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Abstract

Suppose R is an associative algebra with 1R and A is an associative or Lie algebra equipped

with an R-module action with the property that the algebra of endomorphisms on A defined

by the R-action is of finite dimension. In this thesis, we establish a series of conditions that

ensure that A is a PI-algebra. This work extends a collection of results in associative and Lie

PI-theory.

First, we use the added structure of an R-action on the associative algebra A to extend the

classical notion of polynomial identity to so called R-identities. We then ask: is the exis-

tence of an R-identity sufficient to ensure that A is a PI-algebra? In general, the answer is

negative; nonetheless, we prove that if the R-action is ‘compatible’ with the multiplicative

structure of A, a suitable condition on the R-identity yields a positive result. With the aim of

extending this result, we then consider associative algebras A satisfying the following prop-

erty: for all a1, . . . , ad in A, the product a1 · · · ad is a linear combination of elements of the form(
R · aσ(1)

)
· · ·

(
R · aσ(d)

)
, where σ is a non-identity permutation in S d; we call these algebras

R-rewritable. We conclude that if the R-action is ‘compatible’ with the multiplicative structure

of an R-rewritable algebra A, then A is a PI-algebra; moreover, we give an explicit polynomial

identity for A. To obtain these results, we associate to each algebra a numerical sequence,

denoted πn(A), which shares some important properties of the codimension sequence of A. In

particular, we prove that A is a PI-algebra if and only if πn(A) < n!, for some positive integer n,

thereby providing a new combinatorial characterization of PI-algebras. Lastly, we prove that

analogous results hold when A is a Lie algebra.

Keywords: Polynomial identities, PI-algebras, identical relations with actions, group-graded

algebras, Hopf algebra actions, automorphisms, anti-automorphisms, involutions, derivations
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Summary for Lay Audience

An algebra is a set of objects together with operations of multiplication, addition, and scalar

multiplication by elements of a field (such as the real numbers) such that these operations

behave nicely with one another. Suppose that we can find a non-zero polynomial f (x1, . . . , xn)

in non-commuting indeterminates x1, . . . , xn that vanishes when evaluated at arbitrary elements

of a given algebra A over a field; in this case, we say that A is a PI-algebra satisfying the

polynomial identity f ≡ 0. Satisfying a polynomial identity has far reaching consequences on

the structure of the algebra in question. Thus, it is interesting to provide criteria for when a

given algebra is a PI-algebra. This is the general goal of this thesis.
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Chapter 1

Introduction

Associative and Lie PI-algebras are the central characters of this story. To introduce them prop-

erly, we first require some notation. Denote by k 〈X〉 the free associative algebra on a countably

infinite set X of non-commuting indeterminates over a field k, and fix f (x1, . . . , xn) ∈ k 〈X〉. We

shall say that an associative algebra A satisfies the polynomial identity f (x1, . . . , xn) ≡ 0 if, for

all a1, . . . , an ∈ A, f (a1, . . . , an) = 0. Similarly, let L 〈X〉 denote the free Lie algebra on X

over the field k, and fix g(x1, . . . , xn) ∈ L 〈X〉. We shall say that a Lie algebra L satisfies the

polynomial identity g(x1, . . . , xn) ≡ 0 if, for all a1, . . . , an ∈ L, g(a1, . . . , an) = 0. An algebra

satisfying a (non-trivial) polynomial identity is called a PI-algebra.

Satisfying a (non-trivial) polynomial identity has significant impact on the structure of an as-

sociative algebra over a field. For example, the famous Kurosh Problem:

Is every finitely generated nil algebra nilpotent?

has a positive solution in the class of all PI-algebras, as first proved by Kaplansky in [14]. It

follows from Kaplansky’s theorem that Köthe’s Conjecture:

The sum of two left-sided nil ideals in a ring is nil.

also has a positive solution in the class of PI-algebras. Kaplansky’s result is regarded by many

1



2 Chapter 1. Introduction

as one of the deepest results in ring theory. More recently, Zelmanov proved the remarkable

fact that the Lie-theoretic analogue of the Kurosh Problem:

If every element in a finitely generated Lie algebra is ad-nilpotent, does it follow that the Lie

algebra is nilpotent?

also has a positive solution in the class of all Lie PI-algebras (see [23], for example). Coun-

terexamples constructed by Golod and Shafarevich in [13] show that Kurosh’s problems for

associative algebras and Lie algebras each have negative solutions, in general.

In light of the above, it is interesting to provide criteria for an associative or Lie algebra to

satisfy a polynomial identity. This is the general goal of this thesis.

Given an algebra endowed with additional structure (for example, a group action, or a group

grading) it is often convenient to extend our classical notion of polynomial identity by taking

into account the added structure. One then examines the identities that arise in this form and

their connection to the classical polynomial identities. For instance, suppose that an associative

algebra A admits a k-linear involution (that is, a k-linear anti-automorphism of A of order

2). Consider the free associative algebra k 〈X∗〉 on the set X∗ = {x, x∗ : x ∈ X}. An element

f ∈ k 〈X∗〉 is known as a ∗-polynomial; moreover f ≡ 0 is called a ∗-identity of A if f vanishes

under all evaluations in A, where the involution is used in the evaluation. A celebrated theorem

proved by Amitsur in [2] asserts that, whenever A satisfies a (non-trivial) ∗-identity, A satisfies

a classical polynomial identity. Another interesting example along the same lines is due to

Bergen and Cohen. In [10], they proved that if the identity component of a G-graded algebra

A is a PI-algebra, then A itself must be a PI-algebra; here, G denotes a finite group.

An associative algebra A admitting a k-linear involution ∗ defines a k[G]-module action on A,

where G = {1, ∗}, while an associative algebra graded by a finite group G can be regarded

as a k[G]∗-module algebra (see Definition 2.37 and Proposition 2.42). Thus, motivated by

the results of Amitsur, Bergen, and Cohen (and similar results in the literature) we centre our

research around the study of algebras A equipped with a (left unitary k-linear) R-module action,
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R → Endk(A), where R denotes a given unitary associative algebra, and Endk(A) denotes the

algebra of k-linear maps on A with the usual operations. We seek sufficient conditions for A

to be a PI-algebra. Chapter 2 contains the necessary background material; additionally, some

of the results that motivate our work are discussed in more detail. In Chapter 3, we introduce

our general framework, which encompasses each of the aforementioned results and more. The

main work is carried out in Chapters 4 and 5, and applications of our main results are discussed

in Chapter 6. Unlike the proofs of many classical results in the literature, including Amitsur’s,

Bergen’s, and Cohen’s work mentioned above, the proofs of our main results are constructive

in the sense that they provide a concrete bound on the minimal degree of a polynomial identity

for A; in fact, some of our main results include explicit polynomial identities for A.

Because our algebras are equipped with the additional structure of an R-action, the notion of

an R-identity arises naturally, and with it the question:

Is the presence of a non-trivial R-identity a sufficient condition for an algebra to be a

PI-algebra?

By imposing suitable conditions on the R-identities, we obtain a positive result; in this regard,

Theorem 4.8 is the main result in the associative case, while Theorem 5.20 is the main result in

the Lie case; the proofs of these theorems are carried out in Sections 4.1 and 5.2 respectively.

Next, we study general conditions on the R-action which ensure that the algebra in question is

a PI-algebra. The main result is Theorem 4.24 in the associative case (see Section 4.4), and

Theorem 5.26 in the Lie case (see Section 5.4). To prove these results, we associate to each

algebra a numerical sequence which turns out to be quite interesting on its own; indeed, this

sequence provides a delightful combinatorial characterization for PI-algebras; it is introduced

in Section 4.3 for associative algebras, and Section 5.3 for Lie algebras. Lastly, we discuss

some applications of our main results in Chapter 6. We focus primarily on applications per-

taining to algebras equipped with Hopf actions. Additionally, we recover several previously

known results. In this sense, this thesis forms an umbrella over a collection of results from the
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PI-theory literature.



Chapter 2

Background and motivation

2.1 Basic definitions and examples

Throughout this work, k will denote the common base field of our algebras, vector spaces, and

tensor products. Recall that a k-algebra is a vector space A equipped with a binary operation

· : A × A → A, called multiplication, such that, for all a1, a2, a3 ∈ A and α ∈ k, each of the

following conditions hold:

1. (a1 + a2) · a3 = a1 · a3 + a2 · a3

2. a1 · (a2 + a3) = a1 · a2 + a1 · a3

3. α(a1 · a2) = (αa1) · a2 = a1 · (αa2)

As is usual, we will write a1a2 in place of a1 · a2. We will say that A is associative if, for

all a1, a2, a3 ∈ A, (a1a2)a3 = a1(a2a3), and we will say it is unitary if there exists an element

1A ∈ A (called the identity) such that, for all a ∈ A, 1Aa = a1A = a. An algebra that is not

necessarily associative will be called a non-associative algebra.

A (non-associative) algebra A will be called a Lie algebra if it satifies both the anti-commutative

law and the Jacobi identity; that is, for all a1, a2, a3 ∈ A,

5



6 Chapter 2. Background and motivation

1. a2
1 = 0 (anti-commutative law)

2. (a1a2)a3 + (a2a3)a1 + (a3a1)a2 = 0 (Jacobi identity)

Note that every associative algebra A is a Lie algebra with respect to the new multiplication

[a1, a2] = a1a2 − a2a1, for all a1, a2 ∈ A.

The resulting Lie algebra will be denoted A(−).

The free associative algebra of a countably infinite set X = {x1, x2, . . . } over k, denoted k 〈X〉,

is the algebra of polynomials in the non-commuting indeterminates xi ∈ X; on occasion, we

will use y, z, yi, zi, etc., to denote elements of X. A basis for k 〈X〉 is given by the set of all words

in the alphabet X; the empty word is denoted by 1, and the product of two words is defined by

concatenation.

Proposition 2.1. Given an associative algebra A, any set theoretic map ϕ : X → A can be

uniquely extended to a homomorphism of algebras ϕ̄ : k 〈X〉 → A.

If f ∈ k 〈X〉, we write f (x1, . . . , xn) to indicate that the only indeterminates occurring in f

are precisely x1, . . . , xn. Given a1, . . . , an ∈ A, the evaluation f (a1, . . . , an) corresponds to the

image of f under ϕ̄ (see Proposition 2.1), where ϕ : X → A is any map satisfying ϕ(xi) = ai,

for all 1 ≤ i ≤ n.

A non-zero scalar multiple of a word is called a monomial. The degree of xi in a monomial

m ∈ k 〈X〉, denoted degi(m), corresponds to the number of occurrences of xi in m. The degree

of m, denoted deg(m), is defined as the sum of all degi(m). The degree of a polynomial f ∈

k 〈X〉, denoted deg( f ), is the maximum amongst all values of deg(m) as m varies amongst all

monomials of f .
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2.1.1 PI-algebras

Definition 2.2. Fix an associative algebra A and a polynomial f ∈ k 〈X〉. We shall say that

f ≡ 0 is a polynomial identity for A if ϕ̄( f ) = 0, for every map ϕ : X → A (see Proposition

2.1). Equivalently, f (x1, . . . , xn) ≡ 0 is a polynomial identity for A if, for all a1, . . . , an ∈ A,

f (a1, . . . , an) = 0.

Example 2.3. Important algebraic properties can be expressed in the language of polynomial

identities. Fix an associative algebra A.

1. A is commutative if and only if it satisfies the polynomial identity [x1, x2] ≡ 0; here,

[x1, x2] = x1x2 − x2x1 denotes the Lie commutator of x1 and x2.

2. A is nilpotent of index n ≥ 1 if and only if x1 · · · xn ≡ 0 is a polynomial identity for A.

3. A is nil of bounded index if and only if there exists an integer n ≥ 1 such that xn
1 ≡ 0 is a

polynomial identity for A.

Definition 2.4. An associative algebra A is called a PI-algebra if it satisfies a non-trivial (i.e.,

non-zero) polynomial identity f ≡ 0.

Example 2.5. Let UTn(k) denote the algebra of n×n upper triangular matrices with entries in

k. Observe that, for all A1, A2 ∈ UTn(k), [A1, A2] is a strictly upper triangular matrix. It follows

easily that UTn(k) is a PI-algebra satisfying the polynomial identity

[x1, x2] · · · [x2n−1, x2n] ≡ 0.

Example 2.6. Let Mn(k) denote the algebra of n × n matrices with entries in k. By a theorem

of Amitsur and Levitzki (see [3]), Mn(k) satisfies the standard polynomial identity of degree

2n:

s2n(x1, . . . , x2n) =
∑
σ∈S 2n

sgn(σ)xσ(1) · · · xσ(2n) ≡ 0,

where S 2n denotes the symmetric group on {1, . . . , 2n}. Hence, every matrix algebra is a PI-
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algebra.

Example 2.7. To conclude this round of examples, consider the Grassmann algebra over a field

k of characteristic different from 2. Suppose that V is a vector space with basis {en : n ∈ Z+}.

The Grassmann (or exterior) algebra of V , denoted by E, is the associative algebra generated

by {en : n ∈ Z+} with defining relations

eie j + e jei = 0, for all i, j ∈ Z+.

A basis for E is given by B =
{
1, ei1 · · · eik : i1 < · · · < ik, k ≥ 1

}
. Note that monomials in the

ei’s of even length lie in the centre of E. From this simple observation, it is easy to see that

[[x1, x2] , x3] ≡ 0

is a polynomial identity for E. Indeed, any commutator of two elements of E is a linear

combination of monomials in the ei’s of even length. Hence, E is a PI-algebra.

2.1.2 T-ideals and multilinear identities

A polynomial f ∈ k 〈X〉 is linear in xi if degi(m) = 1, for every monomial m of f . The

polynomial f (x1, . . . , xn) is called multilinear if it is linear in xi, for all 1 ≤ i ≤ n. For instance,

the (multilinear) polynomial

sn(x1, . . . , xn) =
∑
σ∈S n

sgn(σ)xσ(1) · · · xσ(n)

is known as the standard polynomial of degree n.

Multilinear polynomials play an important role in PI-theory. First, observe that one can easily

determine whether a multilinear polynomial f (x1, . . . , xn) ∈ k 〈X〉 is an identity for a given

algebra A. Indeed, it is enough to check whether f (x1, . . . , xn) vanishes on basis elements.
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Moreover, every PI-algebra satisfies some multilinear polynomial identity.

Theorem 2.8. If an associative algebra A satisfies a polynomial identity of degree n, then it

satisfies a multilinear identity of degree n.

Proof. This result follows from the well-known multilinearization process. See Theorem 1.3.7

in [12] for details. �

Definition 2.9. Given an algebra A, we will write Id(A) to denote the set of polynomial identi-

ties of A:

Id(A) = { f ∈ k 〈X〉 : f ≡ 0 on A} .

Clearly, Id(A) is a two-sided ideal of k 〈X〉. Moreover, if f (x1, . . . , xn) ∈ Id(A), then given any

homomorphism of algebras ψ : k 〈X〉 → k 〈X〉, ψ( f ) ∈ Id(A). Indeed, if ψ(xi) = gi, for each

1 ≤ i ≤ n, then ψ( f ) = f (g1, . . . , gn) ∈ Id(A). Two-sided ideals with this property are called

T-ideals.

