
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-28-2022 11:00 AM

Reputation-Based Trust Assessment of Transacting Service Reputation-Based Trust Assessment of Transacting Service

Components Components

Konstantinos Tsiounis, The University of Western Ontario

Supervisor: Kontogiannis, Kostas, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Konstantinos Tsiounis 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems

Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Tsiounis, Konstantinos, "Reputation-Based Trust Assessment of Transacting Service Components"
(2022). Electronic Thesis and Dissertation Repository. 8675.
https://ir.lib.uwo.ca/etd/8675

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8675?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

As Service-Oriented Systems rely for their operation on many different, and most often,

distributed software components, a key issue that emerges is how one component can trust the

services offered by another component. Here, the concept of trust is considered in the context

of reputation systems and is viewed as a meta-requirement, that is, the level of belief a service

requestor has that a service provider will provide the service in a way that meets the requestor’s

expectations. We refer to the service offering components as service providers (SPs) and the

service requesting components as service clients (SCs).

In this approach, we propose a technique that allows for evaluating and assigning trust to

various service providers, by considering their ability to fulfill their clients’ expectations or

policies, and assigning and updating the reputation of other service clients, based on their ca-

pabilities as recommenders for the aforementioned service providers. Service clients request

opinions from other service clients (i.e. recommenders), when looking for an appropriate ser-

vice to use. Different sources of recommendation are considered and opinions are transformed

into evidences to be used by our proposed ranking algorithm. After the utilization of a service,

the requesting client updates the trust and distrust values for said service, as well as the reputa-

tion values for the service’s recommenders. In this work, service clients and service providers

are considered software applications that coordinate with each other, and may include micro-

services, software agents, smart contracts or any other distributed inter-networked resource,

without making any assumptions as to what a service client or a service provider component

is, as long as it is a component that issues or responds to requests.

The proposed approach has been shown, through implementing a prototype and executing

appropriate experiments, to be very stable in the presence of high percentages of malicious

users. Even when the dishonest clients account for up to 80%, honest users are able to receive

accurate recommendations and select services that are able to fulfill their requirements. The

proposed framework outperforms other approaches, in scenarios where malicious users are

involved, by up to 20%, especially for higher percentages of users overvaluing or undervaluing

ii

services offered.

Our approach is, also, capable of quickly detecting deterioration of the QoS provided by a

service provider, and supports the provision of incentives and compensations for allowing the

selection of new and reformed services and ameliorating bad interactions caused by extenuating

circumstances, respectively.

Keywords: Distributed Components, Service-oriented Computing, Trust, Reputation Sys-

tems, Multi-agent Systems, Metaverse

iii

Lay Summary

As Service-Oriented Systems rely for their operation on many different, and most often,

distributed software components, a key issue that emerges is how one component can trust the

services offered by another component. Here, the concept of trust is considered in the context

of reputation systems and is viewed as a meta-requirement, that is, the level of belief a service

requestor has that a service provider will provide the service in a way that meets the requestor’s

expectations. We refer to the service offering components as service providers (SPs) and the

service requesting components as service clients (SCs).

In this approach, we propose a technique that allows for evaluating and assigning trust

to various service providers, by considering their ability to fulfill their clients’ expectations

or policies, and assigning and updating the reputation of other service clients, based on their

capabilities as recommenders for the aforementioned service providers. In this work, service

clients and service providers are considered software applications that coordinate with each

other, and may include micro-services, software agents, smart contracts or any other distributed

inter-networked resource, without making any assumptions as to what a service client or a

service provider component is, as long as it is a component that issues or responds to requests.

The proposed approach has been shown, through implementing a prototype and executing

appropriate experiments, to be very stable in the presence of high percentages of malicious

users. Furthermore, the approach is capable of quickly detecting deterioration of the QoS

provided by a service provider, and supports the provision of incentives and compensations for

allowing the selection of new and reformed services and ameliorating bad interactions caused

by extenuating circumstances, respectively.

iv

Contents

Abstract ii

Lay Summary iv

List of Figures xi

1 Introduction 1

1.1 Problem Statement . 4

1.2 Outline of Approach . 4

1.3 Thesis Contributions . 7

1.4 Thesis Outline . 10

2 Related Work and Background 11

2.1 Reputation Systems . 11

2.1.1 Reputation Systems Taxonomy . 12

2.1.2 Commercial Reputation Systems . 14

2.1.3 Academic Reputation Systems . 15

2.1.4 Recommender Systems . 23

2.1.5 Limitations of Related Work . 25

2.2 Requirements modelling . 25

2.3 Consensus in Distributed Systems . 27

2.4 Reasoning Under Uncertainty . 28

2.4.1 Dempster-Shaffer . 28

v

2.4.2 Fuzzy Logic and Reasoning . 29

2.5 Background on Supporting Technologies . 30

2.5.1 Publish/Subscribe Systems . 30

2.5.2 Distributed Databases . 31

3 Modelling and Overall Process 33

3.1 Modeling Concepts - Entities . 33

3.2 Modeling Concepts - Relations . 35

3.3 Modeling Concepts - Relation values . 38

3.3.1 Perceived Trust and Distrust per Interaction (OT and OD values) 38

3.3.2 Cumulative Trust and Distrust (T and D values) 39

3.3.3 Individual Reputation of a Recommender (R value) 40

3.3.4 Overall Reputation of Recommenders (AR value) 42

3.4 Sources of Recommendations . 43

3.5 Process Overview . 44

3.5.1 Process Outline . 44

3.5.2 Running Example . 46

3.6 Summary . 49

4 Trust and Reputation Evaluation Algorithms 51

4.1 Evaluation of OT and OD values . 51

4.2 Evaluation of T and D values . 53

4.3 Evaluation of R value . 55

4.4 Timeouts . 61

4.5 Evaluation of AR value . 63

4.6 Selection of R values for AR calculation . 66

4.6.1 Adaptive Replacement Cache Policy 67

4.6.2 ARC Adaptation . 70

vi

4.7 Service Ranking . 73

4.7.1 Selection of Recommenders . 74

4.7.2 Aggregation of T and D values per recommender group 75

4.7.3 Dempster-Shafer . 76

4.7.4 Incentives . 78

4.7.5 Compensations . 79

4.7.6 Running Example (Revisited) . 80

4.8 Discussion on Self-Regulating Behaviour of Recommenders 88

4.9 Summary . 90

5 System Architecture 92

5.1 Centralized Architecture . 92

5.1.1 Architecture Overview . 92

5.1.2 Interface Specification . 98

5.1.3 Process Sequence Diagrams . 99

Recommendations and Ranking . 100

Incentives, Utilization and Compensations 102

T/D and R values Update . 104

Overall Reputation Value Update . 107

Timeouts . 108

5.2 Distributed Architecture . 111

5.2.1 Architecture Overview . 111

5.2.2 Interface Specification . 113

5.2.3 Process Sequence Diagrams . 114

Recommendations and Ranking . 115

Incentives, Utilization and Compensations 115

T/D and R values Update . 116

Overall Reputation Value Update . 118

vii

Timeouts . 119

5.3 Blockchain Architecture . 120

5.4 Messaging Protocols . 121

5.4.1 Data Acquisition . 121

5.4.2 Update values after interaction . 123

5.4.3 Updating AR values . 124

5.4.4 Publications of Events . 125

5.4.5 Removing obsolete values . 126

5.5 Summary . 127

6 Implementation and Experiments 129

6.1 Overall Infrastructure . 129

6.1.1 Framework implementation . 129

6.1.2 Event Propagation . 130

6.1.3 Database Utilization . 130

6.2 Experiments . 131

6.2.1 Simulator . 131

6.2.2 Experimental Setup . 133

Simulated Network Setup . 133

Experiments Execution . 134

Bootstrapping phase . 134

6.2.3 Stability in the Presence of Malicious Components 135

6.2.4 Degrading Services . 137

6.2.5 Connections to Recommenders and Service Providers 139

6.2.6 Sources of Recommendation . 140

6.2.7 Effect of Considering Distrust Values 142

6.2.8 Incentives . 144

6.2.9 Comparison . 147

viii

6.3 Summary . 149

7 Conclusion and Future Work 151

7.1 Summary of the Approach . 151

7.2 Contributions . 153

7.3 Discussion of Limitations . 159

7.4 Future Work . 161

Bibliography 163

ix

List of Figures

3.1 A network of service clients and providers . 35

3.2 Interactions between client and provider components 37

3.3 Example network of recommenders and services 46

4.1 Example model for service evaluation . 52

4.2 Offset Formula for R evaluation . 58

4.3 General Structure of ARC lists . 69

4.4 Example of lists for S C3 . 70

4.5 Example network of recommenders and services 81

5.1 Component diagram for centralized architecture. 93

5.2 Centralized Architecture: Sequence diagram for ranking part. 100

5.3 Centralized Architecture: Sequence diagram for incentives, utilization and com-

pensations part. 102

5.4 Centralized Architecture: Sequence diagram for updating T/D and R values

after service utilization. 105

5.5 Centralized Architecture: Sequence diagram for deciding on important R val-

ues and updating AR values. 107

5.6 Centralized Architecture: Sequence diagram for removing obsolete T/D and R

values. 109

5.7 Component diagram for distributed architecture. 112

5.8 Distributed Architecture: Sequence diagram for ranking part. 114

x

5.9 Distributed Architecture: Sequence diagram for incentives, utilization and com-

pensations part. 116

5.10 Distributed Architecture: Sequence diagram for updating T/D and R values

after service utilization. 117

5.11 Distributed Architecture: Sequence diagram for deciding on important R values

and updating AR values. 118

5.12 Distributed Architecture: Sequence diagram for removing obsolete T/D and R

values. 120

6.1 System stability vs Percentage of Malicious Components 135

6.2 Recognition of degrading service . 137

6.3 Connections to recommenders and service providers 139

6.4 Recommendation Sources . 141

6.5 Ranking Score for Different Observed Distrust 143

6.6 Services at bottom and out of ranking . 146

6.7 Transaction success with respect to malicious users 149

xi

Chapter 1

Introduction

Over the past few years, we witness an accelerated proliferation of virtual digital environments

and applications that involve ad-hoc interactions between various software entities or digital

models of physical entities (e.g. avatars). These applications and environments relate to a

wide spectrum of domains, ranging from social commerce [94] to agent-computing [98], and

metaverse [99].

In these types of applications, interacting entities can act as clients seeking access to re-

sources and services, and/or as providers offering access to such resources and services. Exam-

ples of client entities include applications that seek an appropriate merchant in an e-commerce

or a social-commerce site, applications that seek the most accurate information source to ob-

tain reliable data from, and avatars that seek to obtain services and virtual objects from other

avatars in Massive Multiplayer Online games (MMOs) or metaverse realities. Examples of

providers include entities that generate or serve information the accuracy and provenance of

which is important to their clients, applications that deliver trustworthy expert opinions, and

applications that offer services required to meet their promised QoS levels.

Here, interactions between service clients and service providers most often are part of adap-

tive, context-aware, and elaborate processes that implement complex logic.

Furthermore, due to the high volume, velocity, and complexity of such interactions, it be-

1

2 Chapter 1. Introduction

comes evident that these cannot be coordinated manually, and applications must rely on elab-

orate frameworks that establish and maintain trust among the transacting parties. More specif-

ically, a key challenge arises when it comes for a client to decide with which service provider

to interact with or trust, with respect to the quality of service or provenance of data served.

The proposed framework can easily be incorporated and used in a variety of real-world sce-

narios. One of the most straightforward applications of our approach is e-commerce systems.

Existing systems only provide functionality for providing reviews for services and products,

without accounting for the reputation and nature of the reviewer. Such an approach leads to

fake reviews [145] and inability to discern honest ones, as opposed to our framework that

weighs opinions according to recommenders reputation. Another area where our framework

would be a useful addition is virtual environments [144]. With major investment being put in

different metaverse environments [146] and parabolic increase in users participating in them

[147], a method for assigning trust to different entities in an automated yet efficient and reliable

way is of paramount importance. Of course, virtual environments, also, include Massively Mul-

tiplayer Online (MMO) games, which account for a significant amount of interactions between

digital entities. Finally, our proposed approach can be utilized in all cases where a network

of trust is required when selecting an appropriate service provider, such as trading platforms,

where the choice of recommendations from trading experts could be made on account of their

assigned reputation.

It is important to note that the concept of trust has been considered in many different con-

texts, in different forms (i.e. static or dynamic) and, in different encodings (i.e. binary, or range

values).

One area of trust is related to system security. Here trust may relate first, to the ability to

access or deny service provision based on specific policies and authentication and authoriza-

tion processes and second, to whether an application is considered safe, in the sense it is virus

or malware free. In these scenarios, the concept of trust equates more to the ability to verify

through specific processes that a component does not pose an immediate threat. The verifica-

3

tion dimension of trust can, also, revolve around the fulfillment of certain characteristics of a

component, such as reliability, maintainability or dependability, as assessed by third-party enti-

ties. A noteworthy area that gained traction regarding trust and security, involves the concept of

Zero-trust architectures [96] which is based on the assumption that nothing can be trusted and,

thus, everything needs to be validated at every step utilizing specific processes and algorithms.

A second area of trust relates to consensus systems where the concept of trust is used

as a mechanism between transacting nodes [97] to reach an agreement. The issue has been

addressed as a potential problem in classic consensus protocols, such as the Byzantine Fault

Tolerance [32] or the Paxos [31] algorithms, but trust has, also, been considered as a dynamic

dimension that would allow one to specify new protocols, such as the Proof-of-Trust Consensus

Protocol [100].

A third area of trust relates to reputation systems [19]. This thesis considers trust under

this context and deals with its utilization as part of said systems. More specifically, in the case

of reputation systems, trust of from one entity to another is established through the assessment

and use of each entity’s reputation. The result of that assessment can be provided in many

forms and utilized by different underlying systems, usually specified by the approach’s target

use. In this thesis, we consider trust as a meta-requirement, that is, the level of belief a service

client has that a service provider will provide the service in a way that meets the clients’ expec-

tations. Key requirements of reputation systems involve dealing with malicious components

that infiltrate the system and provide false recommendations, as well as dynamically respond-

ing to changes in the behaviour of entities. The approach proposed in this thesis falls in this

category of reputation systems and deals with the ability to assess trust and distrust, utilizing

a dynamically formed and maintained network of transacting entities where the reputation of

service providers and nodes who recommend them is constantly evaluated and updated.

4 Chapter 1. Introduction

1.1 Problem Statement

As mentioned earlier, high volume and high velocity virtual interactions are becoming increas-

ingly common nowadays and, in most cases establishing, updating, and maintaining trust is not

always possible either due to the sheer complexity of the interactions, or due to limited access

to past behaviour entities have exhibited when interacted with other entities. This issue can

be addressed using a trust-maintenance system that is based on the dynamic management of

reputation models between clients, recommenders, and service providers.

The problem description pertaining this thesis can thus be formulated as follows:

Given a set of service providers S P = {S P1, S P2, . . . , S Pn}, a set of service clients S C =

{S C1, S C2, . . . , S Cm}, sets of clients Ri ⊂ S C and which act as recommenders for service

provider S Pi, upon the request of a service client S C j requesting the opinion service clients

S Ck ∈ Ri have about service provider S Pi, devise a framework where a) client S C j is able to

select an appropriate service provider S Pi based on the recommendations (i.e. evidences) it

received from other clients S Ck ∈ Ri; b) upon using the service provider S Pi, client S C j is able

to assess and update the reputation of S Ck as a competent recommender; c) client S C j is able

to make itself available as a future recommender for service S Pi; d) the proposed approach is

able to identify and isolate malicious recommenders within a practical period of time and; e)

make use that the network of transacting entities is stable and its time and space performance

are tractable.

1.2 Outline of Approach

In this thesis, we propose a technique that is based on a network of interacting entities acting

as either service clients (S C) or service providers (S P).

Service providers (S P) are entities which act as proxies to actual services offered by dif-

ferent third party external systems. Therefore, each service provider node S Pi in the network

is a proxy that corresponds to a single externally offered service and, if one wishes to provide

1.2. Outline of Approach 5

different services, multiple S Pi nodes must be modelled and registered.

Service clients (S C) correspond to entities that connect to the system to seek, select, and

use services. Service clients can evaluate the positive and negative aspects of the individual

interactions they had with service providers by applying and evaluating a model that denotes

the expectations the specific client has on the service provider which is based on the service’s

QoS published characteristics. Such a model can be denoted using fuzzy rules, goal models,

and i* models to name a few. Service clients can select a service not only based on their prior

experience of using a service provider but also, based on recommendations they receive from

other clients (i.e. the recommenders). In this respect, the clients can also evaluate and update

the quality of the recommendations they have obtained from the recommenders by comparing

the recommendation versus their own experience after using the recommended service. The

values pertaining to the individual interactions are not valid forever. After a predetermined

amount of time, they are considered stale and are excluded from consideration for the calcula-

tion of their cumulative equivalents. Compensations can be given by service providers which

have failed for reasons beyond their ability to offer the expected QoS so they avoid negative

evaluations, while incentives can be given by new or lower ranked service providers so that

they can be selected again and enter the network.

The overall approach can be described in eight main steps.

Step 1. A Service Client S Ci seeks to select a service provider.

Step 2. The Service Client S Ci reaches out to three types of other clients who can act as recom-

menders of available service providers S Pk ... S P j. The first category of recommenders,

that S Ci reaches out to, includes the clients S Cexperts, who have the highest overall rep-

utation as recommenders. The second category of recommenders involves all clients

S C f riends, from which S Ci has gotten good recommendations in the past. The third cate-

gory of recommenders contains all clients S C f o f (friends-of-friends), who are known to

be good recommenders by clients belonging in the previous category.

6 Chapter 1. Introduction

Step 3. Service client S Ci assesses the positive and negative aspects of the recommendations it

receives and applies a reasoning algorithm based on the Dempster-Shaffer theory of evi-

dence to compile a ranking of available services. Information about available incentives

are, also, considered, allowing new or reformed services to be selected over established

ones and actively participate in the network.

Step 4. Service client S Ci selects and uses service provider S P j and, subsequently evaluates the

positive and negative aspects, based on its experience from using S P j, by applying an

evaluation model (in our case goal models for trust and distrust).

Step 5. In case of a service provider S P j which is highly ranked but fails to provide the ex-

pected QoS, compensations can be given to its clients so that it can avoid being ranked

poorly. The service client can choose to accept the provided compensation, and update

the observed trust and distrust values, or not.

Step 6. The observed trust and distrust values, updated after receiving a compensation or not,

are used by service client S Ci to a) update its cumulative opinion (positive and negative

aspects of it) about service provider S P j and; b) update its opinion about the recom-

menders, whose recommendation it used, by comparing said trust and distrust values

after using S P j with the one proposed by said recommenders.

Step 7. The updated individual opinion of S Ci towards its recommenders in this interaction is

used to update the overall reputation of those recommenders.

Step 8. Stale service provider scores and stale recommenders are removed from the network us-

ing a time-window approach, while important values for overall reputations are selected

through a variation of the Adaptive Replacement Cache policy.

1.3. Thesis Contributions 7

1.3 Thesis Contributions

The work presented in this thesis proposes several elements that contribute to the state-of-the-

art in the area of reputation-based trust systems as follows:

C1: The proposed approach evaluates both trust and distrust values for service providers and

reputation values for recommenders, in a dynamic way that, when combined with the

proposed algorithms, leads to significant improvements in resiliency in the presence of

malicious users, over existing approaches up to date. Most frameworks evaluate their

performance for malicious users accounting for up to half of their respective users, in

which case our proposed framework has a successful transaction rate that is 5%-15%

higher than the ones we compared it to. Where our approach significantly outperforms

related frameworks, however, is when higher percentages of dishonest users are involved.

In such scenarios, the discrepancy in successful transaction rates can be up to 20%.

C2: The proposed approach builds upon a model of interactions that closely simulates trust

behaviour between humans in social interactions, thus leading to a system that exhibits

a highly stable and resilient behaviour in the presence of even radical oscillations of ob-

served trust values. Historical values are also taken into consideration, both for positive

and negative aspects of an interaction (i.e. trust and distrust values) clients have with

service providers and recommenders, and novel algorithms are utilized for the update

of said values, resulting in a framework that avoids sudden fluctuations resulting from

interactions that are considered outliers or happenstance.

C3: The proposed approach yields an architecture which can be deployed both in a central-

ized or distributed manner. Existing approaches can only be deployed in one way or

the other. Our approach can be utilized by an application or system operated and main-

tained by a central authority, thus requiring a centralized architecture, or can be part of

a distributed network of agents, in which case a distributed variation can be deployed.

Our approach can even be deployed as a number of smart contracts in any appropriate

8 Chapter 1. Introduction

blockchain, to be used in tandem with different functionalities offered in the correspond-

ing metaverse.

C4: Another contribution pertains to dealing with the calculation of the global reputation of

recommenders where we propose a novel method, based on the Adaptive Replacement

Cache (ARC) protocol. In contrast to all other approaches, which either take every avail-

able node’s opinion into consideration or filter only based on a specific threshold, the

proposed method only considers reputation values that are deemed significant. Signifi-

cance is decided on the merits of recency and frequency of opinion in question.

C5: The proposed approach allows for combination of independently evaluated positive and

negative evidences (i.e. trust and distrust values) to provide a comprehensive ranking of

available service providers. The vast majority of proposed reputation systems evaluate

a service provider based on positive evidence or criteria, whereas a few of them focus

on negative interactions. An even smaller number of approaches utilizes risk as an ex-

tra dimension to account for short term changes in behaviour. Our approach, however,

provides the infrastructure for the calculation, propagation and utilization of positive and

negative evidence that are considered distinct and separately evaluated. The framework

is easily customizable and different algorithms for using available values for providing a

service ranking can be incorporated.

C6: Even though previous approaches have dealt with the issue of data aging, a decay func-

tion or parameter, applied on the corresponding cumulative value, was utilized by most

of them. Very few frameworks have handled the matter by discarding old values alto-

gether and, in these cases a recalculation of the cumulative value is required. We propose

a novel method for discarding obsolete reputation values without recalculating the cor-

responding cumulative values every time, thus improving the framework’s performance

and network impact. This allows us to get the benefits of the dynamic behaviour, offered

through the aging of available recommendations, and, at the same time, being able to

1.3. Thesis Contributions 9

accommodate a larger number of users and corresponding interactions.

C7: We propose a novel method based on Incentives to allow for new service providers,

and service providers that have improved their performance, to be selected over already

established service providers. In either case, the perceived behaviour of the incentive

providing service is not consistent with the actual behaviour, either due to the service

being new or because of underperforming in the past, and incentives are offered to allow

said services to be selected, and eventually prove themselves, over their higher ranked

counterparts. The proposed method facilitates the introduction of new services and the

discovery of behaviour changes in old ones, thus, leading to system behaviour that is

more dynamic.

C8: Finally, we propose the concept of Compensations to allow for historically well-behaving

services to not be penalized for lower QoS due to extenuating circumstances. In case of

a service that has performed as expected for a significant amount of time, occasional and

short-lived drops in quality of service should not cause significant decreases in the level

of trust put in their ability to perform up to standard, especially if the circumstances under

which those bad interactions occurred are out of the provider’s immediate control. To

ameliorate such behaviour, we allow service providers to offer compensations to affected

service clients. This approach allows for a system that remains stable when a service’s

behaviour hasn’t actually degraded, but has only been temporarily altered due to external

events.

The above lead to a framework for which evaluation results indicate that is highly stable and

resilient in the presence of a high number of malicious users (i.e. malicious recommenders).

10 Chapter 1. Introduction

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 discusses related work on the topics of repu-

tation systems, recommender systems and requirements and awareness modelling, as well as

background information on Publish-Subscribe middleware frameworks, distributed databases,

fuzzy reasoning and the Dempster-Shafer evidence theory. Chapter 3 presents the details on

modelling choices, regarding entities, relations and recommendation sources, and provides an

outline of the overall process followed by our approach when requesting recommendations and

using an available service, as well as an example. Chapter 4 introduces and explains the algo-

rithms created to accommodate the needs of the system, namely trust/distrust evaluation, repu-

tation assessment, handling of obsolete values and ranking of services. The example included

in the previous chapter is expanded to include the calculations required as part of the process.

Chapter 5 presents the architecture of the proposed framework, providing several options in

order to accommodate centralized or distributed needs. The process is revisited to indicate the

utilization of the specific components and the messaging protocol used by the individual com-

ponents to communicate is discussed. Details about the implementation of the prototype for

the proposed approach, along with experiments executed to evaluate its performance and capa-

bilities in the face of malicious users and dynamic service behaviour, are presented in Chapter

6. Finally, the thesis is concluded in Chapter 7, where a discussion about the behaviour of

the proposed approach is included, some open issues are identified and pointers for further

research are provided.

Chapter 2

Related Work and Background

In this chapter, we present the background and related work for all aspects of our presented

approach, including reputation systems, modelling of requirements and incentives using goal

models and consensus mechanisms in distributed systems.

2.1 Reputation Systems

Virtual interactions have been a commonplace over the last couple of years, with most of them

occurring without prior real world relationship between the participating entities. Social media

and the metaverse have exponentially increased the frequency of such interactions and have

expanded the context and content of said interactions. Because of that, there is a pressing need

for a way to evaluate an agent’s credibility or trustworthiness.

Reputation systems are the solution to that problem and they have been researched for

academic purposes and utilized for commercial reasons alike. The term incorporates all ap-

proaches, either algorithms or frameworks, that deal with estimating, updating, maintaining

and propagating trust. Application include e-commerce, P2P file sharing networks, Web ser-

vices, group decision making, e-governance etc.

11

12 Chapter 2. RelatedWork and Background

2.1.1 Reputation Systems Taxonomy

Several surveys have been contacted regarding reputation systems [33, 43, 51, 42, 50, 38, 44,

39, 54], with each of them proposing their own taxonomy based on their main incentive. All

of them, however, introduce several common dimensions that seem to be ubiquitous among

reputation systems, whether commercial or academic.

First and foremost, reputation systems are divided into implicit and explicit. Platforms and

systems that provide a reputation mechanism that is, however, not explicitly defined are con-

sidered implicit reputation systems. Social networks are a prime example of such systems, as a

degree of trust can be inferred by observing connections to friends and assessing whether the

friends are considered reputable or not. Another example would be Google’s search engine,

whose order of results indicates a difference in reputation. Of course, in implicit systems no

mechanism for evaluating reputation and inferring trust is implemented, so further discussion

about characteristics would be meaningless. Explicit reputation systems, on the other hand,

provide a specific method of assigning reputation to different entities and are utilized in envi-

ronments that rely on frequent interactions between those aforementioned entities.

In order to implement a reputation system, a number of choices have to be made regarding

some of its characteristics. Some of them pertain to the evaluation of the trust and reputation

values, whereas other deal with governance and deployment issues.

One of the main dimensions of reputation systems involves the type of historical reputation

values maintained. Some frameworks choose to utilize global values for every entity in the

system. Others prefer personal or subjective opinions that are pairwise values and correspond

to the personal opinion an entity has about another. Both of those approaches have their ad-

vantages and disadvantages. Global reputation values allow for a more consistent view of the

current state of affairs, but can be detrimental in case of malicious users. This approach also

requires a central authority or additional processing power to be disseminated. Personal repu-

tation values are much faster to compute, can be implemented in a distributed or decentralized

environment and allow for a more personalized view of trustworthiness, but they are not always

2.1. Reputation Systems 13

consistent with the current state and usually require a longer time before identifying changes

in behaviour of entities. The majority of reputation systems use global values when it comes to

reputation of entities, which, although it introduces vulnerabilities to malicious attacks, scales

better for larger systems.

The utilization of multiple contextual information or not is another question that comes

up when creating a reputation system. Specific contextual attributes can provide additional

meaning to occurring transactions. A small number of available systems have opted to take

extra information into consideration when evaluating a user’s reputation, such as ability to

provide resources to the network [41] or after sales service and delivery time in case of buying

goods [52]. Most of proposed systems, however, operate in a specific domain and maintain a

single context throughout the system.

Another very important aspect of reputation systems involves the collection of information

regarding previous interactions between entities. The most straightforward way of obtaining

said information would be through direct observation. This includes both personal interactions

and interactions that can be directly observed, as is the case in wireless networks for example.

Indirect information could also be obtained by inquiring other entities and asking for the ex-

perience they have acquired through previous interactions. Lastly, a reputation system can use

information that are derived, meaning that they weren’t originally intended to be used by said

system as a reputation source. GRAft [45, 46] is one of the few frameworks that utilize derived

information though. Most of the systems use a combination of direct and indirect experience,

with one complementing the other.

Representation of reputation values is another choice that reputation systems have to make.

Several formats have been proposed over the years but some are more common than others.

If an interaction or reputation of an entity is represented using boolean values, the representa-

tion is considered binary. Other options include discrete and continuous representation where

values are discrete integers or floating point numbers respectively. Those are the three most

commonly used formats, depending mostly on the domain the approach is applied on. Some

14 Chapter 2. RelatedWork and Background

frameworks utilize some more obscure format that include a string or a vector, if the reputation

value needs to stay decomposed into values coming from multiple sources.

Aggregation of said reputation values is also required in the context of reputation sys-

tems. Most of the available frameworks use some form of counting computation method,

which includes summation of positive and negative feedbacks and averaging, weighted or not,

depending on the format of reputation values. A few of the proposed approaches use dis-

crete [53](involves converting discrete values into ratings using look-up tables), probabilistic

[58, 59] (uses probability models to predict likelihood), fuzzy [11] (utilizes fuzzy logic), or flow

[3, 5] (examines the flow of transitive trust) computation. The option of not aggregating is also

explored [45, 46].

As far as implementation of the frameworks goes, a distinction needs to be drawn between

different levels of reputation presence. In fully centralized systems, the underlying authority

needs to be online for the reputation to be available, while in distributed or fully decentralized

systems, authority presence can be partial [55, 56] or reputation values can be distributed

even if authority is offline. Tying into the implementation of an approach and its governance

authority, more specifically, options include centralized or distributed control.

Last but not least, reputation systems can be further categorized based on some charac-

teristics of the values maintained. Reputation information can be either atomistic or holistic,

depending on whether information is provided per transaction in a detailed manner or as a sin-

gle, overall value respectively, and can be filtered or not. Furthermore, different approaches

deal with data aging in different ways. Some provide none, while other decay older values as

time passes [40] or allow for the death of old and obsolete reputation information [57].

2.1.2 Commercial Reputation Systems

One of the most well-known commercial reputation systems is provided by Amazon [47]. After

completing the purchase of a product, a user can provide a review consisting of a numeric rank

(5 stars or less) and a feedback message. Other users can rate those reviews as helpful or not

2.1. Reputation Systems 15

not helpful and they can, then, be ordered, based on those ratings. Review authors’ reputation

depends and fluctuates based on those ratings.

eBay is another example of commercial reputation systems and has been very well re-

searched [35, 37, 34, 48, 49]. What sets this reputation system apart is its choice to request

feedback from both parties participating in a transaction. After each transaction, each partic-

ipant provides an overall discreet rating, some numerical ratings for different aspects of the

transaction and a comment.

Stackoverflow also utilizes a reputation system to ensure the quality of questions and an-

swers provided by different users. Asking and answering questions is encouraged, since those

are the actions that earn reputation points. Different abilities are unlocked after a certain rep-

utation level is achieved and points can be deducted for certain reasons (e.g. voting down).

Reputation score is represented through a discrete value that corresponds to the reputation

points the user has accumulated.

2.1.3 Academic Reputation Systems

One of the earliest approaches is presented in [3]. The EigenTrust system is based on the idea

originally put forward by Google’s PageRank algorithm [4]. In that system, trust is global and

depends on the experiences of every other user involved. A global reputation value is computed

and provided by the system for every node that participates in it. The algorithm assumes the

presence of already trusted users and considers the ability to provide recommendations and the

ability to provide a service to be one and the same. In our approach, recommenders and service

providers are treated as separate entities with different reputation scores and different ways of

updating them over time. Furthermore, when it comes to ranking services, only the opinions

of recommenders with the highest scores are taken into consideration, thus allowing for faster

computation and disregard of opinions coming from users that might be malicious. Finally,

since the EigenTrust system depends on a set of pre-trusted users, proper execution relies on

those users remaining honest. In our framework, however, all reputation values are subject to

16 Chapter 2. RelatedWork and Background

change and noone is considered trustworthy forever.

A distributed approach based on EigenTrust is proposed in [5]. The framework is called

PowerTrust, and it uses the realization that most feedbacks derive from a subset of the available

users, consisting of a few “power” nodes. Local trust values are initially computed, and random

walks are subsequently performed to aggregate and provide a global value. Upon identifica-

tion of said power node, Markov chains and look-ahead random walks are utilized to update

global values. Those global values are the only ones considered when requiring a rating of

nodes, which contradicts our approach, where personal opinion of both recommender nodes

and service providers is considered, as well as opinions of expert nodes.

The XRep system [6] proposes the utilization of both user-provided ratings and resource-

based reputation to evaluate a user’s trustworthiness. Cluster computing is performed to weigh

different ratings and marginalize malicious users. XRep can only be utilized in types of net-

works and services where specific resources (i.e. files) are provided and assessment of both

the resource and offerer is binary. Our framework allows for more granular rating of service

providers and recommenders alike. Recommenders’ reputation is, moreover, utilized to weigh

opinions of recommenders regarding both offered services and other recommenders. Last but

not least, XRep only deals with malicious users regarding their capacity to create multiple

accounts in an attempt to game the polling system, whereas in our approach weighing of opin-

ions is used to identify and isolate users that are maliciously underrating or overrating specific

service providers.

Another approach to the issue of evaluating trust based on reputation is proposed in [8]

through the P-Grid system. The premise, in which the system is based on, is that the majority

of users are non-malicious.This assumption hinders it from accommodating higher percentages

of malicious users, in contrast to our approach. Complaints are the only feedback taken into

consideration when accounting for reputation within the system and trust is binary (i.e. user is

trustworthy or not trustworthy) in this approach,as well. Again, complaints are all considered

of equal importance since reputation is binary and opinions are not weighed based on the indi-

2.1. Reputation Systems 17

vidual user’s granular reputation. Furthermore, complaint generation is not incentivized, under

the proposed aggregation formula, since they harm one’s trustworthiness within the system,

whereas in our framework abundance of ratings is encouraged and allows for better assessment

of users.

