Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

7-28-2022 11:00 AM

Reputation-Based Trust Assessment of Transacting Service
Components

Konstantinos Tsiounis, The University of Western Ontario

Supervisor: Kontogiannis, Kostas, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree
in Computer Science

© Konstantinos Tsiounis 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

b Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems
Commons, and the Software Engineering Commons

Recommended Citation

Tsiounis, Konstantinos, "Reputation-Based Trust Assessment of Transacting Service Components”
(2022). Electronic Thesis and Dissertation Repository. 8675.

https://ir.lib.uwo.ca/etd/8675

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8675?utm_source=ir.lib.uwo.ca%2Fetd%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

As Service-Oriented Systems rely for their operation on many different, and most often,
distributed software components, a key issue that emerges is how one component can trust the
services offered by another component. Here, the concept of trust is considered in the context
of reputation systems and is viewed as a meta-requirement, that is, the level of belief a service
requestor has that a service provider will provide the service in a way that meets the requestor’s
expectations. We refer to the service offering components as service providers (SPs) and the
service requesting components as service clients (SCs).

In this approach, we propose a technique that allows for evaluating and assigning trust to
various service providers, by considering their ability to fulfill their clients’ expectations or
policies, and assigning and updating the reputation of other service clients, based on their ca-
pabilities as recommenders for the aforementioned service providers. Service clients request
opinions from other service clients (i.e. recommenders), when looking for an appropriate ser-
vice to use. Different sources of recommendation are considered and opinions are transformed
into evidences to be used by our proposed ranking algorithm. After the utilization of a service,
the requesting client updates the trust and distrust values for said service, as well as the reputa-
tion values for the service’s recommenders. In this work, service clients and service providers
are considered software applications that coordinate with each other, and may include micro-
services, software agents, smart contracts or any other distributed inter-networked resource,
without making any assumptions as to what a service client or a service provider component
is, as long as it is a component that issues or responds to requests.

The proposed approach has been shown, through implementing a prototype and executing
appropriate experiments, to be very stable in the presence of high percentages of malicious
users. Even when the dishonest clients account for up to 80%, honest users are able to receive
accurate recommendations and select services that are able to fulfill their requirements. The
proposed framework outperforms other approaches, in scenarios where malicious users are

involved, by up to 20%, especially for higher percentages of users overvaluing or undervaluing

i

services offered.

Our approach is, also, capable of quickly detecting deterioration of the QoS provided by a
service provider, and supports the provision of incentives and compensations for allowing the
selection of new and reformed services and ameliorating bad interactions caused by extenuating

circumstances, respectively.

Keywords: Distributed Components, Service-oriented Computing, Trust, Reputation Sys-

tems, Multi-agent Systems, Metaverse

il

Lay Summary

As Service-Oriented Systems rely for their operation on many different, and most often,
distributed software components, a key issue that emerges is how one component can trust the
services offered by another component. Here, the concept of trust is considered in the context
of reputation systems and is viewed as a meta-requirement, that is, the level of belief a service
requestor has that a service provider will provide the service in a way that meets the requestor’s
expectations. We refer to the service offering components as service providers (SPs) and the
service requesting components as service clients (SCs).

In this approach, we propose a technique that allows for evaluating and assigning trust
to various service providers, by considering their ability to fulfill their clients’ expectations
or policies, and assigning and updating the reputation of other service clients, based on their
capabilities as recommenders for the aforementioned service providers. In this work, service
clients and service providers are considered software applications that coordinate with each
other, and may include micro-services, software agents, smart contracts or any other distributed
inter-networked resource, without making any assumptions as to what a service client or a
service provider component is, as long as it is a component that issues or responds to requests.

The proposed approach has been shown, through implementing a prototype and executing
appropriate experiments, to be very stable in the presence of high percentages of malicious
users. Furthermore, the approach is capable of quickly detecting deterioration of the QoS
provided by a service provider, and supports the provision of incentives and compensations for
allowing the selection of new and reformed services and ameliorating bad interactions caused

by extenuating circumstances, respectively.

v

Contents

[Abstract ii
(Lay Summary| iv
[List of Figures| xi
1__Introduction| 1
(L1 _Problem Statementl 4
(1.2 Outline of Approach|. L 4
(.3 Thesis Contributions| L 7
(L4 ThesisOutlinel 10

2 Related Work and Background| 11
2.1 Reputation Systems| 11
[2.1.1 Reputation Systems Taxonomy| 12

[2.1.2 Commercial Reputation Systems| 14

[2.1.3 Academic Reputation Systems| 15

[2.1.4 Recommender Systems| L L. 23

2.1 Limitations of Rel ckl .o 25

[2.2 Requirements modelling| 0 0L 25
2.3 Consensus in Distributed Systems| 27
2.4 Reasoning Under Uncertainty|. 28
2.4.1 Dempster-Shaffer| 28

[2.4.2 Fuzzy Logic and Reasoning|

[2.5 Background on Supporting Technologies|

[2.5.1 Publish/Subscribe Systems| 0oL

2.5.2 Distnn Databases|.

13 Modelling and Overall Process|

[3.1 Modeling Concepts - Entities|

[3.2 Modeling Concepts - Relations|,

[3.3 Modeling Concepts - Relation values|

[3.3.1 Perceived Trust and Distrust per Interaction (OT and OD values)

[3.3.2 Cumulative Trust and Distrust ('and D values)|

[3.3.3 Individual Reputation of a Recommender (R value)|

[3.3.4 Overall Reputation of Recommenders (AR value)]

[3.5.2 Running Example|. 0 oL

[3.6 Summary|

4 'Trust and Reputation Evaluation Algorithms|

#4.6.1 Adaptive Replacement Cache Policy|

4.6.2 ARC Adaptation|

vi

33
33
35
38
38
39
40
42
43
44
44
46
49

4.7 Service Ranking|. oo oL 73

“4.7.1 Selection of Recommenders| 74

4. 7.2 Aggregation of T and D values per recommender group|. 75

4. 7.3 Dempster-Shafer] o 76
M74 Incentivesl 78
[4.7.5 Compensations| e 79
4.7.6 Running Example (Revisited), 80

4.8 Discussion on Self-Regulating Behaviour of Recommenders| 88
4.9 Summary| e 90
IS System Architecture| 92
1 ntralized Archi TEl o e e e e e 92
1.1 Archi I TVIEW © o v v v v e e e e e e e e e e e e e 92

[5.1.2 Interface Specification| 98
[5.1.3 Process Sequence Diagrams| 99
[Recommendations and Ranking] 100

[[ncentives, Utilization and Compensations| 102

[I/D and R values Update| 104

[Overall Reputation Value Update|. 107

Mmeoutsl 108

0.2 Distributed Architecturelo 111
B2.1 Architecture Overview] 111
[5.2.2 Interface Specification| 113
[5.2.3 Process Sequence Diagrams| 114
[Recommendations and Ranking] 115

[[ncentives, Utilization and Compensations| 115

[I/Dand R values Update| 116

[Overall Reputation Value Update|. 118

vii

0.3 Blockcham Architecturel oo oL 120
[5.4 Messaging Protocols| oL 121
[5.4.1 Data Acquisition| 121
[5.4.2 Update values after interaction| 123
[5.4.3 Updating AR values|., 124
5.4.4 Publicationsof Events| 125
[5.4.5 Removing obsolete values|00 L. 126

5.5 Summary| 127
{6 Implementation and Experiments| 129
1 verall Infrastructure| oL 129
[6.1.1 Framework implementation|. 129
[6.1.2 Event Propagation| 130
6.1.3 Database Utilization|, 130

(6.2 Experiments| 131
6.2.1 Simulator 131
[6.2.2 Experimental Setup| 133
[Simulated Network Setup|. 133

[Experiments Execution] 134
[Bootstrapping phase| 134

[6.2.3 Stability in the Presence of Malicious Components| 135
[6.2.4 Degrading Services| 137

2 nnections to Recommenders and Service Providers| 139

[6.2.6 Sources of Recommendation 140
[6.2.7 Efftect of Considering Distrust Values| 142
6.2.8 Incentives L 144
[6.2.9 Comparison| 147

(6.3 Summary| 149

v nclusion and Futur r 151
[/.1 Summary of the Approach| 151
[[.2 Contributionsl 153

D1 ton of Limitations| 159
(74 Future Workl 161
Bibliography 163

iX

List of Figures

[3.1 A network of service clients and providers| 35
[3.2 Interactions between client and provider components| 37
[3.3 Example network of recommenders and services|. 46
4.1 Example model for service evaluation| 52

2 Offset Formula for R evaluationl. 58
4.3 General Structure of ARClists| oL 69
4.4 Exampleof listsfor SC;|o o L 70
4.5 Example network of recommenders and services|. L. 81
[5.1 Component diagram for centralized architecture.|. 93
[5.2 Centralized Architecture: Sequence diagram for ranking part.| 100

[5.3 Centralized Architecture: Sequence diagram for incentives, utilization and com- |

pensations part. L. L e e e e e 102

[5.4 Centralized Architecture: Sequence diagram for updating 7/D and R values |

fter servi 1lization. 105

[5.5 Centralized Architecture: Sequence diagram for deciding on important R val- |

ues and updating AR values.|. L 107

[5.6 Centralized Architecture: Sequence diagram for removing obsolete 7/D and R |

values) e e 109
[5.7 Component diagram for distributed architecture.f 112
[5.8 Distributed Architecture: Sequence diagram for ranking part.| 114

[5.9 Distributed Architecture: Sequence diagram for incentives, utilization and com- |

pensations part. e e e e e e e 116

[5.10 Distributed Architecture: Sequence diagram for updating 7/D and R values |

[5.11 Dastributed Architecture: Sequence diagram for deciding on important R values |

and updating AR values.|. Lo 118

[5.12 Distributed Architecture: Sequence diagram for removing obsolete 7/D and R |

values) L 120
[6.1 System stability vs Percentage of Malicious Components| 135
[6.2 Recognition of degrading service| 137
[6.3 Connections to recommenders and service providers|. 139
6.4 Recommendation Sourcesl. L Lo 141
[6.5 Ranking Score for Different Observed Distrust| 143
[6.6 Services at bottom and outof ranking| 146
[6.7 Transaction success with respect to malicious users| 149

xi

Chapter 1

Introduction

Over the past few years, we witness an accelerated proliferation of virtual digital environments
and applications that involve ad-hoc interactions between various software entities or digital
models of physical entities (e.g. avatars). These applications and environments relate to a
wide spectrum of domains, ranging from social commerce [94]] to agent-computing [98], and

metaverse [[99]].

In these types of applications, interacting entities can act as clients seeking access to re-
sources and services, and/or as providers offering access to such resources and services. Exam-
ples of client entities include applications that seek an appropriate merchant in an e-commerce
or a social-commerce site, applications that seek the most accurate information source to ob-
tain reliable data from, and avatars that seek to obtain services and virtual objects from other
avatars in Massive Multiplayer Online games (MMOs) or metaverse realities. Examples of
providers include entities that generate or serve information the accuracy and provenance of
which is important to their clients, applications that deliver trustworthy expert opinions, and

applications that offer services required to meet their promised QoS levels.

Here, interactions between service clients and service providers most often are part of adap-

tive, context-aware, and elaborate processes that implement complex logic.

Furthermore, due to the high volume, velocity, and complexity of such interactions, it be-

2 CHAPTER 1. INTRODUCTION

comes evident that these cannot be coordinated manually, and applications must rely on elab-
orate frameworks that establish and maintain trust among the transacting parties. More specif-
ically, a key challenge arises when it comes for a client to decide with which service provider

to interact with or trust, with respect to the quality of service or provenance of data served.

The proposed framework can easily be incorporated and used in a variety of real-world sce-
narios. One of the most straightforward applications of our approach is e-commerce systems.
Existing systems only provide functionality for providing reviews for services and products,
without accounting for the reputation and nature of the reviewer. Such an approach leads to
fake reviews [[145] and inability to discern honest ones, as opposed to our framework that
weighs opinions according to recommenders reputation. Another area where our framework
would be a useful addition is virtual environments [144]]. With major investment being put in
different metaverse environments [146] and parabolic increase in users participating in them
[147], a method for assigning trust to different entities in an automated yet efficient and reliable
way is of paramount importance. Of course, virtual environments, also, include Massively Mul-
tiplayer Online (MMO) games, which account for a significant amount of interactions between
digital entities. Finally, our proposed approach can be utilized in all cases where a network
of trust is required when selecting an appropriate service provider, such as trading platforms,
where the choice of recommendations from trading experts could be made on account of their

assigned reputation.

It is important to note that the concept of frust has been considered in many different con-
texts, in different forms (i.e. static or dynamic) and, in different encodings (i.e. binary, or range

values).

One area of trust is related to system security. Here trust may relate first, to the ability to
access or deny service provision based on specific policies and authentication and authoriza-
tion processes and second, to whether an application is considered safe, in the sense it is virus
or malware free. In these scenarios, the concept of frust equates more to the ability to verify

through specific processes that a component does not pose an immediate threat. The verifica-

tion dimension of trust can, also, revolve around the fulfillment of certain characteristics of a
component, such as reliability, maintainability or dependability, as assessed by third-party enti-
ties. A noteworthy area that gained traction regarding frust and security, involves the concept of
Zero-trust architectures [96] which is based on the assumption that nothing can be trusted and,

thus, everything needs to be validated at every step utilizing specific processes and algorithms.

A second area of trust relates to consensus systems where the concept of trust is used
as a mechanism between transacting nodes [97] to reach an agreement. The issue has been
addressed as a potential problem in classic consensus protocols, such as the Byzantine Fault
Tolerance [32] or the Paxos [31] algorithms, but trust has, also, been considered as a dynamic
dimension that would allow one to specify new protocols, such as the Proof-of-Trust Consensus

Protocol [100].

A third area of trust relates to reputation systems [19]. This thesis considers frust under
this context and deals with its utilization as part of said systems. More specifically, in the case
of reputation systems, trust of from one entity to another is established through the assessment
and use of each entity’s reputation. The result of that assessment can be provided in many
forms and utilized by different underlying systems, usually specified by the approach’s target
use. In this thesis, we consider frust as a meta-requirement, that is, the level of belief a service
client has that a service provider will provide the service in a way that meets the clients’ expec-
tations. Key requirements of reputation systems involve dealing with malicious components
that infiltrate the system and provide false recommendations, as well as dynamically respond-
ing to changes in the behaviour of entities. The approach proposed in this thesis falls in this
category of reputation systems and deals with the ability to assess trust and distrust, utilizing
a dynamically formed and maintained network of transacting entities where the reputation of

service providers and nodes who recommend them is constantly evaluated and updated.

4 CHAPTER 1. INTRODUCTION
1.1 Problem Statement

As mentioned earlier, high volume and high velocity virtual interactions are becoming increas-
ingly common nowadays and, in most cases establishing, updating, and maintaining trust is not
always possible either due to the sheer complexity of the interactions, or due to limited access
to past behaviour entities have exhibited when interacted with other entities. This issue can
be addressed using a trust-maintenance system that is based on the dynamic management of
reputation models between clients, recommenders, and service providers.

The problem description pertaining this thesis can thus be formulated as follows:

Given a set of service providers SP = {SP;,S P,,...,S P,}, a set of service clients SC =
{SC1,SC,,...,5C,,}, sets of clients R; ¢ SC and which act as recommenders for service
provider S P;, upon the request of a service client S C; requesting the opinion service clients
S Cy € R; have about service provider S P;, devise a framework where a) client SC; is able to
select an appropriate service provider S P; based on the recommendations (i.e. evidences) it
received from other clients S Cy € R;; b) upon using the service provider S P;, client S C; is able
to assess and update the reputation of S Cy as a competent recommender; c) client S C; is able
to make itself available as a future recommender for service S P;; d) the proposed approach is
able to identify and isolate malicious recommenders within a practical period of time and; e)
make use that the network of transacting entities is stable and its time and space performance

are tractable.

1.2 Outline of Approach

In this thesis, we propose a technique that is based on a network of interacting entities acting
as either service clients (S C) or service providers (S P).

Service providers (S P) are entities which act as proxies to actual services offered by dif-
ferent third party external systems. Therefore, each service provider node S P; in the network

is a proxy that corresponds to a single externally offered service and, if one wishes to provide

1.2. OUTLINE OF APPROACH 5

different services, multiple S P; nodes must be modelled and registered.

Service clients (S C) correspond to entities that connect to the system to seek, select, and
use services. Service clients can evaluate the positive and negative aspects of the individual
interactions they had with service providers by applying and evaluating a model that denotes
the expectations the specific client has on the service provider which is based on the service’s
QoS published characteristics. Such a model can be denoted using fuzzy rules, goal models,
and 1* models to name a few. Service clients can select a service not only based on their prior
experience of using a service provider but also, based on recommendations they receive from
other clients (i.e. the recommenders). In this respect, the clients can also evaluate and update
the quality of the recommendations they have obtained from the recommenders by comparing
the recommendation versus their own experience after using the recommended service. The
values pertaining to the individual interactions are not valid forever. After a predetermined
amount of time, they are considered stale and are excluded from consideration for the calcula-
tion of their cumulative equivalents. Compensations can be given by service providers which
have failed for reasons beyond their ability to offer the expected QoS so they avoid negative
evaluations, while incentives can be given by new or lower ranked service providers so that
they can be selected again and enter the network.

