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Abstract 

Recent evidence suggests that neural representations of novel movement dynamics can be 

acquired by observing someone else experiencing them first-hand. Visual information about 

another person’s movement kinematics can be transformed into an adaptation of feedforward 

limb control for the observer; however, little is known about the durability of this adaptation. 

Despite the longevity of changes in the motor system being a defining characteristic of motor 

learning, studies to date have only examined observation-related effects shortly after 

observation has occurred, leaving unknown whether such effects are transient phenomena or 

products of learned, durable changes in neural systems. We measured human participants’ 

force generation patterns before and at various time points (1 minute – 24 hours) after they 

had either performed or observed movements that were perturbed by novel, robot-generated 

forces (i.e., a velocity-dependent force field). Like participants who had physically practiced, 

observers learned to predictively generate directionally- and temporally-specific 

compensatory forces during reaching. Although retention generally decayed with time, we 

found no evidence of an interaction between the effects of the passage of time and whether 

participants had performed or observed reaches in a force field, suggesting that the adaptation 

decayed similarly regardless of whether it was induced by observing someone else’s physical 

force field learning or feeling the force field for oneself. Notably, the adaptation of predictive 

limb control induced by observation was still detectable 24 hours later, demonstrating that 

visually-acquired representations of movement dynamics can be retained, and continue to 

influence behaviour, long after the initial training period is over. Our results suggest that 

observing can have lasting effects on the brain that are similar to those seen for physical 

practice. 
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Summary for Lay Audience 

Motor learning involves the brain learning what forces are required for movement. The 

forces that our muscles need to produce in order for us to move properly will inevitably 

change with growth, aging, injury, and in different environments. To preserve our ability to 

move despite these changes, sensory and motor areas of the brain must constantly be 

adapting. This adaptation is critical for maintaining motor control, but also underlies the 

learning of new and complex motor skills. 

When we learn, the brain makes new connections that can change how it controls our bodies 

during movement. Although motor learning typically involves extensive physical practice, 

recent evidence suggests that the brain can also learn what forces are required for movement 

by observing the movements of others. This is interesting because forces are not things that 

can be seen. Information about the parts of another person’s movements that can be seen—

like visible errors in where our bodies actually are, compared to where they are supposed to 

be—must be transformed into new connections in the brain that can then be used in the 

control of the observer’s movements. A defining characteristic of learning is that the changes 

in the brain that come with it need to be long-lasting. Research suggesting that observing can 

teach the brain about the forces required for movement has only ever looked at the effects of 

observation right after observing. As a result, it was not known whether previously described 

observation-driven changes in the brain were transient, or whether they might form stable 

memories that could influence motor control well past the end of the observation period. The 

present thesis addresses this question for the first time. Here we provide evidence that 

visually-induced changes in the neural circuitry involved in force control can be retained and 

influence behaviour 24 hours after observing someone else’s movement errors. We also find 

similarities in the stability of observation-related changes and physical practice-related 

changes over time. Our results suggest that observing can have lasting effects on the brain 

that are similar to those seen for physical practice.  
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Chapter 1  

1 Introduction 

1.1 Preface 
Motor learning involves a number of different components. For example, when a dancer 

is first learning and practicing a skill, they might learn about the direction in which their 

arms should move (spatial information) and with what points in the music their 

movements should coincide (temporal information). The dancer also learns about lower-

level aspects of the skill—the mechanical requirements for movement—such as what 

patterns and magnitudes of muscle forces are required to generate the correct amounts of 

torque at particular joints. This latter element of motor learning, which provides the brain 

with the information it uses during movement execution, is the focus of this thesis. 

1.2 Motor Adaptation and Force Field Learning 
Skilled action critically depends on the brain’s ability to predict what muscle forces are 

required for movement. Because growth, aging, injury, and changing environmental 

factors all affect the dynamics of movement, the brain must constantly update its 

predictions about what forces are needed to move successfully. 

When learning a new motor skill, or regaining the ability to perform an existing skill in 

the face of changes that affect movement, the brain learns new mappings between 

sensory and motor variables, and so acquires a neural representation of the mechanical 

requirements for movement. The subsequent use of this representation by the neural 

systems involved in movement control results in changes in motor output, which 

improves (or restores) task performance by modifying muscle activation patterns 

according to predictions about movement dynamics. This process is known as motor 

adaptation, a form of motor learning. 
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1.2.1 Force Field Learning 

How the brain learns what forces are required for movement has been explored through 

studies of motor adaptation in humans and other animals. In these studies, subjects must 

adapt their motor commands to correct for experimentally imposed sensory perturbations 

that would otherwise cause performance errors during a movement task. A common 

laboratory model of motor adaptation in humans involves using a robotic device to 

generate a novel pattern of motion-dependent forces—a force field—that perturbs the arm 

during reaching tasks. In such a paradigm, participants are tasked with performing 

straight-line reaching movements in the presence of robot-imposed forces that alter reach 

dynamics and cause movements to deviate from their intended trajectories (Shadmehr 

and Mussa-Ivaldi 1994). Over successive reaches, the brain learns a representation of the 

new dynamics, and adapts the motor commands it sends to the upper limb to generate a 

novel, time-varying pattern of muscle forces (Thoroughman and Shadmehr 1999) that 

counteracts the force field in a predictive manner (Shadmehr and Mussa-Ivaldi 1994). 

This adaptation of participants’ force output results in the gradual return of reaching 

movements back to their intended trajectories, despite the continued application of 

perturbing forces by the robot. Upon removal of the force field, participants display after-

effects (i.e., large trajectory curvature in the direction opposite the force field, driven by 

the predictive generation of compensatory forces by the participant when there is no 

longer a force field to compensate for). With continued reaching in the absence of any 

perturbing forces, after-effects wash out and baseline levels of force output are restored 

(Shadmehr and Mussa-Ivaldi 1994). 

1.2.2 Durability of Force Field Learning 

The effects of force field adaptation on the human motor system are not transient. A 

defining feature of motor learning is that it requires lasting change in the mechanisms 

underlying skilled action. Learning, therefore, must involve change that persists beyond 

the period of training (Schmidt and Lee 2014). Adaptive changes in predictive force 

output patterns (i.e., the source of after-effects) have been shown to be retained for at 

least 24 hours following initial force field adaptation (Joiner and Smith 2008). Force field 

adaptation also produces savings (Mathew et al. 2021; Shadmehr and Brashers-Krug 
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1997)—a phenomenon in which re-learning occurs at a faster rate than initial learning, 

even if after-effects of the initial learning have been washed out. Force field adaptation, 

therefore, gives rise to durable changes in the mechanisms underlying skilled action, 

which improves future performance on the same task, as well as on previously untrained 

but similar tasks (Conditt et al. 1997; Gandolfo et al. 1996; Goodbody and Wolpert 1998; 

Huang and Shadmehr 2007; Hwang et al. 2003; Malfait et al. 2002; Sainburg et al. 1999; 

Shadmehr and Moussavi 2000). In this way, force field adaptation is a form of temporally 

stable learning in humans. 