REGRET [7] employs a different approach compared to previous work. Reputation is par-

tially inherited through the groups a user participates in. Personal opinions are also taken

into consideration to compliment the reputation aspect of the framework. However, for group-

inherited reputation to be used, REGRET assumes a sociogram (i.e. graph with social relations)

is available to the user and a minimum number of interactions of the user in question has to

have occurred within that group. There is, also, no distinction between recommenders and ser-

vice providers and global reputation for the user proposing a target service is calculated every

time. Furthermore, relations are non-directed, assuming that trust is identical for both parties,

and they can be either cooperative or competitive. Finally, different reputation types are al-

lowed based on the nature of the transaction, although they have to be specified system-wide,

and individuals store separate values for each of those types. In our approach, we have opted

to use goal models to evaluate different aspects of different transactions, thus allowing users to

customize their preferences even further.

R2Trust [9] is a reputation and risk based trust management framework that is fully dis-

tributed and is also applicable in the context of P2P networks. In this approach, both reputation

and risk are taken into consideration when evaluating a user’s trustworthiness. Transactions

can have a number of distinct outcomes and direct opinions are expressed by counting the dif-

ferent outcomes of those transactions. All available recommendations from other peers are,

also, taken into consideration and are weighed based on the recommender’s reputation. Said

reputation is adjusted based on the result of the interaction. The idea of time-dependent decay

of values is also introduced in this approach, but no value is eventually considered obsolete, as

opposed to what happens in our proposed framework. Moreover, recommender and provider

reputation are considered one and the same, as is the case in most P2P systems. We, however,

18 Chapter 2. RelatedWork and Background

opt for a distinction between the two as it allows for better assessment of opinions depending

on the role we wish to evaluate.

PET [10] is another model based on trust and risk alike. While reputation is formed based

on long-term behaviours, risk is utilized to mitigate short-term behaviours that might indicate

error or maliciousness. The approach is specifically geared towards file sharing P2P systems, so

interactions are scored using distinct values, and personal opinions are produced by classifying

resources based on their category and affect both reputation and risk values. Recommendations

are supplied by every peer in the network and only affect the reputation aspect and not the risk

component of the system. Every available recommendations is considered and all of them bear

the same significance, regardless of the recommender’s reputation, thus failing to utilize trust

to address the potential for malicious users in the system, which is a possibility we consider

in our approach. Risk values are the ones used to detect malicious users,but are only based on

direct observations and consider a smaller time window.

In FuzzyTrust [11], users maintain local trust values for providers with whom they have

previously transacted. Global reputation is calculated by aggregating those local trust values

using different weights based on a set of parameters. Fuzzy trust models are utilized to generate

both the local trust values and the weights, corresponding to each recommender’s opinion, and

separate fuzzy rules have to be defined based on the specific domain. A threshold can be set

regarding weights to specify which peers will be consulted, thus avoiding heavy network traffic

in hot spots. Unlike our approach, there is no distinction between recommender and provider

reputation. Moreover, the system has to run for multiple iterations, similar to EigenTrust[5],

before the reputations converge to their final values. Lastly, the framework seems to detect the

majority of malicious users in a few iterations, but has only been tested for low percentages of

dishonest peers(i.e. 30%).

ARRep [12] is mainly geared towards fending off malicious attacks. It combines direct

and recommender proposed trust and utilizes a transaction decay function to prioritize the

requester’s direct experience. Direct trust comes from counting the satisfactory and unsatisfac-

2.1. Reputation Systems 19

tory transaction the user has had with a particular provider in the past. Note that transaction

result is binary, which is feasible as the system is geared towards P2P file sharing networks.

Recommended trust occurs by considering all available values other peers have to offer. Each

opinion is weighed based on the similarity and size of common set of opinions between request-

ing user and recommender. No historical reputation value for recommenders is maintained by

the users, in contrast to our approach, and similarity is based on the opinions of recommenders

for other users. Transaction existence is, also, verified, preventing recommenders from fraud-

ulently rating users, with whom no transaction has occurred. Extra file nodes are required for

the implementation of the framework and a Distributed Hash Table, similar to the one used in

[8], to store past interactions.

Reputation frameworks have been utilized in the network domain too. The CONFIDANT

protocol [13] requires all participating nodes to maintain a reputation value for each one of their

neighbours in the network. Behaviour of neighbours is monitored, and if an event is deemed

suspicious, the system updates the rating of the event’s producer. The reputation value accounts

for all previous experience and no interaction is ever deemed obsolete, thus not allowing for

reformation of previously malicious nodes. If a node is considered malicious, nearby friend

nodes are notified and the path containing said node are excluded from consideration for good.

A prepopulated set of friends is assumed by the protocol, which hinders the adaptability of the

protocol but is reasonable given the type of networks that are addressed. Incoming accusations

are weighed based on the reputation of the submitting node and are only taken into account if

they exceed a certain threshold, so as to avoid coincidences (i.e. network collisions).

Another approach dealing with selfish nodes in overlay networks is proposed in [14]. A

reputation is maintained for each node based on willingness to fulfill network requests. Per-

sonal experience and peer testimonials are taken into consideration. Testimonials are weighed

based on the peer’s reputation. Like in other approaches, this one treats rating and fulfilling

requests as one and the same when it comes to reputation, which hinders its ability to evaluate

different type of behaviours in a more granular way.

20 Chapter 2. RelatedWork and Background

Even though there is an abundance of approaches concerning reputation in peer-to-peer

networks, very little research has been conducted on reputation of web services. In [15], web

services interfaces are published in a centralized registry and users have the option of choosing

an implementation for a particular interface based on its reputation. A web service’s reputa-

tion is derived from historic values supplied by previous users of the service and ratings are

provided as a set of attribute values related to the offered service. Different application users

can provide thresholds and weights for certain attributes or risk tolerance, in which case ser-

vice selection will differ from person to person. Attributes can even have different weights

based on the domain the belong to, thus allowing for more personalized ratings. Every rec-

ommender, however, is considered to be honest and all opinions are of equal importance. In

our framework, malicious users are considered a possibility, which is the reason why recom-

mendations are weighed according to each recommender’s reputation and only the best of the

recommenders are consulted. Furthermore, even though an algorithm for aggregating ratings

and damping old values is mentioned, the authors of [15] mostly focus on the conceptual model

of the attributes that comprise available ratings.

In [16], authors propose an ontology model to discover the most trustworthy service de-

pending on the consumer’s preferences. Service providers register their implementations of

service interfaces and service agents are created by the framework for each available inter-

face. Providers advertise policies for their services and consumers specify QoS needs using a

3-tiered ontology proposed. Services are ranked and matched based on the policy, provided by

the service as part of registering for the particular ontology they belong to, and the preferences

provided by the consumer. Ranking is based solely on the values offered by the providers and

no historic ratings by other users are considered.

The framework is extended in [17, 18] and sharing of ratings is introduced. Service imple-

mentations are still selected based on the providers’ advertisements and the consumers’ QoS

requirements but the trust model has been extended to allow for reputation, deriving from opin-

ions of other users, to be taken into consideration. Agents are connected to ontology-specific

2.1. Reputation Systems 21

agencies, where information about previous interactions are stored. Service quality reputa-

tion can either be a simple aggregation or capture relationships between different attributes.

Furthermore, it is assumed that all participating entities act in an honest way, which is not al-

ways the case in real-world applications. Because of this assumption, everyone’s opinion bears

equal weight in the calculation of the service’s reputation and there is no way for the proposed

framework to identify dishonest users.

RATEWeb [19] is a framework proposed to establish trust among web services by assessing

reputation. In this approach, a central authority is tasked with maintaining a list of the avail-

able services and the users that have previously interacted with each of them,which hinders

the frameworks ability to be used in a distributed environment. When a user requires a spe-

cific service, a query is initially issued to discover the list of available services and ratings on

those services are subsequently requested by users participating in that particular community.

The requesting user then calculates the services’ reputations, taking into account all available

ratings and submitting users’ reputation. The service ranking is performed using clustering of

provided ratings. The service with the highest score is selected and the user rates and stores

the rating after using it. That particular approach performs well as long as the majority of users

are honest, as opposed to our approach, where higher percentages of malicious users can be

accommodated since a subset of all recommendations is considered.

Trust and reputation have recently been considered as an important factor influencing de-

cision making and consensus reaching in group decision making scenarios [132]. Large scale

social networks can be used to acquire a social graph and trust can be utilized to spread experts

opinions and provide recommendations, thus facilitating the negotiation between agents lead-

ing to mutually acceptable agreements [133, 134, 136]. In those systems, agents provide their

opinions, said opinions are aggregated, general consensus is calculated and, then, feedback is

provided to all or some members of the network to consider in the negotiation process, thus

facilitating the reaching of consensus within the network.

In [133] and subsequently in [136], Wu et al. propose a pair of operators that allow the

22 Chapter 2. RelatedWork and Background

propagation of trust between users of a social network, pointing, however, that those operators

have inherent issues that may be responsible for the introduction of a specific vulnerability to

the system.

When it comes to the aggregation of available opinions, fuzzy reasoning is the most com-

monly utilized approach. Yager et al. [137] proposed an operator called Order Weighted Aver-

aging(OWA), which allows weighting based on importance, as specified after ranking consid-

ering certain characteristics of the opinions. Wu et al. [134], on the other hand, propose that

expert opinions are requested. Experts reputation is calculated based on the in-degree centrality

of the node representing them in the social graph and their opinion is weighed based on that.

Other frameworks tackling the issue of group decision in social networks include the ap-

proach proposed by Wu et al. [135] and DeciTrustNET [138]. The former models trust rela-

tionships with linguistic information. A formalism for linguistic distribution is provided and

a way to assign distributed linguistic trust, based on the set of actors, their attributes and the

corresponding relations, is defined. Said trust values are aggregated using a weighted average

operator and an attempt for reaching consensus is made. Feedback is provided to inconsistent

users, who are forced to implement recommendation advices based on the cost they can afford,

in order to reach the threshold value of group consensus degree.

DeciTrustNET [138], on the other hand, is a framework that takes into consideration users

relationships that are part of the underlying social network and evaluates trust and resulting

reputation based on social interaction characteristics and quality, user-provided feedback and

evolution of each user’s behaviour. Similarity of user profiles in the social network is consid-

ered, as well, to provide further insight on the trust a specific user puts in any other participant

of the network.

Several theoretical approaches have, also, been proposed in the literature regarding the

propagation of trust within an existing network of users. The main goal is to calculate trust

values between a pair of agents that have no prior interaction with each other. Trust propagation

models work under the premise that a user is more likely to trust the opinion of someone they

2.1. Reputation Systems 23

consider trustworthy. In Guha’s et al. [20] model, trust may be propagated in one of the

following four ways: a) if user i trusts user j and j trusts k, then i trusts k, b) if i trusts j, then

j at least partially trusts i, c) if i1 trusts j1 and j2 and i2 trusts j1, then i2 may also trust j2, d) if

i trusts j, then i may trust k if j and k share trust in common agents. Those propagations can

be combined in a single matrix and can be weighed differently according to preferences. The

model can, also, be applied to propagation of distrust and the user can choose whether they

want to utilize both or not.

In Bonacich and Lloyd [21], it is investigated how centrality is considered a status indicator

in networks. Centrality can be calculated using eigenvector-like measures and can be utilized

to discover nodes with high reputation within a network of users. This, however, requires

knowledge of all available values in the system and is computationally expensive, which is

why experts in our approach are chosen using a different algorithm that takes a subset of the

recommendations into consideration.

2.1.4 Recommender Systems

Due to the fact that our approach is utilized to recommend appropriate services to requesting

users, it can easily be misconstrued to be a recommender system. Recommender systems, how-

ever, are a subclass of information filtering systems and are mainly concerned with predicting

the user’s rating or choice of a service or product, based on past experience.

Since in a lot of platforms, and accompanying systems, the amount of information is too

large for a user to perceive and assimilate, specific methods and approaches are required to filter

said information and provide only the items that could be to the user’s liking. The aforemen-

tioned filtering is performed by taking into consideration each item’s and user’s characteristics,

as well as the relations between them. Several different methods have been proposed to ac-

complish the task of providing personalized services [60]. Most of them do not require the

utilization of trust related values between users, with only a few taking into account informa-

tion resulting from use of social networks or similarity metrics between different users.

24 Chapter 2. RelatedWork and Background

One of the most commonly used methods is called content-based recommendation [61],

where the description of different items is analyzed and the degree of similarity between items

is considered in order to recommend them to the user. Another similar approach pertains to

knowledge-based recommendations [62, 67, 68, 69], which involves maintaining a functional

knowledge base that allows the system to infer relationships between a user’s specific needs

and the item to be recommended.

When it comes to consulting other users of the recommender system, three main ways of

approaching the issue have been proposed. Collaborative filtering-based recommendations

[63, 64, 65, 66] are based on calculating a similarity metric between users and recommending

items that are liked by users with similar interests. Note that, no trust value or reputation is

maintained or updated regarding other users. Similarity is calculated on a per need basis and

the process ends with the recommendations of specific items. Social networks have, also, been

utilized for social network-based recommendations[75, 76, 77], where trust to another user is

actually considered when receiving recommendations. By exploiting the correlation between

trust and user similarity, said systems provide recommendations by utilizing reputation as the

weight in the rating prediction process. Those systems, however, use the underlying social

network to discover assigned trust, but do not maintain or update the values based on recom-

mendation result. The last technique involving other users is called group recommendation

[78, 79, 80] and is utilized to produce a group of user suggestions when the participants cannot

meet for negotiation, or their preferences are not entirely clear. These systems are more closely

related to the Group Decision Making (GDM) systems discussed earlier.

Finally, some computational intelligence-based recommendation techniques have, also,

been proposed, including Bayesian [71] and artificial neural networks [70], clustering [72],

genetic algorithms [73] and fuzzy sets [74].

As it is evident, even though recommender systems propose a number of interesting tech-

niques for acquiring and utilizing information, they make minimal use of trust in other users,

and in the few where this dimension is explored, no adjustment or updates are performed on

2.2. Requirements modelling 25

the underlying social network.

2.1.5 Limitations of Related Work

First, the vast majority of the related work deals with P2P networks. In that set of scenarios,

the result of an interaction is either successful or not (i.e. binary). Furthermore, in most ap-

proaches, global history is utilized and a few use personal history. Almost none, however, tries

to combine the two in an attempt to gain access to the advantages offered by each of those

views. Another issue is that all of the frameworks presented, especially the few concerned with

trust in web services and other types of distributed components, utilize the totality of available

opinions in the network and fail to accommodate larger percentages of malicious users. So,

even if a user is identified as malicious, their recommendations are still taken into considera-

tion, even though they are weighted accordingly. Another important issue to consider is the

lack of approaches dealing with data aging by discarding values rather than using decay func-

tions Finally, the frameworks that are general purpose, regarding the types of services they can

consider (i.e. are not constrained to file exchange networks or telecommunication networks),

require a centralized authority and repository for the aggregation of recommendations. Very

few approaches offer a distributed alternative and most of them address a very specific subset

of service type, usually file sharing P2P networks.

2.2 Requirements modelling

Goal-driven modelling has been heavily researched over the last couple of years to accommo-

date several aspects of the Requirements Engineering process in all kinds of systems. Several

modelling notations, aiming at different RE activities and different focal points in the specifi-

cation of goals, have been proposed, such as i* [83], Tropos [81] and KAOS [82].

A number of approach have, also, identified extensions to the basic goal models, allowing

for the definition of tasks and associated actions [86] or awareness requirements.

26 Chapter 2. RelatedWork and Background

More specifically, awareness requirements are requirements that refer to other requirements

or domain assumptions and their success or failure at runtime. Those requirements can be rep-

resented using a formal language and can be monitored at runtime. Souza et al. [85] have

proposed a framework where awareness requirements can be defined along regular require-

ments using goal models. A separate component is tasked with running feedback loops that

monitor the state of different requirements based on produced events and evaluate success or

failure of said goals and associated awareness requirements.

The model of monitoring at runtime and reconciling behaviour through goal modelling has

also been researched by Dalpiaz et al. [29], where requirements for socio-technical systems

are modelled using the Tropos modelling notation mentioned earlier. Events are monitored

and certain plans are evaluated based on specified preconditions and postconditions to identify

success or failure. In case of failure, alternative plans and goals are explored to compensate

for the inability to complete original plan of action. This modelling approach can be utilized

to discover failures within a process and propose compensations in other contexts as well.

The ability to reason on goal models, in order to verify requirements at runtime, is also of

interest in the Requirements Engineering domain.

Most of the approaches utilize probabilistic reasoning with Liaskos et al. [84] further

proposing the utilization of probabilistic effects of task outcomes. Instead of assuming that

completion of a task brings the desired result with certainty, they propose that tasks have mul-

tiple intended and unintended outcomes, each with different likelihood. To accommodate for

that probabilistic way of thinking, traditional goals were extended to include probability of

success. They, also, put forward the idea of utility, which needs to be maximized as well.

Reasoning takes into consideration both minimum success rate for each goal and maximum

provided utility.

Chatzikonstantinou et al. [24], on the other hand, propose a framework that performs rea-

soning on fuzzy goal models. Truth values corresponding to the leaf nodes of the goal models

are represented as fuzzy values and the propagation to the root nodes is performed in parallel

2.3. Consensus in Distributed Systems 27

utilizing fuzzy logic, which allows more expressiveness and produces results that are easier to

interpret.

2.3 Consensus in Distributed Systems

The problem of consensus is multi-faceted and is important to a variety of different applications

and systems. Even though consensus is mostly related to distributed applications and their

ability to agree on a specific value or set of values, it can, also, be viewed as an issue of

resisting malicious behavior from a subset of the users participating in a specific service.

As described in [89], traditional consensus problems are divided into one of three categories

and deal with algorithmic ways of ensuring agreement between different parties.

In the original consensus problem, each process proposes a single value, coming from

a set of already specified values. All processes then communicate with one another and at

the end three requirements must be met. Every process must have set its decision variable

(Termination), all processes must bear the same decision value (Agreement), and if all correct

processes proposed the same value, then all correct processes have chosen that value (Integrity).

Variations of the last requirement may occur, based on the application.

A variation of the consensus problem is the Byzantine generals problem. This problem

is almost the same as the previous one, with the only difference being that only one value is

proposed by the leader. The same requirements must be met, again with the correct value being

the one proposed by the leader. A minor difference, also, exist in the Integrity requirement,

which can be reached only if the leader is correct.

Another variant is called interactive consistency, where processes agree on a vector of

values, rather than a single value. Requirements are virtually the same, with integrity meaning

that if a process pi is correct, all correct processes decide on vi as the value corresponding to

pi, in their vector.

Consensus problems can be regarded as specific to arbitrary process failures, they can be

28 Chapter 2. RelatedWork and Background

useful for crash failures and other problems that require opinion agreement. Solutions to those

problems can be applied to synchronous systems, but no guarantees can be provided for asyn-

chronous ones [87]. Other methods, like failure detectors [88] or randomization, have been

used to approximate consensus in such environments. The idea of soft consensus has also

been put forward for non-critical systems, where reputation of agents can be used to decide on

correctness of opinion.

2.4 Reasoning Under Uncertainty

Certain parts of the process performed by the proposed framework require reasoning under

uncertainty. Ranking of services has to be able to take into account positive and negative

evidence and produce a belief interval based on all the available information. Interactions with

specific service must, also, be evaluated, but the information provided is not always distinct and

precise. Sometimes the result of an interaction is not binary and a more elaborate representation

and way of evaluating is required.

2.4.1 Dempster-Shaffer

The Dempster-Shafer evidence theory [22] is a general framework that allows its users to reason

in cases where uncertainty is involved. This theory is a generalization of the Bayesian theory

of subjective probability and allows for the combination of evidence from different sources and

calculation of a degree of belief, taking all said evidence into consideration.

Two steps are involved in the calculation of the degree of belief in one or more propositions.

Subjective probabilities are assigned to propositions that are considered answers to a specific

question, and, if multiple evidence are available, they are combined to provide a single degree

of belief.

Note here that, contrary to other probabilistic theories, probability values are assigned to

sets of possible answers, rather than single ones. In case of evidence that point to a single

2.4. Reasoning Under Uncertainty 29

proposition, a unit set is created. Since the main objective of the theory is to be able to rea-

son with uncertainty, degrees of belief are assigned to each member of the power set of the

propositions and said belief is represented as an interval. The bound of this interval correspond

to belief and plausibility. The first one takes into consideration the evidence in favour of a

proposition, whereas the second one accounts for the probability remaining after accounting

for evidence that are against a proposition (i.e. 1 minus belief to all subsets not containing

proposition in question).

The theory, also, provides different ways of combining beliefs from different sources, based

on assumptions made by the specific domain. Conflict between independent sources can be

detected using the probability masses and a degree of ignorance can be specified, meaning that

one does not have to provide probabilities that add up to 1.

The Dempster-Shafer evidence theory, as well as the available combination rules, have

been researched [104, 105] and utilized in various domains, such as neural networks [106],

classification algorithms [107], ad hoc networks [108] and geographical information systems

[109].

2.4.2 Fuzzy Logic and Reasoning

In traditional boolean logic , the values are binary truth values (i.e. true or false) and the

corresponding operations and rules are applied to such type of values and produce results of the

same nature. Some times, however, this approach does not suffice when considering scenarios

where uncertainty is involved. So, based on the observation that decisions in the real world

are made in a non-binary way, fuzzy logic was introduced to deal with the need to represent

vagueness. In that form of logic, the variables can bear a range of values (i.e. many-valued

logic), usually a real number between 0 and 1, in an attempt to accommodate the presence of

partial truth.

Several systems have been proposed for fuzzy logic, but the most well-known is the Mam-

dani rule-based approach [110]. According to that approach, a numerical input is assigned to a

30 Chapter 2. RelatedWork and Background

set of predefined fuzzy sets with a degree of membership, fuzzy rules are, then, applied based

on those degrees and the final output is transformed from a fuzzy truth value to a continuous

variable, using any of the available defuzzification algorithms.

Another commonly used system is the one proposed by Tagano-Sugeno-Kang [111], where

the final step of the process is integrated into the execution of the fuzzy rules.

Fuzzy reasoning has been researched in many different contexts, such as PID controllers

[112], petri nets [115], goal models [24], neural networks [113], classification [114] and secu-

rity [116].

2.5 Background on Supporting Technologies

To support the proposed architecture and corresponding implementation of our framework,

utilization of some additional technologies and corresponding frameworks is required. More

specifically, use of a Publish/Subscribe system is paramount for the dissemination of events

regarding updates in trust, distrust and reputation values, and employment of a distributed

database for saving the relation and corresponding values will allow for replication of certain

parts of the proposed framework, thus improving its performance and potential throughput.

2.5.1 Publish/Subscribe Systems

Message brokers or Publish/Subscribe middleware systems are components used to facilitate

communication between different applications or services. They are based on the publish-

subscribe pattern, according to which publishers are not sending messages directly to inter-

ested parties, but rather categorize them, using any of the available methods. Subscribers, on

the other hand, explicitly express interest in specific categories of messages and are notified

when they become available. Neither party is aware of the other one, thus avoiding coupling

between different applications.

Scalability is another advantage of such systems, since there is no need for connection

2.5. Background on Supporting Technologies 31

between publisher and subscriber and the brokers can be replicated and forward messages in a

much more efficient way.

Several variations of publish/subscribe systems have been proposed, based on the subscrip-

tion scheme, or message filtering. The two main methods utilized are topic-based and content-

based. According to the first approach, messages are categorized based on topics. Those topics

are logical abstractions resembling channels and they are, basically keywords that are easily

understandable and enforceable across multiple platforms. To work around the static nature of

this approach, however, the content-based method was proposed. In this approach, the sub-

scription is based on the contents of the considered events. The properties of said events are

taken into consideration when deciding whether a message is to be forwarded to a subscriber,

thus allowing for a much more dynamic behaviour. Certain constrains can be specified on the

event’s properties and they can, also, be logically combined to provide additional power to the

prospective subscriber. A third more obscure method has been proposed, as well, called type-

based publish/subscribe. According to this approach, events are filtered based on their specific

type and closer integration with the utilized language is achievable, since type safety can be

ensured at compile-time.

The algorithms involved in Publish/Subscribe systems, as well as other methods to improve

their performance, have been researched [117, 118, 121, 119]. Contexts under which the tech-

nology has been utilized include cyber-physical systems [120], IoT [122] and fog computing

[123].

2.5.2 Distributed Databases

In case of distributed systems where information need to be shared among the different com-

ponents, distributed databases can be used to solve that problem. A distributed database is,

practically a database that maintains data in different physical locations. Of course, parts of a

distributed database can be deployed in a single server, or computer stationed in the same lo-

cation, but can, also, be dispersed over computers that are loosely coupled through any kind of

32 Chapter 2. RelatedWork and Background

network. Note, also, that said computers can either be owned and operated by a single organi-

zation or can be independent and completely decentralized. Two processes that are distinctive

in distributed databases are replication and duplication. Replication involves monitoring all

parts for changes and updating each replica, once one is identified. Duplication, on the other

hand, keeps all parts consistent with one predetermined master database. Further nuances are

involved in the implementation of a distributed database, pertaining to required data security,

consistency and integrity.

Distributed databases can be classified as homogeneous or heterogeneous, based on whether

all parts use the same environment to run their database. Further categorization can, also, oc-

cur if one considers the independence, or autonomy, of each database, examining whether they

function on their own or a master component is required for coordination.

Data fragmentation is offered by some distributed databases, allowing for faster data in-

quiries. In this scenarios, different parts of the data are stored in different sites and queries are

performed in parallel. Different formats are, also, supported by distributed databases, with op-

tions varying from relational schemas to non-relational data models, such as key-value, graph

and wide-column.

Distributed databases are harder to maintain due to their complexity, but offer a number

of advantages compared to centralized databases. First of all, they are much easier to expand,

since the data is already saved in multiple physical locations. Moreover, they are easily acces-

sible from different networks, and they are more secure, since data are replicated and potential

loss of a part doesn’t mean loss of information.

Due to those merits, distributed databases have been extensively used and researched [124,

125, 126] for different contexts and scenarios. Those include fog computing [127], big data

[129] medical databases [128], search engines [130] and, lately, blockchain distributed ledgers

[131].

Chapter 3

Modelling and Overall Process

As is the case in all reputation systems, in our approach we have to model both the participating

entities and the relations that occur between them. In this thesis we propose the concept of a

social graph between entities. The social graph models the participating entities as nodes and

the elapsed interactions as edges annotated by corresponding values. These model entities and

relations between them are discussed in more detail below.

3.1 Modeling Concepts - Entities

Every entity in the model represents a software component in the proposed framework and is

used to form the social graph of these interacting entities. These entities fall in one of the

following categories:

• Service Provider: These are model entities that act as service providers(SP). In practice,

since manual logging and analysis of interactions clients have with actual services has

been an issue in reputation systems, especially commercial ones, each SP is considered as

a proxy to a corresponding actual service. These proxies (i.e. SPs) can also gather infor-

mation about the client-actual service interaction, and allow for the automatic evaluation

of interactions clients have by using the corresponding to this proxy actual service. In

33

34 Chapter 3. Modelling and Overall Process

this respect, the proposed model can be utilized without the need to add any specialised

logging or monitoring capabilities to the back-end actual services. Note that even though

in reality a service provider may offer multiple services, in the context of this model, each

SP entity represents a single actual service offered by a provider. Different proxy nodes

would need to be registered for each separate service.

• Service Client: These are model entities that act as service clients(SC). Each of the nodes

corresponds to a client participating in the framework and their functionality includes

requesting information about the QoS of available service providers and ultimately uti-

lizing one of those services.

• Recommender: These are model entities that act as recommenders. Recommenders are,

also, service clients(SC) whose main responsibility is to provide recommendations at the

request of their peers. They bear a score when their peers request them. They, also, bear

a reputation score based on the accuracy of the recommendations thay have previously

provided.

Note that, service clients and recommenders are represented by a single node in the social

graph constructed as part of the proposed model (i.e. the act as clients or recommenders).

Their behavior and functionality is based on the running scenario. If a node initiates a search

for available services, it is considered a service client, whereas every other client, that is not a

service provider, is a recommender.

All user components are assigned a unique identifier upon registering with the system and

all relations and values pertaining to them use that identifier.

A user might occupy both the roles of a service client and a service provider in real life,

but in the context of the proposed method those roles are distinct and separate nodes need

to be created for each of them. Moreover, as mentioned earlier, multiple services need to

be represented by multiple proxy nodes, even if they are offered by the same actual service

provider.

3.2. Modeling Concepts - Relations 35

Figure 3.1: A network of service clients and providers

3.2 Modeling Concepts - Relations

Let us consider a deployment as the one depicted in Fig. 3.1. In this deployment, service clients

S C1, S C2, and S C3 require services offered by service providers S P1, S P2, and S P3. The

service client applications may execute their own programs NS1-NS3, and may have access to

their own data stores DB1-DB3, in case of a decentralized approach. The same holds for the

service providers S P1-S P3 which may execute their own programs NS4, and may have access

to internal data stores DB4. Service clients and service providers can be connected via a private

network infrastructure (e.g. N.I) or a public network infrastructure (e.g. the internet). In case

of a centralized approach, the relations remain the same, with the only difference being that the

programs are executed by a central authority and all information are stored in a server owned

by said authority.

The proposed method is based on a) a service client (say S C4) issuing a request to other

36 Chapter 3. Modelling and Overall Process

service clients, who are considered recommenders in this iteration (say S C2, and S C3), in order

to obtain recommendations for services providers offering a given type of service b) once the

service client S C4 uses a service (say S P1) as a result of such recommendations, i) assigns

a metric value indicating the measure of belief (trust) of how well the service provider was

perceived to have met the client’s expectations (i.e. in this case how well the service S P1

met the S C4’s expectations); ii) assigns a metric value indicating the measure of belief of

how the service provider was perceived to have not met the client’s expectations (i.e. S C4’s

disbelief on S P1); iii) assigns a metric value indicating how good the recommenders S C2 and

S C3 were given that S C4 now has a first-hand experience using S P1. We assume that service

clients S C2 and S C3 have already used the service S P1 and therefore are able to provide their

recommendation. The aforementioned interactions between S C4, S C2, S C3 (i.e. requests for

recommendations, responses to requests for recommendations), and between S C4 and S P1 (i.e.

service invocations, service responses) create the social graph previously mentioned, where

nodes are either clients (and recommenders) or service providers, and edges are these types

of interactions. An example of such a graph can be seen in Fig. 3.2. In this graph it is also

assumed that clients S C1 and S C5 have already used the service provider S P1 and already have

their opinions (denoted as T) for it, the client S C3 has alteady an opinion about S C2 to be a

good recommender, and that client S C2 has already provided in the past recommendations to

S C2 and S C3.

In this respect, a level of belief/disbelief a service client has that a service provider will

indeed deliver the QoS the client expects, is assigned to each service, and a level of reputation

is assigned to each client for its ability to provide good (i.e. trustworthy) recommendations.

The proposed method utilizes the following modelling relations and corresponding values:

OT Relation: This relation OT s
p denotes the existence of a trust (i.e belief that the service

met expectations) opinion a client p has on a service s, after a specific interaction. Its value

OT (p, s) represents the level to which a client p perceives a service s to be trustworthy, as it

met its QoS expectations and criteria (i.e. how satisfied p is by the services s has provided),

3.2. Modeling Concepts - Relations 37

Figure 3.2: Interactions between client and provider components

after each single interaction. This kind of relation is not visible in the social graph, but its value

is used to compute the corresponding value of the T relation (see below).

OD Relation: This relation ODs
p denotes the existence of a distrust (i.e belief that the

service did not meet expectations) opinion a client p has about a service s, after an interaction

with it. Its value OD(p, s) represents the level a client p perceives that a service s may not

be trustworthy (e.g. s obtains its data from an unknown source) after each single interaction.

This kind of relation is not visible in the social graph, but its value is used to compute the

corresponding value of the D relation (see below).

T Relation: This relation T s
p denotes the existence of an overall trust opinion a client p has

for a service provider s and indicates one or more interactions with this service provider. Its

value T (p, s) represents the level of overall trust assigned by a client p on a service provider s,

based on the history of interactions p has had with that s (see OT relations above).

D Relation: This relation Ds
p denotes the existence of an overall distrust opinion a client p

38 Chapter 3. Modelling and Overall Process

has for a service provider s and indicates one or more interactions with this service provider. Its

value D(p, s) represents the level of overall distrust assigned by a client p on a service provider

s, based on the history of interactions p has had with that s (see OD relations above).

R Relation: This relation Rr
p denotes that a client p has an opinion about another client

r, regarding whether r is a good recommender. This relation indicates that a client p has

used services in the past, following recommendations provided by client r, and has formulated

an opinion about it. The relation’s corresponding value R(p, r) represents the reputation of r

according to p (i.e. the belief client p has that client r is historically a good recommender).

AR Relation: In contrast to the other binary relations presented above, the relation ARr

is unary. It denotes the existence of a consolidated opinion by all other clients, regarding

whether client r is a good recommender or not. Its value AR(r) represents the level to which

r is considered to be a good recommender, or not, and is computed by taking into account the

quality and accuracy of all the recommendations r has given to each of the other clients, so far.

3.3 Modeling Concepts - Relation values

In this section, we discuss the different relations and corresponding values that are used for

modelling a) the perceived QoS a service client (or recommender) experiences after using a

service provider (see T(p,s) and D(p,s) values), and b) the reputation of a service client acting

as a recommender, either globally (see AR(r) values) or as far as another service client is

concerned (see R(p,r) values).

3.3.1 Perceived Trust and Distrust per Interaction (OT and OD values)

The OT(p,s) and OD(p,s) values denote how a service client assesses its level of satisfaction it

experiences after a specific interaction with a particular service. More specifically, the OT(p,s)

value denotes the measure of how much the service client p believes the service s met its

expectations (e.g. QoS, constraints, requirements etc.). Similarly, the OD(p,s) value denotes

3.3. Modeling Concepts - Relation values 39

the measure of how much the client p believes that the service s engaged in behaviours that

may signify distrust towards the service. For example, a client experiencing that a service

provider is using data from a non-authorized source would increase the OD(p,s) value the

client assigns to the service for this particular interaction. Clients can set specific requirements

models pertaining both to trust and distrust of a service. The use of these pair-values (trust

OT(p,s) and, distrust OD(p,s)) allows for a more flexible model where a client can provide

at the same time the positive and negative sentiment related to its observations when using a

service.

