004); Therefore, it is important to consider the complexity of neuronal circuits that 

contain multiple neuronal types. A second mechanism proposes that excitation is 

controlled by temporally structured inhibition. The temporally precise activation of 
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pyramidal cells is dependent on a ‘release of inhibition’ by interneurons (Cannon 

et al., 2015; Kosche et al., 2015). Therefore, neural sequences may form through 

an interaction between recurrent excitation and precise inhibition within a local 

circuit.  

I demonstrate in chapter 3 that NMDA receptor antagonism decreases the 

firing of narrow spiking neurons, resulting in reduced spatial tuning of putative 

pyramidal cells. In chapter 4 I show that NMDA receptor antagonism by ketamine 

also decreases the consistency of single neuron timing and makes sequences less 

differentiable between target conditions. Similar to how neuronal tuning is 

broadened, population sequences become less precise. This evidence supports 

NMDA-dependent inhibitory control of precise neural timing during WM. This 

mechanism may also relate to WM deficits in individuals with NMDA receptor 

dysfunction like patients with schizophrenia and NMDA-receptor encephalitis. 

Curiously, other symptoms of schizophrenia, like disorganized behavior, have also 

been associated with disturbances in the temporal processing of information, 

resulting in distorted timing of perceptual and cognitive processes (Carroll et al., 

2008).  

Are local circuits capable of producing sequential activity? Using a network 

model consisting of a population of oscillators (each oscillator could reflect a single 

neuron spike train), my research team has shown that complex spatiotemporal 

patterns of activity emerge when a stimulus input is modeled. Specific patterns of 

activity evolve based on a specific input and these activity patterns are robust to 

perturbation (what may be related to distractor input). With appropriate input, these 

modeled networks produce sequential activity similar to the neural sequences I 

present in chapter 4. This may reflect how neurons in a local circuit with 

asynchronous activity could generate informative neural sequences based on 

precise input (i.e., target location).   

A final mechanism may rely on temporally precise phase-locked neuron 

firing driven by oscillatory activity that modulates the excitability of neurons. 
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According to some fields of thought, gamma oscillations are related to bursts of 

neural activity (Lundqvist, 2018).  My research team briefly explored this possibility 

in my dataset, but we found little evidence of gamma frequency modulation. We 

did find some gamma modulated single neurons; however, after despiking the LFP 

signal (i.e., removing spike correlated signals) (Zanos et al., 2011), zero neurons 

in our population of recorded cells were gamma modulated. This suggests that 

gamma oscillations or bursts in gamma power do not contribute to sequence 

formation during my WM task.  

Sequence generation through theta oscillations is another candidate 

mechanism. My team used a spike-triggered average approach to average the 

oscillatory power around each neuron’s peak firing time. We found evidence of 

increased theta power corresponding to peak firing times. However, it is currently 

unclear if this theta activity constitutes sustained oscillatory activity. It is also 

unclear whether the theta we recorded is generated from a local or distant source. 

A potential way to determine whether peak firing bursts results from theta 

oscillations and to dissociate local contributions from distant contributions is to 

consider the relevant timing of the events. If theta increases before the peak firing 

time, this may indicate a distant source of this activity. The relationship between 

neurons and LFP activity is an avenue we wish to explore in future studies. 

5.5 « Limitations in Modeling Schizophrenia using 

Ketamine»  

It is truly amazing that the brain can represent and manipulate complex 

representations of locations, objects, and even rules that no longer exist to our 

senses. It is capable of building robust and expansive mental worlds. Humans may 

take the complexities of our mental worlds for granted – the importance of which 

may only be understood when these processes go awry as occurs in some 

psychiatric conditions.  
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Although ketamine does appear to represent similar symptoms and 

pathophysiology of schizophrenia, no model can fully represent the complexities 

of the disorder.  There are several limitations to consider. The first is the difference 

between the PFC in macaques and humans. Although the PFC is expanded in 

macaques, the surface area of human PFC is 10-fold larger than macaque PFC 

and the grey matter occupying human PFC is 1.9 times greater than that of 

macaque PFC. With this expansion came further expansion in cognitive function 

(Donahue et al., 2018) and increased vulnerability to diseases like schizophrenia 

that do not occur naturally in other primates, including my animal model 

(Passingham & Wise, 2012).  

The second limitation is that I administer ketamine systemically which may 

reflect systemic dysfunction in the brain that occurs in schizophrenia and results in 

clear behavioral effects that can be correlated with neural activity; however, it 

becomes less clear whether changes in neural activity are caused solely by 

ketamine’s effect on PFC. In this dissertation, I discuss WM from the perspective 

of local circuit processing within LPFC. Significant modeling and experimental 

evidence support the importance of local circuit function for WM maintenance 

(Wang et al., 2004; Constantinidis et al., 2018; Roussy et al., 2021); however, the 

PFC does not exist in a vacuum. By only recording from LPFC, we only see part 

of the picture. It is unlikely that the LPFC alone is responsible for the complex 

cognition and behavior that is represented in my task, thus it would be insufficient 

to only consider local connections when considering systemic drug effects.  

The PFC plays an important executive role, incorporating sensory signals 

with mental representations, and planned motor response. To fulfill this role, the 

PFC must be interconnected with various cortical and subcortical regions. Of 

particular interest to WM, the lateral PFC is largely bidirectionally connected to 

temporal and posterior parietal cortices (Goldman-Rakic & Schwartz, 1982; 

Leichnetz, 1980; Schwartz & Goldman-Rakic, 1984; Yeterian et al., 2012; Arnsten, 

2013). 
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 WM may be partially maintained through cortical-cortical or cortical-

subcortical loops (Floresco et al.,1999; Christophel et al., 2017). One cortical-

cortical connection that is particularly relevant for visuospatial WM and may be 

affected by ketamine (Muthukumaraswamy et al., 2015) is that between LPFC and 

the posterior parietal cortex. In 1998, Chafee and Goldman-Rakic observed that 

patterns of neuronal activity in the dlPFC and parietal area LIP/7a were remarkably 

similar including their spatial tuning and ability to generate persistent activity 

(Chafee & Goldman-Rakic, 1998). They later demonstrated, using cortical cooling, 

that WM-related activity in both regions were dependent on shared reciprocal 

activity (Chafee & Goldman-Rakic, 2000).  Synchronized activity between PFC and 

PPC underlying WM has since been substantiated (Salazar et al., 2012). The 

prefrontal and parietal cortices thus represent two regions in which persistent 

activity is frequently observed but the role of their reciprocal connections is still 

debated (Christophel et al., 2017; Constantinidis et al., 2018). 

  To explore the function of these prefrontal-parietal connections, Murray et 

al., (2017) developed a computational model of two bidirectionally connected 

modules that biophysically represented local networks of PFC and PPC. This 

model shows that PPC functions in a weak attractor state and transiently encodes 

the stimulus and propagates this sensory signal to PFC. Although both maintain 

the WM representation after stimulus offset, the attractor state is stronger in the 

PFC module, allowing for robustness against distractors. Feedback projections 

from PFC can additionally switch PPC neurons back to encoding target stimuli after 

distractor presentation. Therefore, in this model, persistent activity was supported 

by both local and long-range network connections, highlighting the importance of 

recognizing multiple levels of processing when considering systemic 

pharmaceutical manipulation. 

It is easy to imagine that changes in PFC activity may also result from 

ketamine’s action on these interconnected regions. Local manipulation of PFC 

through local micro drug injection or iontophoresis would need to be conducted to 

separate these effects. A study by Wang, Arnsten, and colleagues does 
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convincingly alter PFC activity using NMDA receptor antagonists during WM using 

local ionophoresis and systemic ketamine injection (Wang et al., 2013). Neural 

activity in dlPFC was comparably altered using both methods.  

  The third limitation is that ketamine may not exclusively alter NMDAR 

systems. Although ketamine is thought to exert its effects as an NMDA receptor 

antagonist, it appears to have varying levels of influence on other neurotransmitter 

systems. Ketamine appears to have some influence on the dopaminergic system 

due to its rewarding properties evidenced by recreational abuse and proclivity for 

self-administration in macaques (Moreton et al., 1977).  Indeed, one meta-analysis 

shows that acute ketamine administration in rodents results in increased dopamine 

in the cortex (Kokkinou et al., 2018). One study reports that ketamine acts as a 

direct agonist for D2 dopamine receptors (Kapur & Seeman, 2002); although this 

finding has not been clearly replicated to my knowledge.  

More likely, ketamine disinhibits dopaminergic neurons, thus increasing the 

level of dopamine released. Ketamine increases the release of dopamine in the 

frontal cortex and ventral striatum (Moghaddam., et al. 1997).  During an 

amphetamine challenge, pre-treatment with MK-801, PCP, or ketamine increases 

the amount of dopamine released compared to amphetamine administration alone 

(Miller & Abercrombie, 1996; Kegeles., et al. 2000). This resembles the increased 

amphetamine-triggered dopamine release in patients with schizophrenia (Laruelle 

et al., 1996; Breier et al., 1997). Chronic use of NMDA antagonists like ketamine 

can also result in abnormal dopaminergic signaling resembling that in 

schizophrenia (Jentsch & Roth, 1999).  

Dopamine is essential for WM function (Brozoski et al., 1979; Williams & 

Goldman-Rakic, 1995) and it has been associated with the ability to filter distracter 

stimuli (Jacob et al., 2016). It may be of little surprise then that association regions 

most involved in WM function have unequal distribution of D1 receptors in the 

macaque cerebral cortex (Froudist-Walsh et al., 2021). The concentration of D1 

receptors increases along the hierarchy of visual processing reaching their 
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maximal concentration in the parietal and prefrontal cortices. Froudist-Walsh and 

coworkers elaborated on a computational model in which release of dopamine 

favors persistent firing and resilience to distracters in association areas via its 

action on D1 receptors. Insufficient or excessive dopamine release on the other 

hand, makes persistent firing less robust to distracter interference (Froudist-Walsh 

et al., 2021).  

