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ABSTRACT 

Globally, approximately 10-25% of women smoke during pregnancy. Since nicotine is highly 

addictive, women may use nicotine containing products like nicotine replacement therapies for 

smoking cessation, but the long-term consequences of early life exposure to nicotine remain 

poorly defined.  Our laboratory has previously demonstrated that maternal nicotine exposed 

(MNE) rat offspring exhibit hypertriglyceridemia due to increased hepatic de novo lipogenesis. 

Hypertriglyceridemia may also be attributed to impaired white adipose tissue (WAT) lipid 

storage; however, the effects of MNE on WAT are not completely understood. We hypothesize 

that nicotine-induced alterations in adipose function (e.g. lipid storage) underlie dyslipidemia in 

MNE adults. Female 6 month old rats exposed to nicotine during gestation and lactation 

exhibited significantly decreased visceral adipocyte cell area by 40%, attributed, in part, to a 3-

fold increase in adipose triglyceride lipase (ATGL) protein expression compared to vehicle. 

Given ATGL has antioxidant properties and in utero nicotine exposure promotes oxidative stress 

in various tissues, we next investigated if there was evidence of increased oxidative stress in 

MNE WAT. At both 3 weeks and 6 months, MNE offspring expressed 37-48% higher protein 

levels of SOD1 and SOD2 in WAT. Since oxidative stress can induce inflammation, we 

examined the inflammatory profile of WAT and found increased expression of cytokines (IL-1β, 

TNFα, and IL-6) by 44-61% at 6 months. Collectively, this suggests that the expression of WAT 

ATGL may be induced to counter MNE-induced oxidative stress and inflammation. However, 

higher levels of ATGL would further promote lipolysis in WAT, culminating in impaired lipid 

storage and long-term dyslipidemia. 

 

KEY WORDS: White adipose tissue, maternal nicotine exposure, oxidative stress, adipocytes 
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INTRODUCTION 

Evidence now demonstrates that cigarette smoke plays a critical role in the development 

of dyslipidemia and obesity in children exposed during perinatal life (Wen et al., 2010;  Weng et 

al., 2012). This is especially concerning given that approximately 10-25% of women still smoke 

during pregnancy, with rates as high as 59% in certain Indigenous communities (Cui et al., 2014;  

Roman-Galvez et al., 2017;  Tappin et al., 2010;  Tong et al., 2013). To date, nicotine 

replacement therapies (NRT) for smoking cessation (i.e. transdermal patches, gums, e-cigarettes) 

are thought to benefit pregnant women who are highly addicted and unable to quit smoking by 

other means (Oncken and Kranzler, 2003). However, the consequences of fetal and neonatal 

exposure to nicotine alone on the long-term metabolic health of the offspring have yet to be fully 

defined.   

 Maternal nicotine use during gestation and lactation leads to significant exposure to the 

fetus and neonate since it is present in fetal blood and transferred through amniotic fluid, 

placental tissue, and breast milk (Luck and Nau, 1987;  Luck et al., 1985). Numerous animal 

studies demonstrate that nicotine use during pregnancy leads to adverse neurobehavioral, 

pulmonary, cardiovascular, and metabolic outcomes in the offspring  (Barra et al., 2017;  Chou 

and Chen, 2014;  Dasgupta et al., 2012;  Ma et al., 2014;  Pauly and Slotkin, 2008). Specifically, 

we and others have shown in rats that perinatal exposure to nicotine alone leads to increased 

blood pressure, adiposity, decreased glucose tolerance, and impaired pancreatic beta cell 

development (Fox et al., 2012;  Gao et al., 2008;  Gao et al., 2005;  Holloway et al., 2008). 

Moreover, MNE during gestation and lactation leads to increased hepatic de novo lipogenesis 

and increased hepatic and circulating triglycerides in postnatal life (Ma et al., 2014). This 

reciprocates human studies which have demonstrated that children exposed to maternal smoke in 
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utero have higher triglyceride levels later in life (Cupul-Uicab et al., 2012). Since increased 

circulating plasma triglycerides is strongly associated with cardiovascular disease (CVD) (Bansal 

et al., 2007), elucidating the underlying molecular mechanisms promoting dyslipidemia will 

undoubtedly uncover therapeutic targets to reduce unwarranted CVD risk to these nicotine-

exposed individuals.  

Aside from the liver, the augmented circulating and hepatic triglyceride accumulation 

observed in these MNE offspring could also be attributed to impairments in other metabolic 

tissues, such as white adipose tissue (WAT). The major role of WAT  is to store excess 

circulating triglycerides to prevent glucose and lipid toxicity, and moreover, ectopic fat 

deposition (Abate, 2012). Excess circulating triglycerides promote adipocytes to undergo 

differentiation, hypertrophy, and/or hyperplasia to process and store lipids. Once the maximum 

triglyceride storage capacity is reached, fatty acids can spillover in the plasma, increasing 

substrate availability for hepatic triglyceride synthesis (Abate, 2012). Ultimately, 

hypertriglyceridemia contributes to various systemic abnormalities like dyslipidemia, insulin 

resistance, and CVD (Abate, 2012). Currently, the effects of MNE on white adipose tissue 

function are not completely understood. Studies by Somm et al. indicated that MNE during 

gestation resulted in adipocyte hypertrophy and increased expression of adipogenic transcription 

factors in 3 week male offspring, but the long-term effects were not examined (Somm et al., 