The value of OT(p,s) ranges from 0.0 to 1.0 (with 0.0 meaning that the service s did not

meet its expectations, and 1.0 meaning that the service fully met its expectations). For example,

an OT(p,s) value of 0.8 indicates the level to which client p believes that service s met its

expectations in a satisfactory degree.

The value of OD(p,s) also ranges from 0.0 to 1.0 (with 0.0 meaning that client p agrees that

service s did not engage in any behaviour increasing distrust, and 1.0 meaning that the client

observed service behaviour indicating full distrust). For example, an OD(p,s) value of 0.2

indicates the level to which client p believes that service s engaged in behaviour that slightly

increases distrust.

The OT(p,s) and OD(p,s) values do not need to sum up to 1 and can be evaluated based

on provided goal models, as proposed in Section 4.1, or any other way the framework’s user

prefers.

3.3.2 Cumulative Trust and Distrust (T and D values)

These relations and their corresponding values are indicative of the service’s historical perfor-

mance as perceived by a specific service client. Furthermore, the relation’s value is a metric

that represents the client’s first-hand assessment, after using a service provider. Said assess-

ment takes into consideration the extend to which the service provider has or has not met the

client’s expectations in all of the so far elapsed interactions with this particular service provider.

40 Chapter 3. Modelling and Overall Process

As mentioned in Section 3.3.1, every time a service client interacts with a service, a pair

of values, denoting observed trust and distrust (namely OT(p, s) and OD(p, s)), are calculated.

These two values are then used to respectively update the overall, or cumulative, trust and

distrust a service client p has on the specific service provider s, while also considering the

service provider’s previous performance. We denote by T(p, s) the value that indicates the

belief the service client p has that the service provider s is a trustworthy provider, while by

D(p,s) the belief the service client p has that the service provider s is not trustworthy. Same as

their observed per interaction counterparts (i.e. OT(p,s) and OD(p,s) values), the cumulative

trust (T(p,s)) and distrust (D(p,s)) values range from 0.0 to 1.0. The T(p,s) and D(p,s) values

are set to a default value, if the user has no prior experience with the particular service, and

are increasing or decreasing based on the discrepancy between values observed and calculated

cumulative values, up until that point. The algorithm for the evaluation of T(p,s) and D(p,s) val-

ues is presented in Section 4.2. A high T(p,s) value indicates that the service s has historically

demonstrated QoS that corresponds to the p’s expectations, whereas the opposite holds for a

low T(p,s) value. Respectively, a high D(p,s) value is a clear indication that the service s has a

propensity for participating in activities that the service client p deems suspicious, whereas a

low D(p,s) value is indicative of lack of engaging in such behaviours.

Bear in mind that, said metrics are indicative of a service’s performance, as perceived by

a specific service client. Different clients may have different requirements and, thus, different

opinions about services.

3.3.3 Individual Reputation of a Recommender (R value)

As it has already been mentioned, any node that has used a service provider can serve as a

recommender to every other service client, who is requesting a recommendation regarding

available services. After a recommendation that leads to the utilization of a service, a relation

is created between recommender and recommendee. This relation denoted as Rr
p is indicative

of a service client p interacting with another service client r to obtain recommendations.

3.3. Modeling Concepts - Relation values 41

Said relation, also, bears a corresponding value R(p, r), which is a measure of trust that

the r’s recommendations are accurate. This measure is updated every time p uses a service,

recommended by the aforementioned recommender r. The service client p compares its own

experience regarding the service’s QoS (i.e. after using the service) against the one advertised

by the recommender r, and, based on any observed discrepancy, increases or decreases their

perceived reputation for that recommender (i.e. R(p, r)). The value, therefore, is indicative

of how much the particular service client p requesting the service, believes that this particular

recommender r is trustworthy and reputable.

More specifically, this reputation value R(p, r) is lowered every time the recommendation

by r of a service s is inconsistent with the service client’s p experience when using that par-

ticular service s. Similarly, the reputation value R(p, r) is increased, whenever a service s is

used, as a result of a recommendation, and the interaction meets the p’s expectations, as those

were formed due to said recommendation. More specifically, we denote the belief a service

client p has that another service client r is a good recommender by R(p, r). This reputation

value corresponds only to a single service client’s belief and ranges from 0.0 to 1.0. Again,

a high R(p, r) value is indicative of a recommender r that provides accurate and trustworthy

recommendations, as far as a specific client p is concerned, whereas a low value is a testament

to the opposite.

Rating recommenders and maintaining a distinct reputation value for each and every one

of them provides the system with a number of advantages. First of all, a requesting user can

choose the service clients from which they wish to receive a recommendation. Filtering is

possible, thus allowing the requesting service client to receive opinions from a subset of rec-

ommenders whose recommendations are considered more trustworthy or at the very least more

compatible to their own views. Moreover, the introduction of reputation values for reviewers of

services enables the weighing of reviews or recommendations, based on said values. Multiple

opinions can be considered, but their importance may vary depending on who provided them.

Existing commercial systems do not provide functionality for individual reputation values

42 Chapter 3. Modelling and Overall Process

of recommenders and, as a result, there is no way of filtering available reviews, consider-

ing them based on different levels of importance, or disregarding maliciously produced ones.

Each requesting user has to manually investigate available opinions, which reduces the sys-

tem’s applicability in scenarios where the transacting components and corresponding business

processes need to be automated.

3.3.4 Overall Reputation of Recommenders (AR value)

Newly introduced service clients have no previous interactions, and thus no relations to other

clients of the framework. Because of that, they have no way of receiving recommendations or

knowing about available services. Furthermore, service clients that are already participating in

the network may form extremely tight-knit communities and fail to receive recommendations

from other sources. To address both of those issues, we propose the use of another metric that

indicates the overall or global reputation of a recommender r (i.e. AR(r)).

Based on the R(k, r) values different service clients k have after receiving r’s recommen-

dations, we compute a metric indicating said r’s overall reputation as a recommender. This

overall reputation value AR(r) is a function of the most important R(k, r) values, where k are

nodes that have an R(k, r) value for r as a recommender (that is nodes k that have obtained and

acted on recommendations from r in the past). Therefore, the overall recommendation ability

(i.e. reputation as a recommender) of r denotes the collective belief that clients k, who have

already used a service recommended by r and acquired a first-hand opinion of said service’s

QoS, have regarding r’s ability to provide trustworthy recommendations. The collective belief

that r is a good recommender is denoted by AR(r). Note that, since the AR(r) value depends on

incoming R(k, r) values (for all k nodes that have obtained a recommendation from r), it may

need to be recalculated every time a new R(k, r) value aimed at r is added or an existing one is

updated.

A service client’s AR(r) value is indicative of the actual reputation of r within the network,

since the opinions deemed most important (i.e. providing the most amount of information)

3.4. Sources of Recommendations 43

are the ones utilized. The choice to not utilize all available R(k, r) values for r was made to

improve the framework’s throughput, decrease its network fingerprint and improve accuracy by

considering only relevant opinions. The algorithm presented in Section 4.6, however, allows

us to calculate a value that is indicative of the actual reputation of a service client within the

network, while performing significantly less calculations and exchanging fewer messages.

3.4 Sources of Recommendations

When acquiring recommendations, a service client has to consult a variety of different sources.

In the proposed approach, a client node p asks a set of recommenders S = r1, r2, . . . rn for

recommendations regarding available services. This set S includes recommenders selected for

different reasons and is composed of:

a) Expert recommenders. These are nodes ri in the social graph with the highest AR values.

The selection threshold can be set as a parameter (e.g. the nodes at the top 10 percentile

of AR values, or just the top 20 nodes with the highest AR values). The threshold does

not affect the overall behaviour of the framework, since it merely allows for more (or

less) recommenders to participate in any given recommendation request.

b) Friends. These are nodes ri in the social graph from which node p has obtained rec-

ommendations in the past, and acted on them, thus creating an Rri
p relation and a corre-

sponding R(p, ri) value. In Fig. 3.2 node S C4 is a friend to S C1 as S C4 has provided

recommendations to S C1 in the past. Again, the client can select to consult only the ones

with the highest reputation values.

c) Friends of friends, that is nodes from which friend nodes have obtained recommenda-

tions. In Fig. 3.2 node S C2 is a friend of friend of S C1, as S C5 has provided recommen-

dations to S C1 and S C2 has provided recommendations to S C5 in the past.

Note that we have chosen to include only paths of length up to two. One could explore all

44 Chapter 3. Modelling and Overall Process

available paths, but this would result in an approach utilizing the Flow method of value ag-

gregation, as demonstrated in Eigentrust [3]. This method is very computationally intensive

and requires a set of very specific preconditions, such as a number of pre-trusted users. Fur-

thermore, following all available paths would reveal more available services, but since we do

not consider trust to be entirely transitional (i.e. trust should be weighed based on each node’s

reputation within a path and the overall weight should account for the product of all weights,

as is the case when a t-norm operator is used [30]), recommendations would be diluted and

rendered effectively meaningless after more than two hops in the social graph that includes

recommenders and service providers.

3.5 Process Overview

3.5.1 Process Outline

In this section, we outline the process the system follows during a session where a client wishes

to use a service. The process can be broken down into fourteen steps as follows:

Step 1: The client expresses interest in using a service and request a list of available services

ranked based on trustworthiness.

Step 2: Recommenders from each of the sources of recommendation explained in Section 3.4

(i.e. Experts, Friends, Friends of Friends) are selected.

Step 3: Service recommendations are collected from each of the recommenders selected in the

previous step.

Step 4: The client’s opinions, pertaining to previous interactions with services, are added to

the pool of values obtained from the recommenders.

Step 5: All provided recommendations are transformed as sets of positive (i.e. in case a rec-

ommendation is in favour of a service) and negative evidences (i.e. in case a recommendation

3.5. Process Overview 45

is against the use of a service), in the format required by the utilized by the ranking algorithm

(in our case the Demster-Schafer algorithm).

Step 6: The ranking algorithm is applied, and a ranking of the services is provided to the user.

Note that for the prototype we have utilized a variation of the Dempster-Shafer algorithm [22]

(see Section 4.7.3), but the approach supports any ranking algorithm.

Step 7: Incentives (if any) provided by service providers are taken into consideration and an

supplementary information regarding services is, also, provided to the user (see Section 4.7.4).

Step 8: The client chooses their preferred service and proceeds with the utilization of said

service.

Step 9: Data are collected from the interaction, either automatically or through user feedback,

and the observed trust and distrust values (i.e. the OT(p, s) and OD(p, s) values, see Section

3.3.1) are evaluated.

Step 10: The utilized service provider can opt to provide compensations to the client, if exten-

uating circumstances led the service provider to offer a QoS below what was expected by the

client.

Step 11: The client can choose to accept the compensation and adjust their observed OT(p, s)

and OD(p, s) values or retain their observed ones.

Step 12: The client’s opinion about the utilized service is updated as specified in Algorithm T-D

presented in Section 4.2, using the observed OT(p, s) and OD(p, s) values, adjusted or not.

Step 13: For every recommender r that endorsed the utilized service to a service client s, their

R(p, r) value is updated based on observed values, adjusted after compensation or not, and

source of recommendations through which they were selected, as specified in Algorithm R

presented in Section 4.3.

46 Chapter 3. Modelling and Overall Process

Figure 3.3: Example network of recommenders and services

Step 14: Finally, the recalculation of the corresponding AR(r) value is triggered if the up-

dated R(p, r) value is relevant to the evaluation of said AR(r) value (see Section 4.6). The

Algorithm AR, presented in Section 4.5, is used.

3.5.2 Running Example

To clarify the process followed in our approach to provide a service ranking and update the

reputation of recommender and service nodes after utilization of a service, a running example

will be provided in this Section. Said example will demonstrate the steps, but will not provide

the detailed calculations at this point. We will revisit the exact same example when we define

3.5. Process Overview 47

and explain the algorithms in Section 4. The subset of the network involved in this scenario is

portrayed in Fig. 3.3. We assume the percentage of recommenders chosen per source of rec-

ommendations corresponds to 2 recommenders per source, to simplify the provided example.

Following the steps provided in Section 3.5.1:

Step 1: User R1 initiates process.

Step 2: Different sources of recommendations are consulted and recommender groups are cre-

ated as follows:

• R1 investigates the R values of his friends and finds that among R2, R3, R4, R11, the

ones with the highest values are R3 and R11, both having R = 0.9.

• All available 2-step paths are then explored looking for the 2 with the highest value. The

paths with the highest value are the ones going to R6 and R7 through R3 with corre-

sponding values of 0.792 and 0.756.

• Finally, the system inspects the AR values of all available recommenders. Let’s assume

that R9 and R10 have the highest values of 0.93 and 0.91 respectively.

• At the end of this step, we have :

- Friends = {R3, R11}

- FriendsOfFriends = {R3-R6, R3-R7}

- Experts = {R9, R10}.

Recommendations about services SP2, SP3, SP4 and SP5 are provided by them.

Note that, even though SP1 is part of the system, it was not recommended by any of the chosen

recommenders, so it is not included in the following steps.

Step 3: For each service, we acquire all available values from the recommenders selected. The

recommendations for each service are as follows:

48 Chapter 3. Modelling and Overall Process

• SP2: Only recommendations from the FriendsOfFriends group are available. More

specifically, the following values are available:

→ T(R6,SP2) = 0.78 and D(R6,SP2) = 0.12

→ T(R7,SP2) = 0.75 and D(R7,SP2) = 0.17

• SP3: Only recommendations from the FriendsOfFriends group are available. More

specifically, the following values are available:

→ T(R7,SP3) = 0.65 and D(R7,SP3) = 0.28

• SP4: Recommendations from Friends and Experts groups are available. More specifi-

cally, the following values are available:

→ T(R3,SP4) = 0.87 and D(R3,SP4) = 0.10

→ T(R11,SP4) = 0.87 and D(R11,SP4) = 0.10

→ T(R9,SP4) = 0.92 and D(R9,SP4) = 0.02

• SP5: Recommendations are available from Friends and Experts groups, so:

→ T(R11,SP5) = 0.73 and D(R11,SP5) = 0.18

→ T(R10,SP5) = 0.81 and D(R10,SP5) = 0.13

Step 4: The requesting user R1 has a recommendation for SP4.

• T(R1,SP4) = 0.82 and D(R1,SP4) = 0.05

Step 5: All T values are considered evidences in favor of that service and all D values are

considered against, meaning that the user would rather use any service other than the one being

evaluated.

Step 6: After running the chosen ranking algorithm, a list with the services is returned. For

that particular example let’s assume that the ordered list returned by the algorithm looks like

that: [SP4, SP5, SP3, SP2]. This ordering means that service SP4 is considered the most

trustworthy one.

3.6. Summary 49

Step 7: Supplementary information is provided to the user, pertaining to incentives offered by

services that are not at the top of the ranking.

Step 8: Let’s assume the user does not utilize any of the offered incentives and uses the service

with the highest ranking, i.e. SP4.

Step 9: The chosen service is used, and its performance is evaluated using the chosen method.

In this example let’s assume OT(R1,SP4) = 0.89, OD(R1,SP4) = 0.07.

Step 10: The service performed as expected, so no compensations are offered this time.

Step 11: There is no choice involved this time around in this step.

Step 12: Since the requesting user already had an opinion about SP4, the T(R1,SP4) and

D(R1,SP4) values need to be updated according to the algorithm presented in Section 4.2.

Step 13: The recommenders that endorsed SP4 are R3, R11, R9. Their new R(R1,Ri) values

are computed using the algorithm described in Section 4.3.

Step 14: The AR(Ri) values are recalculated for R3, R11, R9 according to the algorithm

described in Section 4.5, if the new R(R1,Ri) values are considered important based on the

algorithm presented in Section 4.6.

3.6 Summary

Summarizing, each user of the proposed approach can participate as either a service client p or

a service provider s. Service providers need to register multiple services as different nodes, and

if a user wishes to participate with both roles, separate entities need to be registered, as well.

Relations are created in the context of the framework between different entities. Said rela-

tions have corresponding values and are differentiated based on the receiving party of it. More

specifically, all relations have a service client p as the source and the target is either another

service client r, in which case we have a relation and corresponding value that indicates the

50 Chapter 3. Modelling and Overall Process

historically perceived reputation of said client and are denoted by Rr
p and R(p, r) respectively,

or a service provider s, in which case we have a pair of relations and corresponding pair of

values, that indicate the historically perceived trust and distrust on said service and are denoted

by < T s
p,D

s
p > and < T (p, s,),D(p, s) > for relations and values respectively. A unary relation

and derived value are, also, proposed to represent the overall reputation of a service client r

within the system. Relation and corresponding value are denoted by ARr and AR(r). The value

depends on R(p, r) values that are aimed at the service client in question.

When a service client is requesting recommendations for available services, a number of

sources are consulted, namely the system’s Experts and the client’s Friends, as well as their

friends (i.e. Friends of Friends). The service client’s personal opinions are, also, considered

and a ranking of services is calculated. Incentives can be offered by lower ranked services, and

the user can choose to consider them or not. After an interaction occurs, the client’s personal

opinion, as well as the reputation of those who recommended the utilized service, is adjusted,

based on discrepancy between observed and provided values.

Chapter 4

Trust and Reputation Evaluation

Algorithms

In this chapter, we presenting the algorithms to evaluate first, the perceived quality of service

experienced in individual interactions by a client p when uses a service provider s (OT(p, s)

and OD(p, s) values) second, the cumulative trust and distrust values clients have that a service

provider can meet the client’s expectations (T(p, s) and D(p, s) values) third, the reputation of

a client p service assigns to a client r acting as recommender (R(p, r) value) and fourth, a rec-

ommender’s r overall reputation (AR(r) value). In addition to the above, we present algorithms

to deal with obsolete (i.e. stale) values using (timeouts and to identify the most important R

values to be considered for each AR(r) value using a cache management policy (i.e. the (ARC

policy) which we have adapted to meet the requirements of the problem associated with this

thesis.

4.1 Evaluation of OT and OD values

The proposed approach does not place any constraints on the method to be used by a client p

to assign OT(p, s and OD(p, s) values after its interaction with a service s. These may include

fuzzy logic, statistical analysis, probabilistic reasoning etc. For the prototype implementation,

51

52 Chapter 4. Trust and Reputation Evaluation Algorithms

a client sets its expectations from the service in the form of models, such as goal models [23].

The user-provided goal models specify the client’s requirements, as far as this particular type

of service type is concerned. Since the service provider nodes are proxies of actual services,

monitoring components that autimatically evaluate the QoS offered by a service provider and

as this is assessed by a client’s perspective. Based on the type of service provided, a proxy can

attain and process information regarding a multitude of service quality characteristics such as

the security protocols used, the speed of the transaction, the provenance of the data used by the

service, or even the location of the server hosting the service. The data can be used as input to a

goal model denoting the client’s expectations from the service. The level of satisfaction of this

goal model will yield the OT(p, s) and OD(p, s) for client p using the service s. The evaluation

of the goal models may take various forms. If we choose to utilize the approach proposed in

[24], goal model are transformed into fuzzy rules, which are, in turn, evaluated using a fuzzy

reasoner. The result of the evaluation would indicate how well the service performed based on

the client’s requirements. One example of such a goal model denoting a client’s expectations

from a service provider can be seen in Figure 4.1.

Figure 4.1: Example model for service evaluation

4.2. Evaluation of T and D values 53

4.2 Evaluation of T and D values

Apart from the observed trust (i.e. OT(p, s)) and distrust values (i.e. OD(p, s)) obtained through

each individual interaction between a user p and a service provider s , another set of cumulative

values is maintained for each pair of client and provider that have had at least one interaction,

as mentioned in Section 3.3.2.

Cumulative trust and distrust are denoted by T(p, s) and D(p, s). They are updated every

time a) a new set of observed values, corresponding to the users in question, occurs or b) a set

of observed values are deemed obsolete and should no longer participate in the calculation of

the cumulative values. Of those two processes, the first one is described below and is triggered

by a client utilizing a service, whereas the second one is explained in Section 4.4 and is time

dependent.

As specified in the previous section, every time a client p utilizes a service s, two values are

computed upon completion of said interaction. Those observed values are denoted by OT (p, s)

and OD(p, s) and are used to update the T (p, s) and D(p, s) values respectively. A specific

algorithm is utilized for that update and its purpose is to recalculate the T (p, s) value, which

denotes how satisfied the service client p is with service s, and the D(p, s) value, which denotes

the extend to which client p is dissatisfied with aspects of service s overall, based on the history

of observed values pertaining to utilizations of s by p (i.e. the cumulative values of trust and

distrust placed on service s by p).

More specifically, the new T (p, s) and D(p, s) values occur by taking into consideration: a)

the observed values computed by using the service (see OT(p, s) and OD(p, s) values) and; b)

the values of T (p, s) and D(p, s) prior to p’s last utilization of service s. The specific algorithm

can be observed on Alg.1.

54 Chapter 4. Trust and Reputation Evaluation Algorithms

Algorithm 1 Calculate T-D values
1: - Let s be a service provider
2: - Let p be the client using service s
3: - Let c be a parameter indicating the importance of new observations taking values in the

interval (0,1) with c = 0 indicating that new values have no meaning and c = 1 indicating
that the latest value is the only one that matters.

4:
5: procedure calculateTD(OT (p, s),OD(p, s),T (p, s),D(p, s))
6: if (T (p, s) OR D(p, s) not available) then
7: T (p, s) = initializeDe f ault() (e.g. 0.5)
8: D(p, s) = initializeDe f ault() (e.g. 0.5)
9: count(p, s) = 0

10: end if
11:
12: To f f set(p, s) = c(OT (p, s) − T (p, s))
13: Do f f set(p, s) = c(OD(p, s) − D(p, s))
14: count(p, s) = count + 1
15:
16: T (p, s) = T (p, s) + To f f set(p, s)
17: D(p, s) = D(p, s) + Do f f set(p, s)
18:
19: notify(To f f set(p, s),Do f f set(p, s))
20: return < T (p, s),D(p, s) >
21: end procedure

As it is evident, the algorithm initially looks for previous values of trust (i.e, T(p, s)) and

distrust (i.e., D(p, s)), indicating that client p has interacted with service s in the past (line 6).

If none can be found, the cumulative trust and distrust values are set to a default value (lines

7-8) and the interaction counter is set to 0 (line 9).

An offset value, based on the discrepancy between observed and cumulative values, is

calculated (lines 12-13). Note here that, if the observed trust or distrust value is greater than

the cumulative trust or distrust value, the offset is positive. The meaning of this is different in

the each case. A higher trust value is appreciated, while a higher distrust value is problematic.

In any case, though, the cumulative values slowly adjust upwards or downwards based on

the observed interactions. This is done by adding the offset to the cumulative values, weighed

according to the user-specified parameter c, which ranges between 0.0 and 1.0. The parameter

is utilized to allow for customization, since its value indicates the importance of newly observed

4.3. Evaluation of R value 55

values over historical performance of the service. Values close to the lower end produce very

small offsets, thus adjusting the cumulative values in a minor way. Values closer to the upper

end, however, put major emphasis on the newly observed trust and distrust, by producing larger

offset and significant adjustment of the cumulative values.

Note that, even though the T(p, s)and D(p, s) values are supposed to range between 0.0 and

1.0, there is no verification part of the algorithm to ensure that they stay within the limits. This

is not really an issue, though, since the offset depends on the difference between cumulative

value and observed value. Observed values are within range by design, so there is no way that

the difference multiplied by c, which is less than 1.0, is going to force the cumulative value off

the limits.

The interaction counter is also incremented by 1 (line 14), which allows us to know to keep

track of the number of interactions that have elapsed between this particular pair of service

client and service provider. When the last of interactions becomes obsolete, we can totally

remove the entry, thus safeguarding against potential mathematical errors that may occur when

dealing with real numbers.

Last but not least, the framework is notified about the calculated offsets, so that they can

be timestamped and reversed when the time comes (see Section 4.4). More specifically, the

notify method (line 19) produces an event that is received by the corresponding algorithms

dealing with timeouts, in order to save the offset value along with its timestamp, so that it can

be retrieved and deleted when it becomes stale (see Algorithm 3 and Section 4.4).

4.3 Evaluation of R value

As mentioned in Section 3.3.3, each client p maintains a reputation value R(p,r) for every

recommender r that has provided at least one recommendation that has resulted to utilization

of recommended service.

Said value is denoted by R(p,r) and is updated every time a) a recommendation, leading

56 Chapter 4. Trust and Reputation Evaluation Algorithms

to the service utilization, is made or b) a previous recommendation is deemed obsolete due

to time elasped, and should not be considered when calculating a recommender’s reputation

value anymore. Similarly to the T(p,s) and D(p,s) values, the first update case of the R(p, s)

value is discussed below, and is triggered by a client after utilizing a service following the

recommendation by one or more recommender r, whereas the second update case is due to the

R(p, r) value becoming stale and is discussed in Section 4.4.

As mentioned before, a service’s s utilization by a client p occurs after other nodes r within

the framework provide a recommendation pertaining to said service s. Interaction of s service

client p with the service s produces a set of observed values OT(p,s) and OD(p,s) values (see

Section 4.1) based on the client’s preferences (i.e. goal models). Those observed values can,

then, be juxtaposed with the values provided by each recommender r , as part of the recom-

mendation part of the process. The discrepancy between the two can, then, be used to update

the recommender’s r reputation value R(p,r), as far as that specific client p is concerned. The

type of recommender and previous (i.e. historical) reputation value are, also, taken into account

when calculating the updated reputation value.

To further explain, consider the following scenario. Client p asks client r for a recom-

mendation about services of a specific type (i.e. process monitoring services), r provides a

recommendation for service s (see T (r, s), and D(r, s) values), among others. p ends up using

service s as a result of this recommendation, and now has first-hand experience about the ser-

vice‘s behaviour (see OT (p, s) and OD(p, s) values).As a result, p can now, finally, form an

opinion of how good r’s recommendation was (i.e. how trustworthy r is as a recommender for

recommending service s) and update the R value node p has for node r (i.e. R(p, r)), based on

elapsed interaction, previous value and type of recommender (see Section 3.4).

Each reputation value R(p, r) indicates how much trust a service client p places on the

recommendations r provides, based on past experience, and the exact algorithm utilized for its

calculation is presented in Alg.2.

4.3. Evaluation of R value 57

Algorithm 2 Calculate R value
1: - Let p be the node that is asking for the recommendation of a service
2: - Let r be the recommender node that is recommending a service
3: - Let error be the difference between observed and provided trust and distrust
4: - Let offset be the offset that is to be applied to the trust in r’s reputation value based on

new data
5:
6: procedure calculateR(OT (p, s),OD(p, s),T (r, s),D(r, s))
7: error(p, r) = |T (r, s)–OT (p, s)| + |D(r, s) − OD(p, s)|
8: Ro f f set(p, r) = calculateO f f set(error)
9:

10: if r in expert nodes then
11: /* that is r is in the top of the list of recommenders
12: ranked by their AR value (see Section 3.4) */
13: R(p, r) = AR(r) + Ro f f set(p, r)
14: count(p, r) = 1
15: else if r is friend of p then
16: /* That is r is in the top of the list of recommenders
17: ranked by their R value provided by p (see Section
18: 3.4) */
19: R(p, r) = R(p, r) + Ro f f set(p, r)
20: count(p, r) = count + 1
21: else if r is a friend of friend k of p then
22: /* that is r is in the top of the list of recommenders
23: ranked by the cross product of R values provided
24: by p and its friends, in all two step paths emanating
25: from p (see Section 3.4) */
26: R(p, r) = (R(p, k) ∗ R(k, r)) + Ro f f set(p, r)
27: count(p, r) = 1
28: Ro f f set(p, k) = R(k, r) ∗ Ro f f set(p, r)
29: R(p, k) = R(p, k) + Ro f f set(p, k)
30: count(p, k) = count + 1
31: end if
32:
33: notify(Ro f f set(p, r),Ro f f set(p, k)) // For timeout purposes
34: notify(R(p, r)) // For AR calculation purposes
35:
36: return < R(p, r), count(p, r) >
37: end procedure

An error value is initially calculated (line 7), accounting for the difference between trust and

distrust values provided by the recommender and values observed through the recent interaction

58 Chapter 4. Trust and Reputation Evaluation Algorithms

with the service. We use the absolute difference, since in this use case it doesn’t matter whether

the recommendation values were over or under the observed ones, but rather how large the

discrepancy is. Overvaluing (i.e. proposing that a service behaves in a much better way than

it actually is) is as bad, if not worse, as undervaluing (i.e. downplaying a service’s actual

performance). So, in either case, the larger the discrepancy, the greater the error value will be.

Every approach in the related literature that automatically adjusts a recommender’s reputa-

tion based on elapsed interaction, proposes a unique custom formula that holds certain prop-

erties [9, 12, 19, 138]. Said formula is utilized to provide the updated reputation value. There

is no specific standard for creating such formulas, other than the fact that they must account

for the discrepancy between values provided by the recommender and observed values. In our

approach, we propose a formula that calculates offsets (line 8), rather than directly updating the

reputation value. The rationale behind this comes from our choice to account for data aging.

We have opted to disregard values for obsolete (i.e. distant past) interactions, as will be further

explained in Section 4.4, but in a way that allows our framework to a) maintain a minimum

network fingerprint and b) have a high throughput and support as many users as possible. The

offset approach allows us to reduce the amount of calculations required and messages sent.

Figure 4.2: Offset Formula for R evaluation

4.3. Evaluation of R value 59

Our custom offset formula was created with specific properties in mind. Resulting offset

must a) depend on calculated error (i.e. discrepancy between provided values and observed

values), b) allow for minimal values for insignificant errors, c) provide exponentially larger

values as error values increase and d) reach its maximum value for a specific error value and

remain stable regardless of potential further increases. The proposed formula can be seen

plotted in Fig. 4.2 and in equation form in Eq. 4.1.

Ro f f set(p, r) =


0.1 ∗

[
2

1+e(50∗(error−0.1)) − 1.01
]
, error < 0.2

0.1 ∗
[

2
1+e(50∗(error−0.3)) − 2.99

]
, error ≥ 0.2

(4.1)

The type of recommender is, then, inquired (lines 10,15,21) to identify the type of value

that led to their inclusion in the list of recommenders (see Section 4.7.1). Since there are three

sources of information consulted during the recommendation part of the process, there are three

possible types of recommenders who could have recommended the utilized service. Said types

and corresponding cases are as follows:

• Recommender is a Friend node: The requesting client has interacted with that particular

recommender in the past and has a R relation and corresponding value towards it (see

Section 3.3.3). Since the reputation value R(p,r) is the reason this node was selected as a

recommender, the offset is added to said value (line 19). The interaction counter is incre-

mented by one (line 20), as an additional interaction now contributes to the cumulative

value.

• Recommender is an Expert node: The node’s overall reputation (see Section 3.3.4) is

utilized, since it was the reason that particular client was chosen to be a recommender.

The node’s AR value is now the baseline to which the offset will be added (line 13). Note

that since this node was not selected due to an existing R relation with the requesting

client, a new one has to be created. The interaction counter, therefore, is set to 1 (line

14).

60 Chapter 4. Trust and Reputation Evaluation Algorithms

• Recommender is a Friend of Friend node: In this case, the recommendation originated

from a node that was in turn recommended by a node with an already existing reputation

value. After the interaction with the recommended service concludes, both of those

nodes’ reputation value needs to be updated. The baseline for each case is different. For

the immediate friend, the already existing R value is used (i.e. R(p, f riend), where p

is the requesting client) (line 29). For the second step in the path, however, both the

friend’s reputation and the recommendation for the friend of friend have to be taken into

consideration (line 26). We propose the utilization of the t-norm operator, as specified in

[30]. The resulting baseline reputation value for the Friend of Friend recommender node

is the product of the two aforementioned reputation values (i.e. R(p, k) ∗ R(k, r), where

k is a Friend and r is a FriendOfFriend). As far as the offset is concerned, it remains as

is for the Friend of Friend node, but is fittingly adjusted for the friend node (line 28). It

is only fair that this node is penalized or rewarded proportionally to the recommendation

value offered for the actual recommender (i.e. Friend of Friend).

Different approaches have been proposed regarding propagation of trust in social graphs

[20]. We chose to use the multiplication norm (i.e. t-norm operator) in the friend of friend

scenario since it resonates more with the world we are trying to approximate through our

approach.

In any case, the utilized value (i.e., R(p,r) value for Friend, AR(r) value for Expert and

R(p,k)*R(k,r) value for FriendOfFriend) is then considered to be the previous reputation value

or baseline, the offset is added to it and the result is assigned to the reputation value of client p

for r (i.e. R(p, r)) (line 26).

The interaction counter (i.e., count(p, r)) allows us to keep track of the number of inter-

actions that have elapsed between this particular pair of service clients. When an interaction

becomes obsolete, we can totally remove the entry, thus safeguarding against a) potential math-

ematical errors that may occur when dealing with real numbers, and b) issues with message

ordering in timeout scenarios. The interaction counter is either incremented by 1, if a previous

4.4. Timeouts 61

R relations led to the consultation of recommender in question (lines 20, 30), or reset to 1, in

any other case (lines 14, 27).

Note that, even though the R values are supposed to range between 0.0 and 1.0, there is

no such provision in the algorithm. This is not an omission, but is done by design. As it will

become evident in Section 4.4, offsets are saved and later subtracted from the cumulative value,

when the corresponding interaction has to be disregarded. To avoid issues with that process,

we do not cap the reputation values, but we make sure that when utilization of reputation

values that are out of range occurs, the framework treats them as if they are exactly at the

corresponding end of the range (i.e. 0.0, if negative, and 1.0, if over 1.0).

Last but not least, the framework is notified about both the calculated offset (line 33), so

that it can be timestamped and reversed when the time comes (see Section 4.4), and the new

derived reputation value (line 34), which will trigger the process for selecting the most im-

portant R values for the calculation of AR values (see Section 4.6). More specifically, the first

notify method produces an event that is received by the corresponding algorithms dealing with

timeouts, in order to save the offset value along with its timestamp, so that it can be retrieved

and deleted when it becomes stale (see Algorithm 3 and Section 4.4). Discarding stale values is

very important as it allows to first maintain a tractable set of values observed through interac-

tions and second consider values based on the most up-to-date behaviour of service providers

in question. As for the second notify method, the event produced by it is consumed by the

algorithms tasked with deciding the R values to be considered for AR values. The procedure is

run and the corresponding lists are updated (see Algorithm 6 and Section 4.6).