Together, ketamine-induced alterations in glutaminergic and dopaminergic 

systems may explain the formation of positive and cognitive symptoms including 

WM dysfunction. Could interactions between these two systems trigger symptoms 

in schizophrenia as well? I believe this is an important research field to explore. To 

separate the effects of both systems, more precise NMDA antagonists like MK-

801 could be used.  

5.6 « Future Studies»  

5.6.1 Exploration of Cortical-Cortical and Subcortical Connections 

The results of chapter 4 draw an interesting parallel between the function of 

the PFC and the hippocampus. Since this thesis focuses on a WM task that 

includes memory-guided navigation, I feel it important to consider potential LPFC-

hippocampal interactions. 

Hippocampal-prefrontal interactions are commonly demonstrated to 

underlie short-term memory for spatial locations in rodents (Jones & Wilson, 2005; 

Liu et al., 2018; Tang et al., 2021). Rodent studies demonstrate functional 

connectivity between these regions. Coordination between mPFC and 

hippocampus during complex spatial WM appears to occur through theta 

oscillations in which theta oscillations facilitate hippocampal inputs to the medial 

prefrontal cortex during memory tasks (Jones & Wilson, 2005; Liu et al., 2018; 

Tang et al., 2021).  
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Could this occur in macaques as well? To my knowledge, neural correlates 

of spatial WM have not been simultaneously recorded from primate LPFC and 

hippocampus. Early studies of patients with hippocampus lesions often reported 

unobstructed spatial WM function, suggesting that primates may differ from 

rodents in this relationship; however, more recent studies have refuted this claim, 

proposing that the medial temporal lobe (MTL) and hippocampus may have a 

greater role in spatial WM and even visual perception than previously assumed 

(Jeneson et al., 2012). Future research is needed to establish the role of the 

primate hippocampus during spatial WM.  

As surgical techniques and electrode development continue to advance, 

future studies will be able to simultaneously record from many single units from 

macaque PFC and PPC or hippocampus with relative ease. Chronically implanted 

high-density microelectrodes can be used in PFC and PPC such as the Utah array 

or more modern acute multi-shank, high-density electrodes that allow for optical 

stimulation and drug delivery for causal experiments (Shin et al., 2021). There are 

also many current options for electrodes with multiple recording sites for high-yield 

recording in deep brain regions like the hippocampus such as multisite planer 

probes with the ability to electrically stimulate, and interface with optical stimulation 

and drug delivery systems (Pemba & Tang, 2013).  

A virtual task like mine is ideal for studying the interaction between spatial 

navigation and WM in large animals as one can maintain a high level of 

experimental control. Alternatives to virtual tasks may be freely moving macaques 

with wireless signal transmission (Mao et al., 2021). Although this approach 

benefits ecological validity, there are logistical challenges to designing freely 

moving tasks in large animals with the most prominent being the space required 

for navigation. It also becomes more difficult to record eye position, a signal that is 

important to consider when measuring visuospatial WM in PFC.    
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5.6.2 Towards Naturalistic Research  

There is an obvious benefit to testing specific elements of a cognitive 

process or behavior. Much of what we understand of the brain and behavior results 

from the careful isolation of specific variables. However, this careful manipulation 

of individual elements may not amount to a comprehensive or holistic 

understanding of naturalistic brain function. For this reason, there has been a 

movement towards increasing task complexity in neuroscience to test the 

ecological validity of our experimental findings – to make the connection between 

brain function in highly controlled experiments and real-world contexts.  

In human research, subjects are now often presented with rich stimuli and 

contexts like video sequences or movies. Moreover, immersive virtual reality now 

allows participants to directly interact with experiments (Bohil et al., 2011). With 

the development of sophisticated behavior tracking software like DeepLabCut 

(Lauer et al., 2022), we can now effectively track precise behavior in humans or 

animals in complex environments. The development of virtual reality 

(demonstrated in this dissertation and Gulli et al., 2020), and the development of 

large recording chambers for experiments on freely moving subjects, allow for 

more immersive experimentation in animal research. Hardware breakthroughs 

allow for high-quality wireless and high-density neural recording during such 

experiments (Schwarz et al., 2014; Mao et al., 2021).  

Despite the benefits of increasing task complexity, issues can arise when 

introducing multiple variables at once. Here, I chose to develop a task with as many 

natural elements as possible while still maintaining experimental control (i.e., the 

surrounding environment is consistent from trial-to-trial and task structure and 

timing is precisely controlled). Since we do add multiple elements to our task, it is 

difficult to know which element drives new research findings. I believe this is a 

limitation in chapter 4 with the discovery of neural sequences during WM. 

Sequences were correlated to task behavior during my naturalistic task but not 

during an ODR task. There are several differences between the tasks that could 
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drive this distinction. Sequence generation could be required based on any task 

with complex spatiotemporal elements which may create short-term episodes. It 

could result in any task with memory-guided navigation, or it could occur in tasks 

requiring a complex behavioral response without a navigation requirement. 

 Intermediate steps are also required in which a small number of highly 

controlled variables may be studied in conjunction. Experiments that present 

multiple items for encoding, ones that include sequential presentation of items, 

ones that introduce different types of distractors in a highly controlled environment, 

and those that require complex responses are still essential to bridge the 

information between reductionist experiments (in which the complex behavior is 

reduced to a single isolated variable) and fully naturalistic approaches.  

5.7 « Concluding Remarks »  

Methodology for neural recording is developing rapidly due to academic and 

private investments (Neuralink, CA, USA) with the development of high-density 

electrodes that can record hundreds of isolated units (Neuropixels, Cambridge 

NeuroTech) while offering highly controlled causal manipulation, new experiments 

are becoming possible every day with thrilling potential – it is truly an exciting time 

to be a neurophysiologist. Increased recording capability, along with developments 

in the analysis of high-dimensional datasets, will undoubtedly increase our 

understanding of complex behavior. I believe that the work of this dissertation 

begins to pave a way for us to understand complex cognition in naturalistic 

settings. My hope is that continued research on this trajectory will not only help us 

understand the complexities of PFC in primates as well as the development of our 

vast mental worlds as humans, but also the vulnerabilities to disease that 

accompany it. 
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« Appendix C: Statistical Reporting Tables » 

 

Table 1C: Statistics reporting table for chapter 2. 
 

Figure Subj. Data 
Counts 

Stat Test Comparison Stat. P Value 

2.2a 
Percent of 
Correct 
Trials 

NHP B, 
NHP T 

20 WM 
sessions,  
 
19 
perception 
sessions 

2-way 
ANOVA 
 
 
 
 
 
Tukey-
Kramer 
Multiple 
Comparison 

Animal 
Task  
Interaction 
 
 
 
 
NHP B Per– 
NHP B WM 
 
NHP T Per– 
NHP T WM 
 
NHP B WM– 
NHP T WM 

F(1,35) = 
84.7 
F(1,35) = 
199.6 
F(1,35) = 
58.9 

p < 
0.0001 
p < 
0.0001 
p < 
0.0001 
 
p < 
0.0001 
 
p < 
0.0001 
 
p < 
0.0001 

2.2b 
Response 
Time 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

2-way 
ANOVA 
 

Animal 
Task  
Interaction 
 

F(1,35) = 
0.62 
F(1,35) = 
0.01 
F(1,35) = 
0.98 

p = 0.44 
 
p = 0.94 
 
p = 0.33 
 

2.2e 
Optimal 
Trajectory 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

Wilcoxon 
Rank-Sum 
Test 

NHP B 
NHP T  

Rank = 234 
Rank = 72 

p = 
0.0002 
p = 0.02 
 
 

2.3a 
Percent on 
Screen 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

2-way 
ANOVA 
 
 
 
 
 
Tukey-
Kramer 
Multiple 
Comparison 

Epoch 
Task 
Interaction 
 
 
 
 
cueWM-
delayWM 
 
delayWM-
responseWM 
 
cueWM-
responseWM 
 
cuePer-
delayPer 
 
delayPer-
responsePer 

F(2,111) = 
6.9 
F(1,111) = 
8.4 
F(2,111) = 
20 

p = 
0.002 
p = 
0.005 
p < 
0.0001 
 
p = 0.01 
 
 
p = 
0.0004 
 
 
p = 0.9 
 
 
p = 0.8 
 
p = 
0.0007 
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cuePer-
responsePer 
 
cueWM- 
cuePer 
 
delayWM-
delayPer 
 
responseWM
-responsePer 

 
p < 
0.0001 
 
p = 1 
 
 
p = 0.44 
 
 
p < 
0.0001 

2.3d 
Percent 
Eye 
Movement 
Events 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

2-way 
ANOVA 
 
 
 
 
 
 
 
Tukey-
Kramer 
Multiple 
Comparison 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2-way 
ANOVA 
 
 
Tukey-
Kramer 
Multiple 
Comparison 

Fixation  
 
Epoch 
Task 
Interaction 
 
 
 
 
cueWM-
delayWM 
 
cueWM-
responseWM 
 
delayWM-
responseWM 
 
cuePer-
delayPer 
 
cuePer-
responsePer 
 
delayPer-
responsePer 
 
 
Saccade  
 
Epoch 
Task 
Interaction 
 
 
 
 
cueWM-
delayWM 
 
cueWM-
responseWM 
 

 
 
F(2,111) = 
191.8 
F(1,111) = 
11.3 
F(2,111) = 
0.62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F(2,111) = 
64 
F(1,111) = 
142.2 
F(2,111) = 
10.9 
 
 