1.3 Force Field Learning by Observing 

In the type of force field learning paradigm discussed thus far, the brain learns what 

forces are required for movement through extensive physical practice, wherein changes in 

cortical representations of movement dynamics are thought to be driven by discrepancies 

between the observed and predicted sensory consequences of motor commands (Miall 

and Wolpert 1996; Shadmehr et al. 2010). But recent evidence suggests that motor 

adaptation can also occur in human observers who watch as someone else undergoes 

force field adaptation. That is, the brain can learn about what forces are required for 

movement without motor commands or sensory feedback associated with one’s own 

movement. Instead, adaptation of the neural systems involved in limb control is driven by 

visual input. 

In a pioneering study of force field learning by observing, Mattar and Gribble (2005) 

provided the first clues that novel patterns of muscle forces could be learned through 

visual observation. They tested performance in a force field after participants had 

observed one of three videos—each of which depicted another individual using a robotic 

device to reach in a novel mechanical environment. Observers had watched as the 

individual adapted to a force field that was either (1) the same as, or (2) different 

(opposite direction) from, the one they would later be tested in; or, they watched a control 

video (3) in which the individual experienced randomly varying forces (an unlearnable 

field; Takahashi et al. 2001). Mattar and Gribble found that relative to group 3, which did 

not observe learning, participants who observed another individual learning to reach in a 
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force field performed better (or worse) when subsequently tested in the same (or 

different) force field. They also found that this effect did not depend on the use of 

conscious, explicit strategies for movement, but rather, on the implicit engagement of the 

motor system. They proposed that, like physically reaching in a force field, observing had 

taught the brain a new representation of reach dynamics that was used to predictively 

generate a novel, time-varying pattern of muscle forces that mirrored the force field. 

More simply put: Mattar and Gribble reasoned that observers had learned something 

about the forces required to move in the field they observed, and that this learning was 

transformed into an adaptation of the forces the observers generated as soon as they 

began reaching, thereby improving performance when facing the force field to which 

their muscle activation patterns had adapted, and impairing performance when facing a 

force field that was opposite the one they had adapted to. 

This idea is consistent with the findings of a later study conducted by Wanda and 

colleagues (2013), in which force generation patterns after observation were measured 

directly. Rather than probing adaptation by testing observers’ performance in a force 

field—which makes it difficult to assess the extent to which observers learned the novel 

dynamics through observation alone (i.e., without entering the perturbing environment)—

Wanda et al. used an error clamp assay to determine whether observing force field 

learning produced dynamic after-effects. An error clamp (also called a ‘force channel’) 

refers to a type of mechanical environment that constrains the hand path to a straight line 

and produces a direct readout of the forces generated during reaching (Scheidt et al. 

2000). Thus, by having participants perform mechanically clamped reaches before and 

after observing force field learning, one can obtain direct measurements of the forces 

generated by observers who have never moved in a force field, and so can quantify any 

adaptation of predictive force output that results solely from observing. With this 

approach, Wanda and colleagues confirmed that observing force field learning induced an 

adaptation of predictive force output in observers, and that, like with physical practice, 

this adaptation mirrored the timing and direction of the force field. Previous work has 

therefore provided convincing evidence that kinematic information obtained through 

observing force field learning can be transformed into a novel adaptation of reach 

dynamics for the observer.  
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1.3.1 Durability of Force Field Learning by Observing 

Both observing force field learning and physically practicing in a force field can elicit 

temporally- and directionally-specific changes in predictive limb control; however, while 

force field adaptation by physical practice has been shown to have lasting effects on the 

human motor system (see section 1.2.2 above), no study to date has assessed the temporal 

stability of observation-induced adaptation. In fact, to our knowledge, there is no 

evidence to suggest that observing force field learning has any effect on the brain outside 

of a narrow time window (~1 hour) following the observation period. Indeed, most data 

on the effects of observing force field learning (Brown et al. 2009, 2010; Malfait et al. 

2010; Mattar and Gribble 2005; McGregor et al. 2018b, 2018a; McGregor and Gribble 

2017; Williams and Gribble 2012) were obtained during or only minutes after 

observation had occurred, except for two studies in which performance in a force field 

(McGregor and Gribble 2015) and on a somatosensory perception task (Bernardi et al. 

2013) were assessed approximately one hour after observing. Thus, while force field 

adaptation by physical practice is known to elicit durable effects on the brain, the 

durability of the effects of observation remains to be characterized.  

Investigating the durability of the adaptation that occurs through observing force field 

learning is primarily useful for two reasons. First, it would allow us to draw comparisons 

to the temporal stability of the learning that occurs through physically reaching in a force 

field. There is a body of literature examining neural correlates of motor learning through 

physical practice, including for force field learning (Diedrichsen et al. 2005; Li et al. 

2001; Maschke et al. 2004; Shadmehr and Holcomb 1997; Smith and Shadmehr 2005). 

While there is evidence that learning movement dynamics through observation involves 

some of the same cortical regions as learning through physical practice (Brown et al. 

2009; McGregor et al. 2016), the mechanisms underlying motor learning by observing 

remain largely unknown. If learning that occurs through observation and learning that 

occurs through physical practice were found to be similarly durable under the same 

conditions, this would be consistent with the idea that these two processes share common 

neural mechanisms. Second, a tool that can elicit temporally stable changes in the neural 

control of movement without physical practice could be useful in a clinical setting, 
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particularly for promoting the recovery of motor function after stroke. Accordingly, 

information about the durability of the learning that occurs through observation is 

relevant to the design of observation-related approaches to neurorehabilitation. 

1.4 Present Study 

The purpose of the present study was to investigate the durability of the learning that 

occurs through observing force field learning. We sought to address the overarching 

question: Is the adaptation of predictive limb control that follows observation a transient 

phenomenon, or a product of durable, learned changes in the neural systems controlling 

movement? Given that the latter is true in the case of physical force field learning, a 

comparison of the effects of observing to those of physical practice can provide insight 

into this question. The present study tests the hypothesis that adaptation driven by 

observing force field learning, and adaptation driven by physically reaching in a force 

field, are similarly durable. 

As in Wanda et al. (2013), we obtained direct measurements of human participants’ force 

generation patterns at two points in the experiment: before and after they had either 

observed force field learning or physically undergone force field learning. Following the 

period of observational or physical force field exposure, participants experienced a 

temporal delay lasting between one minute and 24 hours before the second set of force 

output measurements were obtained. We probed adaptation as changes in predictive force 

generation patterns from before to after observational or physical force field exposure and 

the variable-length delay. 