4.4 Timeouts

As specified in the previous sections regarding the update process of trust and distrust values

(T(p,s) and D(p,s)) and reputation values (R(p,r)), every time an adjustment is made, the

framework is notified. Based on the specific context and the observed frequency of interactions,

62 Chapter 4. Trust and Reputation Evaluation Algorithms

a time window is defined and each received notification is timestamped and filed.

A specific component (see Chapter 5) with a completely separate process is executed in

parallel to discover obsolete values, taking into consideration the corresponding time window

and each value’s timestamp. Once an applied offset is deemed to be outdated, the appropriate

procedure is run to remove the effect of said value. All procedures are presented in Alg. 3 and

correspond to either trust/distrust or reputation offsets.

Algorithm 3 Remove obsolete offsets
1: - Let p be the node that asked for recommendation
2: - Let r be the node that recommended a service
3: - Let s be a utilized service provider
4:
5: procedure deleteTDOffset(To f f set(p, s),Do f f set(p, s),T (p, s),D(p, s), count(p, s))
6: if count(p, s) <= 1 then
7: /* This is the only set of trust/distrust values to
8: be removed */
9: T (p, s) = null

10: D(p, s) = null
11: else
12: /* The offset needs to be removed */
13: T (p, s) = T (p, s) − To f f set(p, s)
14: D(p, s) = D(p, s) − Do f f set(p, s)
15: count(p, s) = count − 1
16: end if
17: end procedure
18:
19: procedure deleteROffset(Ro f f set,R(p, r), count(p, r))
20: if count(p, r) <= 1 then
21: /* This is the last recommendation to
22: be removed */
23: R(p, r) = null
24: else
25: /* The offset needs to be removed */
26: R(p, r) = R(p, r) − Ro f f set(p, r)
27: count(p, r) = count − 1
28: end if
29: end procedure

Note that the number of updates that have contributed to a value is, also, maintained (i.e

count(p, r)). The interaction counter is checked (lines 6, 20) and when the last of the adjust-

4.5. Evaluation of AR value 63

ments has to be reverted, the values (line 9-10), or value (line 23), are invalidated and removed

altogether. We opted to totally get rid of the value to signify the lack of connection in the

social graph and differentiate between lack of value and a series of very bad recommendations

or interactions that would lead to a zero value.

If, however, the offset(s) to be removed is not the last one, the To f f set(p, s) and Do f f set(p, s)

values, or Ro f f set(p, r) value, are subtracted from the T (p, s) and D(p, s) cumulative values

(lines 13-14), or R(p, r) respectively (line 26). The interaction counter is, also, decreased by 1

(lines 15, 27), indicating that there is one less interaction contributing to the cumulative values.

Algorithm 4 Calculate AR value
1: - This is the variation for calculating AR values. The second variation is in Alg. 5.
2: - Algorithm 6 is differentiated in lines 20-23 and 36-39 to account for this variation.
3:
4: - Let r be the recommender node whose AR value is calculated
5: - Let Nr be the set of nodes occurring by applying the Alg. 6 (lines 23 and 39) described

in Section 4.6 for recommender r.
6:
7: procedure calculateAR(Nr,R[size(Nr)])
8: sum(r) = 0
9: weightS um(r) = 0

10: for each client node w in Nr do
11: if AR(w) is not available then
12: AR(w) = initializeDe f ault (e.g. 0.5)
13: end if
14: sum(r) = sum(r) + (R(w, r) ∗ AR(w))
15: weightS um(r) = weightS um(r) + AR(w)
16: end for
17: AR(r) = sum(r)/weightS um(r)
18: end procedure

4.5 Evaluation of AR value

Every client r participating in the network has an AR(r) value that represents the overall rep-

utation of the node as a recommender. An AR(r) value fluctuates over time depending on the

recommendations node r has provided for services and other recommenders of the network

64 Chapter 4. Trust and Reputation Evaluation Algorithms

and how accurate they have been. If the recommendations provided by r are consistent with

the experience of other nodes who have used a service, as a result of r’s recommendations, r’s

AR(r) value increases. If, however, discrepancies occur between provided and observed values,

the value decreases. Each AR(r) value is a function of the collective belief demonstrated by a

set Nr of other nodes that r is a good recommender.

This collective belief is computed by considering the R values all those nodes have for r,

following the recommendations from r and the consequent utilization of the recommended by

r services, thus getting first-hand experience and being able to assess r’s accountability. The

algorithm used to compute the AR(r) values is presented below in Alg. 4. The main idea comes

from the PageRank algorithm [4] and is based on the summation of reputation values R(w,r),

aimed at the client in question, with each element weighed based on their own AR(w) value. To

allow, however, for introduction of new nodes into the system, each node that has no incoming

edges in the social graph is provided with a baseline value of AR(w) of 0.5.

Also, instead of considering all possible reputation values, we propose Algorithm 6 that

is presented in Section 4.6 to select a subset Nr of available values based on a specific logic.

The choice to use a subset was made to improve the performance of the framework, since node

churn could be high in reputation systems, and to allow for a more selective choice of options

that is based on recentness and frequency. The rationale behind selecting the subset Nr is that

the majority of important opinions comes from a select subset of users that either interact with

the recommender in question frequently, or have interacted recently and their recommendation

is up to date.

For each of the members of Nr, their recommendation is weighed based on their overall

reputation value (i.e. AR(w) value) and added to the sum(r) (line 14), while their AR(w) value

is added to the weightSum(r) (line 15). After the recommendations of all recommenders have

been considered, the calculated AR(r) value is produced by dividing the two sums (line 17).

As mentioned earlier, if one of the contributing clients have no overall reputation value (line

11), they are assigned a default one (line 12) that can either be set to be a specific value (e.g.

4.5. Evaluation of AR value 65

0.5) or a value corresponding to the average or mean value within the system. Also, bear in

mind, that the default value is discarded as soon as at least one incoming R relation is created.

Even though this algorithm captures the logic behind the calculation of the overall reputa-

tion values, it is not very efficient in terms of number of calculations and requests for informa-

tion. It quickly becomes evident that, the summation of all applicable values is not required

every time one of them changes. To account for that and allow for the event-driven approach

we are proposing, a second variation of Alg. 4 is presented, where changes in the AR(r) values

are made on a per request mode. This variation can be seen in Alg. 5.

Algorithm 5 Update AR value
1: - Let r be the recommender node whose AR value is updated
2: - Let Ir be the set of pair values < R(w, r), AR(w) > that need to be included, based on Alg.

6, in the calculation of the overall reputation value.
3: - Let Er be the set of pair values < R(w, r), AR(w) > that need to be excluded, based on

Alg. 6, from the calculation of the overall reputation value.
4:
5: procedure updateAR(Ir, Er, sum(r),weightS um(r))
6: if sum(r) is not available then
7: sum(r) = 0
8: weightS um(r) = 0
9: end if

10:
11: for each < R(w, r), AR(w) > pair in Er do
12: sum(r) = sum(r) − (R(w, r) ∗ AR(w))
13: weightS um(r) = weightS um(r) − AR(w)
14: end for
15:
16: for each < R(w, r), AR(w) > pair in Ir do
17: sum(r) = sum(r) + (R(w, r) ∗ AR(w))
18: weightS um(r) = weightS um(r) + AR(w)
19: end for
20: save(sum(r),weightS um(r))
21: AR(r) = sum(r)/weightS um(r)
22: end procedure

Note that this updated algorithm receives the sum(r) and weightSum(r) as parameters (line

5). It, also, receives as parameters the pairs of values < R(w, r), AR(w) > that need to be added

or deleted. This approach requires fewer calculations and can easily be used to apply changes

66 Chapter 4. Trust and Reputation Evaluation Algorithms

in predetermined intervals and in a batch manner, in a way that, also, minimizes network

utilization. Updating a R(w,r) value, which is already in Nr, is equivalent to deleting the old and

adding the new one. If the particular client never had their overall reputation value calculated

in the past (i.e. it is the first time values are added) (line 6), we make sure that the sum(r) and

weightSum(r) values are initialized (lines 7-8), before the execution of the rest of the algorithm.

The set of values that need to be included and excluded from the calculation are discovered

and provided by the proposed method for selecting only the important opinions presented in

Section 4.6.

For each pair of values that are to be excluded (line 11), the reputation value R(w, r) is

weighted based on the recommender’s overall reputation value (i.e. AR(w)) and is, then sub-

tracted from sum(r) (line 12). Each weight is, also, subtracted from weightS um(r) (line 13). A

similar process is followed for the pair of values that are to be included (line 16), only in this

case the weighted reputation value (i.e. R(w, r) ∗ AR(w)) and the weight (i.e. AR(w)) are added

to sum(r) (line 17) and weightS um(r) (line 18) respectively.

Finally, the algorithm saves the summation values (line 20) and performs the division to

provide the updated AR(r) value of the particular recommender (line 21).

4.6 Selection of R values for AR calculation

The calculation of the AR(r) value of each node r depends on R(w,r) reputation values assigned

to the node in question by other nodes w. One option would be to consider all available values,

but since the number of values could grow exponentially as more and more users participate

in the network this could prove to be less than optional. Furthermore, not all opinions should

bear the same significance, especially if they are older or not updated at the same frequency

as other ones. Old or not frequently used values may indicate a recommender who is either

not actively participating in the network or may have stale or obsolete opinions about certain

service providers who may have changed their behaviour or quality of service in the time

4.6. Selection of R values for AR calculation 67

elapsed since their last interaction with the recommender in question. For that reason, a way to

come up with a subset of available values is required.

One could choose to sort the R(w,r) values by the time they were last updated and disregard

the ones that were least recently used (LRU [92]). Another option would be to sort based on

number of updates so far and exclude those with the lowest frequency of updates (LFU [93]).

We feel, however, that a hybrid approach would be the most appropriate since it captures the

significance of recent and thus relevant values, but also allows for some leeway when it comes

to values that are usually active but for some reason have not been updated recently.

4.6.1 Adaptive Replacement Cache Policy

Since we did not want to consider all available opinions for the calculation of overall reputation

values, we had to find an algorithm that could accommodate the need for selecting a subset of

them, based on specific criteria. Frequency and recency seemed to be the main characteristics

that could distinguish a reputation relation and corresponding value as important or not, hence

our initial idea for LRU or LFU lists. Those kind of issues, however, are very common in

the field of cache management, so we looked at related work to see if any of the proposed

approaches could be applicable to our reputation system, especially ones that account for those

characteristics or criteria mentioned earlier.

A lot of research has been done on cache management for different aspects of computer

systems, namely storage systems, databases, web servers, middleware, operating systems etc.

Since faster memory is significantly more expensive, its size is usually a fraction of the auxil-

iary memory. In case network communication is involved, the attempt is focused on minimiz-

ing network traffic. In either scenario, though, a policy for managing cache and minimizing

swapping of pages is required.

Several approaches have been proposed, but one of the most prolific ones is the Adaptive

Replacement Cache (ARC) policy [25]. This proposed policy attempts to bridge the gap be-

tween other policies, which are using lists with Least Recently Used or Least Frequently Used

68 Chapter 4. Trust and Reputation Evaluation Algorithms

pages, while maintaining low computational overhead.

The main idea is maintaining two lists to account for entries used only once recently and at

least twice recently. Those lists are called L1 and L2 respectively. Whenever an entry appears

that is not part of L1 ∪ L2, it is added to the top of list L1. If, however, the entry already exists

in L1 ∪ L2, it is moved to the top of list L2.

If the cache can hold up to c number of entries, the combined size of L1 and L2 is equal to

2c. The lists are further divided into Top and Bottom parts, with the Top parts having a com-

bined size of c and representing the entries that are actually maintained by the cache memory.

A visualization of that setting can be seen in Fig. 4.3 taken from [25].

4.6. Selection of R values for AR calculation 69

Figure 4.3: General Structure of ARC lists

Note here that, the entries in the cache are not equally divided between the Top parts of the

two lists. The combined size always equals to c, but the policy adapts the partitioning based

on observed workload. The main premise of the adaptation lies on ”investing” on the list that

70 Chapter 4. Trust and Reputation Evaluation Algorithms

performs better. So, a hit in L1 will increase the Top part of that list, whereas a hit in L2 will

increase its Top part.

As far as the replacement policy goes, it mostly depends on whether the Top part of L1 has

reached its desired size or not. Spots will be taken from L2, until the required size is reached.

By implementing that idea, ARC manages to outperform all other cache management poli-

cies, without burdening the system with unnecessary calculations.

4.6.2 ARC Adaptation

For our proposed approach, we adapt the Adaptive Replacement Cache (ARC) policy, in a

way that fits the needs and requirements of our framework. Even though memory is not our

main issue in this setting, discovering the Rr
w relations that are most important, instead of

accounting for all available opinions, is paramount to us. Because of that, our algorithm utilizes

the underlying ideas of the ARC policy and retrofits them to accommodate the functionality

required by our reputation system, as discussed below.

Figure 4.4: Example of lists for S C3

Following the idea put forward by the ARC policy, two ordered lists are maintained for each

recommender node r, which are used to identify the relations and corresponding reputation

values (Rr
w and R(w, r) respectively, where w are recommenders of r) that are to be used for the

calculation of the AR(r) value of node r.

4.6. Selection of R values for AR calculation 71

Algorithm 6 ARC Adaptation Algorithm
1: - Let r be the recommender node whose AR value is in question
2: - Let k be the recommender node who updated or deleted their recommendation for r.
3: - Let incr be the pair value that needs to be included in the calculation of the overall

reputation value.
4: - Let excr be the pair value that needs to be excluded from the calculation of the overall

reputation value.
5:
6: procedure addRValue(R(k, r), IMPr,MFUr,MRUr)
7: incr = R(k, r)
8: if R(k, r) ∈ IMPr then
9: move R(k, r) to top of MFUr

10: excr = Rprevious(k, r)
11: else if R(k, r) ∈ MRUr||MFUr then
12: move R(k, r) to top of MFUr

13: excr = value replaced by R(k, r)
14: adjust IMPr

15: else
16: move R(k, r) to top of MRUr

17: excr = value replaced by R(k, r)
18: adjust IMPr

19: end if
20: updateAR (incr, excr, sum(r),weightS um(r)) // Call Alg. 5.
21:
22: // Or call Alg. 4 in case first variation is used (see comments in Alg. 4).
23: // updateAR (IMPr,R(k, r)|k ∈ IMPr)
24: end procedure
25:
26: procedure removeRValue(R(k, r))
27: if R(k, r) ∈ IMPr then
28: excr = R(k, r)
29: if R(k, r) ∈ MRUr then
30: incr = next ∈ MRUr

31: else if R(k, r) ∈ MFUr then
32: incr = next ∈ MFUr

33: end if
34: include incr in IMPr

35: end if
36: updateAR (incr, excr, sum(r),weightS um(r)) // Call Alg. 5.
37:
38: // Or call Alg. 4 in case first variation is used (see comments in Alg. 4).
39: // updateAR (IMPr,R(k, r)|k ∈ IMPr)
40: end procedure

72 Chapter 4. Trust and Reputation Evaluation Algorithms

The first list (let’s call it MRUr) is utilized to maintain the relations pertaining to the most

recently updated reputation values put forward by other nodes, whereas the second one (MFUr

from now on) includes relations whose corresponding values have been updated most fre-

quently. We, also, specify a list of size c that contains the top parts both those lists and accounts

for the most important relations whose reputation values are to be considered in the calculation

of the corresponding AR(r) value (we will call it IMPr). The process can be seen in Alg. 6.

As one can see, whenever a new R(w,r) value becomes available, the lists corresponding to

the receiver of said value are checked. The available scenarios here are as follows:

• If the relation Rr
w, corresponding to the new reputation value R(w,r), is in the top of either

of the two lists (i.e. part of the IMPr list), it is moved to the top of the MFUr list. In this

case, the previous value is, practically, substituted and the update consists of excluding

the old and including the new value.

• If the relation Rr
w, corresponding to the new reputation value R(w,r) is part of either the

MRUr or the MFUr list, but not part of the top, it is still moved to the top of the MFUr

list. However, a relation coming from another recommender is removed to make space

for the new relation. The corresponding values are marked for exclusion and inclusion,

respectively.

• If the relation Rr
w, corresponding to the new reputation value R(w,r) is not part of any

of the lists, it becomes the top one in MRUr and the associated value is deemed to be

the one included in the calculation. Relation Rr
w replaces another relation Rr

k, whose

corresponding reputation value R(k,r) is excluded from the calculation as a result.

Note that, the list with the values that are to be considered for the calculation of an AR(r)

value (i.e. the IMPr list) is comprised of the relations at the top of the two other lists and its

size is fixed, but the amount of elements taken from each of the lists changes. You can see that

the algorithm contains some pseudo-code indicating adjustment of the IMPr list, but the actual

logic is more complicated and can be found in [25]. Same thing goes for the replacement

4.7. Service Ranking 73

logic, which is tightly coupled with the adjustment of the IMPr list. The method was fully

implemented for the prototype of our framework and the experimental results were acquired

using that implementation.

Things are significantly more straightforward in case a R(w,r) relation is completely re-

moved. The removed value is flagged to be removed from consideration for the calculation

of the corresponding AR(r) value, if the corresponding relation Rr
w was part of the IMPr list.

Then, the next available reputation value R(k,r), corresponding to the relation Rr
k that was part

of the MRUr or MFUr list, based on where the removed relation belonged, but not of the IMPr

list, is included.

The final incr and excr values from each procedure are supplied as parameters to the algo-

rithm presented in Alg. 5. 1 For performance purposes, several values can be accumulated over

a predetermined period of time and sent as a single message to be processed by the proposed

AR evaluation Algorithm 5. The period of time can be parameterized to account for better

precision of values or improved performance.

4.7 Service Ranking

Every interaction between service client and service provider is preceded by acquisition of

recommendations and compilation of a ranking of available services. The process includes

selecting recommenders to be consulted, transforming recommendations into positive and neg-

ative evidence, applying ranking algorithm and, finally, inquiring for available incentives. All

of the information are, then, presented to the service client, who selects a service to use, either

manually or automatically through a pre-specified policy.

1If the first variation of the algorithm to update the AR(r) values is used (see Alg. 4), the alternative calls,
supplying the IMPr, are utilized.

74 Chapter 4. Trust and Reputation Evaluation Algorithms

4.7.1 Selection of Recommenders

When a user p requests a ranking of available services, ratings (i.e. T(r,s) and D(r,s) values)

are requested by a subset of the recommenders participating in our framework. Specifically,

prospective recommenders belong in one of the following 3 recommender groups:

1. Top a% of recommenders r to which p has a Rr
p relation and R(p, r) value (i.e. has

received recommendations from them in the past). This is the group of Friends as defined

in Section 3.4.

2. Top a% of recommenders r to which any recommender k, for who p has a Rk
p relation

and R(p, k) value (i.e. has received recommendations from them in the past), has a Rr
k

relation and R(k, r) value themselves. This is the group of Friends of Friends as defined

in Section 3.4.

3. Top a% of recommenders r with the highest AR(r) value in the system. This is the group

of Experts as defined in Section 3.4.

Note here that, there is an additional parameter introduced in the selection of recom-

menders. The parameter a can be set according to the user’s preferences. A higher value of a

will result in getting the opinion of more recommenders into account. The client can choose

to get all of the opinions from one group, or a percentage of them. The proposed approach

even supports setting a threshold in reputation values or number of recommenders. Any choice

made, however, does not affect the semantics of the proposed approach. It merely adjusts the

framework’s throughput and network utilization vs plethora of available recommendations.

After selecting recommenders to consult, all available recommendations about service

providers are obtained. Personal experience of p is, also, taken into consideration and ratings

of service providers used in the past are obtained as well.

4.7. Service Ranking 75

4.7.2 Aggregation of T and D values per recommender group

Even though the framework can support any ranking algorithm, we are proposing the use of

a variation of the Dempster-Shafer evidence theory [22], where a final score for each recom-

mended service, as a function of the T(r,s) and D(r,s) values that are provided by the different

recommenders r involved (i.e. clients who have already used the service and have an opinion

about the service), is calculated. The reason to consider Dempster-Shafer is because it naturally

lends itself to the use of both positive and negative evidence for reaching a decision.

More specifically, each recommender r (i.e. clients who have already used the service and

have an opinion about the service) provides a ⟨T(r,s),D(r,s)⟩ pair of values for each recom-

mended service s. Even though each value supplied could be considered a distinct evidence,

the Dempster-Shafer theory is heavily dependent on the plurality of evidences provided. This

means that if values for a service are provided by a lot of recommenders belonging in one of

the groups, but way fewer ones belonging in another, the outcome will be overwhelmingly af-

fected by the former ones. This is especially common in cases of newer nodes, who don’t yet

have a lot of Friends. Also, the requesting user’s personal experience accounts for only one set

of evidences, which wouldn’t really matter compared to the tens or even hundreds of opinions

coming from other groups. For that reason, further preprocessing of the values is required.

For each one of the previous mentioned groups of recommenders and for each available

service the T(k,s) and D(k,s) values are aggregated. The formulas are as follows:

TG→s =

∑
k∈G(Repk · T (k, s))∑

k∈G(Repk)
(4.2)

DG→s =

∑
k∈G(Repk · D(k, s))∑

k∈G(Repk)
(4.3)

In those formulas, Repk is the reputation value of every recommender of that group based

on the group’s nature (i.e. for Friends Repk = R(p, k), for Friends of Friends Repk = R(p,m) ·

R(m, k), for Experts Repk = AR(k)) and ⟨T(k,s),D(k,s)⟩ are the values of each recommender

76 Chapter 4. Trust and Reputation Evaluation Algorithms

for every service available. The values produced by these formulas correspond to the rating of

each service, as perceived by each group G (i.e. Friends, Experts, FriendsOfFriends). User’s

p personal opinions are used as is. This preprocessing allows for a single set of values com-

ing from each group of recommenders for each service, with every recommender’s opinion

weighed differently within the group based on their corresponding reputation.

4.7.3 Dempster-Shafer

After the preprocessing, the ranking system considers every TG→s and DG→s value produced.

Each TG→S P1 value, for example, is considered as an “in-favour” evidence for service SP1.

This means that a set, containing only that service, is created (i.e. {S P1}) and is assigned the

value calculated in the previous Section. The process is repeated for each of the recommender

groups. Similarly, each DG→S P1 value is considered as an “against” evidence for service SP1,

or complimentary as an “in-favour” evidence for the set of all available services except SP1.

In this case, the complimentary set of the one created for TG→S P1 is constructed, or the one

containing all available services except SP1 (i.e. {S P1}C = {S P2, S P3, S P4, ...}). The DG→S P1

value calculated in the previous Section is assigned to that set and the process is, again, repeated

for all recommender groups. Bear in mind that, a group might not have any recommendations

for that particular service, in which case no evidences are created.

These evidences are then aggregated using the Dempster-Shafer evidence theory algorithm

to provide an overall belief interval for each recommended service, given the “in-favor” and

“against” values for each service by each group of recommenders. If more significance needs to

be assigned to the opinions of one of the groups, or the user’s personal opinion, values produced

by that group can be weighed accordingly, by duplicating the corresponding evidence, before

they are utilized by the Dempster-Shafer algorithm.

More specifically, once the T and D values have been calculated for each available service

and each group, using Formula 4.2 and Formula 4.3, certain values must be computed for each

available service. The formulas for calculating those values utilized the aforementioned T and

4.7. Service Ranking 77

D values available for that particular service and can be seen below:

ps =
(1 −
∏

G∈rec groups(1 − TG→s)) ·
∏

G∈rec groups(1 − DG→s)
1 − (
∏

G∈rec groups(1 − TG→s) ·
∏

G∈rec groups(1 − DG→s))
(4.4)

cs =
(1 −
∏

G∈rec groups(1 − DG→s)) ·
∏

G∈rec groups(1 − TG→s)
1 − (
∏

G∈rec groups(1 − TG→s) ·
∏

G∈rec groups(1 − DG→s))
(4.5)

rs = 1 − ps − cs (4.6)

ds = cs + rs (4.7)

Once those values have been computed for all of the recommended services, another value

required by the Dempster-Shafer algorithm is computed. This K is required to calculate the

belief interval and its formula is provided below:

K−1 =
∏

sp∈{all SPs}

dsp · (1 +
∑

sp∈{all SPs}

psp

dsp
) −

∏
sp∈{all SPs}

csp (4.8)

Once we have all the information, we can calculate the belief to the set containing just the

service in question and the belief to the complimentary set, as well.

Bel({s}) = K · (ps ·
∏

sp∈{s}C
dsp + rs ·

∏
sp∈{s}C

csp) (4.9)

Bel({s}C) = K · (
∏

sp∈{all SPs}

dsp ·
∑

sp∈{s}C

psp

dsp
+ cs ·

∏
sp∈{s}C

dsp −
∏

sp∈{all SPs}

csp) (4.10)

Those two belief values are, finally, utilized to provide the belief interval for that particular

service, as calculated using this variation of the Dempster-Shafer evidence theory.

s : [Bel({s}), 1 − Bel({s}C)] (4.11)

78 Chapter 4. Trust and Reputation Evaluation Algorithms

This belief interval’s lower end corresponds to the result of the Bel function applied on the

unit set of the service in question (i.e. Bel({s}), see Formula 4.9). The result of the application

of the belief function on the unit set of s gives us the total amount of belief committed to s,

after all evidence bearing on it has been pooled. The upper end, on the other hand, comes

from subtracting the result of the Bel function, applied on the complimentary of unit set of the

service in question (i.e. Bel({s}C), see Formula 4.9), from 1. Bel({s}C) indicates the extent to

which the evidence supports the negation of s (i.e. the belief that any other service is a better

choice), with the result of 1− Bel({s}C) expressing the plausibility of s (i.e. the extent to which

evidence allows one to fail to doubt s).

After calculating the belief interval for each of the recommended services, we can sort them

and provide the user with a ranking. Since this is an interval, and not a single value, one can

sort them in a variety of ways. We propose ranking them based on the low end of the interval,

which is the worst case for each service, with the upper end being utilized in case of a tie

between two different services.

Note that, the belief values are not indicative of the recommendation values provided for

each service, but rather the relative belief in a service, based on other available options, i.e.

services. What this means is that, if the process has discovered three services that are all

performing very well, each of them will bear a belief value of about 0.3.

Also, the Dempster-Shafer evidence theory is very unforgiving when it comes to negative

evidence. This was one of the reasons that led to the utilization of this variation as the ranking

algorithm for our approach. Distrust, in our system, accounts for participation of the service

provider in behaviours that are considered unsolicited by the service client, so higher numbers

should be heavily penalized, in our opinion.

4.7.4 Incentives

After each service is utilized by a number of service clients, and assuming that there are few

or no malicious users, its actual QoS is available to everyone requesting it, either through

4.7. Service Ranking 79

personal experience or through recommendations from other nodes in the framework. Even

though that is highly desirable, it fails to address the issue of service providers improving

the quality of the services they offer. Since users only pick the top service available at any

point, improved services will never be utilized, and thus their score will never be updated.

Furthermore, new services have no one to recommend them, since they have never been used

in the past. Therefore, in this case they will never appear in the ranking of available services.

To mitigate those shortcomings, we propose that service providers are allowed to provide

incentives to users in order to get the opportunity to demonstrate their improved or newly in-

troduced performance. For example, a newly added to the system service may provide some

”bonuses” (i.e incentives) to the propsective clients, so that it can be chosen instead of another

established service provider. As far as modelling incentives, a few approaches have been pro-

posed. Most of them deal with incentives regarding honest behaviour by participating nodes

[26], rather than incentives to prefer a service provider over another. Some, however, have pro-

posed either specific models regarding price adaptation [27] or use of agent-based modelling

to simulate behaviour and discover appropriate incentives per case [28]. Goal models could,

also, be utilized to both describe conditions for providing incentives and specifying criteria

for automatically accepting services and accompanying incentives by service clients. Original

ranking of services will still be provided by taking recommendations and personal experience

into consideration, but additional information about service-provided incentives will be avail-

able. The user can, then, choose, based on those information, whether they prefer the top rated

service or any other service, whose incentives seem appealing to them.

4.7.5 Compensations

Another scenario that might occur is a service underperforming due to specific circumstances

that have nothing to do with the service’s regular QoS. Observed values for that interaction

might be significantly lower than usual, which will lead to a decrease in the cumulative values

(i.e. T and D values) maintained by the user. Said user will be more reluctant to use the

80 Chapter 4. Trust and Reputation Evaluation Algorithms

service in question in the future and will provide worse recommendation when inquired about

it. To avoid this outcome, a service provider can opt to offer a compensation to the user. User

can either accept the compensation and recalculate observed values, or decline it and proceed

with the original values. For example, a temporarily underperforming service which overall

is a trustworthy service but failed to meet the expected QoS, will be able to provide some

compensations to the client (e.g. money, extra access to the service) so that the client will not

rank the service as low. Consistent use of compensations by a service will indicate a degrading

service to be reflected in the T and D values.

To model provided compensations based on difference between actual and desired be-

haviour, Dalpiaz et al.[29] have proposed an approach that utilizes and extends goal models

and requirement engineering. Their method addresses the need for compensations in socio-

technical systems, but it can be adapted and utilized for reconciliation and compensation in

other service providing systems, such as the one proposed in this approach.

4.7.6 Running Example (Revisited)

In Chapter 3, we provided an example to demonstrate the steps involved in the process of

getting recommendations and acting on them. However, no calculations were provided at this

point, since the corresponding algorithms hadn’t been presented yet.

To provide a complete and comprehensive insight into how the framework works, we revisit

the exact same example and show the calculations required in some of the provided steps, using

the algorithms presented in this chapter.

The same network of nodes, which can be seen again in Fig. 4.5, is utilized. The steps that

do not involve calculations are included for clarity purposes, but in a summarized manner.

Once more, the process involves fourteen steps that are as follows:

Steps 1-4 The client expresses interest in using a service, selects recommenders belonging to each

of the recommender groups (see Section 4.7.1) and collects their recommendations,

adding its personal opinions to the pool.

4.7. Service Ranking 81

Figure 4.5: Example network of recommenders and services

Step 5 We need to calculate the aggregate values for each of the services and each group of

recommenders (F→ , FoF→ Friends of Friends, E→ Experts, P→ Personal). So the

calculations are as follows:

– SP2: For each group the T and D values are:

*
T FoF

S P2 =
R(R1,R3) · R(R3,R6) · T (R6, S P2) + R(R1,R3) · R(R3,R7) · T (R7, S P2)

R(R1,R3) · R(R3,R6) + R(R1,R3) · R(R3,R7)

T FoF
S P2 =

0.9 · 0.88 · 0.78 + 0.9 · 0.84 · 0.75
0.9 · 0.88 + 0.9 · 0.84

= 0.77

*
DFoF

S P2 =
R(R1,R3) · R(R3,R6) · D(R6, S P2) + R(R1,R3) · R(R3,R7) · D(R7, S P2)

R(R1,R3) · R(R3,R6) + R(R1,R3) · R(R3,R7)

DFoF
S P2 =

0.9 · 0.88 · 0.12 + 0.9 · 0.84 · 0.17
0.9 · 0.88 + 0.9 · 0.84

= 0.14

– SP3: For each group the T and D values are:

82 Chapter 4. Trust and Reputation Evaluation Algorithms

* T FoF
S P3 =

R(R1,R3) · R(R3,R7) · T (R7, S P3)
R(R1,R3) · R(R3,R7)

=
0.9 · 0.84 · 0.65

0.9 · 0.84
= 0.65

* DFoF
S P3 =

R(R1,R3) · R(R3,R7) · D(R7, S P3)
R(R1,R3) · R(R3,R7)

=
0.9 · 0.84 · 0.26

0.9 · 0.84
= 0.26

– SP4: For each group the T and D values are:

*
T F

S P4 =
R(R1,R3) · T (R3, S P4) + R(R1,R11) · T (R11, S P4)

R(R1,R3) + R(R1,R11)

T F
S P4 =

0.9 · 0.87 + 0.9 · 0.87
0.9 + 0.9

= 0.87

*
DF

S P4 =
R(R1,R3) · D(R3, S P4) + R(R1,R11) · D(R11, S P4)

R(R1,R3) + R(R1,R11)

DF
S P4 =

0.9 · 0.10 + 0.9 · 0.10
0.9 + 0.9

= 0.10

* T E
S P4 =

AR(R9) · T (R9, S P4)
AR(R9)

=
0.93 · 0.92

0.93
= 0.92

* DE
S P4 =

AR(R9) · D(R9, S P4)
AR(R9)

=
0.93 · 0.02

0.93
= 0.02

* T P
S P4 =

T (R1, S P4)
1

=
0.78

1
= 0.82

* DP
S P4 =

D(R1, S P4)
1

=
0.23

1
= 0.05

– SP5: For each group the T and D values are:

* T F
S P5 =

R(R1,R11) · T (R11, S P5)
R(R1,R11)

=
0.9 · 0.73

0.9
= 0.73

* DF
S P5 =

R(R1,R11) · D(R11, S P5)
R(R1,R11)

=
0.9 · 0.18

0.9
= 0.18

* T E
S P5 =

AR(R10) · T (R10, S P5)
AR(R10)

=
0.91 · 0.81

0.91
= 0.81

* DE
S P5 =

AR(R10) · D(R10, S P5)
AR(R10)

=
0.91 · 0.13

0.91
= 0.13

Step 6 With all the T and D values available, we can now run the Dempster-Shafer algorithm:

– The required p,c,r,d values have to be calculated for each recommended service.