2008). A more recent study by Fan et al. (2016) demonstrated that maternal exposure of nicotine 

(from gestational day 9 to weaning) led to decreased adipocyte size in 26 week old male 

offspring, suggesting an impaired capacity for lipid storage. Furthermore, this study also found 

an increase in steady-state mRNA levels of adipocyte differentiation and lipogenic markers in 

MNE WAT compared to vehicle (Fan et al., 2016). However, given most women addicted to 
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smoking would be exposed to nicotine (i.e. NRT or cigarettes) in both prenatal and perinatal life, 

the goal of this study was to determine if this longer, more relevant, window of nicotine exposure 

impacts adipose function in both male and female offspring. Moreover, this window covers the 

entire period of rat adipose tissue differentiation (Greenwood and Hirsch, 1974). We hypothesize 

that in utero nicotine exposure will adversely impact WAT in the offspring, leading to 

dyslipidemia in adulthood.  To examine this further, we will investigate if WAT function is 

affected due to altered adipocyte size, proliferation (i.e. Akt-1), differentiation (i.e. C/ebpα/β, 

Srebp-1c), lipogenesis (i.e. Lpl, Accα, Fas, Acsl1), fatty acid transport (i.e. Fatp1, Fatp4), and/or 

lipolysis (Atgl) in our well-established rat model of maternal nicotine exposure.  
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MATERIALS AND METHODS 

Maternal Nicotine Exposure (MNE) Rat Model   

Nulliparous 200-250g female Wistar rats (Harlan, Indianapolis, IN, USA) were injected 

daily subcutaneously with either saline (vehicle) or nicotine bitartrate at 1 mg/kg/day (Sigma-

Aldrich, St. Louis, MO, USA) two weeks prior to mating, during gestation, and until weaning 

(PND21). This nicotine dose results in maternal serum cotinine concentrations of 135.9±7.86 

ng/mL, which is comparable to “moderate” female smokers (80 ng/mL) or NRT users (169.9 

ng/mL) (Holloway et al., 2006;  Shahab et al., 2016). Litters were culled to eight at birth and 

following weaning, rats were housed as sibling pairs until 6 weeks of age, then subsequently 

housed individually. Male and female offspring were sacrificed via carbon dioxide inhalation at 

3 weeks and 6 months of age. Gonadal white adipose tissues were extracted, either fixed in 

formalin or frozen in liquid nitrogen and stored at -80°C for histological and molecular analyses, 

respectively. All rats were conventionally housed in polycarbonate microisolator cages with ad 

libitum access to water and standard chow diet (Teklad 22/5 rodent diet; Envigo) under 

controlled lighting (12:12 L:D), humidity (40-50%), and temperature (22˚C). In accordance with 

the Canadian Council for Animal Care guidelines, animal experiments were approved by the 

Animal Research Ethics Board at McMaster University. 

 

Gonadal Adipocyte Cell Area 

A portion of gonadal WAT was fixed in 10% (v/v) neutral buffered formalin overnight, washed 

in water, and embedded in paraffin. Cross sections were stained with hematoxylin and eosin 

(H&E) and photographed using the Olympus BX50 microscope under a 10x objective. Cell areas 

were quantified from a minimum of 160 adipocytes from two cross sections/rat using Northern 
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Eclipse software (Empix Imaging Inc.).  

 

RNA Extraction and Real Time-Polymerase Chain Reaction (RT-PCR) 

Total RNA was extracted from homogenized 3 week and 6 month WAT samples using TRIzol 

reagent according to the manufacturer’s instructions (Invitrogen). Two micrograms of RNA were 

reversed-transcribed to cDNA (high-capacity cDNA Reverse Transcription Kit, Applied 

Biosystems). Forward and reverse primer sets used for RT-PCR, listed in Table 1, were designed 

with the National Center for Biotechnology Information’s primer designing tool. Relative 

transcript abundance was determined using SensiFAST No-ROX SYBR Green Supermix 

(FroggaBio) and the Bio-Rad CFX384 Real Time System. Samples were assayed in triplicate 

and relative fold change was calculated using comparative cycle times (Ct) method normalized 

to β-actin. The relative abundance was calculated using the formula 2
∆∆Ct

, where ∆∆Ct was the 

normalized value. 

Protein extraction and Western blot  

WAT was homogenized in RIPA buffer (50 mM Tris-HCL, pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 1% Nonidet P40, 0.25% C24H39NaO4) supplemented with a protease inhibitor cocktail 

(Roche) and phosphatase inhibitors (20 mM NaF, 40mM Na-pyrophosphate, 40mM Na3VO4, 

200mM β-glycerophosphate disodium salt hydrate). The solution was sonicated, mixed in a 

rotator for 1hr at 4 °C, and centrifuged at 300g for 15 min at 4 °C. The total cellular protein 

extract in the collected supernatant was quantified by colorimetric DC protein assay (BioRad). 