 
 
p < 
0.0001 
p = 
0.001 
p = 0.54 
 
 
p = 0.3 
 
 
p < 
0.0001 
 
p < 
0.0001 
 
p = 0.85 
 
 
p < 
0.0001 
 
p < 
0.0001 
 
 
 
 
p < 
0.0001 
p < 
0.0001 
p < 
0.0001 
 
p = 0.99 
 
 
p < 
0.0001 
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delayWM-
responseWM 
 
cuePer-
delayPer 
 
cuePer-
responsePer 
 
delayPer-
responsePer 
 
cueWM-
cuePer 
 
delayWM-
delayPer 
 
responseWM
-responsePer 

p < 
0.0001 
 
p < 
0.0001 
 
p = 
0.007 
 
p < 
0.0001 
 
p = 
0.0007 
 
p < 
0.0001 
 
p < 
0.0001 

2.3e 
Main 
Sequence 
Between 
Epochs 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

1-way 
ANOVA 
 
 
 
Tukey-
Kramer 
 
 
 
 
 
 
 
 
 
 
 
 
 
1-way 
ANOVA 
 
 
 
Tukey-
Kramer 

WM  
Amplitude 
bin 
 
 
Delay-cue 
 
 
 
 
Cue-
response 
 
 
 
Delay-
response 
 
 
 
Perception 
Amplitude 
bin 
 
 
Delay-cue 
 
 
 
 
Cue-
response 
 
 
 

 
 
 
 
 
 
 
Cohen’s d 
 
 
 
 
Cohen’s d 
 
 
 
 
Cohen’s d 
 
 
 
 
 
 
 
 
 
Cohen’s d 
 
 
 
 
Cohen’s d 
 
 

 
4 bins, p 
< 0.05 
 
 
4 bins, p 
< 0.05 
2 bin > 
0.2 
 
3 bin, p 
< 0.05 
3 bin > 
0.2 
 
3 bin, p 
< 0.05 
1 bin > 
0.2 
 
 
6 bins, p 
< 0.05 
 
 
4 bins, p 
< 0.05 
1 bin > 
0.2 
 
6 bins, p 
< 0.05 
6 bin > 
0.2 
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Delay-
response 
 

 
 
Cohen’s d 

6 bins, p 
< 0.05 
3 bin > 
0.2 
 

2.3f 
Main 
Sequence 
On and Off 
Target 
 

NHP B, 
NHP T 

20 WM 
sessions, 
19 
perception 
sessions 

T-Test 
 

WM  
 
 
 
 
Perception  

 
 
Cohen’s d 
 
 
 
 
Cohen’s d 

0 bins, p 
< 0.05 
0 bin > 
0.2 
 
6 bins, p 
< 0.05 
3 bin > 
0.2 

2.6b 
Decoding 
Ensemble 
Over Time 
 

NHP B, 
NHP T 

19 WM 
sessions 
 
14 time 
windows 
 
4 time 
windows 

Kruskal-
Wallis 

Time 
windows 
All trial time 
 
 
Delay time 

 
 
h(13,252) = 
17.3 
 
h(3,72) = 
4.9 

 
 
p = 0.19 
 
 
p = 0.18 

2.6c 
Decoding 
Trial 
Outcome 

NHP B, 
NHP T 

19 WM 
sessions 

T-Test 
 

Compare 
decoding 
accuracy to 
chance 
(50%) 

 p = 
9.19e-
07 

2.6d 
Decoding 
using 
Correct or 
Incorrect 
Trials 

NHP B, 
NHP T 

13 WM 
sessions 

T-Test 
 

Correct -   
Incorrect 

t(24) = 4.04 p = 
4.71e-
04 

2.7c 
Fixation 
on Target  

NHP B, 
NHP T 

20 WM 
sessions 

Wilcoxon 
Rank-Sum 
Test 

Correct - 
Incorrect 

Rank = 482 p = 
0.053 
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2.7d 
Eye 
Position 
Decoding  

NHP B, 
NHP T 

20 WM 
sessions  

Kruskal-
Wallis 
 
Tukey-
Kramer 
Multiple 
Comparison 
 

Epochs 
 
 
cueCue-
delayDelay  
 
cueCue-
delayCue 
 
cueCue-
cueDelay 
 
delayDelay-
delayCue 
 
delayDelay-
cueDelay 
 
delayCue-
cueDelay 
 

h(3,76) = 
51.1 

p < 
0.0001 
 
 
p = 0.04 
 
 
p < 
0.0001 
 
 
p < 
0.0001 
 
 
p = 
0.002 
 
 
p = 0.01 
 
 
p = 0.96 

2.7f 
Decoding 
using 
firing rate 
or 
residuals  

NHP B, 
NHP T 

19 WM 
sessions 

T-Test Firing rate, 
residual 
values from 
linear model  

t(36) = 1.14 p = 0.26 

2.7h 
Decoding  
Neural 
Data Eye 
Position  

NHP B, 
NHP T 

19 WM 
sessions 

Wilcoxon 
Rank-Sum 
Test 

Cue - Delay Rank = 472 p = 
0.003 

2.8a 
Cue - 
Cross 
Task 
Decoding 

NHP B, 
NHP T 

13 WM 
sessions, 
13 
perception 
sessions 

Kruskal-
Wallis 
Tukey-
Kramer 
Multiple 
Comparison 
 
 

Tasks 
 
 
WMWM-
PerPer 
 
WMWM- 
WMPer 
 
WMWM-
PerWM 
 
PerPer - 
WMPer 
 
PerPer- 
PerWM 
 
WMPer-
PerWM 

h(3,48) = 
39.2 

p < 
0.0001 
 
p = 0.77 
 
 
p < 
0.0001 
 
p < 
0.0001 
 
p = 
0.0007 
 
p = 
0.0005 
 
p = 1 
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2.8b 
Delay - 
Cross 
Task 
Decoding 

NHP B, 
NHP T 

13 WM 
sessions, 
13 
perception 
sessions 

Kruskal-
Wallis 
 
Tukey-
Kramer 
Multiple 
Comparison 
 

Tasks 
 
 
 
WMWM-
PerPer 
 
WMWM- 
WMPer 
 
WMWM-
PerWM 
 
PerPer - 
WMPer 
 
PerPer- 
PerWM 
 
WMPer-
PerWM 

h(3,48) = 
39.2 

p < 
0.0001 
 
 
p = 0.99 
 
 
p < 
0.0001 
 
p = 
0.0009 
 
p < 
0.0001 
 
p = 
0.0003 
 
p = 0.79 

2.8c 
WM Half-
Trial 
Decoding 

NHP B, 
NHP T 

13 WM 
sessions 

Kruskal-
Wallis 

Full and half 
WM trials 

h(1,24) = 
11.6 

p = 
0.0006 

2.8e  
Cross 
Temporal 
Decoding 
 

NHP B, 
NHP T 

19 WM 
sessions 

Kruskal-
Wallis 
 
 

Time 
windows 
 
All trial time 
 
 
Delay time 

 
 
 
h(3,72) = 
7.7 
 
h(13,252) = 
21.7 

 
 
 
p = 0.05 
 
 
p = 0.06 
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Table 2C: Statistics reporting table for chapter 3. 

 
Figure Sample  Stat Test Values 

Task 
performan
ce 
(percent 
correct) 
compared 
to chance 
(11%) 

Ketamine-WM  
18 
 
Saline-WM 
7 
 
Ketamine-
Perception 
4 

Binomial 
test 

Pre-Injection: 
Ketamine-WM sessions 
p<0.001 
Saline-WM sessions 
p<0.001 
Ketamine-Perception sessions 
p<0.001 
 
Early Post-Injection: 
Ketamine-WM sessions 
13 sessions, p<0.05 
Saline-WM sessions 
p<0.0001 
Ketamine-Perception sessions 
p<0.0001 
 
Late Post-Injection: 
Ketamine-WM sessions 
p<0.05 
Saline-WM sessions 
6 sessions, p<0.05 
Ketamine-Perception sessions 
p<0.05 

Fig. 3.1g 
Task 
performan
ce 
(percent 
correct) 
compared 
between 
injection 
periods 

Ketamine-WM  
18 
 
Saline-WM 
7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Two-way 
analysis 
of 
variance 
with post 
hoc 
pairwise 
comparis
ons 
 
 
 
 
 
 
 

Ketamine-WM:  
Pre-Injection, mean=72, std=77 
Early Post-Injection, mean=34, median=28 
Late Post-Injection, mean=64, median=66 
 
Saline-WM:  
Pre-Injection, mean=80, median=84 
Early Post-Injection, mean=77, median=90 
Late Post-Injection, mean=66, median=76 
 
Drug: F=9.57, p=0.003, df=1,69 
Injection Period: F=4.3, p=0.017, df=2,69 
Interaction: F=4.85, p=0.011, df=2,69 
 

Ket pre-inject, Sal pre-inject, 0.96 

Ket pre-inject, Ket early post-inject, 0 

Ket pre-inject, Sal early post-inject, 0.1 

Ket pre-inject, Ket late post-inject, 0.88 

Ket pre-inject, Sal late post-inject, 0.99 

Sal pre-inject, Ket early post-inject, <0.01 

Sal pre-inject, Sal early post-inject, 0.1 

Sal pre-inject, Ket late post-inject, 0.55 

Sal pre-inject, Sal late post-inject, 0.82 
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Ketamine-
Perception 
4 

 
 
 
 
 
 
 
 
 
 
 
 
Repeated 
measures 
analysis 
of 
variance 

Ket early post-
inject, Sal early post-inject, <0.01 
Ket early post-
inject, Ket late post-inject, 0.002 
Ket early post-
inject, Sal late post-inject, 0.03 
Sal early post-
inject, Ket late post-inject, 0.77 
Sal early post-
inject, Sal late post-inject, 0.94 
Ket late post-
inject, Sal late post-inject, 0.1 

 
 