* SP2:

· pS P2 =
(1 − (1 − T FoF

S P2)) · (1 − DFoF
S P2)

1 − ((1 − T FoF
S P2) · (1 − DFoF

S P2))
= 0.825

· cS P2 =
(1 − (1 − DFoF

S P2)) · (1 − T FoF
S P2)

1 − ((1 − DFoF
S P2) · (1 − T FoF

S P2))
= 0.04

· rS P2 = 1 − pS P2 − cS P2 = 0.134

4.7. Service Ranking 83

· dS P2 = cS P2 + rS P2 = 0.175

* SP3:

· pS P3 =
(1 − (1 − T FoF

S P3)) · (1 − DFoF
S P3)

1 − ((1 − T FoF
S P3) · (1 − DFoF

S P3))
= 0.65

· cS P3 =
(1 − (1 − DFoF

S P3)) · (1 − T FoF
S P3)

1 − ((1 − DFoF
S P3) · (1 − T FoF

S P3))
= 0.12

· rS P3 = 1 − pS P3 − cS P3 = 0.23

· dS P3 = cS P3 + rS P3 = 0.35

* SP4:

·

pS P4 =

(1 − (1 − T F
S P4) · (1 − T E

S P4) · (1 − T P
S P4)) · ((1 − DF

S P4) · (1 − DE
S P4) · (1 − DP

S P4))
1 − ((1 − T F

S P4) · (1 − T E
S P4) · (1 − T P

S P4) · (1 − DF
S P4) · (1 − DE

S P4) · (1 − DP
S P4))

= 0.84

·

cS P4 =

(1 − (1 − DF
S P4) · (1 − DE

S P4) · (1 − DP
S P4)) · ((1 − T F

S P4) · (1 − T E
S P4) · (1 − T P

S P4))
1 − ((1 − DF

S P4) · (1 − DE
S P4) · (1 − DP

S P4) · (1 − T F
S P4) · (1 − T E

S P4) · (1 − T P
S P4))

= 0.0003

· rS P4 = 1 − pS P4 − cS P4 = 0.162

· dS P4 = cS P4 + rS P4 = 0.16

* SP5:

· pS P5 =
(1 − (1 − T F

S P5) · (1 − T E
S P5)) · ((1 − DF

S P5) · (1 − DE
S P5))

1 − ((1 − T F
S P5) · (1 − T E

S P5) · (1 − DF
S P5) · (1 − DE

S P5))
= 0.7

· cS P5 =
(1 − (1 − DF

S P5) · (1 − DE
S P5)) · ((1 − T F

S P5) · (1 − T E
S P5))

1 − ((1 − DF
S P5) · (1 − DE

S P5) · (1 − T F
S P5) · (1 − T E

S P5))
= 0.02

· rS P5 = 1 − pS P5 − cS P5 = 0.28

· dS P5 = cS P5 + rS P5 = 0.3

– The K value must be calculated next.

84 Chapter 4. Trust and Reputation Evaluation Algorithms

*

K−1 = (dS P2 · dS P3 · dS P4 · dS P5) · (1 +
pS P2

dS P2
+

pS P3

dS P3
+

pS P4

dS P4
+

pS P5

dS P5
)

− (cS P2 · cS P3 · cS P4 · cS P5)

K−1 = (0.17 · 0.35 · 0.16 · 0.3) · (1 +
0.83
0.17

+
0.65
0.35

+
0.84
0.16

+
0.7
0.3

)

− (0.04 · 0.12 · 0.0003 · 0.02) = 0.044662

* K = 1/K−1 = 22.39058

– The belief intervals for the unit and complimentary sets of each service will be

computed, as well.

* SP2:

·

Bel({S P2}) = K · (pS P2 · dS P3 · dS P4 · dS P5 + rS P2 · cS P3 · cS P4 · cS P5)

= 22.39058 · (0.83 · 0.35 · 0.16 · 0.3 + 0.13 · 0.12 · 0.0003 · 0.02)

= 0.3132

·

Bel({S P2}C) =K · (dS P2 · dS P3 · dS P4 · dS P5 · (
pS P3

dS P3
+

pS P4

dS P4
+

pS P5

dS P5
)

+ cS P2 · dS P3 · dS P4 · dS P5 − cS P2 · cS P3 · cS P4 · cS P5)

Bel({S P2}C) =22.39058 · (0.17 · 0.35 · 0.16 · 0.3 · (
0.65
0.35

+
0.84
0.16

+
0.7
0.3

)

+ 0.04 · 0.35 · 0.16 · 0.3 − 0.04 · 0.12 · 0.0003 · 0.02)

= 0.6358

· Belief interval→ [Bel({S P2}), 1 − Bel({S P2}C)] = [0.3132, 0.3642]

* SP3:

·

Bel({S P3}) = K · (pS P3 · dS P2 · dS P4 · dS P5 + rS P3 · cS P2 · cS P4 · cS P5)

= 22.39058 · (0.65 · 0.17 · 0.16 · 0.3 + 0.23 · 0.04 · 0.0003 · 0.02)

= 0.12

4.7. Service Ranking 85

·

Bel({S P3}C) =K · (dS P2 · dS P3 · dS P4 · dS P5 · (
pS P2

dS P2
+

pS P4

dS P4
+

pS P5

dS P5
)

+ cS P3 · dS P2 · dS P4 · dS P5 − cS P2 · cS P3 · cS P4 · cS P5)

Bel({S P3}C) =22.39058 · (0.17 · 0.35 · 0.16 · 0.3 · (
0.83
0.17

+
0.84
0.16

+
0.7
0.3

)

+ 0.12 · 0.17 · 0.16 · 0.3 − 0.04 · 0.12 · 0.0003 · 0.02)

= 0.8113

· Belief interval→ [Bel({S P3}), 1 − Bel({S P3}C)] = [0.12, 0.1887]

* SP4:

·

Bel({S P4}) = K · (pS P4 · dS P2 · dS P3 · dS P5 + rS P4 · cS P2 · cS P3 · cS P5)

= 22.39058 · (0.84 · 0.17 · 0.35 · 0.3 + 0.16 · 0.04 · 0.12 · 0.02)

= 0.342

·

Bel({S P4}C) =K · (dS P2 · dS P3 · dS P4 · dS P5 · (
pS P2

dS P2
+

pS P3

dS P3
+

pS P5

dS P5
)

+ cS P4 · dS P2 · dS P3 · dS P5 − cS P2 · cS P3 · cS P4 · cS P5)

Bel({S P4}C) =22.39058 · (0.17 · 0.35 · 0.16 · 0.3 · (
0.83
0.17

+
0.65
0.35

+
0.7
0.3

)

+ 0.0003 · 0.17 · 0.35 · 0.3 − 0.04 · 0.12 · 0.0003 · 0.02)

= 0.5921

· Belief interval→ [Bel({S P4}), 1 − Bel({S P4}C)] = [0.342, 0.4079]

* SP5:

·

Bel({S P5}) = K · (pS P5 · dS P2 · dS P3 · dS P4 + rS P5 · cS P2 · cS P3 · cS P4)

= 22.39058 · (0.7 · 0.17 · 0.35 · 0.16 + 0.28 · 0.04 · 0.12 · 0.0003)

= 0.1564

·

Bel({S P5}C) =K · (dS P2 · dS P3 · dS P4 · dS P5 · (
pS P2

dS P2
+

pS P3

dS P3
+

pS P4

dS P4
)

+ cS P5 · dS P2 · dS P3 · dS P4 − cS P2 · cS P3 · cS P4 · cS P5)

Bel({S P5}C) =22.39058 · (0.17 · 0.35 · 0.16 · 0.3 · (
0.83
0.17

+
0.65
0.35

+
0.84
0.16

)

+ 0.02 · 0.17 · 0.35 · 0.16 − 0.04 · 0.12 · 0.0003 · 0.02)

= 0.7808

86 Chapter 4. Trust and Reputation Evaluation Algorithms

· Belief interval→ [Bel({S P5}), 1 − Bel({S P5}C)] = [0.1564, 0.2192]

– Finally, a ranking of the services will be created and supplied to the user. The

ordered list is [S P4, S P2, S P5, S P3]

Steps 7-8 The client does not consider any incentives in this example and ends up using the top

ranked service, which is SP4.

Step 9 After using SP4, the user receives information through the proxy node, representing the

service within the framework, and evaluates the corresponding goal models, or whichever

method of service evaluation they have selected. Let’s assume this interaction provided

the user with the following observed values:

– OT (R1, S P4) = 0.89

– OD(R1, S P4) = 0.07

Steps 10-11 Since the interaction proceeded according to plan, no compensations were offered to be

considered by the client.

Step 12 Given the observed through the interaction values, client R1 has to update their personal

opinion about service SP4. This is done using Alg. 1. Since R1 already has a value

for SP4, there is no need for setting a default one. Let’s also, assume that c = 0.1 and

count = 3. So the calculations involved are:

To f f set(R1, S P4) = c(OT (R1, S P4) − T (R1, S P4) = 0.1 · (0.89 − 0.81)) = 0.008

T (R1, S P4) = T (R1, S P4) + To f f set(R1, S P4) = 0.81 + 0.008 = 0.818

Do f f set(R1, S P4) = c(OD(R1, S P4) − D(R1, S P4) = 0.1 · (0.07 − 0.05)) = 0.002

D(R1, S P4) = D(R1, S P4) + Do f f set(R1, S P4) = 0.05 + 0.002 = 0.052

count(R1, S P4) = count(R1, S P4) + 1 = 4

Step 13 Client R1 has to, also, update the reputation values for each of the recommenders of SP4.

4.7. Service Ranking 87

The offset calculation follows the same logic for each of them, but, based on the group

they belong to, the baseline will be different. The recommenders and reputation values

updates are as follows:

– Recommenders selected as Friends:

* R3:

·
error(R1,R3) = |OT (R1, S P4) − T (R3, S P4)| + |OD(R1, S P4) − D(R3, S P4)|

= 0.02 + 0.03 = 0.05

· Ro f f set(R1,R3) = 0.08

· R(R1,R3) = R(R1,R3) + Ro f f set(R1,R3) = 0.9 + 0.08 = 0.98

· count(R1,R3) = count(R1,R3) + 1 = 5

* R11:

·
error(R1,R11) = |OT (R1, S P4) − T (R11, S P4)| + |OD(R1, S P4) − D(R11, S P4)|

= 0.02 + 0.03 = 0.05

· Ro f f set(R1,R11) = 0.08

· R(R1,R11) = R(R1,R11) + Ro f f set(R1,R11) = 0.9 + 0.08 = 0.98

· count(R1,R11) = count(R1,R11) + 1 = 2

– Recommenders selected as Experts:

* R9:

·
error(R1,R9) = |OT (R1, S P4) − T (R9, S P4)| + |OD(R1, S P4) − D(R9, S P4)|

= 0.03 + 0.05 = 0.08

· Ro f f set(R1,R9) = 0.05

· R(R1,R9) = AR(R9) + Ro f f set(R1,R9) = 0.9 + 0.05 = 0.95

· count(R1,R9) = 1

Step 14 Since we have new R values for three recommenders, namely [R3,R9,R11], we need to

first run Alg. 6 to discover which values the new ones will be replacing, if any.

88 Chapter 4. Trust and Reputation Evaluation Algorithms

– Since R1 has R relations with R3 and R11, we can assume, for the sake of this

example, that the reputation value R1 has for them is already considered and the

new one will just substitute the previous one.

– Let’s also assume that R1’s previous overall reputation was 0.82, while the current

one is 0.84

– Finally, if both R3 and R11 had an AR value of 0.87 and the sum and weightSum

were 7.308 and 8.4 respectively, the calculations would be as follows:

*
sum(R3) = sum(R3) − (Rprevious(R1,R3) · ARprevious(R1))

= 7.308 − (0.9 · 0.82) = 6.57

*
weightS um(R3) = weightS um(R3) − ARprevious(R1)

= 8.4 − 0.82 = 7.58

*
sum(R3) = sum(R3) + (R(R1,R3) · AR(R1))

= 6.57 + (0.98 · 0.84) = 7.3932

*
weightS um(R3) = weightS um(R3) + AR(R1)

= 7.58 + 0.84 = 8.42

* AR(R3) = sum(R3)/weightS um(R3) = 7.3932/8.42 = 0.878

– The same exact calculations are performed for R11. As far as R9 goes, the values

subtracted for the sums will change, depending on what values are substituted,

based on the algorithm presented in Section 4.6, but the process remains the same.

4.8 Discussion on Self-Regulating Behaviour of Recommenders

With respect to the behaviour of users within the system, they can be categorized in one of a

number of possible scenarios. Those scenarios include honest and dishonest behaviours and

some considerations regarding the system’s ability to self regulate in any of these occasions

can be found below.

4.8. Discussion on Self-Regulating Behaviour of Recommenders 89

Case 1: Recommenders r who recommend correctly to requester p. The R(p,r) value from p to

these recommenders r will increase whenever p ends up acting upon r’s recommendation. This

will trigger the re-calculation of r’s AR value, causing it to increase, making it an even more

reputable recommender.

Case 2: Malicious or erroneous recommenders r. These recommenders r may maliciously

degrade their recommendation towards a service s, to a node p1 seeking recommendation.

However, other nodes r1, r2, r3, . . . , who are not malicious may also be providing a good

recommendation for s to p1, which in this case p1 may decide to use s. If p1 decides to use

s, then a discrepancy between r’s recommendation and p1’s observed value of s’s QoS will

occur, thus reducing p1’s node-to-node recommendation strength R towards r, causing r’s AR

to be reduced as well. The denser the network becomes the higher the chances that p1 will be

connected to other nodes r1, r2, r3, . . . , and not only r, thus exposing r’s malicious behavior.

The same idea (dual) holds if a malicious recommender increases its recommendation for a

non-trustworthy service.

Case 3: Service client r who observes correctly and calculates T and D values correctly. When

these clients r are asked for their recommendation by a potential service client p, they will

provide a correct recommendation, and thus the R value towards them by p will increase,

causing r’s AR to increase, making r a reputable future recommender. Then this becomes

equivalent to Case 1 above.

Case 4: Malicious service client r who observe and calculate T, and D values erroneously.

When these clients r are asked for their recommendation by a potential service client p, they

will provide an incorrect recommendation, and thus the R value towards them by p will de-

crease, causing r’s AR to decrease, making r a non-reputable future recommender. Then this

becomes equivalent to Case 2 above.

90 Chapter 4. Trust and Reputation Evaluation Algorithms

4.9 Summary

To summarize, for a service to be selected the client receives an ordered list that represents the

perceived ranking of services. For this to happen, several steps have to be taken.

First, the appropriate set of recommenders to be consulted has to be created. Several sources

of information are considered, and the recommenders that are thought as the most influential

within each group are selected and added to the aforementioned set (see Section 4.7.1).

The recommendations of the recommenders selected in the previous step are collected,

as well as the personal opinions of the requesting user. The recommendations are separated,

placed in different ”buckets”, corresponding to each recommender group, and eventually ag-

gregated per group, as described in Section 4.7.2, to produce a pair of positive and negative

evidences for each recommended service and each group that has an available recommenda-

tion for said service.

The evidences are, then, utilized to produce a ranking. Any ranking algorithm can be

used, but we propose the use of a variation of the Dempster-Shafer evidence theory, since it

accounts for both positive and negative evidence and computes belief intervals that are relative

to the other available options within our framework (see Section 4.7.3). Specific values for

each service are calculates as part of this algorithm, as well as values that correspond to all

recommended services. Those values are, then, used to calculate the aforementioned belief

intervals for each service and, ultimately, provide a ranking to the user.

Incentives...

After choosing and using a specific service, a pair of observed values (i.e. observed

trust/distrust) is obtained either manually, as provided by the user, or automatically, utiliz-

ing the information collected through the proxy service node and evaluating a goal model or

any other kind of model. Those values are used to update a) the cumulative T/D values the

user maintains for that service and b) the individual reputation values of the recommenders

who recommended said service. The algorithms described in Section 4.2 and Section 4.3 are

utilized respectively.

4.9. Summary 91

Last but not least, a subset of the available R values are used to calculate a recommender’s

overall reputation, i.e. AR value. The proposed method for selecting the most important values

is presented in Section 4.6 and the algorithm to update the overall reputation value of a rec-

ommender, when a R value belonging to the set gets an update or a new one is added to it, is

explained in Section 4.5. We propose two algorithms for calculating an AR value. The first one

captures the essence of the approach by performing all the required calculations every time the

overall reputation value is requested, whereas the second one utilizes a more event-driven way

of computing the value, by maintaining the corresponding sums and adding or subtracting only

what is necessary.

Chapter 5

System Architecture

5.1 Centralized Architecture

The framework can be deployed in a centralized manner whenever a central authority or or-

ganization, such as an e-commerce platform, requires the reputation system to be utilized in

tandem to other applications. In this scenario, the authority has full control over the data and

operations and only offers the clients the ability to request certain functionality and use ser-

vices through the already deployed framework. Such a deployment allows the integration of

the proposed approach to other offered services.

5.1.1 Architecture Overview

The centralized version of the proposed framework consists of several components, with each

of them performing a different task crucial to the system. Those components can be deployed

in a single server, or as micro-services in separate machines, but they remain under the super-

vision of a central authority. Each service client runs just a small client program that is tasked

with performing the REST calls to the main framework and requesting any of the available

options. A description of each component and sub-component is provided in this section. The

system is comprised of the following components:

92

5.1. Centralized Architecture 93

Figure 5.1: Component diagram for centralized architecture.

• InfoManager: This component is tasked with maintaining the information regarding all

relationships between recommenders and service providers (see Sections 3.3.2, 3.3.3,

3.3.4). Every relation pertaining to the social graph maintained by the system is stored

in this component.

– InfoManagerServer: This sub-component allows for the services of the InfoMan-

ager component to be offered to other components. A standalone server is operated

as part of this sub-component, including the corresponding error handling of REST

calls. Unmarshalling of the messages is, also, performed by this part of the system

94 Chapter 5. System Architecture

for the information to be utilizable by other components.

– DBConnector: The connectors and error handling for the required databases are

included in this sub-component. Several low level checks regarding the incoming

and outgoing values are, also, performed here. More specifically, duplicate values

are discarded and entries with a count of zero are removed altogether, to signify

that the connection in the social graph is no longer present.

• EvaluationManager: This component provides the functionality of reevaluating the

values corresponding to the relationship between different entities. Any update required

for T/D, R or AR values is handled by this component.

– EvaluationManagerFacade: The API of the main component is offered through

this sub-component. Again, a server is responsible for handling incoming REST

calls and dealing with proocol errors and unmarshalling of data.

– AlgorithmEvaluators: The actual implementations of the evaluation algorithms are

contained here (see Sections 4.2, 4.3, 4.5). The calculation of each required value

update is assigned to a different thread, in order to improve performance, and the

produced values are, then, forwarded to other interested components for saving or

further utilization.

– DataBroker: This sub-component is utilized by the AlgorithmEvaluators sub-component

to handle any needs for sending or receiving any information relevant to the eval-

uation algorithms. Its functionality includes communicating with the InfoManager

component to a) obtain the information required when a evaluation of a relation-

ship value is needed or b) save the values updated using the algorithms. This sub-

component is, also, responsible with publishing the calculated offset and R values

for them to be used by interested components (see Section 4.4 and Section 4.6)

• ServiceRanking: A ranking of available services is provided by this component to any

requesting user, based on the opinions of other users participating in the framework.

5.1. Centralized Architecture 95

Recommenders are selected, recommendations are collected and transformed into evi-

dences and the chosen ranking algorithm is executed. Different ranking algorithms can

be utilized and the choices regarding the consulted recommenders can be parameterized.

– RankingServer: This sub-component provides the ranking service to the other

components. A server is run to provide said ranking service in a RESTful way

and handle any upcoming communication errors.

– EvidenceManager: This sub-component allows for the selection of recommenders

that fulfill certain criteria (see Section 3.4). Trust and distrust values are collected

from selected recommenders and are then transformed into evidence to be consid-

ered by the RankingAlgorithm sub-component.

– RankingAlgorithm: The ranking algorithm is implemented as part of this sub-

component. All available evidence are obtained from the EvidenceManager sub-

component and the algorithm is executed to produce the ranking. The algorithm

utilized at the moment is a modified version of Dempster-Shafer (see Section 4.7.3).

To further improve the system’s throughput, each request for ranking is handled by

a separate thread.

• ServiceProxy: A proxy for using a service and, subsequently, obtaining data and eval-

uating said service is implemented here. The service client can only use the selected

service through the corresponding proxy.

– ServiceDataProxy: The actual call to the chosen service is performed through this

sub-component. Metrics of interest are automatically collected from the interac-

tion,as well as the user’s review. Different implementations regarding data gather-

ing can be included in this sub-component, as well as GUIs to acquire the client’s

review immediately following the interaction.

– ServiceEvaluation: Obtained information are provided by the ServiceDataProxy

sub-component and the service is evaluated using the selected method or algorithm.

96 Chapter 5. System Architecture

For our prototype implementation, we propose the use of extended goal models

and fuzzy reasoning as defined in [24]. In each case, the appropriate goal model is

evaluated to provide the observed trust and distrust values for the utilized service

(see Section 3.3.1).

• DataValidation: This component is tasked with two distinct responsibilities: a) It keeps

track and notifies the system of previously observed trust and distrust values and the

corresponding fluctuations of recommender values that have become obsolete, and b) it

maintains a list of recommender values that contribute to the overall reputation of a rec-

ommender, based on an algorithm specified in 4.6. In both cases, the EvaluationManager

component is notified to update the corresponding values.

– EventHandler: This sub-component is responsible with subscribing to the topics

that correspond to the values of interest. It, also, provides call-back methods to be

called when new data become available. Said methods receive the published data,

timestamp them and transform them in a format that is appropriate for saving by

the DataManager sub-component.

– ValidityReasoner: The algorithm used for deciding the recommender values to be

considered for the overall reputation of a recommender (see Section 4.6) is im-

plemented here. Note that the sub-component is structured in a way that different

algorithms can be utilized if required. The logic for discovering obsolete values

is, also, implemented here. All of those processes are independent to the main

process, so separate threads are utilized to ensure that they run uninterrupted and

without delays.

– DataManager: The data required by the ValidityReasoner are handled by this sub-

component. A distributed database solution is used to allow for replication of this

component. Data are inserted by the EventHandler sub-component or retrieved by

the ValidityReasoner sub-component.

5.1. Centralized Architecture 97

• MitigationManager: This component evaluates mitigation strategies that may be of-

fered by specific services. The component, corresponding to the client requesting a ser-

vice, communicates with this component both during the ranking process and after the

service utilization to inquire for available incentives and compensations respectively.

– IncentiveManager: Incentives may be provided by a service that is new or has

performed poorly in the past. Said incentives are calculated using models specified

in this sub-component. After the original ranking is provided, a request is made

to this sub-component to provide them to the client. A server is included in this

component, so that the information can be accessed through a REST API.

– CompensationManager: Compensations may be given by a service in case of an

interaction that didn’t perform as expected. The models utilized to calculate them

are part of this sub-component. This component is consulted for available compen-

sations after the client has chosen and actually used a specific service.

– DataCollector: If complimentary data are required for the evaluation of incentive

or compensation models, the DataCollector is utilized. Data are collected from

the InfoManager component to be provided to any models that might need them.

Potential needs may include knowledge of past performance or current reputation.

• ContextualFiltering: Filtering of available services is performed here, based on contex-

tual information or specific ontologies, before evidence is collected by the ServiceRank-

ing component. No filtering is performed as part of the prototype implementation, but

we are proposing an architecture that can easily be extended and enhanced.

• PubSubMiddleware: This a middleware framework incorporated in our system to allow

decoupling communication between different components. Instances or replicas of the

EvaluationManager component publish the calculated offsets and R values and they are

received by subscribing DataValidation instances.

98 Chapter 5. System Architecture

• UserInterface: Each user participates and interacts with the framework through this

component. The service client has access to all the functionality offered by the system

and is assigned a specific ID and corresponding reputation based on interactions per-

formed using this component.Specific implementation could include a graphical UI or

an API to be consumed by other applications.

5.1.2 Interface Specification

In this Section, we provide a simple and short description of the interfaces offered by each com-

ponent as seen in Fig. 5.1.1. Note that each interface usually consists of multiple operations,

but mentioning all of them here wouldn’t really provide any further insight on the framework’s

functionality, so they are omitted. Said interfaces and corresponding operations are the ones

used in the next Section to describe the sequence of actions between components.

Component Name Interface Name Description

InfoManagerServer
getValues

This interface is utilized to retrieve T/D, R and AR
values.

saveValues
This interface is utilized to save updated T/D, R
and AR values.

DBConnector DBActions
This interface is utilized to perform actions on the
utilized database.

EvaluationManager
Facade

addValues
This interface is utilized to update T/D, R and AR
values after a new interaction.

removeValues
This interface is utilized to remove obsolete offsets
pertaining to T/D and R values.

AlgorithmEvaluators
updateValues

This interface is utilized to run the algorithms used
for updating T/D, R and AR values after an
interaction.

removeObsolete
This interface is utilized to run the algorithms for
removing offsets for T/D and R values.

DataBroker
getData

This interface is utilized to request T/D, R and AR
values.

saveData
This interface is utilized to save updated T/D, R
and AR values.

EventHandler notify
This interface is utilized to notify the component
of new offsets and updated R values.

5.1. Centralized Architecture 99

Component Name Interface Name Description

DataManager
getData

This interface is utilized to request saved offsets
and R values.

saveData
This interface is utilized to save offsets and
information about updates in R values.

ServiceDataProxy useService
This interface is utilized to use the chosen service
through a proxy and get interaction information.

ServiceEvaluation evaluateService
This interface is utilized to evaluate the services’s
QoS using the interaction information.

RankingServer getRanking
This interface is utilized to request a ranking of
available services based on recommendations.

RankingAlgorithm rank
This interface is utilized to run the algorithm
required to rank services.

EvidenceManager getEvidences
This interface is utilized to acquire recommendations
and create the corresponding evidences.

ContextualFiltering
getFiltered

Recommendations
This interface is utilized to receive recommendations,
but filtered based on specific context.

IncentiveManager getIncentives
This interface is utilized to inquire about available
incentives offered by services.

CompensationManager getCompensations
This interface is utilized to inquire about available
compensations offered by a service after an interaction.

DataCollector getData

This interface is utilized to get any information
required for the evaluation of incentives or
compensations.

PubSubMiddleware
publish

This interface is utilized to publish offsets and R
values.

subscribe
This interface is utilized to subscribe to specific
offsets and information about updates in R values.

5.1.3 Process Sequence Diagrams

To further explain the process required to acquire recommendations and use a service as a

service client, as well as the independent processes run to discover obsolete values and decide

on important values for the calculation of the overall reputation values, we provide a set of

sequence diagrams with corresponding descriptions. For each of the diagrams, we specify

the steps of the process, described in Section 3.5.1, it corresponds to. We, also, describe the

steps in the sequence diagram to clarify the communication required between the components

100 Chapter 5. System Architecture

Figure 5.2: Centralized Architecture: Sequence diagram for ranking part.

specified in Section 5.1.1.

Recommendations and Ranking

The sequence described in this section corresponds to the request for recommendations by a

service client, followed by the selection of recommenders to consult, acquisition of recom-

mendations and, finally, transformation to evidences and calculation of service ranking. Said

sequence accounts for Steps 1-6 of the process described in Section 3.5.1 and can be observed

in Fig. 5.2.

To perform this sequence of actions the framework takes the following steps:

1. The UserInterface component corresponding to the requesting user asks for a ranking of

available services from the RankingServer.

5.1. Centralized Architecture 101

2. The RankingServer forwards the request to the utilized RankingAlgorithm component.

3. The RankingAlgorithm makes a request for available evidences to the EvidenceManager.

4. The EvidenceManager requests all available recommenders, belonging to each of the

sources of recommendation (see Section 3.4), from the InfoManagerServer.

5. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate queries.

6. After all the available information has been returned to the EvidenceManager, recom-

menders are filtered based on the logic described in Section 4.7.1.

7. Recommendations from selected recommenders are requested, filtered by specific con-

text, such as location, service type etc. Note that, no filtering was performed in the

prototype implementation, but the architecture supports the functionality.

8. All available recommendations from selected recommenders are requested from the In-

foManagerServer.

9. Again, the InfoManagerServer queries the accompanying DBConnector component, af-

ter creating the appropriate queries.

10. Once the recommendations have been acquired by the EvidenceManager, they are grouped

in ”buckets”, as explained in Section 4.7.2, and the evidences are created.

11. The RankingAlgorithm receives the produced evidences and performs the ranking using

the chosen algorithm. In our prototype, the algorithm used is a variation of the Dempster-

Shafer evidence theory, described in Section 4.7.3. The final ranking is returned to the

requesting UserInterface component.

102 Chapter 5. System Architecture

Figure 5.3: Centralized Architecture: Sequence diagram for incentives, utilization and com-
pensations part.

Incentives, Utilization and Compensations

In this sequence diagram, we inspect the acquisition of available incentives, as an addition

to the already provided ranking, the utilization of a chosen service through its corresponding

proxy and, finally, the provision of compensations, if the outcome of the interaction was inferior

to the one expected under normal circumstances. As far as the process described in Section

3.5.1, the equivalent Steps are 7-11 and the diagram can be seen in Fig. 5.3.

The following steps are taken to perform these aforementioned actions:

5.1. Centralized Architecture 103

1. The requesting client’s UserInterface requests available incentives from the IncentiveM-

anager.

2. The IncentiveManager utilizes the DataCollector to acquire any data pertaining to the

evaluation of the appropriate model (e.g. previous service performance, current T/D

values etc.).

3. Information are requested from the InfoManagerServer regarding specific recommenda-

tions.

4. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate queries.

5. After the required information has been obtained, the model is evaluated and the provided

incentives are calculated and presented to the UserInterface (see Section 4.7.4).

6. The service client chooses a service and uses it through the ServiceDataProxy compo-

nent.

7. After the interaction is concluded, the ServiceDataProxy sends all captured data to the

ServiceEvaluation component and requests an evaluation of the service(see OT/OD val-

ues, Section 4.1). This evaluation can be a result of goal model reasoning, or any other

method chosen by the user.

8. The UserInterface requests the CompensationManager for any applicable compensa-

tions, if the service QoS was subpar.

9. The CompensationManager utilizes the DataCollector to acquire any data pertaining to

the evaluation of the appropriate model.

10. Information is requested from the InfoManagerServer regarding specific recommenda-

tions.

104 Chapter 5. System Architecture

11. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate queries.

12. As soon as all the information is received, the CompensationManager calculates the

offered compensation (see Section 4.7.5), if any, and makes them known to the UserIn-

terface, which then presents to the user the option of accepting them or not.

T/D and R values Update

As soon as the service client decides on the observed trust and distrust obtained through the

interaction with a service, another part of the process is initiated. This part has to do with

updating the values of anyone who participated in the previous processes. That includes the

recommenders who proposed the utilized service, as well as the service itself. The steps corre-

sponding to the process described in Section 3.5.1 are Steps 12-13 and the diagram is depicted

in Fig. 5.4.

The following steps are required for the update of all relevant values:

1. The UserInterface of the service client makes a request to the EvaluationManagerFacade

component to update all relevant values.

2. The EvaluationManagerFacade forwards this request to the AlgorithmEvaluators com-

ponent.

3. The AlgorithmEvaluators asks the DataBroker to get the previous value the service client

had for the used service, if available.

4. Information is requested from the InfoManagerServer regarding said pair of service and

service client.

5. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate query.

5.1. Centralized Architecture 105

Figure 5.4: Centralized Architecture: Sequence diagram for updating T/D and R values after
service utilization.

6. The provided information is taken into consideration and the appropriate algorithm is

run to evaluate the new T/D values (see Section 4.2).

7. The AlgorithmEvaluators asks the DataBroker to forward the newly updated value for

saving.

8. The DataBroker instructs the InfoManagerServer to save the value.

9. The InfoManagerServer saves the value to the database using the DBConnector compo-

nent.

106 Chapter 5. System Architecture

10. The AlgorithmEvaluators asks the DataBroker to get the previous reputation values the

service client had for the recommenders, depending on the source they belong to (R value

for Friends, AR value for Experts and path value for Friends of Friends).

11. Information is requested from the InfoManagerServer regarding said recommenders.

12. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate queries.

13. The provided information is taken into consideration and the appropriate algorithm is

run to evaluate the new R values (see Section 4.3).

14. The AlgorithmEvaluators asks the DataBroker to forward the newly updated or created

values for saving.

15. The DataBroker instructs the InfoManagerServer to save the values.

16. The InfoManagerServer saves the values to the database using the DBConnector com-

ponent.

17. The offsets calculated for the reputation values of the recommenders are published to the

PubSubMiddleware component.

18. The corresponding EventHandler is notified about the new offsets, receives them and

timestamps them.

19. The DataManager is asked by the EventHandler to save said offsets to a database.

20. The updated R values are, also, published to the PubSubMiddleware component.

21. The corresponding EventHandler is notified about the R values.

22. The DataManager is asked by the EventHandler to save said R values to a database.

23. The EventHandler notifies the ValidityReasoner to start the other part of the process

related to selecting R values for calculating overall reputation values (see below).

5.1. Centralized Architecture 107

Figure 5.5: Centralized Architecture: Sequence diagram for deciding on important R values
and updating AR values.

Overall Reputation Value Update

Once a reputation value is created or updated, the final part of the process described in Section

3.5.1 is started (i.e. Step 14). The algorithm tasked with selecting the most important R values

to be considered for an AR value is run and, if required, the algorithm to update said value is,

also, executed. That part can be seen in Fig. 5.5.

The steps are as follows:

1. The ValidityReasoner component is notified about changes in R values by the Even-

tHandler.

2. The algorithm for deciding which values are important and what needs to to be replaced

in the calculation of overall reputation values is run (see Section 4.6).

3. A request is sent to the EvaluationManagerFacade to update a set of AR values, indicat-

ing the R values that need to be added and/or removed.

108 Chapter 5. System Architecture

4. The EvaluationManagerFacade forwards that request to the AlgorithmEvaluators com-

ponent.

5. The AlgorithmEvaluators asks the DataBroker to fetch the previous AR values.

6. The DataBroker asks the InfoManagerServer for those information.

7. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate queries.

8. Upon receiving all required information, the AlgorithmEvaluators component run the

appropriate algorithm and calculates the new AR value (see Section 4.5).

9. The AlgorithmEvaluators component asks the DataBroker to forward the newly updated

or created values for saving.

10. The DataBroker instructs the InfoManagerServer to save the values.

11. The InfoManagerServer saves the values to the database using the DBConnector com-

ponent.

Timeouts

The process of removing the T/D and R values that are considered old and obsolete is com-

pletely separate from the main process described in Section 3.5.1. This side process is time-

based and is executed in a completely different thread. Its functionality includes discovering

older interaction and caused changes in values and reverting them. Note that this timeout

process usually, also, causes the triggering of the part of the main process, described in the

previous Section (i.e. selecting important R values and updating AR values). The sequence of

actions required to deal with timeouts is available in Fig. 5.6.