The overall approach can be described in eight main steps.

Step 1. A Service Client S C; seeks to select a service provider.

Step 2. The Service Client S C; reaches out to three types of other clients who can act as recom-
menders of available service providers S Py ... S P;. The first category of recommenders,
that S C; reaches out to, includes the clients S C,. s, Wwho have the highest overall rep-
utation as recommenders. The second category of recommenders involves all clients
S C triends> from which § C; has gotten good recommendations in the past. The third cate-
gory of recommenders contains all clients S Cy, (friends-of-friends), who are known to

be good recommenders by clients belonging in the previous category.

Step 3.

Step 4.

Step S.

Step 6.

Step 7.

Step 8.

CHAPTER 1. INTRODUCTION

Service client S C; assesses the positive and negative aspects of the recommendations it
receives and applies a reasoning algorithm based on the Dempster-Shaffer theory of evi-
dence to compile a ranking of available services. Information about available incentives
are, also, considered, allowing new or reformed services to be selected over established

ones and actively participate in the network.

Service client § C; selects and uses service provider S P; and, subsequently evaluates the
positive and negative aspects, based on its experience from using S P;, by applying an

evaluation model (in our case goal models for trust and distrust).

In case of a service provider S P; which is highly ranked but fails to provide the ex-
pected QoS, compensations can be given to its clients so that it can avoid being ranked
poorly. The service client can choose to accept the provided compensation, and update

the observed trust and distrust values, or not.

The observed trust and distrust values, updated after receiving a compensation or not,
are used by service client S C; to a) update its cumulative opinion (positive and negative
aspects of it) about service provider S P; and; b) update its opinion about the recom-
menders, whose recommendation it used, by comparing said trust and distrust values

after using S P; with the one proposed by said recommenders.

The updated individual opinion of S C; towards its recommenders in this interaction is

used to update the overall reputation of those recommenders.

Stale service provider scores and stale recommenders are removed from the network us-
ing a time-window approach, while important values for overall reputations are selected

through a variation of the Adaptive Replacement Cache policy.

1.3. THesis CONTRIBUTIONS 7

1.3 Thesis Contributions

The work presented in this thesis proposes several elements that contribute to the state-of-the-

art in the area of reputation-based trust systems as follows:

CI:

C2:

C3:

The proposed approach evaluates both trust and distrust values for service providers and
reputation values for recommenders, in a dynamic way that, when combined with the
proposed algorithms, leads to significant improvements in resiliency in the presence of
malicious users, over existing approaches up to date. Most frameworks evaluate their
performance for malicious users accounting for up to half of their respective users, in
which case our proposed framework has a successful transaction rate that is 5%-15%
higher than the ones we compared it to. Where our approach significantly outperforms
related frameworks, however, is when higher percentages of dishonest users are involved.

In such scenarios, the discrepancy in successful transaction rates can be up to 20%.

The proposed approach builds upon a model of interactions that closely simulates trust
behaviour between humans in social interactions, thus leading to a system that exhibits
a highly stable and resilient behaviour in the presence of even radical oscillations of ob-
served trust values. Historical values are also taken into consideration, both for positive
and negative aspects of an interaction (i.e. trust and distrust values) clients have with
service providers and recommenders, and novel algorithms are utilized for the update
of said values, resulting in a framework that avoids sudden fluctuations resulting from

interactions that are considered outliers or happenstance.

The proposed approach yields an architecture which can be deployed both in a central-
ized or distributed manner. Existing approaches can only be deployed in one way or
the other. Our approach can be utilized by an application or system operated and main-
tained by a central authority, thus requiring a centralized architecture, or can be part of
a distributed network of agents, in which case a distributed variation can be deployed.

Our approach can even be deployed as a number of smart contracts in any appropriate

C4:

CS5:

Cé:

CHAPTER 1. INTRODUCTION

blockchain, to be used in tandem with different functionalities offered in the correspond-

ing metaverse.

Another contribution pertains to dealing with the calculation of the global reputation of
recommenders where we propose a novel method, based on the Adaptive Replacement
Cache (ARC) protocol. In contrast to all other approaches, which either take every avail-
able node’s opinion into consideration or filter only based on a specific threshold, the
proposed method only considers reputation values that are deemed significant. Signifi-

cance is decided on the merits of recency and frequency of opinion in question.

The proposed approach allows for combination of independently evaluated positive and
negative evidences (i.e. trust and distrust values) to provide a comprehensive ranking of
available service providers. The vast majority of proposed reputation systems evaluate
a service provider based on positive evidence or criteria, whereas a few of them focus
on negative interactions. An even smaller number of approaches utilizes risk as an ex-
tra dimension to account for short term changes in behaviour. Our approach, however,
provides the infrastructure for the calculation, propagation and utilization of positive and
negative evidence that are considered distinct and separately evaluated. The framework
is easily customizable and different algorithms for using available values for providing a

service ranking can be incorporated.

Even though previous approaches have dealt with the issue of data aging, a decay func-
tion or parameter, applied on the corresponding cumulative value, was utilized by most
of them. Very few frameworks have handled the matter by discarding old values alto-
gether and, in these cases a recalculation of the cumulative value is required. We propose
a novel method for discarding obsolete reputation values without recalculating the cor-
responding cumulative values every time, thus improving the framework’s performance
and network impact. This allows us to get the benefits of the dynamic behaviour, offered

through the aging of available recommendations, and, at the same time, being able to

1.3. THesis CONTRIBUTIONS 9

accommodate a larger number of users and corresponding interactions.

C7: We propose a novel method based on Incentives to allow for new service providers,
and service providers that have improved their performance, to be selected over already
established service providers. In either case, the perceived behaviour of the incentive
providing service is not consistent with the actual behaviour, either due to the service
being new or because of underperforming in the past, and incentives are offered to allow
said services to be selected, and eventually prove themselves, over their higher ranked
counterparts. The proposed method facilitates the introduction of new services and the
discovery of behaviour changes in old ones, thus, leading to system behaviour that is

more dynamic.

C8: Finally, we propose the concept of Compensations to allow for historically well-behaving
services to not be penalized for lower QoS due to extenuating circumstances. In case of
a service that has performed as expected for a significant amount of time, occasional and
short-lived drops in quality of service should not cause significant decreases in the level
of trust put in their ability to perform up to standard, especially if the circumstances under
which those bad interactions occurred are out of the provider’s immediate control. To
ameliorate such behaviour, we allow service providers to offer compensations to affected
service clients. This approach allows for a system that remains stable when a service’s
behaviour hasn’t actually degraded, but has only been temporarily altered due to external

events.

The above lead to a framework for which evaluation results indicate that is highly stable and

resilient in the presence of a high number of malicious users (i.e. malicious recommenders).

10 CHAPTER 1. INTRODUCTION
1.4 Thesis Outline

The thesis is organized as follows. Chapter [2| discusses related work on the topics of repu-
tation systems, recommender systems and requirements and awareness modelling, as well as
background information on Publish-Subscribe middleware frameworks, distributed databases,
fuzzy reasoning and the Dempster-Shafer evidence theory. Chapter (3| presents the details on
modelling choices, regarding entities, relations and recommendation sources, and provides an
outline of the overall process followed by our approach when requesting recommendations and
using an available service, as well as an example. Chapter {] introduces and explains the algo-
rithms created to accommodate the needs of the system, namely trust/distrust evaluation, repu-
tation assessment, handling of obsolete values and ranking of services. The example included
in the previous chapter is expanded to include the calculations required as part of the process.
Chapter [5] presents the architecture of the proposed framework, providing several options in
order to accommodate centralized or distributed needs. The process is revisited to indicate the
utilization of the specific components and the messaging protocol used by the individual com-
ponents to communicate is discussed. Details about the implementation of the prototype for
the proposed approach, along with experiments executed to evaluate its performance and capa-
bilities in the face of malicious users and dynamic service behaviour, are presented in Chapter
[l Finally, the thesis is concluded in Chapter [7, where a discussion about the behaviour of
the proposed approach is included, some open issues are identified and pointers for further

research are provided.

Chapter 2

Related Work and Background

In this chapter, we present the background and related work for all aspects of our presented
approach, including reputation systems, modelling of requirements and incentives using goal

models and consensus mechanisms in distributed systems.

2.1 Reputation Systems

Virtual interactions have been a commonplace over the last couple of years, with most of them
occurring without prior real world relationship between the participating entities. Social media
and the metaverse have exponentially increased the frequency of such interactions and have
expanded the context and content of said interactions. Because of that, there is a pressing need

for a way to evaluate an agent’s credibility or trustworthiness.

Reputation systems are the solution to that problem and they have been researched for
academic purposes and utilized for commercial reasons alike. The term incorporates all ap-
proaches, either algorithms or frameworks, that deal with estimating, updating, maintaining
and propagating trust. Application include e-commerce, P2P file sharing networks, Web ser-

vices, group decision making, e-governance etc.

11

12 CHAPTER 2. RELATED WORK AND BACKGROUND

2.1.1 Reputation Systems Taxonomy

Several surveys have been contacted regarding reputation systems [33] 43, 51} 142, 150, 138, 44,
39, 154]], with each of them proposing their own taxonomy based on their main incentive. All
of them, however, introduce several common dimensions that seem to be ubiquitous among
reputation systems, whether commercial or academic.

First and foremost, reputation systems are divided into implicit and explicit. Platforms and
systems that provide a reputation mechanism that is, however, not explicitly defined are con-
sidered implicit reputation systems. Social networks are a prime example of such systems, as a
degree of trust can be inferred by observing connections to friends and assessing whether the
friends are considered reputable or not. Another example would be Google’s search engine,
whose order of results indicates a difference in reputation. Of course, in implicit systems no
mechanism for evaluating reputation and inferring trust is implemented, so further discussion
about characteristics would be meaningless. Explicit reputation systems, on the other hand,
provide a specific method of assigning reputation to different entities and are utilized in envi-
ronments that rely on frequent interactions between those aforementioned entities.

In order to implement a reputation system, a number of choices have to be made regarding
some of its characteristics. Some of them pertain to the evaluation of the trust and reputation
values, whereas other deal with governance and deployment issues.

One of the main dimensions of reputation systems involves the type of historical reputation
values maintained. Some frameworks choose to utilize global values for every entity in the
system. Others prefer personal or subjective opinions that are pairwise values and correspond
to the personal opinion an entity has about another. Both of those approaches have their ad-
vantages and disadvantages. Global reputation values allow for a more consistent view of the
current state of affairs, but can be detrimental in case of malicious users. This approach also
requires a central authority or additional processing power to be disseminated. Personal repu-
tation values are much faster to compute, can be implemented in a distributed or decentralized

environment and allow for a more personalized view of trustworthiness, but they are not always

2.1. REPUTATION SYSTEMS 13

consistent with the current state and usually require a longer time before identifying changes
in behaviour of entities. The majority of reputation systems use global values when it comes to
reputation of entities, which, although it introduces vulnerabilities to malicious attacks, scales

better for larger systems.

The utilization of multiple contextual information or not is another question that comes
up when creating a reputation system. Specific contextual attributes can provide additional
meaning to occurring transactions. A small number of available systems have opted to take
extra information into consideration when evaluating a user’s reputation, such as ability to
provide resources to the network [41]] or after sales service and delivery time in case of buying
goods [52]]. Most of proposed systems, however, operate in a specific domain and maintain a

single context throughout the system.

Another very important aspect of reputation systems involves the collection of information
regarding previous interactions between entities. The most straightforward way of obtaining
said information would be through direct observation. This includes both personal interactions
and interactions that can be directly observed, as is the case in wireless networks for example.
Indirect information could also be obtained by inquiring other entities and asking for the ex-
perience they have acquired through previous interactions. Lastly, a reputation system can use
information that are derived, meaning that they weren’t originally intended to be used by said
system as a reputation source. GRAft [45,146] is one of the few frameworks that utilize derived
information though. Most of the systems use a combination of direct and indirect experience,

with one complementing the other.

Representation of reputation values is another choice that reputation systems have to make.
Several formats have been proposed over the years but some are more common than others.
If an interaction or reputation of an entity is represented using boolean values, the representa-
tion is considered binary. Other options include discrete and continuous representation where
values are discrete integers or floating point numbers respectively. Those are the three most

commonly used formats, depending mostly on the domain the approach is applied on. Some

14 CHAPTER 2. RELATED WORK AND BACKGROUND

frameworks utilize some more obscure format that include a string or a vector, if the reputation
value needs to stay decomposed into values coming from multiple sources.

Aggregation of said reputation values is also required in the context of reputation sys-
tems. Most of the available frameworks use some form of counting computation method,
which includes summation of positive and negative feedbacks and averaging, weighted or not,
depending on the format of reputation values. A few of the proposed approaches use dis-
crete [53l](involves converting discrete values into ratings using look-up tables), probabilistic
[58159] (uses probability models to predict likelihood), fuzzy [11] (utilizes fuzzy logic), or flow
[3 5] (examines the flow of transitive trust) computation. The option of not aggregating is also
explored (45, 46].

As far as implementation of the frameworks goes, a distinction needs to be drawn between
different levels of reputation presence. In fully centralized systems, the underlying authority
needs to be online for the reputation to be available, while in distributed or fully decentralized
systems, authority presence can be partial [S5, |56] or reputation values can be distributed
even if authority is offline. Tying into the implementation of an approach and its governance
authority, more specifically, options include centralized or distributed control.

Last but not least, reputation systems can be further categorized based on some charac-
teristics of the values maintained. Reputation information can be either atomistic or holistic,
depending on whether information is provided per transaction in a detailed manner or as a sin-
gle, overall value respectively, and can be filtered or not. Furthermore, different approaches
deal with data aging in different ways. Some provide none, while other decay older values as

time passes [40] or allow for the death of old and obsolete reputation information [S7].

2.1.2 Commercial Reputation Systems

One of the most well-known commercial reputation systems is provided by Amazon [47]. After
completing the purchase of a product, a user can provide a review consisting of a numeric rank

(5 stars or less) and a feedback message. Other users can rate those reviews as helpful or not

2.1. REPUTATION SYSTEMS 15

not helpful and they can, then, be ordered, based on those ratings. Review authors’ reputation
depends and fluctuates based on those ratings.

eBay is another example of commercial reputation systems and has been very well re-
searched [35) 37, 134} 48], 149]. What sets this reputation system apart is its choice to request
feedback from both parties participating in a transaction. After each transaction, each partic-
ipant provides an overall discreet rating, some numerical ratings for different aspects of the
transaction and a comment.

Stackoverflow also utilizes a reputation system to ensure the quality of questions and an-
swers provided by different users. Asking and answering questions is encouraged, since those
are the actions that earn reputation points. Different abilities are unlocked after a certain rep-
utation level is achieved and points can be deducted for certain reasons (e.g. voting down).
Reputation score is represented through a discrete value that corresponds to the reputation

points the user has accumulated.

2.1.3 Academic Reputation Systems

One of the earliest approaches is presented in [3]. The EigenTrust system is based on the idea
originally put forward by Google’s PageRank algorithm [4]. In that system, trust is global and
depends on the experiences of every other user involved. A global reputation value is computed
and provided by the system for every node that participates in it. The algorithm assumes the
presence of already trusted users and considers the ability to provide recommendations and the
ability to provide a service to be one and the same. In our approach, recommenders and service
providers are treated as separate entities with different reputation scores and different ways of
updating them over time. Furthermore, when it comes to ranking services, only the opinions
of recommenders with the highest scores are taken into consideration, thus allowing for faster
computation and disregard of opinions coming from users that might be malicious. Finally,
since the EigenTrust system depends on a set of pre-trusted users, proper execution relies on

those users remaining honest. In our framework, however, all reputation values are subject to

16 CHAPTER 2. RELATED WORK AND BACKGROUND

change and noone is considered trustworthy forever.

A distributed approach based on EigenTrust is proposed in [S]. The framework is called
PowerTrust, and it uses the realization that most feedbacks derive from a subset of the available
users, consisting of a few “power” nodes. Local trust values are initially computed, and random
walks are subsequently performed to aggregate and provide a global value. Upon identifica-
tion of said power node, Markov chains and look-ahead random walks are utilized to update
global values. Those global values are the only ones considered when requiring a rating of
nodes, which contradicts our approach, where personal opinion of both recommender nodes

and service providers is considered, as well as opinions of expert nodes.

The XRep system [6] proposes the utilization of both user-provided ratings and resource-
based reputation to evaluate a user’s trustworthiness. Cluster computing is performed to weigh
different ratings and marginalize malicious users. XRep can only be utilized in types of net-
works and services where specific resources (i.e. files) are provided and assessment of both
the resource and offerer is binary. Our framework allows for more granular rating of service
providers and recommenders alike. Recommenders’ reputation is, moreover, utilized to weigh
opinions of recommenders regarding both offered services and other recommenders. Last but
not least, XRep only deals with malicious users regarding their capacity to create multiple
accounts in an attempt to game the polling system, whereas in our approach weighing of opin-
ions is used to identify and isolate users that are maliciously underrating or overrating specific

service providers.

