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AbVWUacW 

Minimally invasive procedures for prostate cancer diagnosis and treatment, including 

biopsy and brachytherapy, rely on medical imaging such as two-dimensional (2D) and 

three-dimensional (3D) transrectal ultrasound (TRUS) and magnetic resonance imaging 

(MRI) for critical tasks such as target definition and diagnosis, treatment guidance, and 

treatment planning. Use of these imaging modalities introduces challenges including time-

consuming manual prostate segmentation, poor needle tip visualization, and variable MR-

US cognitive fusion. The objective of this thesis was to develop, validate, and implement 

software- and hardware-based tools specifically designed for minimally invasive prostate 

cancer procedures to overcome these challenges. 

 First, a deep learning-based automatic 3D TRUS prostate segmentation algorithm 

was developed and evaluated using a diverse dataset of clinical images acquired during 

prostate biopsy and brachytherapy procedures. The algorithm significantly outperformed 

state-of-the-art fully 3D CNNs trained using the same dataset while a segmentation time 

of 0.62 s demonstrated a significant reduction compared to manual segmentation. Next, the 

impact of dataset size, image quality, and image type on segmentation performance using 

this algorithm was examined. Using smaller training datasets, segmentation accuracy was 

shown to plateau with as little as 1000 training images, supporting the use of deep learning 

approaches even when data is scarce. The development of an image quality grading scale 

specific to 3D TRUS images will allow for easier comparison between algorithms trained 

using different datasets. Third, a power Doppler (PD) US-based needle tip localization 

method was developed and validated in both phantom and clinical cases, demonstrating 

reduced tip error and variation for obstructed needles compared to conventional US. 

Finally, a surface-based MRI-3D TRUS deformable image registration algorithm was 

developed and implemented clinically, demonstrating improved registration accuracy 

compared to manual rigid registration and reduced variation compared to the current 

clinical standard of physician cognitive fusion. These generalizable and easy-to-implement 

tools have the potential to improve workflow efficiency and accuracy for minimally 

invasive prostate procedures. 
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SXPPaU\ fRU La\ AXdieQce 

Prostate cancer is the most common non-skin cancer in Canadian men. The management 

of prostate cancer often includes the use of needles, such as in diagnosis to extract tissue 

samples and test for the presence of cancer, known as biopsy, and in treatment to deliver 

radiation from inside the body, known as brachytherapy. These procedures rely on medical 

imaging for critical tasks including target definition, creating patient-specific treatment 

plans, and accurately guiding needles into the body. This also introduces challenges as 

time-consuming and difficult manual tasks must be completed in the operating room such 

as accurately identifying the prostate and needle tip locations and mentally combining 

information from multiple imaging types. This thesis is focused on developing innovative 

software and hardware solutions to overcome these challenges and improve treatment 

efficiency and accuracy.  

 First, artificial intelligence was used to train an algorithm to locate the prostate 

boundary (or µsegment¶) in three-dimensional ultrasound images in under 1 second, 

demonstrating equal segmentation accuracy and greatly reducing time compared to manual 

segmentation, which can take up to 10 minutes. Next, this same algorithm was tested using 

smaller datasets, demonstrating equivalent performance with as little as 7% of the full 

dataset, potentially increasing access to artificial intelligence methods even if data is 

scarce. Third, an alternative ultrasound technique known as power Doppler ultrasound was 

used to improve needle tip visibility during the live brachytherapy procedure, 

demonstrating reduced variability compared to standard ultrasound. Finally, an automated 

image registration algorithm was developed to overlay magnetic resonance images on 

ultrasound images, facilitating the targeting of the previously invisible tumour in the 

operating room.  
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CR-aXWhRUVhiS SWaWePeQW 

This thesis is an integration of four original research articles which are either published in 

peer-reviewed scientific journals or are submitted and under peer-review. As the first 

author of each of these manuscripts, I had a significant role in all aspects of the work 

including the proposal of research questions, experimental design, data acquisition, data 

analysis, statistics, manuscript drafting, and manuscript revision. All authors contributed 

editorial feedback prior to manuscript submission. The specific contributions of all co-

authors for each manuscript are described below. 

 
Chapter 2 is an original research article entitled ³Automatic prostate segmentation 

using deep learning on clinically diverse 3D transrectal ultrasound images´ which was 

published in Medical Physics in 2020. This manuscript was co-first authored by Nathan 

Orlando and Derek J. Gillies with co-authorship from Igor Gyacskov, Cesare Romagnoli, 

David D¶Souza, and Aaron Fenster. Derek Gillies and I equally split contributions for 

experimental design, data collection and curation, development of image analysis software, 

3D CNN implementation (model training, optimization, validation, and testing), data 

analysis, interpretation, and statistics, and manuscript drafting, editing, and revising. Igor 

Gyacskov completed all manual prostate segmentations and was responsible for the 2D U-

Net implementation (model training, optimization, validation, and testing) and 3D 

reconstruction algorithm development. Cesare Romagnoli (now deceased) and David 

D¶Souza were the Radiologist and Radiation Oncologist, respectively, who assisted with 

clinical 3D TRUS image acquisition. Aaron Fenster contributed to the conception and 

design of the study and supervised the data interpretation and manuscript drafting and 

revision.  

 
Chapter 3 is an original research article entitled ³Effect of dataset size, image quality, 

and image type on deep learning-based automatic prostate segmentation in 3D ultrasound´ 

which was published in Physics in Medicine & Biology in 2022. This manuscript was co-

authored by Nathan Orlando, Igor Gyacskov, Derek J. Gillies, Fumin Guo, Cesare 

Romagnoli, David D¶Souza, Derek W. Cool, Douglas A. Hoover, and Aaron Fenster. My 

contributions included experimental design, dataset collection and curation, image and data 
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analysis, data interpretation and statistics, and manuscript drafting and revision, in addition 

to assisting with the U-Net++ implementation. Igor Gyacskov was responsible for 2D 

neural network implementation and 3D reconstruction algorithm development. Derek J. 

Gillies assisted in the development of segmentation evaluation software. Fumin Guo 

provided the U-Net++ python code and assisted with implementation. Cesare Romagnoli 

(now deceased) and David D¶Souza were the Radiologist and Radiation Oncologist, 

respectively, who assisted with clinical 3D TRUS image acquisition. Derek W. Cool was 

the interventional radiologist who developed the 3D TRUS image quality grading scale 

and subsequently graded the testing dataset images. Douglas A. Hoover and Aaron Fenster 

contributed to the conception and design of the study and supervised the data interpretation 

and manuscript drafting and revision.  

 
Chapter 4 is an original research article entitled ³A power Doppler ultrasound method 

for improving intraoperative needle tip localization in interstitial prostate brachytherapy´, 

which was submitted for publication in Medical Physics on March 28, 2022 and is currently 

under peer-review.  This manuscript was co-authored by Nathan Orlando, Jonatan Snir, 

Kevin Barker, David D¶Souza, Vikram Velker, Lucas C. Mendez, Aaron Fenster, and 

Douglas A. Hoover. My specific responsibilities included contributing to the initial 

conception of the power Doppler (PD) US method and oscillator design in addition to 

experimental design, phantom construction and image acquisition, computed tomography-

US rigid registration and evaluation, oscillator operation and needle tip localization in 

phantom and clinical brachytherapy procedures, data analysis, interpretation, and statistics, 

and manuscript drafting. Jonatan Snir contributed to the initial conception of the PD US 

method and oscillator design. Kevin Barker was responsible for the wireless oscillator 

design and manufacture. David D¶Souza, Vikram Velker, and Lucas C. Mendez were 

physicians who operated the mechanical oscillator as part of the prospective feasibility 

clinical trial in addition to grading needle tip visibility. Aaron Fenster and Douglas A. 

Hoover contributed to the conception and design of the study and supervised the data 

interpretation and manuscript drafting. In addition, Douglas A. Hoover assisted with 

phantom experimentation and clinical validation including needle tip localization, clinical 

software operation, and needle tip visibility grading. 
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Chapter 5 is an original research article entitled ³Validation of a surface-based 

deformable MRI-3D ultrasound image registration algorithm towards clinical 

implementation for interstitial prostate brachytherapy´, which was submitted for 

publication in Brachytherapy on June 15, 2022. This manuscript is co-authored by Nathan 

Orlando, Chandima Edirisinghe, Igor Gyacskov, Jason Vickress, Robin Sachdeva, Jose A. 

Gomez, David D¶Souza, Vikram Velker, Lucas C. Mendez, Glenn Bauman, Aaron Fenster, 

and Douglas A. Hoover. My contributions included phantom image acquisition and 

retrospective clinical data collection and curation. I was responsible for the validation and 

operation of the deformable image registration algorithm, including intraoperative 

implementation, as well as for image analysis to assess registration accuracy, organ 

contouring in phantom, manual landmark localization, data analysis, interpretation, and 

statistics, and manuscript drafting. Chandima Edirisinghe was responsible for the 

registration algorithm development and implementation. Igor Gyacskov assisted with the 

initial design of the registration algorithm. Jason Vickress assisted with study design 

registration accuracy evaluation strategy. Robin Sachdeva was a part of the clinical team 

which facilitated implementation of our algorithm in a prospective clinical trial. Jose A. 

Gomez was the pathologist who completed histological evaluation of the targeted biopsy 

tissue sample. David D¶Souza, Vikram Velker, and Lucas C. Mendez were the physicians 

who completed the manual MR-US cognitive fusions as part of the retrospective clinical 

validation. In addition, Lucas C. Mendez completed all contouring for the retrospective 

and prospective clinical cases, and was the co-principal investigator along with Glenn 

Bauman for the prospective clinical trial that used our algorithm was implemented in. 

Aaron Fenster and Douglas A. Hoover contributed to the conception and design of the 

study and supervised the data interpretation and manuscript drafting. In addition, Douglas 

A. Hoover completed manual rigid registrations and assisted with clinical implementation.  
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Chapter 1  

 

1 IQWURdXcWiRQ 
 

Prostate cancer is the third highest cause of cancer death among Canadian men.1 Prostate 

cancer management, including diagnosis and treatment, commonly utilizes minimally 

invasive procedures such as biopsy and brachytherapy. These procedures rely on medical 

imaging, particularly ultrasound and magnetic resonance imaging, for target definition and 

diagnosis, treatment guidance, and treatment planning. Use of these imaging methods for 

minimally invasive procedures also introduces challenges including time-consuming 

manual prostate segmentation, difficulty localizing implanted needle tips, and variable 

cognitive fusion of magnetic resonance and ultrasound images. This thesis is focused on 

overcoming these challenges through the development, validation, and implementation of 

software- and hardware-based tools designed specifically for minimally invasive prostate 

cancer procedures. 

Chapter 1 provides foundational background knowledge including a description of 

prostate cancer epidemiology (1.1), an overview of current prostate cancer diagnosis (1.2) 

and treatment (1.3) techniques, and a description of how medical imaging is used in 

prostate cancer disease management (1.4). The remaining sections motivate the work in 

Chapters 2-5 through a description of current challenges in minimally invasive prostate 

procedures (1.5) and an outline of the thesis including specific objectives for each study 

(1.6). 

 
1.1 PURVWaWe CaQceU 
 

Prostate cancer is the most commonly diagnosed non-cutaneous cancer in Canadian men, 

with 24,000 cases or 20.3% of all new cancer cases in men projected for 2021.1 This 

corresponds to 1 in 8 Canadian males expected to be diagnosed with prostate cancer in 

their lifetime.1 Worldwide, the incidence of prostate cancer is second only to lung cancer 
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accounting for 13.5% of new cancer cases in men and an estimated 1.3 million cases in 

2018.2 Prostate cancer incidence increases as age increases with an average age of 66 years 

at initial diagnosis.3 

 In contrast to the high incidence rate of prostate cancer, the mortality rate is 

considerably lower with only 1 in 29 Canadian men expected to die from the disease. 

Prostate cancer is the third highest cause of cancer death in Canadian men with an estimated 

10.1% of total cancer deaths behind only lung and colorectal cancer.1 Prostate cancer 

represents an even lower share of mortality rate due to cancer in men worldwide at only 

6.7% in 2018.2 Reduced mortality rates may be due to earlier detection with the prevalence 

of prostate specific antigen (PSA) testing and improved management of the disease after 

detection.4 Ultimately, men diagnosed with prostate cancer will most likely die of other 

causes.5 

 The prostate is an accessory gland in the male reproductive system that lies inferior 

to the bladder and anterior to the rectum, with the urethra passing through it.6 The prostate 

has been defined using a zonal structure,7 with an anterior nonglandular zone, transitional 

zone surrounding the urethra, central zone surrounding the ejaculatory ducts, and a large 

peripheral zone, collectively composed of 30 to 40 individual glands lined with epithelial 

cells.6 Secretions from the prostate and neighbouring seminal vesicles contribute to the 

formation of semen, with the prostate contributing nutrients, enzymes, and buffers.6,8 Due 

to its glandular structure, most prostate tumours are adenocarcinomas, occurring primarily 

in the peripheral zone, while benign prostatic hyperplasia (BPH) or nonmalignant 

overgrowth occurs primarily in the transitional zone.9 The presence of prostate cancer may 

cause adverse symptoms including blood in the urine, frequent urination, and pain.10  

 As the prostate is a non-vital accessory gland, the 5-year survival rate for men 

diagnosed with prostate cancer is high at approximately 98% in the USA,11 with the 

outcome of prostate cancer driven largely by metastases, or the spread of cancer to nearby 

organs.12 The most common sites for prostate cancer metastasis include bone, lung, liver, 

pleura, and adrenals, with more than 30% of prostate cancer patients expected to harbour 

metastatic tumours at the time of death.12 This stresses the importance of early detection 

for prostate cancer prognosis and the facilitation of safe increases in treatment 

aggressiveness for high-risk disease.  



3 

 

1.2 PURVWaWe CaQceU DiagQRViV 
 
Prostate cancer diagnosis and staging are required prior to deciding on a course of 

treatment. The diagnosis pathway includes initial screening (1.2.1), definitive diagnosis 

with biopsy (1.2.2), and disease staging (1.2.3).  

 
1.2.1 Initial Screening Methods 

 
Initial prostate cancer screening is typically completed using two techniques in 

combination: digital rectal examination (DRE) and prostate specific antigen (PSA) blood 

test.13  

 The DRE procedure involves the physician palpating the prostate through the rectal 

wall using a finger inserted into the patient¶s rectum. A tumorous prostate may feel hard 

or asymmetric relative to healthy prostate and lumps may be present on the prostate surface, 

all of which may be felt by the physician during a DRE.6 The efficacy of DRE has not been 

definitively demonstrated, with Schröder et al. showing that DRE alone could detect 55.8% 

of confirmed cancers and was strongly dependent on PSA level with low performance in 

low PSA ranges (< 4.0 ng/mL).14 As such, an abnormal DRE examination is typically 

paired with in subsequent PSA blood testing as well as a potential biopsy.  