1. The ValidityReasoner component requests saved offsets for T/D and R values from the

DataManager.

5.1. Centralized Architecture 109

Figure 5.6: Centralized Architecture: Sequence diagram for removing obsolete T/D and R
values.

2. Based on the set time window, entries that have to be deleted are calculated by the Valid-

ityReasoner.

3. A request is made to the EvaluationManagerFacade to remove those values from con-

sideration.

4. The EvaluationManagerFacade forwards this request to the AlgorithmEvaluators com-

ponent.

110 Chapter 5. System Architecture

5. The AlgorithmEvaluators asks the DataBroker to get the previous values for the pairs of

service clients and services that need to be updated.

6. Information is requested from the InfoManagerServer regarding said pairs of services

and service clients.

7. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate query.

8. The provided information is taken into consideration and the appropriate algorithm is

run to update the T/D values (see Section 4.4).

9. The AlgorithmEvaluators asks the DataBroker to forward the newly updated values for

saving.

10. The DataBroker instructs the InfoManagerServer to save the values.

11. The InfoManagerServer saves the value to the database using the DBConnector compo-

nent.

12. The AlgorithmEvaluators asks the DataBroker to get the previous reputation values for

the pairs of service clients and recommenders that have to be updated.

13. Information is requested from the InfoManagerServer regarding said recommenders.

14. The InfoManagerServer queries the accompanying DBConnector component, after cre-

ating the appropriate query.

15. The provided information is taken into consideration and the appropriate algorithm is

run to evaluate the new R values (see Section 4.4).

16. The AlgorithmEvaluators asks the DataBroker to forward the newly updated or created

values for saving.

17. The DataBroker instructs the InfoManagerServer to save the values.

5.2. Distributed Architecture 111

18. The InfoManagerServer saves the values to the database using the DBConnector com-

ponent.

19. The updated R values are published to the PubSubMiddleware component.

20. The corresponding EventHandler is notified about the R values.

21. The DataManager is asked by the EventHandler to save said R values to a database.

22. The EventHandler notifies the ValidityReasoner to start the other part of the process

related to selecting R values for calculating overall reputation values (see previous Sec-

tion).

5.2 Distributed Architecture

The framework can, also, be deployed in a distributed manner. In scenarios where we need

the service clients to act as separate entities and maintain control of their data and operations,

this architecture variation can be utilized. Note that this variation is not fully decentralized,

as a discovery service is required for new users to be able to discover other clients’ network

addresses and request recommendations or other information.

5.2.1 Architecture Overview

The distributed version of the framework’s architecture is pretty similar to the centralized ver-

sion. Only a certain amount of components, interfaces and connections are different. The

component diagram for the distributed version can be observed in Fig. 5.7. Note that in this

version, the whole framework is run by each service client and the users communicate with

each other to request and provide recommendations both for services and other service clients,

i.e. recommenders.

The components that are different to the centralized version are the following:

112 Chapter 5. System Architecture

Figure 5.7: Component diagram for distributed architecture.

• InfoManager: This component is tasked with maintaining the information regarding

only the connection between the service client who is running this instance of the frame-

work and other recommenders and service providers (see Sections 3.3.2, 3.3.3, 3.3.4).

No values assigned by other service clients are saved here.

• CommunicationModule: A separate component is utilized to deal with the communi-

cation with other users of the framework. Recommendations for service providers or

other recommenders are requested through this module, as well as information regarding

incentives and compensations. The framework is, also, notified for any changes, in R

5.2. Distributed Architecture 113

values that are relevant to the calculation of AR values, by this component.

Note that a lot of the connections between the components have changed. This is due

to the fact that, each service client only has direct access to the values they have assigned

to other recommenders and service providers. For all other information required for recom-

mendations, ranking of services, incentives, compensations and updates of overall reputation

values, the framework instance has to communicate with the corresponding instances of other

clients through the CommunicationModule. The PubSubMiddleware component has been re-

moved, since each user run one instance of each component and there is no need for decoupling

between the EvaluationManager component and the DataValidation component.

5.2.2 Interface Specification

In this Section, we specify the interfaces offered by all components participating in the dis-

tributed version of the framework. Most of them, however, are identical to the ones in the

centralized variation, so we will only describe the ones that are different.

Component Name Interface Name Description

PubSubMiddleware
publish

This interface is utilized to publish offsets and R
values.

subscribe
This interface is utilized to subscribe to specific
offsets and information about updates in R values.

CommunicationModule

notifyRValues
This interface is utilized to notify the running
instance about changes in R values.

getMitigations

This interface is utilized to acquire information
about incentives and compensations, including
changes in provided models.

getRecommendations

This interface is utilized to inquire other service
clients for recommendations regarding services
or other recommenders.

114 Chapter 5. System Architecture

Figure 5.8: Distributed Architecture: Sequence diagram for ranking part.

5.2.3 Process Sequence Diagrams

Once more, to further explain the process required to acquire recommendations and use a ser-

vice as a service client, as well as the independent processes run to discover obsolete values

and decide on important values for the calculation of the overall reputation values, we provide

a set of sequence diagrams. The steps are adapted to accommodate a distributed deployment

of the framework. Most of the steps, however, are exactly the same as the ones identified in the

centralized variation. So, for each of the diagrams, we, still, specify the steps of the process, de-

scribed in Section 3.5.1, it corresponds to, but only describe the steps in the sequence diagram

that are distinct to the ones described in the equivalent section for the centralized variation.

5.2. Distributed Architecture 115

Recommendations and Ranking

The sequence described in this section corresponds to the request for recommendations by a

service client, followed by the selection of recommenders to consult, acquisition of recom-

mendations and, finally, transformation to evidences and calculation of service ranking. Said

sequence accounts for Steps 1-6 of the process described in Section 3.5.1 and can be observed

in Fig. 5.8.

The steps that are different in the distributed variation are:

10. An extra step is added after Step 9. In this variation the service client only maintains

their own recommendations. For recommendations from other recommenders, the Com-

municationModule is utilized to request them.

Incentives, Utilization and Compensations

In this sequence diagram, we inspect the acquisition of available incentives, as an addition

to the already provided ranking, the utilization of a chosen service through its corresponding

proxy and, finally, the provision of compensations, if the outcome of the interaction was inferior

to the one expected under normal circumstances. As far as the process described in Section

3.5.1, the equivalent Steps are 7-11 and the diagram can be seen in Fig. 5.9.

The following steps are additional to the sequence in the centralized variation:

2. After the original request for incentives, the IncentiveManager component asks for up-

dated versions of the incentive models pertaining to the available services.

3. If any incentive model requires information from other service clients, the are requested

through the CommunicationModule.

11. After the request for compensations regarding the utilized service, the Compensation-

Manager inquires for any update in the compensation model pertaining to said service.

116 Chapter 5. System Architecture

Figure 5.9: Distributed Architecture: Sequence diagram for incentives, utilization and com-
pensations part.

T/D and R values Update

As soon as the service client decides on the observed trust and distrust obtained through the

interaction with a service, another part of the process is initiated. This part has to do with

updating the values of anyone who participated in the previous processes. That includes the

recommenders who proposed the utilized service, as well as the service itself. The steps corre-

sponding to the process described in Section 3.5.1 are Steps 12-13 and the diagram is depicted

in Fig. 5.10.

5.2. Distributed Architecture 117

Figure 5.10: Distributed Architecture: Sequence diagram for updating T/D and R values after
service utilization.

The following steps are different to the ones specified for the centralized architecture:

17. The EventHandler component is directly notified about the new offsets, receives them

and timestamps them. No PubSubMiddleware is required.

18. The DataManager is asked by the EventHandler to save said offsets to a database.

19. The EventHandler is directly notified about the R values. Again, no PubSubMiddleware

is required.

20. The DataManager is asked by the EventHandler to save said R values to a database.

118 Chapter 5. System Architecture

Figure 5.11: Distributed Architecture: Sequence diagram for deciding on important R values
and updating AR values.

21. The CommunicationModule is asked to notify other service clients about the changes in

the R values.

22. The EventHandler notifies the ValidityReasoner to start the other part of the process

related to selecting R values for calculating overall reputation values (see below).

Overall Reputation Value Update

Once a reputation value is created or updated, the final part of the process described in Section

3.5.1 is started (i.e. Step 14). The algorithm tasked with selecting the most important R values

to be considered for an AR value is run and, if required, the algorithm to update said value is,

also, executed. That part can be seen in Fig. 5.11.

The steps that have been altered for the distributed variation are as follows:

5.2. Distributed Architecture 119

1. The ValidityReasoner component is notified about changes in R values by another com-

ponent of the framework. In the distributed version, there are two possible components

that can do that.

(a) The EventHandler component notifies the ValidityReasoner about updated R values

that have occurred from within that system instance.

(b) The CommunicationModule component notifies the ValidityReasoner about up-

dated R values that were calculated by other service clients, external to the system.

Timeouts

The process of removing the T/D and R values that are considered old and obsolete is com-

pletely separate from the main process described in Section 3.5.1. This side process is time-

based and is executed in a completely different thread. Its functionality includes discovering

older interaction and caused changes in values and reverting them. Note that this timeout

process usually, also, causes the triggering of the part of the main process, described in the

previous Section (i.e. selecting important R values and updating AR values). The sequence of

actions required to deal with timeouts is available in Fig. 5.12.

Some of the final steps are different and they can be seen below:

19. The EventHandler is directly notified about the R values. Again, no PubSubMiddleware

is required.

20. The DataManager is asked by the EventHandler to save said R values to a database.

21. The CommunicationModule is asked to notify other service clients about the changes in

the R values.

22. The EventHandler notifies the ValidityReasoner to start the other part of the process

related to selecting R values for calculating overall reputation values (see above).

120 Chapter 5. System Architecture

Figure 5.12: Distributed Architecture: Sequence diagram for removing obsolete T/D and R
values.

5.3 Blockchain Architecture

If one wants to combine the simplicity of the centralized approach with the decentralization

and fault tolerance of the distributed variation, the framework can, also, be deployed in any

blockchain platform that supports smart contracts written in an object-oriented language.

Since every participant in the blockchain runs a copy of each available smart contract,

the centralizes architecture can be utilized. Each component and/or class pertaining to that

variation can be deployed as a separate smart contract, with each of them interacting with the

5.4. Messaging Protocols 121

rest as described through the interfaces and sequence of actions described in Section 5.1.2 and

Section 5.1.3 respectively. The main difference lies in the fact that no REST APIs are required,

as smart contracts can refer to and use one another, utilizing just the blockchain address that

corresponds to them.

Furthermore, each service client and service provider can be identified by their wallet ad-

dress, provided by the blockchain that is hosting the framework. There is, also, no need for

separate instances of the UserInterface component, just an extra parameter in the methods,

corresponding to each operation, to specify the user who acts.

5.4 Messaging Protocols

Regardless of whether the framework is deployed using the centralized or the distributed ap-

proach, a messaging protocol has to be established for the main interactions between com-

ponent. Those protocols are especially important in the centralized version, since all com-

munication is performed in a RESTful way and handled by servers, but are, also, helpful in

the distributed variation of the architecture, as they allow for changes without altering method

signatures or creating unnecessary adapters

A specific template is utilized for each interaction requiring data. The templates are based

on JSON representation.

5.4.1 Data Acquisition

In the part of the process that requires communicating with the InfoManager component to

retrieve or save data in the accompanying database, one must follow the following templates to

request the data and will receive the response based on the corresponding template. In case of

saving data, the latter template is, also, used to send the information.

1 R e q u e s t i n g message :

2 [”R1” , ”R448” , ”R207” , . . .]

3
4 Response t o r e q u e s t /Message t o save :

122 Chapter 5. System Architecture

5 {

6 ”R1” : {

7 ” aggrRecommendat ion ” : 44 . 435797 ,

8 ” numOfRecs ” : 55

9 } ,

10 ”R448” : {

11 ” aggrRecommendat ion ” : 39 . 999091 ,

12 ” numOfRecs ” : 49

13 } ,

14 ”R207” : {

15 ” aggrRecommendat ion ” : 33 . 918042 ,

16 ” numOfRecs ” : 41

17 } ,

18 . . .

19 }

Listing 5.1: Requesting and saving AR values

1 R e q u e s t i n g message :

2 {

3 ” from ” : [”R757” , . . .] ,

4 ” t o ” : [”R206” , ”R723” , ”R400” , . . .]

5 }

6
7 Response t o r e q u e s t /Message t o save :

8 {

9 ”R757” : {

10 ”R206” : {

11 ” recommendat ion ” : 0 . 981126 ,

12 ” c o u n t ” : 1

13 } ,

14 ”R723” : {

15 ” recommendat ion ” : 0 . 800908 ,

16 ” c o u n t ” : 1

17 } ,

18 ”R400” : {

19 ” recommendat ion ” : 0 . 731771 ,

20 ” c o u n t ” : 1

21 } ,

22 . . .

23 }

24 }

Listing 5.2: Requesting and saving R values

1 R e q u e s t i n g message :

2 {

3 ” from ” : [”R966” , ”R227” , . . .] ,

4 ” t o ” : [” SP91 ” , ”SP2” , ”SP3” , ” SP81 ” , ” SP60 ” , . . .]

5 }

6
7 Response t o r e q u e s t /Message t o save :

8 {

9 ”R966” : {

5.4. Messaging Protocols 123

10 ” SP91 ” : {

11 ” t r u s t ” : 0 . 967272 ,

12 ” d i s t r u s t ” : 0 . 003114 ,

13 ” c o u n t ” : 1

14 } ,

15 ”SP2” : {

16 ” t r u s t ” : 0 . 910291 ,

17 ” d i s t r u s t ” : 0 . 084155 ,

18 ” c o u n t ” : 1

19 } ,

20 ”SP3” : {

21 ” t r u s t ” : 0 . 989693 ,

22 ” d i s t r u s t ” : 0 . 002089 ,

23 ” c o u n t ” : 2

24 } ,

25 . . .

26 } ,

27 ”R227” : {

28 ” SP81 ” : {

29 ” t r u s t ” : 0 . 857505 ,

30 ” d i s t r u s t ” : 0 . 024561 ,

31 ” c o u n t ” : 1

32 } ,

33 ” SP60 ” : {

34 ” t r u s t ” : 0 . 89202 ,

35 ” d i s t r u s t ” : 0 . 071898 ,

36 ” c o u n t ” : 1

37 } ,

38 . . .

39 } ,

40 . . .

41 }

Listing 5.3: Requesting and saving T/D values

5.4.2 Update values after interaction

After an interaction with a service, certain values need to be updated. The template for the

message requesting said updates is as follows.

1 R e q u e s t i n g message :

2 {

3 ” t d E n t r y ” : {

4 ” us e r ID ” : ”R253” ,

5 ” t r u s t ” : 0 . 9779683718148557 ,

6 ” d i s t r u s t ” : 0 . 002093833120475899 ,

7 ” s e r v i c e P r o v i d e r I D ” : ”SP3”

8 } ,

9 ” r E n t r y ” : {

10 ” recThroughR ” : {

11 ”R573” : {

124 Chapter 5. System Architecture

12 ” t r u s t ” : 1 . 0 ,

13 ” d i s t r u s t ” : 0 . 002039 ,

14 ” c o u n t ” : 3

15 } ,

16 ”R807” : {

17 ” t r u s t ” : 0 . 989377 ,

18 ” d i s t r u s t ” : 0 . 002096 ,

19 ” c o u n t ” : 5

20 }

21 } ,

22 ” recThroughAR ” : {

23 ”R370” : {

24 ” t r u s t ” : 0 . 998778 ,

25 ” d i s t r u s t ” : 0 . 002009 ,

26 ” c o u n t ” : 2 } ,

27 ”R60” : {

28 ” t r u s t ” : 0 . 994302 ,

29 ” d i s t r u s t ” : 0 . 002035 ,

30 ” c o u n t ” : 1 }

31 } ,

32 ” r e c T h r o u g h 2 s t e p R ” : {

33 ”R757” : {

34 ”R206” : {

35 ” t r u s t ” : 0 . 998778 ,

36 ” d i s t r u s t ” : 0 . 002009 ,

37 ” c o u n t ” : 3

38 } ,

39 ”R723” : {

40 ” t r u s t ” : 1 . 0 ,

41 ” d i s t r u s t ” : 0 . 002039 ,

42 ” c o u n t ” : 6

43 } ,

44 . . .

45 }

46 }

47 }

48 }

Listing 5.4: Updating R and T/D values

5.4.3 Updating AR values

If a new R value is added, or another one is removed, for consideration when calculating an

overall reputation value, the request for those actions is done utilizing the following template.

1 R e q u e s t i n g message :

2 {

3 ” toRemove ” : {

4 ”R868” : {

5 ”R473” : {

6 ” recommenderARValue ” : 0 . 812729 ,

5.4. Messaging Protocols 125

7 ” recommendat ion ” : 1 . 059357

8 } ,

9 ”R142” : {

10 ” recommenderARValue ” : 0 . 813596 ,

11 ” recommendat ion ” : 1 . 047187

12 } ,

13 . . .

14 }

15 } ,

16 ” toAdd ” : {

17 ”R943” : {

18 ”R368” : {

19 ” recommenderARValue ” : 0 . 8212 ,

20 ” recommendat ion ” : 1 . 0495

21 }

22 } ,

23 ”R526” : {

24 ”R584” : {

25 ” recommenderARValue ” : 0 . 811176 ,

26 ” recommendat ion ” : 1 . 0737496

27 } ,

28 . . .

29 } ,

30 . . .

31 }

32 }

Listing 5.5: Updating AR values

5.4.4 Publications of Events

When an offset is applied to a R or a T/D value, the EventHandler component has to be no-

tified, either through the PubSubMiddleware component or directly. The templates for those

publications are shown here.

1 P u b l i c a t i o n o f R v a l u e :

2 {

3 ” recommender ” : ”R53” ,

4 ” recommenderAR ” : 0 . 778833761904762 ,

5 ” recommendee ” : ”R496” ,

6 ” recommendat ion ” : 0 . 8823443126200042 ,

7 ” o f f s e t ” : 0 . 0727942792866708 ,

8 ” c o u n t ” : 1 ,

9 ” r e s e t s ” : t r u e ,

10 ” t imes t amp ” : ”May 27 , 2022 , 5 : 3 5 : 0 2 PM”

11 }

Listing 5.6: Publishing R values

126 Chapter 5. System Architecture

1 P u b l i c a t i o n o f T /D v a l u e :

2 {

3 ” us e r ID ” : ”R647” ,

4 ” t r u s t ” : 0 . 9987913185460922 ,

5 ” d i s t r u s t ” : 0 . 0020746573342638936 ,

6 ” s e r v i c e P r o v i d e r I D ” : ”SP3” ,

7 ” t imes t amp ” : ”May 27 , 2022 , 5 : 3 5 : 5 6 PM”

8 }

Listing 5.7: Publishing T/D values

5.4.5 Removing obsolete values

Whenever an offset, applied to either a T/D or a R values, is deemed obsolete, a request is made

for it to be removed from consideration. The request template is as follows.

1 Reques t message :

2 {

3 ” t d E n t r i e s ” : [

4 {

5 ” us e r I D ” : ”R301” ,

6 ” t r u s t ” : 0 . 974798 ,

7 ” d i s t r u s t ” : 0 . 00173 ,

8 ” s e r v i c e P r o v i d e r I D ” : ” SP66 ” ,

9 ” t imes t amp ” : ”May 27 , 2022 , 5 : 0 9 : 3 7 PM”

10 } ,

11 {

12 ” us e r I D ” : ”R987” ,

13 ” t r u s t ” : 0 . 975056 ,

14 ” d i s t r u s t ” : 3 . 83E−4 ,

15 ” s e r v i c e P r o v i d e r I D ” : ” SP95 ” ,

16 ” t imes t amp ” : ”May 27 , 2022 , 5 : 0 9 : 3 7 PM”

17 } ,

18 . . .

19] ,

20 ” r E n t r i e s ” : [

21 {

22 ” recommender ” : ”R455” ,

23 ” t r u s t O f f s e t ” : 0 . 070709 ,

24 ” recommendee ” : ”R532”

25 } ,

26 {

27 ” recommender ” : ”R367” ,

28 ” t r u s t O f f s e t ” : 0 . 06951 ,

29 ” recommendee ” : ”R284”

30 } ,

31 . . .

32]

33 }

5.5. Summary 127

Listing 5.8: Publishing T/D values

5.5 Summary

Summarizing, the proposed framework can be deployed in a number of different settings, de-

pending on the requirements of the domain and the accompanying technologies or needs.

A centralized architecture is proposed in Section 5.1. All of the required components are

described in Section 5.1.1, as well as their purpose and connections to the rest of the system.

The interfaces involved in those connections are defined in Section 5.1.2 and the sequences of

actions required to perform the main process of selecting recommenders, acquiring recommen-

dations and using a service, as well as the parallel ones involving timeouts and calculation of

overall reputation values, are specified and explained in Section 5.1.3.

In cases where the system needs to scale up to accommodate larger amount of users, each

component specified as part of the proposed architecture can be separately deployed as a mi-

croservice. Functionality of each component is distinct and container technology can be used

to run them in an isolated manner. Solutions pertaining to the management of containerized

applications, such as Kubernetes [148], can perform replication and load balancing between

multiple instances of the same component, thus allowing for practically unlimited number of

service clients and providers participating in the framework. As far as data storing in con-

cerned, distributed databases, handled by replicas of the InfoManager component, can accom-

modate any need for scalability of the proposed approach.

To further improve the performance and extensibility of the framework, one could per-

form contextual filtering on the ranking process. Based on the type of service required by

the requesting service client, logic can be incorporated to the ContextualFiltering component

that will allow the recommendations and resulting ranking of available services to be filter as

required depending on the provided context or type of service required in that particular inter-

128 Chapter 5. System Architecture

action. Of course, in real-world scenarios separate social networks and corresponding values

can be maintained for different types of services, even if they are offered by a single service

provider and recommended by the same service clients.

Moreover, filtering could be performed on a geographical basis. In some cases, utilizing a

service may depend on proximity, either due to network restrictions or because physical inter-

action is required at some point. In those scenarios, different instances of the framework should

be deployed and used by different geographical regions. Filtering could, also, be performed if

further granularity is required when choosing an offered service.

A variation that allows the approach to be deployed in a distributed manner is presented

in Section 5.2. The corresponding architecture (see Section 5.2.1), as well as the differences

involved both in the available interfaces (see Section 5.2.2) and in the action sequences (see

Section 5.2.3), are, also, explained.

The possibility of utilizing the centralized architecture to deploy the proposed framework in

a blockchain environment is explored, indicating the minor alterations that would be required,

mostly in the communication between components.

Finally, the protocol and associated templates, required for the making requests to acquire

and/or update values within the system, are presented, allowing for better understanding of the

framework’s functionality.

Chapter 6

Implementation and Experiments

6.1 Overall Infrastructure

Based on our proposed approach, we implemented a prototype following the architecture de-

scribed in Section 5. The centralized version was the one chosen for the implementation, but

each component was created to be deployable as a separate server or microservice and some

third-party frameworks were incorporated to provide a scalable version of the implementation.

6.1.1 Framework implementation

A fully functional version of the framework was implemented as part of this approach. The im-

plementation was done using the Java programming language and each component described

in the previous chapter utilized the builtin HTTP server class to provide the offered API in the

form of a REST service. No other frameworks were used for the server parts (e.g. Spring) since

the functionality required was pretty straightforward and there was no need for additional com-

munication overhead. Separate threads were, also, utilized for discovering obsolete values (see

Section 4.4) and selecting R values for calculating overall reputation values (see Section 4.6),

since the process involved for these actions is entirely separate to the main process described

in Section 3.5.1.

129

130 Chapter 6. Implementation and Experiments

6.1.2 Event Propagation

Communication between components to accommodate the steps involved in the main process

(i.e. getting recommendations and using a service) is pretty linear and straightforward, so direct

calls to the REST APIs offered by the different parts of the framework were utilized.

When it came to handling old values to be discarded and deciding on important values to

be considered for overall reputation, though, we opted for a more event-based approach. The

motivation behind that choice came from the fact that components can be replicated to allow

for increased throughput and better performance. Since the scenarios explored in this case

are not part of the main process, but rather separate processes triggered based on information

availability, and a state is required for each set of values, coupling should be avoided. Keep in

mind that different instances of the component, responsible with discarding T/D and R values,

may maintain information for different subsets of available nodes. So, to avoid issues with dis-

covery of appropriate instance to notify and runtime changes in available instance replicas, we

incorporated a Publish/Subscribe framework. The chosen framework was MQTT, offered by

the Eclipse Foundation, and offsets applied to either T/D or R values, as well as updated cumu-

lative R values, are published to it using appropriately formulated topics. Interested parties, i.e.

components tasked with handling old values to be discarded and deciding on important values

to be considered for overall reputation, subscribe to said topics. If a replica of the components

instance is required, one would only have to unsubscribe and/or resubscribe to the appropriate

topics without messing with any other parts of the system.

6.1.3 Database Utilization

Since one of our main objectives is for our approach to be scalable and have high throughput

in the presence of large number of users, we had to use a value storing solution that could be

utilized in a microservice environment and would allow for replication and load balancing. To

accommodate those requirements, a NoSQL database program, called MongoDB, was chosen.

MongoDB can be deployed centrally as a single node, but can, also, be deployed as a microser-

6.2. Experiments 131

vice pod and be replicated to provide higher throughput and/or data redundancy. The database

program is not available to all components, but is utilized by the component dealing with the

information management, as described in Chapter 5.

6.2 Experiments

In order to evaluate the performance and behaviour of the proposed system we had to conducted

a series of experiments, using the implemented prototype. Service rankings requested by vari-

ous sources were monitored and juxtaposed with the actual ranking of services based on their

predetermined behaviour (i.e. QoS). The experiments focused on four aspects a) stability of

the system in the presence of malicious recommenders; b) how quickly degrading services are

recognized; c) how connections are formed as the system operates; d) how the different types

of recommenders (best overall, friends, friends-of-friends) are distributed over time; e) how

incentives allow for introduction or re-institution of services into the top tier of the rankings

and; f) what is the transaction success rate when dealing with various percentages of dishonest

clients and how our system compares to other approaches.

6.2.1 Simulator

Looking through the related work on reputation systems, no appropriate dataset was discov-

ered. This is totally expected, since reputation systems have been geared to accommodate

several different types of networks and a single dataset couldn’t possible account for all avail-

able scenarios. Moreover, most experiments are conducted to test each approach’s resilience

in the face of high percentages of malicious users and ability to quickly converge, which is

something that cannot be easily captured by a specific dataset.

Due to those reasons, the approaches that do test their resilience, ability to converge and

overall performance are utilizing a simulator. The majority implement their own simulation

solution based on the approach’s specific nature. A few, however, use an already available

132 Chapter 6. Implementation and Experiments

simulator. The caveat is that those approaches are explicitly interested in addressing issues

of specific types of networks. More specifically, CONFIDANT [13] utilizes a simulator for

mobile ad-hoc networks, namely GloMoSim [142], while R2Trust’s simulation is based on

QueryCycleSimulator [143] that simulates interactions in the context of P2P file sharing net-

works. Every other proposed framework [3, 8, 10, 11, 12, 19, 138] implements their own

simulator to address their specific needs. XRep [6] is, also, an exception, since they modified

a Gnutella client and then monitored an actual network, but they only reported findings on

assumptions made in their approach regarding distribution of files and clients, not algorithm

resilience against malicious users.

For our approach, we, also, implemented a simulator to test the behaviour of our frame-

work. The simulator was implemented using the same programming language as the rest of

the system, i.e. Java, and acted as a number of external service clients and service providers

registering to the framework.

The simulator accepts the number of service clients and service providers as parameters

and initializes the appropriate instances for each of them. User Interfaces are created for each

service client (see Section 5) and proxies are registered for each requested service.

The behaviour of services is mocked by the simulator and an interface for altering a ser-

vice’s behaviour at runtime is also implemented. When it comes to service clients, the User

Interface offered by the main framework had to be enhanced to allow for malicious behaviour,

if needed. In practice, an extra method was added that allowed the simulator to adjust the

observed values obtained after an interaction. Note, though, that, other than that simple modi-

fication, the framework remained intact and the simulator never meddled with its functionality.

Moreover, an extra interface was added to the framework’s API to facilitate the simulator

in importing a set of already existing relations. This was implemented to help speed up the

experiments’ execution, since lack of such functionality would require a much lengthier boot-

strapping phase (see Section 6.2.2). Again, the approach was not affected at all by this addition,

since it only provided a way for importing relations that could have occurred through regular

6.2. Experiments 133

interactions from within our framework.

The simulator supports a plethora of other parameters, as well. One can set the connectivity

of the network that will be created as part of the initialization phase. The user can specify

the number of connections a service client will have with other service clients and service

providers and the simulator will randomly create them and import them into the framework

using the aforementioned interface. Even though the values corresponding to those relations

are randomly generated, the user can set the range allowed for each of those values.

When it comes to the actual execution of the experiments, parameters are offered to spec-

ify the number of a) user interactions that constitute an iteration, b) iterations, if the type of

experiment requires a set amount, and c) times the experiment is to be repeated.

Last but not least, the simulator’s user can instruct a percentage of service clients to act in a

malicious way. Further parameterization of maliciousness is available, where clients can have

different levels of maliciousness and can either overvalue or undervalue a specific service or a

set of services.

6.2.2 Experimental Setup

Simulated Network Setup

For the experiments presented below, a network of 1,000 recommenders and 100 service

providers was simulated using our simulator implementation described in Section 6.2.1.

Each service registered was assigned a pair of random values corresponding to their base-

line trust and distrust values. These values ranged from 0.7 to 1.0 and 0.0 to 0.3, for trust

and distrust respectively. Note that the simulator provides values that are within ±2.5% of the

baseline values every time an interaction with a service occurs. Also, bear in mind, that the

simulator can later override the baseline values in required by the experiment.

Each recommender was randomly connected to 10 service providers and the initial T/D

values towards each service were randomized within ±5% of the baseline values selected for

that particular service. Each recommender was, also, connected to 10 other recommenders

134 Chapter 6. Implementation and Experiments

with a random R value that ranged between 0.6 and 0.9.

Experiments Execution

A random subset consisting of 5% of all users would complete the process described in Section

3.5.1 in what we consider to be an iteration of the experiment.

After the completion of each iteration, information about the ranking of the services was

received through three different sources: a) an external user who was only requesting the rank-

ings but never participating in the network (i.e. using any service),b) a random subset of non-

malicious recommenders that was determined at the beginning of the experiment and remained

the same for all iterations, and c) a random subset of non-malicious recommenders that would

change for each iteration.

Experiments would consist of 200 iterations, if a specific amount was required, or until a

condition was met. Every set of experiments was run five times using the same parameters,

and an average of the results is reported here. This was another safeguard against the threat to

validity of our experiments due to the randomized R values between recommenders.

Bootstrapping phase

Even though the T/D values assigned to services by recommenders were representative of their

actual simulated behaviour, the R relations between recommenders were entirely random. So,

before initiating the actual experiments, a stabilization phase was necessary. During that phase,

the system was allowed to run for a few iterations until an equilibrium was achieved. Ensuring

that the top services in the rankings of all three aforementioned sources remained the same for

at least 5 iterations was the way to achieve the required homeostasis of the network. This initial

phase is referred in the related literature as bootstrapping.

6.2. Experiments 135

Figure 6.1: System stability vs Percentage of Malicious Components

6.2.3 Stability in the Presence of Malicious Components

To verify the stability of our approach in the presence of malicious users, with respect to con-

tribution C1 regarding the system’s resiliency against dishonest service clients, several exper-

iments were conducted with various percentages of components providing maliciously false

recommendations. Each experiment consisted of 200 iterations as described in Section 6.2.2

and users were instructed to turn malicious right after the initial phase (see Section 6.2.2).

Experiments included various percentages of total recommenders being malicious (i.e.

knowingly providing false observed T/D values after interactions with services) in each corre-

sponding set of experiments. Initial ones started with 10% of service clients acting dishonestly,

going all the way up to 90% of malicious clients, in increments of 10%.

For each different percentage of malicious users introduced into the system, the simulator

would record the top services, as provided through the baseline values assigned to them during

the network setup phase. Said original top was, then, compared to the top services produced

by the random subsets of non-malicious clients after each iteration of the experiment. The

similarity was calculated and the range of values observed for all iterations for each percentage

136 Chapter 6. Implementation and Experiments

of malicious users is presented in Fig. 6.1.

When conducting this set of experiments, our main goal was to discover whether non-

malicious users could receive trustworthy recommendations, despite the rising percentages of

malicious counterparts. The similarity of the original ranking of top services and the one

produced after each iteration indicates the system’s ability to filter out bad recommendations,

thus maintaining a fairly unchanged ranking for those clients who remain honest.

Of course, we were expecting the similarity to drop for higher percentages of malicious

users, but we wanted to make sure that the majority of the services belonging to the ranking

would remain the same. Even though there is some variation, the results indicate that the system

remains stable even for 90% of users being malicious. The top service providers reported in

the rankings, deriving from recommendations from all sources, are 70-95% the same as the

ones reported in the ranking compiled using the predetermined and objective behaviour of the

available services. For lower percentages of malicious clients (i.e. 10-50%), the similarity

ranges between 80-100%, with only some occasional interaction outliers dropping lower than

that.

The fact that the proposed framework relies on dynamic assessment of the behaviour of

both the recommenders and the service providers allows non-malicious users to try, assess

and learn from previous experience as to what sources of information are reliable or not. As

expected, even for high percentages of malicious users, Rconnections between honest users are

strengthened and said users value and rely on the opinions of those they trust to evaluate the

degree to which a service provider actually performs as promised. Experts are overwhelmed

when malicious users account for the majority of clients but, even though it would be tempting

to completely exclude the opinion of groups currently deemed dishonest, we opted to allow

the user to receive and accordingly weigh those opinions, so as to enable the adaptation of our

framework to changes in the future.

6.2. Experiments 137

Figure 6.2: Recognition of degrading service

6.2.4 Degrading Services

To evaluate the proposed framework’s dynamic behaviour, which is improved through the use

of data aging for available values, as is specified in contribution C6, another set of experiments

was run. Those experiments were conducted to ensure that our approach adapts to changes in

the behaviour of a well-established service over time. Since the level of trustworthiness of any

service is not guaranteed to remain the same forever, it is crucial that our framework identifies

dynamic behaviour and allows for adjustment of any service’s reputation within the network.