Another approach to the issue of evaluating trust based on reputation is proposed in [§]]
through the P-Grid system. The premise, in which the system is based on, is that the majority
of users are non-malicious.This assumption hinders it from accommodating higher percentages
of malicious users, in contrast to our approach. Complaints are the only feedback taken into
consideration when accounting for reputation within the system and trust is binary (i.e. user is
trustworthy or not trustworthy) in this approach,as well. Again, complaints are all considered

of equal importance since reputation is binary and opinions are not weighed based on the indi-

2.1. REPUTATION SYSTEMS 17

vidual user’s granular reputation. Furthermore, complaint generation is not incentivized, under
the proposed aggregation formula, since they harm one’s trustworthiness within the system,
whereas in our framework abundance of ratings is encouraged and allows for better assessment

of users.

REGRET [7] employs a different approach compared to previous work. Reputation is par-
tially inherited through the groups a user participates in. Personal opinions are also taken
into consideration to compliment the reputation aspect of the framework. However, for group-
inherited reputation to be used, REGRET assumes a sociogram (i.e. graph with social relations)
is available to the user and a minimum number of interactions of the user in question has to
have occurred within that group. There is, also, no distinction between recommenders and ser-
vice providers and global reputation for the user proposing a target service is calculated every
time. Furthermore, relations are non-directed, assuming that trust is identical for both parties,
and they can be either cooperative or competitive. Finally, different reputation types are al-
lowed based on the nature of the transaction, although they have to be specified system-wide,
and individuals store separate values for each of those types. In our approach, we have opted
to use goal models to evaluate different aspects of different transactions, thus allowing users to

customize their preferences even further.

R’Trust [9] is a reputation and risk based trust management framework that is fully dis-
tributed and is also applicable in the context of P2P networks. In this approach, both reputation
and risk are taken into consideration when evaluating a user’s trustworthiness. Transactions
can have a number of distinct outcomes and direct opinions are expressed by counting the dif-
ferent outcomes of those transactions. All available recommendations from other peers are,
also, taken into consideration and are weighed based on the recommender’s reputation. Said
reputation is adjusted based on the result of the interaction. The idea of time-dependent decay
of values is also introduced in this approach, but no value is eventually considered obsolete, as
opposed to what happens in our proposed framework. Moreover, recommender and provider

reputation are considered one and the same, as is the case in most P2P systems. We, however,

18 CHAPTER 2. RELATED WORK AND BACKGROUND

opt for a distinction between the two as it allows for better assessment of opinions depending

on the role we wish to evaluate.

PET [10] is another model based on trust and risk alike. While reputation is formed based
on long-term behaviours, risk is utilized to mitigate short-term behaviours that might indicate
error or maliciousness. The approach is specifically geared towards file sharing P2P systems, so
interactions are scored using distinct values, and personal opinions are produced by classifying
resources based on their category and affect both reputation and risk values. Recommendations
are supplied by every peer in the network and only affect the reputation aspect and not the risk
component of the system. Every available recommendations is considered and all of them bear
the same significance, regardless of the recommender’s reputation, thus failing to utilize trust
to address the potential for malicious users in the system, which is a possibility we consider
in our approach. Risk values are the ones used to detect malicious users,but are only based on

direct observations and consider a smaller time window.

In FuzzyTrust [11], users maintain local trust values for providers with whom they have
previously transacted. Global reputation is calculated by aggregating those local trust values
using different weights based on a set of parameters. Fuzzy trust models are utilized to generate
both the local trust values and the weights, corresponding to each recommender’s opinion, and
separate fuzzy rules have to be defined based on the specific domain. A threshold can be set
regarding weights to specify which peers will be consulted, thus avoiding heavy network traffic
in hot spots. Unlike our approach, there is no distinction between recommender and provider
reputation. Moreover, the system has to run for multiple iterations, similar to EigenTrust[3],
before the reputations converge to their final values. Lastly, the framework seems to detect the
majority of malicious users in a few iterations, but has only been tested for low percentages of

dishonest peers(i.e. 30%).

ARRep [12] is mainly geared towards fending off malicious attacks. It combines direct
and recommender proposed trust and utilizes a transaction decay function to prioritize the

requester’s direct experience. Direct trust comes from counting the satisfactory and unsatisfac-

2.1. REPUTATION SYSTEMS 19

tory transaction the user has had with a particular provider in the past. Note that transaction
result is binary, which is feasible as the system is geared towards P2P file sharing networks.
Recommended trust occurs by considering all available values other peers have to offer. Each
opinion is weighed based on the similarity and size of common set of opinions between request-
ing user and recommender. No historical reputation value for recommenders is maintained by
the users, in contrast to our approach, and similarity is based on the opinions of recommenders
for other users. Transaction existence is, also, verified, preventing recommenders from fraud-
ulently rating users, with whom no transaction has occurred. Extra file nodes are required for
the implementation of the framework and a Distributed Hash Table, similar to the one used in

[8]], to store past interactions.

Reputation frameworks have been utilized in the network domain too. The CONFIDANT
protocol [13]] requires all participating nodes to maintain a reputation value for each one of their
neighbours in the network. Behaviour of neighbours is monitored, and if an event is deemed
suspicious, the system updates the rating of the event’s producer. The reputation value accounts
for all previous experience and no interaction is ever deemed obsolete, thus not allowing for
reformation of previously malicious nodes. If a node is considered malicious, nearby friend
nodes are notified and the path containing said node are excluded from consideration for good.
A prepopulated set of friends is assumed by the protocol, which hinders the adaptability of the
protocol but is reasonable given the type of networks that are addressed. Incoming accusations
are weighed based on the reputation of the submitting node and are only taken into account if

they exceed a certain threshold, so as to avoid coincidences (i.e. network collisions).

Another approach dealing with selfish nodes in overlay networks is proposed in [14]. A
reputation is maintained for each node based on willingness to fulfill network requests. Per-
sonal experience and peer testimonials are taken into consideration. Testimonials are weighed
based on the peer’s reputation. Like in other approaches, this one treats rating and fulfilling
requests as one and the same when it comes to reputation, which hinders its ability to evaluate

different type of behaviours in a more granular way.

20 CHAPTER 2. RELATED WORK AND BACKGROUND

Even though there is an abundance of approaches concerning reputation in peer-to-peer
networks, very little research has been conducted on reputation of web services. In [15], web
services interfaces are published in a centralized registry and users have the option of choosing
an implementation for a particular interface based on its reputation. A web service’s reputa-
tion is derived from historic values supplied by previous users of the service and ratings are
provided as a set of attribute values related to the offered service. Different application users
can provide thresholds and weights for certain attributes or risk tolerance, in which case ser-
vice selection will differ from person to person. Attributes can even have different weights
based on the domain the belong to, thus allowing for more personalized ratings. Every rec-
ommender, however, is considered to be honest and all opinions are of equal importance. In
our framework, malicious users are considered a possibility, which is the reason why recom-
mendations are weighed according to each recommender’s reputation and only the best of the
recommenders are consulted. Furthermore, even though an algorithm for aggregating ratings
and damping old values is mentioned, the authors of [15] mostly focus on the conceptual model

of the attributes that comprise available ratings.

In [16], authors propose an ontology model to discover the most trustworthy service de-
pending on the consumer’s preferences. Service providers register their implementations of
service interfaces and service agents are created by the framework for each available inter-
face. Providers advertise policies for their services and consumers specify QoS needs using a
3-tiered ontology proposed. Services are ranked and matched based on the policy, provided by
the service as part of registering for the particular ontology they belong to, and the preferences
provided by the consumer. Ranking is based solely on the values offered by the providers and

no historic ratings by other users are considered.

The framework is extended in [[17, (18] and sharing of ratings is introduced. Service imple-
mentations are still selected based on the providers’ advertisements and the consumers’ QoS
requirements but the trust model has been extended to allow for reputation, deriving from opin-

ions of other users, to be taken into consideration. Agents are connected to ontology-specific

2.1. REPUTATION SYSTEMS 21

agencies, where information about previous interactions are stored. Service quality reputa-
tion can either be a simple aggregation or capture relationships between different attributes.
Furthermore, it is assumed that all participating entities act in an honest way, which is not al-
ways the case in real-world applications. Because of this assumption, everyone’s opinion bears
equal weight in the calculation of the service’s reputation and there is no way for the proposed

framework to identify dishonest users.

RATEWeb [[19]] 1s a framework proposed to establish trust among web services by assessing
reputation. In this approach, a central authority is tasked with maintaining a list of the avail-
able services and the users that have previously interacted with each of them,which hinders
the frameworks ability to be used in a distributed environment. When a user requires a spe-
cific service, a query is initially issued to discover the list of available services and ratings on
those services are subsequently requested by users participating in that particular community.
The requesting user then calculates the services’ reputations, taking into account all available
ratings and submitting users’ reputation. The service ranking is performed using clustering of
provided ratings. The service with the highest score is selected and the user rates and stores
the rating after using it. That particular approach performs well as long as the majority of users
are honest, as opposed to our approach, where higher percentages of malicious users can be

accommodated since a subset of all recommendations is considered.

Trust and reputation have recently been considered as an important factor influencing de-
cision making and consensus reaching in group decision making scenarios [132]. Large scale
social networks can be used to acquire a social graph and trust can be utilized to spread experts
opinions and provide recommendations, thus facilitating the negotiation between agents lead-
ing to mutually acceptable agreements [[133] 134}, [136]]. In those systems, agents provide their
opinions, said opinions are aggregated, general consensus is calculated and, then, feedback is
provided to all or some members of the network to consider in the negotiation process, thus

facilitating the reaching of consensus within the network.

In [133]] and subsequently in [136]], Wu et al. propose a pair of operators that allow the

22 CHAPTER 2. RELATED WORK AND BACKGROUND

propagation of trust between users of a social network, pointing, however, that those operators
have inherent issues that may be responsible for the introduction of a specific vulnerability to

the system.

When it comes to the aggregation of available opinions, fuzzy reasoning is the most com-
monly utilized approach. Yager et al. [137] proposed an operator called Order Weighted Aver-
aging(OWA), which allows weighting based on importance, as specified after ranking consid-
ering certain characteristics of the opinions. Wu et al. [[134]], on the other hand, propose that
expert opinions are requested. Experts reputation is calculated based on the in-degree centrality

of the node representing them in the social graph and their opinion is weighed based on that.

Other frameworks tackling the issue of group decision in social networks include the ap-
proach proposed by Wu et al. [135] and DeciTrustNET [138]. The former models trust rela-
tionships with linguistic information. A formalism for linguistic distribution is provided and
a way to assign distributed linguistic trust, based on the set of actors, their attributes and the
corresponding relations, is defined. Said trust values are aggregated using a weighted average
operator and an attempt for reaching consensus is made. Feedback is provided to inconsistent
users, who are forced to implement recommendation advices based on the cost they can afford,

in order to reach the threshold value of group consensus degree.

DeciTrustNET [138]], on the other hand, is a framework that takes into consideration users
relationships that are part of the underlying social network and evaluates trust and resulting
reputation based on social interaction characteristics and quality, user-provided feedback and
evolution of each user’s behaviour. Similarity of user profiles in the social network is consid-
ered, as well, to provide further insight on the trust a specific user puts in any other participant

of the network.

Several theoretical approaches have, also, been proposed in the literature regarding the
propagation of trust within an existing network of users. The main goal is to calculate trust
values between a pair of agents that have no prior interaction with each other. Trust propagation

models work under the premise that a user is more likely to trust the opinion of someone they

2.1. REPUTATION SYSTEMS 23

consider trustworthy. In Guha’s et al. [20] model, trust may be propagated in one of the
following four ways: a) if user i trusts user j and j trusts k, then i trusts &, b) if i trusts j, then
J at least partially trusts i, c¢) if i; trusts j; and j, and i, trusts j;, then i, may also trust j,, d) if
i trusts j, then i may trust k if j and k share trust in common agents. Those propagations can
be combined in a single matrix and can be weighed differently according to preferences. The
model can, also, be applied to propagation of distrust and the user can choose whether they
want to utilize both or not.

In Bonacich and Lloyd [21], it is investigated how centrality is considered a status indicator
in networks. Centrality can be calculated using eigenvector-like measures and can be utilized
to discover nodes with high reputation within a network of users. This, however, requires
knowledge of all available values in the system and is computationally expensive, which is
why experts in our approach are chosen using a different algorithm that takes a subset of the

recommendations into consideration.

2.1.4 Recommender Systems

Due to the fact that our approach is utilized to recommend appropriate services to requesting
users, it can easily be misconstrued to be a recommender system. Recommender systems, how-
ever, are a subclass of information filtering systems and are mainly concerned with predicting
the user’s rating or choice of a service or product, based on past experience.

Since in a lot of platforms, and accompanying systems, the amount of information is too
large for a user to perceive and assimilate, specific methods and approaches are required to filter
said information and provide only the items that could be to the user’s liking. The aforemen-
tioned filtering is performed by taking into consideration each item’s and user’s characteristics,
as well as the relations between them. Several different methods have been proposed to ac-
complish the task of providing personalized services [60]. Most of them do not require the
utilization of trust related values between users, with only a few taking into account informa-

tion resulting from use of social networks or similarity metrics between different users.

24 CHAPTER 2. RELATED WORK AND BACKGROUND

One of the most commonly used methods is called content-based recommendation [61]],
where the description of different items is analyzed and the degree of similarity between items
is considered in order to recommend them to the user. Another similar approach pertains to
knowledge-based recommendations [62, |67, 168, 69], which involves maintaining a functional
knowledge base that allows the system to infer relationships between a user’s specific needs

and the item to be recommended.

When it comes to consulting other users of the recommender system, three main ways of
approaching the issue have been proposed. Collaborative filtering-based recommendations
[63.164) 165, 166] are based on calculating a similarity metric between users and recommending
items that are liked by users with similar interests. Note that, no trust value or reputation is
maintained or updated regarding other users. Similarity is calculated on a per need basis and
the process ends with the recommendations of specific items. Social networks have, also, been
utilized for social network-based recommendations|75, (76, [77]], where trust to another user is
actually considered when receiving recommendations. By exploiting the correlation between
trust and user similarity, said systems provide recommendations by utilizing reputation as the
weight in the rating prediction process. Those systems, however, use the underlying social
network to discover assigned trust, but do not maintain or update the values based on recom-
mendation result. The last technique involving other users is called group recommendation
[78,179]180] and is utilized to produce a group of user suggestions when the participants cannot
meet for negotiation, or their preferences are not entirely clear. These systems are more closely

related to the Group Decision Making (GDM) systems discussed earlier.

Finally, some computational intelligence-based recommendation techniques have, also,
been proposed, including Bayesian [71] and artificial neural networks [70]], clustering [72],

genetic algorithms [73] and fuzzy sets [[74].

As it is evident, even though recommender systems propose a number of interesting tech-
niques for acquiring and utilizing information, they make minimal use of frust in other users,

and in the few where this dimension is explored, no adjustment or updates are performed on

2.2. REQUIREMENTS MODELLING 25

the underlying social network.

2.1.5 Limitations of Related Work

First, the vast majority of the related work deals with P2P networks. In that set of scenarios,
the result of an interaction is either successful or not (i.e. binary). Furthermore, in most ap-
proaches, global history is utilized and a few use personal history. Almost none, however, tries
to combine the two in an attempt to gain access to the advantages offered by each of those
views. Another issue is that all of the frameworks presented, especially the few concerned with
trust in web services and other types of distributed components, utilize the totality of available
opinions in the network and fail to accommodate larger percentages of malicious users. So,
even if a user is identified as malicious, their recommendations are still taken into considera-
tion, even though they are weighted accordingly. Another important issue to consider is the
lack of approaches dealing with data aging by discarding values rather than using decay func-
tions Finally, the frameworks that are general purpose, regarding the types of services they can
consider (i.e. are not constrained to file exchange networks or telecommunication networks),
require a centralized authority and repository for the aggregation of recommendations. Very
few approaches offer a distributed alternative and most of them address a very specific subset

of service type, usually file sharing P2P networks.

2.2 Requirements modelling

Goal-driven modelling has been heavily researched over the last couple of years to accommo-
date several aspects of the Requirements Engineering process in all kinds of systems. Several
modelling notations, aiming at different RE activities and different focal points in the specifi-
cation of goals, have been proposed, such as i* [83]], Tropos [81] and KAOS [82].

A number of approach have, also, identified extensions to the basic goal models, allowing

for the definition of tasks and associated actions [86]] or awareness requirements.

26 CHAPTER 2. RELATED WORK AND BACKGROUND

More specifically, awareness requirements are requirements that refer to other requirements
or domain assumptions and their success or failure at runtime. Those requirements can be rep-
resented using a formal language and can be monitored at runtime. Souza et al. [85] have
proposed a framework where awareness requirements can be defined along regular require-
ments using goal models. A separate component is tasked with running feedback loops that
monitor the state of different requirements based on produced events and evaluate success or

failure of said goals and associated awareness requirements.