Loading samples were heated at 50 °C for 10 min to denature the proteins. Proteins (20µg/well) 

were separated by size via gel electrophoresis and transferred onto polyvinylidene difluoride 

membrane (Millipore). Membranes were blocked in 1x Tris-buffered saline-Tween 20 buffer 
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with 5% non-fat milk or 5% BSA (blocking solutions), and then probed using primary antibodies 

diluted in the blocking solution (Table 2). A mouse or rabbit secondary antibody was used to 

detect primary antibody diluted in the blocking solution at 1:5,000 or 1:10,000 dilution, 

respectively (Table 2). Immuno-reactive bands were visualized, and relative band intensity was 

calculated using ImageLab software (BioRad) and normalized to β-actin, as previously 

performed (Ma et al., 2014).   

 

Statistical Analysis  

Statistical analyses were performed using Graphpad Prism 6 software. Results were 

presented as the mean of arbitrary values ± SEM. Grubbs’ test was used to determine significant 

outliers and data were tested for normality and equal variance. Comparisons between vehicle and 

nicotine exposed offspring were assessed using an unpaired Student’s t-test, with a p-value of 

less than 0.05 deemed as significant.  
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RESULTS 

Maternal nicotine exposure leads to decreased visceral adipocyte size in 6 month old 

offspring. 

Using our well-established rat MNE model leading to dyslipidemia (Gao et al., 2005;  Ma et al., 

2014), we wanted to first confirm whether prenatal nicotine exposure has long term effects on 

adipocyte size in the offspring. Histological analyses revealed both MNE male and female 

offspring exhibited smaller gonadal adipocytes compared to vehicle controls at 6 months of age 

(Figure 1A, B). Given the more pronounced effects of perinatal nicotine exposure on female 

WAT area (13.2% male vs. 39.7% female decrease in adipocyte size), we continued to examine 

only female offspring to explore the underlying mechanisms involved. Gondal adipose tissue 

weight did not differ between MNE and vehicle offspring (data not shown), suggesting a 

possible increase in adipocyte number due to prenatal nicotine exposure. With decreased 

adipocyte cell area and subsequent increase in cell number, transcript and protein levels of the 

proliferation marker AKT-1 were subsequently measured. Despite a significant increase in 

mRNA levels, there were no corresponding changes in AKT-1 protein levels in 6 month female 

MNE WAT (Figure 1C, D). 

 

In utero nicotine exposure increases the expression of the differentiation marker C/EBPα in 

WAT of 6 month old female offspring. 

Given impairments in adipocyte differentiation can also decrease adipocyte size, we next 

measured the expression of key targets involved in adipogenesis (Abate, 2012), including 

CCAAT/enhancer-binding protein (C/EBP)-α/β and sterol regulatory element-binding 
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transcription factor (SREBP)-1c. Protein analyses revealed a significant increase in the 42kDa 

band of C/EBP-α in female MNE offspring compared to vehicle at 6 months independent of 

changes in transcript levels (Figure 2A, B). Quantitative real time PCR analyses revealed that 

WAT from MNE exposed offspring had a significant increase in steady-state transcript levels of 

C/EBPβ and SREBP-1c compared to controls (Figure 2C, E). However, immunoblot analyses 

revealed no significant differences at the protein level for either target (Figure 2D, F). To 

examine if perinatal nicotine exposure had direct effects on C/EBPα, we measured the transcript 

and protein levels at 3 weeks age but found no difference in expression from vehicle (Figure 2G, 

H).  

 

Maternal nicotine exposure does not increase the expression of markers involved in 

lipogenesis and fatty acid transporters in 6 month old female offspring. 

Adipocyte size is influenced by its ability to breakdown triglyceride (TG) molecules from 

circulation, transport its constitutive components intracellularly, and re-assemble TGs for storage 

(Kersten, 2014). Therefore, we wanted to determine whether perinatal nicotine exposure 

impaired triglyceride transport and esterification by measuring the steady state transcript levels 

of key targets involved in lipogenesis and fatty acid transport. At six months of age we found no 

significant difference between groups in the expression of lipogenic markers including 

lipoprotein lipase (LPL), acetyl-coA carboxlyase (ACCα), and fatty acid synthase (FAS), along 

with fatty acid transporters FATP1/4, and long-chain acyl CoA synthetase (ASCL)-1 in female 

MNE WAT (Figure 3A-F).  
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In utero nicotine exposed female offspring exhibit increased expression of ATGL at 6 

months, but not at 3 weeks. 

Since enhanced lipolysis decreases adipocyte size (Zhang et al., 2017), we then examined 

whether MNE WAT had elevated expression of adipose triglyceride lipase (ATGL), the 

predominate enzyme involved in intracellular degradation (Zechner et al., 2009). At six months 

of age, we found a significant increase in both ATGL mRNA expression and protein levels in 

nicotine exposed female WAT compared to vehicle controls (Figure 4A, B), however this was 

not observed at 3 weeks (Figure 4C-D). Altogether, these data suggest that augmented ATGL-

induced lipolysis may lead to reduced adipocyte cell area in MNE WAT at 6 months. 

 

Maternal nicotine exposure exhibit enhanced anti-oxidant expression at 6 months and 3 

weeks. 