This particular scenario, also, covers the possibility of a malicious service provider who might

provide high quality service to lure-in potential customers and improve their reputation before

deteriorating the quality of offered service and taking advantage of said customers.

To monitor that type of behaviour, the simulator’s capability of adjusting a service’s base-

line trust and distrust values was utilized. Similarly to the previous set of experiments, the

138 Chapter 6. Implementation and Experiments

initial bootstrapping phase was performed (see Section 6.2.2) and the top service, based on

the predefined baseline trust and distrust values, was identified. Experiments were run for as

many iterations as required, before all three sources of ranking would report that the degrading

service is no longer in the top of the retrieved rankings.

The expectations from this set of experiments were related to the framework’s ability to

identify changes in behaviour in a timely manner. Discarding old and obsolete values, while at

the same time accounting for new observations, should allow the proposed approach to quickly

find out whether a service’s behaviour has been altered.

Results are shown in Fig. 6.2, where the position of the identified top service after every

iteration can be seen, as well as a logarithmic trendline that facilitate the identification of the

general trend for each source of rankings.

It is perfectly normal for the system to require a number of iterations, before a change can

be identified, so our requirement for this set of experiments to be considered successful was

that the inspected service be dropped from the top 10 in less that 50 iterations.

We can see that even though the degrading service is at the top of the rankings in the begin-

ning of the experiment, recommenders very quickly realize of the degrading QoS provided and

this is reflected in the rankings. In as few as nine iterations, the service is not part of the top

10 of the external user’s ranking. Further drop in the rankings requires a bit longer, since most

users don’t use the service after it drops in the rankings. Another issue to be mentioned regard-

ing this set of experiments is that the external user identifies the degrading service quicker as

they only consult the experts of the network (it has no other connection to the network). The

random subsets, either the one that is fixed throughout the experiment or the one that changes

in every iteration, take longer to figure out that something is wrong, since there might be a few

iterations before the majority of their members have used a service. However, the eviction of

the degrading service by the subsets is a clear indication that the entirety of the network is now

aware of the issue.

6.2. Experiments 139

Figure 6.3: Connections to recommenders and service providers

6.2.5 Connections to Recommenders and Service Providers

In an attempt to further evaluate the behaviour of our framework, with respect to contributions

C2 and C6 and concerning its ability to evolve over time in a dynamic and adapting manner,

we run a set of experiments to evaluate the number of connections towards both recommenders

and service providers as the system operates. We extended the length of the experiment to

400 iterations, in order to get a better insight on the way the system behaves. The network is

constructed with the same characteristics (see Section 6.2.2) , but we do not perform a separate

stabilization phase (ee Section 6.2.2) for these experiments, as we want to monitor all the

connections created and removed throughout the execution.

The expectations from this set of experiments were pretty straightforward. Connections to

service providers are expected to plateau at a specific number, signifying that opinions for all

available services have been obtained by current user. Connections to recommenders, however,

140 Chapter 6. Implementation and Experiments

are supposed to change in an unpredictable way, since the interactions within the simulator are

randomly selected and obsolete values are removed after a certain amount of time.

The results are shown in Fig.6.3 and the trends are evident. As expected, the connections to

service providers climb and stabilize around a certain number (lower line in Fig. 6.3) depending

on the network’s specifics, indicating that the best service providers are discovered from the

totality of the framework’s users and eventually no more connections are required. As far as

connections to recommenders are concerned, the data depict a different story. Since in this

set of experiments no malicious components are present, all recommenders in the system are

considered honest and good recommenders. In this context, and due to the system’s dynamic

nature, the number of connections to recommenders is generally increasing, but throughout the

experiment certain connections become stale and therefore are deemed obsolete and removed

using the algorithm presented in Section 4.4. This is shown in the downward slopes of the

middle line in Fig. 6.3.

Note that, even though the process applies to service providers as well, there are way fewer

services than recommenders in the network. Moreover, their performance is usually more dis-

tinct, as opposed to recommenders whose reputation might be extremely close to each other,

thus leading to a more dynamic choice of friends. This behaviour is welcome, since maintain-

ing knowledge of well-behaving services is important, but the sources of recommendation do

not have to remain unchanged. If anything, evolution of the social graph is a desirable trait for

the system.

6.2.6 Sources of Recommendation

Another interesting dimension of the proposed framework is the pluralism of recommenda-

tions from a variety of sources, as specified in contribution C5, where the multiple sources of

recommendation, combined with the evaluation of both positive and negative evidence, lead to

a better evaluation of the ranking of services.

In order to evaluate and assess said polyphony, the nature of the recommenders, and corre-

6.2. Experiments 141

Figure 6.4: Recommendation Sources

sponding recommendations that led to the choice of a specific service provider, were identified

through yet another set of experiments that consisted of 400 iterations. Again, the network was

created but no bootstrapping phase was performed.

Again, as in the previous set of experiments, we expected service clients to acquire opinions

for all service providers at some point, and recommendations from other recommenders to

fluctuate in a trend following the one portrayed by the presence of connections with other

service clients.

Results were summed up in intervals of 10 iterations, so as to make the figure more leg-

ible. As seen in Fig. 6.4, recommendations from all types of recommenders are taken into

consideration throughout the system’s run.

Both recommendations stemming from previous personal experience and ones coming

from Friends of Friends increase over time, until a certain threshold is reached. For personal

opinions, the reason is that only one recommendation can be provided per service, so once

each service client has connections to the best performing services, their opinion will always

142 Chapter 6. Implementation and Experiments

be considered, but with a cardinality of one. When it comes to recommendations from Friends

of Friends, the limit is specified through a parameter within the framework. Since exploring

more paths of the social graph would increase the complexity of the process, the user can set

a maximum number of recommendations coming from that source. Once this limit is reached,

the ranking algorithm does not consider any more opinion from Friends of Friends. This indi-

cates that the system reaches a stable point where a certain amount of connections has already

been made and enough information is derived from such sources.

As expected, when it comes to friends and experts, the numbers mostly follow the trend

provided by the connections to other recommenders (see Fig.6.3). Recommendations originat-

ing both from Friends and Experts are initially increasing, but stale values are removed at some

point, temporarily reducing the number of opinions received. This is indicative of the dynamic

behaviour of our approach, since connections and corresponding recommendations are not set

in stone but constantly evolve and change.

At any point, though, a variety of sources are providing recommendations, allowing the

proposed system to adapt to changes in an efficient and adaptive manner. As described in

Section 4.7.2, different ”buckets” are created per recommendation source and the values are

aggregated, since the Dempster-Shafer evidence theory is sensitive to amount of evidence and

opinions coming from Friends or Experts would overwhelm the ranking otherwise.

6.2.7 Effect of Considering Distrust Values

Our proposed approach offers the ability to maintain two distinct and individually evaluated

values pertaining to positive and negative evidence (i.e. trust and distrust values) for each ser-

vice provider. This significantly improves the proposed framework’s expressivity with regards

to its capability of defining both wanted and unwanted characteristics of a service.

The ranking process is, also, affected by the presence of both positive and negative evi-

dence. Maintaining a pair, instead of a single value, allows our approach to provide belief

intervals for each service that are much more in tune with the actual behaviour demonstrated

6.2. Experiments 143

Figure 6.5: Ranking Score for Different Observed Distrust

by it.

To verify the effect an individual distrust value has on the belief interval calculated for

a service, affecting both contributions C1 and C5, we conducted a set of experiments that

change distrust values portrayed by different service providers and measure the belief intervals

calculated.

Once more, a network was created, as indicated in Section 6.2.2, and the bootstrapping

phase, as described in Section 6.2.2, was run to allow the system to reach an equilibrium.

Three services were chosen based on the assigned QoS, and more specifically the observed

trust value they would provide to service clients after each interaction. The first one would

report an OT value of 0.9 as its baseline, with the second one providing a value of 0.6 and the

third one a value of 0.3. Those particular services were selected to account for services with

high, medium and low quality of service.

144 Chapter 6. Implementation and Experiments

The system would, then, be allowed to run for 50 iterations and an external user (i.e. a user

who never participates in the network but only consults Experts for recommendations) would

be consulted to provide the calculated belief intervals for the services in question. An average

of belief intervals reported in each iteration was calculated and provided as the reported value

in each part of the experiment. This process was run for varying distrust values portrayed by

each of the selected service providers. Observed distrust values ranged between 0.0 and 0.9 to

allow for verification of its effect on the produced belief intervals.

Since the importance of negative evidence was already known based on the theory of evi-

dence provided by Dempster-Shaffer [22] and adapted by us for the purposes of our approach,

we expected a significant change in the calculated belief interval as the values of observed dis-

trust would increase. This would indicate a significant contribution of said value in the process

of evaluating and ranking available service providers.

The results obtained from this set of experiments can be observed in Fig. 6.5 and are very

indicative of the involvement of distrust values in calculated ranking scores.

As expected, a change of even 0.1 in distrust values, observed after interactions with se-

lected service providers, results in noteworthy variations in the produced belief interval. Note

here that the axis pertaining to the belief interval values is logarithmic, so the actual adjust-

ments are much larger in absolute numbers. Another important finding occurring from these

experiments is that, even though, the lower end of the belief interval (i.e. the one represented

by the lines in the provided figure) is significantly affected by the changes in observed distrust

values, the upper end (i.e. the one demonstrated through the error bars in the graph) is only

significantly altered for lower distrust values, but remains fairly unaffected when they further

increase.

6.2.8 Incentives

Since a service’s behaviour might be improved over time, and said improvement can be iden-

tified by users through the offer of incentives and the corresponding choice to give providing

6.2. Experiments 145

service another chance, it is important to evaluate our framework’s ability to identify changes

in a timely manner.

To verify our proposed approach’s ability to utilize incentives, with respect to contribution

C7, and provide opportunities for new or reformed service providers to be selected over their

already established counterparts, we implemented and run experiments that manipulate and

monitor such behaviours. More specifically, a network with the characteristics specified in

Section 6.2.2 was created and the system was allowed to complete the initial phase described

in Section 6.2.2.

Two services were, subsequently, chosen to change their behaviour and be monitored for

the duration of the experiments. The first one was the service residing at the bottom of the

rankings (i.e. 20th service in the top 20 ranking), whereas the second one was a random one

that was entirely out of the rankings. The simulator’s functionality would, then, be utilized to

improve the baseline behaviour of those services by 20% and 30% respectively.

As far as incentives go, since the concrete implementation of incentives and corresponding

reasoning for their provision is out of scope for this paper, we simulated a mock behaviour for

the users. Service clients would use the service that was at the top of the rankings in 50% of

the cases. Then, to simulate offering of incentives and subsequent choices, they would select

the second service in 15% of the cases, the third in 10%, and so on, with the last one selected

in only 0.02% of cases and ones not included in the rankings with 0.01% probability.

Two instances of the experiment were run, with each instance considering the rankings

provided by different sources. In one case, an external user that has no connections to the

network but gets all recommendations from Experts was consulted, while in the other one we

considered the combined rankings received from a random group of service clients. In both

cases, the experiment was allowed to run until the two selected services have reached the top

of the rankings (i.e. higher than 5th place).

According to our expectations for that set of experiments, both services (i.e. the reformed

and the new one) are supposed to be given a chance to prove themselves. Given their improved

146 Chapter 6. Implementation and Experiments

Figure 6.6: Services at bottom and out of ranking

provided QoS, service clients should become aware of said improvements and put the services

higher in their computed rankings. Doing this in a timely manner is, also, a requirement for this

set of experiments to be considered successful. Since the percentage chosen for an unknown

service to be selected based on incentives was very low and users are randomly selected to

interact in each iteration, we expected the services to reach the top 3 in about a 100 iterations.

The results can be seen in Fig. 6.6, where the position in the ranking for both services

based on both sources is reported, along with a polynomial trendline to facilitate the discovery

of ongoing trends.

When it comes to the service originally residing at the bottom of the rankings, we can see

that its improved behaviour is identified and it proceeds to climb to the top 5 of the rankings

in as few as 40 iterations. The random subset discovers the change a little faster, since the ex-

ternal user consults only the Experts within the framework, limiting the sources of information

utilized.

6.2. Experiments 147

The other service, which was initially not part of the provided rankings, requires signif-

icantly more iterations to prove its reformation, especially as far as the external user is con-

cerned. This is entirely expected, since the selection percentage (i.e. percentage of interactions

were a service is selected over others based on provided incentives) of services that are outside

the rankings is much lower. The service, also, has to compete with other services, both in the

ranking and out of it. Eventually, though, the service’s new behaviour is discovered and it ends

up being in the top 3 of produced rankings, in a few as 100 iterations.

Through this set of experiments, it becomes evident that even with very few of the users

choosing to accept incentives and utilize the providing service, improved behaviour is identified

and the knowledge is propagated quickly within the framework’s network, both for services that

lower in the ranking and ones that not even part of it. It is worth noting here that, the scenario

involving the second service is applicable to a) very badly performing services that alter their

behaviour, and b) new services introduced to the system that have no prior connections to

service clients. In both cases, their only way of being utilized is through incentives, since no

recommendation is offered for them.

6.2.9 Comparison

Regarding contribution C1, another set of experiments was run to compare our framework’s

performance against other approaches that are applicable to similar domains and have similar

semantics, especially when malicious users are involved. RATEWeb [19] and PeerTrust-V [90]

were chosen because they both make a distinction between service clients and service providers

and are geared towards service-oriented needs.

More specifically, for each experiment, we run our system for 200 iterations, with a percent-

age of users turning malicious after the initial phase described in Section 6.2.2. Each iteration

consisted of 100 interactions between random users, regardless of maliciousness status, and

service provider selected through the ranking process. Malicious users would provide lower

values than those actually observed in each interaction by 20%.

148 Chapter 6. Implementation and Experiments

So, we observed 20,000 interactions in total. After each interaction, the opinions of the

recommenders of the used service were considered. The average recommended T/D values

were calculated based on those recommendations and the transaction was evaluated. We would

consider a transaction successful if the values observed, through the proxy component for the

interaction (OT/OD values), were close to the aforementioned average values. The transaction

success rate is considered to be the number of successful transactions over the total transaction

performed in each experiment (i.e. 20,000).

Note that, same as before, each experiment was run 5 times for each percentage of mali-

cious users, which ranged from 10% to 100%, and the average rate is reported here.

Our main goal was to propose an approach that would outperform existing approaches to

date and be able to improve ones ability to identify malicious intent. Improvements of more

than 5% were expected, especially in scenarios where the majority of service clients were

acting maliciously.

The rate of successful transactions can be seen in Figure 6.7 for our approach, in compari-

son to the ones reported by RATEWeb [19] and PeerTrust-V [90].

The polyphony of opinions from different sources and selectivity of recommenders to be

consulted allows our framework to maintain high rates of success, even when the percentage

of malicious users is high.

For lower percentages of malicious users, our framework performs comparably to the other

approaches. Not every node’s recommendation is taken into consideration, as is the case

in other frameworks, but the presence of diverse sources of information provides more than

enough information for the user to choose the correct service and have a successful transac-

tion.

When the majority of users are dishonest (i.e. malicious users > 50%), the group of Expert

recommenders will mostly comprise of malicious users, especially if they are colluding. The

ability, however, to a) create new connections and maintain a reputation,even for bad recom-

menders, b) ask recommendations and personally assess the reputation of Friends and Friends

6.3. Summary 149

Figure 6.7: Transaction success with respect to malicious users

of Friends nodes, c) choose to consult only the top percentile of users in each category, and d)

take personal opinions about service providers into consideration, enables our approach to out-

perform other approaches in those settings. We can see that, for lower percentages of malicious

users, our approach outperforms other frameworks by almost 5%. For higher concentrations of

dishonest recommenders, the observed improvement over others jumps to about 20%.

6.3 Summary

Summarizing, in order to evaluate our approach, a prototype version of the proposed framework

was implemented. Said prototype was created with scalability, performance and adaptability

in mind. All of the novel algorithms and methods presented in Chapter 4 were included and

the architecture proposed in Chapter 5 was followed. A complimentary simulator was im-

plemented, as well, to allow us to conduct the experiments required for the evaluation of the

approach.

Several sets of experiments were run regarding the framework’s stability in the presence

150 Chapter 6. Implementation and Experiments

of malicious users (see Section 6.2.3) and its ability to detect changes in the behaviour of a

service, both when said behaviour is degrading (see Section 6.2.4) and in case of a new or

reformed service with the help of incentives (see Section 6.2.8). In all cases, the proposed

approach portrayed the ability to identify changes in behaviour, both when the change was

caused by intended maliciousness on the recommenders’ side and when a service’s QoS was

altered, in a timely and definitive manner.

The framework’s overall way of behaving was, also, investigated through experiments in-

volving the evolution of active connections between service clients and between service clients

and service providers (see Section 6.2.5), as well as the nature and importance of different

sources of recommendations (see Section 6.4). As it became evident, connections are changing

over time, with new ones added and old ones deleted, when necessary, and multiple sources of

recommendation are consulted, in varying degrees specific to the particular interaction. These

findings further solidify our approach’s capability of simulating dynamic behaviour, similar

to the one observed in actual human interactions, and avoiding reaching a stale state were no

changes are made.

Last but not least, we compared our approach to two other approaches that address similar

problems and model their entities in a way similar to ours (i.e. RATEWeb [19] and PeerTrust-V

[90]). The transaction success rate of our framework was about 5% higher when the percent-

ages of malicious users were lower, and outperformed the competition by up to 20% when the

majority of recommenders were dishonest.

Chapter 7

Conclusion and Future Work

7.1 Summary of the Approach

In this thesis we tackle the problem of assessing and assigning trust when a large number of

software components interact in dynamic environments, that is environments where different

service clients and service providers can be provisioned and interact in an ad-hoc manner. For

this thesis we consider the concept of trust in the context of reputation systems. In this respect,

trust is considered as a meta-requirement related to the belief or disbelief a client has that the

provider will deliver the behaviour it promises to deliver.

More specifically, we have presented a technique, associated algorithms, and interaction

protocols allowing for service clients to evaluate and assign trust to one or more service

providers as a function of the behaviour the different service clients have experienced when

using the services offered by the service providers.

The technique is based on the formation of a labelled directed typed multi-graph structure

where nodes represent service clients and service providers, and edges represent interaction

relations between clients, and between clients and service providers. The interaction relation

between clients denote recommendations one client has received from another, while the in-

teraction relation between clients and service providers denote that a service client has used

151

152 Chapter 7. Conclusion and FutureWork

a service provider. The nodes are labelled by the name/id of the corresponding client or the

corresponding service provider, whatever is applicable for a given node. The directed edges,

which as we said above, represent interaction relations, are also labelled by values denoting the

levels of trust and distrust, or reputation, the source node has assigned on the service provider,

or recommender respectively.

The labelled directed typed multi-graph forms a network of interactions. We proposed two

types of nodes: service clients, and service providers. Our approach allows for more than one

type of relation to exist between two nodes, hence the multi-graph. We proposed six types of

relations and each relation is labelled with a trust value.

The T [provider]
[client] relation denotes the overall trust the client has on the provider, based on all

interactions it has had with the provider, so far. The value assigned for this relation is denoted

as T (client, provider).

The D[provider]
[client] relation denotes the overall distrust the client has on the provider, based on

all interactions it has with the provider, so far. The value assigned for this relation is denoted

as D(client, provider).

The R[recommender]
[client] relation denotes the perceived reputation a client has assigned on another

client (i.e. a recommender), indicating how good of a recommender it was, when consider-

ing all elapsed interaction the requesting client has had with service providers, as a result of

recommendations from said recommender. The value assigned on this relation is denoted as

R(client, recommender).

The AR[recommender] relation denotes the overall reputation that has, so far, been assigned to a

recommender by the framework, and is a function of the individual reputation assigned on the

recommender by other clients. That is the AR[recommender] relation denotes the overall reputation

of the recommender. The value assigned for this relation is denoted as AR(recommender).

The OT [provider]
[client] relation is a “helper” relation and denotes the trust the client has on the

provider, based on an individual interaction. The value assigned for this relation is denoted as

OT (client, provider).

7.2. Contributions 153

The OD[provider]
[client] relation is a “helper” relation and denotes the distrust the client has on the

provider, based on an individual interaction. The value assigned for this relation is denoted as

OD(client, provider).

After a recommendation by a recommender is followed by a client to use a provider, the

R(client, recommender) value, corresponding to the relation between the client and the rec-

ommender, is updated, or created if it’s the first interaction between the two. The R(client,

recommender) values are used to calculate the overall reputation of the recommender. After

a client uses a provider, a pair of values (i.e. < OT (client, provider),OD(client, provider) >)

are created indicating the level of trust (satisfaction) or distrust (dissatisfaction) a client has on

a provider after using the provider in an individual single interaction. The OT(client, provider)

and OD(client, provider) values are, then used to update the cumulative T(client, provider) and

D(client, provider) values (i.e. trust and distrust) a client has that a provider can deliver what it

promises, as well as the R(client, recommender) values of those who recommended the utilized

service. The final ranking of services, as requested by a client who is looking to use one, is

performed by considering all positive and negative recommendations said client has received.

The method proposed is a variation of the Dempster-Shaffer evidence theory.

Timeout algorithms are utilized for dealing with old (i.e. stale) values and for updating

the recommenders list, thus allowing new recommenders to be considered. In this respect, the

approach uses sliding time windows to deal with stale values, and an algorithm based on the

Adaptive Replacement Cache (ARC) policy, which has been adapted for the context of this

problem.

7.2 Contributions

Referring to the contributions listed in Section 1.3, we outline here how these contributions

have been achieved and what is their significance to enhancing the state-of-the-art.

With respect to contributions C1 and C2, the novel algorithms proposed for the continu-

154 Chapter 7. Conclusion and FutureWork

ous evaluation of the trust and distrust values for service providers (see Section 4.2), as well

as the individual (see Section 4.3) and global (see Section 4.5) reputation values for service

clients, ensure that historical values are considered to a certain degree, allowing for resilience

in case of radical but temporary oscillations in the behaviour of nodes in the system. Those

algorithms, combined with the consultation of multiple different sources of recommendation

and the proposed method of selecting a subset of all available opinions (see Section 3.4), have

resulted in our framework’s ability to deal with very high percentages of malicious users, a

significant improvement compared to approaches up to date. The vast majority of approaches

maintain either global or individual reputation values, which hinder their capabilities in one

way or the other. Approaches who only utilize global values can only accommodate malicious

users, provided they do not constitute the majority of participating entities, as opposed to our

approach that can deal with much higher percentages of dishonest participants. The choice to

consider just individual values comes with another set of caveats, namely slow adaptation to

changes in behaviour and thus slower isolation of malicious users. By using a novel method

to utilize a combination of both values, our approach not only gets the best of both worlds, but

achieves added benefits resulting from the additional information available. As far as requests

for recommendations are concerned, most of the approaches consider all available information

to rank, propose and, subsequently evaluate services and corresponding recommenders, with

a selected few setting a static threshold. We, on the other hand, propose a novel approach to

the selection of recommenders. This allows us to dynamically disregard opinions that the re-

questing user deems unimportant, as well as opinions that originate from users who have been

malicious in the past.

Simulation results (see Chapter 6) indicate that the proposed technique exhibits significant

resilience, even when a large number of malicious recommenders (i.e. up to 80%) infiltrates the

network, and also allows for degrading service providers to be identified and isolated quickly.

In this context, malicious components are shown to be isolated after a short number of inter-

actions, while non-malicious components form their own communities and continue to receive

7.2. Contributions 155

accurate assessments of available service providers.

Further explaining the contribution mentioned in C1, we proposed the use of different val-

ues for service providers (see Section 3.3.2) and recommenders (see Section 3.3.3), as well

as the application of distinct algorithms for their evaluation. This approach has allowed us to

differentiate between malicious recommenders and malicious service providers, thus further

improving the approach’s resilience against dishonest parties, and accommodate use cases not

covered by most available approaches, which assume that a user’s ability to provide recom-

mendations and its servicing capabilities are one and the same. Our approach is applicable to

peer-to-peer networks, but is, also, usable in any other kind of scenarios, such as web services,

metaverse interactions, social commerce etc. Only a few of the available approaches support

separate values for service providers and service recommenders, but even they do not provide

completely distinct methods of evaluating them, but rather use the same algorithm or one with

minor alterations.

Regarding contribution C3 pertaining to the applicability of our framework in different en-

vironments, we proposed a main architecture of our framework, as well as a number of varia-

tions of it, that allow its utilization in a variety of different contexts and scenarios. A centralized

architecture is proposed for use cases where the system is to be used as part of an application

maintained by a central authority, such as an e-commerce website (see Section 5.1). In this

variation, users only communicate with the framework through an interface and have access

to specific functionality, allowing them to get rankings of services, use the selected one, rate

the interaction, if manual input is required, and use be notified about available incentives and

compensations. Note that due to the nature of blockchain and smart contracts, the same archi-

tecture can be used to deploy the framework in any blockchain platform (see Section 5.3). Even

though the architecture is centralized, the semantics of smart contracts allow us to consider the

blockchain platform as a central authority and the replication and validation of operations is

left to the distributed nature of the platform. Another version of the architecture is, also, pro-

vided, where certain alterations are made to allow for the decentralization of the approach (see

156 Chapter 7. Conclusion and FutureWork

Section 5.2). In that variation, the framework is run by every service client participating in the

system. Opinions are exchanged through the network and each user only maintains informa-

tion about their own perceived values. Bear in mind that the system is not fully distributed,

since a discovery service is still required to facilitate communication between users who are

not acquainted (i.e. have never interacted in the past). The majority of the proposed methods

for assigning trust and reputation do not provide a specific architecture for deployment in a

specific environment. Most of them, however, are geared towards per-to-peer systems and the

implicit assumption is made that an distributed deployment will be used. The communication

and collaboration between different users, though, is not explicitly defined, with the exception

of a few approaches that deal with specific contexts, such as ad-hoc networks. In our approach,

we propose a very concrete set of closely related architectures for deploying the framework in

both centralized and decentralized environments. We are, therefore, not constrained to specific

uses of our reputation system, in contrast to available approaches so far.

With respect to contribution C4, a specific method and accompanying algorithm was pro-

posed to limit the reputation values considered for the overall reputation values of recom-

menders (see Section 4.6). In order to specify the individual values that are important to each

overall value, a novel adaptation of a policy originating from the field of cache management

(i.e. Adaptive Replacement Cache policy) was proposed. Frequency and recency are investi-

gated and a subset of opinions is selected and considered towards the calculation of said value.

Once more, our framework utilizes an event-driven approach, allowing for higher throughput

and smaller network fingerprint. Another advantage of selecting only the values considered

important has to do with further supporting the framework’s dynamic behaviour. Opinions that

are not recent enough or originate from clients who have interacted with a recommender in a

sparse and non-consistent way may taint the overall reputation of said recommenders regarding

its recommendation capabilities. Our proposed method allows us to disregard values that are

old and should bear no significance in the calculation of overall reputation values, as well as

maintain incidental values for a much shorter period of time compared to ones coming from

7.2. Contributions 157

consistent clients. Not all approaches support the notion of global or overall reputation values,

and the vast majority of the ones who do consider all available individual values. Very few

approaches propose the use of a static threshold for considering opinions that does not capture

the ideas of recency or frequency, which is what our approach is based on.

Regarding contribution C5 and the corresponding ranking process, we proposed the use

of both positive and negative evidence (i.e. trust and distrust values), which are independently

evaluated and considered on their own merits, as well as a ranking technique and corresponding

algorithm (i.e. Dempster-Shafer adaptation) that takes advantage of the distinct nature of said

positive and negative evidence and provides a belief interval, instead of a single value (see

Section 4.7). The utilization of a pair of independent values, rather than a single one, allows the

user to provide specific requirements both regarding wanted and unwanted behaviours, when it

comes to a specific type of service provider, that are evaluated separately and are transformed

into discrete evidence. The proposed ranking algorithm takes full advantage of that duality

and, after accounting for all available evidence, provides an interval that informs the user about

both the belief and the plausibility of the service being trustworthy. The majority of approaches

deal with a single value for prospective service providers, as opposed to our framework that

maintains distinct trust and distrust values that are considered as in-favour or against evidence

for a specific service provider. A few of the proposed approaches introduces a value pertaining

to risk, but its use does not account for negative evidence, but rather distinction between short

and long term opinions. Separate values for trust and distrust are researched in the context of

Group Decision Making frameworks. However, they are considered as highly correlated values

and are not individually computed, as is the case in our proposed approach. Their ranking

process, therefore combines them, rather than treat them as separate evidence and account for

the differences in provided information, which is what our proposed method does.

With respect to contribution C6 that addresses the data aging issue, we have provided a

novel method to account for stale trust, distrust and reputation values(see Section 4.4). Our

timeout algorithms, combined with the event-driven approach proposed, allow us to discard

158 Chapter 7. Conclusion and FutureWork

specific values in an efficient and scalable manner. The disposal of old values ensures that the

system dynamically adapts to changes in both clients and providers behaviours, thus preventing

the underlying network from reaching an unchanging state and failing to accommodate the

ever-changing reality of real-world applications. Most approaches do not deal with the issue of

data aging at all, while a few select ones choosing to apply a decay function to the entirety of

the cumulative values, irrespectively discounting all previous interactions regardless of recency.

A couple of approaches, also, propose the disposal of stale values, but, unlike our approach,

they maintain a vector of all historical values and recalculate the corresponding cumulative

value, thus requiring additional resources. Our approach achieves the same effect with lay less

calculations and memory consumption, which allows it to scale and support a high number of

users.

With respect to contributions C7 and C8, a few additional features were proposed for deal-

ing with specific circumstances that occur in the context of assigning trust and distrust to dif-

ferent service providers. Firstly, regarding C7, to address the issue of undiscovered behaviour,

the use of incentives was proposed (see Section 4.7.4). In case a new service is introduced

into the system, or an existing one is reformed, a way to find out about its previously unknown

behaviour and provide it with a chance to be selected has to be offered. This need is accommo-

dated by allowing service providers to provide incentives, which will enable them to be chosen

over other, already established, service providers. Experiments (see Chapter 6) show that, even

for low acceptance rates of incentives, well-performing services are recognized and, after a few

iterations, ascend the produced rankings. To our knowledge, the idea of allowing the provision

of incentives for selection of a service provider over a more well-established one has not been

included in other approaches. Incentives have been used to motivate users to accurately report

the quality of service observed after an interaction, but never in the context of advertising im-

proved or not yet discovered service behaviour. Secondly, regarding C8, compensations can be

offered to deal with the issue of already elapsed interactions that did not perform as expected,

meaning that their provided QoS was much lower than usually expected (see Section 4.7.5).

7.3. Discussion of Limitations 159

In such cases, we proposed the use of models to provide compensations to affected users, thus

maintaining a stable score if extenuating circumstances were involved. This allows our sys-

tem to avoid unnecessary fluctuations in service providers’ trust and distrust values, as well as

corresponding recommenders’ reputation values, when said changes are not the result of ac-

tual deterioration in quality of provided service, but rather a temporary issue, occurring due to

problems that are out of the provider’s control. Even though some approaches have dealt with

discovering discrepancies in expected vs provided QoS, they mostly deal with other types of

systems. None of the proposed reputation systems mention the idea of ameliorating the result

of a bad interaction. Our process and architecture allow for the evaluation of compensation

models as part of the framework’s functionality.

7.3 Discussion of Limitations

The proposed approach is not without challenges, since a few limitations present themselves

when accounting for real-world scenarios.

Even though new service providers can be added to the system and be used based on their

provided QoS, through utilization of the proposed incentives feature, use of new service clients

as recommenders is not as straightforward. Service clients joining the system at a later time will

still have access to recommendations from other clients, but they will not be able to provide

their opinions to other users, except under very specific circumstances. Since they have no

individual reputation value assigned to them by another service client, their overall reputation

will be set to the default value. If one chooses to set that value to the average or median

value observed in the system, said client will never be selected as a recommender by other

requesting clients, thus never creating new connections and updating its overall reputation

value. If, on the other hand, a higher default value is selected to promote inclusion of new

users, the problem of whitewashing [139, 140, 141] needs to be addressed, since an inherent

advantage is offered to newly introduced users. The whitewashing issue involves malicious

160 Chapter 7. Conclusion and FutureWork

users, who connect to the system under a new identity every time their reputation drops below

a certain level. In the original version of our approach, no such issue presents itself, since

nothing is gained by starting over. The difficulty of incorporating new recommenders into

the framework, and receiving recommendations from them, is not very problematic in case

of the centralized approach, since no actual node is overwhelmed by requests for opinions.

All information are maintained by a central authority and having a minority of recommenders

providing most recommendations is not an issue. In the distributed variation, though, a peer

could be overwhelmed if the majority of users request its opinions. Solutions to this issue

could include further filtering of recommender set based on availability, temporary high overall

reputation values for newcomers, or improved communication protocols to alleviate the burden

put on popular users.

When it comes to evaluating an elapsed interaction with a specific service, each service

client defines and utilizes its own model. This behaviour can be perceived as a limitation by

some, since different models will, most likely, result in different trust and distrust values. This,

in turn, will affect the reputation a client assigns on other clients (i.e. recommenders), possibly

refraining it from trusting their recommendations. That particular outcome, however, is not

necessarily an disadvantage of the proposed method. Having a common approach to rating the

quality of a specific service is, actually, desirable when receiving recommendations and the

ability to individually assign reputation to different clients, based on both their honesty and

lack of discrepancy in what one perceives to be a successful transaction, ensures that a client

will consult and take into consideration opinions by other clients who think alike. In the long

term, this behaviour will result in the creation of communities, meaning that users who have

a common way of evaluating services will form stronger connections and hold each other’s

opinions to a higher standard. This is practically what seems to be happening in the presence

of malicious users. Honest clients tend to form close-knit communities, even when they are

considered a minority, and receive accurate recommendations from within said community.

Another limitation of our approach has to do with the availability of modelling methods for

7.4. FutureWork 161

incentives and compensations. Even, though, some research approaches have tackled the issue

of discovering discrepancies between promised and provided QoS to provide compensations,

they mostly deal with specific contexts, such as socio-technical systems. On the other hand, no

formal modelling method could be found regarding the provision of promotional incentives.

We mocked the behaviour of such models for our experiments, but further research is required

to provide efficient and useful ways of creating and evaluating such models.