The model of monitoring at runtime and reconciling behaviour through goal modelling has
also been researched by Dalpiaz et al. [29], where requirements for socio-technical systems
are modelled using the Tropos modelling notation mentioned earlier. Events are monitored
and certain plans are evaluated based on specified preconditions and postconditions to identify
success or failure. In case of failure, alternative plans and goals are explored to compensate
for the inability to complete original plan of action. This modelling approach can be utilized

to discover failures within a process and propose compensations in other contexts as well.

The ability to reason on goal models, in order to verify requirements at runtime, is also of

interest in the Requirements Engineering domain.

Most of the approaches utilize probabilistic reasoning with Liaskos et al. [84] further
proposing the utilization of probabilistic effects of task outcomes. Instead of assuming that
completion of a task brings the desired result with certainty, they propose that tasks have mul-
tiple intended and unintended outcomes, each with different likelihood. To accommodate for
that probabilistic way of thinking, traditional goals were extended to include probability of
success. They, also, put forward the idea of utility, which needs to be maximized as well.
Reasoning takes into consideration both minimum success rate for each goal and maximum

provided utility.

Chatzikonstantinou et al. [24], on the other hand, propose a framework that performs rea-
soning on fuzzy goal models. Truth values corresponding to the leaf nodes of the goal models

are represented as fuzzy values and the propagation to the root nodes is performed in parallel

2.3. CoONSENSUS IN DISTRIBUTED SYSTEMS 27

utilizing fuzzy logic, which allows more expressiveness and produces results that are easier to

interpret.

2.3 Consensus in Distributed Systems

The problem of consensus is multi-faceted and is important to a variety of different applications
and systems. Even though consensus is mostly related to distributed applications and their
ability to agree on a specific value or set of values, it can, also, be viewed as an issue of
resisting malicious behavior from a subset of the users participating in a specific service.

As described in [89]], traditional consensus problems are divided into one of three categories
and deal with algorithmic ways of ensuring agreement between different parties.

In the original consensus problem, each process proposes a single value, coming from
a set of already specified values. All processes then communicate with one another and at
the end three requirements must be met. Every process must have set its decision variable
(Termination), all processes must bear the same decision value (Agreement), and if all correct
processes proposed the same value, then all correct processes have chosen that value (Integrity).
Variations of the last requirement may occur, based on the application.

A variation of the consensus problem is the Byzantine generals problem. This problem
is almost the same as the previous one, with the only difference being that only one value is
proposed by the leader. The same requirements must be met, again with the correct value being
the one proposed by the leader. A minor difference, also, exist in the Integrity requirement,
which can be reached only if the leader is correct.

Another variant is called interactive consistency, where processes agree on a vector of
values, rather than a single value. Requirements are virtually the same, with integrity meaning
that if a process p; is correct, all correct processes decide on v; as the value corresponding to
Ppi, in their vector.

Consensus problems can be regarded as specific to arbitrary process failures, they can be

28 CHAPTER 2. RELATED WORK AND BACKGROUND

useful for crash failures and other problems that require opinion agreement. Solutions to those
problems can be applied to synchronous systems, but no guarantees can be provided for asyn-
chronous ones [87]. Other methods, like failure detectors [88]] or randomization, have been
used to approximate consensus in such environments. The idea of soft consensus has also
been put forward for non-critical systems, where reputation of agents can be used to decide on

correctness of opinion.

2.4 Reasoning Under Uncertainty

Certain parts of the process performed by the proposed framework require reasoning under
uncertainty. Ranking of services has to be able to take into account positive and negative
evidence and produce a belief interval based on all the available information. Interactions with
specific service must, also, be evaluated, but the information provided is not always distinct and
precise. Sometimes the result of an interaction is not binary and a more elaborate representation

and way of evaluating is required.

2.4.1 Dempster-Shaffer

The Dempster-Shafer evidence theory [22] is a general framework that allows its users to reason
in cases where uncertainty is involved. This theory is a generalization of the Bayesian theory
of subjective probability and allows for the combination of evidence from different sources and
calculation of a degree of belief, taking all said evidence into consideration.

Two steps are involved in the calculation of the degree of belief in one or more propositions.
Subjective probabilities are assigned to propositions that are considered answers to a specific
question, and, if multiple evidence are available, they are combined to provide a single degree
of belief.

Note here that, contrary to other probabilistic theories, probability values are assigned to

sets of possible answers, rather than single ones. In case of evidence that point to a single

2.4. REASONING UNDER UNCERTAINTY 29

proposition, a unit set is created. Since the main objective of the theory is to be able to rea-
son with uncertainty, degrees of belief are assigned to each member of the power set of the
propositions and said belief is represented as an interval. The bound of this interval correspond
to belief and plausibility. The first one takes into consideration the evidence in favour of a
proposition, whereas the second one accounts for the probability remaining after accounting
for evidence that are against a proposition (i.e. 1 minus belief to all subsets not containing
proposition in question).

The theory, also, provides different ways of combining beliefs from different sources, based
on assumptions made by the specific domain. Conflict between independent sources can be
detected using the probability masses and a degree of ignorance can be specified, meaning that
one does not have to provide probabilities that add up to 1.

The Dempster-Shafer evidence theory, as well as the available combination rules, have
been researched [[104] [105]] and utilized in various domains, such as neural networks [106],
classification algorithms [107], ad hoc networks [108] and geographical information systems

[109].

2.4.2 Fuzzy Logic and Reasoning

In traditional boolean logic , the values are binary truth values (i.e. true or false) and the
corresponding operations and rules are applied to such type of values and produce results of the
same nature. Some times, however, this approach does not suffice when considering scenarios
where uncertainty is involved. So, based on the observation that decisions in the real world
are made in a non-binary way, fuzzy logic was introduced to deal with the need to represent
vagueness. In that form of logic, the variables can bear a range of values (i.e. many-valued
logic), usually a real number between 0 and 1, in an attempt to accommodate the presence of
partial truth.

Several systems have been proposed for fuzzy logic, but the most well-known is the Mam-

dani rule-based approach [110]. According to that approach, a numerical input is assigned to a

30 CHAPTER 2. RELATED WORK AND BACKGROUND

set of predefined fuzzy sets with a degree of membership, fuzzy rules are, then, applied based
on those degrees and the final output is transformed from a fuzzy truth value to a continuous
variable, using any of the available defuzzification algorithms.

Another commonly used system is the one proposed by Tagano-Sugeno-Kang [111]], where
the final step of the process is integrated into the execution of the fuzzy rules.

Fuzzy reasoning has been researched in many different contexts, such as PID controllers
[112], petri nets [[115], goal models [24], neural networks [113]], classification [114] and secu-

rity [116].

2.5 Background on Supporting Technologies

To support the proposed architecture and corresponding implementation of our framework,
utilization of some additional technologies and corresponding frameworks is required. More
specifically, use of a Publish/Subscribe system is paramount for the dissemination of events
regarding updates in trust, distrust and reputation values, and employment of a distributed
database for saving the relation and corresponding values will allow for replication of certain

parts of the proposed framework, thus improving its performance and potential throughput.

2.5.1 Publish/Subscribe Systems

Message brokers or Publish/Subscribe middleware systems are components used to facilitate
communication between different applications or services. They are based on the publish-
subscribe pattern, according to which publishers are not sending messages directly to inter-
ested parties, but rather categorize them, using any of the available methods. Subscribers, on
the other hand, explicitly express interest in specific categories of messages and are notified
when they become available. Neither party is aware of the other one, thus avoiding coupling
between different applications.

Scalability is another advantage of such systems, since there is no need for connection

2.5. BACKGROUND ON SUPPORTING TECHNOLOGIES 31

between publisher and subscriber and the brokers can be replicated and forward messages in a
much more efficient way.

Several variations of publish/subscribe systems have been proposed, based on the subscrip-
tion scheme, or message filtering. The two main methods utilized are topic-based and content-
based. According to the first approach, messages are categorized based on topics. Those topics
are logical abstractions resembling channels and they are, basically keywords that are easily
understandable and enforceable across multiple platforms. To work around the static nature of
this approach, however, the content-based method was proposed. In this approach, the sub-
scription is based on the contents of the considered events. The properties of said events are
taken into consideration when deciding whether a message is to be forwarded to a subscriber,
thus allowing for a much more dynamic behaviour. Certain constrains can be specified on the
event’s properties and they can, also, be logically combined to provide additional power to the
prospective subscriber. A third more obscure method has been proposed, as well, called fype-
based publish/subscribe. According to this approach, events are filtered based on their specific
type and closer integration with the utilized language is achievable, since type safety can be
ensured at compile-time.

The algorithms involved in Publish/Subscribe systems, as well as other methods to improve
their performance, have been researched [[117, /118,121, 119]. Contexts under which the tech-
nology has been utilized include cyber-physical systems [120], IoT [122] and fog computing
[123].

2.5.2 Distributed Databases

In case of distributed systems where information need to be shared among the different com-
ponents, distributed databases can be used to solve that problem. A distributed database is,
practically a database that maintains data in different physical locations. Of course, parts of a
distributed database can be deployed in a single server, or computer stationed in the same lo-

cation, but can, also, be dispersed over computers that are loosely coupled through any kind of

32 CHAPTER 2. RELATED WORK AND BACKGROUND

network. Note, also, that said computers can either be owned and operated by a single organi-
zation or can be independent and completely decentralized. Two processes that are distinctive
in distributed databases are replication and duplication. Replication involves monitoring all
parts for changes and updating each replica, once one is identified. Duplication, on the other
hand, keeps all parts consistent with one predetermined master database. Further nuances are
involved in the implementation of a distributed database, pertaining to required data security,
consistency and integrity.

Distributed databases can be classified as homogeneous or heterogeneous, based on whether
all parts use the same environment to run their database. Further categorization can, also, oc-
cur if one considers the independence, or autonomy, of each database, examining whether they
function on their own or a master component is required for coordination.

Data fragmentation is offered by some distributed databases, allowing for faster data in-
quiries. In this scenarios, different parts of the data are stored in different sites and queries are
performed in parallel. Different formats are, also, supported by distributed databases, with op-
tions varying from relational schemas to non-relational data models, such as key-value, graph
and wide-column.

Distributed databases are harder to maintain due to their complexity, but offer a number
of advantages compared to centralized databases. First of all, they are much easier to expand,
since the data is already saved in multiple physical locations. Moreover, they are easily acces-
sible from different networks, and they are more secure, since data are replicated and potential
loss of a part doesn’t mean loss of information.

Due to those merits, distributed databases have been extensively used and researched [124,
125, [126] for different contexts and scenarios. Those include fog computing [[127], big data
[129] medical databases [128]], search engines [[130] and, lately, blockchain distributed ledgers
[131].

Chapter 3

Modelling and Overall Process

As is the case in all reputation systems, in our approach we have to model both the participating
entities and the relations that occur between them. In this thesis we propose the concept of a
social graph between entities. The social graph models the participating entities as nodes and
the elapsed interactions as edges annotated by corresponding values. These model entities and

relations between them are discussed in more detail below.

3.1 Modeling Concepts - Entities

Every entity in the model represents a software component in the proposed framework and is
used to form the social graph of these interacting entities. These entities fall in one of the

following categories:

e Service Provider: These are model entities that act as service providers(SP). In practice,
since manual logging and analysis of interactions clients have with actual services has
been an issue in reputation systems, especially commercial ones, each SP is considered as
a proxy to a corresponding actual service. These proxies (i.e. SPs) can also gather infor-
mation about the client-actual service interaction, and allow for the automatic evaluation

of interactions clients have by using the corresponding to this proxy actual service. In

33

34 CHAPTER 3. MODELLING AND OVERALL PROCESS

this respect, the proposed model can be utilized without the need to add any specialised
logging or monitoring capabilities to the back-end actual services. Note that even though
in reality a service provider may offer multiple services, in the context of this model, each
SP entity represents a single actual service offered by a provider. Different proxy nodes

would need to be registered for each separate service.

e Service Client: These are model entities that act as service clients(SC). Each of the nodes
corresponds to a client participating in the framework and their functionality includes
requesting information about the QoS of available service providers and ultimately uti-

lizing one of those services.

e Recommender: These are model entities that act as recommenders. Recommenders are,
also, service clients(SC) whose main responsibility is to provide recommendations at the
request of their peers. They bear a score when their peers request them. They, also, bear
a reputation score based on the accuracy of the recommendations thay have previously

provided.

Note that, service clients and recommenders are represented by a single node in the social
graph constructed as part of the proposed model (i.e. the act as clients or recommenders).
Their behavior and functionality is based on the running scenario. If a node initiates a search
for available services, it is considered a service client, whereas every other client, that is not a
service provider, 1s a recommender.

All user components are assigned a unique identifier upon registering with the system and
all relations and values pertaining to them use that identifier.

A user might occupy both the roles of a service client and a service provider in real life,
but in the context of the proposed method those roles are distinct and separate nodes need
to be created for each of them. Moreover, as mentioned earlier, multiple services need to
be represented by multiple proxy nodes, even if they are offered by the same actual service

provider.

3.2. MODELING CONCEPTS - RELATIONS 35

DBl De2 DB3

.:"-INSI _ | NS2
/ = P

~ —_ P =

sC1 !}l‘ 5C2 !ﬂil‘ SC3 !‘J"

¥ v

—1 -l
SP1 s .

SP2 3

S

—_ 5P3

Figure 3.1: A network of service clients and providers

3.2 Modeling Concepts - Relations

Let us consider a deployment as the one depicted in Fig. [3.1] In this deployment, service clients
SC,, SC,, and S C; require services offered by service providers S Py, S P,, and S P;. The
service client applications may execute their own programs NS1-NS3, and may have access to
their own data stores DB1-DB3, in case of a decentralized approach. The same holds for the
service providers S P-S P; which may execute their own programs NS4, and may have access
to internal data stores DB4. Service clients and service providers can be connected via a private
network infrastructure (e.g. N.I) or a public network infrastructure (e.g. the internet). In case
of a centralized approach, the relations remain the same, with the only difference being that the
programs are executed by a central authority and all information are stored in a server owned

by said authority.

The proposed method is based on a) a service client (say S Cy) issuing a request to other

36 CHAPTER 3. MODELLING AND OVERALL PROCESS

service clients, who are considered recommenders in this iteration (say S C,, and S C3), in order
to obtain recommendations for services providers offering a given type of service b) once the
service client SC,4 uses a service (say S P;) as a result of such recommendations, i) assigns
a metric value indicating the measure of belief (trust) of how well the service provider was
perceived to have met the client’s expectations (i.e. in this case how well the service S P,
met the SC4’s expectations); i1) assigns a metric value indicating the measure of belief of
how the service provider was perceived to have not met the client’s expectations (i.e. SCy’s
disbelief on S P;); iii) assigns a metric value indicating how good the recommenders S C, and
S C; were given that S C4 now has a first-hand experience using S P;. We assume that service
clients S C, and S C; have already used the service S P, and therefore are able to provide their
recommendation. The aforementioned interactions between S Cy, S C,, S C3 (i.e. requests for
recommendations, responses to requests for recommendations), and between S C4 and S Py (i.e.
service invocations, service responses) create the social graph previously mentioned, where
nodes are either clients (and recommenders) or service providers, and edges are these types
of interactions. An example of such a graph can be seen in Fig. [3.2] In this graph it is also
assumed that clients S C; and S Cs have already used the service provider S P, and already have
their opinions (denoted as T) for it, the client S C; has alteady an opinion about S C; to be a
good recommender, and that client S C, has already provided in the past recommendations to

SC, and S Cs.

In this respect, a level of belief/disbelief a service client has that a service provider will
indeed deliver the QoS the client expects, is assigned to each service, and a level of reputation
is assigned to each client for its ability to provide good (i.e. trustworthy) recommendations.

The proposed method utilizes the following modelling relations and corresponding values:

OT Relation: This relation OT', denotes the existence of a trust (i.e belief that the service
met expectations) opinion a client p has on a service s, after a specific interaction. Its value
OT (p, s) represents the level to which a client p perceives a service s to be trustworthy, as it

met its QoS expectations and criteria (i.e. how satisfied p is by the services s has provided),

3.2. MODELING CONCEPTS - RELATIONS 37

AR(5C4) -[l e SC4 recommends SP1 T(SC3, SPZ)_ - — — > (.
T -
SCa Request for a>\ P2

| recommendation - SCZ recommends SP2 I
\ sc3
\ Request for-. /T(SCZ, sP2)
\ recommendation. - .l
\
\\ c4) SC2 recommends SP2 > ' SC2
N~ ,//,/Request for R(SC5, SC2)
T(SC4’ SP1) \\ ~ recommendation
\ |
am SC5 recommends SP1 } ! AR(SC5
! A\/-/U! R B : ﬂ) (5¢5)
‘Servicelnvocatiop, e Requestfor SCo
| o msa recommengation T
v R(SC1, SC5) |
R V' _ -
-ul) Service Reply -
~$i A m e — - ———— -— -
T(SC5, SP1)
SP1

Figure 3.2: Interactions between client and provider components

after each single interaction. This kind of relation is not visible in the social graph, but its value
is used to compute the corresponding value of the T relation (see below).