Evidence demonstrates that ATGL deficiency in mice is associated with accumulation of reactive 

oxygen species (ROS) and decreased SOD2 expression, suggesting this enzyme may act as an 

antioxidant and suppress oxidative stress (Aquilano et al., 2016;  Chen et al., 2017a;  Chen et al., 

2017b). Moreover, we and others have previously shown that maternal nicotine exposure 

promotes oxidative stress in the heart, pancreas, and placenta of adult offspring (Barra et al., 

2017;  Bruin et al., 2008;  Sbrana et al., 2011). Therefore, we wanted to determine whether an 

imbalance between antioxidant defenses occurs in WAT of 6 month female MNE offspring by 

measuring the transcript and protein levels of the antioxidants superoxide dismustase (SOD)-1 

and SOD-2. Both SOD 1 and 2 steady state mRNA and protein levels were significantly elevated 

in prenatal nicotine exposed WAT in 6 month female offspring compared to vehicle (Figure 5A-

D). At 3 weeks of age, there was also a significant increase in SOD-1 protein levels, and a 
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trending increase in SOD-2, in the nicotine exposed WAT group compared to controls (Figure 

5E-H). To determine if there was oxidative stress, we measured protein levels of 4-HNE and 

found a non-significant upward trend in nicotine-exposed WAT at both 3 week and 6 month 

timepoints (Figure 5I, 5J). Overall, these data suggest that prenatal nicotine exposure directly 

increase the expression of the antioxidant SOD-1 and SOD-2 in 6 month WAT which was 

enough to prevent lipid oxidative damage. 

 

In utero nicotine exposure exhibit inflammation at 6 months, but not at 3 weeks. 

Enhanced oxidative stress can activate nuclear factor-κB (NF-κB), leading the expression of pro-

inflammatory cytokines and inflammation (Li and Karin, 1999;  Morgan and Liu, 2011). As well, 

activation of this pathway in differentiated 3T3-L1 cells leads to increased lipase expression and 

lipolysis (Chi et al., 2014). Since oxidative stress, inflammation, and lipolysis are integrated 

pathways, we wanted to determine whether inflammation was present in 6 month in utero 

nicotine exposed WAT. At 6 months, we found a significant increase in the steady-state mRNA 

expression profile of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin 

(IL)-1β, IL-6, and the macrophage marker CD68 (Figure 6A-D). In contrast at 3 weeks of age, 

there was no significant difference in steady state mRNA levels of inflammatory markers 

between groups (Figure 6E-H). 
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DISCUSSION 

 

Under normal physiological conditions, WAT serves as the principle lipid storage site to 

prevent ectopic lipid deposition in peripheral organs. The balance between lipolysis and 

lipogenesis dictates the overall amount of triglyceride molecules stored as a single large lipid 

droplet in the cytoplasm of adipocytes, ultimately influencing its size (Bolsoni-Lopes and 

Alonso-Vale, 2015). Adipocytes have a limited triglyceride storage capacity. Once exceeded, 

excess lipids will spill-over into circulation resulting in dyslipidemia and increased lipid content 

at ectopic sites like the liver (Abate, 2012). In our model, we have previously shown that MNE 

offspring have dyslipidemia with increased levels of circulating triglycerides (Gao et al., 2005;  

Ma et al., 2014). While we have shown that hepatic de novo lipogenesis is increased in nicotine-

exposed offspring, the effect of nicotine exposure on WAT function were not examined. 

Previous studies show maternal nicotine exposure during gestation or from gestation until 

weaning altered adipocyte size and increased the expression of adipocyte differentiation markers, 

but this was only examined in male offspring (Fan et al., 2016;  Somm et al., 2008). Moreover, 

this exposure to nicotine in these studies (gestation only or mid-gestation to weaning only) does 

not mimic women’s smoking habits and/or nicotine use prior to pregnancy. Therefore, our goal 

was to determine if WAT plays a role in promoting dyslipidemia in both male and female 

offspring exposed to nicotine in prenatal and perinatal life. 

 In this study, we demonstrated that both male and female offspring exposed to nicotine 

during prenatal and perinatal life decreased adipocyte cell area compared to vehicle controls at 6 

months of age. Somm et al. reported that rats exposed to nicotine during pregnancy alone (from 

gestational day 4 for 14 days at 3mg/kg/day) had adipocyte hypertrophy compared to vehicle 

controls in 3 week old male offspring, but the effect on WAT size into adulthood, after nicotine 
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exposure, was not examined (Somm et al., 2008). Similar to our findings, Fan et al. 

demonstrated that in utero nicotine exposure from mid-pregnancy (e.g. gestational day 9) until 

weaning decreased adipocyte size in male WAT at 26 weeks of age (Fan et al., 2016). The dose 

of nicotine (1 mg/kg) administered in this study is relevant as it corresponds to moderate female 

smokers or NRT users (Holloway, Kellenberger and Petrik, 2006;  Shahab et al., 2016), while 

doses used in other studies (2-3 mg/kg/day) correspond to heavy smokers (Fan et al., 2016;  

