
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-9-2022 9:40 AM

Effective Resource Scheduling for Collaborative Computing in Effective Resource Scheduling for Collaborative Computing in

Edge-Assisted Internet of Things Systems Edge-Assisted Internet of Things Systems

Qianqian Wang, The University of Western Ontario

Supervisor: Xianbin Wang, The University of Western Ontario

Co-Supervisor: Hongbo Zhu, Nanjing University of Posts and Telecommunications

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Qianqian Wang 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Systems and Communications Commons

Recommended Citation Recommended Citation
Wang, Qianqian, "Effective Resource Scheduling for Collaborative Computing in Edge-Assisted Internet of
Things Systems" (2022). Electronic Thesis and Dissertation Repository. 8697.
https://ir.lib.uwo.ca/etd/8697

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F8697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8697?utm_source=ir.lib.uwo.ca%2Fetd%2F8697&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Along with rapidly evolving communications technologies and data analytics, Internet of

Things (IoT) systems interconnect billions of smart devices to gather, exchange, analyze data,

and perform tasks autonomously, which poses a huge pressure on IoT devices’ computing ca-

pabilities. Taking advantage of collaborative computing enabled by cloud computing and edge

computing technologies, IoT devices can offload computation tasks to idle computing devices

and remote servers, thus alleviating their pressure. However, scheduling resources effectively

to realize collaborative computing remains a severe challenge due to diverse application objec-

tives, limited distributed resources, and unpredictable environments. To overcome the above

challenges, this thesis aims to design effective resource scheduling for collaborative computing

in edge-assisted IoT systems.

First of all, horizontal collaboration amongst IoT devices is a promising way of balancing

computing tasks within the device layer. However, engaging idle computing devices for sharing

could be difficult as computation offloading potentially affects their local computing tasks. As

an economic methodology, game theory-based methods contribute to revenue generation; thus,

it is regarded as a suitable tool for addressing incentive problems. To incentivize horizontal

collaborations, a hierarchical game model is first proposed in smart buildings to obtain maxi-

mum utilities for the building management systems (BMS) and idle computing devices (ICDs).

The Stackelberg game model is built to analyze interactions between the BMS and ICDs, and

the Cournot game model is presented to formulate internal competitions among multiple ICDs.

Under the premise of the subgame perfect Nash equilibrium (SPNE), the BMS can quote the

optimal pricing strategy, and ICDs can share the corresponding optimal amount of computing

resources. Furthermore, to deal with unpredictability in emergency communication networks,

an incomplete information-based two-tier game model is estimated. Depending on what the e-

mergency management systems (EMS) and ICDs know, the Bayesian Nash equilibrium (BNE)

is obtained under incomplete information that achieves better performances in terms of com-

putation latency and participants’ utilities. Finally, a new computational latency-based pric-

ing scheme is designed from the perspective of the quality-of-experience (QoE) performance,

where the computing offloading price varies dynamically with data processing rates. The in-

teractive behaviors between the centralized computing sharing platform (CSP) and ICDs are

ii

modeled as the Stackelberg game, seeking out SPNE through the dynamic pricing mechanism,

the computation workload selection, and the CPU frequency control. Through this scheme,

the pressure of imbalanced computing capabilities in the device layer of IoT systems can be

effectively relieved.

Furthermore, utilizing resources in the edge layer can effectively enhance the performance

of IoT systems as edge systems generally have more powerful computing capabilities. How-

ever, due to the concurrent dynamics of application requirements, available resources, and

network conditions, meeting the increasingly diverse requirements of IoT applications remains

an ultimate challenge in vertical collaboration between edge systems and IoT devices. Towards

this end, a device-specific QoE enhancement resource scheduling scheme is proposed through

jointly optimizing communication and computation resources. Specifically, a three-layer QoE

assessment model is first constructed to describe the general relationship between resource

provisioning and device-specific QoE performance. Then, a two-stage resource scheduling

scheme is proposed to realize simultaneous optimization of IoT devices and the edge system,

where an online learning approach is designed on the edge system to schedule communica-

tion bandwidth and optimize computational rate. Based on the proposed two-stage resource

scheduling scheme, IoT device-specific QoE performance can be effectively enhanced in edge-

assisted IoT systems.

Keywords: Internet of things, collaborative computing, resource scheduling, game theory,
reinforcement learning

iii

Lay Summary

Along with rapidly evolving communications technologies and data analytics, Internet of

Things (IoT) systems interconnect billions of smart devices for performing tasks autonomous-

ly, which poses a huge pressure on IoT devices’ computing capabilities. Taking advantage

of collaborative computing enabled by cloud computing and edge computing technologies,

IoT devices can offload computation tasks to idle computing devices and remote servers, thus

alleviating their pressure. However, scheduling resources effectively to realize collaborative

computing remains a severe challenge due to diverse application objectives, limited distribut-

ed resources, and unpredictable environments. To overcome the above challenges, this thesis

aims to design effective resource scheduling for collaborative computing in edge-assisted IoT

systems.

To incentivize horizontal collaboration amongst IoT devices, a hierarchical game model is

first proposed in smart buildings to obtain maximum utilities for the building management sys-

tems and idle computing devices (ICDs), which jointly combines the Stackelberg game and the

Cournot game. Under the premise of the subgame perfect Nash equilibrium (SPNE), the BMS

can quote the optimal pricing strategy, and ICDs can share the corresponding optimal amoun-

t of computing resources. Then, to deal with unpredictability in emergency communication

networks, an incomplete information-based two-tier game model is estimated for analyzing

the interactions between the emergency management systems (EMS) and ICDs. The Bayesian

Nash equilibrium (BNE) is obtained depending on what the EMS and ICDs know. Further-

more, a new computational latency-based pricing scheme is designed from the perspective of

the quality-of-experience (QoE) performance, where the computing offloading price varies dy-

namically with data processing rates. The interactive behaviors between the centralized com-

puting sharing platform (CSP) and ICDs are modeled as the Stackelberg game, seeking out

SPNE through the dynamic pricing mechanism, the computation workload selection, and the

CPU frequency control. Finally, to meet the increasingly diverse requirements of IoT appli-

cations in vertical collaboration between edge systems and IoT devices, a device-specific QoE

enhancement resource scheduling scheme is designed, where an online learning approach is

proposed on the edge system to schedule communication bandwidth and computational rate

simultaneously.

iv

To my parents, husband, and daughter

Acknowledgments

I would like to express my deepest appreciation to my supervisor, Dr. Xianbin Wang, for

all his guidance, patience, and support. His enlightening supervision inspired me to explore

novel research areas and broadened my views in the research area. It was also his guidance and

encouragement that helped me get prepare for my future career with all the professional skills.

It was an incredible and rewarding journey to learn from him.

I also feel grateful to my co-supervisor, Dr. Hongbo Zhu. Thanks to his professional

insights and technical guidance, I achieved exciting research findings and implemented my

ideas into practice. It was my honor to work with him.

Sincere thanks to Dr. Mike Domaratzki, Dr. Hamada Ghenniwa, Dr. Longxiang Yang, Dr.

Yan Zhang, and Dr. Yulong Zou for being my examination committee. I highly appreciate their

precious time and constructive suggestions on my thesis and research.

Thanks to all members of our research group for the time that we spent both at work and

after work. I would give my best regards to their success in both study and life. I was so lucky

to meet such a big and warm research group. I would also like to extend my thanks to all my

friends at UWO, who gave me strong support whenever and wherever I needed help.

As always, I feel so grateful to my parents, husband, and daughter. I highly appreciate their

love and support throughout not only this degree but also in my life. They are always there for

me and always back me up.

vi

Contents

Abstract ii

Lay Summary iv

Dedication v

Acknowledgments vi

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1
1.1 Overview of Edge-Assisted IoT Systems . 1
1.2 Challenges of Resource Scheduling in Edge-Assisted IoT Systems 5
1.3 Research Objectives of the Thesis . 7
1.4 Technical Contributions of the Thesis . 9
1.5 Organization of the Thesis . 11

2 Background Study on Resources Scheduling in Edge-Assisted IoT Systems 14
2.1 Applications in IoT systems . 15
2.2 Fundamentals of Resource Scheduling . 16

2.2.1 Computing Task Offloading Models 17
2.2.2 Characteristics of Resources in IoT systems 18
2.2.3 Taxonomy of Objectives . 19

2.3 Existing Methodologies for Resource Scheduling and Their Challenges 20
2.3.1 Game Theory-based Methods . 20
2.3.2 Reinforcement Learning-related Methods 25

2.4 Chapter Summary . 30

3 Hierarchical Game-based Resource Scheduling 31
3.1 Introduction . 32
3.2 Related work . 35
3.3 System Model and Problem Formulation . 36

3.3.1 System Model . 37

vii

3.3.2 Problem Formulation . 39
3.4 Game Model Analysis . 40

3.4.1 Tier II: Optimal Computing Resources Strategy 41
3.4.2 Tier I: Optimal Unit Price Strategy . 42
3.4.3 Near-optimal Algorithm for Hierarchical Game Mechanism 44

3.5 Simulation Results . 46
3.5.1 Optimal Strategy Analysis . 47
3.5.2 SPNE Analysis . 50
3.5.3 Algorithm Comparison . 51
3.5.4 Impacts of Parameters . 54

3.6 Chapter Summary . 56

4 Hierarchical Game-based Resource Scheduling under Incomplete Information 57
4.1 Introduction . 58
4.2 System Model . 59

4.2.1 Utility Model . 60
4.2.2 Incomplete Information Model . 61

4.3 Two-tier Game Analysis under Incomplete Information 62
4.3.1 Tier II: Optimal Computing Offloading Strategy 64
4.3.2 Tier I: Optimal Unit Price Strategy . 64
4.3.3 N-IITG Algorithm . 66

4.4 Simulation Results . 67
4.5 Chapter Summary . 72

5 Computational Latency Pricing-based Resource Scheduling 75
5.1 Introduction . 76
5.2 Related Work . 78
5.3 System Model . 80

5.3.1 Utility of CSP . 81
5.3.2 Utility of ICDs . 82
5.3.3 Computational Latency-based Pricing 83

5.4 Game Model Analysis . 85
5.4.1 Stage II: Optimal Strategy of ICDs . 85
5.4.2 Stage I: Optimal Strategy of CSP . 87
5.4.3 Near-optimal Algorithm . 90

5.5 Simulation Results . 91
5.5.1 Parameter Settings . 91
5.5.2 Numerical Results . 92

5.6 Chapter Summary . 100

6 Joint Communication and Computation Resource Scheduling for QoE Enhance-
ment 101
6.1 Introduction . 102
6.2 Related Work . 105
6.3 System Model and Problem Formulation . 108

viii

6.3.1 Task Model . 109
6.3.2 QoE Assessment Model . 110
6.3.3 Local Computing Model . 112
6.3.4 Edge Computing Model . 113
6.3.5 Problem Formulation . 114

6.4 QoE-RS Optimization Solution . 116
6.4.1 Stage I: IoT Devices’ QoE-RS Optimization 118
6.4.2 Stage II: Edge’s QoE-RS Optimization 122

6.5 Simulation . 126
6.5.1 Simulation Setup . 126
6.5.2 Performance of IoT Device’s Strategy 128
6.5.3 Performance of Edge’s Strategy . 130

6.6 Chapter Summary . 134

7 Conclusion and Future Work 135
7.1 Conclusion . 135
7.2 Future Work . 138

Bibliography 140

Curriculum Vitae 149

ix

List of Figures

1.1 Illustration of three-layer IoT systems. 3
1.2 Research objectives of the thesis . 7

2.1 Fundamentals of resource scheduling. 17
2.2 QoE influence factors. 20
2.3 Architecture of reinforcement learning. 27

3.1 Illustration of computation sharing in buildings. 34
3.2 Illustration of the computation offloading architecture. 37
3.3 Utility of ICD1 versus the amount of computing resources shared by ICD1 and

the other ICDs. 48
3.4 Utility of BMS and the market equilibrium versus α(0). 49
3.5 Utility of BMS versus C(0). 49
3.6 Utility of ICDs under SPNE. 50
3.7 Convergence iterations with the near-optimal algorithm. 52
3.8 Algorithm comparison in terms of utilities of BMS and ICDs. 53
3.9 Algorithm comparison in terms of computing latency. 54
3.10 Utilities of BMS and ICDs versus the demand of BMS. 55
3.11 Utilities of BMS and ICDs versus the number of participant ICDs. 56

4.1 Illustration of the collaborative computing architecture. 60
4.2 Shared computing resources versus ci and ĉi. 69
4.3 Convergence iterations with N-IITG algorithm. 70
4.4 Algorithm comparison versus computing workload QEMS. 71
4.5 Computational latency and utilities versus unit profit PEMS. 73

5.1 Illustration of computing offloading in collaborative computing architecture. . . 80
5.2 Computational latency-based pricing pu. 83
5.3 Computational latency-based pricing pi. 84
5.4 Overall computational latency versus tendency to change n. 92
5.5 Overall latency and utility of CSP versus commission rate r. 93
5.6 Overall latency and utility of CSP versus workload W. 95
5.7 Latency and Utility of ICDi versus workload W. 96
5.8 Algorithm comparison versus workload W. 98
5.9 Overall computational latency convergence iterations. 99
5.10 Utilities of CSP and ICDs convergence iterations. 99

6.1 Illustration of an edge-assisted IoT system. 108

x

6.2 Illustration of the three-layer QoE assessment model. 111
6.3 Illustration of the two-stage QoE-RS optimization. 117
6.4 QoE performance of local CPU-cycle frequency with single task 129
6.5 QoE performance of local CPU-cycle frequency with multiply tasks 131
6.6 Convergence of PPO-based online algorithm 132
6.7 QoE performance of PPO-based online algorithm 133

xi

List of Tables

3.1 Market equilibrium between the demand of BMS and the supply of ICDs 55

4.1 Incomplete information model . 61

6.1 Illustration of QoE requirement . 110
6.2 Simulation parameters of system . 127
6.3 Training hyper-parameters . 127

xii

List of Abbreviations

A2C actor-critic

A3C advantage actor-critic

AP access point

BMS building management system

BNE Bayesian Nash equilibrium

CN core network

CPS cyber physical system

CPU central processing unit

CSP computing sharing platform

DDPG deep deterministic policy gradient

DNN deep neural network

DPU data transfer unit

DQN deep Q-network

DRL deep reinforcement learning

ECNs emergency communication networks

EMS emergency management system

GAE generalized advantage estimation

ICDs idle computing devices

IITG incomplete information-based two-tier game

IPF inversely proportional factors

ITU international telecommunication union

LPU local processing unit

MDP Markov decision process

MEC multi-access edge computing

MVNO mobile virtual network operator

NE Nash equilibrium

N-IITG near-optimal IITG

xiii

PF proportional factors

PPO proximal policy optimization

QoE quality of experience

QoE-RS QoE enhancement resource scheduling

QoS quality of service

RFID radio frequency identification

RL reinforcement learning

SAC soft actor-critic

SPNE subgame perfect Nash equilibrium

xiv

Chapter 1

Introduction

1.1 Overview of Edge-Assisted IoT Systems

The term “Internet of Things” (IoT) was coined by Kevin Ashton, the then executive director

of the Auto-ID Center, in 1999 while his group was working on a global radio frequency iden-

tification (RFID)-based item identification system [1]. Along with rapidly evolving communi-

cations technologies and data analytics, IoT systems today are able to interconnect billions of

smart devices for gathering, exchanging, analyzing data, and performing tasks autonomously

[2, 3]. Such devices have been expanded to daily technical gadgets such as smartphones and

wearables, smart home devices such as smart meters, as well as industrial devices like smart

machines, which opens tremendous opportunities for a large number of novel applications that

improve our quality of life. A new forecast from international data corporation estimates that

there will be 41.6 billion connected IoT devices, or “things”, generating 79.4 zettabytes of data

in 2025 [4]. Due to such pervasive deployment and enlarging scale of IoT systems, increasingly

complex applications put higher requirements on the computing capacity of smart devices.

Since Google proposed the concept of cloud computing in 2008 [5], cloud computing has

been gradually accepted and introduced by IoT systems, breaking through the resource limita-

tions of smart devices and providing users with high-demand applications. Cloud computing

is a cost-effective model that provides abundant resources such as computing, communication,

storage, and all necessary services in a simplified way: on-demand, regardless of the user’s

location and the type of smart device.

1

2 Chapter 1. Introduction

However, in recent years, the IoT system has put forward higher requirements for trans-

mission bandwidth, latency, energy consumption, application performance, and reliability [6].

In conventional cloud computing, all data must be uploaded to centralized servers, and after

computation, the results need to be sent back to IoT devices. This process creates tremen-

dous pressure on the network, specifically in terms of the data transmission costs of bandwidth

and resources. In this context, network performance significantly deteriorates with increas-

ing data size on top of the cloud already being far from the users, which is unacceptable for

time-sensitive IoT applications. Furthermore, most IoT devices have limited power, and heavy

traffic load results in long transmission times, thus increasing power consumption costs.

To address such problem, by integrating these large amounts of idle resources distributed at

the edge of networks to seamlessly provide services to users, a new computing paradigm - edge

computing is proposed, which is regarded as the key technology and architectural concept for

IoT systems [7, 8]. Edge computing moves the services originally located in the cloud to the

proximity of users, which integrates the computing platform and the local network to provide

powerful computing, storage, and communication capacities at the edge of IoT systems. Since

the services provided by edge computing are closer to users, a better quality of experience

(QoE) and quality of service (QoS) can be obtained by users.

Although cloud computing has difficulty meeting the high requirements of users in real-

time response and low energy consumption, the edge computing paradigm itself cannot be

a substitute for cloud computing because it does not have as powerful resource capacity as

cloud computing. In some cases, however, the advantages of edge computing can be leveraged

to offload computing services from the cloud to the edge to improve users’ QoE. Accordingly,

cloud computing and edge computing are complementary and mutually reinforcing. Therefore,

edge-assisted IoT systems usually consist of three layers [9], i.e., device layer, edge layer, and

cloud layer, as shown in Figure 1.1.

• Device Layer: is composed of various things, such as sensors, mobile phones, vehi-

cles, surveillance cameras for smart cities, IoT devices for smart manufacturing, and IoT

devices for smart health. This layer acts as the data source, i.e., things continuously

generate and collect multiple types of data. According to things’ resource capacities, the

data can be processed locally or be offloaded to the edge and the cloud. In IoT system-

1.1. Overview of Edge-Assisted IoT Systems 3

Device layer

Edge layer

Cloud layer

Mobile HomeTransport

local tasks local taskslocal tasks

edge tasks

AP
MEC

server

Factory

local tasks

AP MEC

server

Laptop

local tasks

Mobile

local tasks

Mobile

local tasks

edge tasks edge tasks

AP
MEC

server

Figure 1.1: Illustration of three-layer IoT systems.

s, with the ever-increasing diversity of applications, different IoT devices usually incur

specific resource demands to achieve their diverse application requirements.

• Edge Layer: as the core of the three-layer architecture, is an intermediate layer between

the device layer and the cloud layer. From the perspective of hardware composition,

the edge layer consists of various local networking and computing equipments, such

as cellular base station, edge server, gateway, etc. Basically, the edge layer provides

wireless access to smart devices through radio access technology and also has more

powerful storage and computing capabilities than the device layer. Besides, since the

edge and the cloud are complementary and mutually reinforcing, services in the cloud

can be offloaded to the edge layer for load balancing and better QoE.

• Cloud Layer: consists of infrastructures, such as computing units, storage units, and

micro data centers, connected with the edge layer through the core network (CN), i.e.,

backbone network. The cloud layer is undoubtedly the most powerful data process-

ing and storaging center among the three layers. Although edge servers can process

large amounts of data to reduce latency and energy consumption, the edge computing

4 Chapter 1. Introduction

paradigm still requires the computing power and high-capacity storage infrastructure of

the cloud to handle some tough tasks and global information.

By collaboratively utilizing the available computing resources in IoT devices, edge servers,

and the cloud via communication technologies, IoT systems can realize the diverse application-

s of IoT devices. As shown in Figure 1.1, such collaborations exist not only across different

layers, i.e., vertical collaboration, but also among multiple entities in the same layer, i.e., hori-

zontal collaboration. We elaborate on these two types of collaborations under the four specific

cases as follows, i.e., device-device collaboration, device-edge collaboration, edge-edge col-

laboration, and device-edge-cloud collaboration.

• Device-Device Collaboration: The horizontal collaboration exists amongst IoT devices

because of their imbalanced resources. The task generated from smart devices can be

processed locally or offloaded to nearby devices with idle computing resources, which

can effectively use the idle resources of the IoT device and alleviate the communication

pressure of the local network.

• Device-Edge Collaboration: The device-edge collaboration manner involving the de-

vice layer and the edge layer is a vertical collaboration. The task generated from smart

devices can be processed locally or offloaded to edge servers. Whether to offload these

data depends on the device-edge collaboration strategy and smart devices’ QoS and QoE

requirements.

• Device-Edge-Cloud Collaboration: The device-edge collaboration manner has a rela-

tively powerful capacity; however, it ignores the huge computing resources in the cloud

computing center. With the ever-increasing smart devices and their resource-hungry ap-

plications, it will become increasingly difficult to rely on the resources in the edge layer

alone to meet the IoT system’s requirements. Therefore, it is particularly important and

necessary to take full advantage of both edge computing and cloud computing and make

them complementary to design a collaborative paradigm, i.e., the device-edge-cloud col-

laboration manner.

1.2. Challenges of Resource Scheduling in Edge-Assisted IoT Systems 5

• Edge-Edge Collaboration: Generally, the edge-edge collaboration manner in edge com-

puting does not arise in isolation. Instead, it usually comes along with the device-edge

collaboration manner or the device-edge-cloud collaboration manner. Through an edge-

edge collaboration manner, there is one more option for task processing.

1.2 Challenges of Resource Scheduling in Edge-Assisted IoT

Systems

Taking advantage of collaborative computing enabled by cloud computing and edge comput-

ing, IoT devices can offload their computation tasks to idle IoT devices and remote servers,

thus enhancing the performance of IoT applications deployed on them. However, the resources

are distributed and scattered in large-scale IoT systems. It is a waste of resources if scattered

ones can not be efficiently utilized by resource scheduling. For example, a recent survey indi-

cates that the average central processing unit (CPU) utility of existing computing devices over

the Internet is merely 6 to 12 percent [10]. If an efficient resource strategy is applied, they can

be combined to establish an available and cost-effective computing resource pool, which helps

alleviate the workloads of IoT systems and promote the distributed computing environmen-

t. Besides, with the ever-increasing diversity of applications, different IoT devices within the

same IoT system inevitably incur specific resource demands to achieve their diverse applica-

tion requirements. An effective resource scheduling should jointly consider their interests and

improve the system utility accordingly.

Therefore, effective resource scheduling is crucial for realizing collaborative computing

in edge-assisted IoT systems, but it also faces several challenges. Specifically, the critical

challenges can be summarized as follows.

• Dynamic and Diverse Objectives from Heterogeneous Applications: Computing tasks

process data generated from users, which are generally time-varying. Furthermore, the

task types may vary based on heterogeneous application scenarios for diverse objectives.

For example, connected and autonomous vehicles in intelligent transportation systems

need to process data within several milliseconds for traffic safety; thus, low latency is

6 Chapter 1. Introduction

their main objective. The unmanned aerial vehicles usually focus more on long battery

life; thus, the objective of low energy consumption is expected during data processing.

These dynamic and diverse objectives can also be referred to as performance indicators,

making resource scheduling more complex.

• Imbalanced Computing Capability amongst IoT Devices: IoT devices are not only

generators of data but also can be processors of data. Due to different computing capa-

bilities amongst IoT devices, some struggle to cope with computing tasks, while others

always remain idle. Device-device collaboration can effectively and efficiently balance

the computing tasks amongst IoT devices by scavenging the enormous amount of spare

computational resources. Although the concept of collaborative computing is promising,

engaging idle computing devices for sharing could be difficult as they have no commit-

ments to do so. They may expect compensation since computation offloading potentially

affects local computing tasks.

• Collaborative Scheduling of Distributed Multi-dimensional Resources: Various re-

sources exist in the edge network distributively, by which the powerful serviceability

is provided, and the tasks can be completed. The resources in edge networks can be

categorized into three types, i.e., communication resources, storage resources (also as

caching resources), and computing resources. Enhancing one performance indicator of-

ten involves multi-dimensional resources. Orchestrating these limited resources to pro-

cess data better requires appropriate resource scheduling strategies. Furthermore, the

ever-increasing diversity of application requirements makes resource scheduling more

challenging.

• Incomplete Information in Unpredictable Environment: Considering that IoT sys-

tems are generally time-varying, e.g., network disconnection, channel state, and back-

haul latency, real-time scheduling schemes are required to enhance the QoE or QoS of

IoT devices in such an unpredictable environment. Furthermore, due to privacy and se-

curity concerns, IoT devices may be reluctant to expose their personal information, such

as network connection quality and preference for energy efficiency, which is extreme-

ly common in edge-assisted IoT systems but presents a more significant challenge for

1.3. Research Objectives of the Thesis 7

resource scheduling.

Therefore, while collaborative computing significantly strengthens the serviceability of IoT

systems by providing powerful computing, storage, and communication capacities, it also re-

quires appropriate resource scheduling strategies to solve such complex problems.

1.3 Research Objectives of the Thesis

Considering the challenges mentioned above, the specific research objectives in this thesis are

identified in Figure 1.2.

Type Challenges Objectives

1

Horizontal

Collaboration

Device-Device

• Imbalanced Computing Capability amongst

IoT Devices

A hierarchical game model to incentive IoT

devices to share their idle computing resources for

collaborative computing.

2

• Imbalanced Computing Capability amongst

IoT Devices

• Incomplete Information in Unpredictable

Environment

An incomplete information based two-tier game

model to enhance IoT devices’ latency

performance.

3

• Dynamic and Diverse Objectives from

Heterogeneous Applications

• Imbalanced Computing Capability amongst

IoT Devices

A game-theoretic incentive mechanism through

computational latency-based pricing to improve

computational latency and profit of all participants.

4

Vertical

Collaboration

Device-Edge

• Dynamic and Diverse Objectives from

Heterogeneous Applications

• Collaborative Scheduling of Distributed Multi-

dimensional Resources

• Incomplete Information in Unpredictable

Environment

Enhancing IoT device-specific QoE in edge-

assisted IoT systems by jointly optimizing

communication and computation resources.

Figure 1.2: Research objectives of the thesis

• Hierarchical game model: The horizontal collaboration amongst IoT devices is a promis-

ing way of balancing the computing tasks within the device layer. However, engaging

idle computing devices for sharing could be difficult as they have no commitments to do

so. They may expect compensation since computation offloading potentially affects local

computing tasks. As an economic methodology, the primary and most important benefit

8 Chapter 1. Introduction

of game theory-based approaches is revenue generation. Thus, it is regarded as a suit-

able tool for addressing incentive problems. In this topic, we consider a set of computing

devices (data processors, sellers) to share their idle resources to alleviate the pressure

of data processing for a resource-limit device (data generator, buyer). Specifically, the

data generator dynamically determines the pricing strategy based on its demand and

the availability of idle computing resources of multiple data processors. Then, the data

processors share the corresponding optimal amount of computing resources. The com-

petitions exist not only between the data generator and the data processors but also

among multiple data processors since they belong to different owners. In this context, to

encourage horizontal collaboration amongst IoT devices, a computation sharing archi-

tecture based on the hierarchical game model, combining the Stackelberg game and the

Cournot game, is proposed to maximize the utilities of all participants.

• Incomplete information based two-tier game model: Due to privacy and security con-

cerns, IoT devices may be reluctant to expose their personal information. Furthermore,

the network environment is time-varying, such as path loss fading and computation ca-

pacities. Therefore, it is extremely difficult to acquire the complete information in ad-

vance for resource scheduling in most realistic scenarios. In this topic, we consider the

same scenario as objective one, but to deal with the inevitable challenge of real-time data

analysis without the complete information in device-device collaborative computing. To

solve such a problem, an incomplete information-based two-tier game model is estimat-

ed, which can seek the Bayesian Nash equilibrium (BNE) under incomplete information

for optimal resource scheduling in IoT systems.

• Computational latency-based pricing: With the ever-increasing diversity of applica-

tions in IoT systems, different devices require specific resource demands to achieve their

diverse application requirements. In this topic, our design is motivated by computing

scenarios with latency-sensitive tasks. Different data processing rates lead to different

QoE for IoT applications; thus, a reasonable pricing strategy should consider not only

the number of tasks processed but also the QoE of tasks processed. Therefore, to enable

collaborative computing from the perspective of QoE performance at edge-assisted IoT

1.4. Technical Contributions of the Thesis 9

systems, a computational latency-based pricing mechanism is proposed, where the unit

price offered by the buyer varies dynamically with the data processing rates that the sell-

er can provide. In this way, a higher data processing rate is encouraged by gaining more

payoff to improve computational latency performance.

• Device-Specific QoE Enhancement: Existing studies on resource scheduling in edge

computing have mainly utilized a specified QoS parameter as an optimization objective,

such as energy efficiency, service latency minimization, cost efficiency, revenue maxi-

mization, etc. As an objective measure, QoS is an effective indicator for evaluating the

overall network performance. However, with increasingly diverse requirements from

IoT applications, the acceptability of the same QoS may be significantly distinct across

heterogeneous IoT devices, which directly reduces the effectiveness of QoS-based ap-

proaches when dealing with IoT device-specific demands. Consequently, the objective

of resource scheduling in edge networks has gradually changed to improve QoE rather

than QoS. In this topic, to enhance IoT device-specific QoE performance, a three-layer

QoE assessment model is constructed to describe the relationship between resource pro-

visioning and device-specific QoE performance. Then, to maximize the overall QoE

performance amongst IoT devices, a two-stage resource scheduling scheme is proposed

to simultaneously optimize multi-dimensional resources in IoT systems.

1.4 Technical Contributions of the Thesis

The main contributions of this thesis are summarized as follows:

• To incentivize idle computing devices (ICDs) to offload computational tasks for the

building management system (BMS), a hierarchical game model is proposed to obtain

the maximum utility for the BMS and the ICDs, which reflect the dynamic relationships

between the BMS and multiple ICDs by jointly combining the Stackelberg game and the

Cournot game. To guarantee the utility of BMS and ICDs, the Stackelberg game model

is built to analyze the interactions between BMS and ICDs, where the BMS, acting as

a single leader, sets the appropriate offloading pricing strategy; then, the different ICDs,

10 Chapter 1. Introduction

acting as multiple competitive followers, derive the amounts of computing resources to

share. The Cournot game model is presented to formulate the internal competition a-

mong multiple ICDs by which each ICD simultaneously determines the optimal shared

computing resources by considering other ICDs’ strategies. Furthermore, a near-optimal

algorithm is presented to achieve the subgame perfect Nash equilibrium (SPNE) of the

BMS and ICDs. With this approach, the on-demand computing capacity of BMS can be

effectively improved.

• To deal with the enormous challenge of real-time data analysis without the complete

information in emergency communication networks, an incomplete information-based

two-tier game model (IITG) is estimated, where the objective is to maximize the utilities

of the emergency management systems (EMS) and ICDs. Specifically, the interactions

between the EMS and ICDs are formulated as a two-tier game model, by jointly com-

bining the Stackelberg game and the Cournot game. Through this model, the EMS can

dynamically optimize its pricing mechanism, and ICDs can select the optimal computa-

tion workload accordingly. Furthermore, depending on what the EMS and ICDs know,

the BNE is acquired under incomplete information, and a near-optimal IITG (N-IITG)

algorithm is developed to reach the unique BNE by iterations. The N-IITG algorithm

can achieve a near-optimal performance of complete information and outperforms the

existing incomplete information-based methods regarding computation latency and par-

ticipants’ utilities.

• To enable collaborative computing from the perspective of the QoE performance, a new

computational latency-based pricing scheme is designed where the computing offloading

price varies dynamically with data processing rates. Then, a game-theoretic computing

task allocation approach is developed among a centralized computing sharing platform

(CSP) and multiple ICDs to maximize all participants’ profit. The interactive behaviors

between the CSP and ICDs are modeled as the Stackelberg game, seeking out SPNE

through the dynamic pricing mechanism, the computation workload selection, and the

CPU frequency control. By our proposed scheme, the pressure of imbalanced comput-

ing capabilities in IoT systems can be effectively relieved. Furthermore, the overall com-

1.5. Organization of the Thesis 11

putational latency is significantly decreased, and the profit of all participants achieves

maximum in collaborative computing.

• To enhance IoT device-specific QoE performance, a three-layer QoE assessment model

is constructed to describe the general relationship between resource provisioning and

IoT device’s QoE performance, which can help resource schedulers better understand

the fulfillment of different IoT devices’ interests. Then, to maximize the overall QoE

amongst IoT devices, a two-stage resource scheduling scheme is proposed to realize

simultaneous optimization of IoT devices and the edge system. Specifically, in stage I,

considering the resource-constrained nature, a distributed resource scheduling algorithm

with low complexity is proposed for each IoT device to optimize its local computing

processing rate; in stage II, a proximal policy optimization (PPO)-based online resource

scheduling approach is designed on the edge system to optimize its bandwidth allocation

and computing processing rate by interacting with multiply IoT devices without prior

knowledge of their specific QoE assessment models. Based on the proposed two-stage

resource scheduling scheme, IoT device-specific QoE performance can be effectively

enhanced in edge-assisted systems.

1.5 Organization of the Thesis

The following details demonstrate the organization of the remaining chapters of this thesis.