Ketamine-Perception:  
Pre-Injection, mean=79, median=84 
Early Post-Injection, mean=84, median=90 
Late Post-Injection, mean=85, median=93 
 
F=0.25, p=0.786, df=2,6 

Fig. 3.1h 
Response 
time 
compared 
between 
injection 
periods 

Ketamine-WM  
18 
n=126 (values 
calculated per 
target location 
for conditions 
with trials in all 
injection 
periods) 
 
Saline-WM 
7 
n=55 
 
Ketamine-
Perception 
4 
n=31 
 

Repeated 
measures 
analysis 
of 
variance 
with post 
hoc 
pairwise 
comparis
ons 

Ketamine-WM:  
Pre-Injection, mean=2.6, median=2.4 
Early Post-Injection, mean=3.2, median=2.9 
Late Post-Injection, mean=2.7, median=2.5 
 
F=16.81, p<0.0001, df=2,250 
Post Hoc 
Early Post-Injection, Pre-Injection  
p<0.0001 
Late Post-Injection, Pre-Injection 
p=0.330 
Early Post-Injection, Late Post-Injection  
p<0.0001 
 
Saline-WM:  
Pre-Injection, mean=2.6, median=2.4 
Early Post-Injection, mean=2.7, median=2.5 
Late Post-Injection, mean=2.7, median=2.4 
F=1.71, p=0.186, df=2,108 
 
Ketamine-Perception:  
Pre-Injection, mean=2.5, median=2.3 
Early Post-Injection, mean=2.5, median=2.5 
Late Post-Injection, mean=2.5, median=2.5 
F=0.22, p=0.800, df=2,60 

Fig. 3.1l 
Navigation 
in 
environme
nt 
(difference 
in cells 
entered)  

NHP T 
8 
Number of 
cells (25) * 
number of 
target 
locations with 
trials  
Early post 
injection – pre-
injection 

Two-way 
analysis 
of 
variance 
with 
interactio
n effect 
with post 
hoc 
comparis
ons  

NHP T: 
Ketamine 
Early Post-Injection – Pre-Injection, 
 mean=6.9, median=4.2 
Late Post-Injection – Pre-Injection, 
 mean=3.3, median=0.9 
Early Post-Injection – Late Post-Injection, 
mean=6.6, median=2.9 
 
Saline 
Early Post-Injection – Pre-Injection,  
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Ketamine, 
n=154 
Saline, n=161 
Late post-
injection – pre-
injection 
Ketamine, 
n=124 
Saline, n=125 
Early post-
injection – late 
post-injection  
Ketamine, 
n=159 
Saline, n=115 
 
NHP B 
9 
Number of 
cells (25) * 
number of 
target 
locations with 
trials 
Early post 
injection – pre-
injection 
Ketamine, 
n=162 
Saline, n=158 
Late post-
injection – pre-
injection 
Ketamine, 
n=163 
Saline, n=157 
Early post-
injection – late 
post-injection  
Ketamine, 
n=134 
Saline, n=145 
 
Ketamine-
Perception  
4 
Early post 
injection – pre-
injection 
Perception, 
n=197 
Late post-
injection – pre-
injection 
Perception, 
n=194 

mean=3.2, median=0 
Late Post-Injection – Pre-Injection, 
mean=4.8, median=0 
Early Post-Injection – Late Post-Injection,  
mean=2.5, median=0 
 
Ketamine and Saline Comparison 
Epoch, F=0.97, p=0.380, df=2,832 
Drug, F=12.1, p=0.0005, df=1,832 
Interaction, F=8.73, p=0.0002, df=2,832 
 
Post Hoc 
Early Post-Injection, Pre-Injection  
p=0.002 
Late Post-Injection, Pre-Injection 
p=0.717 
Early Post-Injection, Late Post-Injection  
p=0.001 
 
 
NHP B:  
Ketamine 
Early Post-Injection – Pre-Injection,  
mean=4.6, median=2.1 
Late Post-Injection – Pre-Injection, 
mean=3.6, median=1.8 
Early Post-Injection – Late Post-Injection, 
mean=4.1, median=2.3 
 
Saline 
Early Post-Injection – Pre-Injection,  
mean=2.6, median=1.2 
Late Post-Injection – Pre-Injection 
mean=3.4, median=1.4, 
Early Post-Injection – Late Post-Injection, 
mean=2.4, median=0.8 
 
Ketamine and Saline Comparison 
Epoch, F=0.51, p=0.604, df=2,913 
Drug, F=15.16, p=0.0001, df=1,913 
Interaction, F=3.4, p=0.034, df=2,913 
 
Post Hoc 
Early Post-Injection, Pre-Injection  
p=0.004 
Late Post-Injection, Pre-Injection 
p=1 
Early Post-Injection, Late Post-Injection  
p=0.044 
 
 
Perception 
Early Post-Injection – Pre-Injection,  
mean=1.8, median=0 
Late Post-Injection – Pre-Injection 
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Early post-
injection – late 
post-injection  
Perception, 
n=203 
 
Ketamine-WM 
17 

mean=2.2, median=0 
Early Post-Injection – Late Post-Injection, 
mean=2.0, median=0 
 
Ketamine-WM and Ketamine-Perception 
Comparison 
 
Epoch, F=3.09, p=0.046, df=2,1022 
Drug, F=25.6, p=0, df=1,1022 
Interaction, F=5.26, p=0.005, df=2,1022 
 
Post Hoc  
Early Post-Injection, Pre-Injection  
p=0 
Late Post-Injection, Pre-Injection 
p=0.999 
Early Post-Injection, Late Post-Injection  
p=0.007 

Fig. 3.2c 
Proportion 
of tuned 
units 
ketamine-
WM 
sessions 
compared 
between 
injection 
periods 

17 
n=51, 
selectivity 
proportions 
combined (17 
per epoch)  

Analysis 
of 
variance 
with post 
hoc 
testing 
 
 
 
 
 
 
 
 
 
 
Chi-
Square 
Test 

Pre-Injection, mean=11.36, median=10.93 
Early Post-Injection, mean=6.23, median=5.20 
Late Post-Injection, mean=9.62, median=7.79 
 
F=8.73, p=0.0002, df=2,303 
Post Hoc 
Pre-Injection, Early Post-Injection  
p=0.0001 
Pre-Injection, Late Post-Injection 
p=0.342 
Early Post-Injection, Late Post-Injection  
p=0.018 
 
 
Pre-Injection- Early Post-Injection, p=0, 
X2=128.67 
Pre-Injection- Late Post-Injection, p=0.97, 
X2=0.002 
Early Post-Injection- Late Post-Injection, p=0, 
X2=126.52 
 

Fig. 3.2d 
Proportion 
of tuned 
units 
saline-WM 
sessions 
compared 
between 
injection 
periods 
 

7 
n=21, 
selectivity 
proportions 
combined (7 
per epoch) 

One-way 
analysis 
of 
variance 
 
 
 
 
Chi-
Square 
Test 

Pre-Injection, mean=11.7, median=13.5 
Early Post-Injection, mean=10.04, median=10.26 
Late Post-Injection, mean=8.04, median=8.39 
F=1.93, p=0.1498, df=2,123 
 
 
Pre-Injection- Early Post-Injection, p=0.231, 
X2=1.44 
Pre-Injection- Late Post-Injection, p=5.26e-07, 
X2=25.17 
Early Post-Injection- Late Post-Injection, p=1.3e-
04, X2=14.65 
 

Fig. 3.2f 
Change in 
slope 
magnitude 

17 
 

Kruskal-
Wallis 
one-way 
analysis 

Ketamine 
Pre-Injection, mean=-0.411, median=-0.413 
Early Post-Injection, mean=-0.286, median=-
0.298 
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between 
injection 
periods 

of 
variance 
with post 
hoc 
testing 

Late Post-Injection, mean=-0.315, median=-0.306 
H=13.48, p=0.0012, df=2,48 
 
Post Hoc  
Pre-Injection, Early Post-Injection, p=0.001 
Pre-Injection, Late Post-Injection, p=0.017 
Early Post-Injection, Late Post-Injection, p=0.741 
 
Saline  
H=5.7, p= 0.058, df=2,18 
 
Post Hoc  
Pre-Injection, Early Post-Injection, p=0.097 
Pre-Injection, Late Post-Injection, p=0.097 
Early Post-Injection, Late Post-Injection, p=1 

Fig. 3.3a 
SVM 
decoding 
accuracy 
ketamine-
WM 
compared 
between 
injection 
periods 

16 Kruskal-
Wallis 
one-way 
analysis 
of 
variance 
with post 
hoc 
testing  

Cue: df=2 
# of Neurons     p           H      pre-post, p    
         1           0.013  8.76       0.012       
         2           0.008  9.74       0.007       
         3           0.008  9.61       0.008       
         4           0.015  8.37       0.016       
         5           0.016  8.25       0.018       
         6           0.024  7.42       0.023       
         7           0.046  6.15       0.039       
         8           0.050  5.99       0.042        
         9           0.052      5.91       0.046        
        10          0.049      6.03       0.043        
        11          0.069  5.36       0.062        
        12          0.075  5.17       0.067        
        13          0.069  5.36       0.062        
        14          0.067       5.4        0.060        
        15          0.108  4.45       0.099        
        16          0.076  5.15       0.072        
 
Delay: df=2 
# of Neurons     p            H     pre-post, p      

1 0.002 12.78 0.002        

2 0.004 10.86 0.006       

3 0.008  9.79 0.011        

4 0.009  9.43 0.016        

5 0.013  8.63 0.023        

6 0.006 10.21 0.013        

7 0.004 10.91 0.012        

8 0.006 10.21 0.018        

9 0.006 10.34 0.017        

10 0.004 11.06 0.010        

11 0.002 12.71 0.006        
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12 0.003 11.35 0.012        