In support of its purpose—to characterize the durability of the learning that occurs 

through observing force field learning—the objectives of this study were as follows: 

(1) Generate a video of an individual undergoing force field learning, and verify 

that the video induces in human observers an adaptation of predictive force output 

that is detectable immediately following observation (i.e., reproduce Wanda and 

colleagues’ (2013) main finding). 
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(2) Determine whether observation-induced changes in predictive limb control are 

still detectable beyond the observation period (i.e., after 24 hours), as has been 

demonstrated for physical force field learning (see section 1.2.2). 

(3) Compare, through quantifying adaptation at various time points after force 

field reaching or observing, the temporal stability of changes in limb control 

induced by each of the two types of force field exposure. 

(4) Assess the resistance of observation- or physical practice-induced adaptation 

to washout, and determine if the rate of washout changes with increasing time 

since observing or physically practicing. After-effects are a hallmark of force field 

adaptation (see section 1.2.2 above); however, they wash out rapidly upon 

entering a conventional perturbation-absent (null) environment. In experiments 

where participants perform reaches in a force field, the rate at which after-effects 

are extinguished following the force field’s removal can be sharply reduced by the 

presence of an error clamp during the washout period (Scheidt et al. 2000). In the 

present study, all reaches completed following observation or force field reaching 

were mechanically clamped, extending the washout phase. Slower washout allows 

us to better characterize the decay of the adaptation across a larger number of 

trials, which enables comparisons of the rate at which observation- or physical 

practice-induced adaptation is extinguished under the same conditions. 
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Chapter 2  

2 Methods 

2.1 Participants 
One hundred seventy-eight healthy individuals participated in this study. Eligibility 

requirements included right-handedness; no prior exposure to a force field learning 

paradigm; and no visual, neurological, or musculoskeletal disorders. Eighteen 

participants were excluded for failure to complete the testing session, failure to meet the 

originally stated eligibility criteria (disclosed after completing the testing session), failure 

to follow instructions during the testing session, or disruption of the testing session by 

technical difficulties (e.g., a piece of equipment broke). In each case, participants were 

recorded as needing to be excluded during or immediately following their testing 

sessions. New participants were recruited until each experimental group contained 16 

participants (after exclusions), for a total of 160 participants (mean age: 20 ± 4 years). All 

study procedures were approved by Western University’s Nonmedical Research Ethics 

Board.  

2.2 Experimental Setup 
With their right arm, participants used the handle of a two-joint robotic manipulandum 

(KINARM Laboratories, Kingston, Canada) to perform planar reaching movements to 

eight visual targets. A custom air-sled was placed beneath the right arm to prevent it from 

getting tired during the experiment. Targets were displayed on a semisilvered mirror that 

was mounted horizontally between eye-level and the workspace. This surface occluded 

participants’ direct vision of the handle and right arm but showed the position of the hand 

as a circular, white cursor, which dragged behind it a transient tracing of the hand’s 

recent trajectory (Figure 1). Targets were placed equally around the circumference of a 

circle with a 10 cm radius and a ‘home’ target at its center. On a given trial, participants 

moved the robot handle to the ‘home’ target until prompted, by the appearance of one of 

the eight possible movement targets, to perform a straight-line reaching movement to that 

target. Shortly after the end-target was reached, the robot moved the participant’s passive 
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arm so that the handle was placed back at the home position. Targets appeared in random 

order within bins of eight trials, such that each target appeared once per bin.  

To regulate reach velocity, participants received colour feedback after each reach to 

indicate whether the reach was completed too slowly (end-target turned blue), too quickly 

(end-target turned red), or within the desired time window of 400 r 50 milliseconds (end-

target disappeared rather than changing colour). These time constraints did not include 

reaction time; participants were told that they could wait as long as they wanted before 

starting their reach, and that the colour feedback would reflect the amount of time elapsed 

between leaving the ‘home’ target and reaching the end-target. Participants were 

instructed to reach to the end-target in as straight of a line as possible and to do so within 

the correct time constraints (i.e., such that the end-target would disappear rather than 

changing colour), to stop on the end-target rather than reaching past or through it, and to 

wait in the end-target until the robot initiated a return back to the ‘home’ target. 

 

 
Figure 1. Experimental setup. Participants were seated in front of a two-joint robotic 
manipulandum. A custom air-sled was placed on top of the table to support the arm. Direct vision 
of the arm was completely occluded by the opaque, horizontal display (depicted here as 
translucent) onto which targets were projected. 
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2.3 Task Design 

The experiment was divided into four blocks (Figure 2A). Participants were assigned to 

one of 10 experimental groups (N=16 participants per group). Each group designation 

referred to which of two possible force field learning protocols (Movement or 

Observation) and which of five possible delay period protocols (1-minute, 10-minute, 30-

minute, 60-minute, or 24-hour delay) a participant completed. 

 
Figure 2. Task design. A. Experimental blocks. Ten groups of participants completed a Baseline 
block, Force Field (FF) Learning block, Delay Period block, and Testing block. All participants 
completed the same Baseline and Testing blocks; which FF Learning protocol (Movement or 
Observation) and Delay Period protocol (1-minute, 10-minute, 30-minute, 60-minute, or 24-hour 
delay) participants completed was manipulated. Force generation patterns were probed during 
error clamp trials in Baseline and Testing blocks. B–D. Hand paths during null trials, error clamp 
trials, and early FF trials—for reaches to all eight targets (left) or for one reach to an individual 
target (right). The large black arrow indicates the intended reach direction; small grey arrows 
depict robot-imposed forces. 

Baseline Block. Participants began by performing 160 reaches in the absence of any 

opposing forces applied by the robot (‘null’ environment; Figure 2B). The latter half of 

trials in this block included 24 pseudorandomly interspersed error clamp trials (Scheidt et 

al. 2000)—probe trials in which ‘walls’ of force imposed by the robot restricted, or 

clamped, the position of the handle to a straight-line path between the home position and 

the end-target (Figure 2C). Such trials allowed us to quantify participants’ force output 

over the time course of a reach, prior to any force field exposure.  
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Force Field Learning Block. Following the Baseline block, participants completed one 

of two possible force field learning protocols. Participants assigned to a Movement group 

performed 160 reaches in a counter-clockwise velocity-dependent force field 

environment. The force field was applied by the robot in accordance with the following 

equation,  

(1)                                                  [
𝐹𝑥
𝐹𝑦

] = [0 −𝑘
𝑘 0 ] [

𝑣𝑥
𝑣𝑦

]                                                     

where Fx and Fy are the commanded forces, vx and vy are hand velocities in the x- and y-

axes (left-right and front-back) respectively, and k=14 Ns/m (Figure 2D). Participants 

assigned to an Observation group did not perform reaches in a force field environment; 

rather, they watched a video of a tutor performing 160 reaches in the counter-clockwise 

force field environment given by Equation 1. The video depicted a top-down view of the 

tutor’s right arm as they learned to make straight movements in the presence of 

perturbing forces (Figure 3).  
 