A comprehensive study of resource scheduling in edge-assisted IoT systems is conducted

in Chapter 2. The popular applications in IoT systems are elucidated firstly. Afterwards, the

fundamentals of resource scheduling in IoT systems are introduced, including computing task

offloading models, IoT resources’ characteristics, and scheduling objectives. Finally, the ex-

isting methodologies and their challenges are analyzed, including game theory-based methods

and reinforcement learning-based methods.

In Chapter 3, considering the collaborative computing scenario in smart buildings, a com-

putation sharing architecture is proposed to incentivize ICDs to process computational tasks

for the BMS, which combines the Stackelberg game and the Cournot game. To guarantee the

utility of BMS and ICDs, the Stackelberg game model is built to analyze the interactions be-

12 Chapter 1. Introduction

tween BMS and ICDs. Then, the Cournot game model is presented to formulate the internal

competition among multiple ICDs. Under the premise of the SPNE, the BMS can quote the

optimal pricing strategy, and the ICDs can share the corresponding optimal amount of com-

puting resources. The simulation results demonstrate that the proposed solution can effectively

improve the on-demand computing capacity of the BMS.

In Chapter 4, an IITG model is estimated to deal with the enormous challenge of real-

time data analysis without the complete information in emergency communication networks.

IITG realizes collaborative computing by incentivizing ICDs to share computation resources,

which jointly combines the Stackelberg game and the Cournot games. Depending on the given

information of the EMS and the ICDs, we analyze the BNE of the EMS’s pricing strategies

and the ICDs’ computing resource sharing strategies under incomplete information and further

design the N-IITG algorithm that can iteratively convergent to the unique BNE. According to

the simulation results, the proposed algorithm achieves a significant increase in computational

capacity while each participant obtains the optimal profit.

In Chapter 5, a computational latency-based pricing mechanism from the perspective of

the QoE performance is proposed to enable collaborative computing in edge-assisted IoT sys-

tems. A game-theoretic computing task allocation approach is developed among a centralized

CSP and multiple ICDs to maximize all participants’ profit. The CSP first determines the

optimal task partition dynamically upon the task arrival; then, the ICDs derive the optimal

central processing unit-cycle frequency correspondingly. Simulation results show that the pro-

posed scheme can effectively relieve the pressure of unbalanced computing capabilities in IoT.

Furthermore, the overall computational latency of our proposed mechanism is significantly

decreased, and the profit of all participants achieves maximum in collaborative computing.

In Chapter 6, a three-layer QoE assessment model is constructed to describe the general

relationship between resource provisioning and device-specific QoE performance. Then, to

maximize the overall QoE performance amongst IoT devices, a two-stage resource scheduling

scheme is proposed to realize simultaneous optimization of IoT devices and the edge system.

Specifically, in stage I, a distributed resource scheduling algorithm with low complexity is

designed for each IoT device to optimize the local computing rate by considering its resource-

constrained nature; in stage II, a PPO-based online approach is proposed on the edge system to

1.5. Organization of the Thesis 13

schedule communication bandwidth and optimize computational rate by interacting with mul-

tiply IoT devices without prior knowledge of their specific QoE assessment models. Extensive

experiments demonstrate that our proposal outperforms the existing works from the perspective

of QoE performance.

Finally, all the contributions are summarized in Chapter 7, with the identification of future

research directions.

Chapter 2

Background Study on Resources

Scheduling in Edge-Assisted IoT Systems

With the progressing development of information technologies, IoT systems are able to in-

terconnect billions of smart devices that collect and exchange data amongst themselves auto-

matically through modern communication network infrastructures [11, 12]. Without human

intervention, the generated massive data demands intelligent processing, which poses a huge

challenge to data processing capabilities of IoT devices. Taking advantage of collaborative

computing enabled by cloud computing and edge computing technologies, IoT devices can of-

fload their computation tasks to other idle computing devices or remote servers, thus enhancing

the performance of IoT applications deployed on them. However, as mentioned in Chapter 1,

realizing collaborative computing through effective resource scheduling remains a severe chal-

lenge in edge-assisted IoT systems. This chapter provides a comprehensive study of resource

scheduling in IoT systems. The popular applications in IoT systems are elucidated firstly. Af-

terwards, the fundamentals of resource scheduling in IoT systems are introduced, including

computing task offloading models, IoT resources’ characteristics, and scheduling objectives.

Finally, a comprehensive survey of the existing methodologies for resource scheduling is pre-

sented as well as an analysis of their challenges.

14

2.1. Applications in IoT systems 15

2.1 Applications in IoT systems

The ultimate goal of resource scheduling in IoT systems is to support IoT applications effective-

ly and efficiently. Therefore, before the detailed investigations on the fundamentals of resource

scheduling, the typical IoT applications are first introduced, which would help understand the

objectives of resource scheduling better.

The IoT applications have experienced phenomenal growth throughout the last decades,

ranging from health care to smart cities and industrial automation. Four typical IoT applications

are presented here, including smart homes [13], self-driven cars [14], health care [15, 16], and

industrial IoT [17, 18].

• Smart Homes: One of the best and the most practical applications of IoT systems,

smart homes integrate different communication schemes and optimization algorithms

to predict, analyze, optimize and control services, such as smart thermostats and air

conditioners, speakers, smoke and motion detectors, etc., helping us make our life more

comfortable and safer. Although in the same IoT system, different services still demand

different requirements. For instance, the smart air conditioner is one of the schedulable

loads having a predictable operating pattern that can be controlled via the management

system regularly; thus, data accuracy and energy efficiency are more important. And for

some non-schedulable loads, such as smoke and motion detectors, it is a critical event

that requires immediate action; thus, latency will be a prime concern.

• Self-driven Cars: In 2009, Google launched its self-driving car project with the goal

of driving more than 10 uninterrupted 100-mile routes. In 2016, self-driving technology

company Waymo became a subsidiary of Alphabet, and Google’s self-driving project

was renamed Waymo. These cars use multiple sensors and embedded systems connected

to the cloud and the Internet to generate and send data to the cloud for informed decision-

making through machine learning. Since we are dealing with human lives on the road, it

needs to keep passengers and those on the road safe. Therefore, reliability is essential to

guarantee this security.

• Health Care: The IoT system has the potential to lead to many medical applications,

16 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

such as remote health monitoring, fitness programs, and elderly care. Various medical

devices, sensors, and diagnostic and imaging equipment can be considered as smart de-

vices or objects that form a core part of IoT. Ease of cost-effective interaction through

seamless and secure connections across individual patients, clinics, and health care or-

ganizations is an important trend. The latest health care networks powered by wireless

technology are expected to support chronic diseases, early diagnosis, real-time monitor-

ing and medical emergencies. Gateways, medical servers, and health databases play a

vital role in creating health records and delivering on-demand health services to autho-

rized stakeholders.

• Industrial IoT: With the introduction of IoT and Cyber-Physical Systems (CPS) con-

cepts in industrial application scenarios, industrial automation is undergoing dramatic

changes. The industrial IoT consists of interconnected sensors, instruments, and other

devices connected to computerized industrial applications such as manufacturing, energy

management, and more. Reliable exchange of information is a key part of the industrial

IoT. Applying the ideas of CPS and IoT to the field of industrial automation has led to

the definition of the concept of Industry 4.0, where 4.0 alludes to the fourth industrial

revolution enabled by Internet technology to create smart products, smart production,

and smart services.

According to the introduction of typical IoT applications, we can notice that diverse IoT

applications usually pursue different objectives, which rely on efficient resource scheduling in

IoT systems.

2.2 Fundamentals of Resource Scheduling

Resource scheduling refers to the set of methodologies that participants used to efficiently

assign resources to the tasks that need to complete, and achieve the objectives of participants

based on resource availability. Therefore, the main factors in resource scheduling includes

tasks, resources, objectives, and methodologies, as illustrated in Figure 2.1.

2.2. Fundamentals of Resource Scheduling 17

Resources Objectives

Computation resources

Communication resources

CPU-cycle

Frequency

Bandwidth

Storage resources

Cache Space

Latency

Energy Consumption

Cost

Reliability

UtilizationComplexity

…

Methodologies

Figure 2.1: Fundamentals of resource scheduling.

2.2.1 Computing Task Offloading Models

According to the above typical IoT applications, the ultimate goal of IoT systems is to make

timely and reliable decisions and provide customized services by fully utilizing data collected

from IoT devices and environments. The key point is to achieve intelligent data processing for

computing tasks without human interactions. This subsection introduces two computation task

offloading models popularly used in existing literature in IoT systems [19], corresponding to

binary and partial computation offloading, respectively.

Binary Offloading: A highly integrated or relatively simple task cannot be partitioned and

has to be executed as a whole either locally at the IoT device or offloaded to remote server-

s, called binary offloading. In this model, each computation task is described as a 3-tuple

{wcomm,wcomp, x}, where wcomm indicate the data amount (in byte) for transmission and wcomp

denotes computation workload (in CPU cycle/s) to be processed. The parameter x = {0, 1}

indicates where the task will be processed; for example, x = 0 refers to local processing, and

x = 1 refers to remote processing.

Partial Offloading: In practice, many IoT applications are composed of multiple compo-

nents, making it possible to implement fine-grained (partial) computation offloading. Specif-

ically, the tasks can be partitioned into two parts, i.e., one executed at the IoT device and the

18 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

other offloaded for remote execution. The simplest task model for partial offloading is the

data-partition model, where the task-input bits are bit-wise independent and can be arbitrarily

divided into different groups and executed by different entities in IoT systems, e.g., parallel

execution at the IoT devices and remote servers. In this model, each computation task can still

be described as a 3-tuple {wcomm,wcomp, x}, where wcomm and wcomp represent the data amount

and computation workload, respectively, similar to the binary offloading model. But unlike

binary offloading model, the parameter x ∈ [0, 1] indicates the proportion of data partition for

partial offloading. When x equals to 0, it indicates that the task will be processed locally as a

whole while it would be entirely offloaded to remote servers when x = 1.

2.2.2 Characteristics of Resources in IoT systems

Various resources exist in the IoT system, by which the powerful serviceability is provided, and

the tasks can be completed. The resource involved in collaborative computing in edge-assisted

IoT systems mainly includes communication resources, computing resources, and storage re-

sources.

Communication resources in IoT systems usually represents the bandwidth and time as-

signed for wireless communication. Given the assigned wireless bandwidth B, the data trans-

mission rate is denoted as tr, which can be characterized by various wireless transmission

models based on Shannon’s formula, e.g., tr = B log2(1 + ph/w0), where p is the transmission

power of the data sender, and w0 denotes the white Gaussian noise power. The channel gain h is

generally affected by the path loss inverse to the distance between the data sender and receiver.

Accordingly, the communication time T comm can be given by T comm = wcomm/tr .

Computation resources in IoT systems usually indicate the processing capability (i.e., the

amount of CPU frequency in cycle/s) assigned to the process application and its processing

time. When the computation task wcomp is performed locally, we usually assume the single-

core in each IoT device and the processing capability assigned to process application wcomp

is f . Then, the local computing time T comp,l equals to (1 − x)wcomp/ f . On the other hand,

multiple cores are assumed in remote servers, e.g., edge servers and cloud servers, and then

remote computing time T comp,r equals to xwcomp/LF , where L and F are the number of cores in

2.2. Fundamentals of Resource Scheduling 19

remote servers and the processing capability assigned to each core, respectively.

Storage resources in IoT systems are referred to as the cache size, which allocation is

usually related to other types of resources. For example, caching can be a viable solution

for saving network bandwidth in a large-scale IoT network by utilizing the sensing data and

information stored in the cache, as long as the information value is not outdated and temporally

valid.

2.2.3 Taxonomy of Objectives

Currently, the objective of resource scheduling in IoT systems can be roughly divided into two

types, i.e., QoS-based objective and QoE-based objective.

QoS is the description or measurement of the overall performance of a service, such as a

wireless communication network or a cloud computing service, particularly the performance

achieved from the network level [20]. Several related aspects of the network service are often

considered to quantitatively measure QoS, such as packet loss, bit rate, throughput, transmis-

sion delay, availability, jitter, etc.

QoE has historically emerged from QoS, which is a measure of the delight or annoyance

of a customer’s experiences with a service. QoS measurement is most of the time not related

to a customer but to the network itself. QoE, however, is a subjective measure from the user’s

perspective of the overall quality of the service provided by capturing the user’s aesthetic and

hedonic needs. As defined by the international telecommunication union (ITU) in recommen-

dation ITU-T P.10 in 2016 [21], QoE refers to “the degree of delight or annoyance of the user of

an application or service. It results from the fulfillment of his or her expectations with respect

to the utility and/or enjoyment of the application or service in the light of the user’s personality

and current state”. QoE aims to consider every factor contributing to a user’s perceived quality

of a system or service, mainly includng system, human and contextual factors. The following

so-called “influence factors” have been identified and classified by Reiter et al. [22], as shown

in Figure 2.2.

Furthermore, as a measure of the end-to-end performance at the service level from the user’s

perspective, QoE is an important metric for designing systems and engineering processes. The

20 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

Context

Physical context

Temporal context

Social context

Task context

…

QoE Influence Factors

System Human

Bandwidth

Error rates

Encoding

…

Socio-economic

background

States: emotional,

physical, mental

…

Figure 2.2: QoE influence factors.

existing common QoE measurement methods include mean opinion score, subjective quality e-

valuation, and objective evaluation methods. The mean opinion score is a widely used measure

for assessing the quality of media signals. However, it is a limited form of QoE measurement

relating to a specific media type in a controlled environment without explicitly considering us-

er expectations. Furthermore, subjective quality evaluation requires a lot of human resources,

establishing it a time-consuming process. Objective evaluation methods can provide quality

results faster but require dedicated computing resources.

2.3 Existing Methodologies for Resource Scheduling and Their

Challenges

2.3.1 Game Theory-based Methods

Game theory is the study of mathematical models of strategic interactions among rational a-

gents [23, 24]. It has been widely recognized as an important tool in many fields, such as

social science, systems science, and computer science. In IoT systems, devices are required

to be “smart”. Particularly, IoT devices can not only perform normal functions, e.g., sensing

information from the surrounding environment, but also make optimal decisions without or

with minimal human intervention, given their constrained resources and the dynamic of the

environment for the requested IoT services. In addition, with billions of devices connecting to

2.3. ExistingMethodologies for Resource Scheduling and Their Challenges 21

IoT systems, it leads to many challenges in efficiently controlling and managing IoT devices.

Consequently, new approaches with higher efficiency and more flexibility to adapt to dynam-

ic IoT systems need to be developed. Apart from classical approaches, e.g., optimization-

based approaches, economic approaches have been widely applied in IoT systems for resource

scheduling [25, 26, 27, 28].

The typical definition of a normal game consists of three factors, i.e., 3-tuple G = (N ,S, u).

• Players: N = {1, 2, . . . ,N} is a finite set of N, indexed by i,

• Strategies set for player i S i: s = (s1, s2, . . . , sN) ∈ S = S 1 × S 2 × . . . × S N is a strategy

profile,

• Utility function or Payoff function for player i: ui : S → R, u = (u1, u2, . . . , uN) is a

profile of utility function.

Game theorists use Nash equilibrium (NE) to analyze the outcome of the strategic interaction

of several players. Informally, a strategy profile can achieve a NE if no player can do better by

unilaterally changing his strategy. Formally, let S i be the set of all possible strategies for player

i, where i = 1, . . . ,N. Let s∗ = (s∗i , s
∗
−i) be a strategy profile, a set consisting of one strategy for

each player, where s∗
−i denotes the N − 1 strategies of all the players except i. Let ui(si, s∗−i) be

player i’s payoff as a function of the strategies. The strategy profile s∗ is a NE if

ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i), for all si ∈ S i. (2.1)

There are several classifications of game theory as

• Cooperative and Non-cooperative: A game is cooperative if the players can form binding

commitments that are enforced externally, such as through contract law. If players cannot

form alliances, or if all agreements need to be self-enforcing, then the game is uncooper-

ative. Cooperative game theory provides an advanced approach because it describes only

the structure, strategy, and payoffs of coalitions, whereas non-cooperative game theory

also looks at how the bargaining process will affect the distribution of payoffs within

each coalition. Since non-cooperative game theory is more common, cooperative games

22 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

can be analyzed by means of non-cooperative game theory, provided that sufficient as-

sumptions are made to cover all possible strategies available to players. While using a

single theory may be desirable, in many cases there is insufficient information to accu-

rately model the formal procedures available during strategic negotiation, or the resulting

models are too complex to provide practical tools in the real world. In this context, coop-

erative game theory provides a simplified approach that allows the analysis of the entire

game without making any assumptions about bargaining power.

• Perfect / Imperfect information and complete / incomplete information: A game is one of

perfect information if all players at every step in the game know what all the other players

have done previously. In practice, this can be applied to companies and consumers who

have price and quality information on all available goods on the market. Incomplete

information games, such as simultaneous move games, are played when the player does

not know all actions that the opponent has made. Most games studied in game theory are

games of incomplete information. Perfect information is often confused with complete

information, which is a similar concept. Complete information requires each player to

know the strategies and payoffs available to other players, but not necessarily the actions

taken, whereas perfect information is knowledge of all aspects of the game and the player.

However, incomplete information games can be reduced to imperfect information games

by introducing “moves by nature”.

• Simultaneous and Sequential: Simultaneous games are games in which two players move

at the same time, or conversely, where the latter player is unaware of the actions of the

earlier players. Sequential games, or dynamic games, are games where late players have

some knowledge of early actions, which doesn’t need to be perfect information about ev-

ery movement of the early players; there may be little knowledge. For example, a player

may know that an earlier player did not perform a particular action, but they do not know

what other available actions were performed by the first player. The difference between

simultaneous and sequential games is reflected in the different representations. Typically,

the normal form, as a game matrix, is used to represent simultaneous games, while the

extensive form, as a game tree, is used to represent sequential games. The transformation

2.3. ExistingMethodologies for Resource Scheduling and Their Challenges 23

from extensive to normal form is a way that multiple extensive games correspond to the

same normal form. Therefore, the concept of equilibrium for simultaneous games is not

sufficient to reason about sequential games, which usually seek sub-game NE.

According to the game theory adopted in this thesis, we will briefly introduce some popular

models as follows.

Stackelberg game [29] is a strategic game in which the leader player moves first, and then

the follower player moves in turn. The Stackelberg model can be solved to find the SPNE or

equilibria, i.e., the strategy profile that best serves each player, given the other player’s strate-

gies, and that requires every player playing in a NE in every sub-game. This model is solved

by backward induction. The leader picks a quantity that maximizes its payoff, anticipating

the predicted response of the follower. The follower actually observes this and chooses the

expected quantity in equilibrium as a response.

We take 2-player Stackelberg game for example. To calculate the SPNE, the best response

functions of the follower must first be calculated. Given s1 from player 1, player 2 chooses s2

at the second stage as

s∗2 = arg max
s2∈S 2

u2(s1, s2), (2.2)

where the best response s∗2(s1) of the follower is a function with regard to the strategy of the

leader s1. Now the best response function of the leader is considered in the first stage by

accounting for the follower’s response, which is given by

s∗1 = arg max
s1∈S 1

u1(s1, s∗2(s1)). (2.3)

Thus, the equilibrium outcome, i.e., SPNE, is that the leader plays s∗1, and the follower plays

s∗2(s1).

Cournot game [30] involves players choosing the quantity of a homogenous product to

produce independently and simultaneously, where marginal cost can be different for each play-

er and the player’s payoff is profit. Considering the cost of production is public information,

the player’s goal is to find their profit-maximizing quantity based on what they believe other

players will produce and behave like monopolies. In this game, players want to produce in

monopoly quantities, but have a strong incentive to deviate and produce more, which lowers

24 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

the market-clearing price.

We still take 2-player Cournot game for example. To calculate the NE, two players need to

choose their strategy simultaneously by considering the other player’s strategy as


s∗1 = arg max

s1∈S 1

u1(s1, s2)

s∗2 = arg max
s2∈S 2

u2(s1, s2)
. (2.4)

The Cournot equilibrium is reached when each player operates on their reaction function with

no incentive to deviate, as they have the best response based on the other players’ output.

Bayesian game [31] is a game that models the outcome of player interactions using aspects

of Bayesian probability. Bayesian games are notable because they allowed the specification

of the solutions to games with incomplete information for the first time in game theory. In

a Bayesian game, one must specify strategy spaces, type spaces, payoff functions, and prior

beliefs. Let Θ denote the set of all probability distributions on a set S . A Bayesian game is

a tuple (N ,S,Θ, p, u) where N and S indicate the set of players and strategies, respectively,

similar to the normal game. The left three factors are

• Θi is a set of types for player i,

• p : Θ is a joint distribution of types,

• ui : S × Θ→ R is a profile of utility function.

A BNE is defined as a strategy profile that maximizes the expected payoff for each player given

their beliefs and strategies played by the other players.

In IoT systems, compared with traditional optimization, economics-based methods are ef-

fective approaches for resolving computing allocation problems since the prospect of achiev-

ing optimal revenue attracts each participant. We note that Stackelberg game-based approaches

have been widely used for modeling and analyzing the computing offloading problem. In the

Stackelberg game model, one player (leader) moves first, and then the others (followers) move

sequentially, and each player can maximize its payoff by finding the SPNE, which aligns well

with the interactions between the service providers and the service consumers in computing

2.3. ExistingMethodologies for Resource Scheduling and Their Challenges 25

offloading scenarios. Furthermore, to exploit the interactions among multiple idle computing

devices in the computation sharing scenario, the Cournot game model can be introduced since

it is one of the most popular types of games used to model the interactions among multiple

strategic generators.

However, trading between the data generators and the date processors should satisfy in-

dividual requirements with the goal of maximizing their payoff. Data processors must be in-

centivized to offer their computing resources, while data generators require enhancing their

computational capacity to satisfy their specific objectives. The competitions exist not only be-

tween data generators and data processors but also among multiple data processors. Moreover,

the existing literature is largely based on the assumption that the competitive participants have

the full knowledge of the network and local constraints, such as the path loss fading and com-

putation capacities. However, it is extremely difficult to acquire such information in advance

in most realistic IoT systems due to its dynamics and uncertainty. Therefore, it is essential

to design effective resource scheduling mechanisms based on game theory to address these

challenges.

2.3.2 Reinforcement Learning-related Methods

In IoT systems, one of the key technical challenges is to balance the overall costs of com-

putation and communication when making resource scheduling decisions in a dynamic envi-

ronment. Reinforcement learning (RL), especially for deep reinforcement learning (DRL), is

particularly suitable for solving resource scheduling problems in dynamic environments due

to a number of reasons [32]. First, RL can target the optimization of long-term offloading

performance. This would outperform the “one-shot” and greedy application of the approach-

es proposed in static environments, which may lead to strictly suboptimal results. Second,

through RL, the optimal offloading policy can be learned by directly interacting with the envi-

ronment without prior knowledge of the system dynamics, e.g., wireless channel or task arrival

characteristics. This avoids the demand for the state transition matrix when the conventional

solutions are utilized to solve the Markov decision process (MDP). Third, DRL can take full

advantage of the powerful representation capability of the deep neural network (DNN). The

26 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

optimal offloading policy can be adequately approximated even in complicated problems with

vast state and/or action spaces. Therefore, the methodology of reinforcement learning is briefly

introduced in this subsection.

First, the MDP [33] is an effective mathematical tool to model the impact of user actions in a

dynamic environment and allows seeking the optimal resource scheduling decisions for achiev-

ing a particular long-term goal, which is typically defined as a 5-tuple, i.e.,M = (S,A, P,R, γ).

• a set of environment states S,

• a set of actions of the agentA,

• a state transition probability matrix P that defines transition probabilities from all states

s to all successor states s′ due to action a, i.e., pa
ss′ = P[S t+1 = s′|S t = s, At = a],

• a reward function R that defines the immediate reward (or expected immediate reward)

received after transmitting from state s due to action a, i.e., ra
ss′ = R(S t = s, At = a, S t+1 =

s′), and ra
s = E[ra

ss′ |S t = s, At = a],

• a discount factor γ ∈ [0, 1] that defines the present value of future rewards.

At each time step t, the agent observes an environment state S t in the state space S, and

selects an action At from the action space A, following the policy π(a|s). The policy π(a|s) is

the probability of taking action At when observing state S t, i.e., π(a|s) = P[At = a|S t = s].

Then, the environment transits to the next state S t+1 and emits the reward signal rt according to

the environment dynamics pa
ss′ and the reward function ra

ss′ . This process continues indefinitely

unless the agent observes a terminal state. The return Gt is the total discounted reward from

time step t, defined as Gt = rt + γrt+1 + γ2rt+2 + · · · =
∑∞

l=0 γ
lrt+l.

The state-value function vπ(s) of an MDP is the expected return starting from state s, and

then following policy π, i.e.,

vπ(s) = Eπ[Gt|S t = s]. (2.5)

The action-value function qπ(s, a) is the expected return starting from state s, taking action a,

and then following policy π, i.e.,

qπ(s, a) = Eπ[Gt|S t = s, At = a]. (2.6)

2.3. ExistingMethodologies for Resource Scheduling and Their Challenges 27

Based on the above definitions, the objective of MDP is to find the optimal policy π∗, max-

imizing the expectation of accumulated reward from the state s in the state space, i.e., π∗ =

arg maxπ vπ(s), or π∗ = arg maxπ qπ(s, a), which can be be derived by value iteration or policy

iteration.

However, in most practical IoT systems, the system dynamics, e.g., the state transition

probability matrix P, is hard to measure or model. To this end, RL is envisioned as a promis-

ing solution to model-free sequential decision-making problems and has attracted increasing

research interests [34]. Specifically, as shown in Figure 2.3, at each time step, the agent ob-

serves the state s from the environment, selects an action a, and then receives a reward r and

the environment changes to s′. Therefore, the agent gathers experiences (s, a, r, s′) at each time

step from which it can learn. If the action taken was favorable for the given environment, it

would get a positive reward; otherwise, it would be negative. The agent continues to collect the

reward and update the Q-Table, aiming to maximize the expected return from each state. Here,

“Q” refers to the function that the algorithm computes - the expected rewards for an action

taken in a given state.

action At

reward Rt

state St

Rt+1 St+1

Figure 2.3: Architecture of reinforcement learning.

The typical algorithms of RL are Q-Learning and SARSA. The core of the Q-Learning

algorithm is a Bellman equation as a simple value iteration update, using the weighted average

28 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

of the old value and the new information:

Qnew(s, a) = Q(s, a) + α(r + γmax
a∈A

Q(s′, a) − Q(s, a)), (2.7)

where α is the learning rate in the range of (0, 1]. Here, the action used for updating Q-Table,

i.e., maxa Q(s′, a) might not consist with the actual action, thus Q-Learning is an off-policy

learning algorithm. Different from Q-Learning, SARSA is an on-policy learning algorithm

that updates the policy based on actions taken as:

Qnew(s, a) = Q(s, a) + α(r + γQ(s′, a′) − Q(s, a)), (2.8)

where the action a′ is the actual action that a SARSA agent would take.

Furthermore, to avoid trapping into a sub-optimal behaviour, RL adopts the ε-greedy ex-

ploration method to balance exploration and exploitation by choosing them randomly. Explo-

ration allows an agent to improve its current knowledge about each action, hopefully leading to

long-term benefits. On the other hand, exploitation chooses the greedy action to get the most

reward by exploiting the agent’s current action-value estimates. Therefore, when an agent ex-

plores, it gets more accurate estimates of action-values. And when it exploits, it might get

more rewards. However, it cannot choose to do both simultaneously, which is also called the

exploration-exploitation dilemma. Epsilon-Greedy is a simple method to balance exploration

and exploitation as follows:

π(a|s) =


1 − ε a = arg max

a∈A
Q(s, a)

ε a , arg max
a∈A

Q(s, a)
, (2.9)

where ε refers to the probability of choosing to explore, most of the time with a small chance

of exploring.

In many practical decision-making problems, the states s of the MDP are high-dimensional

and cannot be solved by traditional RL algorithms. DRL algorithms incorporate deep learning

to solve such MDPs, often representing the policy π(a|s) or other learned functions as a neural

network and developing specialized algorithms that perform well in this setting. Current DRL

2.3. ExistingMethodologies for Resource Scheduling and Their Challenges 29

methods can be classified into two categories: value-based methods and policy-based methods

[34].

Value-based DRL methods adopt DNNs to approximate the value function. Generally, the

core idea of value-based DRL methods is to minimize the difference between the value network

and the real value function. A natural objective function can be written as

LV(w) = E[vπ(s) − v(s; w)]2, (2.10)

where the expectation E[·] indicates the empirical average over a finite batch of samples in

an algorithm that alternates between sampling and optimization. v(·; w) is the value network,

and w is the set of its parameters. vπ(·) represents the real value function, which is unknown

but is estimated by different value-based RL methods. The popular algorithms include deep

Q-network (DQN) [35, 36] and its variants [37].

On the other hand, policy-based DRL methods use DNNs to approximate the parameterized

policy. Comparing with value-based DRL methods, policy-based DRL methods usually have

better convergence properties and can learn stochastic policies. Policy-based DRL methods

work by computing an estimator of the policy gradient, and the most commonly used gradient

estimator has form

5LPG(θ) = E[5θ log π(a|s; θ)Qπ(s, a)], (2.11)

where π(a|s; θ) is the policy network and Qπ(s, a) is an estimator function. The popular algo-

rithm is REINFORCE (Monte-Carlo Policy Gradient) [38].

In addition, actor-Critic architecture is proposed by integrating value-based algorithms and

policy-based algorithms to realize stable and fast convergency [34]. The actor network decides

which action should be taken, and the critic network informs the actor how good is the action

and how it should adjust. The learning of the actor is based on a policy gradient approach. In

comparison, critics evaluate the action produced by the actor by computing the value function.

The popular deep deterministic policy gradient (DDPG) [39], soft actor-critic (SAC) [40] and

proximal policy optimization (PPO) [41] algorithms are based on the actor-Critic architecture.

In IoT systems, extensive studies have been conducted for resource scheduling based on

DRL. However, learning itself requires high computational resources, and it is impractical to

30 Chapter 2. Background Study on Resources Scheduling in Edge-Assisted IoT Systems

be employed on the IoT devices side due to its limit-resource characteristic; on the other hand,

the learning purely implemented on the server system side will lose the optimal behavior of IoT

devices. Besides, methods instability and slow convergence brought by DRL-based algorithms

is another essential issue to be solved in the resource scheduling process. Therefore, it is

critical to design effective resource scheduling mechanisms based on reinforcement learning to

address these challenges.

2.4 Chapter Summary

In this chapter, resource scheduling in IoT systems was thoroughly studied. The popular ap-

plications in IoT systems were elucidated firstly. Afterwards, the fundamentals of resource

scheduling in IoT systems were introduced, including computing task offloading models, char-

acteristics of IoT resources, and objectives of scheduling. Finally, the existing methodologies

for resource scheduling, including game theory-based methods and reinforcement learning-

based methods, were extensively surveyed and analyzed from the perspectives of their advan-

tages and problems to be solved.

Chapter 3

Hierarchical Game-based Resource

Scheduling

The horizontal collaboration amongst IoT devices is a promising way of balancing the com-

puting tasks within the device layer. However, how to design an effective incentive mechanism

to encourage computing resources sharing is a crucial problem to be addressed.

In this chapter, we consider the collaborative computing in smart buildings, which integrate

IoT technologies for improving the performance of buildings and the comfort of occupants.

However, the amount of data generated by IoT devices remains a challenge to the BMS in

terms of intensity and complexity. Different from cloud computing and edge computing, we

propose a computation sharing architecture in the device layer to incentivize ICDs (sellers)

to offload computational tasks for the BMS (buyer). Considering game theory is a suitable

tool for addressing incentive problems, we design a hierarchical game model consisting of a

Stackelberg game and a Cournot game, to realize collaborative computing in smart buildings.

This horizontal collaboration aims to achieve a dynamic increase in computational capacity

for the BMS. To guarantee the utility of the BMS and ICDs, the Stackelberg game model

is built to analyze the interactions between the BMS and ICDs. Then, the Cournot game

model is presented to formulate the internal competition among multiple ICDs. Under the

premise of SPNE, the BMS can quote the optimal pricing strategy, and ICDs can share the

corresponding optimal amount of computing resources. Finally, the simulation results show

that the BMS’s computational capacity is enhanced on-demand, and each participant in the

31

32 Chapter 3. Hierarchical Game-based Resource Scheduling

game obtains maximal utility.

3.1 Introduction

Currently, the adoption of IoT technologies [42, 2] into smart buildings has generated increas-

ing interest [43]. Relying on the data generated by IoT devices, the BMS can closely monitor

inside and outside conditions to promote the performance of buildings and the comfort of oc-

cupants [44, 45]. However, the amount of data remains challenging to the BMS in terms of its

intensity, complexity, and efficiency.

To address this challenge, the previously used methods migrated data processing to cloud

servers with extremely high computation capacity [46]; however, they are frequently unable to

satisfy the latency requirement because of their physical distances. To overcome this limitation,

edge computing [47, 48] has been proposed to provide computational capacity in close proxim-

ity, which can notably decrease the response time. Despite this advantage, server construction

and maintenance costs must be considered, and these fixed costs cannot adjust dynamically as

the computing demand fluctuates.

Toward this end, we introduce the concept of sharing economy, which is known as “access

but not ownership”[49], as an alternative in the case of a large number of idle computing re-

sources in or around smart buildings. According to the data of Geithner and McKinsey [50],

the global server utilization is only 6% to 12% of their CPU. Moreover, as indicated in [10], a

large number of smart devices are under-utilized in terms of their computing capability. There-

fore, we propose computation sharing in smart buildings to achieve a dynamic increase in

computation capacity, which exploits the enormous amount of spare computational resources

in or around buildings, from smartphones, desktop PCs, web servers, or any ICDs. Compu-

tation sharing can enhance the computation capacity scalably without extra construction cost

because it utilizes the computing resources from the existing idle computing devices, which is

particularly useful for peak computing loads.