 A blood test to determine PSA levels is a common screening technique for prostate 

cancer. PSA is a protein produced exclusively by epithelial cells in the prostate and can be 

detected in a blood sample.15 PSA is produced in both healthy and cancerous prostates, 

with elevated concentrations of PSA observed in 25 to 92% of prostate cancer patients 

depending on prostate size.16 PSA is typically measured in nanograms (ng) per millilitre 

(mL), with PSA concentration above 4.0 ng/mL traditionally indicating suspicions of 

prostate cancer.17 One of the difficulties with PSA screening is the elevated levels of PSA 

observed in non-cancerous prostate conditions, such as in 30 to 50% of benign prostatic 

hyperplasia patients, limiting the specificity of the test.16 While PSA testing is currently 

the most sensitive biomarker for monitoring prostate cancer, its utility in screening and 

diagnosis is not clear. In particular, the intensification of PSA testing has led to a dramatic 

increase in the diagnosis of prostate cancer since its introduction, peaking in 1993 in 

Canada,1 resulting in the identification of low-risk cancer that may not pose a risk to the 
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patient. This has led to the overdiagnosis and overtreatment of prostate cancer, exposing 

patients to the adverse side effects of biopsy or radical treatment without clearly defined 

benefit. To combat the trend of overdiagnosis in prostate cancer, the US Preventive 

Services Task Force advised against PSA screening for men over 65 and since 2014, PSA 

screening is no longer suggested for asymptomatic men of any age, with Canada adopting 

similar guidelines in 2014.18,19  

 Currently, the decision to use asymptomatic PSA screening is an individual choice 

based on discussion with a physician. Screening is typically used in men suspected of 

having prostate cancer, with optimal results obtained using a combination of DRE and PSA 

testing, with transrectal ultrasound imaging to detect hyperechoic lesions included in 

certain cases as well.14,16 Abnormal DRE, abnormal ultrasound imaging results, PSA levels 

greater than 4.0 ng/mL, and clinical suspicion of prostate cancer are indications for prostate 

biopsy to definitively confirm the presence of cancer.  

 PSA testing is also routinely employed after therapy to assess treatment outcome, 

specifically looking for rising PSA levels, known as biochemical recurrence, which may 

be a predictor of subsequent cancer recurrence and/or metastasis.20 Biochemical disease-

free survival is a common metric reported for prostate cancer treatment assessment in 

clinical trials, defined as patient survival time with little to no rise in PSA levels and no 

evidence of local recurrence or global metastasis. 

 
1.2.2 Prostate Biopsy 
 
Prostate biopsy is the gold standard for definitive diagnosis of prostate cancer after 

suspicions arise during screening.21 Core needle biopsy procedures involve the removal of 

small samples, or so-called cores, of prostate tissue throughout the gland using a hollow 

needle inserted into through the rectum or perineum. Core samples are stained and analyzed 

under microscope by a pathologist to determine if cancer cells are present. Biopsy needle 

insertion is typically guided by transrectal ultrasound (TRUS) imaging, offering 

visualization of the needle as its inserted into the prostate. The selection of core location 

and number of cores is variable between biopsy techniques.  

 The original gold standard prostate biopsy method used the sextant technique, a 

systematic approach where six cores were extracted from the base, middle, and apex of the 
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prostate.22 Levine et al. demonstrated that the systematic sextant technique had false 

negative rates of approximately 30%, meaning patients with prostate cancer were 

improperly diagnosed as cancer-free in 30% of biopsies.23 To address this limitation and 

decrease the false negative rate, increasing the number of biopsy cores to 8 or 11 was 

proposed, demonstrating increased detection rates.24,25 The completion of two consecutive 

sextant biopsies in the same procedure was also shown to increase the number of cancer 

detected by 30%.23 Due to the increase number of core samples removed from the prostate, 

these approaches also increased the patient burden. Alternative approaches have proposed 

targeted biopsies using imaging. TRUS approaches targeting hyperechoic or hypoechoic 

regions in addition to the standard sextant biopsy locations demonstrated increased 

sensitivity.26 More recently, magnetic resonance imaging (MRI) targeted biopsy methods 

have been proposed,27 and will be described in further detail in section 1.4.3.  

 Regardless of the biopsy technique used, the pathology report generated based on 

the extracted samples is required for prostate cancer staging. 

 
1.2.3 Prostate Cancer Staging 

 
As prostate cancer is a heterogenous disease,9 prostate cancer staging to determine the 

cancer extent and aggressiveness is required to determine the appropriate treatment 

response. Prostate cancer staging and risk assessment most commonly includes 

consideration of Gleason score,28 PSA level,16 and TNM-stage.29  

 Gleason score is determined based on the histologic arrangement of cancer cells in 

H&E stained prostate tissue slides assessed under light microscopy.28,30 The Gleason 

grading system defines five grades, labelled 1 through 5, based on the differentiation in the 

pattern of growth of the tumour compared to healthy prostate cells. Prostate cancer cells 

are less differentiated than healthy prostate cells, and this differentiation scales with cancer 

aggressiveness. The Gleason score is then reported as the most common or primary pattern 

grade plus the second most common pattern grade, thus ranging from 2-10. If only one 

pattern is present, the grade is multiplied by two to give the Gleason score. For example, if 

the predominant grade was 3 with a second most common grade of 4, the Gleason score 

would be 7, alternatively reported as 3+4.   
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 PSA concentration in the patient¶s blood, as described in section 1.2.1, is also 

included in assessment of risk level. PSA levels less than 10 ng/mL are considered low 

risk, PSA levels between 10 and 20 ng/mL are considered intermediate risk, and PSA levels 

above 20 ng/mL are considered high risk.31  

 The TNM system for cancer staging, published by the Union for International 

Cancer Control, is one of the most common systems for classification of malignant 

tumours.29 This system characterizes the extent of the cancer in three categories. First, the 

extent of the primary tumour (T), second, whether the cancer has spread to nearby lymph 

nodes (N), and third, whether the cancer has metastasized to other parts of the body (M). 

The T-category ranges from 1 to 4 as primary tumour extent increases, while N- and T-

category are yes or no categories, presented as 1 or 0, respectively. TNM characterization 

along with Gleason grade and PSA level are also used to define the overall stage of prostate 

cancer, ranging from I through IV, with the higher stage denoting higher spread of cancer.29 

 Overall risk assessment of prostate cancer considers all available diagnostic 

information including Gleason score, PSA level, and TNM-stage, as defined by the 

National Comprehensive Cancer Network (NCCN).32 The defined risk levels stratify 

patients into either very low risk, low risk, intermediate risk, or high risk based on cancer 

aggressiveness and risk of early mortality. Optimal treatment courses differ depending on 

risk level assessment for each patient, making cancer staging a critical component of the 

treatment process. Treatment options will be described in detail in the following section.  

 
1.3 PURVWaWe CaQceU TUeaWPeQW 

 
As described in section 1.2.3, prostate cancer risk level plays a critical role in deciding the 

optimal course of treatment. This may include a combination of surgery (1.3.1), systemic 

treatments (1.3.2), radiation therapy (1.3.3), or focal therapy (1.3.4), all of which are 

described in detail in this section. The widespread use of PSA testing has led to increased 

prostate cancer diagnosis rates, and thus overtreatment of patients where the cancer poses 

little risk to early mortality.33 

 Corresponding to the need to reduce overtreatment of prostate cancer, the 

witholding of radical treatment is a common method of disease management for many low-
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risk cases, so-called active surveillance.34,35 This allows patients to avoid the adverse side 

effects of radical therapy until the potential benefits of treatment outweigh the side effects. 

Active surveillance involves the careful monitoring of prostate cancer patients using 

diagnostic tests such as imaging, PSA testing, and biopsies, deferring treatment until the 

first signs of higher-risk disease.35 This relies on the asumption that the time between initial 

diagnosis and disease progression is long for low-risk disease.36 Criteria for active 

surveillance is variable, but commonly includes patients with Gleason score less than 6, 

clinical stage less than T2a, and PSA levels less than 10 ng/mL.34 Based on this criteria, up 

to 36% of men diagnosed with prostate cancer may be suitable for active surveillance.34 At 

the first signs of higher-risk disease, radical treatment can be initiated using techniques 

described in sections 1.3.1-1.3.4. In contrast, for elder men diagnosed with prostate cancer, 

so-called watchful waiting is common, where treatment is deferred without diagnostic 

monitoring until symptoms develop at which point palliative treatment is initiated.35  

 
1.3.1 Surgery 

 
Surgery in the form of radical prostatectomy (RP) is a common treatment approach for 

clinically organ-confined prostate cancer.37 RP involves the complete removal of the 

prostate gland, and may include the removal of lymph nodes around the prostate gland if 

there is suspicion of cancer spreading to the nodes. Retropubic RP, an open surgical 

approach where an incision is made in the lower abdomen is the most common technique.38 

Advances in RP surgical technique have since focused on increased nerve-sparing to 

preserve patient urinary and erectile function.37  

 Laparoscopic RP has been proposed, demonstrating reduced operative and 

postoperative morbidity as well as equivalent short-term outcomes compared to standard 

retropubic RP.39 The difficulty of laparoscopic surgeries for inexperienced physicians has 

prompted the development of robot-assisted laparoscopic surgeries utilizing high degree-

of-freedom robots such as the da Vinci system that can mimic hand movements with high 

accuracy.40 Although laparoscopic and robot-assisted RP may reduce blood loss resulting 

from surgery, there is no evidence of the superiority of any surgical approach in terms of 

oncologic outcome.37  
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 Survival outcomes following RP are good, with 5-year biochemical disease-free 

survival of up to 92% for low-risk prostate cancer and 35% for high-risk prostate cancer.41 

Severe toxicities associated with RP including erectile disfunction and incontinence can 

result in decreased quality of life.42 Recent advances in radiotherapy have improved 

oncologic outcome to levels comparable to radical prostatectomy for organ-confined 

cancer, often with decreased severity of toxicities.43 As such, the treatment of localized 

prostate cancer has shifted focus to radiation therapy and focal therapy approaches, 

described in sections 1.3.3-1.3.4.  

 
1.3.2 Systemic Treatments 
 
Systemic therapy targeting the whole body is another prostate cancer treatment technique, 

most commonly in the form of androgen deprivation therapy (ADT)44 or chemotherapy,45 

often employed for advanced prostate cancer that has metastasized to other organs. 

 Androgens such as testosterone and dihydrotestosterone are made primarily by the 

testicles and excess production can stimulate prostate cancer cells to grow. ADT aims to 

lower androgen levels, depriving the prostate cancer cells which can cause the prostate 

cancers to shrink or grow more slowly.46 Orchiectomy, the surgical removal of the testicles, 

was the most common form of ADT, but was shown to have a large psychological burden 

and thus has been rejected in favor of medical castration in recent years.47 Medical 

castration involves the delivery of hormonal agents such as estrogens, antiandrogens, and 

luteinizing hormone-releasing hormone (LHRH) agonists.47 While ADT is an effective 

palliative treatment, it has several adverse side effects including decreased libido, 

impotence, hot flashes, metabolic alterations, and changes in cognition and mood.46 Not all 

cancers respond the same to ADT, so treatment of hormone-resistant prostate cancer is an 

active area of study.48 In addition to palliative treatment for patients with advanced prostate 

cancer, ADT has also been proposed as a  neo-adjuvant therapy prior to radiation therapy 

to shrink the cancer or after therapy if PSA levels rise.44  

 Chemotherapy involves the delivery of cytotoxic agents to kill cancer cells, 

stopping further growth and preventing cell division. For the management of prostate 

cancer, chemotherapy is commonly employed for palliative care of hormone-resistant 

disease.45 The use of chemotherapy as an adjuvant and neoadjuvant treatment modality has 
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been proposed.45 As with ADT, chemotherapy has several adverse side effects including 

hair loss, loss of appetite, nausea, vomiting, diarrhea, and fatigue.  

 
1.3.3 Radiation Therapy 

 
Radiation therapy, also known as radiotherapy, relies on the delivery of high energy 

photons or particles to destroy cancer cells. For photon-based radiation therapy, so-called 

indirectly ionizing radiation, the incoming photons first interact with atoms in the patient¶s 

body to produce charged particles, which can then damage the cancer cell¶s 

deoxyribonucleic acid (DNA).49 In contrast, for particle-based or directly-ionizing 

radiation therapy, charged particles such as electrons or protons are delivered, damaging 

the DNA without requiring prior interactions. Charged particles damage DNA through 

either direct action, where the charged particle interacts directly with the path of DNA to 

damage the strands or base pairs, or indirect action, where the charged particles break down 

water molecules near the DNA, producing free radicals which diffuse toward the DNA and 

damage the strands or base pairs.49 DNA damage can be in the form of base damage or 

strand breaks. Single-strand breaks in the sugar/phosphate DNA backbone due to damage 

from charged particles can combine with single-strand breaks on the opposite side of the 

DNA molecule, leading to double-strand breaks. The majority of DNA damage is repaired 

by the cell but misrepair or incomplete repair can lead to chromosome aberrations, which 

have been shown to correlate directly with cell survival.50  

 Radiotherapy treatment is typically fractionated, thus delivered over numerous 

doses or fractions. The outcome of fractionated radiotherapy treatment is influenced by 

five factors: cell repair of sublethal damage, redistribution through the cell cycle, 

repopulation between fractions, reoxygenation of the tumour, and the inherent 

radiosensitivity of the tissue in question, the so-called 5 R¶s of radiotherapy.51 Cell survival 

after fractionated radiotherapy can be described using a linear quadratic model.52 The linear 

alpha term represents the susceptibility to single-track damage, or the sensitivity at low 

dose. The quadratic beta term represents the sensitivity to dual-track damage, which is 

affected by dose rate and interim chromosome repair. The effectiveness of the fractionation 

scheme can thus be evaluated using the tumour¶s alpha over beta (D/E) ratio, which 
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describes the tissue susceptibility to different types of cell damage.53 The D/E ratio, with 

units of Gy, is the dose at which the two cell killing effects, single-track and dual-track 

damage, are equal, thus making it a measure of insensitivity to dose fractionation scheme. 

Cells with a large D/E ratio are less sensitive to the effects of fractionation. Most healthy 

tissue is classified as late reacting with D/E ratio on the order of 3 Gy, while most human 

tumours are classified as early reacting tissue with D/E ratio on the order of 10 Gy.53 In this 

case where the D/E ratio of the tumour is much larger than the healthy tissue, dose 

hyperfractionation offers greater healthy tissue sparing and a high therapeutic index as the 

tumour response is higher than the normal tissue response for a given dose. Prostate cancer 

is unique as it has an estimated D/E ratio of 1.2-1.5 Gy, making it very sensitive to 

fractionation.53 Thus, for prostate cancer treatment, since the D/E ratio of the tumour is 

lower than the healthy tissue, hyperfractionation is not ideal as it spares the tumour more 

than healthy tissue. This suggests that decreased fractionation, so-called hypofractionated 

radiotherapy, may offer an improved therapeutic index for prostate cancer.  

 Radiotherapy is commonly classified into two approaches: external beam radiation 

therapy and brachytherapy, described in detail in the following sections. Radiotherapy can 

be delivered as a monotherapy but is commonly included as a follow-up to or concurrent 

with other treatment modalities described in previous sections such as ADT.  