Definition 2.10. We will say that a two-sided ideal I of k 〈X〉 is a T-ideal if ψ(I) ⊆ I, for all en-

domorphisms ψ : k 〈X〉 → k 〈X〉. Fix a set of polynomials S =
{
f j(x1, . . . , xn j) ∈ k 〈X〉 : j ∈ J

}
.

1. The T-ideal generated by S is the smallest T-ideal of k 〈X〉 containing S , it will be denoted

by 〈S 〉T ; in other words,

〈S 〉T = spank

{
u j f j(g1, . . . , gn j)v j ∈ k 〈X〉 : u j, g1, . . . , gn j , v j ∈ k 〈X〉, j ∈ J

}
.

2. We will refer to the elements of 〈S 〉T as consequences of the polynomials f j ∈ S .

Example 2.11. Consider the polynomial f (x) = x2. Then,

f (x1 + x2) − f (x1) − f (x2) = x1x2 + x2x1
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is a (multilinear) consequence of f .

Remark 2.12. The Specht problem asks whether every set of polynomial identities of an alge-

bra is a consequence of a finite number of identities; Kemer’s positive solution to the Specht

problem for associative algebras over a field of characteristic 0 is one of the greatest achieve-

ments of PI-theory (see [15]). However, given an algebra A, it is very difficult to find an explicit

set S ⊆ k 〈X〉 such that 〈S 〉T = Id(A). In fact, to this day, finding such a set remains an open

problem even for the matrix algebra M3(Q)!

2.2 Background results

Next, we present a selection of results in PI-theory which serve as motivation for our work.

Our intention is twofold. First, to introduce the reader to more “general” notions of polynomial

identities which arise naturally when the algebra in question is equipped with some additional

structure. Second, to illustrate that the existence of such “general” identities can be used as

criteria to determine whether a given algebra is a PI-algebra. Throughout this section, A will

denote an associative algebra.

2.2.1 Graded identities

When the associative algebra A is equipped with a group grading, one may speak of more

“general” polynomial identities of A. In this section, we introduce graded identities and present

a well-known result due to Bergen and Cohen which relates graded identities and ordinary

polynomial identities.

Fix a finite multiplicative group G. Recall that a vector space decomposition

A =
⊕
g∈G

A(g)

is a G-grading of A provided A(g1)A(g2) ⊆ A(g1g2), for all g1, g2 ∈ G. The subspaces A(g) are called
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the homogeneous components of A. An element a ∈ A is called homogeneous of degree g if

a ∈ A(g).

Throughout this subsection, let X denote the disjoint union of the sets X(g) = {x(g)
1 , x(g)

2 , . . . },

with g ∈ G. We shall say that a monomial x(g1)
i1
· · · x(gn)

in
∈ k 〈X〉 has homogeneous degree g

if g1 · · · gn = g. We will write k 〈X〉(g) to denote the vector space spanned by all monomials

having homogeneous degree g. We may now equip the free associative algebra on X with a

G-grading as follows:

k 〈X〉 =
⊕
g∈G

k 〈X〉(g).

We will write k 〈X〉gr to emphasize that we are referring to the free associative algebra on X

with this particular grading. The algebra k 〈X〉gr is known as the free G-graded algebra of

countable rank over k. Elements of k 〈X〉gr are called graded polynomials.

Proposition 2.13. Given any G-graded algebra A, any set theoretic map ϕ : X → A satisfying

ϕ
(
X(g)

)
⊆ A(g), for all g ∈ G, can be uniquely extended to a homomorphism ϕ̄ : k 〈X〉gr

→ A of

G-graded algebras.

Definition 2.14. Fix a G-graded algebra A. A graded polynomial f ∈ k 〈X〉gr is a graded

identity of A if

f ∈
⋂

ker ϕ̄,

where the intersection runs over all maps ϕ : X → A satisfying ϕ
(
X(g)

)
⊆ A(g), for all g ∈ G,

and ϕ̄ is defined as in Proposition 2.13.

Notice that satisfying a graded identity is a much weaker condition than satisfying an ordinary

polynomial identity. For example, we may equip any algebra A with a trivial G-grading, where

A(g) =


A if g = 1G

0 otherwise
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In this case, any graded polynomial f
(
x(g1)

i1
, . . . , x(gn)

in

)
is a graded identity for A provided gi ,

1G, for all 1 ≤ i ≤ n. Thus, even when A satisfies a non-trivial graded identity, it may not be a

PI-algebra. Nonetheless, by imposing suitable conditions on the graded identity, we can obtain

a positive result. Indeed, as a consequence of Theorem 2.15, any G-graded algebra A satisfying

a graded identity of the form ∑
σ∈S d

ασx(1)
σ(1) · · · x

(1)
σ(d) ≡ 0,

is a PI-algebra.

Theorem 2.15 (Bergen, Cohen). Suppose an algebra A is graded by a group G such that |G| =

n. If A(1) satisfies a polynomial identity of degree d, then A satisfies an ordinary polynomial

identity of the form sm
nd(x1, . . . , xnd) ≡ 0, for some positive integer m.

Proof. See [10]. �

In [4], Bahturin, Giambruno, and Riley recovered an explicit bound for the degree of the poly-

nomial identity in Theorem 2.15 in terms of d and |G|. Let e = 2.71 . . . denote the base of the

natural logarithm.

Theorem 2.16 (Bahturin, Giambruno, Riley). Suppose A =
⊕

g∈G A(g) is a G-graded algebra,

with G a finite group. If A(1) satisfies an identity of degree d, then A satisfies a polynomial

identity of degree n, for all

n > e|G| (d|G| − 1)2 .

2.2.2 G-identities

When a finite group G acts on the associative algebra A by automorphisms and anti-automorphisms,

it is once again possible to speak of more “general” polynomial identities of A. In this section,

we introduce G-identities and ∗-identities. Throughout, Aut∗(A) will denote the group of auto-

morphisms and anti-automorphisms of A (under composition of functions) and G will denote a

finite subgroup of Aut∗(A). Additionally, we will write H to denote the subgroup G ∩ Aut(A).
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Reverting back to our standard notation, X will denote a countably infinite set of indeter-

minates x1, x2, . . . . We will write k 〈X |G〉 to denote the free associative algebra on the set

{xg : x ∈ X, g ∈ G}. We can define a group action on k 〈X |G〉 as follows. First, let (xg1)g2 =

xg2g1 , for all x ∈ X and g1, g2 ∈ G. Now, if v,w are monomials and g ∈ G, set

(vw)g =


vgwg if g ∈ H

wgvg if g ∈ G\H
.

Finally, extend this action to all of k 〈X |G〉 by linearity. The algebra k 〈X |G〉 is known as the

free algebra on X with G-action. Elements of k 〈X |G〉 are called G-polynomials.

Proposition 2.17. Any set theoretic map ϕ : X → A extends uniquely to a homomorphism

ϕ̄ : k 〈X |G〉 → A such that, for all x ∈ X and g ∈ G, ϕ̄ (xg) = ϕ̄ (x)g.

Definition 2.18. We say that a G-polynomial f
(
xg1

i1
, . . . , xgn

in

)
∈ k 〈X |G〉 is a G-identity for A if

f ∈
⋂

ker ϕ̄,

where the intersection runs over all maps ϕ : X → A, and ϕ̄ is defined as in Proposition 2.17.

Observe that if A is a PI-algebra satisfying a non-trivial polynomial identity f (x1, . . . , xn) ≡ 0,

then it satisfies a non-trivial G-identity f (x1
1, . . . , x

1
n) ≡ 0. As the next example illustrates, the

converse is not true.

Example 2.19. Suppose k is a field of characteristic different from 2. Let B = spank
{( 0 1

0 0
)}

,

and consider the algebra A = k 〈X〉 ⊕ B with component-wise multiplication:

(a1 + b1)(a2 + b2) = a1a2 + b1b2, for all a1, a2 ∈ k 〈X〉 and b1, b2 ∈ B.

Now consider the automorphism ϕ ∈ Aut∗(A) given by ϕ(a + b) = a − b, for all a ∈ k 〈X〉 and
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b ∈ B. Additionally, let G = {1, ϕ}. The algebra A satisfies the G-identity

(
x1 − xϕ1

) (
x2 − xϕ2

)
≡ 0.

However, A is not a PI-algebra.

Nonetheless, the converse is true if we impose suitable conditions on the G-identity. Indeed,

in [5], Bahturin, Giambruno, and Zaicev established the following connection between the

existence of a special type of G-identity, which they called essential, and the existence of an

ordinary polynomial identity of A.

Theorem 2.20 (Bahturin, Giambruno, Zaicev). Let A be an associative algebra and G a finite

subgroup of Aut∗(A). Suppose A satisfies an essential G-identity of degree d:

x1
1 · · · x

1
d +

∑
σ∈S d ,σ,1

∑
g=(g1,...,gd)∈Gd

ασ,gxg1
σ(1) · · · x

gd
σ(d) ≡ 0.

Then A satisfies a non-zero polynomial identity, whose degree is bounded by κ(d, |G|).

We leave the intricate definition of the function κ(d, |G|) for Subsection 2.2.3.

Now, suppose that A admits an involution ∗ (that is, a k-linear anti-automorphism of A of order

2) and consider the group G = {1, ∗}. In this case, G-polynomials and G-identities are called

∗-polynomials and ∗-identities, respectively. In [2], Amitsur proved that if A satisfies a non-

trivial ∗-identity, then it satisfies an ordinary polynomial identity (no additional conditions on

the ∗-identity required!). The following quantitative version of Amitsur’s result follows from

Theorem 2.20.

Theorem 2.21. Let A be an algebra with involution ∗ satisfying a non-trivial ∗-identity of

degree d. Then, A satisfies a non-trivial polynomial identity whose degree is bounded by the

function f (2d, 2).

Proof. See Theorem 10.3.3 in [12]. �
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2.2.3 Combinatorics of words

The combinatorial properties of the permutation group S n are among the main tools used to

prove Theorems 2.16 and 2.20. In this subsection, we introduce these properties; they will be

used extensively in order to prove the main results in this thesis. The reader can safely skip this

subsection and refer back as the need arises.

In the sequel, permutations in S n are ordered lexicographically; that is, given two permutations

α, β ∈ S n, we will write α < β if, for some k ≥ 0,

α(1) = β(1), . . . , α(k) = β(k) and α(k + 1) < β(k + 1).

Definition 2.22. Let d ≤ n be positive integers. A permutation σ ∈ S n is called d-bad if there

exists a sequence of integers 1 ≤ h1 < · · · < hd ≤ n such that σ(h1) > · · · > σ(hd); otherwise,

σ is called d-good.

For example, consider the following permutation in S 5:

σ =

1 2 3 4 5

1 3 4 2 5

 .
This permutation is 3-good but 2-bad; for instance, 2 < 4, yet σ(2) > σ(4).

By extension, a monomial of the form xσ(1) · · · xσ(n) ∈ k 〈X〉 will be called d-good (respectively,

d-bad) if the corresponding permutation σ ∈ S n is d-good (respectively, d-bad). In the next

chapters, we will need an upper bound for the number of d-good words in k 〈X〉.

Lemma 2.23. For all positive integers d ≤ n, the number of d-good permutations in S n does

not exceed (d−1)2n

(d−1)! .

Proof. See Theorem 1.8 in [20]. �



16 Chapter 2. Background and motivation

Next, we introduce the notion of d-indecomposable permutations; this is a generalization of

the notion of d-good permutations.

Definition 2.24. Let d ≤ n be positive integers. A permutationσ ∈ S n is called d-decomposable

if there exists a sequence of integers

1 ≤ h1 ≤ t1 < h2 ≤ t2 < · · · < hd ≤ td ≤ n, (2.1)

such that the following conditions are satisfied:

1. σ(h1) > σ(h2) > · · · > σ(hd);

2. ti = hi+1 − 1, for each 1 ≤ i ≤ d − 1; and,

3. σ(hi) > σ(k), for all hi < k ≤ ti and 1 ≤ i ≤ d.

If no such d-decomposition exists, σ is called d-indecomposable. We shall write ad(n) to

denote the number of d-indecomposable permutations in S n.

Consider the following permutation in S 6:

σ =

1 2 3 4 5 6

5 6 3 4 1 2

 .
This permutation is 3-decomposable; for instance, we can take h1 = 2, t1 = 3, h2 = 4, t2 = 5,

and h3 = t3 = 6.

A monomial of the form xσ(1) · · · xσ(n) ∈ k 〈X〉 will be called d-indecomposable (respectively,

d-decomposable) if the corresponding permutation σ ∈ S n is d-indecomposable (respectively,

d-decomposable). Notice that a d-decomposable word w = xσ(1) · · · xσ(n) can be written in the

form w = w0w1 · · ·wdwd+1, where, for each 1 ≤ i ≤ d, wi = xhi · · · xti is a non-empty monomial.

Moreover, given any non-trivial permutation τ ∈ S d, w0wτ(1) · · ·wτ(d)wd+1 < w0w1 · · ·wdwd+1.

We will also require an upper bound for the number of d-indecomposable permutations in S n.
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In [5], Bahturin, Giambruno and Zaicev gave the following estimate for ad(n).

Lemma 2.25. Fix positive integers d ≤ n and m. Set k = d + blog2mc, N = 2k2k+1
, p2 = 2k2k

,

and define p j, for each j > 2, to be the integer for which

logN . . . logN︸         ︷︷         ︸
j−2

p j = p2.

Set κ(d,m) = log2 pd. If n ≥ κ(d,m), then ad(n) <
(

1
m

)n
n!.

Remark 2.26. Henceforth, we reserve the notation κ(d,m) for the map defined in Lemma 2.25.

The following elementary computation will simplify some of our proofs later on.

Lemma 2.27. Fix positive integers d ≥ 2 and m. If t = κ(d,m + 1), then mt+1ad(t) < t!.

Proof. Note that, for all d ≥ 2, we have

t = κ(d,m + 1) ≥ κ(2,m + 1) = log2 p2 = k2k =
(
2 + blog2 (m + 1)c

)
2(2+blog2(m+1)c) > m log2 m.

Then,

t > m log2 m ≥
log2 m

log2

(
m+1

m

) ; (2.2)

indeed, for all positive integers m:

log2

(
m + 1

m

)m

> 1.

It follows from Equation (2.2) that ( m
m + 1

)t
≤

1
m
,

and thus, by Lemma 2.25,

mt+1ad(t) < mt+1
(

1
m + 1

)t

t! ≤ t!,
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as required. �

2.3 Hopf algebras and their actions

In this section, we reformulate some of the previous results using the language of Hopf actions.

We restrict ourselves to introducing only the most basic notions about Hopf algebras which will

be needed in the sequel. Most importantly, we introduce three classical examples: the group

algebra k[G], the linear dual of the group algebra k[G]∗, and the universal enveloping algebra

U(g) of a Lie algebra g. Additionally, we introduce a useful convention known as Sweedler’s

notation, which will be used throughout this work. For a complete account on Hopf algebras

and their actions, we refer the reader to [18] or [22].

2.3.1 Algebras, coalgebras, and bialgebras

An associative algebra with 1 can be regarded as a triple (A,m, u) consisting of a vector space

A, a linear map m : A⊗ A→ A called multiplication, and a linear map u : k → A called the unit

map, such that the following diagrams commute:

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

id⊗m

m⊗id m

m

Figure 2.1: Associative property

A ⊗ A

k ⊗ A A ⊗ k

A

m

u⊗id

� �

id⊗u

Figure 2.2: Unitary property

The advantage of this approach is that it leads naturally to the notion of a coalgebra by “dual-

izing” or “turning all arrows around”.