Although promising, it is important to note that computing resource owners have no com-

mitments for sharing; they expect compensation when computation offloading consumes their

CPU resources and potentially affects their own computing task. Hence, to enable effective

3.1. Introduction 33

computation sharing, we should design an incentive mechanism to address the following two

technical challenges: What is the optimal pricing mechanism to motivate computing devices

to share their idle resources? How much data should each idle computing device offload to

maximize its utility?

In this chapter, we adopt the game-theoretic method to model and analyze the above two

challenges. Apart from the traditional optimization approaches, game theory-based approaches

have been widely applied in IoT systems [25, 27]. As an economic methodology, the primary

and most important benefit of game theory-based approaches is the revenue generation, and

thus it is regarded as a suitable tool for addressing incentive problems. Furthermore, com-

ponents in computation sharing have different objectives. For example, the ICDs must be

strongly incentivized to share their computing resources while the BMS requires to enhance

its computational capacity with reasonable compensation. Using game theory, the problems

where multiple players with contradictory objectives strategically interact with each other in a

competition can be effectively resolved.

Specifically, we consider a set of computing devices (ICDs, sellers) to share their idle re-

sources to alleviate the pressure of data processing for the BMS (buyer) as illustrated in Figure

3.1. To encourage computing sharing, the BMS dynamically determines the pricing strategy

based on its demand and the availability of idle computing resources of multiple ICDs. Then,

the ICDs make offloading decisions accordingly. The competitions exist not only between

the BMS and ICDs but also among multiple ICDs since they belong to different owners in

the computing sharing scenario. We note that the state-of-art literature mainly focuses on the

competition between the service providers and consumers but ignores the competitions among

multiple service providers. This motivates us to propose a two-tier game model to analyze

computing sharing problems in smart buildings. The main contributions of this chapter are as

follows:

• Development of a Hierarchical Game Model: We employ an economic incentive mecha-

nism to encourage computing resource sharing in smart buildings, which aims to improve

the computational capacity for the BMS on demand. A hierarchical game model is pro-

posed to obtain the maximum utility for the BMS and the ICDs, which jointly combines

the Stackelberg game and the Cournot game to reflect the dynamic relationships between

34 Chapter 3. Hierarchical Game-based Resource Scheduling

Cellular Wi-Fi Fiber

Mobile Users
Sensors

Cameras

BMS

ICDs

Internet

P-GW S-GW

CoreNet

Smart
Buildings

Figure 3.1: Illustration of computation sharing in buildings.

the BMS and multiple ICDs.

• Stackelberg Game-based Analysis: We use a Stackelberg game to model the interactive

behavior of the BMS and the ICDs. To satisfy the dynamic computational demand in the

building, the BMS, acting as a single leader, sets the appropriate offloading pricing strat-

egy; then, different ICDs, acting as multiple competitive followers, derive the amounts

of computing resources to share. Furthermore, we analyze the existence and uniqueness

of the SPNE of the game.

• Cournot Game-based Analysis: We introduce the Cournot game to present the internal

competition among multiple followers; i.e., each ICD’s payoff depends not only on its

own strategy but also on the decisions of its rivals. Given a demand-based pricing strat-

egy, each ICD determines the optimal shared computing resources by considering other

ICDs’ strategies at the same time. The existence of each ICD’s unique equilibrium is

also proven.

• Near-optimal Algorithm Design: In practice, it is difficult for the participants to ob-

tain complete information in the game. We present a near-optimal algorithm to acquire

3.2. Related work 35

the near-optimal strategies of the BMS and the ICDs based on incomplete information,

which helps to achieve SPNE by iterations. The simulation results demonstrate the cor-

rectness of the analysis, and all participants in the game obtain their near-optimal utilities.

The rest of this chapter is organized as follows. Section 3.2 provides a review of relat-

ed works. Section 3.3 describes the system model and the problem formulations. In Section

3.4, we analyze the system with a two-tier game framework and find the solutions. In Section

3.4.1, we analyze the optimal amount of shared computing resources of the ICDs; in Section

3.4.2, we derive the optimal pricing strategy of the BMS; the near-optimal algorithm is pro-

posed in Section 3.4.3. Finally, we evaluate the performance of our method in Section 3.5 and

summarize the chapter in Section 3.6.

3.2 Related work

This section presents a review of the literature related to computation offloading mechanisms

in IoT-based systems, and economics-based incentive methods.

The increase in IoT principles-based technical solutions incorporated in BMSs leads to

high-quality data analytics[45, 51]. Various studies on cloud computing and edge computing

have been performed to relieve such computation pressure[52, 53, 54]; however, these offload-

ing methods must be well predesigned, and the server construction and maintenance costs

cannot adjust as the computing demand fluctuates. In this chapter, we develop a computation

sharing mechanism by applying the spare computing resources in or around smart buildings

to enhance the computing capability of the BMS dynamically. The most crucial problem is

establishing how to motivate the computation sharing and utilizing computing resources effi-

caciously.

Compared with traditional optimization, economics-based methods from the pricing di-

mension are effective approaches for resolving computing allocation problems in IoT systems

[55, 56] since the prospect of achieving optimal revenue attracts each participant. For example,

the authors of [57] proposed a joint optimization approach in IoT fog networks, where a fog

node helps to offload data computing services from a data service operator to a data service

subscriber. This approach was formulated as a Stackelberg game as well as a many-to-many

36 Chapter 3. Hierarchical Game-based Resource Scheduling

matching game. In [58], the authors investigated the price-based computation offloading for

a multiuser mobile edge computing system with a finite computation capacity. A Stackelberg

game was also formulated to model the interaction between the edge cloud and users. Sladana

et al. in [59] considered the problem of allocating wireless and computing resources to a set

of autonomous wireless devices in an edge computing system, and modeled the interaction

between devices and the operator as a Stackelberg game as well.

We note that Stackelberg game-based approaches have been widely used for modeling and

analyzing the computing offloading problem. In the Stackelberg game model[60], one player

(leader) moves first, and then the others (followers) move sequentially, and each player can

maximize its payoff by finding the SPNE, which aligns well with the interactions between the

service providers and the service consumers in computing offloading scenarios. This inspires

us to adopt the Stackelberg game to analyze the competitions between the BMS and ICDs.

Furthermore, to exploit the interactions among multiple ICDs in the computation sharing

scenario, we introduce the Cournot game model [24], considered one of the most popular types

of games used to model the interactions among multiple strategic generators. For instance,

to analyze competition in the mobile virtual network operator (MVNO)-oriented offloading

market, a Cournot game was employed in [61] to determine the amount of cellular traffic in

the retail market leased from the wholesale market among multiple MVNOs. Additionally,

the Cournot game was used for modeling the uniform pricing electricity markets in day-ahead

energy markets among multiple agents[62].

Therefore, in this chapter, we develop a hierarchical game model to address the strategies

of computation sharing in smart building, which jointly combines the Stackelberg game and

the Cournot game for modeling and analysis.

3.3 System Model and Problem Formulation

In this section, we first introduce the system model and then formulate the problem of compu-

tation sharing between the BMS and the ICDs.

3.3. SystemModel and Problem Formulation 37

3.3.1 System Model

As illustrated in Figure 3.2, we consider a computation offloading scenario with K ICDs de-

noted asK , {1, 2, . . . ,K}, which are located in the building to support computational services

for the BMS. We assume a time-slotted system, indexed by t ∈ T , {0, 1, . . . ,T − 1}. During

a time slot, QB(t) bits of data are processed for monitoring the performance of the building.

As a centralized data center, the BMS determines the pricing strategy based on the computing

demand and participant ICDs’ computational capacity, i.e., the optimal unit price popt
I (t) (per

bit) abided by the ICDs in the marketplace. Accordingly, the optimal amount of computing

resources qopt
k (t) is shared by each ICDk; then, the processed data are transmitted to the BMS

for use in building management. To standardize the unit of measurement, we count the amount

of computation offloading or shared computing resources in bits. The bit values can also be

translated into cycles by considering the processing density in cycles/bit. In this chapter, we

assume that the processing densities of the ICDs are equal.

BMS

ICDs

Data path

Charge path

Cournot Game

 Stackelberg Game

Leader

Followers

Figure 3.2: Illustration of the computation offloading architecture.

Trading between the BMS and the ICDs should satisfy individual requirements with the

goal of maximizing their payoff. The ICDs must be incentivized to offer their computing

resources while the BMS requires enhancing its computational capacity in order to optimize

the building’s management. The competitions exist not only between the BMS and the ICDs

but also among multiple ICDs. Therefore, we propose a hierarchal game model to optimize

resource sharing based on the above computation offloading architecture to achieve the optimal

utility for each participant.

38 Chapter 3. Hierarchical Game-based Resource Scheduling

For external interaction between the BMS and the ICDs, a Stackelberg game model is

applied to analyze the pricing strategy and the amount of computation offloading, where the

BMS (a single leader) has the first-mover advantage to impose the optimal unit price popt
I (t)

of computation offloading for the ICDs; then, the ICDs (multiple followers) can divide the

optimal amount of computation offloading qopt
k (t) by following the pricing strategy announced

by the BMS. Both the BMS and the ICDs aim to obtain optimal utilities by maximizing their

payoff.

For internal interaction among multiple ICDs, we introduce a Cournot game to model the

competition. In practice, each noncooperative ICD maximizes only its own payoff by sharing

more computing resources within its capacity; however, as the ICDs supply more computing

resources, the BMS can damp down the unit price of computing offloading according to the

theory of demand and supply. Hence, each ICD’s payoff depends not only on its own strategy

but also on the decisions of its rivals. These characteristics could be included in the Cournot

game model. In this way, each ICD determines its optimal shared computing resources qopt
k (t)

by considering the strategies of the other ICDs based on the Cournot game.

Combined with the Stackelberg game model and the Cournot game model, the BMS de-

termines the computation offloading pricing strategy that changes dynamically based on its

demand and the availability of idle computing resources of multiple ICDs. Then, the com-

peting ICDs make offloading decisions based on the offloading pricing strategy as well as on

their rivals’ decisions. Since the internal competition among multiple ICDs fits the Cournot

game model, we estimate pI by the Cournot price function model to depict the competitive re-

lationship. pI , namely, the inverse demand function in the economic market, is a time-varying

and decreasing function with respect to the total amount of computation offloading. Here, t

is omitted since the parameters are fixed during a time slot. It is subject to ∂pI (t)
∂QI (t)

< 0, where

QI(t) =
∑

k∈K qopt
k (t). To simplify the problem, we estimate pI with a universal linear model as

in references [61, 62].

pI(QI) = C − αQI , (3.1)

Here, C is the price function intercept that denotes the maximum unit price offered by the

buyer, and α is a nonnegative coefficient that reflects the changing trend of the market price

3.3. SystemModel and Problem Formulation 39

and the output, i.e., α = −
∂pI (t)
∂QI (t)

.

3.3.2 Problem Formulation

The hierarchical game approach is designed to enhance the computational capacity for the

BMS under the premise of jointly maximizing the utility of the BMS and the ICDs. The details

of the mathematical model are described as follows. We adopt the payoff to each party as its

utility.

Utility of the BMS: The utility of the BMS is defined as the profit through computing

offloading minus the sum of its payments to the ICDs.

UBMS(pI(t)) = pB(t)QI(t) − pI(t)QI(t), (3.2)

Here, the unit profit pB(t) benefiting from computation offloading is a known parameter. pI(t)

and QI(t) denote the unit price of computing offloading paid by the BMS to the ICDs and the

total amount of computing resources shared by the ICDs, respectively.

The BMS, acting as a single leader in the Stackelberg game, sets the optimal pricing s-

trategy by predicting the strategies of the ICDs (followers). In our system model, we adopt a

time-dependent scheme, i.e., all parameters are fixed during a time slot but are variable across

time slots. In the following optimization analysis, we consider the deduction for a given time

slot separately; thus, the time parameter t can be omitted. The optimization problem for the

BMS can be formulated as follows, where q = {q1, q2, . . . , qK} represents the computation

offloading strategies of all ICDs.

max
popt

I

UBMS(pI |pB,QB, q)

s.t. 0 ≤ popt
I ≤ pB (3.3)

The BMS can determine an optimal pricing strategy popt
I given the unit profit pB, the amount

of computing task QB and the strategy set q. The derived optimal unit price popt
I paid to the

ICDs should be no more than the unit profit pB that the BMS can derive as a benefit from

computation offloading; otherwise, the utility of the BMS will be negative.

40 Chapter 3. Hierarchical Game-based Resource Scheduling

Utility of ICDs: The utility UICDk of ICDk is defined as the price paid by the BMS minus

the cost to offload qk(t) bits of data.

UICDk(qk(t)) = pI(t)qk(t) − ck(t)qk(t), (3.4)

Here, qk(t) denotes the amount of computing resources shared by ICDk. ck(t) (per bit) denotes

the unit cost for sharing, e.g., the energy and computing cost for offloading one bit of data. We

assume that only a marginal cost exists.

The ICDs, acting as multiple followers in the Stackelberg game, deduce their optimal

shared computing resources by following the pricing strategy announced by the BMS (lead-

er). Meanwhile, each ICD’s payoff does not only depend on its own strategy, but also on the

decisions of its rivals, which is included in the Cournot game. The optimization problem for

ICDk can be formulated as follows, where q−k is the strategy set of the ICDs other than ICDk.

max
qopt

k

UICDk(qk|pI , q−k),∀k ∈ K

s.t.


0 ≤ qopt

k ≤ qmax
k∑

k∈K

qopt
k ≤ QB

(3.5)

According to the unit pricing strategy pI , each ICD calculates its optimal amount of com-

putation offloading qopt
k given the strategies of the other ICDs q−k. Here, qmax

k denotes the

maximum amount of available computing resources to be shared by ICDk during time slot t,

which qopt
k cannot exceed.

∑
k∈K qopt

k ≤ QB denotes that the total amount of computation of-

floading is no more than the BMS’s demand because all participants in the game are rational

and thus will not share computing resources without benefit.

3.4 Game Model Analysis

In this section, we analyze the optimal strategies for the BMS and the ICDs by jointly combin-

ing a Stackelberg game and a Cournot game. The optimization problems for the BMS and the

ICDs are conducted in the following two tiers. We use the derived results to prove the existence

3.4. GameModel Analysis 41

of the SPNE.

• Tier I: Players: the BMS (a single leader); Strategy: the unit price pI; Utility: UBMS(pI)

given in (3.2).

• Tier II: Players: the ICDs (multiple competitive followers); Strategy: the shared com-

puting resources {qk|k∈K }; Utility: {UICDk(qk)|k∈K } given in (3.4).

We adopt backward induction for the analysis as follows.

3.4.1 Tier II: Optimal Computing Resources Strategy

In tier II, given the leader’s strategy pI , each ICD determines the optimal amount qopt
k by con-

sidering the rivals’ decisions.

Lemma 3.4.1 Jointly combining the Stackelberg game and the Cournot game, each ICDk de-

termines the optimal amount of computation offloading qopt
k when the strategies of the other

ICDs are fixed.

qopt
k = min{q∗k, q

max
k }. (3.6)

Here, qmax
k is the maximum amount that can be shared by ICDk during a time slot and q∗k =

(C − ck − α
∑

i,k qi)
/
2α .

∑
i,k qi = q1 + q2 + . . .+ qk−1 + qk+1 + . . .+ qK denotes the total amount

of computing resources shared by the ICDs other than ICDk.

Proof We substitute (3.1) into (3.4); thus, the utility of ICDk can be expressed as follows:

UICDk(qk) = −αq2
k +

C − α∑
i,k

qi − ck

 qk. (3.7)

From (3.7), UICDk is a continuous quadratic function of qk by assuming
∑

i,k qi is fixed, and

the second derivative of UICDk with respect to qk is
∂2UICDk
∂q2

k
= −2α, where α > 0. As

∂2UICDk
∂q2

k
< 0,

UICDk is a concave function of qk. Therefore, we can obtain the optimal output of ICDk by

setting the first derivative equal to zero.

q∗k =
C − ck − α

∑
i,k q∗i

2α
. (3.8)

42 Chapter 3. Hierarchical Game-based Resource Scheduling

In the Cournot game, the equilibrium solution q∗ = {q∗1, q
∗
2, . . . , q

∗
K} can be solved by the

above simultaneous equations as {q∗k = (C − ck − α
∑

i,k q∗i)
/
2α |k∈K }, i.e., none of the ICDs can

gain more utility if any of them changes its strategy. Thereafter, the optimal utility of ICDk is

expressed as Uopt
ICDk

= (C − ck − α
∑

i,k q∗i)2
/
4α .

If the optimal amount q∗k is larger than the upper bound qmax
k , we should choose qmax

k as the

optimal amount because UICDk is a monotonically increasing function of qk in the interval of[
0, q∗k

]
, as shown in Figure 3.3(b). This finishes the proof of Lemma 3.4.1.

The next problem to resolve is determining how to adjust the pricing strategy pI(QI) to

maximize the utility of the BMS while guaranteeing its computational demand.

3.4.2 Tier I: Optimal Unit Price Strategy

In tier I, the BMS needs to determine the optimal unit price popt
I by predicting the strategies of

the ICDs.

Theorem 3.4.2 In the Stackelberg game model, given the unit profit pB and the amount of

computing to be performed QB, the BMS can determine the optimal price strategy pI(QI) by

predicting the optimal strategies of the ICDs:

popt
I (QI) =

(
K + 1

2
pB −

K − 1
2K

∑
ck

)
−

K pB −
∑

ck

2QB
QI , (3.9)

where QI =
∑

k∈K qk denotes the computing resources shared by the ICDs in total, i.e., the

enhanced computational capacity on demand.

Proof We can derive QI with the formula set {qopt
k = (C − ck − α

∑
i,k qopt

i)
/
2α |k∈K } as

QI =

K∑
k=1

qopt
k =

KC −
∑

ck

α(K + 1)
. (3.10)

Substituting (3.1) (3.10) into (3.2), the utility of the BMS can be represented as follows:

UBMS(C, α) = −
K

α(K + 1)2

[
C −

(
K + 1

2
pB −

K − 1
2K

∑
ck

)]2

+
1

4αK

(
K pB −

∑
ck

)2
,

(3.11)

3.4. GameModel Analysis 43

where UBMS is a continuous quadratic function of C when α is fixed. The second derivative of

UBMS with respect to C is ∂2UBMS
∂C2 = − 2K

/
α(K + 1)2 . Since K > 0 and α > 0, we have ∂2UBMS

∂C2 <

0, and UBMS is a concave function of C. Furthermore, we can obtain the optimal parameter Copt

by setting the first derivative equal to zero as Copt = (K + 1)pB/2 − (K − 1)
∑

ck/2K ; then, the

optimal utility of BMS is Uopt
BMS = (K pB −

∑
ck)2

/
4αK .

The optimal utility Uopt
BMS is a monotonically decreasing function with respect to α, and we

can derive αopt by the market equilibrium. Substituting Copt into (3.10), we can obtain the total

amount of idle computing resources shared by the ICDs as QI = K pB −
∑

ck/2α . To achieve

market equilibrium, the optimal parameter αopt can be determined by replacing QI with QB as

αopt = K pB −
∑

ck/2QB .

Finally, we substitute Copt and αopt into (3.1) and obtain the optimal unit price expressed as

(3.9). This finishes the proof of Theorem 3.4.2.

Copt and αopt can be substituted into (3.8) to obtain the following theorem.

Theorem 3.4.3 The optimal amount of computation offloading shared by ICDk is

qopt
k = min{q∗k, q

max
k }, (3.12)

where q∗k = (Copt − ck − α
opt ∑

i,k q∗i)
/
2αopt .

As indicated in Lemma 3.4.1, when the optimal amount q∗k of computing resources shared

by ICDk is larger than the threshold, we should choose qmax
k as the optimal quantity. Then, the

other ICDs must change their strategies to achieve the new SPNE. The adjusted demand of the

BMS is represented as follows:

Q
′

B = QB −
∑
i∈I

qmax
i , (3.13)

and

p
′

B =
pBQB − popt

I
∑

i∈I qmax
i

Q′

B

, (3.14)

where I denotes all ICDs that reach the threshold, and the set of the competing ICDs changes

to k ∈ K \ I.

44 Chapter 3. Hierarchical Game-based Resource Scheduling

In summary, as a leader, the BMS has the information of the participant ICDs, i.e., {ck|k∈K };

then, the BMS can estimate the optimal unit price popt
I (QI) by (3.9) according to the required

amount of computation offloading QB and the unit profit pB. Following this pricing strategy,

each ICD can decide how many idle computing resources qopt
k to share according to (3.12)

to achieve its maximum utility with the rivals’ decisions. If any ICD reaches its maximal

computing limitation, the optimal amount of shared computing resources will be recalculated.

The demand of the BMS, i.e., QB(t) and pB(t), is adjusted by (3.13) and (3.14), respectively.

The BMS and the ICDs perform game rounds with the adjusted BMS’s demand until this

demand has been satisfied or all ICDs have reached the threshold. Unprocessed data can be

offloaded to an edge server or cloud server if the BMS requires more computational capacity

than the total amount the ICDs are willing to share.

In this distributed scheme, each ICD makes the decision based on the knowledge of other

ICDs’ strategies; however, it is difficult for the ICDs to obtain complete information on their

rivals in a practical scenario since they are in a competitive relationship. In addition, the com-

putational complexity brought by considering the rivals’ strategies is O[K3], which would be

considerably high if there are many ICDs involved in the computing sharing competition. To

alleviate these issues, we present a near-optimal algorithm to obtain the near-optimal strategy

of each ICD by iterations without rivals’ information.

Next, we provide the algorithmic details of the near-optimal game mechanism.

3.4.3 Near-optimal Algorithm for Hierarchical Game Mechanism

To address the problems of incomplete information and computational complexity presented in

Section 3.4.2, we relax the assumptions that the ICDs are unaware of their rivals’ information

and propose the near-optimal algorithm to obtain {qopt
k |k∈K } by iterations.

Theorem 3.4.4 Each ICD can update its near-optimal strategy distributively by the following

iterative function.

q∗k(n) =
popt

I + αoptq∗k(n − 1) − ck

2αopt
. (3.15)

Here, popt
I is the value of the optimal unit price popt

I (QB), and αopt reflects the impact of the

ICDk’s decision on the unit price, which is a known parameter for the participant.

3.4. GameModel Analysis 45

Proof Based on the unit price pI , ICDk can obtain its utility as UICDk(n−1) = (pI −ck)q∗k(n−1)

by sharing q∗k(n − 1) idle computing resources in iteration n − 1. In iteration n, we assume

the changing amount of q∗k(n − 1) as ∆, and the other optimal strategies q∗
−k(n) are fixed as the

previous iteration; then, the corresponding utility can be represented as follows:

UICDk(n) = (pI − α∆ − ck)
(
q∗k(n − 1) + ∆

)
= UICDk(n − 1) + A, (3.16)

where A = −α∆2 + (pI − αq∗k(n − 1) − ck)∆. To maximize UICDk(n), the optimal ∆ can be

expressed as ∆ = (pI − αqk − ck)/2α . Then, the updated q∗k(n) to maximize ICDk’s utility

should be q∗k(n) = q∗k(n − 1) + ∆ as expressed in (3.15).

We can prove the convergence by the following derivation,

lim
n→∞

q∗k(n) = lim
n→∞
{

[
1 −

(
1
2

)n] pI − ck

α
+

(
1
2

)n

qinit
k }

=
pI − ck

α
.

(3.17)

Substituting (3.1) into (3.8), we can obtain that the above convergent result of q∗k(n) is the

same as a result calculated under complete information, which is also illustrated in Figure

3.7(a). This finishes the proof of Theorem 3.4.4.

The near-optimal algorithm of computation offloading based on incomplete information is

presented as follows.

In this near-optimal algorithm, each ICD can obtain its near-optimal strategy without the

decisions of other ICDs and the price structure of the BMS. The BMS calculates the optimal

value of popt
I by (3.9) with the input of QB, pB, ck; then it broadcasts popt

I and αopt to all ICDs.

Each ICD converges to its near-optimal strategy by following the iterative function (3.15).

If any ICD reaches its maximal computing limitation, the BMS and the ICDs perform game

rounds with the adjusted BMS’s demand (3.13), (3.14) until this demand has been satisfied or

all ICDs have reached the threshold. Finally, all participants achieve the SPNE, where no one

will alter its strategy if the strategies of the others remain unchanged.

Each ICD will achieve the SPNE by at least N iterations, where N = log2[(popt
I − ck)

/
αopt −

qinit
k] − log2ε. This can be derived iteratively by q∗k(N) − q∗k(N − 1) ≤ ε. In this near-optimal

46 Chapter 3. Hierarchical Game-based Resource Scheduling

Algorithm 1 Near-optimal algorithm of computation offloading based on incomplete informa-
tion
Input: QB, pB, ck, qmax

k
Output: popt

I , {qopt
k |k∈K }

1: Initially, each participant ICD submits its unit cost ck to the BMS.
2: repeat
3: BMS obtains popt

I and αopt and broadcasts to ICDs.
4: for ICDk do
5: set qinit

k as a random value.
6: repeat
7: q∗k(n)⇐ popt

I +αoptq∗k(n−1)−ck

2αopt .
8: until q∗k(n) − q∗k(n − 1) ≤ ε,∀i
9: qopt

k = min{q∗k, q
max
k }

10: if qopt
k = qmax

k ,∀k ∈ K then
11: BMS adds ICDk to I
12: set K , K \ I.
13: set QB(t)⇐ Q

′

B(t).
14: set pB(t)⇐ p

′

B(t).
15: until

∑
qopt

k = QB or qopt
k = qmax

k |k∈K

algorithm, the computational complexity of each ICD’s convergence is O[N]. As indicated in

3.4.2, the game rounds would repeat K times in the worst case by considering the limitation

of each ICD’s computation capacity. Therefore, the total computational complexity of the

BMS and the ICDs would be O[K] and O[KN], respectively. This finding demonstrates that

the proposed near-optimal algorithm can be finished in polynomial time. Compared with the

derivation based on the complete information, the computational complexity of each ICD is

significantly reduced from O[K3] to O[KN] when the number of competitive ICDs is high.

3.5 Simulation Results

In this section, we present numerical results to evaluate the performance of computation shar-

ing between the BMS and the ICDs in MATLAB. We first verify the optimal strategies of the

BMS and the ICDs by our proposed hierarchical game model, and then illustrate the exis-

tence of SPNE and the convergence behavior of the near-optimal algorithm. Furthermore, the

comparisons with existing algorithms are conducted in terms of the participants’ utilities and

computational latency. Finally, we demonstrate the performance of our proposed algorithm

3.5. Simulation Results 47

under various parameter settings. The default simulation parameters are given as follows, if

not specified. The unit cost ck(t) of each ICD for sharing computing resources is a random

value in [1,10] ($/MB). Here, we set the BMS’s demand QB(0) to 50 MB and pB(0) to 15.5 per

MB in time slot 0 and assume that K = 10; i.e., 10 ICDs are competing to share computing

resources. The corresponding qmax
k is set as a random nonnegative value, for example, we set

qmax
k (0) as [10, 20, 20, 15, 10, 10, 10, 20, 20, 20] MB as default.

3.5.1 Optimal Strategy Analysis

We conduct simulations to illustrate the strategy optimization of the BMS and the ICDs, i.e.,

popt
I and qopt.

As shown in Figure 3.3, we evaluate the optimal shared computing resources of ICD1 by

maximizing its utility. We obtain the optimal unit price popt
I (QI(t)) by (3.9). When the total

amount
∑

i,1 qopt
i (t) of computing resources shared by the other ICDs increases, as shown in

subgraph (a), the optimal utility of ICD1 generally decreases due to the competition. Further-

more, when
∑

i,1 qopt
i (0) is fixed, as presented in subgraph (b), the utility of ICD1 is a concave

function versus q1(0), and qopt
1 (0) is the optimal amount of computing resources shared by ICD1

to maximize its payoff. When the optimal amount qopt
1 (0) is larger than the threshold qmax

1 (0),

we should choose qmax
1 (0) as the optimal strategy; otherwise, qopt

1 (0) is the best choice.

Figure 3.4 and Figure 3.5 illustrate the utility of the BMS as the parameter α(0) and C(0)

changes, respectively. Figure 3.4 shows the process for deriving the optimal parameter αopt(0)

when Copt(0) is fixed. From subgraph (a), the utility of the BMS decreases monotonically when

α(0) ≥ αopt(0), and the BMS can gain the maximum profit when α(0) ∈ (0, αopt(0)]. Compared

with subgraph (b), we find that the utility of the BMS does not increase even when the ICDs

share more computing resources than the BMS’s demand when α(0) ∈ (0, αopt(0)]. Therefore,

we can conclude that αopt(0), achieving the market equilibrium, is the optimal parameter to

maximize the utility of the BMS. In Figure 3.5, the parameter α(0) is set as the fixed αopt(0) by

(3.9). We observe that the utility of the BMS is a concave function versus C(0) and that Copt(0)

is the optimal parameter of the unit price pI(0) that maximizes the utility of the BMS.

48 Chapter 3. Hierarchical Game-based Resource Scheduling

(a) ICD1 and other ICDs

0 2 4 6 8 10
Computation resouce shared by ICD

1

0

5

10

15

20

25

U
til

ity
 o

f I
C

D
1

q
1
max(0) > q

1
* (0)

q
1
max(0) < q

1
* (0)

q
1
* (0)

(b) ICD1

Figure 3.3: Utility of ICD1 versus the amount of computing resources shared by ICD1 and the
other ICDs.

3.5. Simulation Results 49

(a) Utility of the BMS

(b) Market Equilibrium

Figure 3.4: Utility of BMS and the market equilibrium versus α(0).

Figure 3.5: Utility of BMS versus C(0).

50 Chapter 3. Hierarchical Game-based Resource Scheduling

3.5.2 SPNE Analysis

In this section, we first show the existence of SPNE and then illustrate the convergence behavior

to SPNE of the near-optimal algorithm.

(a) 2 ICDs

ICD
1

ICD
2

ICD
3

ICD
4

ICD
5

ICD
6

ICD
7

ICD
8

ICD
9

ICD
10

-20

0

20

40

60

80

100

U
til

ity
 o

f I
C

D
s

8.5 7.5

7.5 5.5

1.5 6.5

5.511.5

3.5 5.5

9.510.5

6.5 7.5

2.5 6.5
0.5 6.5

4.512.5

q
k
 = qopt

q
k
 qopt

(b) 10 ICDs

Figure 3.6: Utility of ICDs under SPNE.

Figure 3.6 investigates how the ICDs achieve the SPNE. First, we assume that there are 2

ICDs, as shown in subgraph (a). The maximum utility of each ICD occurs when the other’s

strategy is fixed so that the projection of the intersecting curves of the two maximum utility

3.5. Simulation Results 51

lines in the XY axis is the equilibrium of ICD1 and ICD2. Subgraph (b) describes achieving

the SPNE with 10 ICDs in terms of the utility of the ICDs. The curve is the optimal strategy of

each ICD derived by our proposed algorithm. Then, we adjust the shared computing amount

randomly and notice that the payoff will only decrease if qk , qopt regardless of how the

strategy is adjusted. For example, ICD1 decreases its shared computing resource from 8.5 MB

to 7.5 MB, and its utility also decreases from 72.25 to 63.25; however, the utility of ICD4 drops

from 30.25 to 26.25 even it offloads 6 MB more data processing load. This proves that all ICDs

achieve the SPNE by our proposed algorithm, where neither ICD can obtain a greater payoff if

the other does not change its strategy.

Next, we simulate the convergence iterations with our proposed near-optimal algorithm, as

shown in Figure 3.7. The upper limit ε is set as 10−6 MB, each ICD sets its initial strategy as the

average value, i.e., 50/10 MB, and other parameters are set as default values. From subgraph

(a), the near-optimal amount of computing resources shared by each ICD quickly converges to

the optimal value calculated by (3.12). This indicates that our proposed near-optimal algorithm

can help the ICDs obtain their optimal strategies even when each ICD is unaware of its rivals’

information. From subgraph (b), the utilities of the BMS and the ICDs converge to the SPNE,

where no one will alter its strategy if the strategies of the others remain unchanged. We note

that the utility of BMS reaches its highest value in Iteration 2; however, it still drops to a

stable small value in the following iterations. This occurs because the BMS and the ICDs keep

their strategies unchanged only when SPNE is implemented. Otherwise, their benefits will be

affected by other participants even though they do not change their own strategies.

3.5.3 Algorithm Comparison

We first compare the performance of the proposed algorithm in Figure 3.8 with three baselines

in terms of the utility of the BMS and the ICDs; i.e., (a) offloading equally: all ICDs offload the

same amount of computing resource for data processing; i.e., QB/K ; (b) offloading randomly:

each ICD randomly chooses its offloading decision; and (c) equal to qmax
k : all ICDs share their

maximum idle computing resource, i.e., qmax
k . We note that the maximum utility of the BMS is

achieved when qk(0) equals qmax
k (0); however, some ICDs’ payoffs are negative, such as ICD3

52 Chapter 3. Hierarchical Game-based Resource Scheduling

2 4 6 8 10 12 14
Number of interations

0

2

4

6

8

10
C

om
pu

tin
g

re
so

ur
ce

s
sh

ar
ed

 b
y

IC
D

s
Near-optimal value with incomplete information
Optimal value with complete information

(a)

2 4 6 8 10 12 14

Number of interations

0

10

20

30

40

50

60

70

80

90

U
til

ity
 o

f I
C

D
s

280

300

320

340

360

380

400

420

440

460

U
til

ity
 o

f B
M

SICDs
BMS

(b)

Figure 3.7: Convergence iterations with the near-optimal algorithm.