 
1.3.3.1 External Beam Radiation Therapy 
 
External beam radiation therapy (EBRT) involves the delivery of ionizing radiation from 

a source outside of the body. Most commonly, the ionizing radiation source is high energy 

(6 MV or higher) x-rays generated using a linear accelerator (linac). Linac-based EBRT 

delivery utilizes several techniques to deliver dose to the prostate while limiting exposure 

for nearby organs at risk (OAR) such as the rectum and bladder. This includes a rotating 

gantry allowing radiation beams to enter the patient from different angles to reduce entry 

dose as well as collimation in the form of moveable perpendicular jaws and highly 

controllable multileaf collimators (MLCs) to ensure dose is conformal to the prostate. In 

the pursuit of reducing dose delivered outside of the prostate, EBRT techniques for prostate 

cancer treatment have progressed from three-dimensional conformal radiation therapy 
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(3DCRT),54 where multiple stationary, shaped beams deliver radiation, to intensity 

modulated radiation therapy (IMRT),55 with dynamic radiation beams that vary in intensity, 

to volumetric modulated arc therapy (VMAT),56 where the MLC, gantry speed, and dose 

rate are simultaneously varied while the linac gantry moves in a continuous arc. These 

delivery techniques in addition to advances such as image-guided radiotherapy and 

implanted target fiducials allow for highly conformal radiation treatment plans and have 

helped limit dose to healthy tissue, reducing treatment toxicities.57 Traditionally, EBRT 

dose fractionation for prostate cancer treatment involved the delivery of conventional 2 Gy 

fractions for a total of 70-80 Gy dose, delivered five days per week over several weeks, 

with higher total dose corresponding to superior disease control but also increased 

toxicity.57 The standard of care has recently shifted towards the use of moderate 

hypofractionation with 2.5-3 Gy fractions after several large randomized phase 3 trials 

demonstrated similar efficacy and toxicity compared to conventional fractionation.58±60 

Acute adverse side effects following radiotherapy include urinary symptoms such as 

increased urination frequency and nocturia in 28-50% of patients, and bowel symptoms 

such as increased bowel movement frequency and loose stools in 9-26% of patients, 

relative to baseline function.61  Survival outcomes following EBRT approximately match 

or exceed survival following radical prostatectomy, with 5-year biochemical disease-free 

survival of up to 90% for low-risk prostate cancer and 55% for high-risk prostate cancer.41 

 Radiotherapy, including EBRT is a recommended treatment option for localized 

intermediate- and high-risk disease based on The American Society of Clinical Oncology 

(ASCO) clinical practice guidelines.62 EBRT can be delivered as a monotherapy, but the 

inclusion of concurrent ADT is suggested by the ASCO, in particular for high-risk 

disease.62 Radiotherapy delivery to the prostatic bed after radical prostatectomy has been 

shown to reduce the risk of cancer recurrence in patients with aggressive prostate cancer, 

while also resulting in increased adverse side effects.63 

 As described in the previous section, the standard 2 Gy fractionation scheme may 

not be optimal for prostate cancer treatment due to the low D/E ratio. Hypofractionated 

EBRT has been suggested and may offer an improved therapeutic index. Hypofractionated 

EBRT includes moderate fractionation with fraction size between 2.4-3.4 Gy and ultra-

hypofractionation, also known as stereotactic body radiation therapy (SBRT), with fraction 
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size greater than 5 Gy.64 Several phase 3 trials have shown that moderate hypofractionation 

offers similar efficacy and toxicity compared to standard fractionation.58,59 Results of the 

phase 3 HYPO-RT-PC trial comparing SBRT (42.7 Gy total with 6.1 Gy/fraction) to 

standard fractionation (78 Gy total with 2 Gy/fraction) demonstrated non-inferiority for the 

ultra-hypofractionated approach.64 These results along with the reduced patient burden and 

treatment time make hypofractionated EBRT a promising treatment method for localized 

prostate cancer.  

 Proton-based EBRT has recently been proposed for prostate cancer treatment, 

taking advantage of the unique properties of protons including increased biological 

effectiveness in cell killing compared to photons and sharp peak in the depth dose profile 

allowing for the creation of highly conformal treatment plans.57  Proton-based EBRT has 

been to shown to allow increased whole-gland dose to the prostate compared to photon-

based EBRT.65 However, the lack of evidence for improved outcomes compared to photon-

based approaches and the high cost of a initiating and maintaining a proton therapy facility 

has limited widespread adoption for prostate cancer. 

 
1.3.3.2 Brachytherapy 

 
Brachytherapy (BT) involves the delivery of ionizing radiation from a radioactive source 

or sources placed temporarily or permanently inside or adjacent to the treatment target.  

This close proximity to the treatment target allows for highly conformal treatment plans 

that can deliver a high dose to the target while limiting dose to the surrounding healthy 

tissue.65 BT can be delivered as a monotherapy or in conjunction with EBRT.66,67 BT 

treatments can be separated into low-dose-rate permanent implant BT and high-dose-rate 

temporary implant BT and are described in detail in the following sections.   

 
High-Dose-Rate Brachytherapy 

 
High-dose-rate (HDR)-BT for prostate cancer treatment is the primary focus of this thesis. 

In this treatment, approximately 12-20 hollow needle applicators are inserted into the 

prostate through the perineum, guided by a needle template. The needle template is a rigid 

grid of evenly spaced holes, typically 5 mm apart, helping to ensure spacing between the 
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needles and aid in insertion into the prostate. In addition, the needle template can lock the 

needle position in place either individually or collectively to ensure there is no movement 

prior to treatment delivery. Needle insertion is typically guided using transrectal 

ultrasound, described in detail in section 1.4.2. Using the needle template and 

intraoperative ultrasound imaging, the needles are inserted throughout the prostate to 

maximize radiation coverage while avoiding dose hotspots at the urethra. Following needle 

insertion, a single high-activity radioactive source is moved through the inserted needles 

by a remote afterloader to irradiate the prostate. HDR-BT procedures typically utilize 

iridium-192 (192Ir), which has a half-life of 73.8 days and decays by E� decay 95% of the 

time, leading to numerous gamma emissions from 0.11 to 1.378 MeV as well as electrons 

with energy up to 1.377 MeV.68 The mean photon energy from 192Ir decay is approximately 

0.3 MeV, capable of delivering more than 100 Gy per hour. Treatment follows a 

personalized radiation plan, which specifies how long the radioactive source will remain 

in specific dwell positions, known as the dwell time. These specific source dwell positions 

are based on needle tip locations identified using imaging during the procedure. An 

example transrectal ultrasound image with highlighted dwell positions overlaid on an 

inserted needle is shown in Fig. 1.1. The treatment plan is created based on the prostate 

and OAR anatomy (rectum, urethra, bladder) as defined using intraoperative medical 

imaging to ensure the prescription dose is delivered to the entire prostate while limiting 

dose to the defined OARs.  

An example axial transrectal ultrasound image and the corresponding radiation 

treatment plan for a clinical high-dose-rate prostate brachytherapy procedure is shown in 

Fig. 1.2. Isodose levels are provided in the legend, showing the hotspots surrounding each 

needle as well as the dose avoidance for the urethra. As described in the previous 

paragraph, the treatment plan is defined such that the 100% isodose line in red 

corresponding to 15 Gy covers the whole prostate. 

 



14 

 

 
Figure 1.1: Example sagittal brightness-mode transrectal ultrasound image showing three 

inserted needles in a clinical high-dose-rate prostate brachytherapy procedure. On the 

needle closest to the ultrasound transducer, the dwell positions are shown, which are the 

locations where the radioactive source will sit for specific amounts of time.    

 

HDR-BT is commonly delivered as a 15 Gy boost dose in conjunction with EBRT for 

treating intermediate to high-risk prostate cancer patients.69 In a large study of more than 

500 patients, 5-year freedom from biochemical failure was 91% for intermediate-risk 

prostate cancer patients.69 HDR-BT as a monotherapy for treating intermediate to high-risk 

prostate cancer patients has been proposed.67,70,71 HDR-BT monotherapy dose 

prescriptions range from seven 6.5 Gy fractions67 to two 13.5 Gy fractions,71 with 

biochemical disease-free survival at 5 years ranging from 81% for high-risk patients67 to 

93-98.6% for intermediate-risk patients.67,70,71 The demonstrated disease-free survival for 

HDR-BT monotherapy as well as the reduction in patient burden due to greatly reduced 

treatment time make this a promising option for treating localized intermediate to high-risk 

prostate cancer. In addition, the hypofractionated nature of HDR-BT takes advantage of 
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the low D/E ratio for prostate cancer.  Compared to other radiotherapy treatment options, 

HDR-BT is able to deliver a prescribed whole-gland dose with decreased dose to 

surrounding healthy tissue compared to intensity-modulated radiation therapy, proton 

therapy, and LDR-BT.65  

 

Figure 1.2: Example axial brightness-mode transrectal ultrasound image and 

corresponding radiation treatment plan isodose line overlay for a clinical high-dose-rate 

prostate brachytherapy procedure. The prostate was contoured and shaded in purple and 

the urethra is shown as the yellow circle. Isodose line dose levels are provided in the legend. 

Each implanted needle is shown as a small horizontal line.  

 
Low-Dose-Rate Brachytherapy 
 
Low-dose-rate (LDR)-BT involves the permanent implantation of numerous low activity 

radioactive sources within the prostate through inserted hollow needle catheters. Similar to 

the HDR-BT procedure, needles are typically inserted through a needle template while 

guidance is completed with transrectal ultrasound. Commonly used LDR radioactive 

sources include iodine-125 (125I) and palladium-103 (103Pd), which have half-lives of 59.4 
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days and 17 days and decay by electron capture with energy of approximately 28 keV and 

21 keV, respectively.72 Whole gland prescription dose is 144 Gy and 115-120 Gy for LDR-

BT monotherapy and 100-110 Gy and 80-90 Gy for LDR-BT boost following EBRT 

according to the American Brachytherapy Society (ABS) guidelines for 125I and 103Pd, 

respectively, typically requiring 50-125 radioactive seeds.73 LDR-BT is commonly used as 

a monotherapy for low-risk prostate cancer patients, with 5-year biochemical disease-free 

survival of up to 94%.41 LDR-BT has also been demonstrated to improve disease control 

in intermediate- and high-risk prostate cancer patients when delivered as a boost dose 

following EBRT.74 Treatment planning simulations have shown that HDR-BT can deliver 

more conformal plans compared to LDR-BT, making it favored for intermediate to high-

risk localized prostate cancer treatment.65 Furthermore, the constant irradiation delivered 

in LDR-BT treatments does not take advantage of low D/E ratio for prostate cancer. 

 
Tumour-Targeted Brachytherapy 

 
As described in the previous section, conventional BT aims to deliver a uniform dose to 

the whole gland. The maximum deliverable dose is limited by the surrounding OARs, 

including the rectum, bladder, and urethra, with the frequency of grade 3 toxicities 

increasing for whole-gland HDR-BT dose escalation beyond the standard 15 Gy.75 

Previous studies have shown that the site of local recurrence following radiation therapy is 

often the dominant intraprostatic lesion (DIL), which is the site of highest cancer burden 

prior to treatment.76±79 To take advantage of this, tumour-targeted HDR-BT has been 

proposed to escalate dose to the DIL while maintaining the conventional whole-gland dose, 

which may lead to improved tumour control while maintaining acceptable rates of toxicity. 

With standard TRUS-guided BT, however, the DIL is not visible, necessitating the use of 

a supplementary imaging modality to localize the DIL, such as MRI or positron emission 

tomography (PET). These alternative imaging modalities are described in sections 1.4.3 

and 1.4.4, respectively, including discussion of the registration methods required to 

integrate this supplementary information into the intraoperative US imaging. By 

maintaining the conventional whole-gland dose, the risk of delivering reduced dose to the 

cancer not identified using imaging is minimized. Boosted dose to the DIL can be achieved 
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with EBRT approaches as well as both HDR- and LDR-BT approaches, allowing strategic 

placement of hotspots to overlap with the defined DIL.80,81 In HDR-BT focal boost 

procedures, elevated dose to the DIL can be achieved by increasing the dwell times for 

specific dwell positions near the DIL, or additional needles can be inserted, directly 

targeting the identified DIL. Combined HDR- and LDR-BT dose escalation, utilizing 

whole-gland HDR-BT followed by targeted DIL boost with LDR-BT seed implantation 

has been proposed in the DELIGHT trial which began recruiting at Sunnybrook Health 

Sciences Centre and is now recruiting at the London Regional Cancer Program 

(NCT03323879). The level of dose boost to the DIL is highly variable depending on the 

treatment centre and clinical trial with no current accepted standard.80,81 Limitations 

include lack of standardized procedures for DIL localization and selection of dose boost 

level as well as a lack of randomized trials demonstrating efficacy, suggesting that focal 

boosting cannot be considered the standard of care at this time.80 

 
1.3.4 Focal Therapy 

 
In contrast with tumour-targeted BT, focal therapy is used to exclusively treat the 

tumour(s), thus sparing all surrounding healthy prostate tissue and potentially reducing 

morbidity while maintaining cancer control.82 For focal therapies, a supplementary 

imaging modality is once again required to identify the tumour/DIL, such as MRI or PET. 

The most common focal therapy techniques include cryotherapy, high-intensity focused 

ultrasound, and thermal ablation.82 Focal therapy approaches rely on accurate identification 

and localization of the tumour(s) using imaging, as any missed cancer will not be treated 

in a focal approach. As such, current ASCO guidelines do not recommend focal therapy 

for high-risk cancer.62 While focal therapy is a viable treatment option for intermediate-

risk disease, it is not standard care as the comparative outcome evidence is lacking relative 

to surgery or whole-gland radiotherapy, leaving focal therapy to be most common in the 

salvage setting outside of a clinical trial.62  
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1.4 IPagiQg iQ PURVWaWe CaQceU DiagQRViV aQd TUeaWPeQW 

 
Medical imaging plays a critical role in nearly all steps of prostate cancer management. 

This includes the use of imaging for initial disease detection and diagnosis, cancer grading, 

treatment planning and target definition, intraoperative treatment guidance, and assessing 

treatment response. The most common medical imaging modalities used in prostate cancer 

diagnosis and treatment planning are x-ray computed tomography (CT) (1.4.1), US (1.4.2), 

MRI (1.4.3), and nuclear imaging (1.4.4), all of which are described in further detail in this 

section.    

 
1.4.1 X-ray Computed Tomography (CT) 
 
In CT imaging, a low energy (70-150 keV) x-ray source is directed toward the patient, 

typically in a fan beam geometry. In line with the x-ray source on the opposing side of the 

patient, an array of detectors is arranged to detect the transmitted photons. By rotating the 

x-ray source and detector array around the patient, x-ray images at different angles can be 

acquired and reconstructed to form a 3D CT image. The difference in the photon 

attenuation of materials within the body determines the number of photons reaching the 

detector, thus providing image contrast to distinguish different anatomy in the image. 