13 0.004 11.08 0.015        

14 0.004 11.07 0.013        

15 0.004 11.07 0.014       

16 0.004 11.26 0.015           

 
Response: df=2 
# of Neurons     p             H      pre-post, p    

1 0.007 10.03 0.007       

2 0.014 8.48 0.010       

3 0.010  9.32 0.007       

4 0.007  9.94 0.005       

5 0.009  9.42 0.007       

6 0.009  9.46 0.007       

7 0.006 10.18 0.006       

8 0.011  9.08 0.013       

9 0.011  8.96 0.014       

10 0.010  9.15 0.014       

11 0.010  9.25 0.014       

12 0.010   9.3 0.016       

13 0.013  8.68 0.020       

14 0.014  8.54 0.018       

15 0.013  8.75 0.017       

16 0.018   8 0.023       
 

Fig. 3.3b 
SVM 
decoding 
accuracy  
saline-WM 
compared 
between 
injection 
periods 

7 Kruskal-
Wallis 
one-way 
analysis 
of 
variance  

Ensemble of 16 neurons: 
 
Cue: 
Pre-Injection, mean=82.6, median=89.7 
Early Post-Injection, mean=74.4, median=91.0 
Late Post-Injection, mean=76.0, median=88.6 
H=0.54, p=0.763, df=2,18 
 
Delay:  
Pre-Injection, mean=83.6, median=92.5 
Early Post-Injection, mean=77.3, median=90.9 
Late Post-Injection, mean=73.6, median=89.2 
H=1.12, p=0.571, df=2,18 
 
Response: 
Pre-Injection, mean=83.9, median=94.1 
Early Post-Injection, mean=79.3, median=91.1 
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Late Post-Injection, mean=76.9, median=85.9 
 
H=1.36, p=0.507, df=2,18 
 
All other neuron ensemble sizes, p>0.05  

Fig. 3.4d  
Change in 
FR 
between 
injection 
periods for 
narrow 
spiking 
neurons 

17 
n=13 (arrays 
per session 
containing 
selective 
neurons) 

Wilcoxon 
signed-
ranks 
test, 1-
tailed 

Preferred Location, 
Pre-Injection, mean=0.45, median=0.47 
Post-Injection, mean=0.28, median=0.21 
 
Z=1.66, p=0.049 
 
Least-Preferred Location,  
Pre-Injection, mean=0.21, median=0.13 
Post-Injection, mean=0.24, median=0.09 
 
Z=-0.116, p=0.546 

Fig. 3.4f  
Change in 
FR 
between 
injection 
periods for 
broad 
spiking 
neurons 

17 
n=27 (arrays 
per session 
containing 
selective 
neurons) 

Wilcoxon 
signed-
ranks 
test, 1-
tailed 

Preferred Location, 
Pre-Injection, mean=0.43, median=0.43 
Post-Injection, mean=0.42, median=0.43 
Z=0.383, p=0.649 
 
 
Least-Preferred Location,  
Pre-Injection, mean=0.23, median=0.25 
Post-Injection, mean=0.34, median=0.36 
Z=-2.50, p=0.006 

Fig. 3.5b 
Percent of 
fixation 
time on 
target  

Ketamine 
18 
 
Saline 
7  

Two-way 
analysis 
of 
variance 
with 
interactio
n  

Ketamine: 
Pre-Injection, mean=6.97, median=3.64 
Early Post-Injection, mean=16.92, median=13.07 
Late Post-Injection, mean=6.98, median=4.25 
 
Saline: 
Pre-Injection, mean=7.28, median=1.85 
Early Post-Injection, mean=6.65, median=2.15 
Late Post-Injection, mean=5.73, median=2.86 
 
Drug: F=1.73, p=0.193, df=1,69 
Injection Period: F=1.42, p=0.248, df=2,69 
Interaction: F=1.35, p=0.267, df=2,69 

Fig. 3.5c 
Eye data 
SVM 
decoding 
compared 
between 
injection 
periods 

16 Kruskal-
Wallis 
one-way 
analysis 
of 
variance  

Cue:  
Pre-Injection, mean=53.9, median=57.6 
Early Post-Injection, mean=52.2, median=52.0 
Late Post-Injection, mean=57.7, median=59.3 
H=4.01, p=0.135, df=2,45 
 
Delay:  
Pre-Injection, mean=47.8, median=47.8 
Early Post-Injection, mean=46.5, median=46.7 
Late Post-Injection, mean=52.1, median=51.8 
H=4.59, p=0.101, df=2,45 

Fig. 3.5c 
Eye data 
SVM 
decoding 
accuracy 
compared 

16 
n=48, data 
combined 
between 
injection 
periods  

Wilcoxon 
signed-
ranks 
test, 2-
tailed 

Z=3.18, p=0.002 
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between 
cue and 
delay 
epochs 

Fig. 3.5d 
SVM 
decoding 
accuracy 
for eye 
data 
compared 
to 
decoding 
accuracy 
for neural 
ensembles 

16 Kruskal-
Wallis 
one-way 
analysis 
of 
variance 

Cue:  
Eye data 
mean=53.9, median=57.6 
Neural data 
mean=83.6, median=91 
H=14.78, p=0.0001, df=1,30 
 
Delay:  
Eye data 
mean=47.8, median=47.8 
Neural data 
mean=86.2, median=91.9 
H=22.91, p=1.69e-06, df=1,30 

Fig. 3.5d 
Eye data 
decoding 
accuracy 
compared 
to chance  

16 One 
sample t-
test, 2-
tailed 

Cue: T=8.38, p=4.82e-07, df=15 
 
 
Delay: T=8.53, p=3.87e-07, df=15 

Figure. 
S3.6a 
Correct 
trial SVM 
decoding 
accuracy 
compared 
between 
injection 
periods 

Pre-injection 
13 
 
Early Post-
Injection 
12 
 
Late Post-
Injection 
16 

Kruskal-
Wallis 
one-way 
analysis 
of 
variance 
with post 
hoc 
testing 

Cue:  
Pre-Injection, mean=94.5, median=95.8 
Early Post-Injection, mean=76.9, median=71.4 
Late Post-Injection, mean=82.4, median=88.3 
 
H=11.11, p=0.004, df=2,38 
Post Hoc 
Pre-Injection, Early Post-Injection, p=0.004  
Pre-Injection, Late Post-Injection, p=0.031  
Early Post-Injection, Late Post-Injection, p=0.671  
 
Delay: 
Pre-Injection, mean=93.4, median=95.2 
Early Post-Injection, mean=80.5, median=79.5 
Late Post-Injection, mean=86.6, median=90.9 
 
H=8.35, p=0.015, df=2,38 
Post Hoc 
Pre-Injection and Early Post-Injection, p=0.012  
Pre-Injection and Late Post-Injection, p=0.139  
Early Post-Injection and Late Post-Injection, 
p=0.499  
 
Response:  
Pre-Injection, mean=95.8, median=96.3 
Early Post-Injection, mean=87.6, median=92.9 
Late Post-Injection, mean=90.4, median=94 
 
H=5.5, p=0.064, df=2,38 
Post Hoc 
Pre-Injection and Early Post-Injection, p=0.062 
Pre-Injection and Late Post-Injection, p=0.201 
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Early Post-Injection and Late Post-Injection, 
p=0.768 

Figure. 
S3.6a 
Correct 
trial SVM 
decoding 
accuracy  
compared 
to chance 
(33%) 

Pre-injection 
13 
 
Early Post-
Injection 
12 
 
Late Post-
Injection 
16 

One 
sample t-
test, 2-
tailed 

Cue: 
Pre: T=40.61, p=3.21e-14, df=12 
Early-Post: T=10.19, p=6.1e-07, df=11 
Late-Post: T=13.38, p=9.65e-10, df=15 
 
Delay: 
Pre: T=28.01, p=2.66e-12, df=12 
Early-Post: T=12.88, p=5.6e-08, df=11 
Late-Post: T=18.84, p=7.46e-12, df=15 
 
Response: 
Pre: T=52.63, p=1.46e-15, df=12 
Early-Post: T=15.05, p=1.1e-08, df=11 
Late-Post: T=24.81, p=1.36e-13, df=15 

Figure. 
S3.6b 
SVM 
decoding 
accuracy 
compared 
between 
correct 
and all 
trials 

Pre-injection 
13 
 
Early Post-
Injection 
12 
 
Late Post-
Injection 
16 

Wilcoxon 
signed-
ranks 
test, 1-
tailed 

Pre-Injection Period: 
Cue: Z=1.38, p=0.083  
Delay: Z=0.719, p=0.236  
Response: Z=1.44, p=0.075 
 
Early Post-Injection Period: 
Cue: Z=1.53, p=0.063  
Delay: Z=1.76, p=0.039 
Response: Z=2.80, p=0.003  
 
Late Post-Injection Period  
Cue: Z=1.52, p=0.063 
Delay: Z=3.07, p=0.001 
Response: Z=3.41, p=0.0003 

Figure. 
S3.7a, b 
Change in 
FR for 
narrow 
and broad 
spiking 
neurons 
saline-WM 

7 
Narrow, n=5 
(arrays per 
session 
containing 
selective 
neurons) 
Broad, n=11 

Wilcoxon 
signed-
ranks 
test, 1-
sided 

Narrow:  
Preferred Location, 
Pre-Injection, mean=0.43, median=0.47 
Post-Injection, mean=0.42, median=0.48 
p=0.500 
 
Least-Preferred Location, 
Pre-Injection, mean=0.32, median=0.35 
Post-Injection, mean=0.26, median=0.33 
p=0.500 
 
Broad: 
Preferred Location,  
Pre-Injection, mean=0.52, median=0.51 
Post-Injection, mean=0.42, median=0.45 
p=0.803 
 