3.5. Simulation Results 53

and ICD4, because the BMS can provide a very low unit price, even lower than ICDs’ unit

cost, when the ICDs are willing to share considerably more computing resources. By contrast,

the utilities of several ICDs are maximum, but the BMS’s profit is negative when data are

offloaded to each ICD randomly. These two strategies are not recommended because of the

negative payoffs. When offloading data equally, i.e., {qk(0) = 5MB|k∈K }, some of the ICDs,

such as ICD2, receive a greater payoff (marked as *) by adjusting their shared computing

resource amounts even when the others’ strategies are fixed, which means that this strategy

does not achieve the equilibrium. Meanwhile, the amount of computation offloading derived

by our proposed algorithm is optimal, and the payoff will only decrease regardless of how the

strategy is adjusted, as shown in Figure 3.6(b). Therefore, this curve represents the optimal

strategies of the BMS and the ICDs under the SPNE.

ICD
1

ICD
2

ICD
3

ICD
4

ICD
5

ICD
6

ICD
7

ICD
8

ICD
9

ICD
10

-50

0

50

100

150

200

250

U
til

ity
 o

f I
C

D
s

offload randomly, UBMS = -489

equal to qopt, UBMS = 250

equal to qmax, UBMS = 550

offload equally, UBMS = 250

Figure 3.8: Algorithm comparison in terms of utilities of BMS and ICDs.

Next, we compare the performance of the proposed computation sharing algorithm with

the edge offloading algorithm [58] in terms of computing latency. We use the same simulation

setups for edge computing as [58]. According to circuit theory [63], the unit cost of executing

the computation task is proportional to the square of CPU frequency, and we obtain each ICD’s

CPU frequency accordingly. The computing latency is defined as the maximum value of each

ICD’s data processing time, i.e., max{qk/ fk}. We can find that our proposed algorithm can sig-

nificantly reduce the computing latency with the increasing of the number of participant ICDs.

54 Chapter 3. Hierarchical Game-based Resource Scheduling

As shown in Figure 3.9, our proposed computing sharing algorithm can attain better perfor-

mance than edge computing when there are sufficient ICDs (more than 50). Consequently, it

provides a novel solution to alleviate the computing pressure in smart buildings, especially for

peak computing loads.

50 100 200 500 1000
Amount of Computing Data

0

5

10

15

20

25

C
om

pu
tin

g
La

te
nc

y

K=10

K=50

K=100

K=500

Edge offloading

Figure 3.9: Algorithm comparison in terms of computing latency.

3.5.4 Impacts of Parameters

In this section, we consider the utilities of the BMS and the ICDs when the demand of the BMS

QB(t) and the threshold of computing resources shared by each ICD qmax
k (t) change in different

time slots t ∈ [0, 3]. QB(t) is set as [100, 200, 300, 300] MB in each time slot. To simulate the

impact of the maximum amount of idle computing resource, we set qmax
k as [40, 40, 40, 40, 40,

50, 40, 50, 50, 40] MB during the time slot 0 to 2, and we change it to [40, 20, 40, 30, 50, 40,

40, 40, 40, 40] MB in time slot 3. In Figure 3.10, the utilities of the BMS and the ICDs increase

as the number of computing resources shared by each ICD increases. During time slot 3, the

deduced amounts q∗2(3) and q∗4(3) exceed the upper threshold qmax
2 (3) and qmax

4 (3), respectively.

ICD2 and ICD4 adjust their strategies by using (3.13) and (3.14) to recalculate their optimal

outputs. We can see that the adjusted utilities of the ICDs increase, except those of ICD2 and

ICD4 because of their limited computational capacities.

3.5. Simulation Results 55

ICD
1

ICD
2

ICD
3

ICD
4

ICD
5

ICD
6

ICD
7

ICD
8

ICD
9

ICD
10

0

200

400

600

800

1000

1200

1400

U
til

ity
 o

f I
C

D
s

Q
B
(0) =100, U

BMS
=1000

Q
B
(1) =200, U

BMS
=4000

Q
B
(2) =300, U

BMS
=9000

Q
B
(3) =300, U

BMS
=8416

Figure 3.10: Utilities of BMS and ICDs versus the demand of BMS.

Table 3.1: Market equilibrium between the demand of BMS and the supply of ICDs

Optimal amount of computing resources shared by each ICD
QB qopt

1 qopt
2 qopt

3 qopt
4 qopt

5 qopt
6 qopt

7 qopt
8 qopt

9 qvopt
10

∑
k∈K qopt

k
100 11/2 23/2 27/2 21/2 17/2 13/2 15/2 19/2 25/2 29/2 100
200 41/2 43/2 31/2 49/2 35/2 39/2 33/2 45/2 47/2 37/2 200
300 61/2 63/2 51/2 69/2 55/2 59/2 53/2 65/2 67/2 57/2 300
300 65/2 20 55/2 30 59/2 63/2 57/2 69/2 71/2 61/2 300

In Table 3.1, we list the optimal amount of computing resources shared by each ICD of

Figure 3.10, where the 1st row refers to t = 0, the 2nd row refers to t = 1, the 3rd row refers

to t = 2, and the 4th row refers to t = 3. As shown in Table 3.1, our proposed model achieves

market equilibrium because the total amount of computing resources
∑

k∈K qopt
k (t) shared by

each ICD is equal to the demand of the BMS QB(t) when the BMS and ICDs reach the SPNE.

Next, we investigate the performance of the BMS and the ICDs when the number of partic-

ipant ICDs varies. As Figure 3.11 shows, the utility of each ICD decreases substantially as K

increases from 5 to 1000. This result occurs because more participants lead to increased com-

petition and a lower workload, which reduces the earnings for each ICD. Under the condition

of constant demand, the algorithm realizes the steady utility of the BMS when the number of

participant ICDs changes, which contributes to market stability. Furthermore, as shown in Fig-

56 Chapter 3. Hierarchical Game-based Resource Scheduling

ure 3.9, computing latency can be significantly reduced as the number of participants increases,

which helps to achieve lower latency.

5 10 20 50 100 500 1000
Number of ICDs

0

10

20

30

40

50
U

til
ity

 o
f I

C
D

s
ICDs
BMS

U
til

ity
 o

f B
M

S

0

500

Figure 3.11: Utilities of BMS and ICDs versus the number of participant ICDs.

3.6 Chapter Summary

This chapter proposed a hierarchical game model to incentivize computation sharing in smart

buildings. We used a Stackelberg game to model the interaction between the BMS and the

ICDs, in which the BMS first provided the optimal unit price to the ICDs; then, the ICDs

derived the amounts of computing resources to share. Moreover, the ICDs’ decisions were also

affected by their rivals’ strategies, which were formulated by a Cournot game. We analyzed

and obtained the business relationship between the BMS’s demand for data to be processed

and the ICDs’ sharing supply under the premise of ensuring that the BMS and ICDs reach the

SPNE. According to the simulation results, the computational capacity was enhanced in the

building, and each party obtained the optimal profit by our proposed scheme.

Chapter 4

Hierarchical Game-based Resource

Scheduling under Incomplete Information

The hierarchical game model proposed in Chapter 3 can effectively incentivize the horizontal

collaboration in the device layer. However, it requires the complete information of all partic-

ipants during resource scheduling, which is not practical in some IoT scenarios. This chapter

further explores the incentive mechanism for collaborative computing without complete infor-

mation in emergency communication networks (ECNs).

Due to disasters’ urgent and unpredictable nature, the EMS faces an enormous challenge

of real-time data analysis without the complete information from ECNs. In this chapter, we

propose an IITG model to realize collaborative computing at the edge of ECNs, incentiviz-

ing ICDs to share their computation resources by maximizing the utilities of EMS and ICDs

without the prior knowledge of participants. Furthermore, we develop a N-IITG algorithm to

seek the unique BNE, where the EMS can dynamically optimize its pricing mechanism, and

the ICDs can select the optimal computation workload accordingly. Simulation results reveal

that N-IITG outperforms the existing incomplete information-based methods in terms of com-

putation latency and participants’ utilities.

57

58Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

4.1 Introduction

To reduce the harmful effects of unpredictable disasters, the EMS requires timely analysis of

the massive amount of data for providing effective disaster relief strategies [64]. This stringent

requirement brings a significant challenge to real-time data computation in ECNs. Moreover,

due to the highly uncertain nature of disasters, it is extremely difficult to obtain complete

information of ECNs in advance [65]. Therefore, how to design an effective data processing

mechanism based on incomplete information becomes essential for ECNs.

To relieve the computation pressure in ECNs, some researchers propose the collaborative

computing at the edge of networks, by utilizing the spare computational resources from s-

martphones, desktop PCs, or other computational devices in proximity to achieve a dynamic

increase in computational capacity [10, 66]. It has a similar architecture of collaborative com-

puting in Chapter 3. While the concept of collaborative computing is promising, engaging

ICDs for sharing could be difficult as they have no commitments to do so. They may expect

compensation since computation offloading potentially affects local computing tasks. There-

fore, successful exploitation of collaborative computing at the edge of ECNs requires a careful

design of the incentive mechanism. The game theory-based approach is one of the suitable

tools to model and analyze the incentive mechanism [67]. Nevertheless, the existing mecha-

nisms in the literature have overlooked several critical issues. First, recent literature is largely

based on the assumption that the competitive participants have the full knowledge of the net-

work and local constraints [68, 61], such as the path loss fading and computation capacities.

However, it is extremely difficult to acquire such information of ECNs in advance in most real-

istic scenarios. Furthermore, the self-interested participants are non-cooperative in ECNs, and

thus the competitions, in this case, exist not only between the EMS (service consumer) and

the ICDs (service provider), but also among the ICDs. Although the previous game-theoretic

studies can cope with the competition between the service provider and the service consumer

[68, 69, 70] or inside service providers [61, 71], few consider the above competitive relation-

ships simultaneously.

In this chapter, we propose an IITG model to incentivize collaborative computing at the

edge of ECNs, where the objective is to maximize the utilities of the EMS and the ICDs through

4.2. SystemModel 59

optimizing the pricing strategy and the computing resources allocation simultaneously. Specif-

ically, the interactions between the EMS and the ICDs are formulated as a two-tier game model,

which jointly combines the Stackelberg game and the Cournot game. Through this model, the

EMS can dynamically optimize its pricing mechanism, and the ICDs can select the optimal

computation workload accordingly. Furthermore, depending on what the EMS and the ICDs

know, we seek the BNE under incomplete information, and a N-IITG algorithm is developed

to reach the unique BNE by iterations. Simulation results demonstrate that our design achieves

a near-optimal performance of complete information and outperforms the existing incomplete

information based methods in terms of computation latency and participants utilities.

The rest of this chapter is organized as follows. Section 4.2 describes the system model,

especially for incomplete information model. In Section 4.3, we analyze the system with a

two-tier game framework and yield the unique BNE. Finally, we evaluate the performance of

our method in Section 4.4 and summarize the chapter in Section 4.5.

4.2 System Model

We consider a collaborative computing scenario illustrated in Figure 4.1. There are I ICDs,

denoted as I , {1, 2, . . . , I}, locating at the edge of ECNs to offer computational services for

the EMS. During a time slot, QEMS bits of data are processed for emergency management,

and we assume PEMS as the unit profit that the EMS benefits from the data analysis. As a

centralized datacenter, the EMS needs to determine the optimal unit price popt (per bit) to

incentivize collaborative computing. Then, the optimal amount of computing resources qopt
i is

provided by each ICDi. Once the collaboration is set up, the processed data will be transmitted

back to the EMS for emergency management, and each ICD gets its compensation for sharing

its computation resources.

To incentivize the collaborative computing from the ICDs and satisfy the computation re-

quirement from the EMS, the objective of this chapter is to jointly optimize the pricing strategy

popt and the computing resources allocation {qopt
i |i∈I} to maximize the utilities of the EMS and

the ICDs. We adopt the payoff to each participant as its utility. The mathematical model is

described in detail as follows.

60Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

ICD1

EMS

Cloud

p : Public Information

ci : Private Information

qi : Protect Information

ICDi ICDI

p

ci

qi

Figure 4.1: Illustration of the collaborative computing architecture.

4.2.1 Utility Model

The utility of the EMS is defined as the profit through computing offloading minus the sum of

its payments to the ICDs, which can be given by

UEMS(p) = (PEMS − p) min{QEMS,QICD}, (4.1)

where the unit profit PEMS benefiting from the data analysis is a known parameter, which may

vary with the importance of the emergency management task. The price strategy p denotes

the unit price of computing offloading offered by the EMS. The total amount of the shared

computing resources paid by the EMS is the minimum value of QEMS and QICD, where QICD

is the total amount of computing resources shared by the ICDs. We assume rationality in this

chapter that the EMS will not buy the computing resources beyond its requirement, and the

ICDs will not share computing resources without benefit.

The utility Ui of ICDi is defined as the reward paid by the EMS minus the cost to accomplish

qi bits of data processing, which can be expressed as

Ui(qi) = (p − ci)qi, (4.2)

where qi denotes the number of computing resources shared by ICDi. The unit cost ci (per

4.2. SystemModel 61

bit) for sharing denotes the transmission energy and computing cost for offloading one bit of

data, which dynamically varies with CPU performance, path loss fading, and other network

environments [66].

4.2.2 Incomplete Information Model

Since ECNs have the characteristic of high uncertainty, it is impractical to get complete infor-

mation in advance during collaborative computing. Similar to other incomplete information

scenarios [69, 70, 71], the EMS may know each ICD’s characteristics or not, such as collabo-

ration costs ci. Thus, we develop an incomplete information model depending on whether the

information is known by others.

• Public Information: Known by all participants.

• Protect Information: Known by part of participants.

• Private Information: Only known by participant itself.

Then, we can classify the parameters in (4.1) and (4.2) into three categories as listed in

Table 4.1.

Table 4.1: Incomplete information model

Information Category Parameter
Public Information p
Protect Information qi

Private Information QEMS, PEMS, ci

Considering the practical situation, we assume that the unit price p is common knowledge

of all participants, including the EMS and the ICDs. The offloading strategy qi is the protect

information which can be obtained by the EMS and each ICD. The private information ci is

the actual unit cost known to each ICD but is not known by EMS or other ICDs. Also, the

computing task parameters QEMS and PEMS are the private information of the EMS.

By exploring (4.1) and (4.2), we notice that the EMS and the ICDs have different objec-

tives. The EMS expects the ICDs to accomplish a more massive task with a lower unit price,

62Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

and the ICDs are the opposite. Meanwhile, each non-cooperative ICD competes to acquire a

higher payoff by sharing a larger amount of computing resources; however, with more comput-

ing resources supplied by ICD, the EMS can damp down the unit price of computing offloading

according to the theory of demand and supply. Hence, the competitions exist not only between

the EMS and the ICDs but also among multiple ICDs. This motivates us to propose an incom-

plete information based two-tier game (IITG) model to tackle the joint optimization problem

of the EMS and the ICDs.

4.3 Two-tier Game Analysis under Incomplete Information

In this section, we analyze the optimal strategies of the EMS and the ICDs by jointing the Stack-

elberg game and the Cournot game under incomplete information. The optimization problems

for the EMS and the ICDs are conducted by the following two tiers. We use the derived results

to prove the existence of BNE.

• Tier I: Players: the EMS (a single leader); Strategy: the unit price p; Utility: UEMS(p)

given in (4.1).

• Tier II: Players: the ICDs (multiple competitive followers); Strategy: the shared com-

puting resources {qi|i∈I}; Utility: {Ui(qi)|i∈I} given in (4.2).

We first model the interaction between the EMS and the ICDs as a Stackelberg game, i.e.,

the pricing strategy p and the amount of computation offloading qi. In our proposed collabora-

tive computing model, the EMS (a single leader) has the first-mover advantage to imposes the

optimal unit price popt of computation offloading for the ICDs. Then, the ICDs (multiple fol-

lowers) can divide the optimal amount of computation offloading qopt
i by following the pricing

strategy announced by the EMS. Both the EMS and the ICDs aim to obtain the optimal utilities

by maximizing their payoff. These characteristics align well with the Stackelberg game model.

The objective function of the EMS is

max
popt

UEMS(p|PEMS,QEMS, q)

4.3. Two-tier Game Analysis under Incomplete Information 63

s.t. 0 ≤ popt ≤ PEMS, (4.3)

where q = {q1, q2, . . . , qi, . . . , qI} represents the computation offloading strategies of all ICDs.

The derived optimal unit price popt paid to the ICDs should be no more than the unit profit PEMS

that the EMS can benefit from computation offloading; otherwise, the utility of the EMS will

be negative.

Then, the ICDs, acting as multiple followers in the Stackelberg game, deduce their optimal

shared computing resources by following the pricing strategy announced by the EMS (leader).

Moreover, the internal competitions among multiple ICDs are modeled as a Cournot game,

which is one of the most popular types of games used to model the interactions among multiple

strategic generators. Since each ICD’s payoff depends not only on its own strategy but also on

the decisions of its rivals, the optimization problem for ICDi can be expressed as

max
qopt

i

Ui(qi|p, q−i),∀i ∈ I

s.t.
∑
i∈I

qopt
i ≤ QEMS, (4.4)

where q−i is the strategy set of the ICDs other than ICDi.
∑

i∈I qopt
i ≤ QEMS denotes that the total

amount of computation offloading is no more than the EMS’s demand because all participants

in the game are rational and thus will not share computing resources without benefit.

Furthermore, since the internal competition among multiple ICDs fits the Cournot game

model, and thus we estimate p by the Cournot price function model to depict the competitive

relationship. The unit price p is a decreasing function with respect to the total amount of

computation offloading. It is subject to ∂p
∂QICD

< 0, where QICD =
∑

i∈I qi. To simplify the

problem, we estimate p with a universal linear model as in references [61, 71], i.e.,

p = max

0, pmax − α
∑
i∈I

qi

 , (4.5)

where pmax is the price function intercept that denotes the maximum unit price offered by the

EMS, and α is a nonnegative coefficient that reflects the change trend of the unit price and the

total amount of shared computing resources, i.e., α = −
∂p

∂QICD
.

64Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

Next, we adopt backward induction [68, 69, 70] for IITG analysis as follows.

4.3.1 Tier II: Optimal Computing Offloading Strategy

In this tier, we optimize the computing offloading strategy for each ICD given the EMS’s

(leader) strategy.

Theorem 4.3.1 Each ICDi (follower) determines the optimal amount of computation offload-

ing qopt
i given the unit price strategy p and α from the EMS (leader), given by

qopt
i =

p − ci

α
, (4.6)

where ci is the private information known by each ICD itself.

Proof We substitute (4.5) into (4.2); thus, the utility of ICDi can be given by

Ui(qi) = −αq2
i +

pmax − α
∑
k,i

q̂k − ci

 qi. (4.7)

Under incomplete information model, the rivals’ decision {qk|k,i} is the protect information

to ICDi, and thus each ICD only can estimate the rivals’ decision as q̂k. From (7), Ui is a

continuous quadratic function of qi by assuming
∑

k,i q̂k is fixed, and the second derivative of

Ui with respect to qi is ∂2Ui
∂q2

i
= −2α, where α > 0. As ∂2Ui

∂q2
i
< 0, Ui is a concave function of

qi. Therefore, by setting the first derivative equal to zero, the optimal output of ICDi satisfies

qopt
i = (pmax − ci − α

∑
k,i q̂opt

k)
/
2α . As p is known, we can substitute (4.5) into the above

equation, and obtain qopt
i expressed as (4.6). This finishes the proof of Theorem 4.3.1.

The next problem is to adjust the pricing strategy p to maximize the utility of the EMS

while guaranteeing its computational demand.

4.3.2 Tier I: Optimal Unit Price Strategy

Under incomplete information, the EMS has a rough estimation on each ICDs’ cost infor-

mation. We consider that the unit cost of ICDi is a variable following certain distributions.

4.3. Two-tier Game Analysis under Incomplete Information 65

Let us denote ci,n as the unit cost of ICDi with probability γi,n. The probability γi,n satisfies∑
n∈Ni

γi,n = 1, where n ∈ Ni , {1, 2, . . . ,Ni} indicates there are Ni kinds of possible values for

unit cost ci.

Theorem 4.3.2 Given the unit profit PEMS and the computing workload QEMS, the EMS can

determine the optimal price strategy p(QICD) by the the estimation of the unit cost of the ICDs,

which can be given by

popt(QICD) =

 I + 1
2

PEMS −
I − 1

2I

∑
i∈I

En∈Ni[ci,n]

 − IPEMS −
∑

i∈I En∈Ni[ci,n]
2QEMS

QICD, (4.8)

where En∈Ni[ci,n] denotes the estimation of the unit cost of ICDi and QICD =
∑

i∈I qi denotes the

enhanced computational capacity for emergency management on demand.

Proof From (4.6) indicated in Theorem 4.3.1., the optimal amount of shared computing re-

sources from ICDi satisfies qopt
i,n = (p − ci,n)

/
α when its actual unit cost is ci,n. From the per-

spective of the EMS, it can determine the optimal strategy qopt
i = qopt

i,n with the probability γi,n.

Thus the expected amount of shared computing resources can be expressed as

E[QICD] =
∑
i∈I

En∈Ni[q
opt
i,n]

=
∑
i∈I

∑
n∈Ni

p − ci,n

α
γi,n

=
I p −

∑
i∈I

∑
n∈Ni

ci,nγi,n

α
,

(4.9)

where
∑

n∈Ni
ci,nγi,n is the expected unit cost of ICDi, which can be denoted as En∈Ni[ci,n].

Substituting (4.5) into (4.9), and the total expected amount of shared computing resources

is E[QICD] =
(
I pmax −

∑
i∈I En∈Ni[ci,n]

)/
α . The expected utility of the EMS can be represented

as (4.10) by substituting the above equation into (4.1).

66Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

E
[
UEMS(pmax, α)

]
= −

I
α (I + 1)2

pmax −

 I + 1
2

PEMS −
I − 1

2I

∑
i∈I

En∈Ni[ci,n]

2

+
1

4αI

IPEMS −
∑
i∈I

En∈Ni[ci,n]

2

.

(4.10)

When α is fixed, E [UEMS] is a continuous quadratic function of pmax. Similar to the proof

of Theorem 1., we can obtain the optimal parameter popt
max by setting the first derivative equal to

zero as

popt
max =

(I + 1)PEMS

2
−

(I − 1)
∑

i∈I En∈Ni[ci,n]
2I

. (4.11)

From (4.10), we can obtain that E [UEMS] is a monotonically decreasing function with re-

spect to α. Substituting popt
max back to E[QICD], and it can be rewritten as

E[QICD] =
(IPEMS −

∑
i∈I En∈Ni[ci,n])
2α

. (4.12)

To satisfy the computation requirement from the EMS, the optimal parameter αopt can be de-

termined by replacing E[QICD] with QEMS as

αopt =

(
IPEMS −

∑
i∈I En∈Ni[ci,n]

)
2QEMS

. (4.13)

Finally, we substitute popt
max and αopt into (4.5) and obtain the optimal unit price expressed as

(4.8). This finishes the proof of Theorem 4.3.2.

In this way, the EMS and the ICDs can yield BNE {popt, {qopt
i,n ; ci,n}n∈Ni,i∈I}. Since there are

Ni kinds of possible values for ICDi, BNE is not unique. To address this problem, we design

the N-IITG algorithm to iteratively get the unique near-optimal strategies of the EMS and the

ICDs based on the IITG model. Next, we provide the details of the near-optimal algorithm.

4.3.3 N-IITG Algorithm

To address the uniqueness problem of incomplete information, we propose the N-IITG algo-

rithm to yield the unique BNE of the EMS and the ICDs.

4.4. Simulation Results 67

Algorithm 2 N-IITG Algorithm: Seeking the unique BNE
Input: QEMS, PEMS, {ci,n, γi,n}n∈Ni,i∈I, ε, T
Output: popt, {qopt

i |i∈I}

1: Initially, the EMS estimates of the unit cost by ĉi
0 ⇐ En∈Ni[ci,n].

2: initialize t ⇐ 1.
3: repeat
4: EMS obtains popt and αopt by (4.8).
5: for ICDi do
6: qopt

i ⇐
popt−ci,n

αopt by (4.6).

7: update ĉi
t ⇐ popt − αoptqopt

i ,∀i ∈ I
8: set t ⇐ t + 1.
9: until t ≥ T or |ĉi

t − ĉi
t−1| ≤ ε,∀i ∈ I

Different from the complete information scenario, the EMS and the ICDs need to find out

the unique optimal strategies by iterations from step 3 to step 9. Under incomplete information

model, the EMS only has the estimation of the unit cost of ICDi, and it initializes the estimated

unit cost ĉi in expectation and deduces the optimal unit price popt by (4.8). Then, each ICD

determines its particular optimal strategy qopt
i by (4.6) based on the actual unit cost. In each

iteration, the EMS can update the estimated unit cost ĉi by the observed actions qopt
i from the

ICDs. Then, the EMS and the ICDs recalculate their optimal strategies until the unit cost

of each ICD converges to a stable value, or the number of iterations exceeds its maximum

threshold. Finally, all participants achieve the unique BNE where no one will alter its strategy

if the strategies of the others remain unchanged.

Next, we discuss the time complexity of the N-IITG algorithm. As shown in Algorithm

1, the time complexity of unit cost estimation is O[I]. All participants can determine their

strategies by the closed-form solution, i.e., O[1]. Therefore, the overall time complexity is

O[NI], where N is the iteration count required to converge. This result demonstrates that the

N-IITG algorithm can be finished in polynomial time.

4.4 Simulation Results

In this section, we present numerical results to evaluate the performance of the N-IITG algorith-

m. Parameter settings are given first. The EMS’s demand QEMS is set as to 50 MB and PEMS to

20 per MB. We consider that there are 10 ICDs in proximity having idle computing resources,

68Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

i.e., I = 10. The unit cost ci for sharing computing resources is private information, i.e., each

ICD knows well its actual unit cost ci, while the EMS and the other ICDs only have a rough

estimation based on the probability distribution, and then ci is estimated as ĉi = En∈Ni[ci,n].

Here, we take Bernoulli distribution for instance, and divide the unit cost into two types for

simplicity, i.e., ci , {cL
i , c

H
i }, and the probability is Γi , {γ

L
i , γ

H
i }, where γL

i + γH
i = 1. The low

unit cost cL
i denotes low local computing intensity and transmission power, and cH

i is the exact

opposite case. According to these settings, we assume that the unit cost ci is uniformly and

randomly distributed over [1,10] ($/MB).

According to Theorem 4.3.2., the EMS determines its optimal unit price popt based on the

estimation of the unit cost, i.e.,

popt(QICD) =

 I + 1
2

PEMS −
I − 1

2I

∑
i∈I

(
cL

i γ
L
i + cH

i γ
H
i

) − IPEMS −
∑

i∈I

(
cL

i γ
L
i + cH

i γ
H
i

)
2QEMS

QICD.

(4.14)

Then, according to Theorem 4.3.1., ICDi determines its optimal amount of shared comput-

ing resources qopt
i according its actual unit cost, which can be given by

qopt
i =


qL

i
opt

=
popt − cL

i

α
, ci = cL

i

qH
i

opt
=

popt − cH
i

α
, ci = cH

i .

(4.15)

As shown in Figure 4.2, we investigate the shared computing resources of each ICD under

incomplete information and compare it with the complete information scenario. Here, the

result of complete information can be derived by ci instead of ĉi. To analyze the difference of

actual unit cost and estimated unit cost, we only set c2, c5 and c8 as unknown parameters, which

should be estimated by the expectation. As illustrated in Figure 4.2 (a), the ICDs are willing to

offload more workload than the EMS’s prediction if actual unit cost is smaller than estimated

unit cost, which makes the participants unable to reach equilibrium after one iteration. Next,

we simulate the convergence iterations with our proposed N-IITG algorithm. The upper limit ε

is set as 10−2. From Figure 4.2 (b), the computing resources shared by each ICD converges to

the value under complete information, and the total amount of the shared computing resources

satisfy the EMS’s computation requirement. This result indicates that the N-IITG algorithm can

4.4. Simulation Results 69

achieve a near-optimal performance of complete information under the condition of incomplete

information.

1 2 3 4 5 6 7 8 9 10
ICDs

0

2

4

6

8

10

C
om

pu
tin

g
re

so
ur

ce
s

sh
ar

ed
 b

y
IC

D
s

Actual cost
Estimated cost

c
8
 > E[c

8
]c

5
 > E[c

5
]c

2
 < E[c

2
]

(a) One iterations

20 40 60 80 100
Number of interations

0

2

4

6

8

10

12

14

C
om

pu
tin

g
re

so
ur

ce
s

sh
ar

ed
 b

y
IC

D
s

Incomplete Information
Complete Information

(b) Multiple iterations

Figure 4.2: Shared computing resources versus ci and ĉi.

In Figure 4.3, we evaluate the convergency performance of the EMS and the ICDs from

the perspective of computing latency and their utilities. Since the unit cost ci is related to

each ICD’s local computing intensity, we assume the processing rate varies inversely with ci.

The computing latency is defined as the maximum value of all ICDs’ processing time. Figure

70Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

4.3 (a) shows the computing latency can be significantly decreased and fluctuate to a stable

value with the algorithm iterations. Meanwhile, when achieving the unique BNE by the N-

IITG algorithm, each participant obtains the maximal profit under equilibrium in collaborative

computing, as shown in Figure 4.3 (b).

0 20 40 60 80 100

Number of interations

20

40

60

80

100

120

140

160

C
om

pu
ta

tio
n

la
te

nc
y

(a) Computation latency

20 40 60 80 100

Number of interations

0

20

40

60

80

100

120

140

160

180

U
til

ity
 o

f I
C

D
s

-300

-200

-100

0

100

200

300

U
til

ity
 o

f E
M

S
ICDs
EMS

(b) Utility of participants

Figure 4.3: Convergence iterations with N-IITG algorithm.

In Figure 4.4, we compare the performance of the N-IITG algorithm with two algorithms

in terms of the computation latency and the participants’ utilities, i.e., incomplete information

4.4. Simulation Results 71

100 200 300 400 500

Computing workload

0

20

40

60

80

100

120

C
om

pu
ta

tio
n

la
te

nc
y

N-IITG
IISG
IICG

(a)

100 200 300 400 500

Computing workload

0

100

200

300

400

U
til

ity
 o

f I
C

D
s

N-IITG
IISG
IICG

(b)

100 200 300 400 500

Computing workload

0

20

40

60

80

100

120

U
til

ity
 o

f E
M

S
 /

C
om

pu
tin

g
la

te
nc

y

N-IITG IISG IICG

(c)

Figure 4.4: Algorithm comparison versus computing workload QEMS.

72Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

based Stackelberg game algorithm (IISG) [70], and incomplete information based Cournot

game algorithm (IICG) [71]. Considering that the unit cost is proportional to the square of

processing rate [66], we define the computation latency as max{qi

/√
ci |i∈I}. Figure 4.4(a) and

Figure 4.4(b) demonstrate that our proposed N-IITG algorithm can achieve a lower computa-

tion latency and a higher average utility of ICDs under different computing workloads. Since

IICG cannot dynamically adjust its pricing strategy, the computing task fails to be processed

when it increases to 400 MB or above. Therefore, the computation latency of IICG is infinite,

and the utilities are zero in Figure 4.4. Furthermore, apart from the utility, the computation

latency is also important to the performance of the EMS in ECNs. Therefore, we compare

the performance of the EMS by the ratio of the above two items, and the N-IITG algorithm

outperforms the other two algorithms as well. That is because our proposed N-IITG algorithm

considers not only the interaction between the EMS and the ICDs but also the internal com-

petitions among the ICDs. In this way, the EMS can dynamically adapt its pricing strategy to

inspire the competitive ICDs for sharing sufficient computing resources, which contributes to

relieve the computation pressure in ECNs. Each ICD involved in collaborative computing can

maximize its utility by selecting the optimal computation workload.

The unit profit PEMS benefiting from data analysis is a known parameter, which may vary

with the importance of the emergency management task. To better evaluate the effect of the

parameter PEMS, we conduct the experiments in terms of computing latency and participants’

utilities under different values as shown in Figure 4.5. We can obtain that the computation

latency decrease with an increase of PEMS, and the participants can obtain higher utilities. This

finding indicates that when the emergency management task is urgent, the unit profit PEMS

should be set higher in order to get a faster data processing.

4.5 Chapter Summary

This chapter proposed an IITG model to incentivize collaborative computing in ECNs, which

jointly combined the Stackelberg game and the Cournot game. Depending on the given in-

formation of the EMS and the ICDs, we analyzed the BNE of the EMS and the ICDs under

incomplete information, and further designed the N-IITG algorithm that can iteratively conver-

4.5. Chapter Summary 73

10 20 40 80
Unit profit P

EMS

0

50

100

150

200
C

om
pu

ta
tio

n
la

te
nc

y
Q

EMS
 = 100

Q
EMS

 = 200

Q
EMS

 = 500

(a)

10 20 40 80
Unit profit P

EMS

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 u
til

ity
 o

f p
ar

tic
ip

an
ts Q

EMS
 = 100

Q
EMS

 = 200

Q
EMS

 = 500

(b)

Figure 4.5: Computational latency and utilities versus unit profit PEMS.

74Chapter 4. HierarchicalGame-basedResource Scheduling under Incomplete Information

gent to the unique BNE. According to the simulation results, the proposed scheme achieved

a significant increase in computational capacity while each participant obtained the optimal

profit.