OD Relation: This relation OD,, denotes the existence of a distrust (i.e belief that the
service did not meet expectations) opinion a client p has about a service s, after an interaction
with it. Its value OD(p, s) represents the level a client p perceives that a service s may not
be trustworthy (e.g. s obtains its data from an unknown source) after each single interaction.
This kind of relation is not visible in the social graph, but its value is used to compute the
corresponding value of the D relation (see below).

T Relation: This relation 7' denotes the existence of an overall trust opinion a client p has
for a service provider s and indicates one or more interactions with this service provider. Its
value T'(p, s) represents the level of overall trust assigned by a client p on a service provider s,
based on the history of interactions p has had with that s (see OT relations above).

D Relation: This relation D, denotes the existence of an overall distrust opinion a client p

38 CHAPTER 3. MODELLING AND OVERALL PROCESS

has for a service provider s and indicates one or more interactions with this service provider. Its
value D(p, s) represents the level of overall distrust assigned by a client p on a service provider
s, based on the history of interactions p has had with that s (see OD relations above).

R Relation: This relation R}, denotes that a client p has an opinion about another client
r, regarding whether r is a good recommender. This relation indicates that a client p has
used services in the past, following recommendations provided by client , and has formulated
an opinion about it. The relation’s corresponding value R(p, r) represents the reputation of r
according to p (i.e. the belief client p has that client r is historically a good recommender).

AR Relation: In contrast to the other binary relations presented above, the relation AR"
is unary. It denotes the existence of a consolidated opinion by all other clients, regarding
whether client r is a good recommender or not. Its value AR(r) represents the level to which
r is considered to be a good recommender, or not, and is computed by taking into account the

quality and accuracy of all the recommendations r has given to each of the other clients, so far.

3.3 Modeling Concepts - Relation values

In this section, we discuss the different relations and corresponding values that are used for
modelling a) the perceived QoS a service client (or recommender) experiences after using a
service provider (see T(p,s) and D(p,s) values), and b) the reputation of a service client acting
as a recommender, either globally (see AR(r) values) or as far as another service client is

concerned (see R(p,r) values).

3.3.1 Perceived Trust and Distrust per Interaction (OT and OD values)

The OT(p,s) and OD(p,s) values denote how a service client assesses its level of satisfaction it
experiences after a specific interaction with a particular service. More specifically, the OT(p,s)
value denotes the measure of how much the service client p believes the service s met its

expectations (e.g. QoS, constraints, requirements etc.). Similarly, the OD(p,s) value denotes

3.3. MODELING CONCEPTS - RELATION VALUES 39

the measure of how much the client p believes that the service s engaged in behaviours that
may signify distrust towards the service. For example, a client experiencing that a service
provider is using data from a non-authorized source would increase the OD(p,s) value the
client assigns to the service for this particular interaction. Clients can set specific requirements
models pertaining both to trust and distrust of a service. The use of these pair-values (trust
OT(p,s) and, distrust OD(p,s)) allows for a more flexible model where a client can provide
at the same time the positive and negative sentiment related to its observations when using a
service.

The value of OT(p,s) ranges from 0.0 to 1.0 (with 0.0 meaning that the service s did not
meet its expectations, and 1.0 meaning that the service fully met its expectations). For example,
an OT(p,s) value of 0.8 indicates the level to which client p believes that service s met its
expectations in a satisfactory degree.

The value of OD(p,s) also ranges from 0.0 to 1.0 (with 0.0 meaning that client p agrees that
service s did not engage in any behaviour increasing distrust, and 1.0 meaning that the client
observed service behaviour indicating full distrust). For example, an OD(p,s) value of 0.2
indicates the level to which client p believes that service s engaged in behaviour that slightly
increases distrust.

The OT(p,s) and OD(p,s) values do not need to sum up to 1 and can be evaluated based
on provided goal models, as proposed in Section or any other way the framework’s user

prefers.

3.3.2 Cumulative Trust and Distrust (T and D values)

These relations and their corresponding values are indicative of the service’s historical perfor-
mance as perceived by a specific service client. Furthermore, the relation’s value is a metric
that represents the client’s first-hand assessment, after using a service provider. Said assess-
ment takes into consideration the extend to which the service provider has or has not met the

client’s expectations in all of the so far elapsed interactions with this particular service provider.

40 CHAPTER 3. MODELLING AND OVERALL PROCESS

As mentioned in Section [3.3.1} every time a service client interacts with a service, a pair
of values, denoting observed trust and distrust (namely OT(p, s) and OD(p, s)), are calculated.
These two values are then used to respectively update the overall, or cumulative, trust and
distrust a service client p has on the specific service provider s, while also considering the
service provider’s previous performance. We denote by T(p, s) the value that indicates the
belief the service client p has that the service provider s is a trustworthy provider, while by
D(p,s) the belief the service client p has that the service provider s is not trustworthy. Same as
their observed per interaction counterparts (i.e. OT(p,s) and OD(p,s) values), the cumulative
trust (7(p,s)) and distrust (D(p,s)) values range from 0.0 to 1.0. The T(p,s) and D(p,s) values
are set to a default value, if the user has no prior experience with the particular service, and
are increasing or decreasing based on the discrepancy between values observed and calculated
cumulative values, up until that point. The algorithm for the evaluation of 7(p,s) and D(p,s) val-
ues is presented in Section#.2] A high T(p,s) value indicates that the service s has historically
demonstrated QoS that corresponds to the p’s expectations, whereas the opposite holds for a
low T(p,s) value. Respectively, a high D(p,s) value is a clear indication that the service s has a
propensity for participating in activities that the service client p deems suspicious, whereas a
low D(p,s) value is indicative of lack of engaging in such behaviours.

Bear in mind that, said metrics are indicative of a service’s performance, as perceived by
a specific service client. Different clients may have different requirements and, thus, different

opinions about services.

3.3.3 Individual Reputation of a Recommender (R value)

As it has already been mentioned, any node that has used a service provider can serve as a
recommender to every other service client, who is requesting a recommendation regarding
available services. After a recommendation that leads to the utilization of a service, a relation
is created between recommender and recommendee. This relation denoted as R}, is indicative

of a service client p interacting with another service client r to obtain recommendations.

3.3. MODELING CONCEPTS - RELATION VALUES 41

Said relation, also, bears a corresponding value R(p,r), which is a measure of trust that
the r’s recommendations are accurate. This measure is updated every time p uses a service,
recommended by the aforementioned recommender r. The service client p compares its own
experience regarding the service’s QoS (i.e. after using the service) against the one advertised
by the recommender r, and, based on any observed discrepancy, increases or decreases their
perceived reputation for that recommender (i.e. R(p,r)). The value, therefore, is indicative
of how much the particular service client p requesting the service, believes that this particular

recommender r is trustworthy and reputable.

More specifically, this reputation value R(p, r) is lowered every time the recommendation
by r of a service s is inconsistent with the service client’s p experience when using that par-
ticular service s. Similarly, the reputation value R(p,r) is increased, whenever a service s is
used, as a result of a recommendation, and the interaction meets the p’s expectations, as those
were formed due to said recommendation. More specifically, we denote the belief a service
client p has that another service client r is a good recommender by R(p, r). This reputation
value corresponds only to a single service client’s belief and ranges from 0.0 to 1.0. Again,
a high R(p, r) value is indicative of a recommender r that provides accurate and trustworthy
recommendations, as far as a specific client p is concerned, whereas a low value is a testament

to the opposite.

Rating recommenders and maintaining a distinct reputation value for each and every one
of them provides the system with a number of advantages. First of all, a requesting user can
choose the service clients from which they wish to receive a recommendation. Filtering is
possible, thus allowing the requesting service client to receive opinions from a subset of rec-
ommenders whose recommendations are considered more trustworthy or at the very least more
compatible to their own views. Moreover, the introduction of reputation values for reviewers of
services enables the weighing of reviews or recommendations, based on said values. Multiple

opinions can be considered, but their importance may vary depending on who provided them.

Existing commercial systems do not provide functionality for individual reputation values

42 CHAPTER 3. MODELLING AND OVERALL PROCESS

of recommenders and, as a result, there is no way of filtering available reviews, consider-
ing them based on different levels of importance, or disregarding maliciously produced ones.
Each requesting user has to manually investigate available opinions, which reduces the sys-
tem’s applicability in scenarios where the transacting components and corresponding business

processes need to be automated.

3.3.4 Opverall Reputation of Recommenders (AR value)

Newly introduced service clients have no previous interactions, and thus no relations to other
clients of the framework. Because of that, they have no way of receiving recommendations or
knowing about available services. Furthermore, service clients that are already participating in
the network may form extremely tight-knit communities and fail to receive recommendations
from other sources. To address both of those issues, we propose the use of another metric that
indicates the overall or global reputation of a recommender r (i.e. AR(r)).

Based on the R(k, r) values different service clients k have after receiving r’s recommen-
dations, we compute a metric indicating said r’s overall reputation as a recommender. This
overall reputation value AR(r) is a function of the most important R(k, r) values, where k are
nodes that have an R(k, r) value for r as a recommender (that is nodes k that have obtained and
acted on recommendations from r in the past). Therefore, the overall recommendation ability
(i.e. reputation as a recommender) of r denotes the collective belief that clients k£, who have
already used a service recommended by r and acquired a first-hand opinion of said service’s
QoS, have regarding r’s ability to provide trustworthy recommendations. The collective belief
that r is a good recommender is denoted by AR(r). Note that, since the AR(r) value depends on
incoming R(k, r) values (for all £ nodes that have obtained a recommendation from r), it may
need to be recalculated every time a new R(k, r) value aimed at r is added or an existing one is
updated.

A service client’s AR(r) value is indicative of the actual reputation of r within the network,

since the opinions deemed most important (i.e. providing the most amount of information)

3.4. SOURCES OF RECOMMENDATIONS 43

are the ones utilized. The choice to not utilize all available R(k, r) values for » was made to

improve the framework’s throughput, decrease its network fingerprint and improve accuracy by

considering only relevant opinions. The algorithm presented in Section however, allows

us to calculate a value that is indicative of the actual reputation of a service client within the

network, while performing significantly less calculations and exchanging fewer messages.

3.4

Sources of Recommendations

When acquiring recommendations, a service client has to consult a variety of different sources.

In the proposed approach, a client node p asks a set of recommenders S = ry,r,,...r, for

recommendations regarding available services. This set S includes recommenders selected for

different reasons and is composed of:

a)

b)

c)

Expert recommenders. These are nodes r; in the social graph with the highest AR values.
The selection threshold can be set as a parameter (e.g. the nodes at the top 10 percentile
of AR values, or just the top 20 nodes with the highest AR values). The threshold does
not affect the overall behaviour of the framework, since it merely allows for more (or

less) recommenders to participate in any given recommendation request.

Friends. These are nodes r; in the social graph from which node p has obtained rec-
ommendations in the past, and acted on them, thus creating an R;," relation and a corre-
sponding R(p, r;) value. In Fig. [3.2]node SCj is a friend to SC; as S C, has provided
recommendations to S C; in the past. Again, the client can select to consult only the ones

with the highest reputation values.

Friends of friends, that is nodes from which friend nodes have obtained recommenda-
tions. In Fig. [3.2lnode S C is a friend of friend of S Cy, as S Cs has provided recommen-

dations to S C; and S C; has provided recommendations to S Cs in the past.

Note that we have chosen to include only paths of length up to two. One could explore all

44 CHAPTER 3. MODELLING AND OVERALL PROCESS

available paths, but this would result in an approach utilizing the Flow method of value ag-
gregation, as demonstrated in Eigentrust [3]. This method is very computationally intensive
and requires a set of very specific preconditions, such as a number of pre-trusted users. Fur-
thermore, following all available paths would reveal more available services, but since we do
not consider trust to be entirely transitional (i.e. trust should be weighed based on each node’s
reputation within a path and the overall weight should account for the product of all weights,
as is the case when a t-norm operator is used [30]]), recommendations would be diluted and
rendered effectively meaningless after more than two hops in the social graph that includes

recommenders and service providers.

3.5 Process Overview

3.5.1 Process Outline

In this section, we outline the process the system follows during a session where a client wishes

to use a service. The process can be broken down into fourteen steps as follows:

Step 1: The client expresses interest in using a service and request a list of available services

ranked based on trustworthiness.

Step 2: Recommenders from each of the sources of recommendation explained in Section

(i.e. Experts, Friends, Friends of Friends) are selected.

Step 3: Service recommendations are collected from each of the recommenders selected in the

previous step.

Step 4: The client’s opinions, pertaining to previous interactions with services, are added to

the pool of values obtained from the recommenders.

Step 5: All provided recommendations are transformed as sets of positive (i.e. in case a rec-

ommendation is in favour of a service) and negative evidences (i.e. in case a recommendation

3.5. Process OVERVIEW 45

is against the use of a service), in the format required by the utilized by the ranking algorithm

(in our case the Demster-Schafer algorithm).

Step 6: The ranking algorithm is applied, and a ranking of the services is provided to the user.
Note that for the prototype we have utilized a variation of the Dempster-Shafer algorithm [22]

(see Section4.7.3)), but the approach supports any ranking algorithm.

Step 7: Incentives (if any) provided by service providers are taken into consideration and an

supplementary information regarding services is, also, provided to the user (see Section4.7.4)).

Step 8: The client chooses their preferred service and proceeds with the utilization of said

service.

Step 9: Data are collected from the interaction, either automatically or through user feedback,

and the observed trust and distrust values (i.e. the OT(p, s) and OD(p, s) values, see Section

3.3.1]) are evaluated.

Step 10: The utilized service provider can opt to provide compensations to the client, if exten-
uating circumstances led the service provider to offer a QoS below what was expected by the

client.

Step 11: The client can choose to accept the compensation and adjust their observed OT(p, s)

and OD(p, s) values or retain their observed ones.

Step 12: The client’s opinion about the utilized service is updated as specified in Algorithm T-D

presented in Section using the observed OT(p, s) and OD(p, s) values, adjusted or not.

Step 13: For every recommender r that endorsed the utilized service to a service client s, their
R(p,r) value is updated based on observed values, adjusted after compensation or not, and
source of recommendations through which they were selected, as specified in Algorithm R

presented in Section 4.3

46 CHAPTER 3. MODELLING AND OVERALL PROCESS

08 TS
~085004

T~ 065028

o -
-

T~ 982005 w’?fg T~

.@ .@ T 080005 S~ S
i ___087/0.10 e e
T /,“«7.

Figure 3.3: Example network of recommenders and services

Step 14: Finally, the recalculation of the corresponding AR(r) value is triggered if the up-
dated R(p,r) value is relevant to the evaluation of said AR(r) value (see Section @[) The

Algorithm AR, presented in Section EI, is used.

3.5.2 Running Example

To clarify the process followed in our approach to provide a service ranking and update the
reputation of recommender and service nodes after utilization of a service, a running example
will be provided in this Section. Said example will demonstrate the steps, but will not provide

the detailed calculations at this point. We will revisit the exact same example when we define

3.5. Process OVERVIEW 47

and explain the algorithms in Section 4| The subset of the network involved in this scenario is
portrayed in Fig. [3.3] We assume the percentage of recommenders chosen per source of rec-
ommendations corresponds to 2 recommenders per source, to simplify the provided example.

Following the steps provided in Section |3.5.1

Step 1: User R1 initiates process.

Step 2: Different sources of recommendations are consulted and recommender groups are cre-

ated as follows:

e R1 investigates the R values of his friends and finds that among R2, R3, R4, R11, the

ones with the highest values are R3 and R11, both having R = 0.9.

o All available 2-step paths are then explored looking for the 2 with the highest value. The
paths with the highest value are the ones going to R6 and R7 through R3 with corre-

sponding values of 0.792 and 0.756.

o Finally, the system inspects the AR values of all available recommenders. Let’s assume

that R9 and R10 have the highest values of 0.93 and 0.91 respectively.
e At the end of this step, we have :

- Friends = {R3, R11}
- FriendsOfFriends = {R3-R6, R3-R7}

- Experts = {R9, R10}.

Recommendations about services SP2, SP3, SP4 and SPS are provided by them.

Note that, even though SP1 is part of the system, it was not recommended by any of the chosen

recommenders, so it is not included in the following steps.

Step 3: For each service, we acquire all available values from the recommenders selected. The

recommendations for each service are as follows:

48 CHAPTER 3. MODELLING AND OVERALL PROCESS

e SP2: Only recommendations from the FriendsOfFriends group are available. More
specifically, the following values are available:
— T(R6,SP2) = 0.78 and D(R6,SP2) = 0.12
— T(R7,SP2) = 0.75 and D(R7,SP2) = 0.17

e SP3: Only recommendations from the FriendsOfFriends group are available. More

specifically, the following values are available:
— T(R7,SP3) = 0.65 and D(R7,SP3) = 0.28

e SP4: Recommendations from Friends and Experts groups are available. More specifi-

cally, the following values are available:

— T(R3,SP4) = 0.87 and D(R3,SP4) = 0.10
— T(R11,SP4) = 0.87 and D(R11,SP4) = 0.10

— T(R9,SP4) = 0.92 and D(R9,SP4) = 0.02
e SP5: Recommendations are available from Friends and Experts groups, so:

— T(R11,SPS) = 0.73 and D(R11,SP5) = 0.18

— T(R10,SPS) = 0.81 and D(R10,SPS) = 0.13

Step 4: The requesting user R1 has a recommendation for SP4.

o T(R1,SP4) = 0.82 and D(R1,SP4) = 0.05

Step 5: All T values are considered evidences in favor of that service and all D values are
considered against, meaning that the user would rather use any service other than the one being

evaluated.