Although the use of CT has limitations for cancer detection,83 it is commonly used in 

prostate cancer treatment, specifically for treatment planning in EBRT84 and in some cases 

for treatment guidance and planning in BT.85  

 The most common use of CT imaging is for treatment planning in EBRT. At 

megavoltage energies typically used for EBRT treatment, Compton scatter is the dominant 

photon interaction with photon attenuation directly influenced by electron density. 

Hounsfield units obtained from a CT image are related to electron density allowing for 

accurate modelling of megavoltage beam dose, necessary for treatment planning.84 In 

addition, the CT image is required for the contouring of both target organs and organs-at-

risk. Prior to the delivery of EBRT, on-board cone-beam CT (CBCT) imaging is typically 

used to ensure accurate and consistent patient positioning relative to the planning CT.86 
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  CT imaging can also be utilized for both LDR and HDR-BT treatment guidance, 

needle position verification, and dose planning.85,87,88 For LDR-BT, CT is the standard-of-

care technique to visualize implanted radioactive seeds.87 HDR-BT treatments employing 

CT-based workflows typically require post-implant imaging outside of the operating room 

to verify needle positions and identify organs-at-risk, necessitating patient movement that 

has been shown to cause needle shifts.89 Intraoperative imaging required for needle 

guidance is difficult and costly with CT as it requires a specialized operating suite with an 

integrated in-room CT. In addition, CT suffers from a lack of real-time imaging. 

Furthermore, soft tissue contrast is poor in CT imaging due to the similarity in electron 

density between different tissue types, making prostate and tumour delineation difficult.83 

CT imaging also utilizes ionizing radiation, adding to the patient dose.  

 
1.4.2 Two-Dimensional Ultrasound (US) 

 
Conventional brightness (B)-mode US imaging involves the propagation and detection of 

ultrasonic (> 20 kHz) sound waves that pass through the body and reflect at an interface 

between materials to produce 2D images of internal structures. Sound wave propagation 

speed through a medium depends on the medium tissue properties such as density and 

stiffness. Computing the time between sound wave emission and reflection back to the 

transducer, which differs based on the medium, provides information on the location of the 

reflecting interface. The mechanical, longitudinal sound waves typically used in clinical 

US imaging range from 2 MHz to 15 MHz, with higher frequency resulting in increased 

axial resolution and decreased penetration. For prostate cancer imaging, transrectal 

ultrasound (TRUS) imaging is typically used, where the US transducer is inserted in the 

patient¶s rectum. TRUS transducers include end-fire and side-fire geometries, with modern 

iterations of the latter employing a bi-plane transducer with both axial and sagittal planes. 

TRUS imaging is primarily used intraoperatively in interventional procedures for prostate 

cancer diagnosis (biopsy) and treatment, where advantages over CT imaging include real-

time imaging for needle insertion guidance, high portability, accessibility, cost 

effectiveness, and the lack of ionizing radiation. Specifically, TRUS is utilized in prostate 
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biopsy targeting and needle guidance26 and in prostate brachytherapy needle guidance and 

treatment planning.90,91 

 TRUS imaging has been proposed as a tool for cancer screening via the detection 

of hypoechoic or hyperechoic lesions and abnormalities, but lack of sensitivity compared 

to imaging modalities such as MRI limits the clinical utility.16 For prostate biopsy, TRUS 

is commonly used for guiding needle placement intraoperatively, including the use of 

TRUS to target hyperechoic or hypoechoic regions in addition to the standard sextant 

biopsy locations.26 In prostate BT, TRUS imaging is the standard of care for guiding needle 

insertion intraoperatively.90,91 Conventional TRUS imaging limitations include small field-

of-view, operator dependence, and confinement to 2D image acquisition. This requires the 

physician to mentally relate each 2D image to the inherently 3D anatomy, further 

increasing operator dependence. Furthermore, conventional TRUS has poor ability to 

detect and localize cancer within the prostate.92  

 
1.4.2.1 Doppler Ultrasound 

 
Doppler US is an alternative US imaging technique that displays a visual representation of 

motion in the plane of the US image, presented as a coloured overlay on the conventional 

B-mode image. This relies on the Doppler shift or variation in the frequency of sound as a 

result of motion between the US source and receiver, with greater velocities resulting in 

greater frequency shifts. Doppler US techniques vary based on the method used to calculate 

and present the Doppler shift, with two common techniques being colour Doppler (CD) 

and power Doppler (PD).93 CD can display the direction of motion in the US plane by 

coding Doppler shifts into different colours that are then superimposed on the B-mode 

image. PD provides no directionality, displaying the total integrated Doppler signal power, 

and thus demonstrating increased sensitivity compared to CD.93 Doppler US can be 

improved with the addition of contrast agents that improve blood flow visibility.94 

 In the management of prostate cancer, Doppler US imaging has been proposed for 

use in cancer detection92,94,95 as well as biopsy targeting.96 Contrast-enhanced Doppler US 

imaging has shown promise in localizing prostate cancer by visualizing microvessels, 

which have increased density in malignant tissue.94 Although there is promise, Doppler US 

cannot replace biopsies for the early detection of prostate cancer, and is currently not used 
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as a standard-of-care imaging technique in prostate cancer diagnosis. Contrast-enhanced 

CD US has also been proposed for use in targeted biopsy.96 By targeting hypervascular 

regions intraoperatively, the CD-targeted biopsy approach demonstrated significantly 

increased detection rate compared to systematic biopsy.96 Conventional Doppler US is still 

limited to 2D acquisitions, however.   

 
1.4.2.2 Three-Dimensional Ultrasound 
 
To overcome the limitations of conventional 2D TRUS imaging, 3D TRUS techniques 

have been proposed.97±100 These techniques provide a 3D view of the internal anatomy, 

removing the need for physicians to mentally relate each 2D slice to the underlying 3D 

anatomy, thus reducing operator dependence. In addition, these techniques remove the 

need for a sonographer to manually manipulate the US transducer, further reducing 

operator dependence. While matrix array 3D US transducers exist, mechanical 3D scanning 

approaches, which involve the tracking and manipulation of a conventional 2D transducer 

through a series of angles or steps to reconstruct a 3D image are typically used due to 

increased field-of-view and resolution. There are numerous mechanical 3D US scanning 

approaches, but axially reconstructed step-back, sagittally reconstructed side-fire, and end-

fire 3D TRUS imaging techniques are most commonly used in prostate cancer imaging. 

An example of each 3D TRUS image acquisition is shown in Fig. 1.3. 

Figure 1.3: Example (a) axially reconstructed step-back, (b) sagittally reconstructed side-

fire, and (c) end-fire three-dimensional transrectal ultrasound images. The dotted lines in 

each image represent the original ultrasound acquisition planes that compose the 3D image. 

Arrows represent the direction of transducer motion during 3D acquisition.   
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 In end-fire and side-fire 3D TRUS imaging, a TRUS transducer is mechanically 

rotated about its long axis. 2D TRUS images are acquired at set angular intervals, which 

are then reconstructed to generate 3D TRUS images. End-fire 3D TRUS, commonly used 

for prostate biopsy, utilizes an end-fire transducer that is rotated 180° while 2D TRUS 

images are acquired at 1.0° intervals and reconstructed into a 3D volume.99 In contrast, 

sagittally reconstructed side-fire 3D TRUS imaging, commonly used for prostate 

brachytherapy, utilizes the sagittal plane on the bi-plane transducer.98,100,101 By rotating the 

transducer 140° while 2D TRUS images are acquired at 0.5° intervals, a fan-shaped 3D 

TRUS image can be reconstructed. Axially reconstructed step-back 3D TRUS images, also 

used for prostate brachytherapy, utilize the axial plane on the bi-plane transducer. A series 

of axial 2D US images is acquired by translating the transducer in steps inferiorly, allowing 

for 3D image reconstruction.90,102,103  

 3D TRUS imaging is used in both biopsy and brachytherapy procedures. For 

prostate biopsy, 3D TRUS imaging is used in MRI-3D TRUS fusion-guided biopsy, 

demonstrating improved tumour sampling compared to 2D TRUS guidance alone by 

combining the high soft-tissue contrast of MRI with real-time needle guidance capabilities 

of TRUS.104 For prostate brachytherapy, axially reconstructed step-back 3D TRUS 

imaging is most commonly employed.90,102,103 Intraoperative 3D TRUS imaging allows for 

the visualization and localization of the prostate as well as nearby organs-at-risk including 

the rectum, urethra, and bladder, providing improved spatial context compared to 2D 

TRUS. In addition, 3D TRUS allows for the verification of implanted needle positions. 

Through visualization of both anatomy and implanted needles, 3D TRUS imaging 

facilitates accurate treatment planning without the need for additional modalities such as 

CT. Sagittally reconstructed side-fire 3D TRUS imaging has also been proposed for 

prostate brachytherapy, improving needle tip identification accuracy compared to step-

back 3D TRUS imaging due to increased resolution in the insertion direction.101 3D TRUS-

guided brachytherapy procedures allow for all aspects of the treatment workflow to occur 

in the operating room, including intraoperative needle guidance and treatment planning, 

allowing the patient to remain stationary.90,91 TRUS is a widely available and low-cost 

modality, offering real-time imaging and comparable needle tip identification accuracy to 

CT,90 making it the preferred method for prostate HDR-BT guidance at many centers. 3D 
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TRUS imaging is still limited in its ability to detect and localize cancer within the prostate, 

so supplemental imaging modalities such as MRI and nuclear imaging are required to 

facilitate lesion-targeted biopsy and treatment.92  

 
1.4.3 Magnetic Resonance (MR) Imaging 

 
MR imaging uses magnetic fields and radiofrequency waves to manipulate and measure 

changes in the alignment of hydrogen nuclei (protons) within the patient¶s body to generate 

signals and produce 3D images of the internal anatomy. MR images have very high soft 

tissue contrast compared to other modalities such as CT and TRUS imaging, making them 

invaluable for both organ contouring and tumour identification and localization.105±107 MRI 

in prostate cancer largely uses magnetic field strengths of 1.5T and 3T, with either a phased 

array surface coil or an endorectal coil.83,107 Endorectal coils offer a significant increase in 

signal-to-noise ratio when used with 1.5T MR scanners, however they are expensive, 

uncomfortable for the patient, and can deform the prostate.83 The benefit of endorectal coils 

compared to phased array body coils at 3T magnetic field strength is still debated, but 

image resolution is higher with either coil compared to 1.5T MR.83,107 Conventional 

anatomical MR imaging for prostate cancer commonly uses T2-weighted and T1-weighted 

images.83,107 While T1-weighted images can be used to detect post-biopsy hemorrhage, T2-

weighted images are the most common pulse sequence for lesion detection as it offers 

improved soft tissue resolution including depiction of zonal anatomy.83 In T2-weighted 

images, tumours commonly appear hypointense compared to healthy prostate tissue due to 

tissue density differences.108 To improve lesion detection and localization, functional MR 

imaging techniques such as MR spectroscopy (MRS), dynamic contrast-enhanced MRI 

(DCE-MRI), and diffusion-weighted imaging (DWI) can be used.105,106,109 The 

combination of anatomical T2-weighted MR imaging with the functional imaging 

techniques listed above is known as multiparametric MRI (mpMRI). mpMRI offers higher 

cancer detection rates compared to any one MR technique alone according to histological 

validation, demonstrating detection rates greater than 90% for moderate to high risk 

tumours.105,106  
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 The Prostate Imaging ± Reporting and Data System (PI-RADS) was developed to 

globally standardize the acquisition, interpretation, and reporting of prostate mpMRI 

examination for prostate cancer diagnosis.108 The PI-RADS system establishes mpMRI 

acquisition guidelines and provides assessment categories to report the risk of clinically 

significant prostate cancer for each suspicious location.108 PI-RADS assessment categories 

range from one to five, with a higher number denoting increased likelihood of clinically 

significant cancer.108  

 As the high soft tissue contrast of MRI allows for accurate tumour localization, MR 

imaging is typically used to target the tumour for prostate cancer diagnosis and treatment. 

In prostate biopsy, MR imaging can be added in an MRI-3D TRUS fusion guided biopsy 

approach.104 By combining the superior soft tissue contrast of MR with the real-time needle 

guidance of TRUS imaging, improved tumour sampling can be achieved compared to 

conventional TRUS-guided biopsy.104 In prostate cancer treatment, MR imaging can 

facilitate tumour-targeted treatment in the form of dose escalation or focal therapy, 

reducing dose to nearby organs-at-risk while increasing dose to the most likely site of 

cancer recurrence.82,106 MRI can also visualize sensitive organs-at-risk such as the 

neurovascular bundles (NVB), which are not typically visible on CT or TRUS images, 

allowing for dose sparing and thus reduced probability of adverse side effects.83 An 

example US and 1.5T MRI with corresponding physician contours is shown in Fig. 1.4. In 

all the described use cases, the MRI information is obtained from a pre-procedural MRI 

scan, necessitating MRI-to-US image registration techniques to integrate this information 

into the operating room environment where TRUS imaging is typically used. MR-only 

brachytherapy workflows have been proposed, utilizing MR imaging for both needle 

guidance and treatment planning.110±112 MR-only workflows are limited by the lack of 

intraoperative real-time imaging if the MR scanner is not located in the operating room, 

necessitating patient movement post-implant, which may cause needle shifts.89 Dedicated 

MR operating room suites are available, but require specialized BT tools and procedures, 

resulting in an expensive and challenging procedure. The prohibitive cost of MRI systems 

is still a barrier to widespread use, even in developed countries such as Canada, resulting 

in TRUS and CT-guided BT to still be the standard of care.  
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Figure 1.4: Example (a) three-dimensional transrectal ultrasound image and corresponding 

prostate contour in the axial plane and (b) axial T2-weighted 1.5T magnetic resonance 

image with physician-drawn prostate, urethra, clinical target volume (CTV), and 

neurovascular bundle (NVB) contours.  