 

 

Figure 3. Sample frames from the video used for Observation groups. A. Tutor resting at the 
‘home’ position. B. Reach completed during the early stages of force field adaptation. The tutor 
experiences reaching errors (large trajectory curvature). C. Reach completed during the late 
stages of force field adaptation. The force field causes minimal error (trajectory curvature). 
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Participants assigned to an Observation group remained seated in front of the 

manipulandum while the video was projected onto their horizontal display. Participants 

were not informed of the presence of robot-generated forces in the video they observed. 

They were only told that the video showed “someone doing reaches”, and were instructed 

to keep count of the number of times the actor in the video reached the end-target in the 

desired time window (i.e., the number of times the end-target disappeared rather than 

changing colour). To verify that participants were paying attention during the video, they 

were asked to report their counts (verbally, to be documented by the researcher) at each 

of four checkpoints throughout the video. Any participant who reported a number not 

within 20% of the correct value at any of the four checkpoints was excluded from data 

analysis. Only one participant—who disclosed that they had fallen asleep during the 

video—reported a count that fell outside of this range and was dismissed with full 

compensation after the video had finished playing. Because moving while observing 

force field learning has been shown to interfere with the effects of observing (Mattar and 

Gribble 2005), participants were instructed to keep their hands resting flat on the table 

beneath the display, and to remain as still as possible, throughout the duration of the 

video.  

Delay Period Block. After the Force Field Learning block, participants completed one of 

five possible delay period protocols, in which they took a 1-minute, 10-minute, 30-

minute, 60-minute, or 24-hour break from using the robot. During delay periods ≤ 60 

minutes, participants remained seated in the robot chair and kept their hands resting flat 

on the table. Because we were unsure of whether moving during the delay period would 

retroactively interfere with the effects of learning by observing, participants were 

instructed to remain as still as possible throughout the duration of the delay period. The 

researcher was present to monitor participants’ motion, and any movement observed by 

the researcher was accompanied by a verbal reminder that participants should restrict 

their movement. Participants were permitted to listen to a podcast or speak with the 

researcher during the delay period, and throughout the delay the horizontal display 

showed only a solid black screen. 
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Participants assigned to a group with a 24-hour delay left the testing facility immediately 

following completion of the Force Field Learning block and returned 24 ± 2 hours later.   

Testing Block. Following the Delay block, participants were instructed to perform a final 

set of reaches with the same rules as in the Baseline block. The Testing block consisted 

of 48 error clamp trials, which allowed us to obtain a second set of measurements of 

participants’ force output during reaching.  

2.4 Analyses 
The force field used in this experiment perturbed the arm laterally relative to the reach 

direction (Figure 2). Adaptation could therefore be measured as the change in lateral 

forces generated by participants during reaching. For each error clamp trial in the 

Baseline and Testing blocks, the mechanical clamp that restricted the hand’s trajectory to 

a straight line was generated by the application of robot-generated forces that mirrored 

the lateral forces generated by the participant. Accordingly, measurements of 

participants’ lateral force output over the time course of a given reach were obtained by 

taking the sign-flipped time series of robot-generated clamp forces. All kinematic and 

force data were digitally sampled at 1000 Hz and low-pass filtered (10 Hz, double-pass, 

third-order Butterworth filter). Time-series force and velocity data were aligned on peak 

hand speed and sliced from 400 ms before to 400 ms after the time of the peak. Although 

the desired reach time was approximately 400 ms, and the peak velocity ought to 

coincide with the spatial and temporal midpoint of the reach, we sliced with a margin of 

200 ms on either side of the optimal reach time to ensure all data from all reaches would 

be included. Reaches were only excluded in the infrequent event that they were jerky 

rather than smooth—that is, the participant sped up and slowed down multiple times 

between leaving the ‘home’ target and reaching the end-target, as determined by the 

presence of two or more acceleration phases separated by a deceleration phase.  

Adapted and ideal force output profiles. For each participant, sliced lateral force output 

data from error clamp trials in the Baseline block were collapsed across same-target trials 

to generate one average baseline force output profile per target. Then, for any single trial 

in the Testing block, an adapted lateral force output profile was generated by time-series 
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subtraction of the target-matched baseline profile from the sliced lateral force output 

profile for that Testing block trial. Adapted lateral force output profiles therefore 

represented the change, from pre- to post-force field exposure, in the magnitude and 

temporal pattern of lateral forces produced by participants during reaching. For each trial 

in the Testing block, we also generated an ideal lateral force output profile, which gave 

the magnitude and temporal pattern of lateral forces that would have been required to 

perfectly oppose the force field if the force field had been applied during that trial. The 

ideal profile for a given reach was computed according to Equation 1, taking as input the 

instantaneous velocity of a participant’s hand over the time course of the reach. Because 

the force field was designed to push the arm counter-clockwise relative to the direction of 

the reach, compensatory forces produced by participants were those exerted in the 

clockwise direction. Accordingly, for simplicity we re-signed all lateral force data to 

make the sign convention for clockwise lateral forces positive.  

Adaptation metric. In previous studies, force field adaptation has traditionally been 

quantified as the reduction in peak lateral error (i.e., maximum perpendicular deviation 

from the straight-line path during a reach) over successive reaches in a force field—a 

proxy for measuring the compensatory changes in force output that underlie kinematic 

performance gains. In our study, which measured lateral forces (using error clamp probe 

trials) rather than kinematics, we used an analogous metric: peak adapted lateral force 

(i.e., the maximum change in lateral force output from baseline on a given trial in the 

Testing block). For each trial in the Testing block, we quantified the amount of 

adaptation as the peak adapted lateral force divided by peak ideal lateral force. The 

fraction of ideal force exerted provided a simple adaptation metric that reflected how 

much of the required compensatory force participants had learned to produce after force 

field exposure. Peak force values for any given trial were obtained from within a 400 ms 

epoch centered on peak velocity; however, retrieving peak values from the entire adapted 

or ideal profiles produced very similar results as those reported here.  

Washout rate. Linear regression of the fraction of ideal force exerted (peak adapted / 

peak ideal) onto trial number was used to determine the rate at which the adaptation 

washed out over successive Testing block trials. A washout rate for each participant was 
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given by the slope of the line that best fit (in a least-squares sense) the fraction of ideal 

force exerted per trial over 48 trials. 