Step 6: After running the chosen ranking algorithm, a list with the services is returned. For
that particular example let’s assume that the ordered list returned by the algorithm looks like
that: [SP4, SP5, SP3, SP2]. This ordering means that service SP4 is considered the most

trustworthy one.

3.6. SUMMARY 49

Step 7: Supplementary information is provided to the user, pertaining to incentives offered by

services that are not at the top of the ranking.

Step 8: Let’s assume the user does not utilize any of the offered incentives and uses the service

with the highest ranking, i.e. SP4.

Step 9: The chosen service is used, and its performance is evaluated using the chosen method.

In this example let’s assume OT(R1,SP4) = 0.89, OD(R1,SP4) = 0.07.
Step 10: The service performed as expected, so no compensations are offered this time.
Step 11: There is no choice involved this time around in this step.

Step 12: Since the requesting user already had an opinion about SP4, the T(R1,SP4) and

D(R1,SP4) values need to be updated according to the algorithm presented in Section 4.2

Step 13: The recommenders that endorsed SP4 are R3, R11, R9. Their new R(R1,Ri) values

are computed using the algorithm described in Section 4.3

Step 14: The AR(RI) values are recalculated for R3, R11, R9 according to the algorithm
described in Section if the new R(RI,Ri) values are considered important based on the

algorithm presented in Section §.6]

3.6 Summary

Summarizing, each user of the proposed approach can participate as either a service client p or
a service provider s. Service providers need to register multiple services as different nodes, and
if a user wishes to participate with both roles, separate entities need to be registered, as well.
Relations are created in the context of the framework between different entities. Said rela-
tions have corresponding values and are differentiated based on the receiving party of it. More
specifically, all relations have a service client p as the source and the target is either another

service client r, in which case we have a relation and corresponding value that indicates the

50 CHAPTER 3. MODELLING AND OVERALL PROCESS

historically perceived reputation of said client and are denoted by R}, and R(p, r) respectively,
or a service provider s, in which case we have a pair of relations and corresponding pair of
values, that indicate the historically perceived trust and distrust on said service and are denoted
by < T3, D, > and < T'(p, s,), D(p, s) > for relations and values respectively. A unary relation
and derived value are, also, proposed to represent the overall reputation of a service client r
within the system. Relation and corresponding value are denoted by AR” and AR(r). The value
depends on R(p, r) values that are aimed at the service client in question.

When a service client is requesting recommendations for available services, a number of
sources are consulted, namely the system’s Experts and the client’s Friends, as well as their
friends (i.e. Friends of Friends). The service client’s personal opinions are, also, considered
and a ranking of services is calculated. Incentives can be offered by lower ranked services, and
the user can choose to consider them or not. After an interaction occurs, the client’s personal
opinion, as well as the reputation of those who recommended the utilized service, is adjusted,

based on discrepancy between observed and provided values.

Chapter 4

Trust and Reputation Evaluation

Algorithms

In this chapter, we presenting the algorithms to evaluate first, the perceived quality of service
experienced in individual interactions by a client p when uses a service provider s (OT(p, s)
and OD(p, s) values) second, the cumulative trust and distrust values clients have that a service
provider can meet the client’s expectations (7(p, s) and D(p, s) values) third, the reputation of
a client p service assigns to a client r acting as recommender (R(p, r) value) and fourth, a rec-
ommender’s r overall reputation (AR(r) value). In addition to the above, we present algorithms
to deal with obsolete (i.e. stale) values using (timeouts and to identify the most important R
values to be considered for each AR(r) value using a cache management policy (i.e. the (ARC
policy) which we have adapted to meet the requirements of the problem associated with this

thesis.

4.1 Evaluation of OT and OD values

The proposed approach does not place any constraints on the method to be used by a client p
to assign OT(p, s and OD(p, s) values after its interaction with a service s. These may include

fuzzy logic, statistical analysis, probabilistic reasoning etc. For the prototype implementation,

51

52 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

a client sets its expectations from the service in the form of models, such as goal models [23].
The user-provided goal models specify the client’s requirements, as far as this particular type
of service type is concerned. Since the service provider nodes are proxies of actual services,
monitoring components that autimatically evaluate the QoS offered by a service provider and
as this is assessed by a client’s perspective. Based on the type of service provided, a proxy can
attain and process information regarding a multitude of service quality characteristics such as
the security protocols used, the speed of the transaction, the provenance of the data used by the
service, or even the location of the server hosting the service. The data can be used as input to a
goal model denoting the client’s expectations from the service. The level of satisfaction of this
goal model will yield the OT(p, s) and OD(p, s) for client p using the service s. The evaluation
of the goal models may take various forms. If we choose to utilize the approach proposed in
[24], goal model are transformed into fuzzy rules, which are, in turn, evaluated using a fuzzy
reasoner. The result of the evaluation would indicate how well the service performed based on
the client’s requirements. One example of such a goal model denoting a client’s expectations

from a service provider can be seen in Figure d.1]

R

" Veer” ~ Service)
¢ User) [$\/< ‘ <
(i 9 —-—D ‘. Quality)
. Review _J - T
= P ~
~ /
THS_ i AND

— X —.
(~ Response \}_ }
_ Quality / —~ N

— T —

C(_J Service) (' Connection)
)))
U g deripimancs-
= _
st ™ 7
/ Response 45—~ AND

_ Format /

- -

4 ™ - . A
e . ity) S W G S
(Response) \\Data Securlty/. ’j._»Low Response) C Connection)
_ Format / - A)\ C - S
—— ++S \T,\-lj me__~ o \JRSIIka,b/IEYf o

e ™

/[Server O ¢/ !
| q r

__ Location J J

e

() Crisp Goal

(Elliptic Curve)
A e

4 Fuzzy Goal

S

s

Figure 4.1: Example model for service evaluation

4.2. EvaLuatioN OF T AND D VALUES 53

4.2 Evaluation of T and D values

Apart from the observed trust (i.e. OT{(p, s)) and distrust values (i.e. OD(p, s)) obtained through
each individual interaction between a user p and a service provider s , another set of cumulative
values is maintained for each pair of client and provider that have had at least one interaction,

as mentioned in Section[3.3.2]

Cumulative trust and distrust are denoted by T(p, s) and D(p, s). They are updated every
time a) a new set of observed values, corresponding to the users in question, occurs or b) a set
of observed values are deemed obsolete and should no longer participate in the calculation of
the cumulative values. Of those two processes, the first one is described below and is triggered
by a client utilizing a service, whereas the second one is explained in Section 4.4|and is time

dependent.

As specified in the previous section, every time a client p utilizes a service s, two values are
computed upon completion of said interaction. Those observed values are denoted by OT (p, s)
and OD(p, s) and are used to update the T'(p, s) and D(p, s) values respectively. A specific
algorithm is utilized for that update and its purpose is to recalculate the 7T'(p, s) value, which
denotes how satisfied the service client p is with service s, and the D(p, s) value, which denotes
the extend to which client p is dissatisfied with aspects of service s overall, based on the history
of observed values pertaining to utilizations of s by p (i.e. the cumulative values of trust and

distrust placed on service s by p).

More specifically, the new T'(p, s) and D(p, s) values occur by taking into consideration: a)
the observed values computed by using the service (see OT(p, s) and OD(p, s) values) and; b)
the values of T'(p, s) and D(p, s) prior to p’s last utilization of service s. The specific algorithm

can be observed on Alg/[l]

54 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

Algorithm 1 Calculate T-D values
1: - Let s be a service provider
2: - Let p be the client using service s
3: - Let ¢ be a parameter indicating the importance of new observations taking values in the
interval (0,1) with ¢ = 0 indicating that new values have no meaning and ¢ = 1 indicating
that the latest value is the only one that matters.

4.
5: procedure caLcuLATETD(OT (p, s), OD(p, s), T(p, s), D(p, 5))
6: if (T'(p, s) OR D(p, s) not available) then
7: T(p, s) = initializeDe f ault() (e.g. 0.5)
8: D(p, s) = initializeDe fault() (e.g. 0.5)
9: count(p, s) =0
10: end if
11:
12: T()ffsel(p’ s) = C(OT(p’ s) — T(P, 5))
13: Dysp(p.s) = c(OD(p, 5) = D(p, s))
14: count(p, s) = count + 1
15:
16: T(P’ s) = T(P’ s) + T()ffset(p’ s)
17: D(P» S) = D(P» s)+D()ffset(p’ S)
18:
19: notify(Tysr5e(p, 8), Dogrser(ps 8))

20: return < T(p, s), D(p, s) >
21: end procedure

As it is evident, the algorithm initially looks for previous values of trust (i.e, T(p, s)) and
distrust (i.e., D(p, s)), indicating that client p has interacted with service s in the past (line 6).
If none can be found, the cumulative trust and distrust values are set to a default value (lines
7-8) and the interaction counter is set to O (line 9).

An offset value, based on the discrepancy between observed and cumulative values, is
calculated (lines 12-13). Note here that, if the observed trust or distrust value is greater than
the cumulative trust or distrust value, the offset is positive. The meaning of this is different in
the each case. A higher trust value is appreciated, while a higher distrust value is problematic.

In any case, though, the cumulative values slowly adjust upwards or downwards based on
the observed interactions. This is done by adding the offset to the cumulative values, weighed
according to the user-specified parameter ¢, which ranges between 0.0 and 1.0. The parameter

is utilized to allow for customization, since its value indicates the importance of newly observed

4.3. EVALUATION OF R VALUE 55

values over historical performance of the service. Values close to the lower end produce very
small offsets, thus adjusting the cumulative values in a minor way. Values closer to the upper
end, however, put major emphasis on the newly observed trust and distrust, by producing larger
offset and significant adjustment of the cumulative values.

Note that, even though the 7(p, s)and D(p, s) values are supposed to range between 0.0 and
1.0, there is no verification part of the algorithm to ensure that they stay within the limits. This
is not really an issue, though, since the offset depends on the difference between cumulative
value and observed value. Observed values are within range by design, so there is no way that
the difference multiplied by ¢, which is less than 1.0, is going to force the cumulative value off
the limits.

The interaction counter is also incremented by 1 (line 14), which allows us to know to keep
track of the number of interactions that have elapsed between this particular pair of service
client and service provider. When the last of interactions becomes obsolete, we can totally
remove the entry, thus safeguarding against potential mathematical errors that may occur when
dealing with real numbers.

Last but not least, the framework is notified about the calculated offsets, so that they can
be timestamped and reversed when the time comes (see Section [4.4). More specifically, the
notify method (line 19) produces an event that is received by the corresponding algorithms
dealing with timeouts, in order to save the offset value along with its timestamp, so that it can

be retrieved and deleted when it becomes stale (see Algorithm [3]and Section {.4)).

4.3 Evaluation of R value

As mentioned in Section [3.3.3] each client p maintains a reputation value R(p,r) for every
recommender r that has provided at least one recommendation that has resulted to utilization

of recommended service.

Said value is denoted by R(p,r) and is updated every time a) a recommendation, leading

56 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

to the service utilization, is made or b) a previous recommendation is deemed obsolete due
to time elasped, and should not be considered when calculating a recommender’s reputation
value anymore. Similarly to the T(p,s) and D(p,s) values, the first update case of the R(p, s)
value is discussed below, and is triggered by a client after utilizing a service following the
recommendation by one or more recommender r, whereas the second update case is due to the

R(p, r) value becoming stale and is discussed in Section 4.4

As mentioned before, a service’s s utilization by a client p occurs after other nodes r within
the framework provide a recommendation pertaining to said service s. Interaction of s service
client p with the service s produces a set of observed values OT(p,s) and OD(p,s) values (see
Section based on the client’s preferences (i.e. goal models). Those observed values can,
then, be juxtaposed with the values provided by each recommender r , as part of the recom-
mendation part of the process. The discrepancy between the two can, then, be used to update
the recommender’s r reputation value R(p,r), as far as that specific client p is concerned. The
type of recommender and previous (i.e. historical) reputation value are, also, taken into account

when calculating the updated reputation value.

To further explain, consider the following scenario. Client p asks client r for a recom-
mendation about services of a specific type (i.e. process monitoring services), r provides a
recommendation for service s (see T'(r, s), and D(r, s) values), among others. p ends up using
service s as a result of this recommendation, and now has first-hand experience about the ser-
vice‘s behaviour (see OT(p, s) and OD(p, s) values).As a result, p can now, finally, form an
opinion of how good r’s recommendation was (i.e. how trustworthy r is as a recommender for
recommending service s) and update the R value node p has for node r (i.e. R(p, r)), based on

elapsed interaction, previous value and type of recommender (see Section [3.4)).

Each reputation value R(p, r) indicates how much trust a service client p places on the
recommendations r provides, based on past experience, and the exact algorithm utilized for its

calculation is presented in Algl2]

4.3. EVALUATION OF R VALUE 57

Algorithm 2 Calculate R value

1: - Let p be the node that is asking for the recommendation of a service

2: - Let r be the recommender node that is recommending a service

3: - Let error be the difference between observed and provided trust and distrust

4. - Let offset be the offset that is to be applied to the trust in r’s reputation value based on

5.

new data

6: procedure caLcULATER(OT (p, s), OD(p, s), T (1, s), D(1, 5))

7

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

error(p,r) = |T(r, s)-OT(p, s)| + |D(r, s) — OD(p, s)|
Ryt fser(p, 1) = calculateOf f set(error)

if 7 in expert nodes then
/* that is r is in the top of the list of recommenders
ranked by their AR value (see Section [3.4) */
R(pv r) = AR(I") + R()ffset(pa }”)
count(p,r) =1

else if r is friend of p then
/* That is r is in the top of the list of recommenders
ranked by their R value provided by p (see Section
*/
R(p7 r) = R(p’ r) + Roffset(p’ I")
count(p,r) = count + 1

else if r is a friend of friend k of p then
/* that is r is in the top of the list of recommenders
ranked by the cross product of R values provided
by p and its friends, in all two step paths emanating
from p (see Section [3.4) */
R(pa r) = (R(P, k) * R(k9 r)) + Roffset(p’ r)
count(p,r) =1
Roffset(ps k) = R(k’ I") * R()ffsez(p’ I")
R(p,k) = R(p, k) + Rosfser(p, k)
count(p, k) = count + 1

end if

nOtl:fy(Roffset(p’ I"), Roffset(p» k)) // For timeout purposes
notify(R(p, r)) // For AR calculation purposes

return < R(p,r), count(p,r) >

37: end procedure

An error value is initially calculated (line 7), accounting for the difference between trust and

distrust values provided by the recommender and values observed through the recent interaction

58 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

with the service. We use the absolute difference, since in this use case it doesn’t matter whether
the recommendation values were over or under the observed ones, but rather how large the
discrepancy is. Overvaluing (i.e. proposing that a service behaves in a much better way than
it actually is) is as bad, if not worse, as undervaluing (i.e. downplaying a service’s actual

performance). So, in either case, the larger the discrepancy, the greater the error value will be.

Every approach in the related literature that automatically adjusts a recommender’s reputa-
tion based on elapsed interaction, proposes a unique custom formula that holds certain prop-
erties [9, 12, 19, 138]]. Said formula is utilized to provide the updated reputation value. There
is no specific standard for creating such formulas, other than the fact that they must account
for the discrepancy between values provided by the recommender and observed values. In our
approach, we propose a formula that calculates offsets (line 8), rather than directly updating the
reputation value. The rationale behind this comes from our choice to account for data aging.
We have opted to disregard values for obsolete (i.e. distant past) interactions, as will be further
explained in Section but in a way that allows our framework to a) maintain a minimum
network fingerprint and ») have a high throughput and support as many users as possible. The

offset approach allows us to reduce the amount of calculations required and messages sent.

0-2

Figure 4.2: Offset Formula for R evaluation

4.3. EVALUATION OF R VALUE 59

Our custom offset formula was created with specific properties in mind. Resulting offset
must a) depend on calculated error (i.e. discrepancy between provided values and observed
values), b) allow for minimal values for insignificant errors, c¢) provide exponentially larger
values as error values increase and d) reach its maximum value for a specific error value and
remain stable regardless of potential further increases. The proposed formula can be seen

plotted in Fig. @.2] and in equation form in Eq.