Chapter 5

Computational Latency Pricing-based

Resource Scheduling

As discussed in the previous two chapters, utilizing the idle computing resources from the

distributed IoT devices can sustainably increase the computational capacity and thereby effec-

tively alleviate the pressure on resource-constrained devices. Considering the ever-increasing

diversity of applications in IoT systems, a reasonable incentive mechanism should consider not

only the number of tasks processed but also the performance they have achieved.

This chapter is motivated by computing scenarios with latency-critical tasks that a com-

putational latency-based resource scheduling mechanism is proposed to enable collaborative

computing amongst IoT devices from the perspective of QoE performance. Specifically, we

consider the collaborative computing system where a user offloads the computation-intensive

and latency-sensitive tasks to multiple ICDs by a CSP. A computational latency-based pricing

mechanism is first proposed from the perspective of the QoE performance, where the comput-

ing offloading price varies dynamically with the data processing rates; then, a game-theoretic

computing task allocation approach is developed among the CSP and multiple ICDs to maxi-

mize all participants’ profit. The CSP first determines the optimal task partition dynamically

upon the tasks’ arrival; then, the ICDs derive the optimal central processing unit-cycle frequen-

cy correspondingly. Simulation results demonstrate that the overall computational latency of

our proposed mechanism is significantly decreased, and the profit of all participants is maxi-

mum in collaborative computing.

75

76 Chapter 5. Computational Latency Pricing-based Resource Scheduling

5.1 Introduction

By interconnecting devices, machines, and industrial processes, the IoT technology can support

many vertical applications, including factory automation, smart grids, and intelligent trans-

port systems [72, 73]. Frequently, such applications are large-scale and latency-sensitive [74],

which bring a huge burden on real-time data computation. Since many IoT devices, e.g.,

sensors and actuators, are characterized by limited computational resources, migrating data

processing from resource-constrained IoT devices to the platforms with extremely high com-

putational capability [75, 76, 77] is considered as a sustainable approach for relieving such a

pressure.

With the emerging of the IoT devices equipped with multi-core processors, ranging from

smartphones to laptop computers, researchers have proposed to realize collaborative comput-

ing [78] by encouraging these computing devices to share their idle computational resources.

A recent survey indicates that the average CPU utility of existing computing devices over

the Internet is merely 6 to 12 percent [10]. Scavenging the enormous amount of spare com-

putational resources over IoT can provide a new distributed and dynamic computing service

platform according to demand, which is similar to Uber for transportation services and Airbnb

for hospitality.

Successful exploitation of collaborative computing requires a careful design of the cooper-

ative mechanism. The related studies devoted to this area can be roughly categorized into two

groups: those focusing on the task allocation based on the tradeoff between CPU power con-

sumption and computational latency by optimization-based approaches[79] and those focusing

on the profit maximization by the economic and pricing based methods[25]. Our study here

belongs to the second category. Since computing devices have no commitments for collabo-

ration, an efficient incentive scheme is critical to encourage the sharing of idle computational

resources. The primary benefit of the economic methodology is the revenue generation[25],

and thus it is regarded as a suitable tool for addressing incentive problems.

Specifically, we consider a computational offloading market through collaborative com-

puting when the end-user (buyer) cannot complete the computational-intensive and latency-

sensitive tasks in time. In this market, the tasks can be offloaded to multiple ICDs (seller)

5.1. Introduction 77

by virtue of the CSP (intermediary), such as a wireless access point. To enable collaborative

computing sustainably, we will address the following two technical and economic challenges:

1) How to formulate the pricing mechanism in the resource sharing market? Compared

with the flat-rate pricing, smart pricing[80] is preferred in practical applications. Our design is

motivated by computing scenarios with latency-critical tasks. Different data processing rates

lead to different QoE for IoT applications [81]. Hence, a reasonable pricing strategy should

consider not only the number of tasks processed but also the QoE of tasks processed. However,

we notice that state-of-the-art literature mainly focuses on the processing time or the compu-

tational capacity but does not consider the affection of QoE, which inspires us to propose an

efficient pricing mechanism by comprehensively considering the QoE of collaborative com-

puting. Here we take latency as a metric of QoE for consideration. To reduce the computing

response time, we propose a computational latency-based pricing mechanism where the unit

price offered by the buyer varies dynamically with the data processing rates that the seller

can provide. A higher data processing rate is encouraged by gaining more payoff to improve

computational latency performance.

2) How to allocate computation tasks by jointly maximizing the profit of all participants?

We adopt the Stackelberg game model [60] to study the interactions between the CSP and the

ICDs. In the Stackelberg game model, one player (leader) moves first, and then the others

(followers) move sequentially. Each player can maximize its payoff by finding the SPNE,

which aligns well with the interactions between the service providers and the service consumers

in computing task allocation scenarios. In this work, the CSP has the first-mover advantage to

determine the pricing strategy and the task partitions upon the tasks’ arrival; then, the ICDs

provide its computational resources correspondingly. Both of the CSP and the ICDs aim to

maximize their payoff. These characteristics fit the Stackelberg game model. Thus, the CSP

acts as a single leader, the ICDs function as multiple followers, and all participants in this game

model find out SPNE with the goal of maximizing their payoff.

In summary, we propose a game-theoretic incentive mechanism for collaborative comput-

ing through computational latency-based pricing. The main contributions of this chapter are as

follows:

• Computational latency-based pricing: A new computational latency-based pricing mech-

78 Chapter 5. Computational Latency Pricing-based Resource Scheduling

anism is proposed in reflecting the QoE performance in collaborative computing. We an-

alyze the economic challenges in collaborative computing and design the computational

latency-based pricing scheme where the computing offloading price varies dynamically

with the data processing rates. The effect of latency on the pricing helps achieve the

overall computational latency optimization.

• Game-theoretic task scheduling: We develop a game-theoretic incentive mechanism to

encourage computing resource sharing. The interactive behaviors between the CSP and

the ICDs are modeled as the Stackelberg game, where the objective is to obtain the

maximum utilities for the CSP and the ICDs by seeking out SPNE through the dynamic

pricing mechanism, the computation workload selection, and the CPU frequency control.

• Near-optimal algorithm: In practice, the data processing rate is restricted by power con-

sumption and CPU capacity. For the constraint case in which we cannot get the closed-

form solution directly, we present a near-optimal algorithm to find out the near-optimal

strategies of the CSP and the ICDs. We also analyze the existence and uniqueness of

SPNE by simulation.

The rest of this chapter is organized as follows. Section 5.2 provides a review of related

works. Section 5.3 describes the system model and introduces the computational latency-based

pricing scheme. In Section 5.4, we analyze the system with the Stackelberg game model, prove

the existence of SPNE, and develop a near-optimal algorithm that can achieve SPNE. Finally,

we evaluate our method’s performance in Section 5.5 and summarize the chapter in Section

5.6.

5.2 Related Work

This section presents a review of the literature related to the pricing mechanisms and the task

scheduling methods for collaborative computing in IoT-based systems.

In the literature, the Stackelberg game-based approaches have been widely used for mod-

eling and analyzing the computing offloading problems [26]. For example, the authors of [57]

proposed a joint optimization approach in IoT fog networks, where a fog node helps to offload

5.2. RelatedWork 79

data computing services from a data service operator to a data service subscriber. This ap-

proach was formulated as a Stackelberg game as well as a many-to-many matching game. By

considering the competing characteristics of multi-tenant environments in cloud computing,

[82] proposed a cloud resource allocation model based on an imperfect information Stackel-

berg game using a hidden Markov model in a cloud computing environment. To encourage IoT

devices to share their unused resources, a Stackelberg game was formulated in [83] to decide

the price that can be offered to mobile devices for application execution and the amount of

execution unit that each mobile device is willing to provide. We notice that the Stackelberg

game model aligns well with the interactions between the service providers and the service

consumers in computing offloading scenarios.

Besides the computing workload selection, CPU-cycle frequency is another important fac-

tor affecting task scheduling [66]. The authors in [84] proposed an optimization framework

of offloading from a single mobile device (MD) to multiple edge devices by considering fixed

CPU frequency and elastic CPU frequency, respectively. It aimed to minimize both total tasks’

execution latency and the MD’s energy consumption by jointly optimizing the task allocation

decision and the MD’s CPU frequency. Moreover, the authors developed a distributed energy-

efficient dynamic offloading and resource scheduling algorithm in [85], which consists of three

sub algorithms of the computation offloading selection, the clock frequency control, and the

transmission power allocation. These designs inspire us to apply the dynamic CPU-cycle fre-

quency technology for task scheduling through game-theory analysis.

Furthermore, the pricing of the shared computational resource is a critical factor for col-

laborative computing since developing an appropriate pricing model will not only gain higher

profits but also provide decisions for computation task scheduling [86]. Amazon Elastic Com-

pute Cloud (Amazon EC2) [87] is a successful case that provides various pricing for comput-

ing capacity in the cloud. There are three ways to pay for Amazon EC2 instances: on-demand

instances, reserved instances, and spot instances. Similarly, Microsoft Azure [88] has the pay-

as-you-go pricing and the reserved pricing, and Google cloud [89] provides the resource-based

pricing as well as sustained use discounts and committed use discounts. We notice that the ex-

isting pricing mechanisms are based on the usage of the time or the capacity but do not consider

the affection of QoE, such as the latency. Moreover, researchers have proposed pricing-based

80 Chapter 5. Computational Latency Pricing-based Resource Scheduling

mechanisms for users and offloading service providers in [90, 91]. To date, previous stud-

ies considered the latency as an impact factor of the profit, but not be reflected in the pricing

mechanism directly. With the rapid growth of latency-sensitive IoT applications, such as fac-

tory automation, it is necessary to explore the pricing mechanism in collaborative computing

from the perspective of the latency performance.

In summary, although collaborative computing can theoretically alleviate the computation

pressure of the resource-limited devices, this method is still challenging to the practical appli-

cation from two aspects, i.e., pricing and task scheduling. Thus, it is essential to design an

effective incentive mechanism to address these two challenges.

5.3 System Model

We consider a computing offloading scenario managed by the CSP in the IoT system, as illus-

trated in Figure 5.1. There are a set of resource-constrained end-users and I ICDs, which are

denoted as I , {1, 2, . . . , I}.

Figure 5.1: Illustration of computing offloading in collaborative computing architecture.

A quasi-static model is considered in this chapter where the environment remains un-

changed during a computation offloading time slot. During a computing offloading time slot,

5.3. SystemModel 81

there is W (in CPU cycles) computation workload to be processed from an end-user. Here, we

assume that the simple task model for partial offloading[66], which is the data-partition mod-

el where the input computation tasks can be arbitrarily divided into bit-wise and executed by

different ICDs independently. The unit price that the end-user would like to pay for this com-

puting task is pu ($), which dynamically changes according to the computing response time of

the CSP. In this way, the computation task is represented as T (W, pu).

The computation task T is offloaded to the CSP for collaborative computing. Upon the

arrival of T , the CSP decides the optimal pricing strategy popt
i ($) and the corresponding task

partitions, i.e., the optimal workload wopt
i (cycle) offloading to each ICDi; then, the ICDs find

out the optimal CPU-cycle frequency f opt
i (GHz) distributively based on popt

i and wopt
i . Notice

that all participants are selfish and only follow the strategic behaviors that maximize their own

utilities.

Based on the above collaborative model, we aim at jointly optimizing the pricing strategy

pi, the task partition wi and each ICD’s CPU-cycle frequency fi, in order to minimize the overall

computational latency t under the premise of maximizing the utilities of the CSP and the ICDs.

Here, the overall computational latency t can be expressed as t = max{wi/ fi |i∈I}. We adopt the

payoff to each participant as its utility. The mathematical model is described as follows.

5.3.1 Utility of CSP

As an intermediary, the utility of the CSP is defined as the revenue received from the end-user

minus the sum of its payment to the ICDs, which can be expressed as

UCSP({pi,wi|i∈I}) = puW −
∑

piwi, (5.1)

where the unit price pu charged the end-user for computation offloading is a parameter related

to the computing response time of the CSP, and pi and wi denote the unit price paid by the CSP

to the ICDs and the workload offloaded to each ICD, respectively. Here, pi is also a varying

parameter which is related to the execution time of the ICDi.

Given the computation task T (W, pu), the CSP, acting as the leader in the Stackelberg game,

sets the optimal pricing and the task partition strategy by predicting the strategies of the ICDs

82 Chapter 5. Computational Latency Pricing-based Resource Scheduling

(followers). The optimization problem for the CSP can be formulated as

max
{popt

i ,wopt
i |i∈I}

UCSP({pi,wi|i∈I}|W, pu, f)

s.t.


0 ≤ pi ≤ pu

I∑
i=1

wi = W
, (5.2)

where f represents the ICDs’ (follower) strategies, i.e., the CPU-cycle frequency for processing

computation tasks, which is fed back to the CSP (leader).

5.3.2 Utility of ICDs

We take ICDi as an example, and the others can derive out the same strategy. The utility of

ICDi is defined as the income paid by the CSP minus the cost to execute the workload wi, given

by

UICDi(fi) = piwi − pekiwi f 2
i , (5.3)

where pekiwi f 2
i denotes the cost of the CPU power consumption of ICDi for executing the

computation tasks. According to the circuit theory[63], the CPU power consumption can be

divided into several factors, including the dynamic, short-circuit, and leakage power consump-

tion, where the dynamic power consumption dominates the others. In particular, the dynamic

power consumption can be represented as kiwi f 2
i , where ki is a constant related to the hardware

architecture. In order to unify the unit, we convert the power consumption into the correspond-

ing price as pekiwi f 2
i , where pe is the unit price of the CPU power consumption.

The ICDs, acting as multiple followers in the Stackelberg game, deduce their optimal CPU-

cycle frequency by following the CSP’s strategy (leader). The optimization problem for ICDi

can be formulated as

max
f opt
i

UICDi(fi|pi,wi),∀i ∈ I

s.t.


0 ≤ fi ≤ f max

i

kiwi f 2
i ≤ Emax

i

. (5.4)

5.3. SystemModel 83

According to the dynamic pricing pi and the task partition wi, each ICD calculates its op-

timal CPU-cycle frequency f opt
i to maximize its utility. fi cannot exceed each ICD’s limitation

of computational capacity f max
i and the CPU power consumption Emax

i .

5.3.3 Computational Latency-based Pricing

As indicated in [92], the latency is an important influencing factor of QoE, especially for real-

time applications. When the ICDs are in the proximity of the CSP in local regions, the transmis-

sion time can be omitted [93, 94], especially for the computational-intensive tasks. Therefore,

we mainly focus on the overall computing response time and propose a computational latency-

based pricing mechanism, in which both of the unit price pu and pi are varying dynamically

according to the computational latency. The user’s QoE is usually decreasing with the increase

of the response time. To reflect this relationship, we construct the computational latency-based

pricing model between the unit price and the response time, as shown in Figure 5.2.

Figure 5.2: Computational latency-based pricing pu.

When the computational latency exceeds its upper bound tmax, the benefit of the CSP will be

set as 0. During the time period [0, tmax], the unit price pu reduces from pmax to pmin with regard

to the computing response time t. Without loss of generality, we use the following formulation

84 Chapter 5. Computational Latency Pricing-based Resource Scheduling

to model the decreasing relationship between the unit price and the response time, i.e.,

pu = p(t) =


pmax − (pmax − pmin)(

t
tmax)n t ∈ (0, tmax]

0 t ∈ (tmax,∞),
(5.5)

where t = max{ti|i∈I}, ti indicates each ICDi’s computing response time, and n denotes the

tendency to change. Specifically, we can divide the changes between pu and t into three forms:

decreasing linearly (n = 1), slow-fast (n > 1) and fast-slow (n < 1).

As an intermediary, the CSP needs to guarantee its own payoff. In this chapter, we con-

sider that the CSP receives commissions proportionally from the fees paid by the end-user, as

illustrated in Figure 5.3.

Figure 5.3: Computational latency-based pricing pi.

We take the linear relationship as an example, i.e., n = 1. The rate of the commission is set

as r, and thus the unit price pi paid to the ICDs can be expressed as

pi = rp(ti)

s.t. r ≤ 1. (5.6)

Since all participants in the game are rational, the unit price pi offered by the CSP would not

5.4. GameModel Analysis 85

exceed the end-user’s payment pu, i.e., r ≤ 1.

As shown in Figure 5.2, reducing the overall computational latency can enhance the QoE

performance so that the end-user is willing to pay a higher unit price pu. In order to obtain

better payoff, the CSP inspires the ICDs to speed up their processing rates by changing pi with

the ICDs’ execution time, as shown in Figure 5.3. Increasing r will encourage the ICDs to

provide a higher data proceeding rate, which helps to reduce the overall computational latency;

however, this increase leads to a decrease in the revenue of the CSP. Therefore, given the unit

price pu from the end-user, the CSP needs to determine an optimal commission rate r with the

goal of maximizing its utility.

5.4 Game Model Analysis

We model the interactions between the CSP (leader) and the ICDs (followers) as the Stackel-

berg game which contains two stages. In each stage, the players determine the strategies to

maximize their utilities.

• Stage I: Players: CSP (leader); Strategy: commission rate r, task partition {wi|i∈I}; Utili-

ty: UCSP(r, {wi|i∈I}) given in (5.1).

• Stage II: Players: ICDs (followers); Strategy: CPU-cycle frequency fi; Utility: UICDi(fi)

given in (5.3).

Our goal is to determine SPNE of the Stackelberg game, where neither the CSP or the

ICDs have incentives to deviate unilaterally. We will use backward induction to obtain the

corresponding SPNE.

5.4.1 Stage II: Optimal Strategy of ICDs

In Stage II, following the leader’s strategy, each ICD can find out the optimal CPU-cycle fre-

quency f opt
i in order to maximize its utility.

Theorem 5.4.1 Given the workload wi and the unit price pi, the optimal CPU-cycle frequency

86 Chapter 5. Computational Latency Pricing-based Resource Scheduling

f opt
i can be expressed as

f opt
i = min{max{

wi

tmax , f ∗i }, f max
i , f Emax

i }, (5.7)

where wi/tmax denotes the computational latency constraint. f ∗i is the optimal value to maxi-

mize UICDi , i.e.,

f ∗i =
n+2

√
nr(pmax − pmin)wi

n

2pe(tmax)nki
. (5.8)

f max
i and f Emax

i are the limitations of the ICDi’s computational capacity from the perspective of

the frequency and the power consumption, respectively. f Emax
i can be calculated by

f Emax
i =

√
Emax

i

kiwi
, (5.9)

where Emax
i indicates the maximum CPU power consumption afforded by ICDi.

Proof We substitute (5.5), (5.6) into (5.3); thus, the utility of ICDi can be expressed as

UICDi(fi) =


rpmaxwi − r

pmax − pmin

(tmax)n wn+1
i f −n

i − pekiwi f 2
i

wi

fi
∈ (0, tmax]

0
wi

fi
∈ (tmax,∞)

. (5.10)

Since UICDi equals to 0 when fi < wi/tmax , wi/tmax is the lower bound of f opt
i . In the interval

of [wi/tmax ,∞], UICDi is a continuous quadratic function of fi, and the second derivative of

UICDi with respect to fi is ∂2UICDi
∂ f 2

i
= −rn(n + 1)(pmax − pmin)wn+1

i

/
(tmax)n f n+2

i − 2pekiwi. As
∂2UICDi
∂ f 2

i
< 0, UICDi is a concave function of fi. Consequently, we can obtain the optimal CPU-

cycle frequency of ICDi by setting the first derivative of UICDi with respect to fi equal to zero,

as expressed in (5.8).

In addition, f opt
i is constrained by the computational capacity, i.e., f opt

i ≤ min{ f max
i , f Emax

i },

where f Emax
i can be derived out by kiwi f 2

i ≤ Emax
i .

Thus, we can obtain the lower bound of the optimal CPU-cycle frequency as wi/tmax and

the upper bound as min{ f max
i , f Emax

i }. We need to consider four cases:

• Case 1: If the lower bound wi/tmax is larger than the upper bound min{ f max
i , f Emax

i }, there

5.4. GameModel Analysis 87

will be no optimal solution, and thus ICDi will not take part in the collaborative comput-

ing.

• Case 2: If f ∗i given in (5.8) is in the interval of the lower bound and the upper bound, f opt
i

should be set as f ∗i .

• Case 3: If f ∗i given in (5.8) is smaller than the lower bound wi/tmax , UICDi will be a

monotonically decreasing function of fi. That is because ∂UICDi
∂ fi

is negative when fi ∈

[wi/tmax ,min{ f max
i , f Emax

i }]. Thus, to maximize ICDi’s utility, f opt
i should be set as the

lower bound wi/tmax .

• Case 4: If f ∗i given in (5.8) is larger than the upper bound min{ f max
i , f Emax

i }, UICDi will

be a monotonically increasing function of fi. That is because ∂UICDi
∂ fi

is positive when

fi ∈ [wi/tmax ,min{ f max
i , f Emax

i }]. Thus, to maximize ICDi’s utility, f opt
i should be set as

the upper bound min{ f max
i , f Emax

i }.

Therefore, given the unit price pi and the task partition wi, we can obtain the optimal CPU-

cycle frequency f opt
i by (5.7). This finishes the proof of Theorem 5.4.1.

5.4.2 Stage I: Optimal Strategy of CSP

Now we analyze the CSP’s strategy in Stage I. The CSP, as a leader, determines the optimal

commission rate r and the optimal task partition set {wopt
i |i∈I} simultaneously to maximize its

utility.

5.4.2.1 Optimal Task Partition

First, we analyze the optimization problem of the task partition for the CSP.

Theorem 5.4.2 By considering the optimal strategies of the ICDs { f opt
i |i∈I}, the CSP can de-

termine the optimal task partition set {wopt
i |i∈I} as

wopt
i = W

f opt
i∑I

i f opt
i

,∀i ∈ I, (5.11)

88 Chapter 5. Computational Latency Pricing-based Resource Scheduling

and we can get the following representation of the optimal task partition set {winit
i |i∈I} as the

initial values when we do not consider the limitations of f opt
i , i.e.,

winit
i = W

√
k−1

i

K
,∀i ∈ I, (5.12)

where K =
∑I

i=1

√
k−1

i .

Proof We substitute (5.5), (5.6) into (5.1); thus, the utility of the CSP can be expressed as

UCSP({wi|i∈I}) = p(t)W − r
I∑

i=1

p(ti)wi, (5.13)

where t = max{ti|i∈I}.

Since the unit price p(t) is a decreasing function regarding to the computing response time

t, i.e., p(t) is not more than p(ti) as t = max{ti|i∈I} ≥ ti. Then, by assuming the commission rate

r is fixed, we can obtain the derivation as

p(t)W − r
I∑

i=1

p(ti)wi ≤ p(t)W − rp(t)
I∑

i=1

wi = (1 − r)p(t)W (5.14)

The condition for maximizing (5.14) exists only when the execution time is equal among

all ICDs, i.e.,

t =
wi

fi
=

w j

f j
,∀i, j ∈ I. (5.15)

In this way, the computation task W should be partitioned according to the ratio of f opt
i

as (5.11). An ICD with higher CPU-cycle frequency will be assigned with more workload to

reduce the overall computational latency, and thereby the CSP can receive a higher reward.

Substituting (5.8) into (5.15), we can get the expression as

wi
2ki = w j

2k j,∀i, j ∈ I. (5.16)

Since
∑I

i=1 wi = W, we can obtain the closed-form solution of the initial task partition set

{winit
i |i∈I} as expressed in (5.12). This finishes the proof of Theorem 5.4.2.

5.4. GameModel Analysis 89

5.4.2.2 Optimal Commission Rate

Next, we analyze the optimization problem of the commission rate for the CSP.

Theorem 5.4.3 Given the computation task T , the CSP can determine the optimal commission

rate ropt as

ropt = min{max{rmin, r∗}, 1}, (5.17)

where r∗ is the optimal value to maximize the CSP’s utility which satisfies

2
n + 2

r−
n

n+2 +
n

n + 2
r−

2n+2
n+2 = A, (5.18)

where A = pmax
/

n+2
√

(pmax − pmin)2[2peW2

nK2(tmax)2]n . rmin is the lower bound indicates the minimum

commission rate corresponding to the overall computational latency limitation, given by

rmin =
2peW2

nK2(pmax − pmin)(tmax)2 . (5.19)

Proof We substitute (5.8), (5.11) into (5.15); thus, the overall computational latency can be

derived out as

t =
n+2

√
2pe(tmax)nW2

nr(pmax − pmin)K2 . (5.20)

Since the overall computational latency t is not more than its upper bound tmax, we can obtain

the lower bound of the commission rate as (5.19).

Next, we substitute (5.20) into (5.14); thus, the utility of CSP can be expressed as

UCSP(r) =


W(1 − r)[pmax −

n+2

√
(pmax − pmin)2(

2peW2

nrK2(tmax)2)n] r ∈ [rmin, 1]

0 otherwise

. (5.21)

From (5.21), UCSP is a continuous quadratic function of r in the interval of [rmin, 1]. Since the

second derivative ∂2UCSP
∂r2 = −nW pmax(2r

−2n−2
n+2 + r

−3n−4
n+2)

/
A(n + 2)2 < 0, UCSP is a concave function

of r. Consequently, we can obtain the optimal commission rate r∗ by setting the first derivative

of UCSP with respect to r equal to zero, as expressed in (5.18). Then, we can get the optimal

90 Chapter 5. Computational Latency Pricing-based Resource Scheduling

unit price popt
i by substituting the commission rate ropt into (5.6). This finishes the proof of

Theorem 5.4.3.

The optimal task partition set {wopt
i |i∈I} and the optimal unit price popt

i are substituted back

to (5.7) to get the final optimal CPU-cycle frequency f opt
i at the end of the Stackelberg game

iteration.

To consider the limitation of CPU-cycle frequency, the optimal f opt
i should satisfy the con-

straints indicated in (5.4), i.e., fi cannot exceed each ICD’s limitation of computational ca-

pacity f max
i and the CPU power consumption Emax

i . In addition, fi should satisfy the latency

requirement, i.e., fi ≥ wi/tmax . Otherwise, it cannot obtain any benefit under the computational

latency-based pricing. If any ICD exceeds its CPU-cycle frequency limitation, we cannot sub-

stitute (5.8) into (5.15) and get the closed-form solution (5.16) directly. To tackle this problem,

we design a near-optimal algorithm for task scheduling in the following subsection.

5.4.3 Near-optimal Algorithm

By considering the CPU-cycle frequency constraints in practical scenarios, we develop a near-

optimal algorithm for task scheduling in collaborative computing. Next, we provide the near-

optimal algorithm in detail.

Upon the arrival of the computation task T , i.e., the computation workload W and the

unit price pu that the end-user would like to pay for this computing task, the CSP, acting as

a single leader, can estimate the optimal commission rate ropt and the optimal unit price popt
i

by (5.17) and (5.6), respectively. Then, it obtains the initial task partition set {winit
i |i∈I} by

(5.12) for each ICD with the goal of maximizing its payoff. Based on the unit price pi and

the workload wi, the ICDs, acting as multiple followers, can calculate their corresponding

CPU-cycle frequency { f ∗i |i∈I} by (5.8) to achieve their maximum utilities. If any ICD reaches

its limitation as indicated in (5.7), f opt
i is set as the lower/upper bound, and then the optimal

task partition and the optimal CPU-cycle frequency can be recalculated by step 11 and step

12. To minimize the overall computational latency and maximize the utility of the CSP, the

computational latency difference between each ICD should be close to zero, i.e., no more

than ε. The iterations of (5.11) and (5.8) help the game solution converge to a near-optimal

5.5. Simulation Results 91

Algorithm 3 A near-optimal algorithm for task scheduling in collaborative computing
Input: W, pu, pe, {ki|i∈I}, { f max

i |i∈I}, {Emax
i |i∈I}, ε

Output: popt
i , {wopt

i |i∈I}, { f
opt
i |i∈I}

1: Initially, end-user sends the computing task to CSP, i.e., W and pu; each participant ICD
reports ki to CSP.

2: CSP set ropt by (5.17) and broadcast popt
i by (5.6) to ICDs.

3: CSP calculates {winit
i |i∈I} by (5.12), and each ICD gets f ∗i by (5.8).

4: repeat
5: if f ∗i <

wi
tmax then

6: f opt
i ←

wi
tmax

7: else if f ∗i > min{ f max
i , f Emax

i } then
8: f opt

i ← min{ f max
i , f Emax

i }

9: else
10: f opt

i ← f ∗i
11: calculate {wopt

i |i∈I} by (5.11)
12: calculate { f ∗i |i∈I} by (5.8)
13: until |wopt

i

/
f opt
i − wopt

j

/
f opt

j | ≤ ε,∀i, j ∈ I

equilibrium, which will be shown in Figure 5.10 in Section 5. Finally, all participants achieve

SPNE, where no one will alter its strategy if the strategies of the others remain unchanged.

5.5 Simulation Results

In this section, we present numerical results to evaluate the proposed collaborative computing

approach in MATLAB from different aspects, including the computational latency performance

and the utility of the CSP and the ICDs. We further compare our proposed algorithm with the

existing algorithms proposed in [83] and [84], respectively. Parameter settings are given first.

5.5.1 Parameter Settings

The simulation parameters are set as follows unless specified otherwise. In the simulation,

the CSP owns 20 ICDs that would like to offer idle computing resources for collaborative

computing. We assume that the energy unit price is set as pe = 0.039 $ [91] and the hardware-

related coefficient ki randomly distributed from 1 to 16. We simulate the overall workload W

varies from 50 Megacycles to 1,500 Megacycles, and the latency limitation tmax increases from

50ms to 100ms correspondingly. For ease of analysis, pmin is set as 0 $ and pmax is fixed as 2

92 Chapter 5. Computational Latency Pricing-based Resource Scheduling

$. The maximum value of CPU-cycle frequency and CPU power consumption of ICDs are set

as same value f max
i = 2.5 GHz[95].

5.5.2 Numerical Results

We first simulate the impact of the tendency to change n in Equation (5.5) on the overall com-

putational latency in Figure 5.4.

Figure 5.4: Overall computational latency versus tendency to change n.

When n is more than 1, the overall computational latency is generally less than the cases

of n < 1. That is because the end-user offers a larger unit price pu with the slow-fast change

(n > 1) than the fast-slow change (n < 1), as shown in Figure 5.2. Thus, the end-user can

choose the proper tendency of change to balance its cost and latency requirement. Furthermore,

by comparing different workload curves in Figure 5.4, we can observe that the computational

time decreases mainly as n increases from 0 to 1; however, it varies slightly as n increases from

1 to larger values. In other words, we can gain a good latency performance when the tendency

to change is equal to 1, i.e., the linear relationship between the unit price and the computational

latency. Hence, we will set n = 1 in the following performance simulations of the CSP and the

ICDs.

In Figure 5.5(a), we plot the overall computational latency against the commission rate for

5.5. Simulation Results 93

(a)

(b)

Figure 5.5: Overall latency and utility of CSP versus commission rate r.

94 Chapter 5. Computational Latency Pricing-based Resource Scheduling

the various workload. The general tendency is the larger the commission rate is, the less the

computational latency will be. It implies that the higher unit price paid by the CSP to the ICDs

can achieve better latency performance. Figure 5.5(b) illustrates how to choose the optimal

commission rate under the different workload. We can see that the utility of the CSP is a

concave function versus the commission rate. As shown in Figure 5.5(a), a higher commission

rate leads to lower computational latency, and thus the CSP gains higher payoff from the end-

user; however, a higher commission rate also increases its cost paid to the ICDs. Therefore, the

CSP should choose the optimal commission rate to maximize its payoff.

As shown in Figure 5.6, we compare the overall execution latency and the utility of the CSP

of our proposed approach with the three different task partition mechanisms under various

workload, i.e., (a) MEC offloading: the tasks are executed on a powerful MEC server as a

whole; (b) equal partition ICD offloading: partitioning tasks equally by ICD offloading. i.e.,

W/K ; (c) random partition ICD offloading: partitioning tasks randomly by ICD offloading.

Here, the CPU-cycle frequency of the MEC server is set as 25 GHz. When the total amount of

workload W arises, as shown in subgraph (a), the response time represents an increasing trend

for all cases. Compared with the other two ICD offloading mechanisms, our proposed approach

has a notable improvement, where the latency decreases to that of the half of equal task partition

and that of one-third of random task partition. When the workload is less than 750 Megacycles,

offloading to MEC can obtain lower computational latency. Nevertheless, the end-user can get

better latency performance when the workload increases to 750 Megacycles or above, and it

achieves by 13.5 percent improvement when the workload is 1,500 Megacycles. Thus, it is

recommended to offload a vast amount of computation-intensive and latency-sensitive tasks by

our proposed approach. From subgraph (b), we can obtain that the CSP’s utility of our proposed

approach is consistently the maximum compared with that of others, which is improved by 41.5

percent for the CSP compared with MEC offloading.

Figure 5.7 illustrates the latency and the utility of a certain ICD by comparing our pro-

posed approach with the fixed CPU-cycle frequency mechanism. As shown in subgraph (a),

the optimal CPU-cycle frequency mechanism can get better performance when the computing

workload exceeds 75 Megacycles, and the latency decreases by 17.4 percent when the work-

load is 135 Megacycle. While as shown in subgraph (b), the utility of the ICD of our proposed

5.5. Simulation Results 95

(a)

(b)

Figure 5.6: Overall latency and utility of CSP versus workload W.

96 Chapter 5. Computational Latency Pricing-based Resource Scheduling

(a)

(b)

Figure 5.7: Latency and Utility of ICDi versus workload W.