 
1.4.4 Nuclear Imaging 

 
Nuclear imaging in the form of PET is an alternative functional imaging technique which 

allows for visualization of the tumour location within the prostate.83 PET imaging involves 

the injection of a positron emitting radiotracer, which collects in organs with increased 

metabolic activity, such as cancerous tissue, emitting radiation which can be subsequently 

detected and used to produce an image characterizing the tracer location. Historically, 

fluorodeoxyglucose (18F-FDG) is the most common PET radiotracer, as it serves as a 

marker for glucose uptake in tissue, which is correlated with cell metabolism that is 

typically higher in cancer cells.113,114 Recently, prostate specific membrane antigen 

(PSMA)-PET has been proposed, demonstrating increased specificity and sensitivity in 

prostate cancer detection compared to alternative imaging modalities.115 Gallium-based 

PSMA radiotracers attach to PSMA proteins that are often overexpressed in prostate cancer 

tissue allowing for highly specific tumour localization. Although PSMA is highly specific 

to prostate cancer, up to 10% of prostate cancers do not overexpress PSMA.116 PSMA-PET 

can be utilized alone or in combination with MRI, which has shown to increase cancer 

detection rate.115 Aside from its utility in the initial diagnosis and monitoring of prostate 

cancer, PSMA-PET imaging has also been proposed as an alternative to MRI for use in 
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targeted biopsy as well as lesion-targeted dose escalation in HDR-BT.117 Limitations of 

PET include low spatial resolution, lack of structural information necessitating registration 

with another modality such as CT or MRI, and the increased cost and challenges involved 

in producing, handling, and administering radiotracers. Recently developed hybrid PET-

MR scanners aim to overcome the first two limitations, offering simultaneous co-registered 

PET and MR image acquisition.116  

 
1.5 ChalleQgeV iQ MiQiPall\ IQYaViYe PURVWaWe PURcedXUeV 

 
Ultrasound-guided minimally invasive prostate procedures such as biopsy and HDR-BT 

offer several advantages in terms of detection and treatment accuracy, respectively; 

however, there are still numerous challenges involved in these procedures. In both 

procedure types, imaging is required to guide needles to precise locations within the 

prostate, so accurate identification of the needle and the target in the image is critical. A 

common challenge across procedures is that these steps are commonly completed manually 

during the procedure in the operating room, lengthening the procedure time as well as 

adding observer variability. Specific challenges are described in sections 1.5.1-1.5.4 with 

description of the motivation, previous work, and unmet need for each case. 

 
1.5.1 Prostate Segmentation in Three-Dimensional Ultrasound 

Images 
 
Motivation 
3D US imaging is a valuable tool in both prostate biopsy and prostate BT, allowing for 

improved needle insertion accuracy and target definition as well as facilitating the 

integration of other 3D imaging modalities such as MRI intraoperatively. To effectively 

utilize 3D TRUS images, segmentation of the prostate gland in 3D is required. In HDR-

BT, the prostate is the treatment target, so accurate segmentation is critical for target 

visualization during needle insertion, for glandular volume measurements,118,119 and for 

dose-volume calculations during treatment planning.120 In 3D TRUS-MRI fusion-guided 

biopsy and tumour-targeted HDR-BT, accurate prostate segmentation is required for use in 
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surface-based registration approaches.121,122 These segmentations are typically performed 

manually by the physician during the clinical procedure while the patient is under sedation 

or anesthetic. Manual segmentation in 3D TRUS images is time-consuming as the 

physician must segment the 3D volume slice-by-slice which can take up to 15 minutes, 

extending procedure times and increasing patient risk due to anesthesia exposure.123 This 

is compounded by the fact that variation in image quality can make prostate segmentation 

a difficult task. Fig. 1.5 shows an example high quality 3D TRUS with a clearly visible 

prostate boundary and an example poor quality image where image artifacts limit the 

visibility of the prostate boundary making segmentation difficult. Manual segmentation 

also leads to intra- and inter-observer variability which has been shown to have a volume 

percent difference of 5.4% and 11.4%, respectively, for side-fire 3D TRUS imaging.124 

Investigation into automated segmentation approaches that may decrease procedure time 

and reduce operator dependence is thus critical. 

Figure 1.5: Example transrectal ultrasound images highlighting the variability in image 

quality and prostate boundary visibility which can make manual prostate segmentation time 

consuming and difficult. (A) Example high quality image with a clearly defined prostate 

boundary. (B) Example poor quality image with severe shadowing artifacts that limit the 

prostate boundary visibility.  

 
Previous Work 
Automated or semi-automated 3D TRUS prostate segmentation approaches using 

conventional image processing techniques have been previously investigated;125±128 
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however, these techniques have lacked clinical translation due to difficult generalizing to 

diverse datasets and limitations related to computational complexity and computation time. 

Deep learning, specifically convolutional neural networks (CNNs), have been widely 

investigated for use in image processing tasks, including image segmentation, promising 

fast and accurate automated segmentation. Prostate segmentation in both 2D TRUS129 and 

3D TRUS130,131 using CNN-based approaches have been proposed. While the reported 

segmentation accuracy was high, key limitations include a lack of generalizability due to 

use of image datasets obtained using a single US system with matched voxel dimensions 

and sizes. Furthermore, the proposed approaches investigated segmentation of only one 3D 

TRUS image type, further limiting generalizability and necessitating the use of multiple 

networks for different procedure types. The proposed approaches have also relied on cross-

validation where information bleeding could influence the reported segmentation 

performance.132,133 

 
Unmet Need 
While deep learning-based prostate segmentation in 3D TRUS images have been 

investigated, there is an unmet need for clinically translatable segmentation techniques that 

are generalizable and robust to diverse clinical data obtained using different US systems. 

In addition, the use of different 3D TRUS acquisition methods across different minimally 

invasive ultrasound-guided procedures leaves the unmet need to develop a consolidated 

segmentation approach that is generalizable to different 3D TRUS acquisition methods. 

 
1.5.2 Variability in Dataset Size, Quality, and Diversity for Deep 

Learning Segmentation Applications 

 
Motivation 
Deep learning approaches for automated image segmentation tasks have been widely 

proposed; however, the segmentation performance and generalizability of these approaches 

rely heavily on the quality of the training dataset. For 3D TRUS prostate segmentation in 

particular, the dataset size, image quality, and diversity in terms of 3D TRUS acquisition 

type and US system may influence the segmentation performance and clinical translation 
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potential. The generation of large clinical datasets is both time-consuming and costly, 

making access to such datasets rare, especially for ultrasound. This is a major limitation 

for the widespread clinical translation of deep learning approaches, especially for smaller 

hospitals where data may be scarce. As described in section 1.5.1, different minimally 

invasive ultrasound-guided procedures utilize different TRUS acquisition methods. 

Datasets and segmentation methods that are effective for multiple TRUS acquisition 

methods would increase clinical translation efficiency and reduce the duplication of work. 

Finally, image quality, although critical for prostate segmentation, is highly variable based 

on acquisition type, presence of artifacts, and prostate visibility. These differences also 

make comparison of segmentation performance for methods trained and tested using 

different datasets challenging. Investigation into the effect of these dataset considerations 

on segmentation performance and generalizability may increase the clinical translation 

potential of deep learning segmentation approaches in addition to improving transparency 

in reporting and comparing segmentation results across methods and datasets.  

 
Previous Work 
Proposed deep learning-based segmentation approaches have utilized small datasets 

ranging in size from 40 to 109 3D TRUS images;129±131,134,135 however, these methods are 

still limited to one TRUS acquisition type, typically acquired using one US system, which 

reduces the potential clinical translation. There is also no investigation of how performance 

varies as the dataset size changes. Although image quality is critical to segmentation 

performance, there is currently no grading scale to quantify 3D TRUS image quality.  

 
Unmet Need 
While deep learning segmentation approaches show great promise, there is an unmet need 

to rigorously evaluate the impact of the training dataset in terms of size, image type, and 

image quality. Understanding of how these factors influence segmentation performance 

could improve the clinical translation potential of deep learning segmentation methods. In 

addition, a segmentation method that is generalizable to different 3D TRUS acquisition 

types and able to maintain performance while utilizing small training datasets may be 

suitable for widespread use even if data is scarce. There is also an unmet need for a method 
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to quantitatively grade the image quality of 3D TRUS images to assess the impact on 

segmentation performance as well as improve the ability to compare segmentation 

performance for methods trained using different datasets.  

 
1.5.3 Intraoperative Needle Tip Localization in Transrectal 

Ultrasound 

 
Motivation 
HDR-BT involves the irradiation of the prostate by passing a high-activity radioactive 

source through multiple hollow needles inserted into the prostate under TRUS guidance.90 

Intraoperative needle tip localization is critical for safe and effective HDR-BT treatment, 

as it directly influences the radiation treatment plan.102,136,137 As shown in Fig. 1.1, the 

location of the dwell positions are set based on the identified tip location, so any error in 

needle tip localization could lead to radiation delivery that deviates from the planned dose, 

potentially exposing the patient to increased radiation or underdosing the tumour. Needle tip 

localization error is a primary component of uncertainty in HDR-BT setup, with errors 

greater than 3 mm potentially leading to adverse outcomes.136 In TRUS-guided HDR-BT 

procedures, needle tip localization is completed using standard B-mode US; however, image 

artifacts including shadowing and reverberation artifacts have been shown to limit needle 

visibility intraoperatively.138 Investigation into approaches to improve intraoperative needle 

tip visualization are critical for improving HDR-BT treatment accuracy and safety.  

 
Previous Work 
Software-based automated needle tip localization methods using both conventional image 

processing techniques139±142 and deep learning143,144 have been proposed; however, these 

approaches are still limited by their use of B-mode US images, and are thus sensitive to 

image artifacts that may limit needle visibility.  

 Doppler US has been proposed as an alternative imaging approach to improve 

surgical instrument visibility intraoperatively.99-110 As described in section 1.4.2.1, Doppler 

US displays the motion in the US plane as a coloured overlay on the B-mode image, so by 

perturbating a surgical instrument, motion is generated that can then be imaged using 
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Doppler US. Previously published Doppler US-based visualization approaches include 

applications in biopsy, pericardiocentesis, and radiofrequency ablation, with none 

considering BT. Furthermore, these approaches are often cumbersome, requiring 

modifications or additions to the standard clinical equipment including the use of vibrating 

devices clipped onto the needle,145±147,153 the attachment of piezoelectric crystals,148,150,156 

or electromagnetic actuation of small permanent magnets inside the needle.155 In HDR-BT 

where more than 10 needles are typically required, these approaches are not suitable. There 

is also no evidence of Doppler US-based needle visualization in clinical HDR-BT 

procedures.  

 
Unmet Need 
While Doppler US-based needle visualization has been proposed in the past, there is an 

unmet need for a perturbation technique designed specifically for BT applications and 

requiring minimal modifications or additions to the operating room and the standard 

clinical equipment. In addition, there is an unmet need to validate Doppler US as a needle 

visualization tool intraoperatively in clinical HDR-BT procedures. Validation of a Doppler 

US technique may improve needle visualization intraoperatively, potentially improving 

both patient safety and treatment accuracy in HDR-BT and could be applied to other 

minimally invasive procedures where similar challenges with intraoperative needle 

visibility are prevalent, for example gynecologic interstitial BT or radiofrequency ablation.  

 
1.5.4 Deformable Magnetic Resonance Imaging to Three-

Dimensional Ultrasound Image Registration 

 
Motivation 
As the DIL is the most likely site of prostate cancer recurrence following radiotherapy, 

tumour-targeted BT featuring escalation of dose to the DIL may lead to improved tumour 

control while maintaining low dose to healthy tissues.76 Since the DIL is not easily visible 

in TRUS images, the addition of supplementary imaging capable of visualizing the DIL, 

such as MRI, is required, necessitating 3D TRUS-MRI image registration. Currently, 

translation of targets identified in the MR image to the intraoperative TRUS image is 
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typically done manually by the physician using cognitive fusion or rigid registration, 

introducing inter- and intra-observer variability. Accurate registration is critical for 

effective targeting of the DIL, so automated registration methods may reduce observer 

dependence while also reducing registration time. Furthermore, registration of 

radiosensitive organs-at-risk visible in MR imaging into the 3D TRUS image, such as the 

neurovascular bundles, may allow dose avoidance during treatment planning which could 

reduce acute side effects following radiotherapy.  

 
Previous Work 
Deformable image registration methods have been proposed, commonly focusing on MR-

TRUS fusion-guided biopsy.157±162 As described in section 1.4.2.2, TRUS-guided prostate 

biopsy typically utilizes end-fire 3D TRUS imaging which uses a different acquisition 

technique compared to axially reconstructed step-back 3D TRUS commonly used in 

prostate BT. As such, validation of registration approaches seeking to translate MR-defined 

treatment targets such as the DIL or anatomical structures to avoid during therapy into the 

intraoperative step-back 3D TRUS images is required. Furthermore, prospective clinical 

integration in tumour-targeted BT procedures is limited. 

 
Unmet Need  

While deformable 3D TRUS-MR image registration approaches have been proposed, there 

is an unmet need for the development and validation of a registration algorithm designed 

for tumour-targeted BT, including avoidance of radiosensitive anatomy such as the 

neurovascular bundle. There is also an unmet need for prospective clinical validation and 

workflow efficiency assessment in prostate BT procedures. 
 
1.6 TheViV ObjecWiYeV aQd OXWliQe 

 
The central objective of the research described in this thesis was to improve the efficiency 

and accuracy of minimally invasive procedures for prostate cancer diagnosis and treatment, 

including image-guided biopsy and brachytherapy, through the development and validation 

of software- and hardware-based tools. The focus is on reducing lengthy procedure times, 
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improving treatment accuracy compared to standard-of-care techniques, and reducing 

manual operator variability. This objective is motivated by the time-consuming and 

difficult manual intraoperative work required in minimally invasive prostate procedures, 

including prostate segmentation, needle tip identification, and image registration. From the 

perspective of software development, we hypothesize that the integration of a generalizable 

deep learning-based prostate segmentation algorithm in prostate biopsy or brachytherapy 

procedures would allow for reduced procedure time, while the integration of a deformable 

image registration algorithm would allow for safe and effective targeting of MR-defined 

tumours as well as avoidance of MR-defined organs-at-risk, decreasing variation due to 

manual registration. From the perspective of hardware-based solutions, we hypothesize 

that a PD-based needle localization method utilizing needle perturbation from a mechanical 

oscillator may allow for improved needle tip visualization compared to the standard of care 

B-mode US, potentially improving treatment accuracy. We propose the tools in this thesis 

with the aim of providing easy-to-implement, generalizable solutions to common problems 

plaguing minimally invasive prostate cancer procedures with the end goal of improving 

care for men with prostate cancer through reduced procedure time and improved treatment 

accuracy. 

 
The specific objectives of this thesis are to: 

1. Develop an accurate and generalizable deep learning-based automatic prostate 

segmentation algorithm for 3D TRUS images, trained using a clinically diverse 

dataset of images from prostate biopsy and brachytherapy procedures. 

2. Examine the effect of dataset size, image quality, and image type on deep learning-

based automatic prostate segmentation in 3D TRUS images through the use of 

smaller training datasets and the development of an image quality grading scale. 

3. Develop a novel wireless mechanical oscillator for use in a power Doppler-based 

needles tip localization method to improve intraoperative needle visualization in 

interstitial prostate brachytherapy.  

4. Develop and clinically validate a surface-based deformable MR-3D TRUS image 

registration algorithm for interstitial prostate brachytherapy. 
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1.6.1 Thesis Outline 

The overarching goal of this thesis is to address these specific objectives in four 

manuscripts (Chapters 2 to 5), briefly described in the following thesis outline.  

 
Chapter 2: Automatic prostate segmentation using deep learning on clinically diverse 

3D transrectal ultrasound images 

Minimally invasive procedures for diagnosing and treating prostate cancer, such as biopsy 

and brachytherapy, have incorporated 3D TRUS imaging to improve needle guidance and 

target definition as well as for registration to other modalities such as MRI. To effectively 

utilize these images, manual segmentations of the prostate are required, which can be time-

consuming and difficult, often occurring while the patient is under sedation or anesthetic. 