Definition 2.28. A coalgebra C over k is a triple (C,∆, u) consisting of a vector space C, a

linear map ∆ : C → C⊗C called comultiplication, and a linear map ε : C → k called the counit
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map, such that the following diagrams commute:

C ⊗C ⊗C C ⊗C

C ⊗C C

id⊗∆

∆⊗id

∆

∆

Figure 2.3: Coassociative property

C ⊗C

k ⊗C C ⊗ k

C

ε⊗id id⊗ε

∆

� �

Figure 2.4: Counitary property

Remark 2.29 (Sweedler’s notation). Given a coalgebra (C,∆, u) and an element c ∈ C, we can

write ∆(c) as a sum of pure tensors:

∆(c) =
∑

j

c1 j ⊗ c2 j.

Henceforth, we drop the index j and express ∆(c) symbolically as

∆(c) =
∑
(c)

c1 ⊗ c2.

This convention is known as Sweedler’s notation.

Definition 2.30. If A1 and A2 are algebras, a linear map f : A1 → A2 is an algebra map if the

following diagrams commute:

A1 ⊗ A1 A2 ⊗ A2

A1 A2

f⊗ f

m1 m2

f

Figure 2.5: Multiplicative

A1 A2

k

f

u2u1

Figure 2.6: Unit preserving

Definition 2.31. If C1 and C2 are coalgebras, a linear map g : C1 → C2 is a coalgebra map if
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the following diagrams commute:

C1 ⊗C1 C2 ⊗C2

C1 C2

g⊗g

g

∆1 ∆2

Figure 2.7: Comultiplicative

C1 C2

k

g

ε1 ε2

Figure 2.8: Counit preserving

Let (A1,m1, u1) and (A1,m1, u1) be algebras. The tensor product A1 ⊗ A2 has a natural algebra

structure. Define mA1⊗A2 to be the composite:

A1 ⊗ A2 ⊗ A1 ⊗ A2 A1 ⊗ A1 ⊗ A2 ⊗ A2 A1 ⊗ A2,
id⊗t⊗id m1⊗m2

where t : A2 ⊗ A1 → A1 ⊗ A2 denotes the twist map a2 ⊗ a1 7→ a1 ⊗ a2. Additionally, let uA1⊗A2

denote the composite

k k ⊗ k A1 ⊗ A2.
� u1⊗u2

Then
(
A1 ⊗ A2,mA1⊗A2 , uA1⊗A2

)
is an algebra. Similarly, if (C1,∆1, ε1) and (C2,∆2, ε2) are coal-

gebras, the tensor product C1⊗C2 can be made into a coalgebra in a natural way. Define ∆C1⊗C2

to be the composite:

C1 ⊗C2 C1 ⊗C1 ⊗C2 ⊗C2 C1 ⊗C2 ⊗C1 ⊗C2,
∆1⊗∆2 id⊗t⊗id

where t : C1 ⊗ C2 → C2 ⊗ C1 denotes the twist map c1 ⊗ c2 7→ c2 ⊗ c1. Additionally, let εC1⊗C2

denote the composite

C1 ⊗C2 k ⊗ k k.
ε1⊗ε2 �

Then
(
C1 ⊗C2,∆C1⊗C2 , εC1⊗C2

)
is a coalgebra.

Definition 2.32. Let (H,m, u) be an algebra and let (H,∆, ε) be a coalgebra. We call (H,m, u,∆, ε)

a bialgebra if either of the following (equivalent) conditions holds:
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1. m and u are coalgebra maps.

2. ∆ and ε are algebra maps.

2.3.2 Hopf algebras

Definition 2.33. A Hopf algebra is a bialgebra H with a linear map S : H → H, called the

antipode, such that the following diagram commutes.

H ⊗ H H ⊗ H

H k H

H ⊗ H H ⊗ H

S⊗id

m∆

ε

∆

u

id⊗S
m

Example 2.34 (The group algebra). Let G be a multiplicative group. The group algebra k[G]

consists of all formal finite sums of the form

a =
∑
g∈G

αg · g

with αg ∈ k. We identify g ∈ G with 1 · g ∈ k[G] and regard k[G] as a vector space over k with

elements of G as a basis. The group algebra k[G] has a natural Hopf algebra structure. Indeed,

given g1, g2 ∈ G, let

m(g1 ⊗ g2) = g1g2

u(1k) = 1G

∆(g1) = g1 ⊗ g1

ε(g1) = 1k

S (g1) = g−1
1
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Extend these maps linearly to obtain a Hopf algebra structure (k[G],m, u,∆, ε, S ) on k[G].

Given a vector space V , we will write V∗ = Homk(V, k) to denote its linear dual.

Example 2.35 (The linear dual of the group algebra). Let G denote a finite multiplicative group

and let {ρg : g ∈ G} denote the standard dual basis of k[G]∗:

ρg(h) =


1 if g = h

0 otherwise

Given g1, g2 ∈ G, define

m(ρg1 ⊗ ρg2) =


ρg1 if g1 = g2

0 otherwise

and

u(1k) = 1k[G]∗ =
∑
g∈G

ρg.

Additionally, for each g ∈ G, let

∆
(
ρg

)
=

∑
h∈G

ρgh−1 ⊗ ρh,

ε
(
ρg

)
=


1k if g = 1G

0 otherwise

and S (ρg) = ρg−1 . Extend these maps linearly to obtain a Hopf algebra (k[G]∗,m, u,∆, ε, S ).

Example 2.36 (Universal enveloping algebra). Fix a Lie algebra g. A (unitary) associative

algebra A is called the universal enveloping algebra of g if

1. g is isomorphic to a subalgebra of A(−).

2. Given a (unitary) associative algebra B and a homomorphism of Lie algebras ϕ : g →

B(−), there exists a unique homomorphism of associative algebras ϕ̄ : A → B which
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extends ϕ, i.e., ϕ̄ is equal to ϕ on g.

The universal enveloping algebra of a Lie algebra g is unique up to isomorphism. Henceforth,

it shall be denoted as U(g). A basis for U(g) can be chosen in the form

e1 · · · en, e1 ≤ · · · ≤ en, n = 0, 1, 2, . . .

where each ei is an element of an ordered basis E for g. We can equip U(g) with a coalgebra

structure; define ∆ : U(g) → U(g) ⊗ U(g) via ∆(1) = 1 ⊗ 1 and ∆(x) = x ⊗ 1 + 1 ⊗ x, for all

x ∈ g. Additionally, define ε : U(g) → k via ε(1) = 1k and ε(x) = 0, for all x ∈ g. Extend both

maps linearly and multiplicatively to obtain a coalgebra (U(g),∆, ε).

2.3.3 Hopf algebra actions

Definition 2.37. Fix an algebra A and a Hopf algebra (H,m, u,∆, ε, S ). The algebra A is called

an H-module algebra, or H-algebra for short, if A is an H-module, and, for each h ∈ H and

a1, a2 ∈ A,

h · (a1a2) =
∑
(h)

(h1 · a1)(h2 · a2)1. (2.3)

Moreover, if A is associative and unitary, we require h · 1A = ε(h)1A, for all h ∈ H.

Remark 2.38. In [9], Berele extended this definition by requiring, in place of (2.3), that, for

each h ∈ H, there exists h(1), h(2), h′(1), and h′(2) in H (not necessarily coming from the coproduct)

such that, for all a1, a2 ∈ A,

h · (a1a2) =
∑(

h(1) · a1
) (

h(2) · a2
)

+
(
h′(1) · a2

) (
h′(2) · a1

)
.

This will motivate one of our principal definitions in Chapter 3 (see Definition 3.5).

Given a Hopf algebra (H,m, u,∆, ε, S ) with a fixed basis B containing 1H, denote by k 〈X |H〉

1note Sweedler’s notation in action!
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the free associative algebra generated by the set of indeterminates
{
xb : x ∈ X, b ∈ B

}
. Elements

in k 〈X |H〉 will be called H-polynomials. Given x ∈ X, we identify x = x1H and

xh =

n∑
i=1

αixbi ,

for each linear combination of basis elements h = α1b1 + · · · + αnbn ∈ H.

Remark 2.39. k 〈X |H〉 is naturally an H-algebra; indeed, for each h ∈ H,

h ·
(
xb1

i1
· · · xbn

in

)
=

∑
(h)

xh1b1
i1
· · · xhnbn

in
,

where ∆n−1(h) =
∑

(h) h1 ⊗ · · · ⊗ hn. See [6] for details.

Proposition 2.40. Suppose that A is an H-algebra. Given any map ϕ : X → A, there is a

unique algebra homomorphism extension ϕ̄ : k 〈X |H〉 → A such that ϕ̄
(
xh

)
= h · ϕ(x), for all

x ∈ X and h ∈ H.

Definition 2.41. We shall say that an H-polynomial f ∈ k 〈X |H〉 is an H-identity for an H-

algebra A if,

f ∈
⋂

ker ϕ̄,

where the intersection runs over all maps ϕ : X → A, and ϕ̄ is defined as in Proposition 2.40.

We have seen that when an associative algebra A is equipped with a group grading, an action

by automorphisms and anti-automorphisms, or an involution, the presence of a certain type of

graded identity, G-identity, or ∗-identity is sufficient to conclude that A is a PI-algebra. We

now ask:

When does the existence of an H-identity force the existence of an ordinary polynomial

identity for A?

We can draw some positive results from Theorems 2.15 and 2.20. Fix an associative unitary
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algebra A and a finite multiplicative group G. First, observe that a group grading on A corre-

sponds to a particular Hopf algebra action.

Proposition 2.42. If A is graded by G,

A =
⊕
g∈G

Ag,

then A is a k[G]∗-module algebra, where ρg ·
(∑

h∈G ah
)

= ag, for each ρg in the standard dual

basis for k[G]∗. Conversely, if A is a k[G]∗-module algebra, then A is graded by G, where

Ag = ρg · A, for each g ∈ G.

Proof. See Proposition 1.3 in [11]. �

Therefore, we can rephrase Theorem 2.15 in the language of Hopf actions and H-identities as

follows.

Corollary 2.43. Fix a unitary associative algebra A and let H = k[G]∗. If A is an H-algebra

satisfying an H-identity of the form

∑
σ∈S d

ασx
ρ1G
σ(1) · · · x

ρ1G
σ(d) ≡ 0,

then it is a PI-algebra.

Along the same lines, we have the following result in the case A is equipped with a group

action via a group homomorphism G → Aut(A).

Proposition 2.44. Any group action G → Aut(A) makes A into a k[G]-module algebra. Con-

versely, if A is a k[G]-module algebra, this arises from a group action G → Aut(A).

Proof. See Proposition 1.2 in [11]. �

However, observe that a group action G → Aut∗(A) makes A into a k[G]-module, but not into
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a k[G]-algebra in the sense of Definition 2.37. Due to this obstruction, we cannot reformu-

late Theorem 2.20 using Hopf actions. Nonetheless, the following special case follows from

Proposition 2.44.

Corollary 2.45. If A is a k[G]-algebra satisfying a k[G]-identity of the form:

x1
1 · · · x

1
d +

∑
σ∈S d ,σ,1

∑
g=(g1,...,gd)∈Gd

ασ,gxg1
σ(1) · · · x

gd
σ(d) ≡ 0,

then A is a PI-algebra.

Of course, the question of when the existence of an H-identity on A ensures that A satisfies an

ordinary polynomial identity remains open for arbitrary Hopf algebras. In order to address this,

we propose a general framework that will allow us to consider graded identities, G-identities,

∗-identities, H-identities and other “general” polynomial identities of interest simultaneously.



Chapter 3

A unified approach

Our research will focus on algebras A which are endowed with a (left unitary k-linear) R-

module action, where R denotes a given unitary associative algebra. By an R-module action on

A, we mean a homomorphism of unitary k-algebras, R→ Endk(A), where Endk(A) denotes the

algebra of linear maps on A with the usual operations. First, we consider the case when A is an

associative algebra.

Let us fix a basis B of R containing 1R and denote by k 〈X |R〉 the free associative algebra

generated by the set of indeterminates {xb : x ∈ X, b ∈ B}. Elements in k 〈X |R〉 will be called

R-polynomials. For each x ∈ X and each k-linear combination of basis elements

r = α1b1 + · · · + αnbn ∈ R,

we will identify

xr = α1xb1 + · · · + αnxbn and x1R = x.

Remark 3.1. For an arbitrary R, the free associative algebra k 〈X |R〉 need not have a natu-

ral R-action. Compare this with k 〈X〉gr which is equipped with a G-grading (see Subsection

2.2.1), k 〈X |G〉 which is equipped with a G-action (see Subsection 2.2.2), or k 〈X |H〉 which is

27



28 Chapter 3. A unified approach

equipped with an H-action (see Subsection 2.3.3).

Proposition 3.2. If an associative algebra A is endowed with an R-module action, then any

map ϕ : X → A has a unique k-algebra homomorphic extension ϕ̄ : k 〈X |R〉 → A such that, for

all x ∈ X and b ∈ B, ϕ̄
(
xb

)
= b · ϕ(x).

Definition 3.3. Suppose that A is an associative algebra endowed with an R-module action. We

shall say that an R-polynomial f ∈ k 〈X |R〉 is an R-identity for A if,

f ∈
⋂

ker ϕ̄,

where the intersection runs over all maps ϕ : X → A, and ϕ̄ is defined as in Proposition 3.2.

For example, a graded identity is an R-identity, where R = k[G]∗; a G-identity is an R-identity,

where R = k[G]; and, clearly, an H-identity is an R-identity, where R = H.

Remark 3.4. If f ∈ k 〈X |R〉, we will write f (x1, . . . , xn) to indicate that the only indeterminates

possibly occurring in f are those of the form xb
1, . . . , x

b
n, with b ∈ B.

Previous examples show that, in general, A could satisfy a nontrivial R-identity and yet might

not be a PI-algebra. Our primary goal in this thesis is to provide conditions which ensure that A

satisfies a classical polynomial identity. Most critically, we will require that the R-action on A

is compatible with the multiplicative structure of A. In order to formulate this ‘compatibility’

condition precisely, we draw some inspiration from Remark 2.38 and propose the following

definition.

Definition 3.5. Let A be a not necessarily associative algebra equipped with an R-module

action.

1. We shall say that A is a generalized R-algebra if, for each r ∈ R, there exists finitely
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many pairs (l+i , r
+
i ) and (l−i , r

−
i ) in R2 (with i ranging over a finite set I) such that

r · (a1a2) =
∑
i∈I

(l+i · a1)(r+
i · a2) +

∑
i∈I

(l−i · a2)(r−i · a1),

for all a1, a2 ∈ A.

2. We shall say that A is a positive generalized R-algebra if, for each r ∈ R, there exists

finitely many pairs (l+i , r
+
i ) in R2 (with i ranging over a finite set I) such that

r · (a1a2) =
∑
i∈I

(l+i · a1)(r+
i · a2),

for all a1, a2 ∈ A.