Lastly, even though the centralized variation of our architecture can be used to deploy our

proposed framework in a blockchain platform, maybe a more blockchain-specific approach

could be found that will minimize the cost of deployment and required communication between

smart contracts representing different parts of the system.

7.4 Future Work

When it comes to future expansion of our proposed approach, a few possible directions can be

considered.

In the current approach, the use of a service is considered as an individual and distinct

event and is evaluated as one. However, in a lot of real-world applications several services

are used as part of a business process. To accommodate for that functionality another layer

can be created and superimposed on top of the proposed framework. Said layer would have

the ability to model business processes, and their corresponding services, and would allow for

evaluation and ranking of different types of services, as part of said business process. Different

combinations of services could be provided as options, based on the combined consideration

of the individual parts of the model.

Another way our proposed framework could be further extended involves the imposition of

certain obligations on service providers. Negotiation of expected behaviour could be performed

through model comparison and, upon agreement, specific obligations could be set for every pair

of service client and service provider. Of course, violation of obligations would have to incur

162 Chapter 7. Conclusion and FutureWork

a penalty that is either predetermined or evaluated on a per case basis. Said extension is much

more viable if the proposed framework is deployed and utilized in the context of a metaverse.

Service providers would have to stake a certain amount of the native currency and penalties

could result in actual monetary loss on behalf of the service provider.

Trust and reputation have been also researched as part of consensus protocols [100, 101,

102, 103] in the context of different blockchain platforms. All of those approaches, however,

focus on solving specific consensus and agreement problems related to crowdsourcing ser-

vices and IoT devices, where due to the nature of the addressed issues, certain assumptions

are made. Those assumptions include the binary result of a transaction (i.e. the transaction is

either successful or unsuccessful), and the conviction that opinions of all participants bear the

same significance, only weighted differently in case of discrepancies in frequency of transac-

tions they have participated. Our approach allows for a much more granular specification of

trust and reputation and more complex underlying social graph. Therefore, a possible area of

future work is to investigate the use of reputation-based trust systems to support a consensus or

a pseudo-consensus protocol in general blockchain platforms. This has the potential to signif-

icantly increase the throughput of such systems, as other computationally intensive consensus

algorithms can be applied partially or completely replaced.

Bibliography

[1] Kai Hwang et al. Distributed and Cloud Computing: From Parallel Processing to the

Internet of Things, Morgan Kaufmann publishers, 1st edition (2011)

[2] H. Yu, et al., A Survey of Multi-Agent Trust Management Systems. In IEEE Access, vol.

1, pp. 35-50, 2013

[3] S.D. Kamvar et al., The eigentrust algorithm for reputation management in P2P networks,

in: Proceedings of the Twelfth International Conference on World Wide Web, ACM,

2003, pp. 640–651 .

[4] Page, L., et al..: The PageRank Citation Ranking: Bringing Order to the Web. Tech.

Report, Stanford Digital Library Tech. Project (1998)

[5] Zhou, R., Hwang, K.: Powertrust: a robust and scalable reputation system for trusted

peer-to-peer computing. IEEE Trans. Parallel Distributed Syst. 18(4).

[6] Damiani, E.,et al..: A reputation-based approach for choosing reliable resources in

peer-to-peer networks. In: ACM Conf. on Computer and Communications Security, pp.

207–216 (2002)

[7] Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In:

Proc. of the first Intl. Joint Conf. on Autonomous Agents and Multiagent Systems, pp.

475–482, Bologna, Italy (2003)

163

164 BIBLIOGRAPHY

[8] Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system. In:

CIKM, pp. 310–317 (2001)

[9] C. Tian, B. Yang, R2Trust: a reputation and risk based trust management framework

for large-scale, fully decentralized overlay networks, Fut. Gen. Comput. Syst. 27 (2011)

1135–1141

[10] Z.Q. Liang, W.S. Shi, PET: a personalized trust model with reputation and risk evaluation

for P2P resource sharing, in: Proceedings of the 38th International Conference on System

Science, Hawaii, USA, 2005.

[11] S.S. Song, K. Hwang, R.F. Zhou, Trusted P2P transactions with fuzzy reputation aggre-

gation, IEEE Internet Computing (2005) 18–28.

[12] M. Wang, F. Tao, Y. Zhang, G. Li, An adaptive and robust reputation mechanism for

P2P network, in: Proceedings of the IEEE International Conference on Communications,

Cape Town, South Africa, 2010.

[13] Buchegger, S., Le Boudec, J.-Y.: Performance analysis of the CONFIDANT protocol. In:

Proc. of the 3rd ACM Intl. Symposium on Mobile Ad Hoc Networking and Computing,

pp. 226–236, June 9–11 (2002)

[14] Rocha, B.G., Almeida, V., Guedes, D.: Increasing qos in selfish overlay networks. IEEE

Internet Comput. 10(3), 24–31 (2006)

[15] Maximillien, E.M., Singh, M.P.: Conceptual model of web service reputation. SIGMOD

Record 31(4), 36–41 (2002)

[16] Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services

selection. IEEE Internet Comput. 8(5), 84–93 (2004)

BIBLIOGRAPHY 165

[17] Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In:

ICSOC 2004: Proceedings of 2nd International Conference on Service Oriented Comput-

ing, November (2004)

[18] Maximilien, E.M., Singh, M.P.: Agent-based trustmodel involving multiple qualities. In:

Proc. of 4th International AAMAS, July (2005)

[19] Z. Malik, A. Bouguettaya, RATEWeb: reputation assessment for trust establishment

among web services, VLDB J. 18 (2009) 885–911.

[20] R. Guha, et al., Propagation of trust and distrust, in: Proc. of the 13th Intl. Conference on

World Wide Web, 2004, pp. 403–412 .

[21] P. Bonacich , P. Lloyd , Eigenvector-like measures of centrality for asymmetric relations,

Soc. Netw. 23 (2001) 191–201.

[22] Glenn Shafer, A mathematical theory of evidence, Princeton Univ. Press, Princeton, New

Jersey, 1976

[23] Horkoff J, et al., Goal-oriented requirements engineering: an extended systematic map-

ping study. Requir Eng. 2019;24(2):133-160.

[24] G. Chatzikonstantinou, K. Kontogiannis: Efficient parallel reasoning on fuzzy goal mod-

els for run time requirements verification. Softw. Syst. Model. 17(4).

[25] Megiddo, Nimrod and Dharmendra S. Modha. “ARC: A Self-Tuning, Low Overhead

Replacement Cache.” FAST (2003).

[26] Jon Crowcroft, Richard Gibbens, Frank Kelly, Sven Östring, Modelling incentives for

collaboration in mobile ad hoc networks, in: Performance Evaluation, Volume 57, Issue

4, 2004, pp. 427-439

[27] Jeffrey Banks, Sridhar Moorthy, A model of price promotions with consumer search, in:

International Journal of Industrial Organization, Volume 17, Issue 3, 1999, pp. 371-398

166 BIBLIOGRAPHY

[28] William Rand, Roland T. Rust, Agent-based modeling in marketing: Guidelines for rigor,

in: International Journal of Research in Marketing, Volume 28, Issue 3, 2011, pp. 181-193

[29] Dalpiaz, F., Giorgini, P., Mylopoulos, J., Adaptive socio-technical systems: a

requirements-based approach, in: Requirements Eng 18, 1–24 (2013).

[30] P. Victor , C. Cornelis , M. De Cock , P. Pinheiro da Silva , Gradual trust and distrust in

recommender systems, Fuzzy Sets Syst. 160 (2009) 1367–1382 .

[31] Lamport, Leslie, The Part-Time Parliament, ACM Transactions on Computer Systems

16, 2 (May 1998), 133-169.

[32] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung and P. Verissimo, ”Efficient Byzan-

tine Fault-Tolerance,” in IEEE Transactions on Computers, vol. 62, no. 1, pp. 16-30, Jan.

2013.

[33] Hendrikx, F., Bubendorfer, K., Chard, R., Reputation systems: A survey and taxonomy.

Journal of Parallel and Distributed Computing. 75. (2014).

[34] P. Resnick, R. Zeckhauser, Trust among Strangers in Internet Transactions: Empirical

Analysis of eBay’s Reputation System, Advances in Microeconomics: A Research An-

nual 11 (2002) 127-157.

[35] P. Resnick, K. Kuwabara, R. Zeckhauser, E. Friedman, Reputation Systems, Communi-

cations of the ACM 43 (2000) 45-48.

[36] eBay, http://www.ebay.com/, last accessed 2022-06-17.

[37] P. Resnick, R. Zeckhauser, J. Swanson, K. Lockwood, The Value of Reputation on eBay:

A Controlled Experiment, Experimental Economics 9 (2003) 79-101.

[38] A. Josang, R. Ismail, C. Boyd, A Survey of Trust and Reputation Systems for Online

Service Provision, Decision Support Systems 43 (2) (2007) 618-644.

BIBLIOGRAPHY 167

[39] E. Koutrouli, A. Tsalgatidou, Taxonomy of Attacks and Defense Mechanisms in P2P

Reputation Systems - Lessons for reputation system designers, Computer Science Review

6 (2) (2012) 47-70.

[40] J. Sabater, C. Sierra, REGRET: Reputation in Gregarious Societies, in: AGENTS ’01:

Proceedings of the Fifth international conference on Autonomous agents, ACM, New

York, NY, USA, 2001, pp. 194-195.

[41] M. Gupta, P. Judge, M. Ammar, A Reputation System for Peer-to-Peer Networks, in:

NOSSDAV ’03: Proceedings of the 13th international workshop on Network and operat-

ing systems support for digital audio and video, ACM, New York, NY, USA, 2003, pp.

144-152.

[42] E. Koutrouli, A. Tsalgatidou, Reputation-based trust systems for P2P applications: design

issues and comparison framework, Trust and Privacy in Digital Business (2006) 152-161.

[43] J. Sabater, C. Sierra, Review on Computational Trust and Reputation Models, Artificial

Intelligence Review 24 (2005) 33-60.

[44] K. Hoffman, D. Zage, C. Nita-Rotaru, A Survey of Attack and Defense Techniques for

Reputation Systems, ACM Computing Surveys 42 (1) (2009) 1-31.

[45] F. Hendrikx, K. Bubendorfer, Malleable Access Rights to Establish and Enable Scien-

tific Collaboration, in: eScience (eScience), 2013 IEEE 9th International Conference on,

IEEE, Beijing, China, 2013, pp. 334-341.

[46] F. Hendrikx, K. Bubendorfer, Policy Derived Access Rights in the Social Cloud, in:

eScience (eScience), 2013 IEEE 9th International Conference on, IEEE, Beijing, China,

2013, pp. 365-368.

[47] Amazon, http://www.amazon.com/, last accessed 2022-06-17.

168 BIBLIOGRAPHY

[48] D. Houser, J. Wooders, Reputation in auctions: Theory, and evidence from eBay, Journal

of Economics and Management Strategy 15 (2) (2006) 353-369.

[49] M. I. Melnik, J. Alm, Does a Seller’s eCommerce Reputation Matter? Evidence from

eBay Auctions, The journal of industrial economics 50 (3) (2002) 337-349.

[50] Y. Wang, J. Vassileva, Toward Trust and Reputation Based Web Service Selection: A

Survey, International Transactions on Systems Science and Applications 3 (2) (2007)

118-132.

[51] S. Marti, H. Garcia-Molina, Taxonomy of Trust: Categorizing P2P Reputation Systems,

Computer Networks 50 (4) (2006) 472-484.

[52] A. Schlosser, M. Voss, L. Bruckner, On the Simulation of Global Reputation Systems,

Journal of Artificial Societies and Social Simulation 9 (2005) 1.

[53] A. Abdul-Rahman, S. Hailes, Supporting trust in virtual communities, in: System Sci-

ences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on, IEEE,

2000, pp. 9-18.

[54] Y. Yuan, S. Ruohomaa, F. Xu, Addressing common vulnerabilities of reputation systems

for electronic commerce, Journal of theoretical and applied electronic commerce research

7 (1) (2012) 1-20.

[55] R. Ismail, C. Boyd, A. Josang, S. Russell, An Efficient Off-Line Reputation Scheme

Using Articulated Certificates, in: WOSIS-2004: Proceedings of the Second International

Workshop on Security in Information Systems, 2004, pp. 53-62.

[56] P. Dewan, P. Dasgupta, Pride: Peer-to-Peer Reputation Infrastructure for Decentralized

Environments, in: WWW Alt. ’04: Proceedings of the 13th international World Wide

Web conference on Alternate track papers and posters, ACM, New York, NY, USA, 2004,

pp. 480-481.

BIBLIOGRAPHY 169

[57] G. Zacharia, A. Moukas, P. Maes, Collaborative reputation mechanisms for electronic

marketplaces, Decision Support Systems 29 (4) (2000) 371-388.

[58] A. Josang, R. Ismail, The Beta Reputation System, in: Proceedings of the 15th bled

electronic commerce conference, 2002, pp. 41-55.

[59] J. Patel, W. L. Teacy, N. R. Jennings, M. Luck, A Probabilistic Trust Model for Handling

Inaccurate Reputation Sources, in: Trust Management, Springer, 2005, pp. 193-209.

[60] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, Guangquan Zhang, Recommender

system application developments: A survey, Decision Support Systems, Volume 74, 2015,

Pages 12-32.

[61] M. Pazzani, D. Billsus, Content-based recommendation systems, in: P. Brusilovsky,

A. Kobsa, W. Nejdl (Eds.), The Adaptive Web, Springer, Berlin Heidelberg 2007, pp.

325–341.

[62] R. Burke, Hybrid recommender systems: survey and experiments, User Modeling and

User-Adapted Interaction 12 (2002) 331–370.

[63] M. Deshpande, G. Karypis, Item-based top-N recommendation algorithms, ACM Trans-

actions on Information Systems (TOIS) 22 (2004) 143–177.

[64] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommen-

dation algorithms, Proceedings of the 10th International Conference on World Wide Web,

ACM 2001, pp. 285–295.

[65] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, GroupLens: an open architec-

ture for collaborative filtering of netnews, Proceedings of the 1994 ACM Conference on

Computer Supported Cooperative Work, ACM, Chapel Hill, North Carolina, USA 1994,

pp. 175–186.

170 BIBLIOGRAPHY

[66] Q. Shambour, J. Lu, A hybrid trust-enhanced collaborative filtering recommendation ap-

proach for personalized government-to-business e-services, International Journal of In-

telligence Systems 26 (2011) 814–843.

[67] B. Smyth, Case-based recommendation, in: P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.),

The Adaptive Web, Springer, Berlin Heidelberg 2007, pp. 342–376.

[68] S. Middleton, D. Roure, N. Shadbolt, Ontology-based recommender systems, in: S.

Staab, R. Studer (Eds.), Handbook on Ontologies, Springer, Berlin Heidelberg 2009, pp.

779–796.

[69] I. Cantador, A. Bellogı́n, P. Castells, A multilayer ontology-based hybrid recommenda-

tion model, AI Communications 21 (2008) 203–210.

[70] X. Amatriain, A. Jaimes, N. Oliver, J. Pujol, Data mining methods for recommender

systems, in: F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (Eds.), Recommender Systems

Handbook, Springer, US 2011, pp. 39–71.

[71] K. Yu, V. Tresp, S. Yu, A nonparametric hierarchical bayesian framework for informa-

tion filtering, Proceedings of the 27th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, ACM, Sheffield, United Kingdom

2004, pp. 353–360

[72] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, Z. Chen, Scalable collaborative fil-

tering using cluster-based smoothing, Proceedings of the 28th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, ACM, Sal-

vador, Brazil 2005, pp. 114–121

[73] K.-j. Kim, H. Ahn, A recommender system using GA K-means clustering in an online

shopping market, Expert Systems with Applications 34 (2008) 1200–1209.

BIBLIOGRAPHY 171

[74] A. Zenebe, A.F. Norcio, Representation, similarity measures and aggregation methods

using fuzzy sets for content-based recommender systems, Fuzzy Sets and Systems 160

(2009) 76–94.

[75] D. Ben-Shimon, A. Tsikinovsky, L. Rokach, A. Meisles, G. Shani, L. Naamani, Recom-

mender system from personal social networks, Advances in Intelligent Web Mastering,

Springer, 2007. 47–55.

[76] P. Massa, P. Avesani, Trust-aware collaborative filtering for recommender systems, On

the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, Springer,

2004. 492–508.

[77] J.A. Golbeck, Computing and Applying Trust in Web-based Social Networks, University

of Maryland, 2005

[78] L. Quijano-Sanchez, J.A. Recio-Garcia, B. Diaz-Agudo, G. Jimenez-Diaz, Social factors

in group recommender systems, ACM Transactions on Intelligent Systems and Technol-

ogy (TIST), 4 2013, pp. 1–30.

[79] M. O’Connor, D. Cosley, J. Konstan, J. Riedl, PolyLens: a recommender system for

groups of users, in: W. Prinz, M. Jarke, Y. Rogers, K. Schmidt, V. Wulf (Eds.), European

Conference on Computer Supported Cooperative Work 2001, Springer, Netherlands 2002,

pp. 199–218.

[80] J. Masthoff, Group modeling: selecting a sequence of television items to suit a group of

viewers, User Modelling and User-Adapted Interaction 14 (2004) pp.37–85.

[81] L. Penserini, A. Perini, A. Susi, J. Mylopoulos, High variability design for software

agents: Extending Tropos,in: TAAS, 2(4), 2007.

[82] Dardenne A, van Lamsweerde A, Fickas S “Goal-directed requirements acquisition”. Sci

Comput Program 20(1–2):3–50. 1993.

172 BIBLIOGRAPHY

[83] Yu ESK “Towards modelling and reasoning support for early-phase requirements en-

gineering”. In: Proceedings of the 3rd IEEE international symposium on requirements

engineering (RE’97). Washington, DC. 1997.

[84] Sotirios Liaskos, Shakil M. Khan, Mikhail Soutchanski, and John Mylopoulos. 2013.

Modeling and Reasoning with Decision-Theoretic Goals. In Proceedings of the 32nd In-

ternational Conference on Conceptual Modeling - Volume 8217 (ER 2013). Springer-

Verlag, Berlin, Heidelberg, 19–32.

[85] Silva Souza, V., Lapouchnian, A., Robinson, W., Mylopoulos, J., Awareness Require-

ments for Adaptive Systems, in: SEAMS (2011). 60-69.

[86] Michalis Bachras, et al., “Goal Modelling Meets Service Choreography: A Graph Trans-

formation Approach”. In Proc. of EDOC’20, pp. 30-39.

[87] Fischer, M., Lynch, N. and Paterson, M. (1985). Impossibility of distributed consensus

with one faulty process. Journal of the ACM, Vol. 32, No. 2, pp. 374–82.

[88] Chandra, T. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed

systems. Journal of the ACM. Vol 43, No. 2, pp. 225–67.

[89] Coulouris, G. F. (2011). Consensus and related problems. In Distributed systems: Con-

cepts and design. essay, Addison-Wesley. pp. 659-670.

[90] Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust for peer-to-peer elec-

tronic communities. IEEE Trans. Knowl. Data Eng. (TKDE) 16(7), 843–857 (2004)

[91] Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empirical

analysis of eBay’s reputation system. Adv. Appl. Microecon. 11, 127–157 (2002)

[92] P. J. Denning, “Working sets past and present,” IEEE Trans. Software Engineeing, vol.

SE-6, no. 1, pp. 64–84, 1980.

BIBLIOGRAPHY 173

[93] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page replacement,” J.

ACM, vol. 18, no. 1, pp. 80–93, 1971.

[94] Giamanco; Barbara; Gregoire, Kent (2012). ”Tweet me, friend me, make me buy” (PDF).

Harvard Business Review. 90 (7): 89–93. Archived from the original (PDF) on 2014-12-

13.

[95] Jensen, C.D. (2014). The Importance of Trust in Computer Security. In: Zhou, J., Gal-Oz,

N., Zhang, J., Gudes, E. (eds) Trust Management VIII. IFIPTM 2014. IFIP Advances in

Information and Communication Technology, vol 430. Springer.

[96] Rose, Scott, et al. Zero trust architecture. No. NIST Special Publication (SP) 800-207.

NIST, 2020.

[97] Lv, S., Li, H., Wang, H., Wang, X. (2020). CoT: A Secure Consensus of Trust with Del-

egation Mechanism in Blockchains. In: , et al. Blockchain Technology and Application.

CBCC 2019. Communications in Computer and Information Science, vol 1176. Springer.

[98] Jennings, N.R. (2002). Agent-Based Computing. In: Musen, M.A., Neumann, B., Studer,

R. (eds) Intelligent Information Processing. IIP 2002. IFIP — The International Federa-

tion for Information Processing, vol 93. Springer, Boston, MA.

[99] Park M. and Kim Y-G, A Metaverse: Taxonomy, Components, Applications, and Open

Challenges. In IEEE Access, vol. 10, pp. 4209-4251, 2022.

[100] Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M.A., Li, L 2019, ’A Proof-of-Trust consensus

protocol for enhancing accountability in crowdsourcing services’, IEEE Transactions on

Services Computing, vol. 12, no. 3, pp. 429-445.

[101] H. Chai, S. Leng, K. Zhang and S. Mao, ”Proof-of-Reputation Based-Consortium

Blockchain for Trust Resource Sharing in Internet of Vehicles,” in IEEE Access, vol.

7, pp. 175744-175757.

174 BIBLIOGRAPHY

[102] Jingyu Feng, Xinyu Zhao, Guangyue Lu, and Feng Zhao. 2019. PoTN: A Novel

Blockchain Consensus Protocol with Proof-of-Trust Negotiation in Distributed IoT Net-

works. In Proceedings of the 2nd International ACM Workshop on Security and Privacy

for the Internet-of-Things (IoT S&P’19). Association for Computing Machinery, New

York, NY, USA, 32–37.

[103] X. Zhu, Y. Li, L. Fang and P. Chen, ”An Improved Proof-of-Trust Consensus Algorithm

for Credible Crowdsourcing Blockchain Services,” in IEEE Access, vol. 8, pp. 102177-

102187

[104] SENTZ, KARI, and FERSON, SCOTT. 2002. ”Combination of Evidence in Dempster-

Shafer Theory”. United States.

[105] Thierry Denźux. 2016. 40 years of Dempster-Shafer theory. Int. J. Approx. Reasoning

79, C (December 2016), 1–6.

[106] T. Denoeux, ”A neural network classifier based on Dempster-Shafer theory,” in IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 30,

no. 2, pp. 131-150, March 2000

[107] Denoeux, T. (2008). A k-Nearest Neighbor Classification Rule Based on Dempster-

Shafer Theory. In: Yager, R.R., Liu, L. (eds) Classic Works of the Dempster-Shafer

Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol 219. Springer

[108] T. M. Chen and V. Venkataramanan, ”Dempster-Shafer theory for intrusion detection in

ad hoc networks,” in IEEE Internet Computing, vol. 9, no. 6, pp. 35-41, Nov.-Dec. 2005

[109] J.A. Malpica, M.C. Alonso, M.A. Sanz, Dempster–Shafer Theory in geographic infor-

mation systems: A survey, Expert Systems with Applications, Volume 32, Issue 1, 2007,

Pages 47-55

BIBLIOGRAPHY 175

[110] Mamdani, E.H. (1974). ”Application of fuzzy algorithms for control of simple dynamic

plant”. Proceedings of the Institution of Electrical Engineers. 121 (12): 1585–1588.

[111] Takagi, Tomohiro; Sugeno, Michio (January 1985). ”Fuzzy identification of systems

and its applications to modeling and control”. IEEE Transactions on Systems, Man, and

Cybernetics. SMC-15 (1): 116–132.

[112] Han-Xiong Li, Lei Zhang, Kai-Yuan Cai and Guanrong Chen, ”An improved robust

fuzzy-PID controller with optimal fuzzy reasoning,” in IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 6, pp. 1283-1294, Dec. 2005

[113] Hong Peng, Jun Wang, Mario J. Pérez-Jiménez, Hao Wang, Jie Shao, Tao Wang, Fuzzy

reasoning spiking neural P system for fault diagnosis, Information Sciences, Volume 235,

2013, Pages 106-116

[114] Yan, R., Yu, Y., Qiu, D. Emotion-enhanced classification based on fuzzy reasoning. Int.

J. Mach. Learn. and Cyber. 13, 839–850 (2022).

[115] Meimei Gao, M. Zhou, Xiaoguang Huang and Zhiming Wu, ”Fuzzy reasoning Petri

nets,” in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, vol. 33, no. 3, pp. 314-324, May 2003

[116] N. Naik and P. Jenkins, ”Enhancing Windows Firewall Security Using Fuzzy Reason-

ing,” 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th

Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelli-

gence and Computing and Cyber Science and Technology Congress (DASC/PiCom/Dat-

aCom/CyberSciTech), 2016, pp. 263-269

[117] Emanuel Onica, Pascal Felber, Hugues Mercier, and Etienne Rivière. 2016.

Confidentiality-Preserving Publish/Subscribe: A Survey. ACM Comput. Surv. 49, 2, Ar-

ticle 27 (June 2017), 43 pages.

176 BIBLIOGRAPHY

[118] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

2003. The many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003),

114–131.

[119] T. Ding, S. Qian, J. Cao, G. Xue and M. Li, ”SCSL: Optimizing Matching Algorithms

to Improve Real-time for Content-based Pub/Sub Systems,” 2020 IEEE International Par-

allel and Distributed Processing Symposium (IPDPS), 2020, pp. 148-157

[120] Y. Zhao, Y. Li, Q. Mu, B. Yang and Y. Yu, ”Secure Pub-Sub: Blockchain-Based Fair

Payment With Reputation for Reliable Cyber Physical Systems,” in IEEE Access, vol. 6,

pp. 12295-12303.

[121] Ibrahim, M., Rehfeldt, K. and Rausch, A., Conception of a Type-based Pub/Sub Mech-

anism with Hierarchical Channels for a Dynamic Adaptive Component Model. ADAP-

TIVE 2018, pp. 53-59

[122] Chelloug, S. (2015) Energy-Efficient Content-Based Routing in Internet of Things. Jour-

nal of Computer and Communications, 3, 9-20.

[123] Q. Wang, D. Chen, N. Zhang, Z. Ding and Z. Qin, ”PCP: A Privacy-Preserving Content-

Based Publish–Subscribe Scheme With Differential Privacy in Fog Computing,” in IEEE

Access, vol. 5, pp. 17962-17974, 2017.

[124] S. Tarun, R. S. Batth and S. Kaur, ”A Review on Fragmentation, Allocation and Replica-

tion in Distributed Database Systems,” 2019 International Conference on Computational

Intelligence and Knowledge Economy (ICCIKE), 2019, pp. 538-544.

[125] J. Domaschka, C. B. Hauser and B. Erb, ”Reliability and Availability Properties of Dis-

tributed Database Systems,” 2014 IEEE 18th International Enterprise Distributed Object

Computing Conference, 2014, pp. 226-233.

BIBLIOGRAPHY 177

[126] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores. ACM

Comput. Surv. 51, 2, Article 40 (March 2019), 43 pages.

[127] Bonomi, F., Milito, R., Natarajan, P., Zhu, J. (2014). Fog Computing: A Platform for

Internet of Things and Analytics. In: Bessis, N., Dobre, C. (eds) Big Data and Internet of

Things: A Roadmap for Smart Environments. Studies in Computational Intelligence, vol

546. Springer, Cham.

[128] DECENCIÈRE, Etienne et al. FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE

DATABASE: THE MESSIDOR DATABASE. Image Analysis and Stereology, [S.l.], v.

33, n. 3, p. 231-234, aug. 2014.

[129] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. 2011. Big data and cloud com-

puting: current state and future opportunities. In Proceedings of the 14th International

Conference on Extending Database Technology (EDBT/ICDT ’11). Association for Com-

puting Machinery, New York, NY, USA, 530–533.

[130] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J.

J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,

Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey

Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi

Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013.

Spanner: Google’s Globally Distributed Database. ACM Trans. Comput. Syst. 31, 3,

Article 8 (August 2013), 22 pages.

[131] Dmitry Efanov, Pavel Roschin, The All-Pervasiveness of the Blockchain Technology,

Procedia Computer Science, Volume 123, 2018, Pages 116-121.

[132] Urena, R., Kou, G., Dong, Y., Chiclana, F. and Herrera-Viedma, E., 2019. A review on

trust propagation and opinion dynamics in social networks and group decision making

frameworks. Information Sciences, 478, pp.461-475.

178 BIBLIOGRAPHY

[133] J. Wu , F. Chiclana , E. Herrera-Viedma , Trust based consensus model for social network

in an incomplete linguistic information context, Appl. Soft. Comput. 35 (2015) 827–839.

[134] J. Wu , L. Dai , F. Chiclana , H. Fujita , E. Herrera-Viedma , A minimum adjustment

cost feedback mechanism based consensus model for group decision making under social

network with distributed linguistic trust, Inf. Fusion 41 (2018) 232–242.

[135] J. Wu , L. Dai , F. Chiclana , H. Fujita , E. Herrera-Viedma , A new consensus model for

social network group decision making based on a minimum adjustment feedback mecha-

nism and distributed linguistic trust, Inf. Fusion 41 (2018) 232–242.

[136] J. Wu , R. Xiong , F. Chiclana , Uninorm trust propagation and aggregation methods

for group decision making in social network with four tuple infor- mation, Knowl. Based

Syst. 96 (2016) 29–39.

[137] R.R. Yager , Quantifier guided aggregation using OWA operators, Int. J. Intell. Syst. 11

(1996) 49–73.

[138] R. Ureña, F. Chiclana, E. Herrera-Viedma, DeciTrustNET: A graph based trust and rep-

utation framework for social networks, Information Fusion, Vol.61, 2020, pp.101-112.

[139] M. Feldman, C. Papadimitriou, J. Chuang and I. Stoica, ”Free-riding and whitewashing

in peer-to-peer systems,” in IEEE Journal on Selected Areas in Communications, vol. 24,

no. 5, pp. 1010-1019, May 2006.

[140] J. Chen, H. Lu and S. D. Bruda, ”A Solution for Whitewashing in P2P Systems Based

on Observation Preorder,” 2009 International Conference on Networks Security, Wireless

Communications and Trusted Computing, 2009, pp. 547-550.

[141] Shabnam Seradji, Mehran S. Fallah, A Bayesian Game of Whitewashing in Reputation

Systems, The Computer Journal, Volume 60, Issue 8, August 2017, Pages 1223–1237.

BIBLIOGRAPHY 179

[142] X. Zeng, R. Bagrodia and M. Gerla, ”GloMoSim: a library for parallel simulation

of large-scale wireless networks,” Proceedings. Twelfth Workshop on Parallel and Dis-

tributed Simulation PADS ’98 (Cat. No.98TB100233), 1998, pp. 154-161

[143] Schlosser, Mario T., Tyson E. Condie, Sepandar D. Kamvar, and Ar D. Kamvar. ”Simu-

lating a P2P file-sharing network.” In First workshop on semantics in p2p and grid com-

puting, pp. 69-79. 2002.

[144] https://influencermarketinghub.com/metaverse-stats/, last accessed 2022-08-03.

[145] https://www.nytimes.com/2022/07/19/business/amazon-fake-reviews-lawsuit.html, last

accessed 2022-08-03.

[146] https://www.bloomberg.com/professional/blog/metaverse-may-be-800-billion-market-

next-tech-platform/, last accessed 2022-08-03.

[147] https://earthweb.com/how-many-people-use-the-metaverse/, last accessed 2022-08-03.

[148] Kubernetes, https://kubernetes.io/, last accessed 2022-08-03.

	Reputation-Based Trust Assessment of Transacting Service Components
	Recommended Citation

	Abstract
	Lay Summary
	List of Figures
	Introduction
	Problem Statement
	Outline of Approach
	Thesis Contributions
	Thesis Outline

	Related Work and Background
	Reputation Systems
	Reputation Systems Taxonomy
	Commercial Reputation Systems
	Academic Reputation Systems
	Recommender Systems
	Limitations of Related Work

	Requirements modelling
	Consensus in Distributed Systems
	Reasoning Under Uncertainty
	Dempster-Shaffer
	Fuzzy Logic and Reasoning

	Background on Supporting Technologies
	Publish/Subscribe Systems
	Distributed Databases

	Modelling and Overall Process
	Modeling Concepts - Entities
	Modeling Concepts - Relations
	Modeling Concepts - Relation values
	Perceived Trust and Distrust per Interaction (OT and OD values)
	Cumulative Trust and Distrust (T and D values)
	Individual Reputation of a Recommender (R value)
	Overall Reputation of Recommenders (AR value)

	Sources of Recommendations
	Process Overview
	Process Outline
	Running Example

	Summary

	Trust and Reputation Evaluation Algorithms
	Evaluation of OT and OD values
	Evaluation of T and D values
	Evaluation of R value
	Timeouts
	Evaluation of AR value
	Selection of R values for AR calculation
	Adaptive Replacement Cache Policy
	ARC Adaptation

	Service Ranking
	Selection of Recommenders
	Aggregation of T and D values per recommender group
	Dempster-Shafer
	Incentives
	Compensations
	Running Example (Revisited)

	Discussion on Self-Regulating Behaviour of Recommenders
	Summary

	System Architecture
	Centralized Architecture
	Architecture Overview
	Interface Specification
	Process Sequence Diagrams
	Recommendations and Ranking
	Incentives, Utilization and Compensations
	T/D and R values Update
	Overall Reputation Value Update
	Timeouts

	Distributed Architecture
	Architecture Overview
	Interface Specification
	Process Sequence Diagrams
	Recommendations and Ranking
	Incentives, Utilization and Compensations
	T/D and R values Update
	Overall Reputation Value Update
	Timeouts

	Blockchain Architecture
	Messaging Protocols
	Data Acquisition
	Update values after interaction
	Updating AR values
	Publications of Events
	Removing obsolete values

	Summary

	Implementation and Experiments
	Overall Infrastructure
	Framework implementation
	Event Propagation
	Database Utilization

	Experiments
	Simulator
	Experimental Setup
	Simulated Network Setup
	Experiments Execution
	Bootstrapping phase

	Stability in the Presence of Malicious Components
	Degrading Services
	Connections to Recommenders and Service Providers
	Sources of Recommendation
	Effect of Considering Distrust Values
	Incentives
	Comparison

	Summary

	Conclusion and Future Work
	Summary of the Approach
	Contributions
	Discussion of Limitations
	Future Work

	Bibliography