This chapter describes our work to develop a novel deep learning-based automatic prostate 

segmentation algorithm. Our algorithm utilized 2D prediction with a modified version of 

the U-Net architecture163 on 12 2D US slices sampled radially about the approximate 

central axis of the prostate before reconstruction into a 3D surface, exploiting the 

symmetrical nature of the prostate. The algorithm was trained using a diverse dataset of 

clinical images from clinical biopsy and brachytherapy procedures acquired using end-fire 

and side-fire 3D TRUS acquisition geometries, respectively.  

 Our radial 2D plus 3D reconstruction method significantly outperformed a fully 3D 

network trained using the same dataset as well as state-of-the-art algorithms published in 

the literature. This work was the first deep learning algorithm to successfully segment the 

prostate in multiple TRUS acquisition geometries. Prostate segmentation was fast and 

accurate, with demonstrated generalizability and robustness to different ultrasound systems 

and acquisition types.  This method has the potential to decrease procedure time and reduce 

operator dependence in minimally invasive procedures for prostate cancer diagnosis and 

treatment.   

 
Chapter 3: Effect of dataset size, image quality, and image type on deep learning-

based automatic prostate segmentation in 3D ultrasound 

Deep learning-based segmentation approaches offer the potential for fast and accurate 

segmentation results. However, these approaches are sensitive to the training dataset used, 
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and as large clinical datasets are rare, widespread adoption of deep learning-based 

automatic segmentation has been limited. Using the 2D radial plus 3D reconstruction 

segmentation method described in Chapter 2, the effect of dataset size, image quality, and 

image type on segmentation accuracy was examined. Smaller training datasets were 

achieved by splitting the complete dataset into different image types and subsequently 

reducing the number of images in steps. For this work, a modified version of the U-Net 

architecture163 as well as a U-Net++ architecture were used, as the latter has been shown 

to perform well with small datasets.164,165 To assess image quality, a 3D TRUS image 

quality grading scale with three factors (acquisition quality, artifact severity, and prostate 

boundary visibility) was developed, the first of its kind to our knowledge.  

 For training datasets split based on acquisition geometry, the U-Net++ significantly 

improved performance compared to the modified U-Net, while for smaller datasets, the U-

Net++ offered equivalent performance down to as small as 500 training images. For our 

dataset of TRUS images, image quality did not have a significant impact on segmentation 

performance for end-fire images, while boundary visibility grade has a significant effect 

for side-fire images. The image quality grading scale provides a quantitative tool for 

assessing segmentation performance while allowing for easier comparison between 

networks trained using different datasets. High performance of our approach with small 

training datasets supports the potential for widespread use of deep learning for 

segmentation tasks, even if data is scarce.  

 
Chapter 4: A power Doppler ultrasound method for improving intraoperative needle 

tip localization in interstitial prostate brachytherapy 

Standard B-mode US is typically used for needle guidance in HDR-BT, including 

localization of needle tip positions which is critical for treatment planning. Image artifacts 

can limit needle tip visualization in B-mode US which can cause the delivered dose to 

deviate from the treatment plan. This chapter describes the development and validation of 

a wireless mechanical oscillator for use in a novel PD-based needle localization method 

designed specifically for prostate brachytherapy. Our PD method was evaluated in a series 

of tissue-mimicking phantom experiments using a simulated HDR-BT needle implant as 

well as a needle implant designed to maximize shadowing artifacts. Clinical validation was 
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completed in five patients who underwent standard HDR-BT as part of a feasibility clinical 

trial.  

 In tissue-mimicking phantom experiments, our PD method offered identical tip 

localization accuracy when needles were clearly visible and demonstrated increased 

accuracy for shadowed needles, including providing the ability to visualize needles 

previously not visible using B-mode US alone. Across all five patients, our PD method 

demonstrated tip localization error of 0.8 ± 0.5 mm compared to 0.9 ± 0.7 mm for B-mode 

US, showing reduced variation and a reduction in tip error for difficult to see outlier 

needles. This easy-to-implement method requiring no modifications to the clinical 

equipment or workflow has the potential to improve needle visualization and thus treatment 

accuracy in HDR-BT and may be broadly applied in other minimally invasive needle-based 

procedures.  

 
Chapter 5: Validation of a surface-based deformable MRI-3D ultrasound image 

registration algorithm towards clinical implementation for interstitial prostate 

brachytherapy 

MR imaging offers superior soft tissue contrast compared to ultrasound, providing the 

ability to visualize the tumour and other points of interest such as the neurovascular 

bundles. To utilize this information intraoperatively to target treatment or avoid organs-at-

risk, registration between MRI and 3D TRUS is required. This chapter describes the 

development and validation of a surface-based MRI-3D TRUS deformable image 

registration (DIR) algorithm, which we hypothesize will reduce variability compared to the 

manual cognitive fusion technique that is currently employed. Our registration algorithm 

was evaluated using a deformable tissue-mimicking prostate phantom comparing 

registration accuracy at different levels of deformation versus manual rigid registration. 

Clinical validation was completed in three HDR-BT clinical cases where algorithmic 

registrations were compared to manual cognitive fusion registrations completed by three 

different physicians. Our DIR algorithm was implemented intraoperatively in a prospective 

HDR-BT clinical case.  

 In phantom experiments our DIR algorithm demonstrated a mean Dice similarity 

coefficient (DSC) and target registration error (TRE) across all deformation levels of 
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0.74±0.08 and 0.94±0.49 mm, respectively, significantly improving the performance 

compared to manual rigid registration with 0.64±0.16 and 1.88±1.24 mm, respectively. 

Across the three clinical cases, our algorithm demonstrated reduced variability in DSC 

score compared to the inter-physician variability of the cognitive fusion approach, offering 

the potential to reduce operator dependence, decrease procedure time, and standardize the 

registration process between physicians. Clinical implementation of our algorithm allowed 

for a successful PSMA-PET-MR targeted biopsy, confirmed by histology, and facilitated 

dose scalation to the registered clinical target volume. 

 
Chapter 6: Conclusions, Limitations, and Future Work 

This chapter focuses on the overall conclusions of the research described in this thesis and 

will discuss the future work that could expand the presented research or address the 

limitations and remaining unmet clinical needs.  

 

  



38 

 

1.7 RefeUeQceV 
 
1.  Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2021. 

Toronto, ON: Canadian Cancer Society; 2021. cancer.ca/Canadian-Cancer-
Statistics-2021-EN. Accessed March 29, 2021. 

2.  Wild CP, Weiderpass E, Stewart BW. World Cancer Report: Cancer Research for 
Cancer Prevention. Lyon; 2020. 

3.  Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10(2):63. 
doi:10.14740/WJON1191 

4.  Wong MCS, Goggins WB, Wang HHX, et al. Global Incidence and Mortality for 
Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries. Eur 
Urol. 2016;70(5):862-874. doi:10.1016/J.EURURO.2016.05.043 

5.  Cooperberg MR, Broering JM, Carroll PR. Risk Assessment for Prostate Cancer 
Metastasis and Mortality at the Time of Diagnosis. JNCI J Natl Cancer Inst. 
2009;101(12):878-887. doi:10.1093/JNCI/DJP122 

6.  Drake RL, Vogl AW, Mitchell AW. Gray's Anatomy for Students. 3rd ed. Churchhill 
Livingstone; 2015.  

7.  McNeal JE. Origin and development of carcinoma in the prostate. Cancer. 
1969;23(1):24-34. doi: 10.1002/1097-0142(196901)23:1<24::aid-
cncr2820230103>3.0.co;2-1. 

8.  Silverthorn DU. Human Physiology: An Integrated Approach. 7th ed. Pearson 
Education; 2016.  

9.  Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for 
old challenges. Genes Dev. 2010;24(18):1967-2000. doi:10.1101/gad.819500 

10.  Jønler M, Nielsen OS, Wolf H. Urinary symptoms, potency, and quality of life in 
patients with localized prostate cancer followed up with deferred treatment. 
Urology. 1998;52(6):1055-1062. doi:10.1016/S0090-4295(98)00449-X 

11.  Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975-
2017, Bethesda, MD: National Cancer Institute; 2020. 
https://seer.cancer.gov/csr/1975_2017/. Accessed March 30, 2021. 

12.  Bubendorf L, Schöpfer A, Wagner U, et al. Metastatic patterns of prostate cancer: 
An autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):578-583. 
doi:10.1053/HP.2000.6698 

13.  Rendon RA, Mason RJ, Marzouk K, et al. Canadian Urological Association 
recommendations on prostate cancer screening and early diagnosis. Can Urol Assoc 



39 

 

J. 2017;11(10):298. doi:10.5489/CUAJ.4888 

14.  Schröder FH, Van Der Maas P, Beemsterboer P, et al. Evaluation of the Digital 
Rectal Examination as a Screening Test for Prostate Cancer. JNCI J Natl Cancer 
Inst. 1998;90(23):1817-1823. doi:10.1093/JNCI/90.23.1817 

15.  Nadji M, Tabei SZ, Castro A, et al. Prostaticဨspecific antigen: An immunohistologic 
marker for prostatic neoplasms. Cancer. 1981;48(5):1229-1232. doi: 10.1002/1097-
0142(19810901)48:5<1229::AID-CNCR2820480529>3.0.CO;2-L. 

16.  Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of Prostate-Specific Antigen 
in Serum as a Screening Test for Prostate Cancer. 2010;324(17):1156-1161. 
doi:10.1056/NEJM199104253241702 

17.  Wolf AMD, Wender RC, Etzioni RB, et al. American Cancer Society Guideline for 
the Early Detection of Prostate Cancer: Update 2010. CA Cancer J Clin. 
2010;60(2):70-98. doi:10.3322/CAAC.20066 

18.  Bell N, Connor Gorber S, Shane A, et al. Recommendations on screening for 
prostate cancer with the prostate-specific antigen test. CMAJ. 2014;186(16):1225-
1234. doi:10.1503/CMAJ.140703/-/DC1 

19.  Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Specific 
Antigen±Based Screening for Prostate Cancer: Evidence Report and Systematic 
Review for the US Preventive Services Task Force. JAMA. 2018;319(18):1914-
1931. doi:10.1001/JAMA.2018.3712 

20.  Stephenson AJ, Kattan MW, Eastham JA, et al. Defining biochemical recurrence of 
prostate cancer after radical prostatectomy: a proposal for a standardized definition. 
J Clin Oncol. 2006;24(24):3973-3978. doi:10.1200/JCO.2005.04.0756 

21.  Matlaga BR, Eskew LA, McCullough DL. Prostate biopsy: Indications and 
technique. J Urol. 2003;169(1):12-19. doi:10.1016/S0022-5347(05)64024-4 

22.  Hodge KK, McNeal JE, Terris MK, Stamey TA. Random Systematic Versus 
Directed Ultrasound Guided Transrectal Core Biopsies of the Prostate. J Urol. 
1989;142(1):71-74. doi:10.1016/S0022-5347(17)38664-0 

23.  Levine MA, Ittman M, Melamed J, Lepor H. Two Consecutive Sets of Transrectal 
Ultrasound Sextant Biopsies of the Prostate for the Detection of Prostate Cancer. J 
Urol. 1998;159(2):471-476. doi:10.1016/S0022-5347(01)63951-X 

24.  Presti JC, Chang JJ, Bhargava V, Shinohara K. The Optimal Systematic Prostate 
Biopsy Scheme Should Include 8 Rather than 6 Biopsies: Results of a Prospective 
Clinical Trial. J Urol. 2000;163(1):163-167. doi:10.1016/S0022-5347(05)67995-5 

25.  Babaian RJ, Toi A, Kamoi K, et al. A Comparative Analysis of Sextant and an 
Extended 11-Core Multisite Directed Biopsy Strategy. J Urol. 2000;163(1):152-



40 

 

157. doi:10.1016/S0022-5347(05)67993-1 

26.  Norberg M, Egevad L, Holmberg L, Sparén P, Norlén BJ, Busch C. The sextant 
protocol for ultrasound-guided core biopsies of the prostate underestimates the 
presence of cancer. Urology. 1997;50(4):562-566. doi:10.1016/S0090-
4295(97)00306-3 

27.  Streicher J, Meyerson BL, Karivedu V, Sidana A. A review of optimal prostate 
biopsy: indications and techniques. Ther Adv Urol. 2019;11:1756287219870074. 
doi:10.1177/1756287219870074 

28.  Gleason DF. Histologic grading of prostate cancer: A perspective. Hum Pathol. 
1992;23(3):273-279. doi:10.1016/0046-8177(92)90108-F 

29.  Brierley J, Gospodarowicz MD, Wittekind CT. TNM Classification of Malignant 
Tumors. 8th ed. Wiley; 2017. 

30.  Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. 
Mod Pathol. 2004;17(3):292-306. doi:10.1038/modpathol.3800054 

31.  D¶Amico A V., Whittington R, Bruce Malkowicz S, et al. Biochemical Outcome 
After Radical Prostatectomy, External Beam Radiation Therapy, or Interstitial 
Radiation Therapy for Clinically Localized Prostate Cancer. JAMA. 
1998;280(11):969-974. doi:10.1001/JAMA.280.11.969 

32.  Carroll PH, Mohler JL. NCCN Guidelines Updates: Prostate Cancer and Prostate 
Cancer Early Detection. J Natl Compr Cancer Netw. 2018;16(5S):620-623. 
doi:10.6004/JNCCN.2018.0036 

33.  Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and Overtreatment of Prostate 
Cancer. Eur Urol. 2014;65(6):1046. doi:10.1016/J.EURURO.2013.12.062 

34.  Dall¶Era MA, Albertsen PC, Bangma C, et al. Active Surveillance for Prostate 
Cancer: A Systematic Review of the Literature. Eur Urol. 2012;62(6):976-983. 
doi:10.1016/J.EURURO.2012.05.072 

35.  Cooperberg MR, Carroll PR, Klotz L. Active surveillance for prostate cancer: 
Progress and promise. J Clin Oncol. 2011;29(27):3669-3676. 
doi:10.1200/JCO.2011.34.9738 

36.  Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-
specific antigen screening: importance of methods and context. J Natl Cancer Inst. 
2009;101(6):374-383. doi:10.1093/JNCI/DJP001 

37.  Ficarra V, Novara G, Artibani W, et al. Retropubic, Laparoscopic, and Robot-
Assisted Radical Prostatectomy: A Systematic Review and Cumulative Analysis of 
Comparative Studies. Eur Urol. 2009;55(5):1037-1063. 
doi:10.1016/J.EURURO.2009.01.036 



41 

 

38.  Walsh PC, Donker PJ. Impotence Following Radical Prostatectomy: Insight Into 
Etiology and Prevention. J Urol. 1982;128(3):492-497. doi:10.1016/S0022-
5347(17)53012-8 

39.  Guillonneau B, Cathelineau X, Barret E, Rozet F, Vallancien G. Laparoscopic 
Radical Prostatectomy: Technical and Early Oncological Assessment of 40 
Operations. Eur Urol. 1999;36(1):14-20. doi:10.1159/000019921 

40.  Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU 
Int. 2001;87(4):408-410. doi:10.1046/J.1464-410X.2001.00115.X 

41.  Peschel RE, Colberg JW. Surgery, brachytherapy, and external-beam radiotherapy 
for early prostate cancer. Lancet Oncol. 2003;4(4):233-241. doi: 10.1016/s1470-
2045(03)01035-0. 