Somm et al., 2008). Examining the effects of MNE on WAT for a longer duration is important 

given adipose development occurs both pre- and postnatally in rats. In rodent adipose tissue, 

growth and differentiation occurs from late gestation to 4 weeks in postnatal life, while in 

humans this occurs from 5 to 29 weeks gestation (Greenwood and Hirsch, 1974;  Poissonnet et 

al., 1984). In both species, adipose tissue expansion happens throughout life (Greenwood and 

Hirsch, 1974;  Spalding et al., 2008). Given the extensive differentiation of adipose tissue during 

perinatal life, it is vulnerable to alterations by environmental cues (i.e. drugs) during this 

developmental window. Furthermore, both mature adipocytes and adipocyte precursors like 

mesenchymal stem cells express nicotinic acetyl-choline receptor subunits, suggesting that 

nicotine may directly alter adipogenesis and adipocyte formation (Gochberg-Sarver et al., 2012;  

Hoogduijn et al., 2009). 

Since the effect on adipocyte size was more pronounced in female offspring, and 

previous studies focused on males (Fan et al., 2016;  Somm et al., 2008), we decided to examine 

the effects of MNE on female adipose tissue function. One limitation of our study is that we did 

not evaluate the estrous cycle of the female rats. This is an important consideration since prenatal 

nicotine exposure increased progesterone levels in offspring compared to vehicle controls, which 

is reflective of estrous cycle perturbations (Holloway, Kellenberger and Petrik, 2006). 
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Furthermore, others have reported that oscillations in metabolic related genes in the liver occur 

with estrous cycle (Villa et al., 2012). Since small adipocyte size results from aberrant 

adipogenesis, we examined whether MNE impaired adipocyte differentiation, lipid synthesis and 

transport, and/or lipolysis. We found that female MNE offspring exhibited increased mRNA and 

protein expression of the adipocyte differentiation factor C/EBPα and the lipolytic enzyme 

ATGL, without altering the expression of targets involved in lipogenesis and lipid transport. 

Similar to our results, Fan et al. found an increased in steady-state mRNA levels of adipocyte 

differentiation markers in MNE male offspring, including C/EBPα and SREBP-1c compared to 

control WAT in adulthood (Fan et al., 2016). Since these studies did not perform protein 

analyses, our study is the first to demonstrate that MNE increased C/EBPα protein levels in 6 

month female WAT. Overall, the increased C/EBPα (42 kDa) expression in WAT suggests that 

MNE promote adipocyte differentiation and adipogenesis. C/EBPα contains two isoforms (30/42 

kDa) alternatively translated from one mRNA transcript (Lin et al., 1993;  Ossipow et al., 1993). 

Constitutive expression of the 42 kDa isoform can induce adipocyte differentiation in 3T3-L1 

preadipocytes, suggesting that enhanced C/EBPα expression of this isoform can enhance 

adipocyte formation (Lin and Lane, 1994).  While the steady-state levels of AKT1, C/EBP-α, 

SREBP 1c mRNA were augmented in 6 month nicotine-exposed offspring, this did not translate 

to an alteration in protein levels. There are several cases in the literature whereby changes in the 

mRNA levels do not correlate to an alteration in protein, highlighting the importance of looking 

at both mRNA and protein (Vogel and Marcotte, 2012).  Moreover, it is possible that the mRNA 

and protein levels of these key proliferation and differentiation markers may be altered earlier in 

development (i.e. gestation and/or lactation) due to the direct effects of nicotine on their 

expression. For example, we have demonstrated that nicotine directly enhances the expression of 
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the proliferation markers GADD45 and Rb1 in differentiating 3T3-L1 pre-adipocyte cells (data 

not shown). Therefore, in the absence of nicotine exposure after lactation, the levels of these 

proliferation and differentiation may have become normalized.  

This study was the first to demonstrate that both prenatal and perinatal nicotine exposure 

leads to increased ATGL mRNA and protein expression in adult female MNE offspring. This 

suggests that MNE may impair the lipid storage capacity of WAT via increased ATGL 

expression. Studies demonstrate that augmented ATGL leads to enhanced basal and stimulated 

WAT lipolysis and reduced adipocyte size (Ahmadian et al., 2009;  Bezaire et al., 2009;  

Kershaw et al., 2006). The primary function of ATGL is to initiate lipolysis, by hydrolyzing the 

sn-2 ester bond of a triglyceride molecule, resulting in the formation of diacylglycerol and fatty 

acid (Zechner et al., 2009). Therefore, decreased adipocyte cell size in gonadal WAT may be 

attributed to enhanced lipolysis in MNE offspring. 