There are many classes of such actions in ‘Nature’. For example, if H is a Hopf algebra and

A is an H-algebra, then A is a positive generalized H-algebra. Perhaps the most important

example of a generalized R-algebra action that is not positive is the case when A admits an

involution; more generally, if G is any group acting as automorphisms and anti-automorphisms

on A, then A is a generalized R-algebra, where R = k [G]. In the next chapters we investigate:

When is a generalized R-algebra a PI-algebra?

We address this question in Chapters 4 and 5 for associative and Lie algebras, respectively.



Chapter 4

Polynomial identities of associative

algebras with actions

Our main objective in this chapter is to establish a series of combinatorial conditions that ensure

that a given associative algebra A is a PI-algebra. Initially, we focus on the R-identities of an

algebra A equipped with an R-module action; more concretely, we examine what type of R-

identities force the existence of a classical identity for A. This work is carried out in Section

4.1. We reformulate the main results of Section 4.1 in the language of generalized polynomial

identities (GPI’s) in Section 4.2. With the aim of extending our initial results, in Section 4.3

we introduce one of our most important tools: the sequence πn(A). We prove the following

characterization: A is a PI-algebra if and only if πn(A) < n!, for some positive integer n. We

then exploit the tools developed in Section 4.3 to study some general conditions on the R-action

which ensure that A is a PI-algebra. This is done in Section 4.4.

4.1 Conditions on the R-identities

Throughout this section we shall follow the notation introduced in Chapter 3; in particular, we

assume A is endowed with a (left unitary k-linear) R-module action, where R denotes a given

30
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unitary associative algebra. We begin this chapter by examining the following question:

When can the existence of an R-identity for A be used as criteria to establish that A is a

PI-algebra?

To provide an answer, it will be necessary to introduce some additional terminology and tools.

We remark that, in general, A could satisfy a non-trivial R-identity and yet might not be a PI-

algebra (for instance, see Example 2.19). Hence, we will require a special type of R-identity.

Definition 4.1. For each positive integer n, let

PR
n = spank

{
xr1
σ(1) · · · x

rn
σ(n) ∈ k 〈X |R〉 : σ ∈ S n, r1, . . . , rn ∈ R

}
.

Inspired by the work of Bahturin, Giambruno, and Zaicev in [5], we propose the following

definition.

Definition 4.2. We shall say that an R-identity of A of the form

x1 · · · xd −
∑

xr1
σ(1) · · · x

rd
σ(d) ≡ 0

rewrites A if
∑

xr1
σ(1) · · · x

rd
σ(d) is an element of PR

d without any terms of the form xr1
1 · · · x

rd
d .

Definition 4.3. We will write Id(A |R) to denote the set of R-identities of A. We define the n-th

R-codimension of A, denoted by cR
n (A), as

cR
n (A) = dimk

(
PR

n

PR
n ∩ Id(A |R)

)
.

The following lemma is analogous to Lemma 10.1.2 in [12].

Lemma 4.4. For all positive integers n,

cn(A) = dimk

(Pn + I
I

)
≤ cR

n (A),
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where I = PR
n ∩ Id(A |R).

Proof. Under the identifications made in Chapter 3, we have Pn ⊆ PR
n ; hence,

Pn ∩ Id(A) = Pn ∩
(
PR

n ∩ Id(A |R)
)
.

It follows that
Pn

Pn ∩ Id(A)
�

Pn +
(
PR

n ∩ Id(A |R)
)

PR
n ∩ Id(A |R)

≤
PR

n

PR
n ∩ Id(A |R)

,

as vector spaces. �

Suppose now that A is a generalized R-algebra. The algebraic structure of Id(A |R) is not as rich

as that of Id(A); recall that Id(A) is a T-ideal of k 〈X〉. In comparison, while Id(A |R) is a two-

sided ideal of k 〈X |R〉, it is not invariant under endomorphisms of k 〈X |R〉. Hence, even when

f (x1, . . . , xn) ∈ Id(A |R), given g1, . . . , gn ∈ k 〈X |R〉, f (g1, . . . , gn) need not be an R-identity of

A. In fact, because there is no natural R-action on k 〈X |R〉 (see Remark 3.1), the expression

f (g1, . . . , gn) may not be a well defined R-polynomial in the first place. We take advantage of

the generalized R-algebra structure of A to rectify this situation. Recall that B denotes a fixed

basis of R containing 1R.

Definition 4.5. Given a generalized R-algebra A and b ∈ B, fix a choice of finitely many

elements bσ = (bσ,1, . . . , bσ,n) ∈ Rn, for each σ ∈ S n, such that, for all a1, . . . , an ∈ A,

b · (a1 · · · an) =
∑
σ∈S n

∑
bσ

(
bσ,1 · aσ(1)

)
· · ·

(
bσ,n · aσ(n)

)
.

Define

b ·
(
xe1

i1
· · · xen

in

)
=

∑
σ∈S n

∑
bσ

xbσ,1eσ(1)
iσ(1)

· · · xbσ,neσ(n)
iσ(n)

∈ k 〈X |R〉,

for each xi1 , . . . , xin ∈ X and e1, . . . , en ∈ B.

1. These basis assignments induce a well-defined linear map which will be denoted by
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λA : R→ Endk (k 〈X |R〉).

2. For each r ∈ R and f ∈ k 〈X |R〉, we will write f r for λA(r) ( f ).

Henceforth, every associative algebra A equipped with a generalized R-action will be implicitly

equipped with a fixed linear map λA : R→ Endk(k 〈X |R〉). We remark that, in general, λA need

not be unique nor an algebra homomorphism; nevertheless, as indicated in Definition 4.6, if

f (x1, . . . , xn) ∈ k 〈X |R〉 and g1, . . . , gn ∈ k 〈X |R〉, the application of λA does allow us to regard

f (g1, . . . , gn) as a well-defined R-polynomial in k 〈X |R〉.

Definition 4.6. Given g1, . . . , gn ∈ k 〈X |R〉, fix a map ϕ : X → k 〈X |R〉 such that ϕ(x1) =

g1, . . . , ϕ(xn) = gn. This map extends uniquely to a homomorphism of algebras ϕ̄ : k 〈X |R〉 →

k 〈X |R〉 with the property that, for each x ∈ X and b ∈ B, ϕ̄(xb) = λA(b)(ϕ(x)). For each

f (x1, . . . , xn) ∈ k 〈X |R〉, we define f (g1, . . . , gn) = ϕ̄( f ).

Furthermore, we have:

Lemma 4.7. If f (x1, . . . , xn) ≡ 0 is an R-identity for A and g1, . . . , gn ∈ k 〈X |R〉, then f (g1, . . . , gn) ≡

0 is also an R-identity for A.

Finally, recall that permutations in S n are ordered lexicographically; that is, given two permu-

tations α, β ∈ S n, we will write α < β if, for some k ≥ 0,

α(1) = β(1), . . . , α(k) = β(k) and α(k + 1) < β(k + 1).

Furthermore, we shall define xr1
α(1) · · · x

rn
α(n) < xs1

β(1) · · · x
sn
β(n) in PR

n if α < β. We are ready to prove

the main result of this section.

Theorem 4.8. Let A be an associative algebra equipped with a generalized R-action corre-

sponding to ρ : R→ Endk(A) with the property that m = dimk ρ(R) is finite. If there exists an R

identity of degree d rewriting A:

f = x1 · · · xd −
∑

xr1
σ(1) · · · x

rd
σ(d) ≡ 0,
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then A is a PI-algebra satisfying an ordinary polynomial identity of degree n = κ(d,m) (for

the definition of κ(d,m), see Lemma 2.25). If moreover the action is a positive generalized

R-action, we may take n = dem(d − 1)2e (e denotes the base of the natural logarithm).

Proof. We may replace R by ρ(R) to assume that dimk R = m.

1. Suppose A is a generalized R-algebra and let n = κ(d,m). We will prove that cn(A) < n!.

By Lemma 4.4, it suffices to show that dimk(Pn + I)/I < n!, where I = PR
n ∩ Id(A |R). To

this end, consider

W = spank

{
xr1
υ(1) · · · x

rn
υ(n) : υ ∈ S n is d-indecomposable and r1, . . . , rn ∈ R

}
.

If we can show that Pn ≤ W + I, then, by Lemma 2.25, we would obtain

dimk(Pn + I)/I ≤ dimk(W + I)/I ≤ mnad(n) < mn

(
1
m

)n

n! = n!;

consequently, we would be able to conclude that A satisfies an ordinary polynomial iden-

tity of degree n, as required.

In order to prove Pn ≤ W + I, we argue by contradiction and fix the smallest permutation

τ ∈ S n for which xτ(1) · · · xτ(n) < W + I. Since τ must be d-decomposable, there exists a

sequence of integers

1 ≤ h1 ≤ t1 < · · · < hd ≤ td ≤ n

that determine a d-decomposition for w = xτ(1) · · · xτ(n); we partition w accordingly:

w =
(
xτ(1) · · ·

)︸     ︷︷     ︸
w0

(
xτ(h1) · · · xτ(t1)

)︸            ︷︷            ︸
w1

(
xτ(h2) · · · xτ(t2)

)︸            ︷︷            ︸
w2

· · ·
(
xτ(hd) · · · xτ(td)

)︸            ︷︷            ︸
wd

(
· · · xτ(n)

)︸    ︷︷    ︸
wd+1

.
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Because f ≡ 0 is an R-identity for A, then, by Lemma 4.7, so is

w0 f (w1, . . . ,wd)wd+1 = w −
∑

1,σ∈S d

∑
r

w0wr1
σ(1) · · ·w

rd
σ(d)wd+1 ≡ 0. (4.1)

Furthermore, when we expand each term in the sum on the right into a linear combination

of basis monomials in PR
n , the d-decomposition of w and the generalized R-algebra action

together force each of these basis monomials to be smaller than w. Consider υ < τ. Then

xυ(1) · · · xυ(n) ∈ W + I by the minimality of τ. Since g(xs1
1 , . . . , x

sn
n ) ≡ 0 is an R-identity of

A, for all s1, . . . , sn ∈ R, whenever g(x1, . . . , xn) ≡ 0 is an R-identity of A, it follows that

xs1
υ(1) · · · x

sn
υ(n) ∈ W + I, for all s1, . . . , sn ∈ R.

Consequently, w ∈ W + I by (4.1). This contradiction completes the proof.

2. Suppose A is a positive generalized R-algebra and let n = dem(d − 1)2e. Consider the

subspace

W = spank

{
xr1
υ(1) · · · x

rn
υ(n) : υ ∈ S n is d-good and r1, . . . , rn ∈ R

}
.

Once again, we have Pn ≤ W+I. Indeed, suppose that this were false, and fix the smallest

permutation τ ∈ S n for which

xτ(1) · · · xτ(n) < W + I.

Since τ must be d-bad, there is a sequence of integers 1 ≤ h1 < · · · < hd ≤ n with the

property that τ(h1) > · · · > τ(hd). Partition w = xτ(1) · · · xτ(n) accordingly:

w =
(
xτ(1) · · ·

)︸     ︷︷     ︸
u

(
xτ(h1) · · ·

)︸      ︷︷      ︸
w1

(
xτ(h2) · · ·

)︸      ︷︷      ︸
w2

· · ·
(
xτ(hd) · · · xτ(n)

)︸           ︷︷           ︸
wd

.
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By Lemma 4.7, because f ≡ 0 is an R-identity of A, so is

u f (w1, . . . ,wd) = w −
∑

1,σ∈S d

∑
r

uwr1
σ(1) · · ·w

rd
σ(d) ≡ 0. (4.2)

Moreover, when we expand each term in the sum on the right into a linear combination

of basis monomials in PR
n , the partition of w, followed by the positivity of the generalized

R-algebra action, forces each of these basis monomials to be smaller than w. Arguing

exactly as before shows that

xs1
υ(1) · · · x

sn
υ(n) ∈ W + I,

for all υ < τ and s1, . . . , sn ∈ R. Thus, we have found our contradiction: w ∈ W + I.

Because Lemma 2.23 assures us that number of d-good permutations in S n is at most

(d−1)2n

(d−1)! , it follows that

dimk(Pn + I)/I ≤ dimk(W + I)/I ≤ mn (d − 1)2n

(d − 1)!
.

Therefore, substituting n = dem(d − 1)2e into the inequality (n
e )n < n! yields

dimk(Pn + I)/I ≤
mn(d − 1)2n

(d − 1)!
<

n!
(d − 1)!

.

Thus, by Lemma 4.4, cn(A) < n!, and so A satisfies a polynomial identity of degree n.

�

4.2 Combining multiple actions: R-GPIs

Suppose that R1 and R2 are unitary subalgebras of Endk(A) such that A is a (positive) gener-

alized Ri-algebra, for i = 1, 2. Then, A is a (positive) generalized R-algebra, where R is the

subalgebra of Endk(A) generated by R1 and R2. In this way, we can combine multiple types of
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generalized R-algebra actions into one.

In this section, we shall use the above-mentioned observation to reformulate Theorem 4.8 in

the language of generalized polynomial identities for a given unitary associative algebra A. We

remind the reader that f is a generalized polynomial of degree d if

f (x1, . . . , xd) =
∑
σ∈S d

f σ(x1, . . . , xd),

where, for each σ ∈ S d,

f σ(x1, . . . , xd) =

ασ∑
j=1

α0,σ, jxσ(1)α1,σ, jxσ(2) · · ·αd−1,σ, jxσ(d)αd,σ, j;

in this equation, ασ denotes a fixed positive integer and each αi,σ, j ∈ A. A generalized polyno-

mial f with the property that f (a1, . . . , an) = 0, for all a1, . . . , an ∈ A, is known as a generalized

polynomial identity of A, (or GPI for short).

Now, suppose A is equipped with a generalized R-module action ρ : R → Endk(A). We shall

call an identical relation of the form

f = x1 · · · xd −
∑

1,σ∈S d

∑
α

∑
r

α0xr1
σ(1)α1xr2

σ(2) · · ·αd−1xrd
σ(d)αd ≡ 0

an R-GPI rewriting A provided f (a1, . . . , ad) = 0, for all a1, . . . , ad ∈ A, where the R-action is

applied before multiplication. Let µ : A → Endk(A) denote the action of A by left multiplica-

tion, and write E(R, f ) to denote the unitary subalgebra of Endk(A) generated by ρ(R) and the

elements µ(αi), for each αi ∈ A appearing as entries in between the indeterminates in f . By our

opening remark, if A satisfies the R-GPI f ≡ 0, we can view A as a generalized E(R, f )-algebra

and f (x1, . . . , xd)xd+1 ≡ 0 as an E(R, f )-identity of degree d + 1 rewriting A.

By the preceding discussion, we can reformulate Theorem 4.8 as follows.

Corollary 4.9. Let A be a unitary associative algebra.
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1. Suppose that R is a unitary subalgebra of Endk(A) such that A is a positive generalized R-

algebra. This occurs, for example, whenever R is generated by algebra endomorphisms

and derivations. If A satisfies an R-GPI f ≡ 0 of degree d rewriting A such that m =

dimk E(R, f ) is finite, then A satisfies an ordinary polynomial identity of degree demd2e.

2. Suppose that R is a unitary subalgebra of Endk(A) such that A is a generalized R-algebra.

This occurs, for example, whenever R is generated by algebra endomorphisms, algebra

anti-endomorphisms and derivations. If A satisfies an R-GPI f ≡ 0 of degree d rewriting

A such that m = dimk E(R, f ) is finite, then A satisfies an ordinary polynomial identity of

degree κ(d + 1,m).