Velocity dependence. Because during force field reaching the magnitude of robot-

imposed perturbing forces scaled with reach velocity, we also assessed the extent to 

which participants’ adapted force output exhibited velocity dependence. We fit the 

following linear model to individual participant data across the first eight trials (one reach 

to each target) in the Testing block: 

(2) 𝐹𝐴𝐷𝐴𝑃𝑇𝐸𝐷(𝑡) =  𝛽0 + 𝛽1𝑣(𝑡) + 𝛽2𝑇 + 𝜀(𝑡)      

where FADAPTED(t) denotes adapted lateral force output over the time course of a reach, 

v(t) denotes hand velocity over the time course of a reach, and T denotes trial number. 

Trial number was included as a covariate to account for any potential trial-to-trial 

washout. For each participant, we solved for the regression coefficients that would best 

fit (in a least-squares sense) the model to the data. The 𝛽1 coefficient, the velocity-

dependent gain, was used to determine the sensitivity of each participant’s adapted force 

output to reach velocity. We then normalized the modeled velocity-dependent gain by the 

actual velocity-dependent gain (k = 14 Ns/m) to compute a metric of learned velocity 

dependence, where perfect velocity dependence would be reflected by 𝛽1/ 𝑘 = 1, and no 

velocity dependence would be reflected by 𝛽1/ 𝑘 = 0. 

Statistical analyses. Adaptation metrics, washout rates, and peak velocities were 

compared between groups by two-way analysis of variance (ANOVA), with type of force 

field exposure (Movement or Observation), and delay length (1 min 10 min, 30 min, 60 

min, or 24 h), as factors. ANOVA and Bonferroni-corrected post-hoc tests were carried 

out in JASP v.0.16.2. Regressions and related statistical analyses were carried out in 

MATLAB R2021b. Modeled 𝛽1 parameters for each participant, and mean learned 

velocity dependence parameters (𝛽1/ 𝑘) for each group, were compared to zero using 

multiple one-sample, two-tailed t tests with Bonferroni corrections.  
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Chapter 3  

3 Results 

3.1 Adaptation of Force Output After Force Field Exposure 
Participants were assigned to one of 10 experimental groups, each involving one of two 

types of force field exposure (Movement or Observation) followed by one of five 

possible delay lengths (1 min 10 min, 30 min, 60 min, or 24 h). For each participant, the 

adapted force profile for any trial in the Testing block reflected the change in their lateral 

force output from their baseline measurements (see Methods). Adapted force profiles for 

each group, averaged over the first eight reaches in the Testing block (one to each target) 

across participants, are shown in Figure 4A. Positive values represent a change from 

baseline in the compensatory (clockwise) direction. 

To determine whether there were group-level differences in movement speed over the 

trials depicted in Figure 4A, differences in mean peak velocities across the first eight 

trials were assessed using two-way ANOVA [F(4,150)=1.66, P=0.163 for main effect of 

delay length; F(1,150)=5.92, P=0.016 for main effect of type of force field exposure; 

F(4,150)=3.27, P=0.013 for interaction]. Bonferroni-corrected post-hoc tests returned 

non-significant (P>0.05) results for all but one pairwise comparison, which found mean 

peak velocity to be significantly higher for the Movement group with the 10-minute delay 

than for the Observation group with the 10-minute delay (P=0.007; Figure 4B). To 

visualize the adaptation of participants’ force output in a way that would account for 

group-level differences in movement speed, we generated velocity-normalized adapted 

force profiles by dividing the profiles in Figure 4A by the average peak velocity for each 

respective group. Normalized profiles are shown in Figure 4C.  

We used the (non-normalized) adapted and ideal force data for each trial to calculate the 

fraction of the peak ideal force participants had learned to produce after observing or 

physically reaching in a force field. This fraction served as our adaptation metric, and 

accounted for variation in velocity through its use of peak ideal force (a product of 

velocity; Equation 1) as the denominator. Across the first eight trials in the Testing block 
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(Figure 4D), the peak adapted force generated one minute after physically reaching in the 

force field averaged ~75% of the peak ideal force, while observers’ adapted force output 

after the same delay averaged ~30% of the ideal (~40% of the adaptation induced by 

physical reaching). The mean fraction of peak ideal force exerted across the first eight 

Testing block trials was significantly different from zero for all combinations of delay 

length and type of force field exposure (Bonferroni-corrected P<0.001 for all 10 groups), 

showing that adaptation was still detectable after all delay lengths for both observers and 

participants who had physically reached in the force field. The effects of type of force 

field exposure and delay length on the fraction of ideal force generated were assessed by 

two-way ANOVA. We found a significant main effect of type of force field exposure 

[F(1,150)=430.10, P=6.6x10-46; Figure 4E] and a significant main effect of delay length 

[F(4,150)=8.18, P=5.4x10-6] on the fraction of ideal force exerted, with no significant 

interaction between the two factors [F(4,150)=2.04, P=0.092], suggesting that the effect 

of delay on the fraction of ideal lateral force exerted was not different for participants 

who observed versus physically practiced in the force field. The average fraction of ideal 

force generated by observers consistently fell between 35–45% that of the Movement 

group with the same delay (Figure 4D, E). Bonferroni-corrected post-hoc tests found that, 

averaged across both types of force field exposure, participants produced a significantly 

lower fraction of the ideal force after 24 hours than after 1-, 10-, or 30-minute delays 

(P=6.5x10-5, P=3.7x10-6, P=0.001, respectively); however, there was no significant 

difference (P=0.103) between the fraction of ideal force generated after 60-minute and 

24-hour delays (Figure 4F). 
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Figure 4. Adaptation of lateral force output after force field exposure. A. Average (r SE) adapted 
lateral force output profiles for Movement (left) and Observation (right) groups with different 
delay lengths between force field exposure and the Testing block. Profiles represent the 
difference in Testing-block lateral force output from baseline lateral force output, averaged over 
the first eight reaches (one to each target) in the Testing block. Positive values represent force 
output in the clockwise (compensatory) direction. B. Mean (r 95% CI) peak reach velocity over 
the first eight trials in the Testing block, for Movement (open circle) and Observation (closed 
circle) groups with different delays. No group’s peak velocity differed significantly from that of 
any other group, except for the Movement group with the 10-minute delay with respect to the 
Observation group with the 10-minute delay. C. Velocity-normalized adapted force output 
profiles, computed by dividing the profiles shown in 4A by each group’s mean peak velocity over 
the first eight reaches in the Testing block. D. Amount of adaptation, quantified as the fraction of 
peak ideal lateral force exerted, averaged across the first eight Testing block trials. Values equal 
to 1 reflect perfect adaptation and values equal to 0 reflect no adaptation. Means (r SE) are 
shown for Movement (left) and Observation (right) groups with different delays. Closed circles 
are individual participant means. The pink line represents the fraction of the delay-matched 
Movement group’s adaptation that was achieved after Observation. E. Mean (r 95% CI) amount 
of adaptation across delay lengths, for Movement and Observation groups. F. Amount of 
adaptation, averaged (r 95% CI) across types of force field exposure, by delay length. **P<0.01, 
***P<0.001 
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3.2 Washout of Adaptation 

Next, we assessed the effect of delay length on the rate at which reaching- or observation-

related adaptation washed out during error clamp probe trials after the delay period. The 

mean fraction of ideal lateral force exerted per trial in the Testing block is shown for each 

of the 10 experimental groups in Figure 5A.  