Recently, evidence supports an additional role for ATGL - as an antioxidant and 

suppressor of oxidative stress. Oxidative stress is defined as an imbalance between antioxidant 

defenses and ROS production (free radicals) (Sena and Chandel, 2012). Prolonged oxidative 

stress can result in free radical damage, ultimately leading to mitochondrial-mediated apoptosis 

(Sena and Chandel, 2012). In vitro and in vivo analyses demonstrate that ATGL deficiency is 

associated with ROS accumulation and cellular apoptosis in renal podocytes and proximal 

tubules (Chen et al., 2017a;  Chen et al., 2017b). Similarly, ATGL inhibition in C2C12 

myoblasts and in murine ATGL deficient skeletal muscle promotes oxidative damage and a 

defective cellular antioxidant response, characterized by a significant reduction in antioxidant 

SOD-2 expression and glutathione levels (Aquilano et al., 2016). Altogether, these findings 

suggest that ATGL may protect against oxidative stress. We and others have previously shown 
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that maternal nicotine exposure can cause oxidative stress in the offspring in various tissues 

including the heart, pancreas, and placenta (Barra et al., 2017;  Bruin et al., 2008;  Sbrana et al., 

2011). Therefore, we examined the expression of antioxidants SOD-1/2 in WAT of 6 month 

female MNE offspring to assess whether an imbalance in anti-oxidant expression is present at the 

same time ATGL levels are elevated. Oxygen can oxidize other molecules to generate ROS, 

whereby majority of intracellular ROS are derived from superoxide (O2-). Superoxide is formed 

in the mitochondrial respiratory chain, emitted to the matrix and intermembrane space, and 

subsequently converted to hydrogen peroxide (H2O2) by superoxide dismutases (SODs) (Sena 

and Chandel, 2012). This study is the first to show that MNE WAT had increased transcript 

expression and protein levels of both SOD-1 and -2 at 6 months with evidence for increased 

SOD-1 at 3 weeks of age. Although non-significant, we also observed an upward trend for the 

oxidative marker 4-HNE in nicotine exposed WAT compared to vehicle at both time points. This 

suggests that perinatal nicotine exposure may instigate WAT oxidative stress, triggering a rapid 

increase in anti-oxidant expression by weaning which persists into adulthood and may prevent 

long-term oxidative damage.  

Oxidative stress can contribute to altered adipocyte differentiation and lipolysis. 

Depending on environmental cues, mesenchymal stem cells can differentiate into various cell 

types derived from the mesodermal lineage including myocytes, adipocytes, osteocytes, and 

chondrocytes. Evidence suggests that elevated ROS levels, produced during oxidative stress, can 

stimulate adipogenesis while suppressing osteogenesis (Atashi et al., 2015). During conversion 

of stem cells to adipocytes, mitochondrial complexes I/III and the NADPH oxidase isoform 

NOX4 produce ROS to initiate adipocyte signaling cascades, leading to terminal differentiation 

(Atashi, Modarressi and Pepper, 2015). Therefore, increased SOD-1 expression in fetal and 
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neonatal nicotine exposed WAT may suggest that augmented ROS production may directly 

promote the expression of adipogenic transcription factors like C/EBPα (Hu et al., 2005). In vitro 

analyses using both differentiated 3T3-L1 and human primary adipocyte cultures demonstrate 

that exposure to exogenous 4-HNE elevated lipolysis in basal and stimulated conditions 

characterized by a dose-dependent significant increase in glycerol and fatty acid release (Zhang 

et al., 2013). Altogether, these findings suggest that MNE may augment oxidative stress in WAT 

characterized by increased expression of antioxidants SOD-1/2 and ATGL, leading to altered 

adipocyte differentiation and lipolysis.  

Enhanced oxidative stress can promote pathways, like inflammation, that also influence 

adipose function. Exposure to hydrogen peroxide or ROS accumulation activates the 

transcription factor NF-κB, leading the expression of pro-inflammatory cytokines such as TNF-α 

or IL-1 (Lawrence, 2009;  Li and Karin, 1999;  Morgan and Liu, 2011). Intriguingly, treatment 

with either TNF-α or IL-6 in differentiated adipocytes can increase the expression of ATGL and 

enhance glycerol production (a marker of lipolysis). Moreover, in vitro studies reveal that TNF-α 

induces lipolysis in differentiated human and murine adipocytes through multiple distinct 

pathways (i.e. mitogen-activated protein kinase kinase, (MAPKK); extracellular signal-related 

kinase 1/2 (ERK); and elevation of cyclic adenosine monophosphate (cAMP); NH2-terminal 

kinase (JNK)) (Ryden et al., 2002;  Yang et al., 2011;  Zhang et al., 2002). Similarly, treatment 

with IL-6 induces lipolysis through increased expression of ATGL in soleus muscles ex vivo 

(Macdonald et al., 2013) and enhanced glycerol production in 3T3-L1 cells (Ji et al., 2011). Our 

results reveal that fetal and neonatal nicotine exposure culminates in increased steady-state 

mRNA levels of proinflammatory mediators, including TNF-α and IL-6 by 6 months of age. 

These results coincide with previous findings demonstrating that in utero nicotine exposure 
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resulted in increased circulating pro-inflammatory cytokines throughout development and in 11 

week old offspring (Mohsenzadeh et al., 2014;  Orellana et al., 2014). Since inflammation was 

present in 6 month female WAT and not at 3 weeks, this suggests that nicotine does not have a 

direct effect on inflammation but that augmented oxidative stress may mediate the expression of 

pro-inflammatory cytokines. One research group demonstrated that CD-1 mice fed a nicotine-

containing diet for 14 weeks postnatally decreased adipocyte cell size without affecting white 

adipose inflammation (Liu et al., 2018). In fact, treatment with 4-HNE in 3T3-L1 cells induced 

inflammation by activating p38, subsequently increasing the expression of cyclooxygenase-2 

(COX) (Zarrouki et al., 2007). Further studies are warranted to determine whether inflammation 

may in part promote lipolysis in prenatal nicotine exposed WAT long term. 