0.1 % | = 10| error < 0.2
Roffsed(p,1) = 4.1

0.1 * [W - 2.99] serror > 0.2
The type of recommender is, then, inquired (lines 10,15,21) to identify the type of value
that led to their inclusion in the list of recommenders (see Section[d.7.1). Since there are three
sources of information consulted during the recommendation part of the process, there are three
possible types of recommenders who could have recommended the utilized service. Said types

and corresponding cases are as follows:

e Recommender is a Friend node: The requesting client has interacted with that particular
recommender in the past and has a R relation and corresponding value towards it (see
Section [3.3.3)). Since the reputation value R(p,r) is the reason this node was selected as a
recommender, the offset is added to said value (line 19). The interaction counter is incre-
mented by one (line 20), as an additional interaction now contributes to the cumulative

value.

e Recommender is an Expert node: The node’s overall reputation (see Section |3.3.4) is
utilized, since it was the reason that particular client was chosen to be a recommender.
The node’s AR value is now the baseline to which the offset will be added (line 13). Note
that since this node was not selected due to an existing R relation with the requesting
client, a new one has to be created. The interaction counter, therefore, is set to 1 (line

14).

60 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

e Recommender is a Friend of Friend node: In this case, the recommendation originated
from a node that was in turn recommended by a node with an already existing reputation
value. After the interaction with the recommended service concludes, both of those
nodes’ reputation value needs to be updated. The baseline for each case is different. For
the immediate friend, the already existing R value is used (i.e. R(p, friend), where p
is the requesting client) (line 29). For the second step in the path, however, both the
friend’s reputation and the recommendation for the friend of friend have to be taken into
consideration (line 26). We propose the utilization of the t-norm operator, as specified in
[30]]. The resulting baseline reputation value for the Friend of Friend recommender node
is the product of the two aforementioned reputation values (i.e. R(p, k) = R(k, r), where
k is a Friend and r is a FriendOfFriend). As far as the offset is concerned, it remains as
is for the Friend of Friend node, but is fittingly adjusted for the friend node (line 28). It
is only fair that this node is penalized or rewarded proportionally to the recommendation

value offered for the actual recommender (i.e. Friend of Friend).

Different approaches have been proposed regarding propagation of trust in social graphs
[20]. We chose to use the multiplication norm (i.e. t-norm operator) in the friend of friend
scenario since it resonates more with the world we are trying to approximate through our
approach.

In any case, the utilized value (i.e., R(p,r) value for Friend, AR(r) value for Expert and
R(p,k)*R(k,r) value for FriendOfFriend) is then considered to be the previous reputation value
or baseline, the offset is added to it and the result is assigned to the reputation value of client p
for r (i.e. R(p,r)) (line 26).

The interaction counter (i.e., count(p, r)) allows us to keep track of the number of inter-
actions that have elapsed between this particular pair of service clients. When an interaction
becomes obsolete, we can totally remove the entry, thus safeguarding against a) potential math-
ematical errors that may occur when dealing with real numbers, and b) issues with message

ordering in timeout scenarios. The interaction counter is either incremented by 1, if a previous

4.4. TIMEOUTS 61

R relations led to the consultation of recommender in question (lines 20, 30), or reset to 1, in
any other case (lines 14, 27).

Note that, even though the R values are supposed to range between 0.0 and 1.0, there is
no such provision in the algorithm. This is not an omission, but is done by design. As it will
become evident in Section 4.4} offsets are saved and later subtracted from the cumulative value,
when the corresponding interaction has to be disregarded. To avoid issues with that process,
we do not cap the reputation values, but we make sure that when utilization of reputation
values that are out of range occurs, the framework treats them as if they are exactly at the
corresponding end of the range (i.e. 0.0, if negative, and 1.0, if over 1.0).

Last but not least, the framework is notified about both the calculated offset (line 33), so
that it can be timestamped and reversed when the time comes (see Section 4.4), and the new
derived reputation value (line 34), which will trigger the process for selecting the most im-
portant R values for the calculation of AR values (see Section [4.6). More specifically, the first
notify method produces an event that is received by the corresponding algorithms dealing with
timeouts, in order to save the offset value along with its timestamp, so that it can be retrieved
and deleted when it becomes stale (see Algorithm[3|and Section4.4)). Discarding stale values is
very important as it allows to first maintain a tractable set of values observed through interac-
tions and second consider values based on the most up-to-date behaviour of service providers
in question. As for the second notify method, the event produced by it is consumed by the
algorithms tasked with deciding the R values to be considered for AR values. The procedure is

run and the corresponding lists are updated (see Algorithm[6]and Section [4.6)).

4.4 Timeouts

As specified in the previous sections regarding the update process of trust and distrust values
(T(p,s) and D(p,s)) and reputation values (R(p,r)), every time an adjustment is made, the

framework is notified. Based on the specific context and the observed frequency of interactions,

62 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

a time window is defined and each received notification is timestamped and filed.

A specific component (see Chapter [5) with a completely separate process is executed in
parallel to discover obsolete values, taking into consideration the corresponding time window
and each value’s timestamp. Once an applied offset is deemed to be outdated, the appropriate
procedure is run to remove the effect of said value. All procedures are presented in Alg. [3]and

correspond to either trust/distrust or reputation offsets.

Algorithm 3 Remove obsolete offsets
1: - Let p be the node that asked for recommendation

2: - Let r be the node that recommended a service
3: - Let s be a utilized service provider
4:
5: procedure bELETETDOFFSET(T ¢ fse(Ps 8), Dot fser(p, 8), T(p, 5), D(p, 5), count(p, s))
6: if count(p, s) <=1 then
7: /* This is the only set of trust/distrust values to
8: be removed */
9: T(p,s) = null
10: D(p, s) = null
11: else
12: /* The offset needs to be removed */
13: T(P» S) = T(P» S) - Toffset(p» S)
14: D(P’ S) = D(pa S) _Doffset(p’ S)
15: count(p, s) = count — 1
16: end if
17: end procedure
18:
19: procedure DELETEROFFSET(R ¢ ser, R(p, 1), count(p, r))
20: if count(p,r) <=1 then
21: /* This is the last recommendation to
22: be removed */
23: R(p,r) = null
24: else
25: /* The offset needs to be removed */
2: R(p.1) = R(p.1) = Roffea(p.7)
27: count(p,r) = count — 1
28: end if
29: end procedure

Note that the number of updates that have contributed to a value is, also, maintained (i.e

count(p,r)). The interaction counter is checked (lines 6, 20) and when the last of the adjust-

4.5. EVALUATION OF AR VALUE 63

ments has to be reverted, the values (line 9-10), or value (line 23), are invalidated and removed
altogether. We opted to totally get rid of the value to signify the lack of connection in the
social graph and differentiate between lack of value and a series of very bad recommendations
or interactions that would lead to a zero value.

If, however, the offset(s) to be removed is not the last one, the T ¢t/ (p, 5) and D, 5e(p, 5)
values, or R, p,r) value, are subtracted from the T'(p, s) and D(p, s) cumulative values
(lines 13-14), or R(p, r) respectively (line 26). The interaction counter is, also, decreased by 1

(lines 15, 27), indicating that there is one less interaction contributing to the cumulative values.

Algorithm 4 Calculate AR value
1: - This is the variation for calculating AR values. The second variation is in Alg. [5
2: - Algorithm [f]is differentiated in lines 20-23 and 36-39 to account for this variation.
3:
4. - Let r be the recommender node whose AR value is calculated
5: - Let N, be the set of nodes occurring by applying the Alg. [6] (lines 23 and 39) described
in Section (4.6 for recommender r.

6:
7. procedure cALCULATEAR(N,, R[size(N,)])
8: sum(r) =0
9: weightSum(r) = 0
10: for each client node w in N, do
11: if AR(w) is not available then
12: AR(w) = initializeDe fault (e.g. 0.5)
13: end if
14: sum(r) = sum(r) + (R(w, r) * AR(w))
15: weightS um(r) = weightS um(r) + AR(w)

16: end for
17: AR(r) = sum(r)/weightS um(r)
18: end procedure

4.5 Evaluation of AR value

Every client r participating in the network has an AR(r) value that represents the overall rep-
utation of the node as a recommender. An AR(r) value fluctuates over time depending on the

recommendations node r has provided for services and other recommenders of the network

64 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

and how accurate they have been. If the recommendations provided by r are consistent with
the experience of other nodes who have used a service, as a result of »’s recommendations, r’s
AR(r) value increases. If, however, discrepancies occur between provided and observed values,
the value decreases. Each AR(r) value is a function of the collective belief demonstrated by a

set N, of other nodes that r is a good recommender.

This collective belief is computed by considering the R values all those nodes have for r,
following the recommendations from r and the consequent utilization of the recommended by
r services, thus getting first-hand experience and being able to assess r’s accountability. The
algorithm used to compute the AR(r) values is presented below in Alg. 4, The main idea comes
from the PageRank algorithm [4] and is based on the summation of reputation values R(w,r),
aimed at the client in question, with each element weighed based on their own AR(w) value. To
allow, however, for introduction of new nodes into the system, each node that has no incoming

edges in the social graph is provided with a baseline value of AR(w) of 0.5.

Also, instead of considering all possible reputation values, we propose Algorithm [] that
is presented in Section [4.6]to select a subset N, of available values based on a specific logic.
The choice to use a subset was made to improve the performance of the framework, since node
churn could be high in reputation systems, and to allow for a more selective choice of options
that is based on recentness and frequency. The rationale behind selecting the subset N, is that
the majority of important opinions comes from a select subset of users that either interact with
the recommender in question frequently, or have interacted recently and their recommendation

is up to date.

For each of the members of N,, their recommendation is weighed based on their overall
reputation value (i.e. AR(w) value) and added to the sum(r) (line 14), while their AR(w) value
is added to the weightSum(r) (line 15). After the recommendations of all recommenders have

been considered, the calculated AR(r) value is produced by dividing the two sums (line 17).

As mentioned earlier, if one of the contributing clients have no overall reputation value (line

11), they are assigned a default one (line 12) that can either be set to be a specific value (e.g.

4.5. EVALUATION OF AR VALUE 65

0.5) or a value corresponding to the average or mean value within the system. Also, bear in
mind, that the default value is discarded as soon as at least one incoming R relation is created.

Even though this algorithm captures the logic behind the calculation of the overall reputa-
tion values, it is not very efficient in terms of number of calculations and requests for informa-
tion. It quickly becomes evident that, the summation of all applicable values is not required
every time one of them changes. To account for that and allow for the event-driven approach
we are proposing, a second variation of Alg. is presented, where changes in the AR(r) values

are made on a per request mode. This variation can be seen in Alg. [3

Algorithm 5 Update AR value
1: - Letr be the recommender node whose AR value is updated
2: - Let I; be the set of pair values < R(w, r), AR(w) > that need to be included, based on Alg.
[6], in the calculation of the overall reputation value.
3: - Let E; be the set of pair values < R(w, r), AR(w) > that need to be excluded, based on
Alg. [6] from the calculation of the overall reputation value.

4:
5: procedure urDATEAR(/,, E,, sum(r), weightS um(r))
6: if sum(r) is not available then
7: sum(r) =0
8: weightSum(r) = 0
9: end if
10:
11: for each < R(w, r), AR(w) > pair in E; do
12: sum(r) = sum(r) — (R(w, r) * AR(w))
13: weightS um(r) = weightS um(r) — AR(w)
14: end for
15:
16: for each < R(w, r), AR(w) > pair in I, do
17: sum(r) = sum(r) + (R(w, r) * AR(w))
18: weightS um(r) = weightS um(r) + AR(w)
19: end for
20: save(sum(r), weightS um(r))

21: AR(r) = sum(r)/weightS um(r)
22: end procedure

Note that this updated algorithm receives the sum(r) and weightSum(r) as parameters (line
5). It, also, receives as parameters the pairs of values < R(w, r), AR(w) > that need to be added

or deleted. This approach requires fewer calculations and can easily be used to apply changes

66 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

in predetermined intervals and in a batch manner, in a way that, also, minimizes network
utilization. Updating a R(w,r) value, which is already in N,, is equivalent to deleting the old and
adding the new one. If the particular client never had their overall reputation value calculated
in the past (i.e. it is the first time values are added) (line 6), we make sure that the sum(r) and
weightSum(r) values are initialized (lines 7-8), before the execution of the rest of the algorithm.

The set of values that need to be included and excluded from the calculation are discovered
and provided by the proposed method for selecting only the important opinions presented in
Section

For each pair of values that are to be excluded (line 11), the reputation value R(w, r) is
weighted based on the recommender’s overall reputation value (i.e. AR(w)) and is, then sub-
tracted from sum(r) (line 12). Each weight is, also, subtracted from weightS um(r) (line 13). A
similar process is followed for the pair of values that are to be included (line 16), only in this
case the weighted reputation value (i.e. R(w, r) * AR(w)) and the weight (i.e. AR(w)) are added
to sum(r) (line 17) and weightS um(r) (line 18) respectively.

Finally, the algorithm saves the summation values (line 20) and performs the division to

provide the updated AR(r) value of the particular recommender (line 21).

4.6 Selection of R values for AR calculation

The calculation of the AR(r) value of each node r depends on R(w,r) reputation values assigned
to the node in question by other nodes w. One option would be to consider all available values,
but since the number of values could grow exponentially as more and more users participate
in the network this could prove to be less than optional. Furthermore, not all opinions should
bear the same significance, especially if they are older or not updated at the same frequency
as other ones. Old or not frequently used values may indicate a recommender who is either
not actively participating in the network or may have stale or obsolete opinions about certain

service providers who may have changed their behaviour or quality of service in the time

4.6. SELECTION OF R VALUES FOR AR CALCULATION 67

elapsed since their last interaction with the recommender in question. For that reason, a way to
come up with a subset of available values is required.

One could choose to sort the R(w,r) values by the time they were last updated and disregard
the ones that were least recently used (LRU [92]). Another option would be to sort based on
number of updates so far and exclude those with the lowest frequency of updates (LFU [93]]).
We feel, however, that a hybrid approach would be the most appropriate since it captures the
significance of recent and thus relevant values, but also allows for some leeway when it comes

to values that are usually active but for some reason have not been updated recently.

4.6.1 Adaptive Replacement Cache Policy

Since we did not want to consider all available opinions for the calculation of overall reputation
values, we had to find an algorithm that could accommodate the need for selecting a subset of
them, based on specific criteria. Frequency and recency seemed to be the main characteristics
that could distinguish a reputation relation and corresponding value as important or not, hence
our initial idea for LRU or LFU lists. Those kind of issues, however, are very common in
the field of cache management, so we looked at related work to see if any of the proposed
approaches could be applicable to our reputation system, especially ones that account for those
characteristics or criteria mentioned earlier.

A lot of research has been done on cache management for different aspects of computer
systems, namely storage systems, databases, web servers, middleware, operating systems etc.
Since faster memory is significantly more expensive, its size is usually a fraction of the auxil-
iary memory. In case network communication is involved, the attempt is focused on minimiz-
ing network traffic. In either scenario, though, a policy for managing cache and minimizing
swapping of pages is required.

Several approaches have been proposed, but one of the most prolific ones is the Adaptive
Replacement Cache (ARC) policy [25]. This proposed policy attempts to bridge the gap be-

tween other policies, which are using lists with Least Recently Used or Least Frequently Used

68 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

pages, while maintaining low computational overhead.

The main idea is maintaining two lists to account for entries used only once recently and at
least twice recently. Those lists are called L1 and L2 respectively. Whenever an entry appears
that is not part of L1 U L2, it is added to the top of list L1. If, however, the entry already exists

in L1 U L2, it is moved to the top of list L2.

If the cache can hold up to ¢ number of entries, the combined size of L1 and L2 is equal to
2c. The lists are further divided into Top and Bottom parts, with the Top parts having a com-
bined size of ¢ and representing the entries that are actually maintained by the cache memory.

A visualization of that setting can be seen in Fig. 4.3|taken from [25].

69

4.6. SELECTION OF R VALUES FOR AR CALCULATION

Bottom of L, | B]
Lo

T
° MRU

Top of L»

T |TF U TS
o] MRU

Top of L;

Bottom of L, | BT
. LRU

Figure 4.3: General Structure of ARC lists

Note here that, the entries in the cache are not equally divided between the 7op parts of the
two lists. The combined size always equals to ¢, but the policy adapts the partitioning based

on observed workload. The main premise of the adaptation lies on “investing” on the list that

70 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

performs better. So, a hit in L1 will increase the Top part of that list, whereas a hit in L2 will

increase its Top part.

As far as the replacement policy goes, it mostly depends on whether the 7op part of L1 has

reached its desired size or not. Spots will be taken from L2, until the required size is reached.

By implementing that idea, ARC manages to outperform all other cache management poli-

cies, without burdening the system with unnecessary calculations.

4.6.2 ARC Adaptation

For our proposed approach, we adapt the Adaptive Replacement Cache (ARC) policy, in a
way that fits the needs and requirements of our framework. Even though memory is not our
main issue in this setting, discovering the R], relations that are most important, instead of
accounting for all available opinions, is paramount to us. Because of that, our algorithm utilizes
the underlying ideas of the ARC policy and retrofits them to accommodate the functionality

required by our reputation system, as discussed below.

L1 L2

1253 | 953 | 53 |11>3| 8>3 | 73 6->3 | 253 | 13 |10->3|14->3| 1353

Figure 4.4: Example of lists for § Cs

Following the idea put forward by the ARC policy, two ordered lists are maintained for each
recommender node r, which are used to identify the relations and corresponding reputation
values (R}, and R(w, r) respectively, where w are recommenders of r) that are to be used for the

calculation of the AR(r) value of node r.