Similarly, for a GPI rewriting A without R-actions,

f = x1 · · · xd −
∑

1,σ∈S d

∑
α

α0xσ(1)α1xσ(2) · · ·αd−1xσ(d)αd ≡ 0,

we will denote by E( f ) the subalgebra of Endk(A) generated by the elements µ(αi), for each

αi ∈ A appearing in f . In this case, A can be viewed as a positive generalized E( f )-algebra,

and f (x1, . . . , xd)xd+1 ≡ 0 can be viewed as an E( f )-identity of degree d + 1 rewriting A.

Corollary 4.10. If A satisfies a GPI f ≡ 0 of degree d rewriting A such that m = dimk E( f ) is

finite, then A satisfies an ordinary polynomial identity of degree demd2e.

A generalized polynomial f is called an essential GPI of A if the two-sided ideal generated

by the values f σ(a1, . . . , an), with a1, . . . , an ∈ A, contains 1A. In [21], Rowen showed that if

A satisfies an essential GPI, then A is a PI-algebra in the classical sense. Rowen’s theorem

was extended by Kharchenko to include GPIs with actions by automorphisms (from a possibly

infinite group) and the composition of derivations (in the case when the characteristic is zero).

See Theorems 2.6.4 and 2.6.8 in [16] for further details. The approach used by Rowen and

Kharchenko does not produce bounds on the degree of the polynomial identity satisfied by A.

In contrast, observe that our work does yield quantitative results along these same lines.
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Next, we work towards extending Theorem 4.8. The main tool that will allow us to accomplish

this is the sequence πn(A), which we now introduce.

4.3 The sequence πn(A) for an associative algebra A

To every associative algebra A we can associate a numerical sequence known as the codimen-

sion sequence of A.

Definition 4.11. Fix a positive integer n.

1. We will write Pn to denote the following subspace of k 〈X〉:

Pn = spank
{
xσ(1) · · · xσ(n) ∈ k 〈X〉 : σ ∈ S n

}
.

2. The integer

cn(A) = dim
Pn

Pn ∩ Id(A)

is called the n-th codimension of the algebra A.

We highlight the following simple yet useful characterization: an associative algebra A is PI-

algebra if and only if cn(A) < n!, for some positive integer n. Indeed, if A satisfies a polynomial

identity of degree n, then A satisfies a multilinear identity of degree n; this is precisely equiva-

lent to the condition cn(A) < n!.

While the codimension sequence is an important tool used to prove existence theorems in PI-

theory, given an algebra A, it is generally quite difficult to compute cn(A) explicitly. In fact,

explicit values of cn(A) are known only for very few algebras. In this section, we introduce

a new numerical sequence that might serve as a more tractable alternative to cn(A) for some

purposes. Besides being interesting on its own, this new sequence will be key to prove some

of our main results.
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Definition 4.12. Fix a positive integer n. For every a1, . . . , an ∈ A, let

πn(a1, . . . , an) = dimk
(
spank

{
aσ(1) · · · aσ(n) : σ ∈ S n

})
;

we define

πn(A) = max {πn(a1, . . . , an) : a1, . . . , an ∈ A} .

Proposition 4.13. If πd(A) < d!, then A is a PI-algebra satisfying a classical polynomial

identity of degree d!d.

Proof. Let w1, . . . ,wd! be a complete list of all multilinear monomials in k 〈X〉 of the form

xσ(1) · · · xσ(d), with σ ∈ S d. Now let a1, . . . , ad ∈ A. Then, by assumption, if we evaluate

xi 7→ ai, for each 1 ≤ i ≤ d, the corresponding images of w1, . . . ,wd! in A are k-linearly

dependent. Next, consider the standard polynomial of degree d!:

sd!(x1, . . . , xd!) =
∑
τ∈S d!

sgn(τ)xτ(1) · · · xτ(d!).

Observe that, if we specialize x j to xi, for any 1 ≤ i < j ≤ d!, then

sd!(x1, . . . , xi, . . . , xi, . . . , xd!) = 0.

It follows that A satisfies the following (non-trivial) identity:

∑
τ∈S d!

sgn(τ)wτ(1) · · ·wτ(d!) ≡ 0.

�

We now explore the relationship between cn(A) and πn(A).

Proposition 4.14. Let A be any associative algebra. Then πn(A) ≤ cn(A), for each positive
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integer n.

Proof. Notice that the k-space Pn/Pn ∩ Id(A) has a basis consisting of elements of the form

xσ(1) · · · xσ(n) + Pn ∩ Id(A), where each σ lies in some fixed subset of S n. Now consider any

a1, . . . , an ∈ A. Because the subalgebra of A generated by a1, . . . , an is the homomorphic image

of the relatively free algebra modulo Id(A) under xi+Id(A) 7→ ai, for 1 ≤ i ≤ n, and xi+Id(A) 7→

0, otherwise, it follows that the assignments xσ(1) · · · xσ(n) + Pn ∩ Id(A) 7→ aσ(1) · · · aσ(n) induce

a well-defined linear transformation from Pn/Pn ∩ Id(A) onto spank
{
aσ(1) · · · aσ(n) : σ ∈ S n

}
.

Thus, πn(a1, . . . , an) ≤ cn(A), as required. �

We have seen that an associative algebra A is PI-algebra if and only if cn(A) < n!, for some

positive integer n. It follows immediately from Propositions 4.13 and 4.14 that the same is true

if we consider πn(A) in place of cn(A).

Lemma 4.15. If A satisfies a polynomial identity of degree n, then πn(A) ≤ cn(A) < n!. Con-

versely, if πn(A) < n!, then A satisfies a polynomial identity of degree n!n.

This new characterization of PI-algebras in terms of the sequence πn(A) will be key to prove

our main result in Section 4.4.

4.3.1 Computing πn(A)

In this subsection, we compute the values of πn(A) for the 2 × 2 matrix algebra, M2(k), and the

Grassmann algebra of a countably infinite-dimensional vector space.

Example 4.16. Let M2(k) denote the algebra of all 2 × 2 matrices with entries from k. The

codimension sequence of M2(k) in characteristic zero was shown by Procesi in [19] to be:

cn (M2(k)) =
1

n + 2

(
2n + 2
n + 1

)
−

(
n
3

)
+ 1 − 2n, for all n ≥ 3.

In contrast, one can quickly check that πn(M2(k)) = 4, for all n ≥ 3, by hand, by considering
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the matrices

a1 =

1 0

1 1

 , a2 =

0 0

1 1

 , a3 =

1 1

0 1

 .
Further computations carried out in SageMath motivate the following conjecture.

Conjecture 4.17. For all positive integers n, k,

πn (Mk(Q)) = min{k2, n!}.

Proposition 4.18. Let E be the Grassmann algebra of an infinite-dimensional vector space V

over a field k of characteristic different from 2. Then πn(E) = cn(E) = 2n−1.

Proof. Because the n-th codimension of E is known to equal 2n−1 by a theorem of Krakowski

and Regev (see [17]), it suffices by Proposition 4.14 to show that 2n−1 ≤ πn(E). To see why this

inequality holds, fix an ordered basis E = {e1, e2, . . . } for V . Recall that the ordered products of

distinct basis elements from E form a basisW of E; the ordered products of even length form

a basisW0 for the subspace denoted by E0, while the ordered products of odd length form a

basisW1 for the subspace denoted by E1. In this way, E = E0⊕E1 is a Z2-grading of E, where

E0 is central in E and elements b1, b2 in E1 anticommute: b1b2 = −b2b1.

For each positive integer n, let yn = e3n−2e3n−1, zn = e3n, and set xn = yn + zn. We will show that

πn(x1, . . . , xn) = 2n−1;

it suffices to exhibit a linearly independent set Xn consisting of 2n−1 elements of the form

xσ(1) · · · xσ(n), with σ ∈ S n. To simplify the notation, for each ω = xσ(1) · · · xσ(n), let ω denote

the word obtained from ω by permuting the last two factors:

ω = xσ(1) · · · xσ(n−2)xσ(n)xσ(n−1).
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Let X1 = {x1} and, for each positive integer n ≥ 2, let

Xn = {ω1xn < · · · < ω2n−2 xn < ω1xn < · · · < ω2n−2 xn} ,

where Xn−1 = {ω1 < · · · < ω2n−2}. We can easily verify that X2 is linearly independent. Indeed,

one can easily check that the coordinate matrix

M2 =

[[
x1x2

]
W

|

[
x1x2

]
W

]

in the standard basisW has rank 2:

x1x2 x1x2

y1y2 1 1

z1y2 1 1

y1z2 1 1

z1z2 1 −1

Similarly, if n = 3, the coordinate matrix

x1x2x3 x2x1x3

y1y2y3 1 1

z1y2y3 1 1

y1z2y3 1 1

z1z2y3 1 −1

x1x2x3 x2x1x3

1 1

1 1

1 1

1 −1

y1y2z3 1 1

z1y2z3 1 1

y1z2z3 1 1

z1z2z3 1 −1

1 1

1 −1

−1 1

−1 1
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corresponding to

M3 =

[[
x1x2x3

]
W

|

[
x2x1x3

]
W

|

[
x1x2x3

]
W

|

[
x2x1x3

]
W

]

has rank 4. Note that M3 has the form:





M2

M2 ∗

M2

Next, observe that each element in Xn is a linear combination of 2n basis elements inW; the

linear ordering y1 < · · · < yn < z1 < · · · < zn induces a right-to-left lexicographic ordering on

these basis elements. Now, consider the coordinate matrix Mn of Xn with respect to this ordered

basis, where columns 1 through 2n−2 correspond to elements ω1xn, . . . , ω2n−2 xn, with ωi ∈ Xn−1,

while columns 2n−2 +1 through 2n−1 correspond to elements of the form ω1xn, . . . , ω2n−2 xn, with

ωi ∈ Xn−1. Then, Mn has the form:





Mn−1

Mn−1 ∗

Mn−1
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where the lower right matrix is of the form





Mn−2

Mn−3

−Mn−3 ∗

−Mn−2 ∗

M2

−M2Mn−4

−Mn−4 ∗

∗

. .
.

M

with

M =



1 1

1 −1

−1 1

−1 1


Using the fact that

Mn−1 =

 Mn−2 Mn−2

Mn−2 ∗

 ,Mn−2 =

 Mn−3 Mn−3

Mn−3 ∗

 , . . . ,M3 =

 M2 M2

M2 ∗

 ,
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we can perform elementary row and column operations to transform Mn into a matrix of the

form 



0

0 ∗

Mn−1

Indeed, write Ri and C j to denote the i-th row and j-th column of Mn, respectively. Perform the

following elementary column operations

C2n−2+1 −C1 → C2n−2+1

...

C2n−1 −C2n−2 → C2n−1

followed by the following elementary row operations

R2n−1+1 − R1 → R2n−1+1

...

R2n − R2n−1 → R2n

In this way, we can obtain a matrix of the form indicated above, where the lower right matrix
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corresponds to





0

0

−2Mn−3 ∗

−2Mn−2 ∗

0

−2M2

0

−2Mn−4 ∗

∗

. .
.

M′

with

M′ =



0 0

0 −2

−2 0

−2 2


Thus, it is clear that

rank(Mn) = 2 +

n−1∑
k=2

rank(Mk).
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Using strong induction, we can assume rank(Mk) = 2k−1, for all 2 ≤ k ≤ n − 1. Then,

n−1∑
k=2

rank(Mk) =

n−1∑
k=2

2k−1 = 2n−1 − 2,

and rank(Mn) = 2n−1, as required. �

4.3.2 A new ‘generic’ polynomial for PI-algebras

To conclude this section, we present an interesting application. By a well-known theorem of

Amitsur ([1]), every PI-algebra satisfies some power

sn(x1, . . . , xn)d ≡ 0

of the standard identity, where

sn(x1, . . . , xn) =
∑
σ∈S n

sgn(σ)xσ(1) · · · xσ(n);

thus, every PI-algebra satisfies a polynomial identity of a ‘generic’ type. Using a different

approach, Regev was able to provide a quantitative version of Amitsur’s theorem in [20]. The

proof of Proposition 4.13 provides us with another such generic polynomial identity:

Corollary 4.19. If an algebra A satisfies an arbitrary polynomial identity of degree d, then A

satisfies the following specific polynomial identity of degree d!d:

sd!
(
xσ1(1) · · · xσ1(d), . . . , xσd!(1) · · · xσd!(d)

)
≡ 0,

where S d = {σi : 1 ≤ i ≤ d!}.

Proof. As a consequence of the multilinearization process, if A satisfies a polynomial identity

of degree d, then it satisfies a multilinear identity of degree d. Thus, πd(A) < d!. It remains to



4.4. Conditions on the R-action 49

examine the proof of Proposition 4.13. �

4.4 Conditions on the R-action

In this section, we will exploit the tools developed in Section 4.3 to study the implications of

the following condition on a generalized R-algebra A.

Definition 4.20. Let A be an associative algebra equipped with an R-module action. We shall

say A is R-rewritable of degree d if, for every a1, . . . , ad ∈ A,

a1 · · · ad ∈ spank
{(

R · aσ(1)
)
· · ·

(
R · aσ(d)

)
: 1 , σ ∈ S d

}
.

Moreover, we shall say that A is R-rewritable if A is R-rewritable of degree d, for some d.

Clearly, if A satisfies an R-identity of degree d rewriting A, then A is R-rewritable of degree d.

Our goal in this section is to extend Theorem 4.8 to R-rewritable algebras. Our results will be

valid for algebras equipped with the following type of R-module actions.

Definition 4.21. Let A be a not necessarily associative algebra equipped with an R-module

action.

1. We shall say that A is a hypomorphic R-algebra if, for all a1, a2 ∈ A,

R · (a1a2) ⊆ spank {(R · a1) (R · a2) + (R · a2) (R · a1)} .

2. We shall say that A is a positive hypomorphic R-algebra if, for all a, b ∈ A,

R · (a1a2) ⊆ spank {(R · a1) (R · a2)} .

Notice that, while all (positive) generalized R-algebras are clearly (positive) hypomorphic R-

algebras, there is no reason to expect that the converse should hold.
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Theorem 4.22. Let A be an associative algebra equipped with a hypomorphic R-action ρ : R→

Endk(A) with the property that m = dimk ρ(R) is finite. If A is R-rewritable of degree d, then

πt(A) < t!, where t = κ(d,m).

Proof. Fix elements a1, . . . , at ∈ A. We will show that πt(a1, . . . , at) < t!. Consider the vector

space

W = spank

{
ar1
σ(1) · · · a

rt
σ(t) : σ ∈ S t is d-indecomposable, r1, . . . , rt ∈ R

}
.

By Lemma 2.25, for each n ≥ κ (d,m), the number of d-indecomposable permutations in S n is

strictly smaller than
(

1
m

)n
n!. Hence, because t = κ(d,m) and m = dimk ρ(R), we have

dimk W < mt

(
1
m

)t

t! = t!

Thus, it suffices to prove that

spank
{
aσ(1) · · · aσ(t) : σ ∈ S t

}
⊆ W.