 In summary, our findings demonstrate that maternal nicotine exposure during pregnancy 

and lactation leads to decreased WAT adipocyte size and impaired lipid storage in postnatal life 

characterized by augmented lipolysis and inflammation triggered possibly by a pro-oxidative 

stress environment. This impairment in WAT lipid storage can contribute to increased circulating 

triglycerides, leading to enhanced hepatic de novo lipogenesis, high blood pressure, and 

increased CVD risk as we have previously shown (Gao et al. 2008;  Ma et al., 2014). These 

findings provide insight into the consequence of prolonged oxidative stress driving WAT 

dysfunction long-term. Postnatal intervention strategies targeting oxidative stress may benefit 

children exposed to nicotine in utero through cigarette smoke and/or NRT. In fact, studies 

demonstrate that the use of antioxidants (i.e. anthocyanin, quercetin, bottle gourd) can 

significantly reduce dyslipidemia (Li et al., 2015;  Talirevic and Jelena, 2012). Overall, results 

from this study suggests that therapeutic strategies targeting oxidative stress may effectively 

protect nicotine exposed offspring from WAT dysfunction and dyslipidemia. 
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FIGURE LEGENDS 

Figure 1: Maternal nicotine exposure leads to decreased visceral adipocyte cell area in 6 

month old offspring. Representative cross-sections of gonadal WAT excised from (A) vehicle 

and in utero nicotine exposed 6 month old male and female offspring were stained with 

hematoxylin and eosin. (B) Bar graph representing calculated cell areas analyzed using Northern 

Eclipse software (n=4/group/sex). (C) Transcript and (D) protein levels of AKT-1 in six month 

vehicle and perinatal nicotine exposed WAT were determined via real time PCR and Western 

blot, respectively. mRNA levels were expressed as means normalized to β-actin ± SEM 

(n=15/vehicle; n=11/nicotine). Protein levels were expressed as means normalized to β-actin ± 

SEM (n=8/vehicle; n=7/nicotine). **,*** Significant difference (**p<0.01, ***p < 0.001).  

 

Figure 2: In utero nicotine exposure increases the expression of the differentiation marker 

C/EBPα in WAT of 6 month old female offspring. Transcript and protein levels of targets of 

interest in 3 week and six month vehicle and perinatal nicotine exposed WAT were determined 

via real time PCR and Western blot, respectively. Six month (A) C/EBPα mRNA and (B) protein 

levels. (C) C/EBPβ mRNA and (D) protein levels. (E) SREBP1-c mRNA and (F) protein levels. 

Three week (G) C/EBPα mRNA and (H) protein levels. mRNA levels were expressed as means 

normalized to β-actin ± SEM (n=15/vehicle; n=11/nicotine). Protein levels were expressed as 

means normalized to β-actin ± SEM (n=8/vehicle; n=7/nicotine). *, Significant difference 

(*p<0.05).  

 

Figure 3: Maternal nicotine exposure does not increase the expression of markers involved 

in lipogenesis and fatty acid transporters in WAT of 6 month old female offspring. 
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Transcript levels of targets of interest in six month vehicle and perinatal nicotine exposed WAT 

were determined via real time PCR. Six month (A) LPL, (B) ACCα, (C) FAS, (D) ASCL1, (E) 

FATP1, and (F) FATP4 mRNA levels. mRNA levels were expressed as means normalized to β-

actin ± SEM (n=15/vehicle; n=11/nicotine).  

 

Figure 4: In utero nicotine exposed female offspring exhibit increased expression of ATGL 

at 6 months, but not at 3 weeks. Transcript and protein levels of ATGL in 3 week and six 

month vehicle and perinatal nicotine exposed WAT were determined via real time PCR and 

Western blot, respectively. Six month ATGL (A) mRNA and (B) protein levels. Three week 

ATGL (C) mRNA and (D) protein levels. mRNA levels were expressed as means normalized to 

β-actin ± SEM (n=15/vehicle; n=11/nicotine). Protein levels were expressed as means 

normalized to β-actin ± SEM (n=8/vehicle; n=8/nicotine). *,** Significant difference (*p<0.05, 

**p<0.01). 

 

Figure 5: In utero nicotine exposed female offspring exhibit increased anti-oxidant 

expression in WAT at 3 weeks and 6 months. Transcript and protein levels of SOD-1 and 

SOD-2 in 3 week and six month vehicle and perinatal nicotine exposed WAT were determined 

via real time PCR and Western blot, respectively. Six month SOD-1 (A) mRNA and (B) protein 

levels and SOD-2 (C) mRNA and (D) protein levels. Three week SOD-1 (E) mRNA and (F) 

protein levels and SOD-2 (G) mRNA and (H) protein levels. Protein levels of 4-HNE at (I) 6 

months and (J) 3 weeks of age. mRNA levels were expressed as means normalized to β-actin ± 