For each individual participant, the fraction of ideal lateral force generated across the 48 

Testing block trials was modeled as a linear function of trial number, where the rate of 

washout was given by the slope of the least-squares line of best fit. Average washout 

rates were compared between groups by two-way ANOVA, with type of force field 

exposure (Movement, Observation) and delay length (1 min, 10 min, 30 min, 60 min, 24 

h) as factors. There were significant main effects of type of force field exposure 

[F(1,150)=138.25, P=4.9x10-23] and delay length [F(4,150)=6.46, P=7.9x10-5] on 

washout rate; however, these effects were qualified by a significant interaction 

[F(4,150)=5.24, P=5.6x10-4]. A simple main effects analysis showed that delay length 

affected washout rate after physical force field exposure (P=1.8x10-5), but not after 

observation (P=0.252). Bonferroni-corrected post-hoc tests were conducted for all 

possible pairwise comparisons except for pairs of Observation groups with different 

delay lengths. Adaptation related to physical force field exposure was found to have 

washed out significantly faster after 1- or 10-minute delays than after 24 hours (P=0.038, 

P=2x10-5 respectively); however, there were no significant differences in washout rates at 

30 minutes, 60 minutes, and 24 hours after physical force field exposure (P>0.05 for all 

pairwise comparisons). Among post-hoc comparisons of washout rate for Movement and 

Observation groups with the same delay length, adaptation was found to have washed out 

significantly faster (P<0.001) for Movement than Observation groups at all delays except 

24 hours (P=1.000), at which point washout rates for Movement and Observation groups 

were not statistically different (Figure 5B). Additionally, the washout rate for the 

Movement group with 24-hour delay did not differ significantly from the washout rate of 

any Observation group (P>0.05 for all pairwise comparisons). Washout rates for all other 

Movement groups (i.e., delays < 60 min) were significantly different from all 

Observation groups (P<0.05 for all pairwise comparisons). 
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Figure 5. Washout of adaptation. A. Fraction of ideal force exerted across all 48 Testing block 
trials, for each group. Thin lines and surrounding shading represent single trial means r SE across 
participants in a given group; thick lines represent means for bins of eight trials (one reach to 
each target per bin). B. Mean (r 95% CI) washout rates for each group. Washout rates were 
computed for individual participants as the slope of the least-squares line of best fit to the fraction 
of ideal force exerted across the 48 Testing block trials. *P<0.05, ***P<0.001, ns P>0.05. 
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3.3 Velocity Dependence 

We next determined whether or not individual participants’ adapted lateral force output 

exhibited dependence on reach velocity. Fitting the linear model in Equation 2 to the 

adapted force and velocity time-series data from the first eight Testing block trials (one 

reach to each target), we estimated the 𝛽1 coefficient for each participant and compared 

its value to zero using two-tailed Bonferroni-corrected t tests. A 𝛽1 value significantly 

larger than zero indicated that the adapted forces generated in the compensatory direction 

scaled with instantaneous velocity. 𝛽1 was positive and significantly different from zero 

for all 80 participants who physically performed reaches in the force field, regardless of 

delay length (P<0.05 for all participants). Of the 80 participants who observed rather than 

performed perturbed reaches, 61 had a 𝛽1 parameter that was positive and significantly 

different from zero (P<0.05 for all), 10 had a 𝛽1 parameter that was negative and 

significantly different from zero (P<0.05 for all), and the remaining nine had a 𝛽1 

parameter that did not significantly differ from zero (P>0.05 for all). The number of 

participants in each group who learned appropriate velocity dependence (𝛽1>0), 

inappropriate velocity-dependence (𝛽1<0), or no velocity dependence (𝛽1=0) is shown in 

Figure 6A, accompanied by adapted force output profiles (averaged over the first eight 

trials) from sample observers whose 𝛽1 parameter fell into each category (Figure 6B).  

We normalized modeled 𝛽1 parameters by the real velocity-dependent gain of the force 

field, k, to generate a metric of learned velocity dependence: 𝛽1/ 𝑘. The mean (r 95% CI) 

learned velocity dependence for each group, with or without participants who did not 

learn any velocity dependence, is shown in Figure 6C. Including all participants’ 

parameters, the mean learned velocity dependence was significantly different from zero 

for all groups (multiple two-tailed t tests, all Bonferroni-corrected P<0.05) except the 

Observation group with a 24-hour delay (P=0.922).  
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Figure 6. Velocity dependence of adapted force output. A. Number of participants in each group 
(N=16/group) with a modeled 𝛽1 parameter significantly greater than zero (top), significantly less 
than zero (middle), or not significantly different from zero (bottom). These categories separate 
participants based on whether they learned appropriate velocity dependence, inappropriate 
velocity dependence, or no velocity dependence, respectively. Differences from zero were 
evaluated by Bonferroni-corrected two-tailed t tests (significant if adjusted P<0.05). B. Adapted 
(i.e., baseline-subtracted) force output and velocity data, averaged over the first eight reaches in 
the Testing block, from a sample participant whose modeled 𝛽1 parameter was significantly 
greater than zero (top), a sample participant whose modeled 𝛽1 parameter was significantly less 
than zero (middle), and a sample participant whose modeled 𝛽1 parameter was not significantly 
different from zero (bottom). All three sample participants were in Observation conditions. C. 
Mean normalized velocity dependence parameter (𝛽1/ 𝑘) across all members of a group (grey) or 
across members whose adapted force output exhibited appropriate velocity dependence (𝛽1 
significantly greater than zero; pink). Error bars represent 95% confidence intervals. D. Density 
of normalized velocity dependence parameters (𝛽1/ 𝑘) across participants in Movement (top) or 
Observation (bottom) groups (N=80/group).  
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Chapter 4  

4 Discussion 
The present study sought to characterize the durability of the learning that occurs through 

observing another individual undergoing force field learning. Previous studies have 

reported changes in motor behaviour, somatosensory perception, and functional 

connectivity in the brain, shortly after human participants observed another individual 

undergoing force field learning. But this body of work left unknown whether the effects 

of observing are transient, or whether they might reflect learned, durable changes in 

neural systems. We addressed this question in an experiment that probed adaptation at 

time points up to 24 hours after participants had observed another individual undergoing 

force field learning. 