Suppose, to the contrary, that there exists some σ ∈ S t for which aσ(1) · · · aσ(t) < W, and

fix the smallest permutation τ ∈ S t for which it is possible to find s1, . . . , st ∈ R such that

as1
τ(1) · · · a

st
τ(t) < W. Then τ has a d-decomposition

1 ≤ h1 ≤ t1 < h2 ≤ t2 < · · · < hd ≤ td ≤ t

and we can partition a = as1
τ(1) · · · a

st
τ(t) accordingly:

a =
(
as1
τ(1) · · ·

)︸     ︷︷     ︸
u

(
a

sh1
τ(h1) · · · a

st1
τ(t1)

)︸            ︷︷            ︸
w1

· · ·
(
a

shd
τ(hd) · · · a

std
τ(td)

)︸            ︷︷            ︸
wd

(
· · · ast

τ(t)

)︸    ︷︷    ︸
v

.
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Since A is R-rewritable of degree d, we have

w1 · · ·wd ∈ spank
{(

R · wσ(1)
)
· · ·

(
R · wσ(d)

)
: 1 , σ ∈ S d

}
.

Consequently, because A is a hypomorphic R-algebra by hypothesis, the defining conditions

of the d-decomposition of τ force a to be a k-linear combination of elements of the form

ar1
σ(1) · · · a

rt
σ(t), where σ < τ and r1, . . . , rt ∈ R. But every element of this form lies in W (by

the minimality of τ); hence, so does a. This contradiction proves that, for every σ ∈ S t,

aσ(1) · · · aσ(t) ∈ W; therefore, we have πt(a1, . . . , at) ≤ dimk W < t!, as desired. �

If A is equipped with a positive R-hypomorphic action, we can improve the bound on the degree

in Theorem 4.22 as follows:

Theorem 4.23. Let A be an associative algebra equipped with a positive hypomorphic R-

action ρ : R → Endk(A) with the property that m = dimk ρ(R) is finite. If A is an R-rewritable

algebra of degree d, then πt(A) < t!, where t = dem(d − 1)2e (e denotes the base of the natural

logarithm).

Our proof of Theorem 4.23 is very similar to that of Theorem 4.22 but uses the simpler notion

of d-good permutations in place of d-indecomposable permutations.

Proof. Fix elements a1, . . . , at ∈ A. We will show that πt(a1, . . . , at) < t!. Consider the vector

space

W = spank

{
ar1
σ(1) · · · a

rt
σ(t) : σ ∈ S t is d-good, r1, . . . , rt ∈ R

}
.

By Lemma 2.23, the number of d-good permutations in S t does not exceed (d−1)2t

(d−1)! . Hence,

dimk W ≤ mt (d − 1)2t

(d − 1)!

It is easy to see that, for every positive integer n,
(

n
e

)n
< n!. From this inequality, we deduce
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that

mt(d − 1)2t ≤

( t
e

)t
< t!

Thus, our proof will be complete once we show that

spank
{
aσ(1) · · · aσ(t) : σ ∈ S t

}
⊆ W.

Suppose, to the contrary, that there exists some σ ∈ S t for which aσ(1) · · · aσ(t) < W, and

fix the smallest permutation τ ∈ S t for which it is possible to find s1, . . . , st ∈ R such that

as1
τ(1) · · · a

st
τ(t) < W. Because τ is d-bad, we can find a sequence of integers 1 ≤ h1 < · · · < hd ≤ t

such that τ(h1) > · · · > τ(hd). Partition a = as1
τ(1) · · · a

st
τ(t) accordingly:

a =
(
as1
τ(1) · · ·

)︸     ︷︷     ︸
u

(
a

sh1
τ(h1) · · ·

)︸      ︷︷      ︸
w1

(
a

sh2
τ(h2) · · ·

)︸      ︷︷      ︸
w2

· · ·
(
a

shd
τ(hd) · · · a

st
τ(t)

)︸           ︷︷           ︸
wd

.

Since A is R-rewritable of degree d, we have

w1 · · ·wd ∈ spank
{(

R · wσ(1)
)
· · ·

(
R · wσ(d)

)
: 1 , σ ∈ S d

}
.

Consequently, because A is a positive hypomorphic R-algebra by hypothesis, the defining con-

ditions of the d-bad permutation τ force a to be a k-linear combination of elements of the

form ar1
σ(1) · · · a

rt
σ(t), where σ < τ and r1, . . . , rt ∈ R. But every element of this form lies in W

(by the minimality of τ); hence, so does a. This contradiction proves that, for every σ ∈ S t,

aσ(1) · · · aσ(t) ∈ W; therefore, we have πt(a1, . . . , at) ≤ dimk W < t!, as desired. �

The next theorem is the main result of this chapter. It ties together the results in Sections 4.3

and 4.4.

Theorem 4.24. Let A be an associative hypomorphic R-algebra such that the algebra of en-

domorphisms on A defined by the R-action is m-dimensional. Denote by σ1 < · · · < σt! the

distinct permutations in S t, listed in the standard lexicographical order. If A is R-rewritable of
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degree d, then A satisfies the following classical polynomial identity of degree t!t:

∑
τ∈S t!

sgn(τ)
(
xστ(1)(1) · · · xστ(1)(t)

)
· · ·

(
xστ(t!)(1) · · · xστ(t!)(t)

)
≡ 0,

where t = κ(d,m). If the action is positive, we may take t = dem(d − 1)2e.



Chapter 5

Polynomial identities of Lie algebras with

actions

Given a Lie algebra equipped with an action, what conditions ensure that it is a Lie PI-algebra?

In this chapter, we investigate this question; our research will lead us to the natural Lie-theoretic

analogues of Theorems 4.8 and 4.24. Before we can formulate our main results, we formally

introduce the basic notions and notation.

5.1 Lie PI-algebras

We remind the reader that a (non-associative) algebra L is called a Lie algebra if it satisfies

both the anticommutative law and the Jacobi identity; that is, for all a1, a2, a3 ∈ L,

1. a2
1 = 0 (anticommutative law)

2. (a1a2)a3 + (a2a3)a1 + (a3a1)a2 = 0 (Jacobi identity)

Example 5.1. Let A be an associative algebra. Denote by A(−) the vector space A together with

the operation

[a1, a2] = a1a2 − a2a1, for all a1, a2 ∈ A.

54
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It is easy to see that A(−) is a Lie algebra.

Example 5.2. Suppose A is a (non-associative) algebra. A linear map δ : A → A is called a

derivation of A if

δ(a1a2) = δ(a1)a2 + a1δ(a2), for all a1, a2 ∈ A.

Let Derk(A) denote the set of all derivations of A. Given δ1, δ2 ∈ Derk(A), the linear map δ1δ2

is generally not a derivation. However,

[δ1, δ2] = δ1δ2 − δ2δ1

is easily seen to be a derivation. Hence, Derk(A) is a Lie subalgebra of Endk(A)(−).

In order to define a polynomial identity for L, we introduce the free Lie algebra on the ordered

set of non-commutative indeterminates X = {y < x0 < x1 < · · · }. Let F 〈X〉 denote the free non-

associative algebra on X, and let I denote the smallest ideal of F 〈X〉 containing all elements of

the form f 2 and ( f g)h + (h f )g + (gh) f , where f , g, h ∈ F 〈X〉. The quotient algebra L 〈X〉 =

F 〈X〉 /I is called the free Lie algebra generated by X.

Proposition 5.3. Given a Lie algebra L, any mapping ϕ : X → L extends uniquely to a homo-

morphism of Lie algebras ϕ : L 〈X〉 → L such that ϕ(x) = ϕ(x), for all x ∈ X.

Remark 5.4. By Proposition 5.3, the identity map ι : X → X extends to a homomorphism of

Lie algebras ι : L 〈X〉 → k 〈X〉(−). It can be seen that ι is injective.

Henceforth, we use Remark 5.4 to identify L 〈X〉 with the Lie subalgebra of k 〈X〉(−) generated

by X. Elements of L 〈X〉 are called Lie polynomials. A commutator of elements of X is called

a Lie monomial. For all n ≥ 3, the left-normed commutator is defined inductively as

[
xi1 , . . . , xin

]
=

[[
xi1 , . . . , xin−1

]
, xin

]
.

Definition 5.5. Given a polynomial f ∈ L 〈X〉, we shall say that f ≡ 0 is an identity for a Lie
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algebra L if

f ∈
⋂

kerϕ,

where the intersection runs over all maps ϕ : X → L; the maps ϕ : L 〈X〉 → L are defined as

in Proposition 5.3.

The set of polynomial identities of L, denoted Id(L), forms a two-sided ideal of L 〈X〉 which

is invariant under all endomorphisms of L 〈X〉.

Definition 5.6. We shall say that a Lie algebra L is a PI-algebra if Id(L) , 0.

Example 5.7. If L is a finite dimensional Lie algebra with the property that dimk(L) < n, then

L satisfies the standard Lie identity of degree n + 1:

∑
σ∈S n

sgn(σ)
[
x0, xσ(1), . . . , xσ(n)

]
≡ 0.

Because we can identify every Lie polynomial f ∈ L 〈X〉 with an associative polynomial in

k 〈X〉, we can define deg( f ) and speak of multilinear Lie polynomials as in the associative case.

Definition 5.8. The space of multilinear Lie polynomials in x0, x1, . . . , xn will be denoted by

Qn.

The contents of the following proposition are well known (see Proposition 12.2.6 in [12]).

Proposition 5.9.

1. dimk Qn = n!

2. Any multilinear Lie polynomial f in x0, x1 . . . , xn is a linear combination of the monomi-

als [
x0, xσ(1), . . . , xσ(n)

]
, σ ∈ S n. (5.1)

3. The elements (5.1) are linearly independent over k.
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Observe that there may be dependence relations between different Lie monomials. For in-

stance,

[[x1, x2] , [x3, x4]] − [x1, [x2, [x3, x4]]] + [x2, [x1, [x3, x4]]] = 0.

Definition 5.10. For each positive integer n, we will write cn(L) to denote the n-th codimension

of L; that is,

cn(L) = dimk

(
Qn

Qn ∩ Id(L)

)
.

Notice that L satisfies a Lie polynomial identity of degree n + 1 whenever cn(L) < n!.

5.2 Conditions on the R-identities

In this section, we provide a Lie-theoretic analogue of Theorem 4.8. We will denote by

L 〈X |R〉 the free Lie algebra on the set of indeterminates {xb : x ∈ X, b ∈ B}. Elements of

L 〈X |R〉 will be called Lie R-polynomials. As usual, for each x ∈ X and each k-linear combi-

nation of basis elements

r = α1b1 + · · · + αnbn ∈ R,

we will identify

xr = α1xb1 + · · · + αnxbn and x1R = x.

Now, suppose we are given a Lie algebra L equipped with an R-action.

Proposition 5.11. Any map ϕ : X → L has a unique Lie k-algebra homomorphic extension

ϕ̄ : L 〈X |R〉 → L such that, for all x ∈ X and b ∈ B, ϕ̄
(
xb

)
= b · ϕ(x).

Definition 5.12. An R-polynomial f ∈ L 〈X |R〉 will be called an R-identity for L if, for all

ϕ : X → L, ϕ̄( f ) = 0; here, ϕ̄ is defined as in Proposition 5.11. The set of R-identities of L will

be denoted Id(L |R).
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Definition 5.13. For each positive integer n, let

QR
n = spank

{[
xr0

0 , x
r1
σ(1), . . . , x

rn
σ(n)

]
: r0, r1, . . . , rn ∈ R, σ ∈ S n

}
.

The n-th R-codimension of L, denoted cR
n (L), is given by

cR
n (L) = dimk

QR
n

QR
n ∩ Id(L | R)

.

Lemma 5.14. For all positive integers n,

cn(L) = dimk
Qn + QR

n ∩ Id(L | R)
QR

n ∩ Id(L | R)
≤ cR

n (L).

Proof. We have Qn ⊆ QR
n ; hence,

Qn ∩ Id(L) = Qn ∩
(
QR

n ∩ Id(L |R)
)
.

It follows that
Qn

Qn ∩ Id(L)
�

Qn +
(
QR

n ∩ Id(L |R)
)

QR
n ∩ Id(L |R)

≤
QR

n

QR
n ∩ Id(L |R)

,

as vector spaces. �

Definition 5.15. We will say that an R-identity of L of the form

[x0, x1, . . . , xd] −
∑[

xr0
0 , x

r1
σ(1), . . . , x

rd
σ(d)

]
≡ 0,

rewrites L if ∑[
xr0

0 , x
r1
σ(1), . . . , x

rd
σ(d)

]
is an element of QR

d without any terms of the form
[
xr0

0 , x
r1
1 , . . . , x

rd
d

]
.

Suppose now that L is a generalized R-algebra (see Definition 3.5); observe that because we
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are dealing with a Lie algebra L, this is equivalent to the assumption that for each r ∈ R, there

exists finitely many elements (r1, r2) ∈ R2 such that, for all a1, a2 ∈ L,

r · [a1, a2] =
∑

(r1,r2)

[r1 · a1, r2 · a2] .

Indeed, observe that the anti-commutativity property of L implies that, for each a1, a2 ∈ L,

a1a2 = −a2a1:

a1a2 + a2a1 = a2
1 + a1a2 + a2a1 + a2

2 = (a1 + a2)2 = 0.

Thus, there is no distinction between generalized R-algebras and positive generalized R-algebras.

We shall see that if the algebra of endomorphisms on L defined by a generalized R-action is

finite dimensional, and L satisfies an R-identity of degree d + 1 rewriting L, then L satisfies

an ordinary polynomial identity. We will need to work over L 〈X |R〉; in particular, it will be

necessary to make sense of expressions of the form

f (g1, . . . , gn), where f , g1, . . . , gn ∈ L 〈X |R〉.

In principle, such expression may not be defined because there may not be a natural R-action

on L 〈X |R〉; nonetheless, as in the associative case, we can take advantage of the generalized

R-algebra structure of L to fix a linear map λ : R→ Endk (L 〈X |R〉) which can then be used to

give a precise meaning to these expressions.

Definition 5.16. Fix a generalized R-algebra L. For each b ∈ B and n ≥ 2, fix a choice of

finitely many elements (b1, . . . , bn) in Rn satisfying

b · [a1, . . . , an] =
∑

(b1,...,bn)

[b1 · a1, . . . , bn · an] ,

for all a1, . . . , an ∈ L; then, for each
[
xe1

i1
, . . . , xen

in

]
in a basis of left-justifed Lie monomials in
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L 〈X |R〉, define

b ·
[
xe1

i1
, . . . , xen

in

]
=

∑
(b1,...,bn)

[
xb1e1

i1
, . . . , xbnen

in

]
.

1. These assignments induce a well-defined linear map; denote it by λL : R→ Endk (L 〈X |R〉).

2. For each r ∈ R and f ∈ L 〈X |R〉, we shall write f r for λL(r) ( f ).

Henceforth, every Lie algebra L equipped with a generalized R-action will be implicitly equipped

with a fixed linear map λL : R → Endk(L 〈X |R〉). We may regard expressions of the form

f (g1, . . . , gn) as well-defined R-polynomials in L 〈X |R〉 using λL as follows.

Definition 5.17. Given g1, . . . , gn ∈ L 〈X |R〉, fix a map ϕ : X → L 〈X |R〉 with the property

that ϕ(x1) = g1, . . . , ϕ(xn) = gn. This map extends uniquely to a homomorphism of Lie algebras

ϕ̄ : L 〈X |R〉 → L 〈X |R〉 such that, for each x ∈ X and b ∈ B, ϕ̄
(
xb

)
= λL(b)(ϕ(x)). For each

f (x1, . . . , xn) ∈ L 〈X |R〉, we define f (g1, . . . , gn) = ϕ̄( f ).