5.5. Simulation Results 97

approach is slightly less than the fixed approach when the overall computing workload is lower

than 600 Megacycles. When the workload rises from 600 Megacycles, this utility is signifi-

cantly superior to the fix approach, and it can be improved by 27.9 percent. This is because the

optimal f opt
i comprehensively considers the tradeoff between latency and power consumption.

Furthermore, we compare the performance of the proposed computation sharing algorithm

in Figure 5.8 with two algorithms in terms of the computing latency and all participants’ util-

ities: Algorithm 1 [83]: fixed CPU-cycle frequency, and Algorithm 2 [84]: elastic CPU-cycle

frequency. Both of these two algorithms do not consider the QoE in pricing. The computing

latency is defined as the maximum value of each ICD’s data processing time, i.e., max{qk/ fk}.

Motivated by the latency-based pricing, we can find that our proposed algorithm can signif-

icantly reduce the computing latency with the increasing of the computational workload and

achieves by 40.4 and 36.1 percent improvement compared with Algorithm 1 and Algorithm

2, respectively. This is because Algorithm 1 adopts the fixed CPU-cycle frequency, and the

computational latency grows linearly with the increase of the computing workload. Without

a latency-based pricing incentive, Algorithm 2 adjusts its CPU-cycle frequency to a minimum

value satisfying the latency requirement, which minimizes the energy consumption but leads

to high processing time. Next, we compare the proposed computation sharing algorithm with

two algorithms in terms of the utilities of the CSP (in subgraph (b)) and the ICDs (in subgraph

(c)). We can find that all participants obtain the maximum profit in collaborative computing

by our proposed algorithm, especially for the computational-intensive tasks. Inspired by our

proposed latency-based pricing, the ICDs are willing to improve its processing rate, which not

only enhances the overall computational latency performance but also achieves better benefits

for all participants.

By considering the limitation of fi, we simulate the convergence iterations with our pro-

posed near-optimal algorithm in Figure 5.9 and Figure 5.10. The upper limit of time difference

ε is set as 0.0001 ms. From Figure 5.9, the response time converges to a value larger than that

when the CPU-cycle frequency of each ICD is not limited. That is due to the reduction of the

whole computational capacity brought by the limitation of fi. Figure 5.10 further reveals how

the CSP and the ICDs achieve SPNE by our proposed near-optimal algorithm. In each itera-

tion, the CSP updates its computing task partition based on the previous feedback of the ICDs,

98 Chapter 5. Computational Latency Pricing-based Resource Scheduling

250 500 750 1000 1250 1500

Overall workload (Megacycles)

0

20

40

60

80

100

120

O
ve

ra
ll

co
m

pu
ta

tio
na

l l
at

en
cy

 (
m

s)

Our proposed algorithm
Algorithm 1
Algorithm 2

(a)

250 500 750 1000 1250 1500

Overall workload (Megacycles)

0

100

200

300

400

500

600

700

U
til

ity
 o

f C
S

P
 (

$)

Our proposed algorithm
Algorithm 1
Algorithm 2

(b)

250 500 750 1000 1250 1500

Overall workload (Megacycles)

0

2

4

6

8

10

12

A
ve

ra
ge

 u
til

ity
 o

f I
C

D
s

($
)

Our proposed algorithm
Algorithm 1
Algorithm 2

(c)

Figure 5.8: Algorithm comparison versus workload W.

5.5. Simulation Results 99

Figure 5.9: Overall computational latency convergence iterations.

Figure 5.10: Utilities of CSP and ICDs convergence iterations.

100 Chapter 5. Computational Latency Pricing-based Resource Scheduling

and each ICD adjusts its best strategy accordingly until the computational latency of each ICD

converges to an equal value. Then, no one will alter its strategy if the strategies of the others

remain unchanged.

5.6 Chapter Summary

This chapter proposed a computational latency-based resource scheduling mechanism to en-

able collaborative computing amongst IoT devices from the perspective of QoE performance.

Specifically, we modeled a computational latency-based pricing scheme and utilized the S-

tackelberg game to analyze the interactions between the CSP and the ICDs, in which the CSP

first determined the optimal unit price popt
i and the optimal task partition strategy {wopt

i |i∈I} ac-

cording to the computation tasks from the end-user; then, the ICDs derived out the optimal

CPU-cycle frequency f opt
i correspondingly. According to the simulation results, the overall

computational latency was significantly decreased for the computational-intensive tasks com-

pared with the existing schemes. All participants obtained the maximum profit by our proposed

game-theoretic task partition mechanism.

Chapter 6

Joint Communication and Computation

Resource Scheduling for QoE

Enhancement

According to resource scheduling methods proposed in the previous three chapters, IoT devices

can realize horizontal collaboration through effective incentive mechanisms. This chapter will

further explore the vertical collaborative computing between the edge level and the device

layer.

As the core of three-tier edge-assisted IoT systems, edge servers have more powerful com-

puting capabilities than the device layer. Utilizing the resources in the edge layer can effec-

tively enhance IoT devices’ QoE performance. However, due to the concurrent dynamics of

application requirements, available resources, and network conditions, meeting the increasing-

ly diverse requirements of IoT applications remains an ultimate challenge to effective resource

scheduling in this vertical collaboration. Existing studies have mainly explored the resource

scheduling problem with a specified QoS as an optimization objective, which may lose effec-

tiveness when dealing with the diverse requirements across heterogeneous IoT devices. To-

wards this end, we focus on enhancing IoT device-specific QoE performance through jointly

optimizing communication and computation resources in this chapter. First, a three-layer QoE

assessment model is constructed to describe the general relationship between resource provi-

sioning and device-specific QoE performance. Then, to maximize the overall QoE performance

101

102Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

amongst IoT devices, a two-stage resource scheduling scheme is proposed to realize simulta-

neous optimization of IoT devices and the edge system. Specifically, in stage I, a distributed

resource scheduling algorithm with low complexity is designed for each IoT device to optimize

the local computing rate by considering its resource-constrained nature; in stage II, a PPO-

based online approach is proposed on the edge system to schedule communication bandwidth

and optimize computational rate by interacting with multiply IoT devices without prior knowl-

edge of their specific QoE assessment models. Finally, extensive experiments demonstrate that

our proposal outperforms the existing works from the perspective of QoE performance.

6.1 Introduction

With the rapid development of wireless communication technologies, further assisted by edge

computing, the IoT applications have experienced phenomenal growth throughout the last

decades, ranging from health care to smart cities and industrial automation [73]. Within these

edge-assisted IoT systems, an IoT device can take advantage of high bandwidth in local com-

munication networks and nearby resource-rich edge servers to offload computation, thus en-

hancing the performance of IoT applications deployed on them [66, 96].

However, with the ever-increasing diversity of applications, different IoT devices within the

same edge network inevitably incur specific resource demands to achieve their diverse applica-

tion requirements, leading to the ultimate challenge of resource scheduling in the edge-assisted

IoT system. The core challenge lies in how to optimize communication and computation

resources collaboratively in such a dynamic system for device-specific task handling, which

could be affected by many factors, specifically including diverse requirements of IoT applica-

tions, dynamics of local network conditions, and edge server resource utilization [9]. Given

these aggregated impacts, effective joint communication and computation resource scheduling

to satisfy device-specific demands has become the key indicator of edge-assisted IoT systems.

Existing studies on resource scheduling in edge computing have mainly utilized a specified

QoS parameter as optimization objective, such as energy efficiency [97, 98], service latency

minimization [99, 100], cost efficiency [101], revenue maximization [102], etc. As an objec-

tive measure, QoS is an effective indicator for evaluating the overall network performance.

6.1. Introduction 103

However, with increasingly diverse requirements from IoT applications, the acceptability of

the same QoS may be significantly distinct across heterogeneous IoT devices, which direct-

ly reduces the effectiveness of QoS-based approaches when dealing with IoT device-specific

demands.

Consequently, the objective of resource scheduling in edge networks has gradually changed

to improve QoE rather than QoS. As defined by the International Telecommunication Union,

QoE generally represents “The degree of delight or annoyance of the user of an application

or service” [21]. That said, QoE is not determined by network metrics alone but also by

the acceptability of IoT devices to these metrics, which makes it an effective indicator for

evaluating performance from the perspective of IoT devices. Therefore, establishing a suitable

QoE assessment model becomes a key point for resource scheduling in IoT systems. Currently,

several QoE-based resource scheduling have been proposed given the particular application

scenarios, which assess the IoT devices’ performance through relating QoS to QoE by the pre-

defined functions, e.g., exponential function [103], linear function [104, 105, 106], or other

scenario-tailored functions [107, 108]. However, with more diverse applications enabled by

edge-assisted IoT systems, new QoE assessment models that can manifest greater applicability

in general cases need further extensive investigations.

Furthermore, realizing effective resource scheduling in edge-assisted IoT systems is not

trivial. It requires joint optimization of communication and computation resources dynamical-

ly available at local IoT devices and edge systems, which is a complicated problem affected

by many factors. Moreover, obtaining prior knowledge of the system dynamics, e.g., local

network conditions or application characteristics, is often difficult in practice. To solve such

a problem, extensive studies have been conducted from the perspective of intelligent opera-

tions, mainly through DRL [109, 110]. Different from conventional optimization approaches,

the DRL-based methods can learn the best application task offloading policy and optimize the

resource allocation strategies in a trial-and-error manner by interacting with the unknown en-

vironment to achieve a long-term optimization [111, 112, 113, 114, 115, 116]. Although the

DRL-based solutions have great potential in dealing with resource scheduling problems, the

involved learning requires high computational resources, and adopting learning on IoT devices

is impractical due to their resource-constrained nature. On the other hand, implementing the

104Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

learning purely on the edge system may lose the optimal behavior of IoT devices. Conse-

quently, the architecture of DRL-based resource scheduling should be carefully designed in

edge-assisted IoT systems. Furthermore, instability and slow convergence of the DRL-based

algorithms is another critical issue to be addressed during the resource scheduling process.

Motivated by these issues mentioned above, we propose a two-stage resource scheduling

scheme to enhance IoT device-specific QoE performance through jointly optimizing communi-

cation and computation resources in edge-assisted IoT systems. Specifically, we first construct

a three-layer QoE assessment model describing the general relationship between resource pro-

visioning and IoT devices’ performance, which can help resource schedulers better understand

the fulfillment of different IoT devices’ interests. Based on the proposed QoE assessment mod-

el, the device-specific QoE enhancement resource scheduling problem is designed as the opti-

mization objective in this chapter. Then, to maximize the overall QoE performance amongst

IoT devices, a two-stage resource scheduling scheme is proposed to realize simultaneous opti-

mization of IoT devices and the edge system. In stage I, considering the resource-constrained

nature of IoT devices, we develop a distributed resource scheduling algorithm with low com-

plexity, where each IoT device can obtain its optimal local computing processing rate based

on its own QoE requirement. If the IoT device cannot achieve its requirement even with the

optimal strategy, the application will be offloaded to the edge system for remote processing

and further turn to stage II. In stage II, without prior knowledge of QoE assessment models

from different IoT devices, a DRL-based online approach is designed on the edge system to

jointly optimize the communication and computation resources in a long-term way, where the

edge system continuously optimizes its bandwidth allocation and computing processing rate

by interacting with multiply IoT devices until the best policy is found. The proposed online

approach is based on the PPO algorithm [117], which can help achieve fast convergence and

improve learning stability in stage II. The main contributions of this chapter are summarized

as follows:

• General model for QoE assessment: A three-layer QoE assessment model is construct-

ed to describe the general relationship between resource provisioning and IoT device-

specific QoE performance, which can help resource schedulers better understand the

fulfillment of different IoT devices’ interests.

6.2. RelatedWork 105

• Two-stage resource scheduling scheme: To maximize the overall QoE performance a-

mongst IoT devices, a two-stage resource scheduling scheme is proposed to realize si-

multaneous optimization of IoT devices and the edge system. Specifically, in stage I,

considering the resource-constrained nature, a distributed resource scheduling algorithm

with low complexity is proposed for each IoT device to optimize its local computing pro-

cessing rate; in stage II, a PPO-based online resource scheduling approach is designed

on the edge system to optimize its bandwidth allocation and computing processing rate

by interacting with multiply IoT devices without prior knowledge of their specific QoE

assessment models.

• Simulation result: Extensive experiments are conducted to evaluate the performance of

our proposal. The results show that our proposed two-stage resource scheduling scheme

outperforms the existing works from the perspective of QoE performance.

The rest of this chapter is organized as follows. Section 6.2 provides a review of relat-

ed works. In Section 6.3, we describe the system model, especially for the QoE assessment

model. Section 6.4 analyzes the device-specific QoE enhancement resource scheduling prob-

lem and proposes a two-stage resource scheduling scheme. Finally, we evaluate our proposal’s

performance in Section 6.5 and summarize the chapter in Section 6.6.

6.2 Related Work

With the rapid proliferation of IoT applications, effective resource scheduling in the edge com-

puting environment has gradually been a widely focused research problem.

So far, existing works have investigated the edge resource scheduling problem with various

objectives. For example, to minimize the energy consumption, the authors in [97] and [98] op-

timized the computation and communication resources allocation by leveraging the Lagrange

duality method and stochastic optimization methods, respectively. Wang et al. [99] jointly

optimized the offloading decision and the computation resource allocation to minimize the av-

erage task duration, and Ma et al. [100] investigated cooperative service caching and workload

scheduling in mobile edge computing, aiming at minimizing the service time. [101] explored

106Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

the cost-efficient method to match the IoT services to appropriate fog nodes while guaranteeing

minimal delay for IoT services and efficient resource utilization on fog nodes. To maximize all

participants’ utilities, an incomplete information-based two-tier game algorithm was proposed

in [102] for edge resource allocation. These works explored the resource scheduling problem

with a specified QoS optimization objective, such as energy efficiency [97, 98], service latency

minimization [99, 100], cost efficient [101], and revenue maximization [102]. However, QoS

is a metric to evaluate the overall network performance instead of IoT device-specific perfor-

mance, which causes the QoS-based approaches may lose their effectiveness when dealing with

diverse IoT device-specific demands [118].

Therefore, improving QoE in edge computing instead of QoS attracts widespread attention.

Being perceived as subjective, QoE is not determined by network metrics alone but also by the

acceptability of IoT devices to these metrics, which helps service providers understand how to

improve their services from the perspective of IoT devices [119, 120]. Currently, several types

of research have been conducted on QoE-based resource scheduling. For example, considering

the heterogeneous impact of delays on users’ QoE, a QoE-aware service-enhancement method

from an orthometric perspective was designed in [103]. The authors in [104] proposed a new

QoE model to study computation offloading, which is influenced by service latency, energy

consumption, and task success rate. An edge-assisted crowd cast framework was explored for

the sheer amount of viewing data towards intelligent decisions for personalized QoE demands

[105]. He et al. [106] proposed a novel QoE model restricted by the energy consumption in task

offloading services of edge-enabled Internet of vehicles. The authors in [107] studied the edge

resource allocation problem across multiple service requests with the objective of overall QoE

maximization. The solution that performs multi-client joint QoE optimization for adaptive

video streaming during bottleneck bandwidth sharing was presented in [108]. However, the

existing studies mainly evaluated the QoE performance based on a pre-defined function, e.g.,

logarithmic, exponential, and other scenario-tailored functions. With more diverse applications

enabled by edge-assisted IoT systems, new QoE assessment models that can manifest greater

applicability in general cases need further extensive investigations.

Furthermore, realizing effective resource scheduling in edge-assisted IoT systems is not

trivial. It needs to collaboratively optimize communication and computation resources from

6.2. RelatedWork 107

IoT devices and the edge system in a dynamic environment without prior knowledge. To solve

such a problem, extensive studies have been conducted based on DRL-based approaches, which

are classified into two categories: value-based methods and policy-based methods [34].

Value-based DRL methods adopt DNN to approximate the value function by minimizing

the difference between the value network and the real value function. In [111], authors adopted

the Q-learning based method and Deep Q-learning method to obtain the optimal policies of

computation offloading and resource allocation. A deep Q-learning based online offloading

algorithm was designed in [112] to adapt task offloading decisions and wireless resource allo-

cations optimally. The authors in [113] proposed an improved deep Q-network algorithm to

minimize the long-term weighted sum of the average completion time and the average num-

ber of requested resources. Unlike value-based DRL methods, policy-based DRL methods use

DNNs to approximate the parameterized policy directly by the policy gradient. Thus, policy-

based DRL methods usually have faster convergence and are more suitable for the large-scale

action space, but they always suffer from convergence stability. Zhan et al. [114] designed a

decentralized algorithm for computation offloading based actor-critic framework. The imple-

ment of [115] and [116] were based on PPO algorithm. However, these works still explored the

resource scheduling problem with a specified QoS optimization objective. To enhance QoE,

[104] and [106] proposed improved algorithms based on DDPG algorithm for optimal local

strategies learning. [105] provided a novel scheduling framework that considered viewers’ per-

sonalized QoE through an advantage actor-critic (A3C) algorithm from the edge side. Although

the above solutions have demonstrated great potential in dealing with resource scheduling prob-

lems, learning itself requires high computational resources, and the architecture implemented

in edge-assisted IoT systems should be carefully designed by considering the resource charac-

teristics. Besides, methods instability and slow convergence brought by DRL-based algorithms

is another essential issue to be addressed in the resource scheduling process.

Motivated by these issues mentioned above, we propose a two-stage resource scheduling

scheme to enhance IoT device-specific QoE performance through jointly optimizing commu-

nication and computation resources in edge-assisted IoT systems. The detailed system model

and corresponding analysis are introduced in the following sections.

108Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

6.3 System Model and Problem Formulation

This chapter considers a typical application scenario of an edge-assisted IoT system, as shown

in Figure 6.1. The edge system consists of one access point (AP) integrated with a multi-access

edge Computing (MEC) server and severs N IoT devices denoted as N , {1, 2, . . . ,N}. Here,

the IoT devices with limited resources act as sources of the computation tasks with different

QoE requirements. At the same time, the edge system is characterized as the service provider

by a higher computation capability and has access to virtually unlimited energy. Binary offload-

ing is assumed here so that the applications generated by IoT devices can be either processed

locally or offloaded to the MEC server through the AP as one single task. When receiving the

applications from multiply IoT devices, the edge system can process the application by itself

or offload them to the remote cloud server with sufficient computing resources. In this chapter,

our analysis concentrates on the interactions between the edge system and multiple served IoT

devices.

Device layer Edge layer Cloud layer

LPU

DTU

local

offloadingMobile

Home

Transport

Local task queue

Local task queue

Local task queue

.

.

.

AP

MEC

server

Edge task queue

Edge system

Cloud Data Center

LPU

DTU

local

offloading

LPU

DTU

local

offloading

Figure 6.1: Illustration of an edge-assisted IoT system.

The computing architecture of an IoT device consists of a task queue, a local processing

6.3. SystemModel and Problem Formulation 109

unit (LPU), and a data transfer unit (DTU). We assume that applications generated by the same

IoT device have identical properties, while applications from various IoT devices have differ-

ent characteristics. Each IoT device schedules the computation resource based on its available

information, including the task queue state, the local computing state, and the QoE require-

ment, accordingly making the offloading strategy. An application assigned for local computing

is processed on the LPU with the optimal processing rate. Otherwise, the application would

be offloaded to the edge system for remotely proceeding via the DTU. Afterward, the edge

system receives the requests from different IoT devices, executes the task queue by available

communication resources from the AP and computation resources from the MEC server, and

finally sends the computation result back to IoT devices.

The whole system operates in a slotted fashion: the smallest time interval for resource

scheduling is deemed a unit time slot. At the beginning of each time slot, the resource sched-

ulers, including IoT devices and the edge system, monitor their states and then schedule com-

putation and/or communication resources during the entire time slot. The time when the sched-

ulers start to process their task queue is taken as the initial time slot 0, and T indicates the period

the schedulers consider for performance evaluation.

The mathematical models, including the task model, the QoE assessment model, and the

computing model, are described in detail as follows.

6.3.1 Task Model

We first model the IoT device’s workload as a Poisson process with rate λn, indicating the ex-

pected number of applications arriving in the IoT device’s task queue in each time slot. During

a time period T , the IoT device n has a computation task queue Cn = {Cn,1, . . . ,Cn,i, . . . ,Cn,In}

where E(In) = λnT . Each computation task is described as a 3-tuple Cn,i(ta
n,i,w

comm
n,i ,wcomp

n,i),

where ta
n,i is the task’s arrival time, wcomm

n,i and wcomp
n,i indicate the data amount (in byte) for trans-

mission and computation workload (in CPU cycle/s) to be processed, respectively. We consider

tasks without stringent execution priority, and they are sorted in the queue by their generated

time.

All tasks waiting in the edge task queue are generated by diverse IoT devices with different

110Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

QoE requirements. The matrix Qn denotes the constraint, the QoE function and the importance

of each QoE factor for the IoT device n as illustrated in Table 6.1. Each line stands for one

QoE factor, where Constraint column indicates the minimum or maximum threshold of a QoE

factor, QoE function reflects the relationship between the QoE factor to its QoE performance,

and ~αn = [αn,1, αn,2, . . . , αn,K] represents the importance of each QoE factor that satisfies 0 ≤

αn,k ≤ 1 and
∑K

k=1 αn,k = 1.

Table 6.1: Illustration of QoE requirement

QoE factor Constraint QoE function Importance
Latency T max

n QoET
n αT

n
Energy Emax

n QoEE
n αE

n
Reliability Rmin

n QoER
n αR

n
.

6.3.2 QoE Assessment Model

As introduced in Section I, QoE generally represents the overall acceptability of services sub-

jectively perceived by IoT devices, which can help resource schedulers understand what may

be wrong with their services and how to improve them. Therefore, a proper QoE assessment

model is exactly anticipated to better optimize the utilization of limited resources to improve

the overall IoT devices’ satisfaction.

In this section, a generic QoE assessment model is designed to better evaluate IoT devices’

satisfaction with resource scheduling in the edge-assisted IoT system, as Figure 6.2 shows.

This model consists of three layers, i.e., resource layer, QoE factor (QoS) layer, and QoE

layer. The objective mapping from resources ~re ∈ RM to the QoE factors ~sq ∈ RK can be given

by ~sq = S Q(~re), i.e.,



sq1 = S Q1(re1, re2, ..., reM)

sq2 = S Q2(re1, re2, ..., reM)

...

sqK = S QK(re1, re2, ..., reM)

, (6.1)

6.3. SystemModel and Problem Formulation 111

Resources QoE factors (objective) QoE (subjective)

CPU-cycle Frequency

Bandwidth

Edge-assisted IoT

computation

resources

communication

resources

…

Resource (CPU-cycle frequency)

Q
o

E
fa

ct
o

r
(E

n
er

g
y
)

Resource (CPU-cycle frequency)

Q
o

E
fa

ct
o

r
(L

at
en

cy
)

QoE factor

QoE factor

Q
o

E
p

er
fo

rm
an

ce
Q

o
E

p
er

fo
rm

an
ce

Q
o

E
p

er
fo

rm
an

ce

QoE factor

Figure 6.2: Illustration of the three-layer QoE assessment model.

where the resources ~r can refer to communication resources as bandwidth, computation re-

sources as CPU-cycle frequency, etc. The QoE factors ~sq indicate computation latency, energy

consumption, reliability, etc. The functions S Q : RM → RK describe the relationship between

resources and QoE factors. Furthermore, since QoE is the overall acceptability of services by

IoT devices, we adopt scalarization to map QoE factors ~sq ∈ RK to a scalar value qoe, which

can be expressed as

qoe = [α1, α2, ..., αK]



QoE1(sq1)

QoE2(sq2)

...

QoEK(sqK)


, (6.2)

where αk indicates the importance of the QoE factor k. In general, there are two types of QoE

factors, i.e., proportional factor (QoE-PF) and inversely proportional factor (QoE-IPF). For

QoE-PF, e.g., the reliability, a higher value generally improves the QoE performance. From

the lower bound point to the upper bound point, the QoE performance keeps a steady increase

along with the factor’s improvement, and remains virtually unchanged close to the highest

112Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

QoE performance when the factor reaches the upper bound point. Conversely, for QoE-IPF,

e.g., the latency, the QoE performance decreases gradually when the factor grows from the

lower bound point to the upper bound point. To match with our aforementioned QoE and

QoE-factor correlation, we assume that the QoE function is continuously derivable in its scope

QoEk ∈ [0, 1] and satisfies the variation trend as


dQoEk

dsqk
> 0 QoE − PF

dQoEk

dsqk
< 0 QoE − IPF

. (6.3)

This assumption has no prior restriction on QoE function types, and can also be applied to the

above mentioned QoE models in [103, 104, 105, 106, 107].

In this chapter, we consider the scenario with 2-dimensional QoE factors, i.e., latency and

energy, and therefore these two factors will be introduced in the following computing models.

Note that the proposed model and analysis can be extended to 3-dimensional or more QoE

factors through scalarization directly.

6.3.3 Local Computing Model

When the computation task Cn,i is performed locally, we assume the single core in each IoT

device and the processing capability (i.e., the amount of CPU frequency in cycle/s) assigned to

process application Cn,i is fn,i. Then, the total local computing latency T comp,l
n,i consists of two

parts, i.e., the wait time tw,l
n,i and the computing time tcomp,l

n,i . The wait time tw,l
n,i in the task queue

of IoT device n can be calculated as max{0, tf,l
n,i−1 − ta

n,i}, where tf,l
n,i−1 indicates the finish time of

previous task. The computing time tcomp,l
n,i equals to wcomp

n,i

/
fn,i . Then, the total local latency can

be represented as

T comp,l
n,i = max{0, tf,l

n,i−1 − ta
n,i} +

wcomp
n,i

fn,i
. (6.4)

According to the circuit theory [63], the total local energy consumption Ecomp,l
n,i for local

computing can be formulated as

Ecomp,l
n,i = knwcomp

n,i f 2
n,i, (6.5)

6.3. SystemModel and Problem Formulation 113

where kn is a coefficient reflecting the relationship between computation capability and energy

consumption at the IoT device side.

6.3.4 Edge Computing Model

When the IoT device n cannot process the application Cn,i with its QoE requirement, Cn,i will be

added to the task queue in the edge system for further proceeding. In general, the computation

results of such tasks have sufficiently smaller data sizes compared with those of the input, and

thus the size and transmission time of the output data of all tasks are considered to be negligible

throughout this chapter. Then, the processing in the edge system mainly consists of two parts:

1) communication part that refers to receiving the computing task by the AP through wireless

communication links, and 2) computation part that refers to processing the computing task by

the MEC server.

For the communication part, the data transmission rate is denoted as trn,i, which can be char-

acterized by various wireless transmission models based on Shannon’s formula. In this chapter,

when data is offloaded from the IoT device to the AP over the assigned wireless bandwidth Bn,i,

the transmission rate is expressed as trn,i = Bn,i log2(1 +
pn,ihn

w0
), where pn,i is the transmission

power of the IoT device, and w0 denotes the white Gaussian noise power. The channel gain hn

is generally affected by the path loss inverse to the distance from the IoT device to the AP.

Accordingly, the communication latency T comm,e
n,i for uplink transmission can be given by

T comm,e
n,i = max{0, tf,comm

n,i−1 − ta,comm
n,i } +

wcomm
n,i

trn,i
, (6.6)

where the first part of (6.6) is the wait time tw,comm
n,i in the transmission queue of AP. The time

tf,comm
n,i−1 and ta,comm

n,i indicate the finish time of previous task and the arrival time of current task,

respectively. The second part is the communication time tcomm,e
n,i . Furthermore, the total energy

consumption for communication Ecomm,e
n,i can be defined as

Ecomm,e
n,i = pn,i

wcomm
n,i

trn,i
. (6.7)

After the application Cn,i is offloaded to the AP, the MEC server will process the task for

114Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

the computation part. We assume there are multiply cores equipped in the MEC server. The

processing capability assigned to process application Cn,i in L-core of MEC server is Fn,i. Then,

the computation latency for processing Cn,i in the MEC server T comp,e
n,i can be represented as

T comp,e
n,i = max{0, tf,comp

n,i−1 − ta,comp
n,i } +

wcomp
n,i

Fn,i
. (6.8)

Similar to the local computing, the first part of (6.8) is the wait time tw,comp
n,i in the processing

queue of MEC server, and the second part is the computing time tcomp,e
n,i . The corresponding

energy Ecomp,e
n,i consumed in MEC server side can be given by

Ecomp,e
n,i = Knwcomp

n,i F2
n,i, (6.9)

where Kn is a coefficient reflecting the relationship between computation capability and energy

consumption at the MEC server side.

In summary, the total latency in MEC computing model consists of the communication

latency T comm,e
n,i and computation latency T comp,e

n,i . The energy consumption Ecomm,e
n,i and Ecomp,e

n,i

occur in the IoT device and the MEC server should be considered in each side, respectively.

6.3.5 Problem Formulation

In this chapter, our optimization objective is to maximize the overall QoE performance across

heterogeneous IoT devices through jointly scheduling communication and computation re-

sources from IoT devices and the edge system.

Based on the above system model, the QoE performance of application Cn,i can be repre-

sented as

qoen,i =


qoel

n,i qoel
n,i > qoethreshold

n

qoee
n,i otherwise

, (6.10)

where qoethreshold
n indicates the QoE requirement of IoT device n for application Cn,i. If local

computing can satisfy this requirement, the IoT device will conduct local computing; oth-

erwise, the application will be offloaded to edge system for further processing. We take 2-

dimensional QoE factors in this chapter, and thus the QoE importance can be indicated by one

6.3. SystemModel and Problem Formulation 115

parameter αn. Then, the QoE gained by local computing is expressed as

qoel
n,i = αnQoET (T comp,l

n,i) + (1 − αn)QoEE(Ecomp,l
n,i)

= αnQoET (tw,l
n,i +

wcomp
n,i

fn,i
) + (1 − αn)QoEE(knwcomp

n,i f 2
n,i)
, (6.11)

where QoET and QoEE are monotonically decreasing regarding to QoE factors T comp,l
n,i and

Ecomp,l
n,i , respectively. Both of T comp,l

n,i and Ecomp,l
n,i are affected by IoT device’s computation re-

source, i.e., CPU frequency fn,i. When the application is offloaded to the edge system for

further processing, its QoE performance can be formulated as

qoee
n,i = αnQoET (T comm,e

n,i + T comp,e
n,i) + (1 − αn)QoEE(Ecomm,e

n,i)

= αnQoET (tw
n,i +

wcomm
n,i

Bn,i log2(1 +
pn,i |h|2

w0
)

+
wcomp

n,i

Fn,i
)

+ (1 − αn)QoEE(
pn,iwcomm

n,i

Bn,i log2(1 +
pn,i |h|2

w0
)
)

, (6.12)

where the wait time tw
n,i includes the communication wait time tw,comm

n,i and computation wait

time tw,comp
n,i . Since QoE is used to evaluate the IoT device’s satisfaction, we only consider the

energy consumption Ecomm,e
n,i on IoT device’s side. Both of T comm,e

n,i and Ecomm,e
n,i are affected by

edge system’s communication resource, i.e., bandwidth Bn,i, and T comp,e
n,i is also related to edge

system’s computation resource, i.e., CPU frequency Fn,i.

Consequently, the device-specific QoE enhancement resource scheduling (QoE-RS) prob-

lem is expressed as

P(1) : max
fn,i,Bn,i,Fn,i

N∑
n=1

I∑
i=1

qoen,i(Cn,i,Qn)

s.t.



0 ≤ fn,i ≤ f max
n

N∑
n=1

Bn,i ≤ Bmax

0 ≤ Fn,i ≤ Fmax

. (6.13)

Solving the QoE-RS problem requires optimizing the strategies of IoT devices and the edge

system simultaneously, which leads to several technical challenges. First, from the perspective

116Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

of the IoT device, it demands resource scheduling with low complexity due to its limited com-

putation resource. Then, the edge system is conceived as a bin with finite available computation

and communication resources, and our objective is to schedule these resources for the overal-

l QoE enhancement amongst different IoT devices. Considering the stochastic computation

tasks, the dynamic communication environment, and the unknown QoE assessment model, it

is hard for the edge system to solve resource scheduling problems with traditional optimization

solutions.

6.4 QoE-RS Optimization Solution

According to the above analysis, the solution to the QoE-RS problem (P1) is highly nontriv-

ial since it needs to optimize resource allocation variables fn,i, Bn,i, and Fn,i simultaneously

to achieve the overall QoE maximization. To solve this problem, we separate the QoE-RS

problem into two stages.

In the first stage, we aim to devise a local policy for each IoT device that generates an opti-

mal computation resource scheduling strategy fn,i based on QoE formulation and accordingly

determine the offloading policy. Then, each IoT device can optimize its strategy distributively,

and the QoE-RS problem of the first stage reduces to a convex problem (P2) as follows.

P(2) : max
fn,i

I∑
i=1

qoen,i(Cn,i,Qn)

s.t. 0 ≤ fn,i ≤ f max
n (6.14)

In the second stage, we interest in joint optimize communication resource Bn,i, and com-

putation resource Fn,i of the edge system based on the IoT devices’ tasks information, and the

subproblem (P3) can be given by

P(3) : max
Bn,i,Fn,i

N∑
n=1

I∑
i=1

qoen,i(Cn,i)

6.4. QoE-RS Optimization Solution 117

s.t.


N∑

n=1

Bn,i ≤ Bmax

0 ≤ Fn,i ≤ Fmax

. (6.15)

The major difficulty of P(3) lying in the edge’s QoE-RS problem is the uncertainty in the practi-

cal scenario, specifically including stochastic computation tasks, the dynamic communication

environment, and the unknown QoE assessment model. Traditional optimization algorithms

require iteratively adjusting the resource scheduling with static information, which is funda-

mentally infeasible for real-time optimization problems with uncertainty. To tackle such an is-

sue, we adopt the PPO algorithm, a popular DRL approach, to propose a novel online resource

scheduling algorithm that can achieve long-term optimization without prior information.