4.1 Temporal Stability of Observation- or Practice-Related 
Adaptation 

Consistent with the findings of Wanda and colleagues (2013), we found that, like 

participants who learned to reach in a force field through physical practice, observers also 

learned to predictively generate directionally- and temporally-specific compensatory 

forces during reaching. Novel to the present study, we found that observation induced an 

adaptation of predictive limb control that was still detectable 24 hours later, 

demonstrating that new representations of movement dynamics acquired through 

observing can be retained, and continue to influence behaviour, well past the duration of 

the initial training period.  

Further, although observing drove less adaptation than physical practice, the passage of 

time following the training period did not have differential effects on the amount of 

adaptation measured for participants who observed versus physically performed reaches 

in a force field. The adaptation had similar temporal stability regardless of whether it was 

acquired by observing someone else’s physical force field learning or feeling the force 

field for oneself.  
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Previous studies of physical force field learning have provided evidence that neural 

representations learned during a single training session can form long-term motor 

memories that persist for several months after the initial session (Shadmehr and Brashers-

Krug 1997). Our finding that observing or physically undergoing force field learning can 

elicit long-term (>24 hours) effects that are similarly stable over time lends support to the 

idea that observing may also drive the formation of such long-lived motor memories as 

those described for physical practice.  

4.1.1 Consolidation 

Newly acquired representations of movement dynamics are gradually consolidated into 

stable motor memories over several hours following the end of a physical training period 

(Brashers-Krug et al. 1996). Although the present study provides evidence that 

representations acquired by observing force field learning can form long-term motor 

memories, it does not necessarily demonstrate that such memories have been 

consolidated. Consolidation refers specifically to a process in which a newly acquired 

memory trace becomes resistant to interference through the progressive stabilization of a 

once labile representation (Dudai 2004). That such consolidation occurs in the case of 

physical force field learning has been demonstrated by the existence of a 5-6 hour 

consolidation window during which the learned representation is susceptible to 

behavioural interference but becomes resistant to interference thereafter (Shadmehr and 

Brashers-Krug 1997).  

In the present study, activities undertaken by observers during their 24-hour delay periods 

were unsupervised and not controlled for. While during this time participants might have 

carried out activities that could have interfered with the consolidation of the newly 

acquired representation, we did not specifically assess the susceptibility of observation-

induced adaptation to interference by learning of another skill in close temporal 

proximity to the initial observation period. Future studies may wish to investigate 

whether a consolidation period such as that which has previously been described in the 

force field learning literature also exists for representations acquired by observing. If so, 

this would provide conclusive evidence that observational learning of movement 
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dynamics is consolidated into a stable motor memory following completion of the 

observation period (Dudai 2004). 

4.2 Implicit Contributions to Observational Learning 
Interestingly, the adaptation of predictive limb control after observing force field learning 

did not seem to depend on observers’ conscious awareness of perturbing forces in the 

video they observed. In our study, participants were never informed of any external 

influence on the tutor’s reaching. Many participants in fact audibly remarked on how 

“bad” the tutor’s reaches were as soon the video began to play, attributing reaching errors 

to poor control on the part of the tutor rather than suspecting the presence of 

environmental disturbances. More than half of observers requested information about the 

purpose of the study—and specifically, the purpose of the video—after they had 

completed the experiment. Among them, 100% of those who learned that the tutor was 

being perturbed said they had not previously been aware of any external forces acting on 

the arm they observed. All but one participant said they thought the tutor was simply poor 

at reaching straight (the remaining participant reported suspecting that the arm in the 

video had been their own, covertly recorded during the Baseline block minutes earlier). 

In any case, each participant said they did not suspect that the observed errors were due 

to altered dynamics in the reaching environment. That observing can induce an 

adaptation of force output in the absence of participants’ explicit knowledge of the force 

field is consistent with Mattar and Gribble’s (2005) finding that the effects of observation 

are mediated through the implicit engagement of the motor system, rather than the use of 

conscious strategy.  

Outside of facilitating the development of explicit strategies for reaching, conscious 

awareness of the presence of perturbing forces during observation could potentially 

influence the amount and/or temporal stability of the learning that occurs by observing. 

As much is known to be true for the influence of attentional processes on sensory 

perception (Logan et al. 1999) and implicit learning in contextual cueing tasks (Jiang and 

Chun 2001). In their informal comments made after the experiment had ended, many 

observers shared that during the observation period they were focused (as instructed) on 
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counting the number of times the individual in the video had reached the end-target in the 

desired time window. Future research should investigate whether instructing observers to 

attend to the curvature of the tutor’s reach trajectories, or explicitly informing them of the 

presence of a force field in the video, can modulate the effects of observing force field 

learning. Similar methods as those used in the present study can be employed to 

determine how changes in the instructions that participants receive prior to observing 

might affect subsequent adaptation. In future studies in which observers might be told of 

the presence of perturbing forces in the video they will observe, the contributions of 

explicit versus implicit control to the adaptation of predictive force output after observing 

can be dissociated by manipulating the instructions participants receive prior to starting 

the Testing block. For example, whether or not participants are told they will begin 

reaching in the same environment as they felt during the Baseline block would 

presumably influence their subsequent reaching strategy.  

4.3 Resistance to Washout  
In our study, the adaptation induced by observing force field learning was more resistant 

to washout during repeated error clamp trials than was the adaptation induced by 

physically reaching in a force field—with one exception. After 24 hours, the rate at which 

physical practice-related adaptation washed out was equivalent to the rate at which 

observation-related adaptation washed out after a post-training interval of any length (see 

Figure 5B). We note two potential explanations for our findings. First, it is possible that 

observing force field learning engages different neural mechanisms than physically 

reaching in a force field, leading to differences in the rates at which observation- and 

physical practice-related adaptation are extinguished under the same conditions. In this 

case, perhaps representations acquired through physical practice undergo a consolidation 

process that results in their functional migration to the same areas as representations 

acquired through observing, yielding similar robustness to washout after a 24-hour delay 

but not in the acute post-training period. Migration of learned representations used for 

predictive control of reaching has previously been documented to occur in association 

with consolidation of physical force field learning (Shadmehr and Holcomb 1997).  
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A second option, which does not preclude the possibility that representations acquired by 

observing or physical practice both use the same neural substrates and are equally robust 

to washout, is that the differences in washout rates reported in the present study could be 

attributable to differences in the amount of adaptation that was available to be washed out 

in the first place. At the beginning of the washout period (i.e., early Testing block), the 

amount of adaptation measured after observing was only about 40% of that measured 

after physical practice. Only at the end of the washout period did levels of adaptation 

measured for Movement groups approach the amount of adaptation that was initially 

available to be washed out among observers. In studies of motor adaptation, washout 

following the removal of a perturbing stimulus characteristically follows a falling 

exponential curve (see Taylor and Ivry 2014 for example). Washout therefore occurs at a 

faster rate in more highly adapted states, and at a slower rate in less adapted states. One 

possibility is that washout rate is causally related to how much adaptation remains to be 

washed out, rather than being determined as a function of the progression of the de-

adaptation process. The washout rates reported for Observation and Movement groups 

could therefore represent different phases of the same washout process, differentiated by 

the amount of adaptation left over at the time of the probe. The washout rates we reported 

for observers might approximate what would have been seen for Movement groups if 

there had been enough trials for them to continue reaching after meeting the level of 

adaptation that observers started with. Future studies should investigate this possibility by 

first determining whether the amount of adaptation detectable at the start of a washout 

period is causally related to washout rate. This could be done by quantifying washout rate 

after participants have performed a variable number of reaches in a force field and so 

have undergone variable amounts of adaptation.  