4.6. SELECTION OF R VALUES FOR AR CALCULATION 71

Algorithm 6 ARC Adaptation Algorithm

1: - Let r be the recommender node whose AR value is in question

2:
3:

R N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

- Let k be the recommender node who updated or deleted their recommendation for r.

- Let inc, be the pair value that needs to be included in the calculation of the overall
reputation value.

- Let exc, be the pair value that needs to be excluded from the calculation of the overall
reputation value.

procedure AbDRVALUE(R(k, 1), IMP,, MFU,, MRU,)
inc, = Rk, r)
if R(k,r) € IMP, then
move R(k, r) to top of MFU,
exc, = Rprevious(ka r)
else if R(k,r) € MRU,||MFU, then
move R(k, r) to top of MFU,
exc, = value replaced by R(k, r)
adjust IMP,
else
move R(k, r) to top of MRU,
exc, = value replaced by R(k, r)
adjust IMP,
end if
updateAR (inc,, exc,, sum(r), weightSum(r)) // Call Alg. [5

21:

22:
23:
24:

// Or call Alg. []in case first variation is used (see comments in Alg. f).
/| updateAR (IMP,,R(k,r)k € IMP,)
end procedure

25:

26

27:
28:
29:
30:
31:
32:
33:
34
35:
36:

: procedure REMOVERVALUE(R(k, 1))
if R(k,r) € IMP, then
exc, = R(k,r)
if R(k,r) € MRU, then
inc, = next € MRU,
else if R(k,r) € MFU, then

inc, = next € MFU,
end if
include inc, in IMP,
end if

updateAR (inc,, exc,, sum(r), weightS um(r)) // Call Alg. @

37:

38:
39:

40

// Or call Alg. []in case first variation is used (see comments in Alg. f).
/| updateAR (IMP,,R(k,r)k € IMP,)
: end procedure

72 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

The first list (let’s call it MRU,) is utilized to maintain the relations pertaining to the most
recently updated reputation values put forward by other nodes, whereas the second one (MFU,
from now on) includes relations whose corresponding values have been updated most fre-
quently. We, also, specify a list of size c that contains the top parts both those lists and accounts
for the most important relations whose reputation values are to be considered in the calculation
of the corresponding AR(r) value (we will call it IMP,). The process can be seen in Alg. [6]

As one can see, whenever a new R(w,r) value becomes available, the lists corresponding to

the receiver of said value are checked. The available scenarios here are as follows:

o If the relation R}, corresponding to the new reputation value R(w,r), is in the top of either
of the two lists (i.e. part of the IM P, list), it is moved to the top of the MF U, list. In this
case, the previous value is, practically, substituted and the update consists of excluding

the old and including the new value.

o If the relation R, corresponding to the new reputation value R(w,r) is part of either the
MRU, or the MFU, list, but not part of the top, it is still moved to the top of the MF U,
list. However, a relation coming from another recommender is removed to make space
for the new relation. The corresponding values are marked for exclusion and inclusion,

respectively.

o If the relation R],, corresponding to the new reputation value R(w,r) is not part of any
of the lists, it becomes the top one in MRU, and the associated value is deemed to be
the one included in the calculation. Relation R], replaces another relation R;, whose

corresponding reputation value R(k,r) is excluded from the calculation as a result.

Note that, the list with the values that are to be considered for the calculation of an AR(r)
value (i.e. the IMP, list) is comprised of the relations at the top of the two other lists and its
size 1s fixed, but the amount of elements taken from each of the lists changes. You can see that
the algorithm contains some pseudo-code indicating adjustment of the /M P, list, but the actual

logic is more complicated and can be found in [25]. Same thing goes for the replacement

4.7. SERVICE RANKING 73

logic, which is tightly coupled with the adjustment of the /M P, list. The method was fully
implemented for the prototype of our framework and the experimental results were acquired

using that implementation.

Things are significantly more straightforward in case a R(w,r) relation is completely re-
moved. The removed value is flagged to be removed from consideration for the calculation
of the corresponding AR(r) value, if the corresponding relation R], was part of the /M P, list.
Then, the next available reputation value R(k,r), corresponding to the relation R; that was part
of the MRU, or MF U, list, based on where the removed relation belonged, but not of the /M P,

list, is included.

The final inc, and exc, values from each procedure are supplied as parameters to the algo-
rithm presented in Alg. [] For performance purposes, several values can be accumulated over
a predetermined period of time and sent as a single message to be processed by the proposed
AR evaluation Algorithm [5| The period of time can be parameterized to account for better

precision of values or improved performance.

4.7 Service Ranking

Every interaction between service client and service provider is preceded by acquisition of
recommendations and compilation of a ranking of available services. The process includes
selecting recommenders to be consulted, transforming recommendations into positive and neg-
ative evidence, applying ranking algorithm and, finally, inquiring for available incentives. All
of the information are, then, presented to the service client, who selects a service to use, either

manually or automatically through a pre-specified policy.

'If the first variation of the algorithm to update the AR(r) values is used (see Alg. El), the alternative calls,
supplying the IMP,, are utilized.

74 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

4.7.1 Selection of Recommenders

When a user p requests a ranking of available services, ratings (i.e. 7(rs) and D(rs) values)
are requested by a subset of the recommenders participating in our framework. Specifically,

prospective recommenders belong in one of the following 3 recommender groups:

1. Top a% of recommenders r to which p has a R, relation and R(p, r) value (i.e. has
received recommendations from them in the past). This is the group of Friends as defined

in Section 3.4}

2. Top a% of recommenders r to which any recommender k, for who p has a R’; relation
and R(p, k) value (i.e. has received recommendations from them in the past), has a R}
relation and R(k, r) value themselves. This is the group of Friends of Friends as defined

in Section 3.4}

3. Top a% of recommenders r with the highest AR(r) value in the system. This is the group

of Experts as defined in Section |3.4

Note here that, there is an additional parameter introduced in the selection of recom-
menders. The parameter a can be set according to the user’s preferences. A higher value of a
will result in getting the opinion of more recommenders into account. The client can choose
to get all of the opinions from one group, or a percentage of them. The proposed approach
even supports setting a threshold in reputation values or number of recommenders. Any choice
made, however, does not affect the semantics of the proposed approach. It merely adjusts the

framework’s throughput and network utilization vs plethora of available recommendations.

After selecting recommenders to consult, all available recommendations about service
providers are obtained. Personal experience of p is, also, taken into consideration and ratings

of service providers used in the past are obtained as well.

4.7. SERVICE RANKING 75

4.7.2 Aggregation of T and D values per recommender group

Even though the framework can support any ranking algorithm, we are proposing the use of
a variation of the Dempster-Shafer evidence theory [22], where a final score for each recom-
mended service, as a function of the 7(xs) and D(7s) values that are provided by the different
recommenders r involved (i.e. clients who have already used the service and have an opinion
about the service), is calculated. The reason to consider Dempster-Shafer is because it naturally

lends itself to the use of both positive and negative evidence for reaching a decision.

More specifically, each recommender r (i.e. clients who have already used the service and
have an opinion about the service) provides a (T(r,s),D(r,s)) pair of values for each recom-
mended service s. Even though each value supplied could be considered a distinct evidence,
the Dempster-Shafer theory is heavily dependent on the plurality of evidences provided. This
means that if values for a service are provided by a lot of recommenders belonging in one of
the groups, but way fewer ones belonging in another, the outcome will be overwhelmingly af-
fected by the former ones. This is especially common in cases of newer nodes, who don’t yet
have a lot of Friends. Also, the requesting user’s personal experience accounts for only one set
of evidences, which wouldn’t really matter compared to the tens or even hundreds of opinions

coming from other groups. For that reason, further preprocessing of the values is required.

For each one of the previous mentioned groups of recommenders and for each available

service the T(k,s) and D(k,s) values are aggregated. The formulas are as follows:

To. = Siec(Repi - T(k, 5))
- 2kec(Repy)

(4.2)

De_.. = Ykec(Repy - D(k, 5))
- 2kec(Repy)

In those formulas, Repy is the reputation value of every recommender of that group based

4.3)

on the group’s nature (i.e. for Friends Rep;, = R(p, k), for Friends of Friends Rep;, = R(p,m) -

R(m, k), for Experts Rep, = AR(k)) and (T(k,s),D(k,s)) are the values of each recommender

76 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

for every service available. The values produced by these formulas correspond to the rating of
each service, as perceived by each group G (i.e. Friends, Experts, FriendsOfFriends). User’s
p personal opinions are used as is. This preprocessing allows for a single set of values com-
ing from each group of recommenders for each service, with every recommender’s opinion

weighed differently within the group based on their corresponding reputation.

4.7.3 Dempster-Shafer

After the preprocessing, the ranking system considers every T;_,; and D¢, value produced.
Each T;_,sp; value, for example, is considered as an “in-favour” evidence for service SPI.
This means that a set, containing only that service, is created (i.e. {S P1}) and is assigned the
value calculated in the previous Section. The process is repeated for each of the recommender
groups. Similarly, each Dg_,5p; value is considered as an “against” evidence for service SP1,
or complimentary as an “in-favour” evidence for the set of all available services except SPI.
In this case, the complimentary set of the one created for T;_,5p; is constructed, or the one
containing all available services except SPI (i.e. {SP1}¢ = {SP2,S P3,S P4, ...}). The Dg_sp
value calculated in the previous Section is assigned to that set and the process is, again, repeated
for all recommender groups. Bear in mind that, a group might not have any recommendations
for that particular service, in which case no evidences are created.

These evidences are then aggregated using the Dempster-Shafer evidence theory algorithm
to provide an overall belief interval for each recommended service, given the “in-favor” and
“against” values for each service by each group of recommenders. If more significance needs to
be assigned to the opinions of one of the groups, or the user’s personal opinion, values produced
by that group can be weighed accordingly, by duplicating the corresponding evidence, before
they are utilized by the Dempster-Shafer algorithm.

More specifically, once the T and D values have been calculated for each available service
and each group, using Formula§.2] and Formula[4.3] certain values must be computed for each

available service. The formulas for calculating those values utilized the aforementioned 7" and

4.7. SERVICE RANKING 77

D values available for that particular service and can be seen below:

Dy = (1 - HGerec groups(1 - TG—)s)) ’ HGerec groups(1 - DG—>s) (4.4)
’ 1 - (HGerec groups(1 —TG-s) - HGereC groups(1 — Dg5)) .

1 - HGerec groups(1 — Dg-y)) - HGerec groups(1 —TG-5)

Cg = 4.5)
1 - (HGerec glroups(1 - TG—>S)) HGerec groups(1 - DG—>S))

re=1—=ps—cy (4.6)

ds =cCc,+7ryg 4.7)

Once those values have been computed for all of the recommended services, another value
required by the Dempster-Shafer algorithm is computed. This K is required to calculate the

belief interval and its formula is provided below:

= || dp-a+) ?— [] co (4.8)

spefall SPs} spefall SPs} 5P spefall SPs}

Once we have all the information, we can calculate the belief to the set containing just the

service in question and the belief to the complimentary set, as well.

Bel({s}) = K - (p; - 1_[dsp + 1y - 1_[Csp) 4.9)

spe(s}€ spe{si€

Bel({s)) = K - (]_[LA]_[dyp -]_[Csp) (4.10)

spe{all SPs} spe(sic P spe(s)C spe{all SPs}

Those two belief values are, finally, utilized to provide the belief interval for that particular

service, as calculated using this variation of the Dempster-Shafer evidence theory.

s : [Bel({s})), 1 — Bel({s})] 4.11)

78 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

This belief interval’s lower end corresponds to the result of the Bel function applied on the
unit set of the service in question (i.e. Bel({s}), see Formula[4.9). The result of the application
of the belief function on the unit set of s gives us the total amount of belief committed to s,
after all evidence bearing on it has been pooled. The upper end, on the other hand, comes
from subtracting the result of the Bel function, applied on the complimentary of unit set of the
service in question (i.e. Bel({s}°), see Formula , from 1. Bel({s}°) indicates the extent to
which the evidence supports the negation of s (i.e. the belief that any other service is a better
choice), with the result of 1 — Bel({s}°) expressing the plausibility of s (i.e. the extent to which
evidence allows one to fail to doubt).

After calculating the belief interval for each of the recommended services, we can sort them
and provide the user with a ranking. Since this is an interval, and not a single value, one can
sort them in a variety of ways. We propose ranking them based on the low end of the interval,
which is the worst case for each service, with the upper end being utilized in case of a tie
between two different services.

Note that, the belief values are not indicative of the recommendation values provided for
each service, but rather the relative belief in a service, based on other available options, i.e.
services. What this means is that, if the process has discovered three services that are all
performing very well, each of them will bear a belief value of about 0.3.

Also, the Dempster-Shafer evidence theory is very unforgiving when it comes to negative
evidence. This was one of the reasons that led to the utilization of this variation as the ranking
algorithm for our approach. Distrust, in our system, accounts for participation of the service
provider in behaviours that are considered unsolicited by the service client, so higher numbers

should be heavily penalized, in our opinion.

4.7.4 Incentives

After each service is utilized by a number of service clients, and assuming that there are few

or no malicious users, its actual QoS is available to everyone requesting it, either through

4.7. SERVICE RANKING 79

personal experience or through recommendations from other nodes in the framework. Even
though that is highly desirable, it fails to address the issue of service providers improving
the quality of the services they offer. Since users only pick the top service available at any
point, improved services will never be utilized, and thus their score will never be updated.
Furthermore, new services have no one to recommend them, since they have never been used
in the past. Therefore, in this case they will never appear in the ranking of available services.
To mitigate those shortcomings, we propose that service providers are allowed to provide
incentives to users in order to get the opportunity to demonstrate their improved or newly in-
troduced performance. For example, a newly added to the system service may provide some
“bonuses” (i.e incentives) to the propsective clients, so that it can be chosen instead of another
established service provider. As far as modelling incentives, a few approaches have been pro-
posed. Most of them deal with incentives regarding honest behaviour by participating nodes
[26]], rather than incentives to prefer a service provider over another. Some, however, have pro-
posed either specific models regarding price adaptation [27] or use of agent-based modelling
to simulate behaviour and discover appropriate incentives per case [28]]. Goal models could,
also, be utilized to both describe conditions for providing incentives and specifying criteria
for automatically accepting services and accompanying incentives by service clients. Original
ranking of services will still be provided by taking recommendations and personal experience
into consideration, but additional information about service-provided incentives will be avail-
able. The user can, then, choose, based on those information, whether they prefer the top rated

service or any other service, whose incentives seem appealing to them.

4.7.5 Compensations

Another scenario that might occur is a service underperforming due to specific circumstances
that have nothing to do with the service’s regular QoS. Observed values for that interaction
might be significantly lower than usual, which will lead to a decrease in the cumulative values

(i.e. T and D values) maintained by the user. Said user will be more reluctant to use the

80 CHAPTER 4. TRUST AND REPUTATION EVALUATION ALGORITHMS

service in question in the future and will provide worse recommendation when inquired about
it. To avoid this outcome, a service provider can opt to offer a compensation to the user. User
can either accept the compensation and recalculate observed values, or decline it and proceed
with the original values. For example, a temporarily underperforming service which overall
is a trustworthy service but failed to meet the expected QoS, will be able to provide some
compensations to the client (e.g. money, extra access to the service) so that the client will not
rank the service as low. Consistent use of compensations by a service will indicate a degrading
service to be reflected in the T and D values.

To model provided compensations based on difference between actual and desired be-
haviour, Dalpiaz et al.[29] have proposed an approach that utilizes and extends goal models
and requirement engineering. Their method addresses the need for compensations in socio-
technical systems, but it can be adapted and utilized for reconciliation and compensation in

other service providing systems, such as the one proposed in this approach.

4.7.6 Running Example (Revisited)

In Chapter |3| we provided an example to demonstrate the steps involved in the process of
getting recommendations and acting on them. However, no calculations were provided at this
point, since the corresponding algorithms hadn’t been presented yet.

To provide a complete and comprehensive insight into how the framework works, we revisit
the exact same example and show the calculations required in some of the provided steps, using
the algorithms presented in this chapter.

The same network of nodes, which can be seen again in Fig. is utilized. The steps that
do not involve calculations are included for clarity purposes, but in a summarized manner.

Once more, the process involves fourteen steps that are as follows:

Steps 1-4 The client expresses interest in using a service, selects recommenders belonging to each
of the recommender groups (see Section and collects their recommendations,

adding its personal opinions to the pool.

4.7. SERVICE RANKING 81

~085/0 4
Tt
()~
~~ 078012
qqqqqqq 0.75/0 .1;_:: R ‘
s 065/0 28
“‘ﬂﬁyg‘ﬁs\w’?f? T,

TS~ —_ 080005 T~<_ s

5 Sl

5 087010 “~~~~:-§.
gt /,r/

Figure 4.5: Example network of recommenders and services

Step 5 We need to calculate the aggregate values for each of the services and each group of
recommenders (F — , FOF — Friends of Friends, E — Experts, P — Personal). So the

calculations are as follows:

— SP2: For each group the T and D values are:
R(R1,R3) - R(R3,R6) - T(R6,S P