Mobile

Home

Transport

Local task queue

Local task queue

Local task queue

…

Edge system

Stage I: Optimal local strategy

task states Cn,i

resource states

(recomm , recomp)

Stage II: Optimal edge strategy

… …

…

Critic

… …

…

…

Actor
LPU

DTU

local

offloading

Truncated GAE

Actions (Bn,i, Fn,i)

AgentEnvironment

Reward rn,i

…

DTU
offloading

DTU
offloading

LPU
local

LPU
local

Figure 6.3: Illustration of the two-stage QoE-RS optimization.

Accordingly, problem (P1) can be decomposed into two subproblems, namely, IoT devices’

QoE-RS problem (P2) and edge’s QoE-RS problem (P3), which can be solved by our proposed

two-stage resource scheduling scheme as illustrated in Figure 6.3.

118Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

6.4.1 Stage I: IoT Devices’ QoE-RS Optimization

In this section, we present a distributed algorithm for optimally solving problem (P2) on IoT

devices.

Lemma 6.4.1 Given the task Cn,i including computing workload wcomp
n,i and its QoE require-

ment Qn, the lower bound of optimal CPU-cycle frequency is f low
n,i = wcomp

n,i

/
T max

n , and the

upper bound is f up
n,i = min{ f max

n,i , f Emax
n,i }, where f Emax

n,i =

√
Emax

n

/
knwcomp

n,i . The solution of optimal

CPU-cycle frequency exists only when f low
n,i <= f up

n,i .

Here, the lower bound f low
n,i is devised by the application latency constraint, i.e., wcomp

n,i

/
fn,i <=

T max
n . The upper bound f up

n,i is limited by the IoT device’s computational capacity from the

perspective of the CPU frequency as fn,i <= f max
n,i , and the power consumption as knwcomp

n,i f 2
n,i <=

Emax
n .

Theorem 6.4.2 According to Lemma 6.4.1, CPU frequency fn,i has its closed interval [f low
n,i , f up

n,i].

As definition in (6.4) and (6.5), T comp,l
n,i and Ecomp,l

n,i are continuous regarding to CPU frequency

fn,i on its closed interval. Furthermore, based on the definition of qoel in (6.11), the bounded

functions QoET and QoEE are continuous regarding to T comp,l
n,i and Ecomp,l

n,i , respectively. Then,

qoel
n,i is continuous regarding to CPU frequency fn,i. According to extreme value theorem, the

real-valued function qoel
n,i(fn,i) is continuous on the closed interval [f low

n,i , f up
n,i], and thus qoel

n,i

must attain a maximum at least once. That is, there must exist a optimal resource scheduling

strategy that CPU-cycle frequency f opt
n,i in [f low

n,i , f up
n,i] such that:

qoel
n,i(f opt

n,i) >= qoel
n,i(fn,i), ∀ fn,i ∈ [f low

n,i , f up
n,i]. (6.16)

Theorem 6.4.2 proves the existence of the optimal resource scheduling strategy, i.e., CPU-

cycle frequency f opt
n,i , to maximize the QoE performance of IoT devices. Below we will give

out the process to obtain this optimal strategy.

Theorem 6.4.3 When f low
n,i is no more than f up

n,i , the optimal CPU-cycle frequency f opt
n,i can be

6.4. QoE-RS Optimization Solution 119

calculated as follows given the task information Cn,i and its QoE requirement Qn.

f opt
n,i =



f low
n,i if αn = 0

arg max
f∈{ f ∗n,i, f

low
n,i , f

up
n,i }

qoel
n,i(fn,i) if 0 < αn < 1

f up
n,i otherwise

, (6.17)

and f ∗n,i can be derived by

f ∗n,i =

αn
dQoET

dT comp,l
n,i

, (1 − αn)
dQoEE

dEcomp,l
n,i

︸ ︷︷ ︸
QoE→QoE factor


− (

λnT−i∑
j=0

β j)wcomp
n,i f ∗n,i

−2

2knwcomp
n,i f ∗n,i

︸ ︷︷ ︸
QoE factor→Resource

, (6.18)

where

β =


0 if f ∗n,i ≥ wcomp

n,i λn

∈ (0, 1] if f ∗n,i < wcomp
n,i λn

.

Proof When the IoT device n conducts the local computing, it needs to obtain the optimal

policy given its QoE assessment model. The analysis will be done in three cases as αn = 0,

αn = 1 and 0 < αn < 1.

First, suppose that αn = 0, the QoE gained by the local computing can be rewritten as

qoel
n,i(fn,i) = QoEE(knwcomp

n,i f 2
n,i), (6.19)

which means that the QoE performance is only affected by the energy consumption. We can

observer that dQoEE

dEcomp,l
n,i

< 0 and
dEcomp,l

n,i

d fn,i
= 2knwcomp

n,i fn,i > 0, and then qoel
n,i(fn,i) is a monotonically

decreasing function of fn,i. Thus, to maximize qoel
n,i, f opt

n,i should be set as the lower bound f low
n,i .

Second, suppose that αn = 1, the QoE gained by the local computing can be reformulated

as

qoel
n,i(fn,i) = QoET (tw,l

n,i +
wcomp

n,i

fn,i
), (6.20)

which means that the QoE performance is only affected by the computing latency. Since
dQoET

dT comp,l
n,i

< 0 and
dT comp,l

n,i

d fn,i
= −wcomp

n,i f −2
n,i < 0, qoel

n,i(fn,i) is a monotonically increasing function

120Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

of fn,i. Thus, to maximize qoel
n,i, f opt

n,i should be set as the upper bound f up
n,i .

Finally, we will discuss the case when αn is in the range of (0, 1). According to extreme

value theorem, we first calculate critical values of qoel
n,i(fn,i) over the interval (f low

n,i , f up
n,i) by

setting the first derivation equals to 0 as

αn
dQoET

dT comp,l
n,i

, (1 − αn)
dQoEE

dEcomp,l
n,i

︸ ︷︷ ︸
QoE→QoE factor


dT comp,l

n,i

d fn,i

dEcomp,l
n,i

d fn,i

︸ ︷︷ ︸
QoE factor→Resource

= 0. (6.21)

Then, evaluating critical numbers and bound points can find the optimal strategy for IoT de-

vices’ computation resource scheduling. We can notice that the first part reflects the relation-

ship between QoE and QoE factor, and the second one is related to the QoE factor to resources.

Here, the hypothesis ignoring the wait time is when the IoT device can finish the current

computing task before the next one arrives, i.e., f ∗n,i should satisfy wcomp
n,i

/
f ∗n,it <= ta

n,i+1 − ta
n,i. As

mentioned in Section 6.3.1, the task generates stochastically which follows a Poisson process

with rate λn, and then we can obtain the expected interval of task arriving as 1/λn . Therefore,
dT comp,l

n,i

d fn,i
equals to −wcomp

n,i f −2
n,i if f ∗n,i >= wcomp

n,i λn. When f ∗n,i < wcomp
n,i λn, the wait time tw,l

n,i should

be considered by the expectation value as wcomp
n,i−1

/
f ∗n,i−1 − 1/λn . Then, the computation time

in a long-term by considering the impact on subsequent tasks is reformulated as T comp,l
n,i =

wcomp
n,i

fn,i
+

∑λnT−i−1
j=0 β j(

wcomp
n,i

fn,i
− 1

λn
), where β ∈ (0, 1] is the adaptive discount factor of the impact

on subsequent tasks. In this case,
dT comp,l

n,i

d fn,i
can be updated by −(

∑λnT−i
j=0 β j)wcomp

n,i f −2
n,i . Finally,

we can get the solution as (6.18), by which the IoT device can choose the optimal strategy

distributively to achieve an approximate long-term optimization.

According to (6.18), the IoT Device’s QoE-RS problem has been transferred into seeking

the solution to a monadic equation when 0 < αn < 1, which can be solved within polynomial

time.

Since the difference to find optimal strategy among IoT devices is related to the first part of

(6.21), we take the linear QoE assessment model as an example to further explain the solving

process when 0 < αn < 1. In this case, the QoE gained in local computing can be expressed

6.4. QoE-RS Optimization Solution 121

explicitly as

qoel
n,i(fn,i) =αn(1 −

wcomp
n,i

fn,i
+

∑λnT−i−1
j=0 β j(

wcomp
n,i

fn,i
− 1

λn
)

T max
n,i

)

+ (1 − αn)(1 −
knwcomp

n,i f 2
n,i

Emax
n,i

)

. (6.22)

In the interval of [f low
n,i , f up

n,i], qoel
n,i is a continuous quadratic function of fn,i. Taking first

derivative of qoel
n,i with respect to fi, we get

dqoel
n,i

d fn,i
=

− αn

T max
n,i

,−
(1 − αn)

Emax
n,i



− (

λnT−i∑
j=0

β j)wcomp
n,i f −2

n,i

2knwcomp
n,i fn,i

 . (6.23)

If there exists fn,i that makes the first derivation equals to 0, it is the optimal strategy to maxi-

mize qoel
n,i. Consequently, we can obtain the optimal CPU-cycle frequency f ∗n,i as

f ∗n,i =
3

√√
(

∑λnT−i
j=0 β j)αnEmax

n,i

2kn(1 − αn)T max
n,i

. (6.24)

Setting β = 0, the optimal strategy in (24) is simplified as

f ∗n,i =
3

√
αnEmax

n,i

2kn(1 − αn)T max
n,i

. (6.25)

If f ∗n,i deviated by (6.25) is less than wcomp
n,i λn, the discount factor β will be adjusted to a val-

ue between (0, 1] in order to achieve a long-term optimization by considering the impact on

subsequent tasks.

Furthermore, as indicated in Theorem 6.4.2, we need to further discuss the above critical

numbers with bound points in the following three cases:

• Case 1: when f ∗n,i is less than f low
n,i , qoel

n,i will be a monotonically decreasing function of

fn,i since
dqoel

n,i

d fn,i
is negative when fn,i ∈ [f low

n,i , f up
n,i]. Thus, to maximize qoel

n,i, f opt
i should

be set as the lower bound f low
n,i , i.e., f opt

n,i = max{ f low
n,i , f ∗n,i}.

• Case 2: when f ∗n,i is larger than f up
n,i , qoel

n,i will be a monotonically increasing function of

122Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

fn,i since
dqoel

n,i

d fn,i
is positive when fn,i ∈ [f low

n,i , f up
n,i]. Thus, to maximize qoel

n,i, f opt
i should

be set as the upper bound f up
n,i , i.e., f opt

n,i = min{ f ∗n,i, f up
n,i }.

• Case 3: If f ∗n,i given in (6.18) falls into the range of [f low
n,i , f up

n,i], f opt
i should be set as f ∗i .

Substituting f ∗i into (6.17), we can get the optimal strategy of local computing as f opt
i with

which the IoT device can reach its maximum qoel
n,i by (6.11). If the optimal strategy still

cannot satisfy the QoE requirement, the IoT device will offload the task to the edge system for

remote processing. The detailed algorithm for IoT devices’ QoE-RS optimization is shown in

Algorithm 4.

Algorithm 4 Stage I: Distribute Algorithm for IoT Devices’ QoE-RS Optimization
1: Initialize computation resources of IoT devices
2: Initialize task generation by IoT devices
3: for n = 1, 2, . . . ,N do
4: for i = 1, 2, . . . , I do
5: IoT device n processes computation task Cn,i

6: obtain f low
n,i and f up

n,i by Lemma 6.4.1
7: if αn = 0 then
8: f opt

n,i ← f low
n,i

9: else if αn = 1 then
10: f opt

n,i ← f up
n,i

11: else
12: obtain f ∗n,i by (6.18)
13: f opt

n,i ← arg max f∈{ f ∗n,i, f
low
n,i , f

up
n,i }

qoel
n,i(fn,i)

14: obtain f opt
n,i and corresponding qoel

n,i by (6.11)
15: if qoel

n,i ≥ qoethreshold
n then

16: process Cn,i locally
17: else
18: offload Cn,i to the task queue of edge system

6.4.2 Stage II: Edge’s QoE-RS Optimization

In the edge system, due to massive applications generated by IoT devices with different QoE

requirements, our objective is not only to complete more computation tasks in the edge sys-

tem, but also to ensure device-specific QoE requirements in the long-term maximization. To

achieve these goals, we adopt DRL that can optimize strategies in a trial-and-error manner by

interacting with the unknown environment to achieve a long-term optimization.

6.4. QoE-RS Optimization Solution 123

First, we formulate the problem as a Markov decision process (MDP), defined as a 5-tuple,

i.e., M = (S,A, P,R, γ), including state space S, action space A, state transition function P,

reward function R, and discount factor γ. The detailed conceptions about MDP model can be

found in Section 2.3.2. In the edge’s QoE-RS problem, the set of IoT devices is considered as

the environment, and the edge system plays the role of the agent, which continually performs

decisions to interact with the IoT devices. The information of the computation tasks and the

available resources are adopted as the state. The action refers to scheduling the communication

and computation resources in the edge system. The objective of DRL in this chapter is to find

the optimal policy π∗ , to maximize the expectation of accumulated QoE reward from any state

in the state space, which is coincide with the optimization objective (6.15). The details of the

above elements are introduced in the following subsections.

State: The state s ∈ S describes the information of the computation tasks generated by the

IoT device n as well as resources available in the edge system, which can be given as

S = {s|s = (n, ta
n,i,w

comm
n,i ,wcomp

n,i , recomm, recomp)}, (6.26)

where the tuple {ta
n,w

comm
n ,wcomp

n } denotes the information of computation tasks offloaded from

IoT device n to the edge system for processing, and recomm and recomp indicate the communi-

cation and computation resources that are available for offloading and computing, respectively.

Here, the communication resources recomm is referred to the percentage of bandwidth that ava-

iable for allocation. Considering that it is impractical to divide the bandwidth into an infinitely

small channel, we assume that the total bandwidth is divided into M channels, and then recomm

equals to {m/M|m=0,1,··· ,M}. The computation resources recomp is referred to the ready time of the

MEC server for computing. As mentioned above, MEC server has multiply core for processing,

and then recomp should be in range of [0,T] and satisfies recomp = min{recomp
l |l∈L}.

Action: The action a ∈ A serves two resource allocations, i.e., the bandwidth as commu-

nication resources and the CPU-cycle frequency as computation resources. Accordingly, the

action a can be described as

A = {a|a = (Bn,i, Fn,i)}. (6.27)

Since the total bandwidth is divided into M channels, the bandwidth of each channel is

124Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

Bmax/M. Then, the action of Bn,i is a discrete value that its effective range is from 0 to

recommBmax. The multiply cores of the MEC server can process the computing task indepen-

dently, and thus the action of Fn,i of each core has the same limitation as Fn,i ∈ [0, Fmax]. When

the action equals to 0, the task is discarded due to the unavailable resource or other reasons,

and it can be forwarded to the remote cloud server for processing, which is beyond the scope

of our problem.

Reward: A reward signal is designed to coincide with the objective of our optimization

problem. In this chapter, our objective is defined as maximizing the accumulated QoE of

all computation tasks from different IoT devices in a time period as expressed in (15). By

decomposing the objective into small pieces at each decision epoch, the immediate reward

rt can be constructed as a function of state st and action at, which is the QoE achieved for

processing the application Cn,i at time step t, given by

rt =


1 + qoee

n,i qoee
n,i > qoethreshold

n

− 1 otherwise
. (6.28)

If the computation task is completed within the QoE requirement, 1 is offered as the reward;

otherwise, −1 is offered as the penalty. qoee
n,i is the additive reward to evaluate the achieved

QoE performance. Furthermore, considering the energy consumed by the task processing in the

MEC server, we add costcomp as the ratio of actual energy consumption to the one at maximum

processing rate, i.e., (Fn,i
/
Fmax)2, then, the immediate reward is finally rewritten as

r′t = rt − costcomp(Fn,i). (6.29)

To maximize the long-term utility of the edge system, the accumulated reward Gt is given by

Gt =
∑T

t=0 γ
tr′t .

PPO-based Solution: The route to success in reinforcement learning is not as obvious

since the algorithms usually suffer from the stability and rate of convergency, and they also

require substantial effort in tuning in order to get good results. In this chapter, we adopt the

PPO algorithm, one of the popular DRL approaches based on Actor-Critic architecture that

integrates value-based algorithms and policy-based algorithms to realize stable and fast con-

6.4. QoE-RS Optimization Solution 125

vergency. The detailed conceptions about Actor-Critic architecture can be found in Section

2.3.2. Furthermore, PPO tries to compute an update at each step that minimizes the cost func-

tion while ensuring the deviation from the previous policy is relatively small, which further

improves its learning performance while making it much simpler to implement and tune. This

motivates us to optimize the online strategy in the edge system with the PPO algorithm. The

objective function of PPO is formed as

LCLIP
t (θ) = E[min(prt(θ)Ât, clip(prt(θ), 1 − ε, 1 + ε)Ât)], (6.30)

where the hyper-parameter ε is usually set as 0.1 or 0.2. The probability ratio prt(θ) is the ratio

between the new and old policy, given by

prt(θ) =
π(at|st; θ)
π(at|st; θold)

, (6.31)

where π(at|st; θ) represents the approximated policy function by Actor network parameter θ.

The generalized advantage estimation (GAE) is proposed to make a compromise between vari-

ance and bias. The GAE estimator is written as

ÂGAE(γ,λ)
t =

T−t−1∑
l=0

(γλ)lδt+l, (6.32)

where λ is used to adjust the bias-variance tradeoff. The value δt is calculated by rt+γv(st+1; w)−

v(st; w), where v(st; w) represents the approximated value function with Critic network param-

eter w.

The optimal action can be obtained when the objective function converges after the itera-

tions. The details of the proposed online algorithm based on PPO are presented in Algorithm

5.

In summary, upon the application task generation, each IoT device distributively optimizes

its computation resource, i.e., CPU frequency fn,i based on (6.18) and make an offloading deci-

sion based on QoE requirement. If the optimal QoE can satisfy its requirement, the application

will be proceeded locally and thus hold qoel
n,i that is the gained QoE by local computing. Oth-

erwise, the application will be offloaded to the edge system for remote processing, thereby

126Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

Algorithm 5 Stage II: PPO-based Online Algorithm for Edge’s QoE-RS Optimization
1: Initialize computation and communication resource state of edge system
2: Initialize task state generated by IoT devices
3: Initialize Actor and Critic network randomly and obtain πθ, i.e., the policy of edge system
4: Initialize sampling policy πθold with θold ← θ
5: /* Sampling (exploring) with πθold */

6: for iteration = 1, 2, . . . do
7: for t = 1, 2, . . . do
8: Sample a whole episode in the environment with πθold , and store the trajectory in

the replay buffer B
9: Compute advantage estimates ÂGAE(γ,λ)

t according to (6.32)
10: /* Optimizing πθold */

11: for epoch = 1, 2, . . . do
12: Update the Actor network based on the objective function (6.30), i.e., θ ←

arg maxθ LCLIP(θ), by Adam using the sampled data from B and A for one epoch
13: Update the Critic network to minimize the squared-error loss, i.e., w ←

arg minw E[δn(w)]2, by Adam using the sampled data from B for one epoch
14: Synchronise the sampling policy with θold ← θ

having qoee
n,i which indicates the gained QoE by edge computing. In the edge system, the

online PPO-based algorithm jointly optimizes communication and computation resources, i.e.,

bandwidth Bn,i and CPU frequency Fn,i to enhance the QoE requirement of IoT devices. Finally,

the proceeded applications will get back to IoT devices.

6.5 Simulation

In this section, extensive simulation experiments are conducted to evaluate the proposed two-

stage resource scheduling scheme for both local computing and edge computing from the per-

spective of QoE performance. Our algorithm and network architecture are implemented using

Pytorch.

6.5.1 Simulation Setup

We consider the QoE-RS problem over a period of 100 seconds (T = 100). Each IoT device

contains a single processing core, while the MEC server contains L independent processing

cores (i.e., virtual machines). Each IoT device’s random arrival tasks follow the Poisson dis-

6.5. Simulation 127

Table 6.2: Simulation parameters of system

Parameter Value
Length of time step 100 sec

Max end user’s CPU frequency 10 MHz
Max MEC’s CPU frequency 100 MHz

Number of MEC’s cores 4
Max AP’s bandwidth 100 Mbps

Number of AP’s channels 10
Number of application generated [1,5] /sec

Size of data amount [1,20] MB
Computation intensity [1,10] cycles/Byte

Table 6.3: Training hyper-parameters

Parameter Value
Size of hidden layers 2

Size of neural in each hidden layer 128
Optimization method Adam
Actor learning rate 10−4

Critic learning rate 10−3

Clipping rate 0.2
Discount factor 0.99

tribution with an arrival rate of λn ∈ [1, 5], and the computation intensity of tasks is randomly

sampled from [1, 10]. The main simulation parameters of the system are listed in Table 6.2.

For the PPO-based online algorithm for edge computing, we adopt the same multi-layer

perception (MLP) architecture (2 fully connected hidden layers of 128 units) with hyperbolic

relu activation function to construct the deep neural network. For the output layer of Actor-

network, we adopt softmax activation function for discrete action of communication resource

and sigmoid activation function for continuous action of computation resource. The main

training hyper-parameters are listed in Table 6.3.

128Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

6.5.2 Performance of IoT Device’s Strategy

We evaluate the performance of our proposed distributed algorithm for local computing through

comparisons against three representative benchmark approaches, including two state-of-the-art

approaches (i.e., LS, and ES), and a randomized baseline approach (RS):

• Short-term Optimal algorithm (S-Opt): This optimal QoE-RS approach achieves short-

term QoE maximization and acquires optimal strategy when setting discount factor β =

0.

• Long-term Optimal algorithm (L-Opt): This optimal QoE-RS approach achieves long-

term QoE maximization and acquires optimal strategy by adjusting discount factor β ∈

(0, 1].

• Latency-based strategy (LS) : The optimization objective of the latency-based strategy

is to achieve service latency minimization, which is consistent with the state-of-the-art

methods proposed in [99, 100].

• Energy-based strategy (ES) : The optimization objective of the energy-based strategy is

to achieve energy minimization, which is consistent with the state-of-the-art methods

proposed in [97, 98].

• Random strategy (Rand): This approach schedules IoT services’ strategies following a

random fashion, where each IoT device randomly selects the CPU-cycle frequency fn,i

to proceed with application Cn,i.

We first simulate the QoE performance of a single task under different QoE importance.

The performance of the five algorithms is shown in Figure 6.4. We can observe that the pro-

posed short-term optimal algorithm outperforms other competing methods as α varies. For

the long-term optimal algorithm, it adjusts the optimal policy according to (18), resulting in a

lower QoE performance for a single task. When α increases to 0.3, the task can be completed

with the optimal policy before the next task is generated so that the long-term optimal policy

is the same as the short-term optimal policy. LS focuses on latency minimization, and thus its

QoE performance has the same trend as α increases. Conversely, the QoE performance of ES

6.5. Simulation 129

that aims to minimize energy consumption decreases as α increases. This result demonstrates

that our proposed optimal strategy maintains excellent QoE performance under various QoE

requirements when only a single task is considered.

0.2 0.4 0.6 0.8
QoE factor importance

0.2

0.4

0.6

0.8

Qo
E

pe
rfo

rm
an

ce
 o

f s
in

gl
e

ta
sk

S-Opt
L-Opt

LS
ES

Rand

Figure 6.4: QoE performance of local CPU-cycle frequency with single task

Next, we compare the total number of applications completed and the overall QoE perfor-

mance of multiple applications under various arrival rates and workload conditions. As illus-

trated in Figure 6.5, in the multi-task scenario, the completed application and cumulative QoE

performance of our proposed long-term optimization algorithm remain high compared with

other methods, indicating that the long-term optimal algorithm can achieve better performance

in multi-task scenarios. For the short-term optimal algorithm, the optimal CPU-cycle frequency

goes up with the importance α, so that there is a gradual improvement when α increases from

0 to 1. The overall QoE performance drops significantly when the average workload increas-

es from 7.5 Megacycles to 30 Megacycles, i.e., Figure 6.5(a) and Figure 6.5(b), respectively.

This is because IoT devices cannot meet their QoE requirements when the workload increases

dramatically, even by the optimal strategy. Then, compared to Figure 6.5(a) and Figure 6.5(c),

the workload remains the same, the average arrival rate increases from 1/s to 4/s, and the over-

all QoE performance improves accordingly; however, the average QoE performance reduces.

That is because the workload of each task does not change, but the generation interval becomes

130Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

smaller, which also affects the QoE performance. When computing tasks increase, QoE per-

formance will suffer no matter of workload or arriving interval, and thus more and more tasks

will be offloaded to the edge system for further processing.

6.5.3 Performance of Edge’s Strategy

Now, we evaluate the performance of the proposed PPO-based online solution for the QoE-SR

problem in the edge system through comparisons with the following four baseline algorithms.

• Joint Communication and Computation scheduling strategy (Comm-Comp): This is a

PPO-based online QoE-RS approach that achieves the long-term QoE maximization and

acquires optimal communication and computation resource scheduling strategy by Al-

gorithm 2.

• Communication scheduling strategy (Comm): This approach is to achieve the long-term

QoE maximization by optimizing communication resource scheduling, which is consis-

tent with the state-of-the-art methods proposed in [112].

• Computation scheduling strategy (Comp): This approach is to achieve the long-term

QoE maximization by optimizing computation resource scheduling, which is consistent

with the state-of-the-art methods proposed in [113].

• Maximum strategy (Max): The edge proceeds the current application with its maximum

available communication and computation resources, regardless of the subsequent appli-

cations.

• Random strategy (Rand): This approach schedules edge’s strategies in a random fashion.

According to a random rank, the edge system randomly selects the bandwidth Bn,i and

CPU-cycle frequency Fn,i to proceed application Cn,i.

Convergence Performance: We first validate the convergence performance of the pro-

posed PPO-based online algorithm by training and testing in the experiment environment. To

evaluate the impact of different QoE assessment models, the importance α is set to 0, 0.5, and

1, respectively. The network parameters are listed in Table II. Training is performed for 5000

6.5. Simulation 131

0.2 0.4 0.6 0.8
QoE factor importance

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f c
om

pl
et

ed
 ta

sk
s

S-Opt
L-Opt

LS
ES

Rand

0.2 0.4 0.6 0.8
QoE factor importance

0

10

20

30

40

Qo
E

pe
rfo

rm
an

ce
 o

f m
ul

tip
le

 ta
sk

S-Opt
L-Opt

LS
ES

Rand

(a) λn = 1/s, ŵcomp
n = 7.5 Megacyclyes

0.2 0.4 0.6 0.8
QoE factor importance

0

5

10

15

20

25

Nu
m

be
r o

f c
om

pl
et

ed
 ta

sk
s

S-Opt
L-Opt

LS
ES

Rand

0.2 0.4 0.6 0.8
QoE factor importance

0

2

4

6

8

Qo
E

pe
rfo

rm
an

ce
 o

f m
ul

tip
le

 ta
sk

S-Opt
L-Opt

LS
ES

Rand

(b) λn = 1/s, ŵcomp
n = 30 Megacyclyes

0.2 0.4 0.6 0.8
QoE factor importance

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f c
om

pl
et

ed
 ta

sk
s

S-Opt
L-Opt

LS
ES

Rand

0.2 0.4 0.6 0.8
QoE factor importance

0

20

40

60

80

100

Qo
E

pe
rfo

rm
an

ce
 o

f m
ul

tip
le

 ta
sk

S-Opt
L-Opt

LS
ES

Rand

(c) λn = 4/s, ŵcomp
n = 7.5 Megacyclyes

Figure 6.5: QoE performance of local CPU-cycle frequency with multiply tasks

132Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

epochs. After every five training epochs, testing is performed in the same environment, and

the corresponding accumulated test rewards are recorded as solid lines. The average training

results for every five epochs are recorded with dashed lines. Figure 6.6 shows the training and

testing curves. It concludes that all scenarios converge faster (before 2000 training epochs)

and have a stable convergency. Moreover, compared to training and testing curves, the trained

network has good generalization ability and can also work pretty well on the testing data.

0 200 400 600 800 1000
Epoch

100

50

0

50

100

150

Ac
cu

m
ul

at
ed

 R
ew

ar
d

=0.0
=0.5
=1.0

=0.0
=0.5
=1.0

Convergence Performance under different

Figure 6.6: Convergence of PPO-based online algorithm

QoE Performance: Figure 6.7 illustrates the average reward, latency, and energy con-

sumption for executing tasks with different QoE requirements on the edge system. Due to their

inflexible behaviors, we can obtain that the Max strategy and the Rand strategy always keep

the same latency and energy consumption and have a lower QoE performance. Compared to

these two strategies, Max strategy has an upward trend with the increase of α, while Rand

strategy has an opposite trend. That is because the scheduling objective is more concerned

with energy consumption when α equals 0, and turns to latency when α grows to 1. Obvi-

ously, our proposed PPO-based online algorithm, which jointly optimizes the communication

and computation resources, outperforms communication only optimal strategy or computation

only optimal strategy. It can consistently achieve the best QoE performance regardless of the

change of α when the agent does not have prior knowledge of the environment dynamics.

6.5. Simulation 133

0 0.5 1
QoE factor importance

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Av
er

ag
e

Re
wa

rd

0.76
0.62

0.550.58
0.50 0.47

0.67
0.53 0.51

-0.38 -0.34 -0.29

-0.80
-0.90

-1.00

Comm-Comp Comp Comm Max Rand

(a) Average reward

0 0.5 1
QoE factor importance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

La
te

nc
y

2.88

1.81 1.79

2.86

2.48 2.40

2.72
2.44

2.20

2.52 2.52 2.52

3.50 3.50 3.50

Comm-Comp Comp Comm Max Rand

(b) Average latency

0 0.5 1
QoE factor importance

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

En
er

gy

0.38 0.41

0.510.49
0.53

0.60

0.46
0.51

0.57

1.00 1.00 1.00

0.67 0.67 0.67

Comm-Comp Comp Comm Max Rand

(c) Average energy consumption

Figure 6.7: QoE performance of PPO-based online algorithm

134Chapter 6. JointCommunication andComputationResource Scheduling forQoE Enhancement

6.6 Chapter Summary

This chapter focused on enhancing device-specific QoE performance in edge-assisted IoT sys-

tems by optimizing communication and computing resources jointly. First, a three-layer QoE

assessment model was constructed to describe the general relationship between resource pro-

visioning and device-specific QoE performance. Then, to maximize the overall QoE perfor-

mance amongst IoT devices, a two-stage resource scheduling scheme was proposed to realize

simultaneous optimization of IoT devices and the edge system. Specifically, in stage I, a dis-

tributed resource scheduling algorithm with low complexity was designed for each IoT device

to optimize the local computing rate by considering its resource-constrained nature; in stage

II, a PPO-based online approach was proposed on the edge system to schedule communication

bandwidth and optimize computational rate by interacting with multiply IoT devices with-

out prior knowledge of their specific QoE assessment models. Finally, extensive experiments

demonstrated that our proposal outperforms the existing works from the perspective of QoE

performance.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Taking advantage of collaborative computing enabled by cloud computing and edge computing

technologies, IoT devices can offload their computation tasks to other idle computing devices or

remote servers, thus effectively relieving their computing capability pressure and enhancing the

performance of IoT systems. However, realizing collaborative computing through effective re-

source scheduling remains a severe challenge in edge-assisted IoT systems. The related issues

addressed in the thesis are fallen into the following two major aspects: incentive mechanism

for horizontal collaboration amongst IoT devices and multi-dimensional resource management

for vertical collaboration between the edge server and IoT devices in the edge-assisted IoT

systems. More specifically,

• Incentive mechanism for horizontal collaboration: IoT devices are not only genera-

tors of data but also can be processors of data. Due to different computing capabilities

amongst IoT devices, some struggle to cope with computing tasks, while others always

remain idle. The horizontal collaboration amongst IoT devices can effectively and ef-

ficiently balance the computing tasks in the device layer by scavenging the enormous

amount of spare computational resources. Although the concept of collaborative com-

puting is promising, engaging idle computing devices for sharing could be difficult as

they have no commitments to do so. They may expect compensation since computa-

135

136 Chapter 7. Conclusion and FutureWork

tion offloading potentially affects local computing tasks. Thus, designing an efficient

incentive mechanism for computational resource sharing is essential.

• Multi-dimensional resource management for vertical collaboration: As the core of

three-tier edge-assisted IoT systems, edge servers have more powerful computing ca-

pabilities than the device layer. Utilizing the distributed resources in the edge layer

can effectively enhance QoE and QoS performance. However, improving one perfor-

mance indicator often involves multi-dimensional resources, such as communication re-

sources and computing resources. Orchestrating the multi-dimensional resources to pro-

cess those data requires appropriate resource scheduling strategies. Furthermore, with

the ever-increasing diversity of application requirements, different IoT devices within

the same edge network inevitably incur specific resource demands to achieve their di-

verse application requirements, making the resource scheduling process more complex.

To overcome the issues mentioned above, a number of resource scheduling schemes for

collaborative computing in edge-assisted IoT systems have been developed. The contributions

that have been made in this thesis and the conclusions drawn from these contributions are

summarized as follows:

In chapter 3, considering the collaborative computing scenario in smart buildings, a com-

putation sharing architecture has been proposed to incentivize ICDs to offload computational

tasks for the BMS, which combines the Stackelberg game and the Cournot game. To guarantee

the utility of BMS and ICDs, the Stackelberg game model has been built to analyze the interac-

tions between BMS and ICDs. Then, the Cournot game model has been presented to formulate

the internal competition among multiple ICDs. Under the premise of the subgame perfect Nash

equilibrium, the BMS can quote the optimal pricing strategy, and the ICDs can share the cor-

responding optimal amount of computing resources. The simulation results have demonstrated

that the proposed solution can effectively improve the on-demand computing capacity of BMS.