4.4 Inter-Individual Differences in Learned Velocity 
Dependence 

The present study found that changes in lateral forces measured shortly after observing 

force field learning exhibited a dependence on velocity signals to an extent comparable to 

what has been documented previously (Wanda et al. 2013); however, there were some 

participants who did not learn velocity dependence. Although the subset of observers 
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who failed to produce appropriate velocity-dependent forces in the early Testing block 

spanned every delay group, the proportion of participants whose adapted forces were 

statistically unrelated to reach velocity, or negatively correlated with reach velocity, was 

notably higher 24 hours after observing than within the minutes that followed the end of 

the observation period. We cannot explain why some participants learned to produce 

forces that scaled with reach velocity while others did not (or otherwise did not retain this 

learning for long enough to be detected). Differences in baseline resting-state functional 

connectivity in sensorimotor brain areas have previously been reported to predict inter-

individual differences in the effects of observing force field learning (McGregor and 

Gribble 2017). Whether such differences might also influence the temporal stability of 

the learning that occurs through observing may be of interest for future research.   

4.5 Additional Future Directions 
Some directions for future study have been proposed above; however, future research 

should also explore the mechanisms underlying the acquisition, retention, and use of 

neural representations acquired by observing force field learning. There is evidence that 

some neural regions—namely, primary somatosensory (McGregor et al. 2016) and motor 

(Brown et al. 2009) cortices—play necessary roles in acquiring new representations of 

reach dynamics both while observing force field learning and while carrying out physical 

practice in a force field. Regions of the cerebellum, intraparietal sulcus, and dorsal 

premotor cortex are also engaged both when physically experiencing reaching errors and 

when observing another individual undergoing force field learning (Malfait et al. 2010). 

Observing force field learning is also associated with changes in functional connectivity 

in a network involving the middle temporal visual area (V5/MT) and cerebellar, primary 

somatosensory, and primary motor cortices, which could provide a neuroanatomical basis 

for how visual information about others’ movements might reach sensorimotor circuits to 

facilitate learning (see McGregor and Gribble 2015).  

One possible direction for future study is to explore whether, like physically reaching in a 

force field, learning by observing may occur through sensory prediction error, where 

discrepancies between the sensed and predicted sensory consequences of motion drive 
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motor adaptation (Shadmehr et al. 2010). There is evidence that during observation, the 

observer’s central nervous system uses neural representations of movement to predict the 

tutor’s movement kinematics. For example, Flanagan and Johansson (2003) showed that 

while observing a tutor perform a motor task, observers’ eye movements were 

predictively, rather than reactively, coordinated with movement of the tutor’s hand, 

suggesting that a feedforward process was used to predict the tutor’s hand kinematics and 

appropriately direct the observers’ gaze. In the context of observing force field learning, 

we speculate that during observation, visual information about the tutor’s reach 

kinematics may be compared against the central nervous system’s predictions of what 

reach kinematics ought to look like. Presumably, such predictions are informed by 

movement representations acquired during unperturbed reaching in the Baseline block. 

Future studies could delve deeper into this line of thinking by examining adapted force 

output profiles generated by observers who were trained to perform Baseline reaches 

along a different trajectory than would be provided by a straight line between ‘home’ and 

end targets.  

Outside of further investigation into the mechanisms by which new representations are 

acquired by observing, future studies should also look into methods for improving the 

efficacy of videos generated to induce learning of neural representations of movement 

dynamics. The present study has demonstrated that representations of dynamics can be 

learned by observing, and that such representations can continue to influence behaviour 

beyond the duration of the initial training period. Here, watching only a single, 12-minute 

video induced about 40% of the adaptation gained through physically performing reaches 

in a novel dynamic environment. We suspect that our video and observation protocol 

could be modified to produce stronger effects—for example, by increasing the size and 

number of reaching errors participants observe (Brown et al. 2010), or playing the 

observation video twice (Wanda et al. 2013). Carrying out multiple training sessions 

might also be helpful, since this has been shown to improve the learning and retention of 

skills learned through physical practice (Shea et al. 2000). It would be beneficial for 

future work to determine whether such modifications might improve learning and 

retention after observing. 
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Future studies should also explore potential observation-based approaches to 

neurorehabilitation. The reorganization of motor circuits involved in force production and 

control has been recognized as a fundamental aspect of motor recovery after stroke 

(Kokotilo et al. 2009). Studies in non-human primates have demonstrated that physical 

force field exposure induces neuronal plasticity in primary motor cortex, reflecting the 

acquisition of new representations of dynamics (Li et al. 2001). The authors also found 

that changes in neural activity persisted even after washout of after-effects, providing one 

potential neural basis for how motor memories might be preserved in primary motor 

cortex. Other studies have also provided evidence that motor cortical representations of 

dynamics for simpler tasks could contribute to representations of dynamics for more 

complex behaviour (Gribble and Scott 2002), providing a potential basis for how learning 

simpler motor skills could contribute to learning more complex ones. In the present study 

we have demonstrated that observing force field learning can drive the formation of long-

term motor memories, which influence predictive limb control in a manner similar to 

what is seen following physical force field learning. For patients with disorders that 

reduce their ability to undergo physical practice (for example, stroke patients with severe 

hemiparesis), an approach to rehabilitation that drives lasting cortical reorganization 

primarily by observing could be beneficial. A future line of research could work towards 

determining the extent to which observational methods may be able to reduce the amount 

of physical therapy required for recovery of motor function. Taking into consideration the 

recommendations that have been made elsewhere within this thesis (particularly with 

respect to assessing the influence of instructional variation on adaptation, and making 

modifications that could reasonably be expected to boost the efficacy of observational 

intervention), a good place to start might be to carry out a hybrid version of the present 

study that aims to determine how much physical force field reaching can be replaced by 

observing without reducing the total amount of learning that occurs. 
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