Least-Preferred Location,  
Pre-Injection, mean=0.29, median=0.29 
Post-Injection, mean=0.32, median=0.28 
p=0.422 

Figure. 
S3.7c 
Narrow 
spiking 
ranked 

Narrow, n=13 Wilcoxon 
signed-
ranks 
test, 1-
sided 

Rank 1 
Pre-Injection, mean=0.343, median=0.363 
Post-Injection, mean=0.212, median=0.161 
Z=1.66, p=0.049 
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target 
location 
responses  

Rank 2 
Pre-Injection, mean=0.302, median=0.383 
Post-Injection, mean=0.245, median=0.255 
Z=0.843, p=0.120 
 
Rank 3 
Pre-Injection, mean=0.264, median=0.323 
Post-Injection, mean=0.278, median=0.282 
Z=-0.217, p=0.586 
 
Rank 4 
Pre-Injection, mean=0.246, median=0.224 
Post-Injection, mean=0.254, median=0.164 
Z=0.232, p=0.592 
 
Rank 5 
Pre-Injection, mean=0.219, median=0.242 
Post-Injection, mean=0.230, median=0.234 
Z=0.027, p=0.511 
 
Rank 6 
Pre-Injection, mean=0.210, median=0.213 
Post-Injection, mean=0.246, median=0.194 
Z=-0.299, p=0.382 
 
Rank 7 
Pre-Injection, mean=0.196, median=0.147 
Post-Injection, mean=0.274, median=0.298 
Z=-0.708, p=0.240 
 
Rank 8 
Pre-Injection, mean=0.204, median=0.184 
Post-Injection, mean=0.312, median=0.278 
Z=-0.380, p=0.352 
 
Rank 9 
Pre-Injection, mean=0.158, median=0.102 
Post-Injection, mean=0.182, median=0.072 
Z=0, p=0.500 

Figure. 
S3.7d 
Broad 
spiking 
ranked 
target 
location 
responses 

Broad, n=27 Wilcoxon 
signed-
ranks 
test, 1-
sided 

Rank 1 
Pre-Injection, mean=0.388, median=0.388 
Post-Injection, mean=0.375, median=0.383 
Z=0.436, p=0.332 
 
Rank 2 
Pre-Injection, mean=0.348, median=0.366 
Post-Injection, mean=0.323, median=0.325 
Z=0.779, p=0.218 
 
Rank 3 
Pre-Injection, mean=0.343, median=0.331 
Post-Injection, mean=0.358, median=0.395 
Z=-0.621, p=0.733 
 
Rank 4 
Pre-Injection, mean=0.320, median=0.312 
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Post-Injection, mean=0.341, median=0.357 
Z=-0.349, p=0.364 
 
Rank 5 
Pre-Injection, mean=0.299, median=0.298 
Post-Injection, mean=0.350, median=0.358 
Z=-1.34, p=0.09 
 
Rank 6 
Pre-Injection, mean=0.284, median=0.280 
Post-Injection, mean=0.341, median=0.323 
Z=-1.01, p=0.156 
 
Rank 7 
Pre-Injection, mean=0.242, median=0.249 
Post-Injection, mean=0.273, median=0.290 
Z=-0.711, p=0.238 
 
Rank 8 
Pre-Injection, mean=0.229, median=0.244 
Post-Injection, mean=0.268, median=0.301 
Z=-1.318, p=0.094 
 
Rank 9 
Pre-Injection, mean=0.211, median=0.223 
Post-Injection, mean=0.299, median=0.321 
Z=-2.30, p=0.011 

Figure. 
S3.8a-f 
Eyes on 
screen 
time 
compared 
between 
injection 
periods 

Ketamine-WM 
18 
 
Saline-WM 
7 
 
Ketamine-
Perception 
4 
 
 

Kruskal-
Wallis 
one-way 
analysis 
of 
variance 
with post 
hoc 
testing 

Ketamine-WM 
Cue:  
Pre-Injection, mean=1382.60, median=1388.31 
Early Post-Injection, mean=1434.18, 
median=1439.26 
Late Post-Injection, mean=1412.15, 
median=1411.39 
 
H=14.16, p=0.0008, df=2,51 
Post Hoc 
Pre-Injection, Early Post-Injection, p=0.0005  
Pre-Injection, Late Post-Injection, p=0.180 
Early Post-Injection, Late Post-Injection, p=0.114 
 
Delay:  
Pre-Injection, mean=866.65, median=890.28 
Early Post-Injection, mean=939.50, 
median=946.17 
Late Post-Injection, mean=901.11, 
median=938.40 
 
H=11.15, p=0.004, df=2,51 
Post Hoc 
Pre-Injection, Early Post-Injection, p=0.003 
Pre-Injection, Late Post-Injection, p=0.176  
Early Post-Injection, Late Post-Injection, p=0.264 
 
Saline-WM 
Cue:  
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Pre-Injection, mean=1399.29, median=1407.69 
Early Post-Injection, mean=1386.25, 
median=1377.65 
Late Post-Injection, mean=1383.77, 
median=1380.16 
H=0.27, p=0.872, df=2,18 
 
Delay:  
Pre-Injection, mean=875.11, median=863.25 
Early Post-Injection, mean=873.23, 
median=839.04 
Late Post-Injection, mean=890.06, 
median=892.58 
H=0.14, p=0.932, df=2,18 
 
Ketamine-Perception 
Cue:  
Pre-Injection, mean=1397.99, median=1397.98 
Early Post-Injection, mean=1448.03, 
median=1447.44 
Late Post-Injection, mean=1436.54, 
median=1443.50 
H=3.85, p=0.146, df=2,9 
 
Delay:  
Pre-Injection, mean=879.42, median=896.63 
Early Post-Injection, mean=954.42, 
median=953.70 
Late Post-Injection, mean=942.55, 
median=945.68 
H=1.5, p=0.472, df=2,9 

Figure. 
S3.8g-l 
Percent of 
fixations 
on target 
location 
compared 
between 
injection 
periods 

Ketamine-WM 
18 
n=9 target 
locations 
 
Saline-WM 
7 
n=9 target 
locations 
 
Ketamine-
Perception 
4 
n=9 target 
locations 
 

Kruskal-
Wallis 
one-way 
analysis 
of 
variance  

Ketamine-WM 
Cue:  
Pre-Injection, mean=22.5, median=24.2 
Early Post-Injection, mean=26.9, median=24.6 
Late Post-Injection, mean=24.0, median=24.9 
H=0.84, p=0.658, df=2,24 
 
Delay:  
Pre-Injection, mean=26.9, median=26.2 
Early Post-Injection, mean=24.9, median=20.8 
Late Post-Injection, mean=28.2, median=26.5 
H=1.03, p=0.598, df=2,24 
 
Saline-WM 
Cue:  
Pre-Injection, mean=21.5, median=22.9 
Early Post-Injection, mean=20.0, median=21.1 
Late Post-Injection, mean=23.0, median=25.2 
H=0.79, p=0.673, df=2,24 
 
Delay: 
Pre-Injection, mean=22.0, median=22.5 
Early Post-Injection, mean=27.2, median=27.6 
Late Post-Injection, mean=35.4, median=36.1 
H=3.65, p=0.161, df=2,24 
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Ketamine-Perception 
Cue:  
Pre-Injection, mean=28.9, median=30.0 
Early Post-Injection, mean=22.6, median=21.7 
Late Post-Injection, mean=23.1, median=26.9 
H=1.03, p=0.599, df=2,24 
 
Delay: 
Pre-Injection, mean=21.7, median=17.3 
Early Post-Injection, mean=21.9, median=22.0 
Late Post-Injection, mean=20.6, median=20.3 
 H=0.7, p=0.704, df=2,24 
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Table 3C: Statistics reporting table for chapter 4. 
 

Figure Subject Data 
Counts 

Stat Test Comparison Stat 
Values 

P-Value 

4.1e 
Percent of 
Correct 
Trials 

NHP B, 
NHP T 

20 WM 
Sessions 

  

 
NHP B  
mean = 
87%  
median = 
85%  
 
NHP T  
mean = 
57%  
median = 
56% 

 

4.2g 
Difference in 
Means  

NHP B, 
NHP T 

17 WM 
Sessions  

 
Wilcoxon 
Signed  
Rank Test 

 
Correct 
and  
incorrect 
trials 

 
Rank =161  
 
Correct  
mean = 
253.98  
median = 
270.93  
 
Incorrect  
mean = 
93.69  
median = 
71.43 

0.001 

4.3d 
Target 
Decoding 

NHP B, 
NHP T 

17 WM 
sessions 

 
T-Test 

 
Decoding 
Accuracy 
for delay vs 
chance 
(11%) 

t = 5.14 

 

Decoding 
accuracy: 

mean = 
23% 
median = 
26% 

9.72E-05 

4.3e 
Supervised 
Column 
Decoding 

NHP B, 
NHP T 

17 WM 
sessions 

 
T-Test 

 
Decoding 
Accuracy 
for delay vs 
chance 
(33%) 

t = 6.06 

 

Decoding 
accuracy: 

1.66E-05 
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mean = 
63% 
median = 
74% 

4.3f 
Unsupervise
d Column 
Decoding 

NHP B, 
NHP T 

17 WM 
sessions 

 
T-Test 

 
Decoding 
Accuracy 
for delay vs 
chance 
(33%) 

t = 7.9 

 

Decoding 
accuracy: 
median = 
66% 

6.5E-07 

4.4g 

Correct vs 
Incorrect 
Correlation  

NHP B, 
NHP T 

11 WM 
Sessions  

Paired T 
Test 

Correct and 
incorrect 
trials  

 
t = 4.9643  
 
Correct  
mean = 
0.45 
median = 
0.47  
 
Incorrect  
mean = 
0.30 
median = 
0.30 

5.66E-04 

4.4h 

WM vs 
Perception  

NHP B, 
NHP T 

12 WM 
Sessions, 

 