Moreover, we have:

Lemma 5.18. Suppose f (x1, . . . , xn) ≡ 0 is an R-identity for a generalized R-algebra L. Then,

for any given g1, . . . , gn ∈ L 〈X |R〉, f (g1, . . . , gn) ≡ 0 is also an R-identity for L.

Lastly, we present the following technical lemma. It follows by expanding w′ into a linear

combination of left-justified Lie monomials using the Jacobi identity.

Lemma 5.19. Fix elements a0, a1, . . . , an in a Lie algebra L and a permutation σ ∈ S n. Con-

sider the sequence of integers

1 ≤ h1 ≤ t1 < h2 ≤ t2 < · · · < hd ≤ td ≤ n,

where t1 = h2 − 1, . . . , td−1 = hd − 1. Let w =
[
a0, aσ(1), . . . , aσ(n)

]
,w0 =

[
a0, aσ(1), . . . , aσ(h1−1)

]
,

w1 =
[
aσ(h1), . . . , aσ(t1)

]
, . . . ,wd =

[
aσ(hd), . . . , aσ(td)

]
,
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and w′ =
[
w0,w1, . . . ,wd, . . . , aσ(n)

]
. If, for all hi < k ≤ ti and 1 ≤ i ≤ d, we have σ(hi) > σ(k),

then

w − w′ ∈ spank
{[

a0, aσ′(1), . . . , aσ′(n)
]

: σ′ < σ
}
.

We are now ready to prove the main result of this section.

Theorem 5.20. Let L be a Lie algebra equipped with a generalized R-algebra action given by

ρ : R→ Endk(L) with the property that m = dim ρ(R) is finite. If

[x0, x1, . . . , xd] −
∑

1,σ∈S d

∑
r

[
xr0

0 , x
rσ(1)

σ(1), . . . , x
rσ(d)

σ(d)

]
≡ 0 (5.2)

is an R-identity of degree d + 1 rewriting L, then L satisfies an ordinary polynomial identity of

degree n = κ(d,m + 1).

Proof. We can replace R by ρ(R) to assume R is m-dimensional. Let I = QR
n ∩ Id(L |R), and let

W = spank

{[
xr0

0 , x
r1
υ(1), . . . , x

rn
υ(n)

]
: r0, r1, . . . , rn ∈ R, υ ∈ S n is d-indecomposable

}
.

We claim that Qn ≤ W + I. Suppose that this were not the case, and let τ ∈ S n denote the least

permutation for which
[
x0, xτ(1), . . . , xτ(n)

]
< W + I. Then τ is d-decomposable; so, we can fix a

d-decomposition 1 ≤ h1 ≤ t1 < · · · < hd ≤ td ≤ n of τ and set

w =
[ [

x0, xτ(1), . . . , xτ(h1−1)
]︸                     ︷︷                     ︸

w0

,
[
xτ(h1), . . . , xτ(t1)

]︸              ︷︷              ︸
w1

, . . . ,
[
xτ(hd), . . . , xτ(td)

]︸              ︷︷              ︸
wd

, xτ(td+1), . . . , xτ(n)

]
.

In light of Lemma 5.19, we can find scalars ασ ∈ k such that

[
x0, xτ(1), . . . , xτ(n)

]
= w +

∑
σ<τ

ασ
[
x0, xσ(1), . . . , xσ(n)

]
.

It follows by the minimality of τ that the linear sum on the right lies in W + I; thus, we will

obtain the required contradiction if we can show that w also lies in W + I. To this end, notice
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that, because Equation (5.2) is an R-identity for L, then, by Lemma 5.18, so is

w −
∑

1,σ∈S d

∑
r

[
wr0

0 ,w
rσ(1)

σ(1), . . . ,w
rσ(d)

σ(d), xτ(td+1), . . . , xτ(n)

]
≡ 0. (5.3)

Thus, to show w ∈ W + I, it suffices for us to prove that each summand

yσ,r =
[
wr0

0 ,w
rσ(1)

σ(1), . . . ,w
rσ(d)

σ(d), xτ(td+1), . . . , xτ(n)

]
in (5.3) lies in W + I. Suppose we could show that

zσ =
[
w0,wσ(1), . . . ,wσ(d), xτ(td+1), . . . , xτ(n)

]
lies in W + I. Then, by Lemma 5.18, every evaluation of zσ of the form xi 7→ xsi

i , si ∈ R, would

also lie in W + I; since L is a generalized R-algebra, it would follow that yσ,r ∈ W + I. So,

let
[
x0, xυ(1), . . . , xυ(n)

]
be the left-justified Lie monomial corresponding to zσ in Lemma 5.19.

Because σ , 1, the d-decomposition of τ forces υ < τ. Hence, by Lemma 5.19, zσ ∈ W + I. It

follows that w ∈ W + I, proving the claim.

Using the claim, we can bound cn(L) as follows:

cn(L) = dimk

(Qn + I
I

)
≤ dimk

(W + I
I

)
≤ mn+1ad(n).

Consequently, Lemma 2.27 applied to the assumption n = κ(d,m + 1) allows us to conclude

that cn(L) < n!, as required. �

5.3 The sequence πn(L) for a Lie algebra L

The numerical sequence πn(A) was key to prove Theorem 4.24. In order to prove its Lie-

theoretic analogue, we introduce the numerical sequence πn(L), for a given Lie algebra L.
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Definition 5.21. For each a0, a1, . . . , an ∈ L, let

πn (a0, a1, . . . , an) = dimk
(
spank

{[
a0, aσ(1), . . . , aσ(n)

]
∈ L : σ ∈ S n

})
;

we define

πn(L) = max {πn(a0, a1, . . . , an) : a0, a1, . . . , an ∈ L} .

Proposition 5.22. For each positive integer n, πn(L) ≤ cn(L).

Proof. Let In = Qn ∩ Id(L) and c = cn(L). Fix a basis

{
fi(x0, x1, . . . , xn) + In, i = 1, . . . , c

}
of Qn/In. Then, for every permutation σ ∈ S n, we can find ασ,i ∈ k such that

[
x0, xσ(1), . . . , xσ(n)

]
−

c∑
i=1

ασ,i fi(x0, x1, . . . , xn) ≡ 0.

Hence, for every choice of elements a1, . . . , an ∈ L, we have

spank
{[

a0, aσ(1), . . . , aσ(n)
]

: σ ∈ S n
}
⊆ spank { fi(a1, . . . , an) : 1 ≤ i ≤ c}

and our claim follows. �

Proposition 5.23. Fix a positive integer d. If L satisfies a polynomial identity of degree d + 1,

then πd(L) < d!. Conversely, if πd(L) < d!, then L satisfies a polynomial identity of degree

(d + 1)! + 1.

Proof. If L satisfies a polynomial identity of degree d + 1, then it satisfies a multilinear identity

f (x0, x1, . . . , xd) of degree d + 1. Hence, f ∈ Qd ∩ Id(L) forcing cd(L) < dimk Qd = d!. In this

way, the first implication follows from Proposition 5.22.
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To prove the converse, denote by σ1 < · · · < σd! the distinct permutations in S d, listed in the

standard lexicographical order. Now, observe that L satisfies the polynomial identity of degree

(d + 1)! + 1 given by

f (y, x0, . . . , xd) =
∑
τ∈S d!

sgn(τ)[y,wτ(1), . . . ,wτ(d!)] ≡ 0,

where wi =
[
x0, xσi(1), . . . , xσi(d)

]
, for each 1 ≤ i ≤ d!. Indeed, it is easy to see that L vanishes

on f using the same sort of reasoning as in the proof of Proposition 4.13. It remains to verify

that f is nontrivial. For each 1 ≤ i ≤ d!, let w̄i = x0xσi(1) · · · xσi(d); in other words, w̄i is the

associative monomial in k 〈X〉 obtained from wi by replacing the Lie brackets with associative

products. Because yw̄1 · · · w̄d! is the unique smallest monomial appearing in the associative

expansion of f in k 〈X〉, f is nontrivial. �

5.4 Conditions on the R-action

We now investigate general conditions on the R-action which ensure that L is a Lie PI-algebra.

Our main result, Theorem 5.26, is the Lie-theoretic analogue of Theorem 4.24.

Once again, it will be crucial for the R-action to be compatible with the multiplicative structure

of L. Thus, we will focus on hypomorphic Lie R-algebras (see Definition 4.21). By the anti-

commutativity property of L, there is no reason for us to distinguish between hypomorphic Lie

R-algebras and positive hypomorphic Lie R-algebras.

Definition 5.24. We shall say that the Lie algebra L is R-rewritable of degree d if, for all

a0, a1 . . . , ad ∈ L,

[a0, a1, . . . , ad] ∈ spank

{ [
R · a0,R · aσ(1), . . . ,R · aσ(d)

]
: 1 , σ ∈ S d

}
.

We shall see that if the algebra of endomorphisms on L defined by a hypomorphic R-action is
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finite dimensional, then knowing that L is R-rewritable ensures that it is a Lie PI-algebra.

Theorem 5.25. Let L be a Lie hypomorphic R-algebra such that the algebra of endomorphisms

on L defined by the R-action is m-dimensional. If L is R-rewritable of degree d, then πt(L) < t!,

where t = κ(d,m + 1).

Proof. In order to prove that πt(L) < t!, fix elements a0, a1, . . . , at ∈ L; it suffices to show that

πt(a0, . . . , at) < t!. First, we prove that πt(a0, . . . , at) is bounded above by dimkW, where

W = spank

{[
ar0

0 , a
r1
σ(1), . . . , a

rt
σ(t)

]
: r0, r1, . . . , rt ∈ R, σ ∈ S t is d-indecomposable

}
.

We claim that, for all σ ∈ S t,
[
a0, aσ(1), . . . , aσ(t)

]
∈ W. Suppose that this is not the case.

Let τ denote the least element in S t for which there exist s0, s1, . . . , st ∈ R such that a =[
as0

0 , a
s1
τ(1), . . . , a

st
τ(t)

]
< W. Observe that τ is d-decomposable; fix a d-decomposition

1 ≤ h1 ≤ t1 < h2 ≤ t2 < · · · < hd ≤ td ≤ t

of τ and set

w0 =
[
as0

0 , . . . , a
sh1−1

τ(h1−1)

]
,w1 =

[
a

sh1
τ(h1), . . . , a

st1
τ(t1)

]
, . . . ,wd =

[
a

shd
τ(hd), . . . , a

std
τ(td)

]
.

Let a′ =
[
w0,w1, . . . ,wd, . . . , a

st
τ(t)

]
and

V = spank

{[
ar0

0 , a
r1
σ(1), . . . , a

rt
σ(t)

]
: r0, r1, . . . , rt ∈ R, σ < τ

}
⊆ W.

In light of Lemma 5.19, a − a′ ∈ V . On the other hand, because L is R-rewritable of degree d,

[w0,w1, . . . ,wd] ∈ spank
{[

R · w0,R · wσ(1), . . . ,R · wσ(d)
]

: 1 , σ ∈ S d
}
.

Moreover, because L is an R-hypomorphic algebra, each element of the form
[
wr0

0 ,w
r1
σ(1), . . . ,w

rd
σ(d)

]
,
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with r0, . . . , rd ∈ R, is a linear combination of elements of the form

[ [
ae0

0 , . . . , a
eh1−1

τ(h1−1)

]
,
[
a

ehσ(1)

τ(hσ(1)), . . . , a
etσ(1)

τ(tσ(1))

]
, . . . ,

[
a

ehσ(d)

τ(hσ(d)), . . . , a
etσ(d)

τ(tσ(d))

] ]
,

where each e j ∈ R. It follows that a′ is a linear combination of elements of the form

[
ae0

0 , . . . , a
eh1−1

τ(h1−1),
[
a

ehσ(1)

τ(hσ(1)), . . . , a
etσ(1)

τ(tσ(1))

]
, . . .

. . . ,
[
a

ehσ(d)

τ(hσ(d)), . . . , a
etσ(d)

τ(tσ(d))

]
, a

std+1

τ(td+1), . . . , a
st
τ(t)

]
,

with σ , 1. Seeing that the sequence of integers 1 ≤ h1 ≤ t1 < h2 ≤ t2 < · · · < hd ≤ td ≤ t is a

d-decomposition for τ, it is easy to see that every element of this form is contained in V using

Lemma 5.19. But then, so is a′ (and hence a), yielding the desired contradiction. This proves

that πt(a0, a1, . . . , at) ≤ dimkW.

Now, recall that ad(t) denotes the number of d-indecomposable permutations in S t. Hence:

dimk W ≤ mt+1ad(t).

Finally, Lemma 2.27 applied to the assumption t = κ(d,m + 1) allows us to conclude that

mt+1ad(t) < t!, thus proving that πt(a0, a1, · · · , at) < t!, as required. �

Proposition 5.23 and Theorem 5.25 together yield the main result of this chapter.

Theorem 5.26. Let L be a Lie hypomorphic R-algebra such that the algebra of endomorphisms

on L defined by the R-action is m-dimensional. Denote by σ1 < · · · < σt! the distinct permuta-

tions in S t, listed in the standard lexicographical order. If L is R-rewritable of degree d, then L

satisfies the following ordinary polynomial identity of degree (t + 1)! + 1:

∑
τ∈S t!

sgn(τ)
[
y,

[
x0, xστ(1)(1), . . . , xστ(1)(t)

]
, . . . ,

[
x0, xστ(t!)(1), . . . , xστ(t!)(t)

]]
≡ 0,
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where t = κ(d,m + 1).



Chapter 6

Applications

In this chapter we discuss some applications of our main results. Throughout, A will denote an

associative algebra while L will denote a Lie algebra. In our first corollary, we present some

direct consequences of Theorem 4.8 and Theorem 4.24.

Corollary 6.1.

1. Suppose that M is a monoid of order m acting as algebra endomorphisms on A, and let

k[M] denote the semigroup algebra of M over k.

(a) If A is k[M]-rewritable of degree d, then A satisfies an ordinary polynomial identity

of degree bounded by t!t, where t = dem(d − 1)2e.

(b) If there exists a k[M]-identity of degree d rewriting A, then A satisfies an ordinary

polynomial identity of degree bounded by t = dem(d − 1)2e.

2. Suppose that M is a monoid of finite order m acting as algebra endomorphisms and

anti-endomorphisms on A.

(a) If A is k[M]-rewritable of degree d, then A satisfies an ordinary polynomial identity

of degree t!t, where t = κ(d,m).
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(b) If there exists a k[M]-identity of degree d rewriting A, then A satisfies an ordinary

polynomial identity of degree t = κ(d,m).

3. If A admits a k-linear involution ∗ and A satisfies any ∗-identity of degree d, then A

satisfies an ordinary polynomial identity of degree t = κ(2d, 2).

In all cases, A satisfies the following classical polynomial identity of degree t!t:

∑
τ∈S t!

sgn(τ)
(
xστ(1)(1) · · · xστ(1)(t)

)
· · ·

(
xστ(t!)(1) · · · xστ(t!)(t)

)
≡ 0,

where σ1 < · · · < σt! denote the distinct permutations in S t, listed in the standard lexicograph-

ical order.