SEM (n=15/vehicle; n=11/nicotine). Protein levels were expressed as means normalized to β-

actin ± SEM (n=8/vehicle; n=8/nicotine). *,** Significant difference (*p<0.05, **p<0.01). 
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Figure 6: Maternal nicotine exposed female offspring exhibit increases in WAT 

inflammation at 6 months, but not at 3 weeks. Transcript levels of targets of interest in six 

month vehicle and perinatal nicotine exposed WAT were determined via real time PCR. Six 

month (A) IL-1β, (B) TNFα, (C) IL-6, and (D) CD68 mRNA levels. Three week (E) IL-1β, (F) 

TNFα, (G) IL-6, and (H) CD68 mRNA levels. mRNA levels were expressed as means 

normalized to β-actin ± SEM (n=15/vehicle; n=11/nicotine). *,**,*** Significant difference 

(*p<0.05, **p<0.01, **p<0.001). 
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TABLES 

Table 1. Forward and reverse primer sequences used for quantitative Real-Time PCR 

GENE Forward  Reverse GenBank/Refer

ence 

AKT-1 ATGTGTATGAGAAGAAGC

TGAGCC 

GTTCACTGTCCACACACT

CCA 

NM_033230.2 

C/EBPα GCCGGGAGAACTCTAACT

CC 

TCGATGTAGGCGCTGATG

TC 

NM_00128757

7.1  

C/EBPβ ACCACGACTTCCTTTCCG

AC 

TAACCGTAGTCGGACGGC

TT 

NM_024125.5 

SREBP1

c 

CATGGACGAGCTACCCTT

CG 

TCTTCGATGTCGGTCAAG

AGC 

NM_00127670

7.1 

LPL GGATGCAACATTGGAGAA

CCC 

GCTGGGGTTTTCTTCATTC

AGC 

NM_012598.2 

ACCα TCCGTATGTGACCAAAGA

CC 

TACGTTGTTCCCAAGGAC

TG 

NM_022193.1  

FAS GGACATGGTCACAGACGA

TGAC 

CGTCGAACTTGGACAGAT

CCTT 

NM_017332.1  

ACSL1 CTACAGGCAACCCCAAAG

GA 

AATGCACTCTCCGTCGCT

T 

NM_012820.1 

FATP1 CAGCCTCTGTGGCCTCAT

T 

ACCCACGTACACACCGAA

C 

NM_053580.2  

FATP4 CTTGGGCAACTTTGACAG

CC 

AGGACAGGATGCGGCTAT

TG 

NM_00110070

6.1 

ATGL AACGCCACTCACATCTAC

GG 

TACCAGGTTGAAGGAGGG

GT 

NM_00110850

9.2  

EGR-1 CGAGCGAACAACCCTACG

A 

CGATGTCAGAAAAGGACT

CTGTG 

NM_012551.2  

FOXO-1 TGCAGCAGACACCTTGCT

AT 

TTGGGGCTGGGGGAATTT

AG 

NM_00119184

6.2 

IL-1β CAGCTTTCGACAGTGAGG

AGA 

GTCGAGATGCTGCTGTGA

GA 

NM_031512.2 

TNFα CCGGGCAGGTCTACTTTG

GA 

AGGCCACTACTTCAGCGT

CTCG 

NM_012675.3 

IL-6 CTTCCAGCCAGTTGCCTT

CTTG 

TGGTCTGTTGTGGGTGGT

ATCC 

NM_012589.2 

CD68 ACTGGGGCTCTTGGAAAC

TACAC 

CCTTGGTTTTGTTCGGGTT

CA 

NM_00103163

8.1 

SOD-1 ATTGGCCGTACTATGGTG

GTC 

GCAATCCCAATCACACCA

CA 

NM_017050.1  

SOD-2 ATTGCCGCCTGCTCTAAT

CA 

TCCCACACATCAATCCCC

AG 

NM_017051.2 
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Table 2. Western Blot antibodies, dilutions used in experiments, and company and catalogue 

information.  

Antibody name Source Dilution Company (#Catalogue) 

4-HNE Mouse 

monoclonal 

1:500 R&D Systems Minneapolis, MN, 

USA (#MAB3249)  

AKT-1 Rabbit 

polyclonal 

1:500 Abcam Inc., Cambridge, MA, 

USA (#abcam 5919) 

ATGL (H-144) Rabbit 

polyclonal 

1:1000 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-

67355) 

C/EBPα (14AA) Rabbit 

polyclonal 

1:500 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-61) 

C/EBPβ (C-19) Rabbit 

polyclonal 

1:300 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-150) 

SOD-1 (FL-154) Rabbit 

polyclonal 

1:1000 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-

11407) 

SOD-2 (FL-222) Rabbit 

polyclonal 

1:1000 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-

30080)  

SREBP 1c (H-160) Rabbit 

polyclonal 

1:500 Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA (#sc-8984) 

Mouse IgG (H+L) Secondary Sheep 1:5000 GE Healthcare UK, Pittsburgh, 

PA, USA (#NA931) 

Rabbit IgG (H+L) Secondary Donkey 1:10000 Jackson ImmunoResearch 

Laboratories, West Grove, PA, 

USA (#711-001-003) 
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