12 
Perception 
Sessions 

Paired T 
Test 

Observed vs 
correct 
correlations 
in WM task 
vs perception 
task delay 
epochs 

 
t =7.38 
 
WM  
mean = 
0.51  
median = 
0.52  
 
Perception  
mean = 
0.33  
median = 
0.32 

1.3981E-05 
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Observed vs 
shuffled 
correlation  

NHP B, 
NHP T 

17 WM 
sessions 

 
Wilcoxon 
Signed 
Rank Test 
 
 
1-way  
ANOVA 

Observed vs 
shuffled null  

 
Rank = 

163  
 
 
 
F(1,32) = 
22.5 
 
Observed  
mean = 
0.48  
median = 
0.50 
 
Shuffled  
mean = 
0.35  
median = 
0.34 

0.02 

 

 
4.2E-05 

4.5c 
Epoch 
Decoding  

NHP B, 
NHP T 

17 WM 
sessions 

T-Test Decoder vs 
chance 
(33%) 

t = 9.16 

 

Decoding 
accuracy: 

mean = 
76% 
median = 
87% 

9.1585E-08 

4.5d 
Compare 
Epochs 
Decoding 

 

 

NHP B, 
NHP T 

17 WM 
sessions 

 
1-way  
ANOVA  
Tukey  
Kramer  

Post Hoc 

 
Epochs 
 
Cue-Delay   
Cue-Nav   
Cue-All   
Delay-Nav   
Delay-All   
Nav-All  

 
F(3,64) = 

3.3  
 
 
 
 
 
 
Cue  
mean = 
0.46  
median = 
0.52 
  
Delay  
mean = 
0.59  
median = 
0.66  
Navigation  

 
0.03 
 
 0.02 
0.70 
0.94 
0.25 
0.09 
0.96 
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mean = 
0.51 
median = 
0.52  
 
All  
mean = 
0.48  
median = 
0.49 

4.5d 
Delay 
Classifier  

NHP B, 
NHP T 

17 WM 
sessions 

T-Test  Decoding 
accuracy for 
delay vs 
chance 
(33%)  

t = 6.05 1.6774E-05 

4.5f 
VR ODR 
Correlation  

NHP B, 
NHP T, 

NHP JL, 
NHP F 

17 WM 
sessions 

12 WM 
Sessions 

 

 

Wilcoxon 
Rank Sum 

VR and ODR  Rank = 320 

 

ODR 
mean = 
0.22 
median = 
0.21 

VR 
mean = 
0.39 
median = 
0.43 

0.0043 

4.6a  
Real 
Trajectories 
vs Ideal 
Trajectories 
vs Target 
Locations 

NHP B, 
NHP T 

17 WM 
sessions 

Sign Test 

 

 

Compare 
task relevant 
distance 
matrix 

Target 
locations, 
Real 
trajectories 

Ideal 
trajectories,R
eal 
trajectories 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Targets  
mean = 
0.39  
median = 
0.43 

 

 

 

0.013 

 

 
0.013 
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Ideal 
trajectories  
mean = 
0.40  
median = 
0.43  
 
Real 
trajectories  
mean = 
0.48  
median = 
0.50 

4.6d 
Percent of 
Shared 
Neurons 
Delay 

NHP B, 
NHP T 

Ideal 
trajectories 
= 12 

Center 
trajectories 
=100 

All 
trajectories 
= 100 

1-way 
ANOVA 

 
Shared  
neurons  
between  
overlappin 
and non  
overlappin 
trajectories 

 
F(2,209)=0.

35 
 
Ideal  
mean = 
0.38  
 
Center  
mean = 
0.40 
  
All  
mean = 
0.37 

0.70 

4.6e 
Correlation 
Between 
Sequences 
Delay  

NHP B, 
NHP T 

Ideal 
trajectories 
= 12 

Center 
trajectories 
=100 

All 
trajectories 
= 100 

1-way 
ANOVA 

 

 

 

 

 

 

 

 

 

Correlation 
between 
sequences 
between 
overlapping 
and non 
overlapping 
trajectories 

 

 

 

 

 

 

 

F(5,418) = 
36.89 
 
Shared 
Ideal 
mean = 
0.23 
 
Shared 
Center 
mean = 

0.29 
  
Shared All  
mean = 
0.21 
 
All Neurons 
Ideal 
mean = 

0.07  
 
All Neurons 
Center 

2.61E-31 
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Tukey 
Kramer 
Post Hoc 

 

 

 

 

 

 

Shared 
neuron ideal 
pairs - 
shared 
neuron 
center pairs  

Shared 
neuron ideal 
pairs - 
shared 
neuron all 
pairs  

Shared 
neuron 
center pairs - 
shared 
neuron all 
pairs  

All neuron 
ideal pairs - 
All neuron 
center pairs  

All neuron 
ideal pairs - 
All neuron all 
pairs  

All neuron 
center pairs - 
All neuron all 
pairs  

mean = 
0.10 
  
All Neurons 
All 
Trajectories 

mean = 
0.07 

 

 

 

 

 

 

0.99 

 

 

 
1 

 

 

 
0.15 

 

 

 
0.99 

 

 
1 

 

 
0.99 

4.7b 
Percent 
correct  

NHP B, 
NHP T 

18 
Ketamine 
WM 
sessions 

Kruskal 
Wallis 

 

Working 
Memory 
Injection 
Period 

 
H(2,51) = 
18.75 
 

8.49E-05 
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4 Ketamine 
perception 
sessions 

 

 

Tukey-
Kramer 
Post Hoc  

Perception 
Injection 
Period  

 

 

 
H(2,9) = 
0.13  

 
 
Pre, early 
post  
 
Pre, late 
post  

 
Early-post, 
late-post  
 
 
Pre 
injection 
WM  
mean = 
72%  
median = 
77%  
 
Early Post- 
Injection 
WM  
mean = 
34%  
median = 
28%  
 
Late Post- 
Injection 
WM  
mean = 
63%  
median = 
66%  
 
Pre 
Injection 
Perception  
mean = 
79%  
median = 
84%  
 
Early Post- 
Injection 
Perception 
mean = 
84%  
median = 
90%  
 

7.7E-05 

 

0.54 

 
0.008 

 
0.94 
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Late Post- 
Injection 
Perception 
mean = 
85%  
median = 
93%  

4.7c 
Difference in 
means 

NHP B, 
NHP T 

 
17  
Ketamine  
WM  
sessions 

 
Kruskal  
Wallis  
 
 
Tukey  
Kramer  
Post Hoc 

Injection 
period 

 
Pre, Early 
post injection 

Pre, Late 
post injection  

Early post 
injection, late 
post injection 

F(2,47) = 
12.05 

 

 

 

 

 

 

 
Pre 
injection 
mean = 
161.9 
median = 
171.6 
 
Early Post- 
Injection 
mean = 
40.9 
median = 
40.2 
 
Late Post- 
Injection 
mean = 
71.99 
median = 
100.4 

0.002 

 

0.001 

 

0.07 

 

0.43 
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4.7e 
Correlation 

NHP B, 
NHP T 

 
17  
Ketamine  
WM  
sessions 

 
1-way  
ANOVA  
 
Tukey  
Kramer  
Post Hoc 

Injection 
period 

 

Pre, Early 
post injection 

Pre, Late 
post injection  

Early post 
injection, late 
post injection 

F(2,48) = 
3.14 

 

 

 

 

 

 

 

 
Pre 
injection 
mean = 
0.39 
median = 
0.35 
 
Early Post- 
Injection 
mean = 
0.29 
median = 
0.29 
 
Late Post- 
Injection 
mean = 
0.34 
median = 
0.31 

0.05 

 

 
0.04 

 

0.39 

 

0.46 
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S4.9a 
Trial-Trial 
Std 

NHP B, 
NHP T 

11 WM 
sessions 

 

1-way  
ANOVA  

 

 

Tukey  
Kramer  
Post Hoc 

 

Correct, 
incorrect, 
correct 
shuffle, and 
incorrect 
shuffle 

Correct-
correct 
shuffle 

Correct-
incorrect 

Correct-
incorrect 
shuffle 

Correct 
shuffle-
incorrect 

Correct 
shufffle- 
incorrect 
shuffle 

Incorrect-
incorrect 
shuffle 

f(3,40) = 
79.1 

 

7.3E-17 

 

 

 
3.77E-09 

 
 
3.78E-09 

 
3.77E-09 

 
 
0.02 

 
 
0.99 

 

 
0.01 

S4.9b 
Difference in 
Means 

NHP T 6 WM 
sessions 

Wilcoxon  
Signed  
Rank Test 

 

Correct and  
incorrect 

 

Rank = 14 

 

Correct  
mean = 
191.12 
median 
=168.74 

Incorrect  
mean = 
99.71 
median = 
108.98 

0.56 
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S4.9c 
Difference in 
Means 

NHP B 11 WM 
sessions 

 

Wilcoxon  
Signed  
Rank Test 

 

Correct and  
incorrect 

 

Rank = 55 

 
Correct  
mean = 
288.26 
median 
=277.23 

Incorrect  
mean = 
90.09 
median = 
71.43 

0.002 

S4.10b 
Compare 
Epoch 
Correlation  

NHP B, 
NHP T 

17 WM 
sessions 
(Sequences 
for each 
epoch 
considered 
separately)  

1-way  
ANOVA  

 

 

Observed 
correct 
correlations 
in cue vs 
delay vs nav 
vs all  

F(3,64) = 
3.3  

 

 
Cue  
mean = 
0.44  
median = 
0.44 

Delay  
mean = 
0.48  
median = 
0.50 

Navigation 
mean = 
0.46 
median = 
0.48  

Delay + 
Nav  
mean = 
0.50 
median = 
0.54 

All  
mean = 
0.46  
median = 
0.52 

0.64 
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S4.10c  
Single 
Contribution 
vs Multiple 
Contribution
s 