Observe that in the case when M is a group, Part 2.b in Corollary 6.1 is precisely Theorem 1 in

[5], by Bahturin, Giambruno and Zaicev. Part 3 is a quantitative form of Amitsur’s Theorem 1

in [2]; it follows from Part 2 as shown in Theorem 10.3.3 in [12]. We also remark that Parts 1

and 2 also hold under the weaker assumption that the homomorphic image of k[M] in Endk(A)

is m-dimensional.

Similarly, we have the following result for Lie algebras, which follows directly from Theorem

5.20 and Theorem 5.26.

Corollary 6.2. Suppose that M is a monoid of order m acting as algebra endomorphisms and

anti-endomorphisms on L.

1. If L is k[M]-rewritable of degree d, then L satisfies a polynomial identity of degree

bounded by (t + 1)! + 1, where t = κ(d,m + 1).

2. If there exists a k[M]-identity of degree d + 1 rewriting L, then L satisfies a polynomial

identity of degree bounded by the function t = κ(d,m + 1).
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In both cases, L satisfies the following ordinary polynomial identity of degree (t + 1)! + 1:

∑
τ∈S t!

sgn(τ)
[
y,

[
x0, xστ(1)(1), . . . , xστ(1)(t)

]
, . . . ,

[
x0, xστ(t!)(1), . . . , xστ(t!)(t)

]]
≡ 0,

where σ1 < · · · < σt! denote the distinct permutations in S t, listed in the standard lexicograph-

ical order.

We point out that, in the case when M is a group, Part (2) of Corollary 6.2 follows from a

theorem of Bahturin, Zaicev and Sehgal proved in [8].

6.1 Associative algebras equipped with Hopf actions

Next, we provide an answer to the question posed at the end of Subsection 2.3.3: given an H-

algebra, when does the existence of an H-identity force the existence of a classical polynomial

identity?

Proposition 6.3. Let H be a Hopf algebra, and suppose that A is an H-algebra (in the sense

of Definition 2.37) such that the corresponding action ρ : H → Endk(A) has the property that

m = dimk ρ(H) is finite.

1. If A is H-rewritable of degree d, then A is a PI-algebra satisfying a polynomial identity

of degree t!t, where t = dem(d − 1)2e.

2. If there exists an H-identity of degree d rewriting A,

x1 · · · xd −
∑

xh1
σ(1) · · · x

hd
σ(d) ≡ 0,

then A is a PI-algebra satisfying a polynomial identity of degree t = dem(d − 1)2e.
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In both cases, A satisfies the following classical polynomial identity of degree t!t:

∑
τ∈S t!

sgn(τ)
(
xστ(1)(1) · · · xστ(1)(t)

)
· · ·

(
xστ(t!)(1) · · · xστ(t!)(t)

)
≡ 0,

where σ1 < · · · < σt! denote the distinct permutations in S t, listed in the standard lexicograph-

ical order.

We highlight two special instances of this proposition in the following corollaries.

Corollary 6.4. Let g be a Lie algebra acting on an associative algebra A via a Lie algebra

homomorphism ρ : g → Derk(A). Then ρ extends to an associative algebra homomorphism

ρ̄ : H → Endk(A), where H = U(g) is the universal enveloping algebra of g. Suppose that

m = dimk ρ̄(H) is finite.

1. If A is H-rewritable of degree d, then A is a PI-algebra satisfying a polynomial identity

of degree t!t, where t = dem(d − 1)2e.

2. If A satisfies an H-identity of degree d rewriting A, then A satisfies an ordinary polyno-

mial identity of degree dem(d − 1)2e.

Corollary 6.5. Suppose k is a field of positive characteristic p, and let g be a restricted Lie

algebra acting on an associative algebra A via a restricted Lie algebra representation ρ : g→

Derk(A). Then ρ extends to an associative algebra homomorphism ρ̄ : H → Endk(A), where

H = u(g) is the restricted universal enveloping algebra of g. Suppose m = dimk g is finite (so

that dimk H = pm).

1. If A is H-rewritable of degree d, then A is a PI-algebra satisfying a polynomial identity

of degree t!t, where t = depm(d − 1)2e.

2. If A satisfies an H-identity of degree d rewriting A, then A is a PI-algebra satisfying a

polynomial identity of degree depm(d − 1)2e.
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Now, let G be a finite group of order m. Recall that a vector space decomposition

A =
⊕
g∈G

Ag

is a G-grading of A provided AgAh ⊆ Agh, for all g, h ∈ G. We saw in Chapter 2 that, by a

theorem of Bahturin, Giambruno, and Riley ([4]), whenever the identity component A1 satisfies

a polynomial identity of degree d, the entire algebra A satisfies a polynomial identity of degree

dem(dm − 1)2e. We now recover this result. First, we prove an intermediate result.

Recall that, if H is a Hopf algebra and A is an H-algebra, then the subspace of H-invariants is

given by

AH = {a ∈ A : h · a = ε(h)a, for every h ∈ H}.

Theorem 6.6. Let H be an m-dimensional semisimple commutative Hopf algebra, and let A

be an associative H-algebra. If there exists an H-identity of degree d rewriting AH, then there

exists an H-identity of degree dm rewriting A.

Proof. The arguments used in Sections 1 and 2 of [10] allow us to extend scalars in order to

assume that H splits over k. Thus, by Lemma 4 in [10], H is isomorphic, as Hopf algebras, to

(k[G])∗, the dual of the group algebra k[G], where G is the group of all algebra maps from H to k

under the convolution operation. Hence, we shall assume that H = (k[G])∗. LetB = {ρg | g ∈ G}

denote the standard dual basis of (k[G])∗.

Because
∑

g∈G ρg = 1H, we may express x1H
1 · · · x

1H
dm as a sum of elements of the form xe1

1 · · · x
edm
dm ,

where each ei ∈ B. Fix e1, . . . , edm ∈ B. Our proof will be complete once we show that

xe1
1 · · · x

edm
dm ∈ W + Id (A |H), where

W = spank

{
xh1
τ(1) · · · x

hdm
τ(dm) | 1 , τ ∈ S dm, h1, . . . , hdm ∈ H

}
.

According to Lemma 4.1 in [4], for any word of length dm = d|G| in G, there exists a string
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of d consecutive subwords, each with trivial evaluation. Hence, we may write xe1
1 · · · x

edm
dm as

uy1 · · · ydv, where each submonomial yi is of the form x
ρg1
i1
· · · x

ρgl
il

with g1 · · · gl = 1. Since A is

a (k[G])∗-algebra, A is G-graded with Ag = ρg · A, for each g ∈ G (see Proposition 1.3 in [11]).

Thus, each yi evaluates into A1 = ρ1 · A = AH,

Now suppose that

f (x1, . . . , xd) = x1 · · · xd −
∑

1,σ∈S d

∑
h

xh1
σ(1) · · · x

hd
σ(d) ≡ 0

is an H-identity for AH. Then, since each yi evaluates into AH,

u f (y1, . . . , yd)v = xe1
1 · · · x

edm
dm −

∑
1,σ∈S d

∑
h

uyh1
σ(1) · · · y

hd
σ(d)v ≡ 0

is an H-identity on the whole of A. Because the H-algebra action on k〈X |H〉 is positive,

uyh1
σ(1) · · · y

hd
σ(d)v lies in W, for each σ , 1 and h in the sum. It follows that xe1

1 · · · x
edm
dm ∈ W +

Id (A |H), as required. �

Combining Proposition 6.3 with Theorem 6.6 now yields the following results from [4]. In

order to deduce Part (2) from Part (1), recall that A is G-graded precisely when A is a (k[G])∗-

algebra with A1 = A(k[G])∗ (see [11], for example).

Corollary 6.7.

1. Let H be an m-dimensional semisimple commutative Hopf algebra, and suppose A is

an associative H-algebra. If AH satisfies a polynomial identity of degree d, then A is a

PI-algebra satisfying a polynomial identity of degree dem(dm − 1)2e.

2. If G is a group with finite order m and A is a G-graded associative algebra whose identity

component satisfies a polynomial identity of degree d, then A is a PI-algebra satisfying

a polynomial identity of degree dem(dm − 1)2e.

In [6], Bahturin and Linchenko studied the properties of Hopf algebras H necessary to guaran-
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tee the existence of a polynomial identity on H-algebras A whenever AH satisfies a polynomial

identity. Their Proposition 6 states that, if H is finite-dimensional but not semisimple, then

there exists an associative H-algebra A such that AH is a PI-algebra and yet A is not. We can

strengthen this result as follows:

Corollary 6.8. Let H be a finite-dimensional Hopf algebra that is not semisimple. Then there

exists an associative H-algebra A such that AH is a PI-algebra but A does not satisfy a nonzero

H-identity rewriting A.

6.2 Lie algebras equipped with Hopf actions

The results discussed in Section 6.1 come with natural Lie-theoretic analogues which we now

present. Our first proposition follows directly from Theorem 5.26 and Theorem 5.20.

Proposition 6.9. Let H be a Hopf algebra, and suppose that L is an H-algebra (in the sense

of Definition 2.37) such that the corresponding action ρ : H → Endk(L) has the property that

m = dimk ρ(H) is finite.

1. If L is H-rewritable of degree d, then L satisfies an ordinary polynomial identity of degree

(t + 1)! + 1, where t = κ(d,m + 1).

2. If L satisfies an H-identity of degree d + 1 rewriting L, then L satisfies an ordinary

polynomial identity of degree t = κ(d,m + 1).

We point out that in both cases of Proposition 6.9, L satisfies the following ordinary polynomial

identity of degree (t + 1)! + 1:

∑
τ∈S t!

sgn(τ)
[
y,

[
x0, xστ(1)(1), . . . , xστ(1)(t)

]
, . . . ,

[
x0, xστ(t!)(1), . . . , xστ(t!)(t)

]]
≡ 0,

where σ1 < · · · < σt! denote the distinct permutations in S t, listed in the standard lexicograph-

ical order.



6.2. Lie algebras equipped with Hopf actions 75

Corollary 6.10. Let g be a Lie algebra acting on L by derivations and antiderivations via a

Lie algebra representation ρ : g → Endk(L). Then ρ extends to an associative algebra homo-

morphism ρ̄ : H → Endk(L), where H = U(g) is the universal enveloping algebra of g. Suppose

that m = dimk ρ̄(H) is finite.

1. If L is H-rewritable of degree d, then L satisfies an ordinary polynomial identity of degree

(t + 1)! + 1, where t = κ(d,m + 1).

2. If there exists an H-identity of degree d + 1 rewriting L, then L satisfies an ordinary

polynomial identity of degree κ(d,m + 1).

Corollary 6.11. Let the characteristic of k be p > 0, and let g be a restricted Lie algebra

acting on L by derivations and antiderivations via a restricted Lie algebra representation ρ :

g → Endk(L). Then ρ extends to an associative algebra homomorphism ρ̄ : H → Endk(L),

where H = u(g) is the restricted universal enveloping algebra of g. Suppose m = dimk g is

finite (so that dimk H = pm).

1. If L is H-rewritable of degree d, the L satisfies an ordinary polynomial identity of degree

(t + 1)! + 1, where t = κ(d, pm + 1)

2. If there exists an H-identity of degree d + 1 rewriting L, then L satisfies an ordinary

polynomial identity of degree κ(d, pm + 1).

Next we present a Lie-theoretic analogue of Theorem 6.6.

Theorem 6.12. Let H be an m-dimensional semisimple commutative Hopf algebra, and let L

be a Lie H-algebra. If there exists an H-identity of degree d + 1 rewriting LH, then there exists

an H-identity of degree (d + 1)m rewriting L.

Proof. As explained in the proof of Theorem 6.6, we may assume, without loss of generality,

that H = (k[G])∗, where G is the group of all algebra maps from H to k under the convolution
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operation. Suppose

f (x0, x1, . . . , xd) = [x0, x1, . . . , xd] −
∑

1,σ∈S d

∑
h

[
xh0

0 , x
hσ(1)

σ(1) , . . . , x
hσ(d)

σ(d)

]
≡ 0

is an H-identity rewriting LH, and let k = dm+m−1. Using the fact that
∑

g∈G ρg = 1H, we may

write [x0, x1, . . . , xk] as a sum of elements of the form
[
xe0

0 , x
e1
1 , . . . , x

ek
k

]
with ei ∈ B = {ρg | g ∈

G}. Let

W = spank

{[
xh0

0 , x
h1
υ(1), . . . , x

hk
υ(k)

]
| 1 , υ ∈ S k, h0, . . . , hk ∈ H

}
.

Our proof will be complete once we show that each
[
xe0

0 , x
e1
1 , . . . , x

ek
k

]
∈ W + Id (L |H). To this

end, fix e0, e1, . . . , ek ∈ B. By Lemma 4.1 in [4], for any word of length (d + 1)m = (d + 1)|G|

in G, there exists a string of d + 1 consecutive subwords each with trivial evaluation. Hence,

we may bracket xe0
0 , x

e1
1 , . . . , x

ek
k into a product of the form

[
u,

[
x
ρgi0
i0
, x

ρgi0+1

i0+1 , . . . , x
ρgi1−1

i1−1

]
︸                        ︷︷                        ︸

w0

, . . . ,
[
x
ρgid
id
, x

ρgid+1

id+1 , . . . , x
ρgl
l

]
︸                     ︷︷                     ︸

wd

, v
]
,

where gi0gi0+1 · · · gi1−1 = · · · = gid gid+1 · · · gl = 1. Because L is a (k[G])∗-algebra, it is G-graded

with Lg = ρg · L, for each g ∈ G. Thus, each w0,w1, . . . ,wd evaluates into L1 = LH, so that

[u, f (w0,w1, . . . ,wd), v] ≡ 0 is an H-identity on all of L. In other words,

[u, [w0,w1, . . . ,wd] , v] −
∑

1,σ∈S d

∑
h

[
u,

[
wh0

0 ,w
hσ(1)

σ(1) , . . . ,w
hσ(d)

σ(d)

]
, v

]
≡ 0 (6.1)

is an H-identity on L. Using the Jacobi identity to open the Lie brackets, it is easy to see that[
xe0

0 , x
e1
1 , . . . , x

ek
k

]
− [u, [w0,w1, . . . ,wd] , v] ∈ W. Similarly, because the H-algebra action on

k〈X |H〉 is positive, we also have

[
u,

[
wh0

0 ,w
hσ(1)

σ(1) , . . . ,w
hσ(d)

σ(d)

]
, v

]
∈ W,
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for each σ , 1 and h in the sum. Finally, because (6.1) is an H-identity on L, it follows that[
xe0

0 , x
e1
1 , . . . , x

ek
k

]
∈ W + Id (L |H), as required. �

As a consequence of Corollary 6.10 and Theorem 6.12, we obtain the following result.

Corollary 6.13.

1. Let H be an m-dimensional semisimple commutative Hopf algebra, and suppose L is a

Lie H-algebra. If LH satisfies a polynomial identity of degree d + 1, then L satisfies a

polynomial identity of degree κ((d + 1)m − 1,m + 1).

2. If G is a finite group of order m and L is a G-graded Lie algebra whose identity compo-

nent satisfies a polynomial identity of degree d + 1, then the algebra L itself satisfies a

polynomial identity of degree κ((d + 1)m − 1,m + 1).

Part (2) compares to Theorem 1 in [7] (see also [8]).
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