42.  Adam M, Tennstedt P, Lanwehr D, et al. Functional Outcomes and Quality of Life 
After Radical Prostatectomy Only Versus a Combination of Prostatectomy with 
Radiation and Hormonal Therapy. Eur Urol. 2017;71(3):330-336. 
doi:10.1016/j.eururo.2016.11.015 

43.  Moghanaki D, Freedland SJ, Anscher M. Re: Comparison of mortality outcomes 
after radical prostatectomy versus radiotherapy in patients with localized prostate 
cancer: A population-based analysis. Int J Urol. 2013;20(5):547-548. 
doi:10.1111/j.1442-2042.2012.03212.x 

44.  Sharifi N, Gulley JL, Dahut WL. An update on androgen deprivation therapy for 
prostate cancer. Endocr Relat Cancer. 2010;17(4):R305-R315. doi:10.1677/ERC-
10-0187 

45.  Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology. 
2002;60(3):94-100. doi:10.1016/S0090-4295(02)01583-2 

46.  Sharifi N, Gulley JL, Dahut WL. Androgen Deprivation Therapy for Prostate 
Cancer. JAMA. 2005;294(2):238-244. doi:10.1001/JAMA.294.2.238 

47.  McLeod DG. Hormonal therapy: historical perspective to future directions. Urology. 
2003;61(2):3-7. doi:10.1016/S0090-4295(02)02393-2 

48.  Di Lorenzo G, Buonerba C, Autorino R, De Placido S, Sternberg CN. Castration-
Resistant Prostate Cancer: Current and Emerging Treatment Strategies. Drugs 
2010;70(8):983-1000. doi:10.2165/10898600-000000000-00000 

49.  McBride W, Withers H, Schaue D. Biologic Basis of Radiation Therapy. In: Perez 
& BUad\¶V PUinciples and Practice of Radiation Oncology. Halperin EC, Wazer DE, 
Perez CA, Brady LW, eds. 7th ed. Wolters Kluwer Health; 2018. 

50.  Cornforth MN, Bedford JS. A Quantitative Comparison of Potentially Lethal 
Damage Repair and the Rejoining of Interphase Chromosome Breaks in Low 



42 

 

Passage Normal Human Fibroblasts. Radiat Res. 1987;111(3):385-405. 
doi:10.2307/3576926 

51.  Withers HR. The Four R¶s of Radiotherapy. Adv Radiat Biol. 1975;5:241-271. 
doi:10.1016/B978-0-12-035405-4.50012-8 

52.  Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. 
Br J Radiol. 1989;62(740):679-694. doi:10.1259/0007-1285-62-740-679 

53.  Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated 
radiotherapy. Acta Oncol. 2005;44(3):265-276. doi:10.1080/02841860410002824 

54.  Soffen EM, Hanks GE, Hunt MA, Epstein BE. Conformal static field radiation 
therapy treatment of early prostate cancer versus non-conformal techniques: a 
reduction in acute morbidity. Int J Radiat Oncol Biol Phys. 1992;24(3):485-488. 
doi:10.1016/0360-3016(92)91063-S 

55.  Ling CC, Burman C, Chui CS, et al. Conformal radiation treatment of prostate 
cancer using inversely-planned intensity-modulated photon beams produced with 
dynamic multileaf collimation. Int J Radiat Oncol Biol Phys. 1996;35(4):721-730. 
doi:10.1016/0360-3016(96)00174-5 

56.  Olivera J, Penedo J, Marin J, et al. Localized Prostate Cancer: Volumetric 
Modulated Arc Therapy (VMAT) Versus Intensity Modulated Radiation Therapy 
(IMRT)±Which One is Better? Int J Radiat Oncol Biol Phys. 2014;90(1):S863. 
doi:10.1016/J.IJROBP.2014.05.2467 

57.  Martin NE, D¶Amico A V. Progress and controversies: Radiation therapy for 
prostate cancer. CA Cancer J Clin. 2014;64(6):389-407. doi:10.3322/CAAC.21250 

58.  Dearnaley D, Syndikus I, Mossop H, et al. Conventional versus hypofractionated 
high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of 
the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 
2016;17(8):1047-1060. doi:10.1016/S1470-2045(16)30102-4 

59.  Incrocci L, Wortel RC, Alemayehu WG, et al. Hypofractionated versus 
conventionally fractionated radiotherapy for patients with localised prostate cancer 
(HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 
3 trial. Lancet Oncol. 2016;17(8):1061-1069. doi:10.1016/S1470-2045(16)30070-5 

60.  Catton CN, Lukka H, Gu CS, et al. Randomized Trial of a Hypofractionated 
Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol. 
2017;35(17):1884-1890. doi:10.1200/JCO.2016.71.7397 

61.  Chen RC, Zhang Y, Chen MH, et al. Patient-reported quality of life during radiation 
treatment for localized prostate cancer: results from a prospective phase II trial. BJU 
Int. 2012;110(11):1690-1695. doi:10.1111/J.1464-410X.2012.11117.X 



43 

 

62.  Bekelman JE, Rumble RB, Chen RC, et al. Clinically Localized Prostate Cancer: 
ASCO Clinical Practice Guideline Endorsement of an American Urological 
Association/American Society for Radiation Oncology/Society of Urologic 
Oncology Guideline. J Clin Oncol. 2018;36(32):3251-3258. 
doi:10.1200/JCO.18.00606 

63.  Gandaglia G, Briganti A, Clarke N, et al. Adjuvant and Salvage Radiotherapy after 
Radical Prostatectomy in Prostate Cancer Patients. Eur Urol. 2017;72(5):689-709. 
doi:10.1016/J.EURURO.2017.01.039 

64.  Widmark A, Gunnlaugsson A, Beckman L, et al. Ultra-hypofractionated versus 
conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the 
HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 
2019;394(10196):385-395. doi:10.1016/S0140-6736(19)31131-6 

65.  Georg D, Hopfgartner J, Gòra J, et al. Dosimetric considerations to determine the 
optimal technique for localized prostate cancer among external photon, proton, or 
carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy. Int J Radiat 
Oncol Biol Phys. 2014;88(3):715-722. doi:10.1016/j.ijrobp.2013.11.241 

66.  Yamada Y, Rogers L, Demanes DJ, et al. American Brachytherapy Society 
consensus guidelines for high-dose-rate prostate brachytherapy. Brachytherapy. 
2012;11(1):20-32. doi:10.1016/J.BRACHY.2011.09.008 

67.  Yoshioka Y, Suzuki O, Isohashi F, et al. High-Dose-Rate Brachytherapy as 
Monotherapy for Intermediate- and High-Risk Prostate Cancer: Clinical Results for 
a Median 8-Year Follow-Up. Int J Radiat Oncol. 2016;94(4):675-682. 
doi:10.1016/J.IJROBP.2015.05.044 

68.  Pouliot J, Beaulieu L. Modern Principles of Brachytherapy Physics: From 2-D to 3-
D to Dynamic Planning and Delivery. In: Leibel and Philips Textbook of Radiation 
Oncology. Philips TL, Hoppe R, Roach M, Leibel SA, eds. 3rd ed. Elsevier Inc.; 
2010. 

69.  Martell K, Mendez LC, Chung HT, et al. Results of 15ௗGy HDR-BT boost plus 
EBRT in intermediate-risk prostate cancer: Analysis of over 500 patients. Radiother 
Oncol. 2019;141:149-155. doi:10.1016/j.radonc.2019.08.017 

70.  Hauswald H, Kamrava MR, Fallon JM, et al. Clinical Investigation High-Dose-Rate 
Monotherapy for Localized Prostate Cancer: 10-Year Results Radiation Oncology. 
Int J Radiat Oncol Biol Phys. 2016;94(4):667-674. 
doi:10.1016/j.ijrobp.2015.07.2290 

71.  Morton G, McGuffin M, Chung HT, et al. Prostate high dose-rate brachytherapy as 
monotherapy for low and intermediate risk prostate cancer: Efficacy results from a 
randomized phase II clinical trial of one fraction of 19 Gy or two fractions of 13.5 
Gy. Radiother Oncol. 2020;146:90-96. doi:10.1016/j.radonc.2020.02.009 



44 

 

72.  Gunderson LL, Tepper JE. Clinical Radiation Oncology. 3rd ed. Elsevier Inc.; 2011. 

73.  Nag S, Beyer D, Friedland J, Grimm P, Nath R. American brachytherapy society 
(ABS) recommendations for transperineal permanent brachytherapy of prostate 
cancer. Int J Radiat Oncol. 1999;44(4):789-799. doi:10.1016/S0360-
3016(99)00069-3 

74.  Morris WJ, Tyldesley S, Rodda S, et al. Androgen Suppression Combined with 
Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): 
An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-
Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and 
Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys. 2017;98(2):275-
285. doi:10.1016/J.IJROBP.2016.11.026 

75.  Hoskin P, Rojas A, Ostler P, et al. High-dose-rate brachytherapy alone given as two 
or one fraction to patients for locally advanced prostate cancer: Acute toxicity. 
Radiother Oncol. 2014;110(2):268-271. doi:10.1016/j.radonc.2013.09.025 

76.  Pucar D, Hricak H, Shukla-Dave A, et al. Clinically Significant Prostate Cancer 
Local Recurrence After Radiation Therapy Occurs at the Site of Primary Tumor: 
Magnetic Resonance Imaging and Step-Section Pathology Evidence. Int J Radiat 
Oncol Biol Phys. 2007;69(1):62-69. doi:10.1016/j.ijrobp.2007.03.065 

77.  Arrayeh E, Westphalen AC, Kurhanewicz J, et al. Does local recurrence of prostate 
cancer after radiation therapy occur at the site of primary tumor? Results of a 
longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys. 2012;82(5):e787-
93. doi:10.1016/j.ijrobp.2011.11.030 

78.  Cellini N, Morganti AG, Mattiucci GC, et al. Analysis of intraprostatic failures in 
patients treated with hormonal therapy and radiotherapy: implications for conformal 
therapy planning. Int J Radiat Oncol Biol Phys. 2002;53(3):595-599. 
doi:10.1016/S0360-3016(02)02795-5 

79.  Chopra S, Toi A, Taback N, et al. Pathological Predictors for Site of Local 
Recurrence After Radiotherapy for Prostate Cancer. Int J Radiat Oncol. 
2012;82(3):e441-e448. doi:10.1016/J.IJROBP.2011.05.035 

80.  Bauman G, Haider M, Van der Heide UA, Ménard C. Boosting imaging defined 
dominant prostatic tumors: A systematic review. Radiother Oncol. 
2013;107(3):274-281. doi:10.1016/J.RADONC.2013.04.027 

81.  Von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, Von Eyben R, Joensuu T. 
Radiotherapy Boost for the Dominant Intraprostatic Cancer Lesion - A Systematic 
Review and Meta-Analysis. Clin Genitourin Cancer. 2016;14(3):189-197. 
doi:10.1016/j.clgc.2015.12.005 

82.  Kasivisvanathan V, Emberton M, Ahmed HU. Focal therapy for prostate cancer: 
Rationale and treatment opportunities. Clin Oncol. 2013;25(8):461-473. 



45 

 

doi:10.1016/j.clon.2013.05.002 

83.  Turkbey B, Albert PS, Kurdziel K, Choyke PL. Imaging Localized Prostate Cancer: 
Current Approaches and New Developments. AJR Am J Roentgenol. 
2009;192(6):1471. doi:10.2214/AJR.09.2527 

84.  Seco J, Evans PM. Assessing the effect of electron density in photon dose 
calculations. Med Phys. 2006;33(2):540-552. doi:10.1118/1.2161407 

85.  Martin T, Kolotas C, Dannenberg T, et al. New interstitial HDR brachytherapy 
technique for prostate cancer: CT based 3D planning after transrectal implantation. 
Radiother Oncol. 1999;52(3):257-260. doi:10.1016/S0167-8140(99)00113-9 

86.  Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam 
computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol 
Phys. 2002;53(5):1337-1349. doi:10.1016/S0360-3016(02)02884-5 

87.  Nag S, Bice W, DeWyngaert K, Prestidge B, Stock R, Yu Y. The american 
brachytherapy society recommendations for permanent prostate brachytherapy 
postimplant dosimetric analysis. Int J Radiat Oncol. 2000;46(1):221-230. 
doi:10.1016/S0360-3016(99)00351-X 

88.  Koutrouvelis PG. Three-Dimensional Stereotactic Posterior Ischiorectal Space 
Computerized Tomography Guided Brachytherapy of Prostate Cancer; a 
Preliminary Report. J Urol. 1998;159(1):142-145. doi:10.1016/S0022-
5347(01)64037-0 

89.  Holly R, Morton GC, Sankreacha R, et al. Use of cone-beam imaging to correct for 
catheter displacement in high dose-rate prostate brachytherapy. Brachytherapy. 
2011;10(4):299-305. doi:10.1016/J.BRACHY.2010.11.007 

90.  Batchelar D, Gaztañaga M, Schmid M, Araujo C, Bachand F, Crook J. Validation 
study of ultrasound-based high-dose-rate prostate brachytherapy planning compared 
with CT-based planning. Brachytherapy. 2014;13(1):75-79. 
doi:10.1016/J.BRACHY.2013.08.004 

91.  Morton GC. Prostate high-dose-rate brachytherapy: Transrectal ultrasound based 
planning, a technical note. Pract Radiat Oncol. 2015;5(4):238-240. 
doi:10.1016/J.PRRO.2014.12.009 

92.  Sedelaar JPM, Vijverberg PLM, De Reijke TM, et al. Transrectal Ultrasound in the 
Diagnosis of Prostate Cancer: State of the Art and Perspectives. Eur Urol. 
2001;40(3):275-284. doi:10.1159/000049787 

93.  R Rubin JM, Bude RO, Carson PL, Bree RL, Adler RS. Power Doppler US: a 
potentially useful alternative to mean frequency-based color Doppler US. 
Radiology. 1994;190(3):853-856. doi:10.1148/RADIOLOGY.190.3.8115639 



46 

 

94.  Pallwein L, Mitterberger M, Pelzer A, et al. Ultrasound of prostate cancer: Recent 
advances. Eur Radiol. 2008;18(4):707-715. doi:10.1007/S00330-007-0779-
7/FIGURES/4 

95.  Goossen TEB, De la Rosette JJMCH, Hulsbergen-van de Kaa CA, Van Leenders 
GJLH, Wijkstra H. The Value of Dynamic Contrast Enhanced Power Doppler 
Ultrasound Imaging in the Localization of Prostate Cancer. Eur Urol. 
2003;43(2):124-131. doi:10.1016/S0302-2838(02)00582-1 

96.  Mitterberger MJ, Aigner F, Horninger W, et al. Comparative efficiency of contrast-
enhanced colour Doppler ultrasound targeted versus systematic biopsy for prostate 
cancer detection. Eur Radiol 2010 2012. 2010;20(12):2791-2796. 
doi:10.1007/S00330-010-1860-1 