NHP B, 
NHP T 

17 WM 
sessions 

Paired T 
Test 

Sparse 
sequences 
vs allowing 
each cell to 
participate in 
all 3 
sequences  

t = -3.15 

Single 
mean = 
0.48 
median = 
0.50  

Multiple 
mean = 
0.37 
median = 
0.35     

0.006 

S4.10d 
Correlation 
with Cells 
Removed 
Correct 
Trials 

NHP B, 
NHP T 

17 WM 
sessions 

1-way  
ANOVA  

 
Tukey  
Kramer  
Post Hoc 

 

 
Percent of 
Cells 
removed 
 
10 - 20%  
10 - 30%  
10 - 40%  
10 - 50%  
10 - 60%  
10 - 70%  
10 - 80%  
10 - 90% 
  
20 - 30%  
20 - 40%  
20 - 50%  
20 - 60%  
20 - 70%  
20 - 80%  
20 - 90%  
 
30 - 40%  
30 - 50%  
30 - 60%  
30 - 70%  
30 - 80%  
30 - 90%  
 
40 - 50%  
40 - 60% 
40 - 70%  
40 - 80%  
40 - 90%  
 
50 - 60%  
50 - 70%  
50 - 80%  
50 - 90%  
 

F(9,144) = 
6.26 
 
 
10% 
Removed  
mean = 
0.48   
 
 
 
 
 
20% 
Removed  
mean = 
0.48  
 
 
 
 
30% 
Removed  
mean = 
0.48 
 
 
 
40% 
Removed  
mean = 
0.46   
 
 
50% 
Removed  
mean = 
0.46   
 

6.56E-06 

 
 
1 
1 
0.99 
0.99 
0.71 
0.15 
0.15 
0 

1 
1 
0.99 
0.83 
0.24 
0.24 
0.0001 

0.99 
0.99 
0.78 
0.20 
0.19 
0.0001 

1 
0.96 
0.51 
0.50 
0.0007 

0.98 
0.61 
0.60 
0.001 
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60 - 70%  
60 - 80%  
60 - 90%  
 
 
70 - 80%  
70 - 80%  
 
 
 
80 - 90% 

60% 
Removed  
mean = 
0.43  
 
70% 
Removed  
mean = 
0.40 
 
80% 
Removed  
mean = 
0.40   
 
90% 
Removed 
mean = 
0.34 

0.99 
0.99 
0.045 

 
1 
0.39 
 
 
 
0.40 

S4.11e 
Difference in 
Means 

NHP B, 
NHP T 

17 WM 
sessions 

 
12 ODR 
Sessions 

 

 

Kruskal  
Wallis  

 
Tukey  
Kramer  
Post Hoc 

 

VR and ODR 

 
VR-ODR1 

VR-ODR2 

ODR1-ODR2 

H(2,34) = 
27.2 

 

 

 
 
 
VR  
mean = 
253.98  
median = 
270.93  
 
ODR1  
mean = 
91.53  
median = 
93.22  
 
ODR2  
mean = 
34.85  
median = 
31.57 

1.2E-06 

 

0.01 

1.02E-06 

0.29 
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S4.12a 
Percent 
Correct  

 

NHP T 8 Ketamine 
Sessions  

2-way 
ANOVA 

 

 

 

 
Tukey 
Kramer 
Post Hoc 

Injection 
period drug 
(ketamine, 
saline) 

 

 

 
Ket pre-
injection, Sal 
pre-injection 

Ket pre-
injection, Ket 
early post-
injection 

Ket pre-
injection, Sal 
early post-
injection 

Ket pre-
injection, Ket 
late post-
injection 

Ket pre-
injection, Sal 
late post-
injection 

Sal pre-
injection, Ket 
early post-
injection 

Sal pre-
injection, Sal 
early post-
injection 

Sal pre-
injection, 
Ket late post-
injection 

Sal pre-
injection, Sal 
late post-
injection 

 
Drug: 
F(1,30)=2.8 
 
Injection 
Period:   
F(2,30)=2.9 
 
Interaction 
F(2,30)=2.2 
 
Ketamine  
Pre  
mean=54,  
median=60 
 
Early-Post 
mean=30,  
median=24 
 
Late-Post 
mean=47,  
median=56 
 
 
Saline 
Pre  
mean=65,  
median=70 
 
Early-Post 
mean=55,  
median=56 
 
Late-Post 
mean=42,  
median=57 

 
0.107 

 

0.066 

 
0.135 

0.894 

 

 
0.037 

 

1 

 

 
0.961 

 

 
0.864 

 

 
0.027 

 

 
0.972 

 

 
0.581 

 

 
0.487 
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Ket early 
post-
injection, Sal 
early post-
injection 

Ket early 
post-
injection, Ket 
late post-
injection 

Ket early 
post-
injection, Sal 
late post-
injection 

Sal early 
post-
injection, Ket 
late post-
injection 

Sal early 
post-
injection, Sal 
late post-
injection 

Ket late post-
injection, Sal 
late post-
injection 

0.198 

 

 

0.205 

 

 

0.873 

 

 

0.980 

 

 

0.904 

 

 

0.993 
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S4.12b 
Percent 
Correct 

NHP B 9 Ketamine 
sessions 

2-way 
ANOVA 

 

 

 

 

Tukey 
Kramer 
Post Hoc 

Injection 
period drug 
(ketamine, 
saline) 

 

 

 

Ket pre-
injection, Sal 
pre-injection 

Ket pre-
injection, Ket 
early post-
injection 

Ket pre-
injection, Sal 
early post-
injection 

Ket pre-
injection, Ket 
late post-
injection 

Ket pre-
injection, Sal 
late post-
injection 

Sal pre-
injection, Ket 
early post-
injection 

Sal pre-
injection, Sal 
early post-
injection 

Sal pre-
injection,Ket 
late post-
injection 

Sal pre-
injection, Sal 
late post-
injection 

 
Drug: 
F(1,33)=19  
 
Injection 
Period:   
F(2,33)=6.7 
 
Interaction 
F(2,33)=9.5 
 
 
Ketamine  
Pre  
mean=89,  
median=90 
 
Early-Post 
mean=39,  
median=43 
 
Late-Post 
mean=80,  
median=83 
 
Saline 
Pre  
mean=91,  
median=90 
 
Early-Post 
mean=93 
median=92 
 
Late-Post 
mean=84,  
median=84 
 

0.001 

 
0.0034 

 

0.0005 

 

1 

 

 
0 

 

0.99 

 

 
0.76 

 

 
0.988 

 

 
0.0001 

 

 
1 

 

 
0.827 

 

 
0.98 
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Ket early 
post-
injection, Sal 
early post-
injection 

Ket early 
post-
injection, Ket 
late post-
injection 

Ket early 
post-
injection, Sal 
late post-
injection 

Sal early 
post-
injection, Ket 
late post-
injection 

Sal early 
post-
injection, Sal 
late post-
injection 

Ket late post-
injection, Sal 
late post-
injection 

 

0 

 

 

0.0001 

 

 

0.0006 

 

 

0.74 

 

 

0.96 

 

 

0.1 
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S4.12c 
Difference in 
Means  

NHP T 8 Ketamine 
Sessions 

Kruskal 
Wallis  

Injection 
period 

H(2,20) = 
4.04 
 
Pre  
mean=137 
median= 
94.9 
 
Early-Post 
mean=9.6 
median= 
0.59 
 
Late-Post 
mean=34.9 
median= 
70.09 

0.13 

S4.12d 
Difference in 
Means 

NHP B 9 Ketamine 
Sessions 

Kruskal  
Wallis  

Tukey  
Kramer  
Post Hoc 

 

Injection 
Period 

Pre, early-
post 

Pre, late-post 

Early-post, 
late-post 

 

 

H(2,24) = 
7.24 

 

 

 
 
 
 
Pre  
mean=180  
median= 
187.48 
 
Early-Post 
mean=68 
median= 
44.63 
 
Late-Post 
mean=104. 
median= 
100.76 

0.03 

 
0.02 

 
0.24 

 
0.53 
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S4.12e 
Correlation  

NHP T 8 Ketamine 
Sessions 

1-way  
ANOVA  

 

 

Injection 
Period 

 

 

 

 

F(2,21) = 
1.29 
 
Pre  
mean=0.35 
median= 
0.31 
 
Early-Post 
mean=0.26 
median= 
0.26 
 
Late-Post 
mean=0.34 
median= 
0.32 

0.3 

S4.12f 
Correlation 

NHP B 9 Ketamine 
sessions 

1-way  
ANOVA  

 

 

Injection 
Period 

 

 

 

 

F(2,24) = 
2.59 
 
Pre  
mean=0.43 
median= 
0.48 
 
Early-Post 
mean=0.31 
median= 
0.25 
 
Late-Post 
mean=0.35 
median= 
0.35 

0.096 

S4.12g 
Difference in 
Means 

NHP B, 
NHP T 

7 Saline 
Sessions 

Kruskal 
Wallis 

Injection 
Period 

 

 

 

 

H(2,18) = 
2.07 
 
Pre  
mean=165  
median= 
164 
 
Early-Post 
mean=136 
median= 
144 
 
Late-Post 
mean=96.7 
median= 

0.36 
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106 

S4.12h 
Correlations  

NHP B, 
NHP T 

7 Saline 
Sessions 

Kruskal 
Wallis   

 

 

Injection 
Period 

 

 

 

 

H(2,18) = 
2.1 
 
Pre  
mean=0.23 
median= 
0.24 
 
Early-Post 
mean=0.2 
median= 
0.28 
 
Late-Post 
mean=0.36 
median= 
0.299 

0.35 
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