In chapter 4, an incomplete information-based two-tier game model has been estimated to

deal with the enormous challenge of real-time data analysis without the complete information

in emergency communication networks. IITG can realize collaborative computing by incen-

tivizing ICDs to share computation resources, which jointly combines the Stackelberg game

7.1. Conclusion 137

and the Cournot game. Depending on the given information of the EMS and the ICDs, we have

analyzed the BNE of the EMS’s pricing strategies and the ICDs’ computing resource sharing

strategies under incomplete information, and further designed the N-IITG algorithm that can

iteratively convergent to the unique PBNE. According to the simulation results, the proposed

algorithm has achieved a significant increase in computational capacity while each participant

obtains the optimal profit.

In chapter 5, a computational latency-based pricing mechanism from the perspective of the

QoE performance has been proposed to enable collaborative computing in edge-assisted IoT

systems. A game-theoretic computing task allocation approach has been developed among

a centralized CSP and multiple ICDs to maximize all participants’ profit. The CSP first de-

termines the optimal task partition dynamically upon the task arrival; then, the ICDs derive

the optimal central processing unit-cycle frequency correspondingly. Simulation results have

shown that the proposed scheme can effectively relieve the pressure of unbalanced computing

capabilities in IoT. The overall computational latency of our proposed mechanism has been

significantly decreased, and the profit of all participants has achieved the maximum in collab-

orative computing.

In chapter 6, a three-layer QoE assessment model has been constructed to describe the gen-

eral relationship between resource provisioning and device-specific QoE performance. Then,

to maximize the overall QoE performance amongst IoT devices, a two-stage resource schedul-

ing scheme has been proposed to realize simultaneous optimization of IoT devices and the edge

system. Specifically, in stage I, a distributed resource scheduling algorithm with low complex-

ity has been designed for each IoT device to optimize the local computing rate by considering

its resource-constrained nature; in stage II, a PPO-based online approach has been proposed

for the edge system to schedule communication bandwidth and optimize computational rate

by interacting with multiply IoT devices without prior knowledge of their specific QoE assess-

ment models. Finally, extensive experiments have demonstrated that our proposal outperforms

the existing works from the perspective of QoE performance.

138 Chapter 7. Conclusion and FutureWork

7.2 Future Work

The technical issues on resource scheduling for horizontal collaboration amongst IoT devices

and vertical collaboration between the edge server and IoT devices have been addressed in the

thesis, where several incentive and intelligent mechanisms are adopted to improve the QoS and

QoE performance from different perspectives. Many other challenges are still required to be

investigated and addressed to enhance the performance of the entire edge-assisted IoT systems.

The future research directions are identified and summarized in this section, including resource

orchestration with cloud computing, data-driven resource scheduling, and privacy and security

concerned with resource scheduling. Details of these topics are given as follows:

• Resource orchestration with cloud computing: The device-edge collaboration manner

has a relatively powerful capacity; however, it ignores the huge computing resources in

the cloud computing center. With the ever-increasing smart devices and their resource-

hungry applications, it will become increasingly difficult to rely on the resources in the

edge layer alone to meet the service requirements of smart devices. Therefore, it is

particularly important and necessary to take full advantage of both edge computing and

cloud computing and make them complementary to design a collaborative paradigm, i.e.,

the device-edge-cloud collaboration manner. For example, considering the physical dis-

tance, edge servers can focus on the latency-sensitive computing tasks and transfer the

computation-intensive and non-urgent tasks to cloud servers. Furthermore, the edge-edge

collaboration manner in edge computing does not arise in isolation. Instead, it usually

comes along with the device-edge-cloud collaboration manner. As the upper layer of

edge servers, the cloud layer can act as a central resource manager to jointly optimize

distributed resources in edge servers. However, realizing resource orchestration with the

assistance of cloud computing is nontrivial due to many factors. Primarily, due to the

heterogeneity, computational servers between remote cloud and local edge nodes signif-

icantly differ in terms of their capacity, speed, response time, and energy consumption.

Moreover, considering the mobility in edge-edge collaborative computing, computing

tasks and resources continuously change between IoT devices, making resource orches-

tration more complex. Therefore, efficiently utilizing the multi-layer resources in IoT

7.2. FutureWork 139

systems becomes crucial to improving the performance of IoT applications.

• Data-driven resource scheduling: The ultimate goal of IoT systems is to make deci-

sions automatically through gathering, exchanging, and analyzing data from environ-

ments. As the foundation of making decisions, data is crucial to IoT systems, and thus

it is essential to be aware of data characteristics during resource scheduling. Currently,

most existing studies treat the collected data equally during resource scheduling but ig-

nore the characteristics of the data itself, such as data generation source, data generation

time, and data content. For example, the new arrival data generally has more valid in-

formation than historical data, or the data generated in an emergency has higher priority

than the data in a normal state. Taking such data characteristics into account can improve

performance during resource scheduling. Therefore, how to model data characteristics

and enable data-driven resource scheduling needs to be considered in future work.

• Privacy and security concerned with resource scheduling: Along with more and more

data shared by IoT devices, the possibility of having sensitive information exposed is get-

ting extremely high. During the transmission process from IoT devices to remote servers,

a series of unexpected leakages of sensitive data, e.g., user location, personal picture, etc.,

often inevitably incur. For example, suppose a user generates one request exceeding its

computation capability through collaborative computing. In that case, privacy disclosure

is inevitable as we cannot assume all the involved IoT devices and remote servers could

be trusted. Thus, privacy preservation is necessary to prevent privacy leakage from data

transition among multiple entities in IoT systems. On the other hand, excessive privacy

protection may lead to inefficient utilization of the distributed and scattered resources

in IoT systems, thus degrading the performance of collaborative computing. All prob-

lems mentioned above pose a great challenge to achieving an optimal trade-off between

privacy protection and resource scheduling, which can be further investigated.

Bibliography

[1] Kevin Ashton. That internet of things thing. https://www.rfidjournal.com/
that-internet-of-things-thing, 1999.

[2] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Mous-
sa Ayyash. Internet of things: A survey on enabling technologies, protocols, and appli-
cations. IEEE communications surveys & tutorials, 17(4):2347–2376, 2015.

[3] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey
on internet of things: Architecture, enabling technologies, security and privacy, and
applications. IEEE Internet of Things Journal, 4(5):1125–1142, 2017.

[4] Worldwide global datasphere iot device and data forecast, 2019-2023. Technical Report
IDC # 146187419, IDC, April 2020.

[5] Introducing google app engine + our new blog. http://googleappengine.

blogspot.com/2008/04/introducing-google-app-engine-our-new.html,
2008.

[6] Maria Stoyanova, Yannis Nikoloudakis, Spyridon Panagiotakis, Evangelos Pallis, and
Evangelos K. Markakis. A survey on the internet of things (iot) forensics: Challenges,
approaches, and open issues. IEEE Communications Surveys Tutorials, 22(2):1191–
1221, 2020.

[7] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[8] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge computing: A
survey. IEEE Internet of Things Journal, 5(1):450–465, 2018.

[9] Quyuan Luo, Shihong Hu, Changle Li, Guanghui Li, and Weisong Shi. Resource
scheduling in edge computing: A survey. IEEE Communications Surveys & Tutorials,
23(4):2131–2165, 2021.

[10] Dianlei Xu, Yong Li, Xinlei Chen, Jianbo Li, Pan Hui, Sheng Chen, and Jon Crowcroft.
A survey of opportunistic offloading. IEEE Communications Surveys & Tutorials,
20(3):2198–2236, 2018.

140

BIBLIOGRAPHY 141

[11] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
18(3):1617–1655, 2016.

[12] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne, Jun Li, Dusit
Niyato, Octavia Dobre, and H. Vincent Poor. 6g internet of things: A comprehensive
survey. IEEE Internet of Things Journal, 9(1):359–383, 2022.

[13] Adam Zielonka, Andrzej Sikora, Marcin Woźniak, Wei Wei, Qiao Ke, and Zongwen
Bai. Intelligent internet of things system for smart home optimal convection. IEEE
Transactions on Industrial Informatics, 17(6):4308–4317, 2021.

[14] Jun Zhang and Khaled B. Letaief. Mobile edge intelligence and computing for the
internet of vehicles. Proceedings of the IEEE, 108(2):246–261, 2020.

[15] S. M. Riazul Islam, Daehan Kwak, MD. Humaun Kabir, Mahmud Hossain, and Kyung-
Sup Kwak. The internet of things for health care: A comprehensive survey. IEEE
Access, 3:678–708, 2015.

[16] Yazdan Ahmad Qadri, Ali Nauman, Yousaf Bin Zikria, Athanasios V. Vasilakos, and
Sung Won Kim. The future of healthcare internet of things: A survey of emerging
technologies. IEEE Communications Surveys Tutorials, 22(2):1121–1167, 2020.

[17] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. The future of industrial
communication: Automation networks in the era of the internet of things and industry
4.0. IEEE Industrial Electronics Magazine, 11(1):17–27, 2017.

[18] Wenliang Mao, Zhiwei Zhao, Zheng Chang, Geyong Min, and Weifeng Gao. Energy-
efficient industrial internet of things: Overview and open issues. IEEE Transactions on
Industrial Informatics, 17(11):7225–7237, 2021.

[19] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys Tutorials, 19(3):1628–1656,
2017.

[20] ITUT Recommendation. E. 800: Terms and definitions related to quality of service and
network performance including dependability. ITU-T August, 1994, 1994.

[21] ITUT Rec. P. 10: Vocabulary for performance and quality of service, amendment 2:
New definitions for inclusion in recommendation itu-t p. 10/g. 100. Int. Telecomm.
Union, Geneva, page 10, 2008.

[22] Ulrich Reiter, Kjell Brunnström, Katrien De Moor, Mohamed-Chaker Larabi, Manuela
Pereira, Antonio Pinheiro, Junyong You, and Andrej Zgank. Factors influencing quality
of experience. In Quality of experience, pages 55–72. Springer, 2014.

[23] Roger B Myerson. Game theory: analysis of conflict. Harvard university press, 1997.

142 BIBLIOGRAPHY

[24] Hal R Varian. Intermediate microeconomics: a modern approach: ninth international
student edition. WW Norton & Company, 2014.

[25] Nguyen Cong Luong, Dinh Thai Hoang, Ping Wang, Dusit Niyato, Dong In Kim, and
Zhu Han. Data collection and wireless communication in internet of things (iot) using
economic analysis and pricing models: A survey. IEEE Communications Surveys &

Tutorials, 18(4):2546–2590, 2016.

[26] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu Han. Re-
source management in cloud networking using economic analysis and pricing models:
A survey. IEEE Communications Surveys Tutorials, 19(2):954–1001, 2017.

[27] José Moura and David Hutchison. Game theory for multi-access edge computing:
Survey, use cases, and future trends. IEEE Communications Surveys & Tutorials,
21(1):260–288, 2019.

[28] Chuanxiu Chi, Yingjie Wang, Xiangrong Tong, Madhuri Siddula, and Zhipeng Cai.
Game theory in internet of things: A survey. IEEE Internet of Things Journal, pages
1–1, 2021.

[29] Marwaan Simaan and Jose B Cruz. On the stackelberg strategy in nonzero-sum games.
Journal of Optimization Theory and Applications, 11(5):533–555, 1973.

[30] Irving Fisher. Cournot and mathematical economics. The Quarterly Journal of Eco-
nomics, 12(2):119–138, 1898.

[31] John C Harsanyi. Games with incomplete information played by bayesian players, i–iii
part i. the basic model. Management science, 14(3):159–182, 1967.

[32] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Communications Surveys Tutorials,
21(4):3133–3174, 2019.

[33] Richard Bellman. A markovian decision process. Journal of mathematics and mechan-
ics, pages 679–684, 1957.

[34] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Mar-
c G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learning. nature, 518(7540):529–
533, 2015.

BIBLIOGRAPHY 143

[37] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

[38] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229–256, 1992.

[39] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[40] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[42] Towards a definition of the internet of things (iot). Technical Report http://iot.
ieee.org/definition.html, IEEE, 2015.

[43] Muhammad Rizwan Bashir and Asif Qumer Gill. Iot enabled smart buildings: A sys-
tematic review. In 2017 Intelligent Systems Conference (IntelliSys), pages 151–159.
IEEE, 2017.

[44] Daniel Minoli, Kazem Sohraby, and Benedict Occhiogrosso. Iot considerations, require-
ments, and architectures for smart buildingsłenergy optimization and next-generation
building management systems. IEEE Internet of Things Journal, 4(1):269–283, 2017.

[45] Brian Ramprasad, Jenn McArthur, Marios Fokaefs, Cornel Barna, Mark Damm, and
Marin Litoiu. Leveraging existing sensor networks as iot devices for smart buildings.
In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pages 452–457. IEEE,
2018.

[46] Pouya Jamborsalamati, Edstan Fernandez, MJ Hossain, and FHM Rafi. Design and
implementation of a cloud-based iot platform for data acquisition and device supply
management in smart buildings. In 2017 Australasian Universities Power Engineering
Conference (AUPEC), pages 1–6. IEEE, 2017.

[47] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[48] Joy Dutta and Sarbani Roy. Iot-fog-cloud based architecture for smart city: Prototype
of a smart building. In 2017 7th International Conference on Cloud Computing, Data
Science & Engineering-Confluence, pages 237–242. IEEE, 2017.

144 BIBLIOGRAPHY

[49] Juho Hamari, Mimmi Sjöklint, and Antti Ukkonen. The sharing economy: Why people
participate in collaborative consumption. Journal of the association for information
science and technology, 67(9):2047–2059, 2016.

[50] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. Imbalance
in the cloud: An analysis on alibaba cluster trace. In 2017 IEEE International Confer-
ence on Big Data (Big Data), pages 2884–2892. IEEE, 2017.

[51] Jianli Pan, Raj Jain, Subharthi Paul, Tam Vu, Abusayeed Saifullah, and Mo Sha. An
internet of things framework for smart energy in buildings: designs, prototype, and
experiments. IEEE internet of things journal, 2(6):527–537, 2015.

[52] Francisco-Javier Ferrández-Pastor, Higinio Mora, Antonio Jimeno-Morenilla, and
Bruno Volckaert. Deployment of iot edge and fog computing technologies to develop
smart building services. Sustainability, 10(11):3832, 2018.

[53] Minghui Min, Liang Xiao, Ye Chen, Peng Cheng, Di Wu, and Weihua Zhuang.
Learning-based computation offloading for iot devices with energy harvesting. IEEE
Transactions on Vehicular Technology, 68(2):1930–1941, 2019.

[54] Yixue Hao, Yiming Miao, Long Hu, M Shamim Hossain, Ghulam Muhammad, and
Syed Umar Amin. Smart-edge-cocaco: Ai-enabled smart edge with joint computation,
caching, and communication in heterogeneous iot. IEEE Network, 33(2):58–64, 2019.

[55] Liang Xiao, Tianhua Chen, Caixia Xie, Huaiyu Dai, and H Vincent Poor. Mobile crowd-
sensing games in vehicular networks. IEEE Transactions on Vehicular Technology,
67(2):1535–1545, 2018.

[56] Mingmei Li, Tony QS Quek, and Costas Courcoubetis. Mobile data offloading with
uniform pricing and overlaps. IEEE Transactions on Mobile Computing, 18(2):348–
361, 2019.

[57] Huaqing Zhang, Yong Xiao, Shengrong Bu, Dusit Niyato, F Richard Yu, and Zhu Han.
Computing resource allocation in three-tier iot fog networks: A joint optimization ap-
proach combining stackelberg game and matching. IEEE Internet of Things Journal,
4(5):1204–1215, 2017.

[58] Mengyu Liu and Yuan Liu. Price-based distributed offloading for mobile-edge com-
puting with computation capacity constraints. IEEE Wireless Communications Letters,
7(3):420–423, 2018.

[59] Slad̄ana Jos̆ilo and György Dán. Wireless and computing resource allocation for selfish
computation offloading in edge computing. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, pages 2467–2475. IEEE, 2019.

[60] Xiuli He, Ashutosh Prasad, Suresh P Sethi, and Genaro J Gutierrez. A survey of stack-
elberg differential game models in supply and marketing channels. Journal of Systems
Science and Systems Engineering, 16(4):385–413, 2007.

BIBLIOGRAPHY 145

[61] Fei Sun, Fen Hou, Haibo Zhou, Bo Liu, Jiacheng Chen, and Lin Gui. Equilibriums
in the mobile-virtual-network-operator-oriented data offloading. IEEE Transactions on
Vehicular Technology, 67(2):1622–1634, 2018.

[62] Hamed Kebriaei, Ashkan Rahimi-Kian, and Majid Nili Ahmadabadi. Model-based and
learning-based decision making in incomplete information cournot games: a state es-
timation approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
45(4):713–718, 2015.

[63] Thomas D Burd and Robert W Brodersen. Processor design for portable systems.
Journal of VLSI signal processing systems for signal, image and video technology,
13(2):203–221, 1996.

[64] Robin R Murphy. Emergency informatics: Using computing to improve disaster man-
agement. Computer, 49(5):19–27, 2016.

[65] Evangelos K Markakis, Ilias Politis, Asimakis Lykourgiotis, Yacine Rebahi, George
Mastorakis, Constandinos X Mavromoustakis, and Evangelos Pallis. Efficient next gen-
eration emergency communications over multi-access edge computing. IEEE Commu-
nications Magazine, 55(11):92–97, 2017.

[66] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. A survey
on mobile edge computing: The communication perspective. IEEE communications
surveys & tutorials, 19(4):2322–2358, 2017.

[67] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Ying-Chang Liang, Zhu Han, and Fen
Hou. Applications of economic and pricing models for resource management in 5g
wireless networks: A survey. IEEE Communications Surveys & Tutorials, 21(4):3298–
3339, 2019.

[68] He Fang, Li Xu, and Xianbin Wang. Coordinated multiple-relays based physical-layer
security improvement: A single-leader multiple-followers stackelberg game scheme.
IEEE transactions on information forensics and security, 13(1):197–209, 2018.

[69] Lingjie Duan, Takeshi Kubo, Kohei Sugiyama, Jianwei Huang, Teruyuki Hasegawa, and
Jean Walrand. Motivating smartphone collaboration in data acquisition and distributed
computing. IEEE Transactions on Mobile Computing, 13(10):2320–2333, 2014.

[70] Jiangtian Nie, Jun Luo, Zehui Xiong, Dusit Niyato, and Ping Wang. A stackelberg game
approach toward socially-aware incentive mechanisms for mobile crowdsensing. IEEE
Transactions on Wireless Communications, 18(1):724–738, 2019.

[71] Chuanyin Li, Jiandong Li, Yuzhou Li, and Zhu Han. Pricing game with complete or
incomplete information about spectrum inventories for mobile virtual network operators.
IEEE Transactions on Vehicular Technology, 68(11):11118–11131, 2019.

[72] Godfrey Anuga Akpakwu, Bruno J. Silva, Gerhard P. Hancke, and Adnan M. Abu-
Mahfouz. A survey on 5g networks for the internet of things: Communication technolo-
gies and challenges. IEEE Access, 6:3619–3647, 2018.

146 BIBLIOGRAPHY

[73] Lalit Chettri and Rabindranath Bera. A comprehensive survey on internet of things (iot)
toward 5g wireless systems. IEEE Internet of Things Journal, 7(1):16–32, 2020.

[74] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek, Gerhard Fettweis,
Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth, Jens Voigt, Ines Riedel, et al.
Latency critical iot applications in 5g: Perspective on the design of radio interface and
network architecture. IEEE Communications Magazine, 55(2):70–78, 2017.

[75] Mec in 5g network. Technical Report https://www.etsi.

org/technologies-clusters/white-papers-and-brochures/

etsi-white-papers, ETSI, June 2018.

[76] Sukhpal Singh Gill and Rajkumar Buyya. A taxonomy and future directions for sustain-
able cloud computing: 360 degree view. ACM Computing Surveys (CSUR), 51(5):1–33,
2018.

[77] Sambit Kumar Mishra, Deepak Puthal, Bibhudatta Sahoo, Prem Prakash Jayaraman,
Song Jun, Albert Y Zomaya, and Rajiv Ranjan. Energy-efficient vm-placement in cloud
data center. Sustainable computing: informatics and systems, 20:48–55, 2018.

[78] Changsheng You and Kaibin Huang. Exploiting non-causal cpu-state information for
energy-efficient mobile cooperative computing. IEEE Transactions on Wireless Com-
munications, 17(6):4104–4117, 2018.

[79] Zhengguo Sheng, Chinmaya Mahapatra, Victor C. M. Leung, Min Chen, and Pratap Ku-
mar Sahu. Energy efficient cooperative computing in mobile wireless sensor networks.
IEEE Transactions on Cloud Computing, 6(1):114–126, 2018.

[80] Soumya Sen, Carlee Joe-Wong, Sangtae Ha, and Mung Chiang. A survey of smart data
pricing: Past proposals, current plans, and future trends. Acm computing surveys (csur),
46(2):1–37, 2013.

[81] Mohammad Aazam, Khaled A Harras, and Sherali Zeadally. Fog computing for 5g
tactile industrial internet of things: Qoe-aware resource allocation model. IEEE Trans-
actions on Industrial Informatics, 15(5):3085–3092, 2019.

[82] Wei Wei, Xunli Fan, Houbing Song, Xiumei Fan, and Jiachen Yang. Imperfect informa-
tion dynamic stackelberg game based resource allocation using hidden markov for cloud
computing. IEEE transactions on services computing, 11(1):78–89, 2018.

[83] Xiumin Wang, Xiaoming Chen, Weiwei Wu, Ning An, and Lusheng Wang. Cooperative
application execution in mobile cloud computing: A stackelberg game approach. IEEE
Communications Letters, 20(5):946–949, 2016.

[84] Thinh Quang Dinh, Jianhua Tang, Quang Duy La, and Tony QS Quek. Offloading in
mobile edge computing: Task allocation and computational frequency scaling. IEEE
Transactions on Communications, 65(8):3571–3584, 2017.

BIBLIOGRAPHY 147

[85] Songtao Guo, Jiadi Liu, Yuanyuan Yang, Bin Xiao, and Zhetao Li. Energy-efficient
dynamic computation offloading and cooperative task scheduling in mobile cloud com-
puting. IEEE Transactions on Mobile Computing, 18(2):319–333, 2019.

[86] Dusit Niyato, Dinh Thai Hoang, Nguyen Cong Luong, Ping Wang, Dong In Kim, and
Zhu Han. Smart data pricing models for the internet of things: a bundling strategy
approach. IEEE Network, 30(2):18–25, 2016.

[87] Amazon ec2 pricing. https://aws.amazon.com/ec2/pricing/, 02.

[88] Microsoft azure windows virtual machines pricing. https://azure.microsoft.
com/en-ca/pricing/details/virtual-machines/windows/, 02.

[89] Google compute engine pricing. https://cloud.google.com/compute/pricing,
02.

[90] Yeongjin Kim, Jeongho Kwak, and Song Chong. Dual-side optimization for cost-
delay tradeoff in mobile edge computing. IEEE Transactions on Vehicular Technology,
67(2):1765–1781, 2018.

[91] Hamed Shah-Mansouri, Vincent WS Wong, and Robert Schober. Joint optimal pricing
and task scheduling in mobile cloud computing systems. IEEE Transactions on Wireless
Communications, 16(8):5218–5232, 2017.

[92] Ying Wang, Peilong Li, Lei Jiao, Zhou Su, Nan Cheng, Xuemin Sherman Shen, and
Ping Zhang. A data-driven architecture for personalized qoe management in 5g wireless
networks. IEEE Wireless Communications, 24(1):102–110, 2017.

[93] Chenmeng Wang, Chengchao Liang, F Richard Yu, Qianbin Chen, and Lun Tang. Com-
putation offloading and resource allocation in wireless cellular networks with mobile
edge computing. IEEE Transactions on Wireless Communications, 16(8):4924–4938,
2017.

[94] Zhaolong Ning, Peiran Dong, Xiangjie Kong, and Feng Xia. A cooperative partial
computation offloading scheme for mobile edge computing enabled internet of things.
IEEE Internet of Things Journal, 6(3):4804–4814, 2019.

[95] Jeongho Kwak, Okyoung Choi, Song Chong, and Prasant Mohapatra. Processor-
network speed scaling for energy–delay tradeoff in smartphone applications. IEEE/ACM
Transactions on Networking, 24(3):1647–1660, 2016.

[96] Yongmin Zhang, Xiaolong Lan, Ju Ren, and Lin Cai. Efficient computing resource
sharing for mobile edge-cloud computing networks. IEEE/ACM Transactions on Net-
working, 28(3):1227–1240, 2020.

[97] Xiaowen Cao, Feng Wang, Jie Xu, Rui Zhang, and Shuguang Cui. Joint computation and
communication cooperation for energy-efficient mobile edge computing. IEEE Internet
of Things Journal, 6(3):4188–4200, 2019.

148 BIBLIOGRAPHY

[98] Ying Chen, Ning Zhang, Yongchao Zhang, Xin Chen, Wen Wu, and Xuemin Sherman
Shen. Toffee: Task offloading and frequency scaling for energy efficiency of mobile
devices in mobile edge computing. IEEE Transactions on Cloud Computing, 9(4):1634–
1644, 2021.

[99] Yue Wang, Xiaofeng Tao, Xuefei Zhang, Ping Zhang, and Y Thomas Hou. Cooperative
task offloading in three-tier mobile computing networks: An admm framework. IEEE
Transactions on Vehicular Technology, 68(3):2763–2776, 2019.

[100] Xiao Ma, Ao Zhou, Shan Zhang, and Shangguang Wang. Cooperative service caching
and workload scheduling in mobile edge computing. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 2076–2085. IEEE, 2020.

[101] Sarhad Arisdakessian, Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, and Nadjia
Kara. Fogmatch: an intelligent multi-criteria iot-fog scheduling approach using game
theory. IEEE/ACM Transactions on Networking, 28(4):1779–1789, 2020.

[102] Qianqian Wang, Yongxu Zhu, and Xianbin Wang. Incomplete information based col-
laborative computing in emergency communication networks. IEEE Communications
Letters, 24(9):2038–2042, 2020.

[103] Junxu Xia, Geyao Cheng, Deke Guo, and Xiaolei Zhou. A qoe-aware service-
enhancement strategy for edge artificial intelligence applications. IEEE Internet of
Things Journal, 7(10):9494–9506, 2020.

[104] Haodong Lu, Xiaoming He, Miao Du, Xiukai Ruan, Yanfei Sun, and Kun Wang. Edge
qoe: Computation offloading with deep reinforcement learning for internet of things.
IEEE Internet of Things Journal, 7(10):9255–9265, 2020.

[105] Fangxin Wang, Cong Zhang, Feng Wang, Jiangchuan Liu, Yifei Zhu, Haitian Pang, and
Lifeng Sun. Deepcast: Towards personalized qoe for edge-assisted crowdcast with deep
reinforcement learning. IEEE/ACM Transactions on Networking, 28(3):1255–1268,
2020.

[106] Xiaoming He, Haodong Lu, Miao Du, Yingchi Mao, and Kun Wang. Qoe-based task
offloading with deep reinforcement learning in edge-enabled internet of vehicles. IEEE
Transactions on Intelligent Transportation Systems, 22(4):2252–2261, 2021.

[107] Songyuan Li, Jiwei Huang, Jia Hu, and Bo Cheng. Qoe-deer: A qoe-aware decentral-
ized resource allocation scheme for edge computing. IEEE Transactions on Cognitive
Communications and Networking, pages 1–1, 2021.

[108] Xiaoteng Ma, Qing Li, Yong Jiang, Gabriel-Miro Muntean, and Longhao Zou. Learning-
based joint qoe optimization for adaptive video streaming based on smart edge. IEEE
Transactions on Network and Service Management, pages 1–1, 2022.

[109] Yaqiong Liu, Mugen Peng, Guochu Shou, Yudong Chen, and Siyu Chen. Toward edge
intelligence: multiaccess edge computing for 5g and internet of things. IEEE Internet of
Things Journal, 7(8):6722–6747, 2020.

BIBLIOGRAPHY 149

[110] Fatima Hussain, Syed Ali Hassan, Rasheed Hussain, and Ekram Hossain. Machine
learning for resource management in cellular and iot networks: Potentials, current so-
lutions, and open challenges. IEEE Communications Surveys & Tutorials, 22(2):1251–
1275, 2020.

[111] Yi Liu, Huimin Yu, Shengli Xie, and Yan Zhang. Deep reinforcement learning for of-
floading and resource allocation in vehicle edge computing and networks. IEEE Trans-
actions on Vehicular Technology, 68(11):11158–11168, 2019.

[112] Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang. Deep reinforcement learning for
online computation offloading in wireless powered mobile-edge computing networks.
IEEE Transactions on Mobile Computing, 19(11):2581–2593, 2020.

[113] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou. Resource allocation based on deep
reinforcement learning in iot edge computing. IEEE Journal on Selected Areas in Com-
munications, 38(6):1133–1146, 2020.

[114] Yufeng Zhan, Song Guo, Peng Li, and Jiang Zhang. A deep reinforcement learn-
ing based offloading game in edge computing. IEEE Transactions on Computers,
69(6):883–893, 2020.

[115] Jiangliang Jin and Yunjian Xu. Optimal policy characterization enhanced proximal pol-
icy optimization for multitask scheduling in cloud computing. IEEE Internet of Things
Journal, 9(9):6418–6433, 2022.

[116] Wenhan Zhan, Chunbo Luo, Jin Wang, Chao Wang, Geyong Min, Hancong Duan, and
Qingxin Zhu. Deep-reinforcement-learning-based offloading scheduling for vehicular
edge computing. IEEE Internet of Things Journal, 7(6):5449–5465, 2020.

[117] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[118] Abdurauf Khamosh, Mohammad Anwer Anwer, Nasratullah Nasrat, Javid Hamdard,
Gawhar Shah Gawhari, and Abdul Rahim Ahmadi. Impact of network qos factors on
qoe of iot services. In 2020 - 5th International Conference on Information Technology
(InCIT), pages 61–65, 2020.

[119] James Nightingale, Pablo Salva-Garcia, Jose M. Alcaraz Calero, and Qi Wang. 5g-
qoe: Qoe modelling for ultra-hd video streaming in 5g networks. IEEE Transactions on
Broadcasting, 64(2):621–634, 2018.

[120] Mohammad Aazam and Khaled A. Harras. Mapping qoe with resource estimation in iot.
In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pages 464–467, 2019.

Curriculum Vitae

Name: Qianqian Wang

Post-Secondary 2020 - present, Ph.D.
Education and Electrical and Computer Engineering
Degrees: The University of Western Ontario

London, Ontario, Canada

2016 - 2020, Ph.D.
Communication and Information System
Nanjing University of Posts and Telecommunications
Nanjing, China

2004 - 2007, M.Eng.
Computer and its Application
Nanjing University of Posts and Telecommunications
Nanjing, China

2000 - 2004, B.Eng.
Computer Science and Technology
Nanjing University of Posts and Telecommunications
Nanjing, China

Related Working Experience Lecture
Jinling Institute of Technology
Nanjing, China
2013 - present

Software Engineer
Motorola (China) Electronics Ltd Nanjing Branch
Nanjing, China
2007 - 2012

150

BIBLIOGRAPHY 151

Publications:

Journal:

[1] Q. Wang, H. Zhao, Q. Wang, H. Cao, G. S. Aujla, and H. Zhu, “Enabling secure wireless

multimedia resource pricing using consortium blockchains,” in Future Generation Computer

Systems, vol. 110, pp. 696-707, September 2019.

[2] Q. Wang, Q. Wang, S. Jin, H. Zhu and X. Wang, “A hierarchical game model for computa-

tion sharing in smart buildings,” in China Communications, vol. 17, no. 3, pp. 188-204, March

2020.

[3] Q. Wang, Y. Zhu and X. Wang, “Incomplete Information Based Collaborative Computing

in Emergency Communication Networks,” in IEEE Communications Letters, vol. 24, no. 9,

pp. 2038-2042, September 2020.

[4] Q. Wang, Q. Wang, H. Zhu and X. Wang, “Enabling Collaborative Computing Sustainably

Through Computational Latency-Based Pricing,” in IEEE Transactions on Sustainable Com-

puting, vol. 5, no. 4, pp. 541-551, October - December 2020.

[5] Q. Wang, L. Chen, Q. Wang, H. Zhu and X. Wang, “Anomaly-Aware Network Traffic Esti-

mation via Outlier-Robust Tensor Completion,” in IEEE Transactions on Network and Service

Management, vol. 17, no. 4, pp. 2677-2689, December 2020.

[6] Q. Wang, Q. Wang, H. Zhu and X. Wang, “Device-Specific QoE Enhancement through

Joint Communication and Computation Resource Scheduling in Edge-Assisted IoT Systems,”

(submitted to IEEE/ACM Transactions on Networking).

[7] Q. Wang, L. Chen, H. Zhu and X. Wang, “Collaborative Network Traffic Estimation with

Anomaly Detection via Noise-immune Low-rank Tensor Completion,” (submitted to IEEE/ACM

Transactions on Networking).

	Effective Resource Scheduling for Collaborative Computing in Edge-Assisted Internet of Things Systems
	Recommended Citation

	tmp.1660420116.pdf.Jwf0I