97.  Fenster A, Parraga G, Bax J. Three-dimensional ultrasound scanning. Interface 
Focus. 2011;1(4):503-519. doi:10.1098/rsfs.2011.0019 

98.  Tong S, Downey DB, Cardinal HN, Fenster A. A three-dimensional ultrasound 
prostate imaging system. Ultrasound Med Biol. 1996;22(6):735-746. 
doi:10.1016/0301-5629(96)00079-8 

99.  Bax J, Cool D, Gardi L, et al. Mechanically assisted 3D ultrasound guided prostate 
biopsy system. Med Phys. 2008;35(12):5397. doi:10.1118/1.3002415 

100.  Bax J, Smith D, Bartha L, et al. A compact mechatronic system for 3D ultrasound 
guided prostate interventions. Med Phys. 2011;38(2):1055-1069. 
doi:10.1118/1.3531540 

101.  Hrinivich WT, Hoover DA, Surry K, et al. Three-dimensional transrectal ultrasound 
guided high-dose-rate prostate brachytherapy: A comparison of needle segmentation 
accuracy with two-dimensional image guidance. Brachytherapy. 2016;15(2):231-
239. doi:10.1016/j.brachy.2015.12.005 

102.  Siebert F-A, Hirt M, Niehoff P, Kovács G. Imaging of implant needles for real-time 
HDR-brachytherapy prostate treatment using biplane ultrasound transducers. Med 
Phys. 2009;36(8):3406-3412. doi:10.1118/1.3157107 

103.  Schmid M, Crook JM, Batchelar D, et al. A phantom study to assess accuracy of 
needle identification in real-time planning of ultrasound-guided high-dose-rate 
prostate implants. Brachytherapy. 2013;12:56-64. 
doi:10.1016/j.brachy.2012.03.002 

104.  Cool DW, Romagnoli C, Izawa JI, et al. Comparison of prostate MRI-3D transrectal 
ultrasound fusion biopsy for first-time and repeat biopsy patients with previous 
atypical small acinar proliferation. Can Urol Assoc J. 2016;10(9-10):342-348. 
doi:10.5489/cuaj.3831 

105.  Thompson J, Lawrentschuk N, Frydenberg M, Thompson L, Stricker P. The role of 



47 

 

magnetic resonance imaging in the diagnosis and management of prostate cancer. 
BJU Int. 2013;112(SUPPL. 2):6-20. doi:10.1111/BJU.12381 

106.  Bauman G, Haider M, Van Der Heide UA, Ménard C. Boosting imaging defined 
dominant prostatic tumors: A systematic review. Radiother Oncol. 
2013;107(3):274-281. doi:10.1016/j.radonc.2013.04.027 

107.  Bouchelouche K, Turkbey B, Choyke P, Capala J. Imaging prostate cancer: An 
update on positron emission tomography and magnetic resonance imaging. Curr 
Urol Rep. 2010;11(3):180-190. doi:10.1007/S11934-010-0105-9/FIGURES/5 

108.  Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging - Reporting 
and Data System: 2015, Version 2. Eur Urol. 2016;69(1):16-40. 
doi:10.1016/J.EURURO.2015.08.052 

109.  Sciarra A, Barentsz J, Bjartell A, et al. Advances in Magnetic Resonance Imaging: 
How They Are Changing the Management of Prostate Cancer. Eur Urol. 
2011;59(6):962-977. doi:10.1016/J.EURURO.2011.02.034 

110.  Ménard C, Susil RC, Choyke P, et al. MRI-guided HDR prostate brachytherapy in 
standard 1.5T scanner. Int J Radiat Oncol. 2004;59(5):1414-1423. 
doi:10.1016/J.IJROBP.2004.01.016 

111.  Murgic J, Chung P, Berlin A, et al. Lessons learned using an MRI-only workflow 
during high-dose-rate brachytherapy for prostate cancer. Brachytherapy. 
2016;15(2):147-155. doi:10.1016/J.BRACHY.2015.12.004 

112.  Buus S, Rylander S, Hokland S, et al. Learning curve of MRI-based planning for 
high-dose-rate brachytherapy for prostate cancer. Brachytherapy. 2016;15(4):426-
434. doi:10.1016/J.BRACHY.2016.03.011 

113.  Effert PJ, Bares R, Handt S, Wolff JM, Büll U, Jakse G. Metabolic Imaging of 
Untreated Prostate Cancer by Positron Emission Tomography with sup 18 Fluorine-
Labeled Deoxyglucose. J Urol. 1996;155(3):994-998. doi:10.1016/S0022-
5347(01)66366-3 

114.  Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial 
findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 
1996;199(3):751-756. doi:10.1148/RADIOLOGY.199.3.8638000 

115.  Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA±PET in 
prostate cancer management. Nat Rev Urol 2016 134. 2016;13(4):226-235. 
doi:10.1038/nrurol.2016.26 

116.  Eiber M, Weirich G, Holzapfel K, et al. Simultaneous 68 Ga-PSMA HBED-CC 
PET/MRI Improves the Localization of Primary Prostate Cancer. Eur Urol. 
2016;70(5):829-836. doi:10.1016/J.EURURO.2015.12.053 



48 

 

117.  Smith CW, Alfano R, Hoover D, et al. Prostate specific membrane antigen positron 
emission tomography for lesion-directed high-dose-rate brachytherapy dose 
escalation. Phys Imaging Radiat Oncol. 2021;19:102-107. 
doi:10.1016/J.PHRO.2021.07.001 

118.  Choi YJ, Kim JK, Kim HJ, Cho K-S. Interobserver Variability of Transrectal 
Ultrasound for Prostate Volume Measurement According to Volume and Observer 
Experience. Am J Roentgenol. 2009;192(2):444-449. doi:10.2214/AJR.07.3617 

119.  Murciano-Goroff YR, Wolfsberger LD, Parekh A, et al. Variability in MRI vs. 
ultrasound measures of prostate volume and its impact on treatment 
recommendations for favorable-risk prostate cancer patients: A case series. Radiat 
Oncol. 2014;9(1):200. doi:10.1186/1748-717X-9-200 

120.  Mahdavi SS, Spadinger I, Chng N, Salcudean SE, Morris WJ. Semiautomatic 
segmentation for prostate brachytherapy: Dosimetric evaluation. Brachytherapy. 
2013;12(1):65-76. doi:10.1016/j.brachy.2011.07.007 

121.  Narayanan R, Kurhanewicz J, Shinohara K, Crawford ED, Simoneau A, Suri JS. 
MRI-ultrasound registration for targeted prostate biopsy. In: 2009 IEEE 
International Symposium on Biomedical Imaging: From Nano to Macro. 2009:991-
994. doi:10.1109/ISBI.2009.5193221 

122.  Karnik V V, Fenster A, Bax J, et al. Assessment of image registration accuracy in 
three-dimensional transrectal ultrasound guided prostate biopsy. Med Phys. 
2010;37(2):802-813. doi:10.1118/1.3298010 

123.  Reich DL, Hossain S, Krol M, et al. Predictors of Hypotension After Induction of 
General Anesthesia. Anesth Analg. 2005;101(3):622-628. 
doi:10.1213/01.ANE.0000175214.38450.91 

124.  Tong S, Cardinal HN, McLoughlin RF, Downey DB, Fenster A. Intra- and inter-
observer variability and reliability of prostate volume measurement via two-
dimensional and three-dimensional ultrasound imaging. Ultrasound Med Biol. 
1998;24(5):673-681. doi:10.1016/S0301-5629(98)00039-8 

125.  Qiu W, Yuan J, Ukwatta E, Sun Y, Rajchl M, Fenster A. Prostate Segmentation: An 
Efficient Convex Optimization Approach With Axial Symmetry Using 3-D TRUS 
and MR Images. IEEE Trans Med Imaging. 2014;33(4):947-960. 
doi:10.1109/TMI.2014.2300694 

126.  Qiu W, Rajchl M, Guo F, et al. 3D prostate TRUS segmentation using globally 
optimized volume-preserving prior. In: Lect Notes in Comput Sci (including Subser 
Lect Notes Artif Intell Lect Notes Bioinformatics). 2014;8673:796-803. 
doi:10.1007/978-3-319-10404-1_99 

127.  Yuan J, Qiu W, Rajchl M, Ukwatta E, Tai X-C, Fenster A. Efficient 3D Endfiring 
TRUS Prostate Segmentation with Globally Optimized Rotational Symmetry. In: 



49 

 

2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:2211-
2218. doi:10.1109/CVPR.2013.287 

128.  Qiu W, Yuan J, Ukwatta E, Fenster A. Rotationally resliced 3D prostate TRUS 
segmentation using convex optimization with shape priors. Med Phys. 
2015;42(2):877-891. doi:10.1118/1.4906129 

129.  Anas EMA, Mousavi P, Abolmaesumi P. A deep learning approach for real time 
prostate segmentation in freehand ultrasound guided biopsy. Med Image Anal. 
2018;48:107-116. doi:10.1016/j.media.2018.05.010 

130.  Ghavami N, Hu Y, Bonmati E, et al. Integration of spatial information in 
convolutional neural networks for automatic segmentation of intraoperative 
transrectal ultrasound images. J Med Imaging. 2018;6(1):011003. 
doi:10.1117/1.jmi.6.1.011003 

131.  Lei Y, Tian S, He X, et al. Ultrasound prostate segmentation based on 
multidirectional deeply supervised VဨNet. Med Phys. 2019;46(7):3194-3206. 
doi:10.1002/mp.13577 

132.  Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A. The reusable 
holdout: Preserving validity in adaptive data analysis. Science. 2015;349(6248):636-
638. doi:10.1126/science.aaa9375 

133.  Valdes G, Interian Y. Comment on µDeep convolutional neural network with 
transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a 
feasibility study.¶ Phys Med Biol. 2018;63(6):068001. doi:10.1088/1361-
6560/aaae23 

134.  Wang Y, Ni D, Dou H, et al. Deep Attentive Features for Prostate Segmentation in 
3D Transrectal Ultrasound. IEEE Trans Med Imaging. 2019;38(12):2768-2778. 
doi:10.1109/TMI.2019.2913184 

135.  Lei Y, Wang T, Roper J, et al. Male pelvic multi-organ segmentation on transrectal 
ultrasound using anchor-free mask CNN. Med Phys. 2021;48(6):3055-3064. 
doi:10.1002/mp.14895 

136.  Tiong A, Bydder S, Ebert M, et al. A Small Tolerance for Catheter Displacement in 
High±Dose Rate Prostate Brachytherapy is Necessary and Feasible. Int J Radiat 
Oncol. 2010;76(4):1066-1072. doi:10.1016/J.IJROBP.2009.03.052 

137.  Mason J, Al-Qaisieh B, Bownes P, Thwaites D, Henry A. Dosimetry modeling for 
focal high-dose-rate prostate brachytherapy. Brachytherapy. 2014;13(6):611-617. 
doi:10.1016/j.brachy.2014.06.007 

138.  Hamper UM, Savader BL, Sheth S. Improved needle-tip visualization by color 
Doppler sonography. Am J Roentgenol. 1991;156(2):401-402. 
doi:10.2214/ajr.156.2.1898823 



50 

 

139.  Ding M, Fenster A. A real-time biopsy needle segmentation technique using Hough 
Transform. Med Phys. 2003;30(8):2222-2233. doi:10.1118/1.1591192 

140.  Qiu W, Zhou H, Ding M, Zhang S. New real time needle segmentation technique 
using grayscale Hough transformation. Proc. SPIE 6789, Medical Imaging 2007: 
Parallel Processing of Images and Optimization Techniques. 2007;67890Q. 
doi:10.1117/12.749277 

141.  Hrinivich WT, Hoover DA, Surry K, et al. Simultaneous automatic segmentation of 
multiple needles using 3D ultrasound for high-dose-rate prostate brachytherapy. 
Med Phys. 2017;44(4):1234-1245. doi: 10.1002/mp.12148 

142.  Rodgers JR, Hrinivich WT, Surry K, Velker V, D¶Souza D, Fenster A. A 
semiautomatic segmentation method for interstitial needles in intraoperative 3D 
transvaginal ultrasound images for high-dose-rate gynecologic brachytherapy of 
vaginal tumors. Brachytherapy. 2020;19(5):659-668. 
doi:10.1016/j.brachy.2020.05.006 

143.  Gillies DJ, Rodgers JR, Gyacskov I, et al. Deep Learning Segmentation of General 
Interventional Tools in Twoဨdimensional Ultrasound Images. Med Phys. 
2020;47(10):4956-4970. doi:10.1002/mp.14427 

144.  Pourtaherian A, Farhad ·, Zanjani G, et al. Robust and semantic needle detection in 
3D ultrasound using orthogonal-plane convolutional neural networks. Int J Comput 
Assist Radiol Surg. 2018;13:1321-1333. doi:10.1007/s11548-018-1798-3 

145.  Feld R, Needleman L, Goldberg BB. Use of a needle-vibrating device and color 
Doppler imaging for sonographically guided invasive procedures. Am J Roentgenol. 
1997;168(1):255-256. doi:10.2214/ajr.168.1.8976955 

146.  Jones CD, McGahan JP, Clark KJ. Color Doppler ultrasonographic detection of a 
vibrating needle system. J Ultrasound Med. 1997;16(4):269-274. 
doi:10.7863/jum.1997.16.4.269 

147.  Armstrong G, Cardon L, Vilkomerson D, et al. Localization of needle tip with color 
Doppler during pericardiocentesis: In vitro validation and initial clinical application. 
J Am Soc Echocardiogr. 2001;14(1):29-37. doi:10.1067/mje.2001.106680 

148.  Fronheiser MP, Wolf PD, Idriss SF, Nelson RC, Lee W, Smith SW. Real-time 3D 
color flow doppler for guidance of vibrating interventional devices. Ultrason 
Imaging. 2004;26(3):173-184. doi:10.1177/016173460402600304 

149.  Harmat A, Rohling RN, Salcudean SE. Needle tip localization using stylet vibration. 
Ultrasound Med Biol. 2006;32(9):1339-1348. 
doi:10.1016/j.ultrasmedbio.2006.05.019 

150.  Klein SM, Fronheiser MP, Reach J, Nielsen KC, Smith SW. Piezoelectric vibrating 
needle and catheter for enhancing ultrasound-guided peripheral nerve blocks. Anesth 



51 

 

Analg. 2007;105(6):1858-1860. doi:10.1213/01.ane.0000286814.79988.0a 

151.  Fronheiser MP, Idriss SF, Wolf PD, Smith SW. Vibrating interventional device 
detection using real-time 3-D color Doppler. IEEE Trans Ultrason Ferroelectr Freq 
Control. 2008;55(6):1355-1362. doi:10.1109/TUFFC.2008.798 

152.  Reddy KE, Light ED, Rivera DJ, Kisslo JA, Smith SW. Color Doppler imaging of 
cardiac catheters using vibrating motors. Ultrason Imaging. 2008;30(4):247-250. 
doi:10.1177/016173460803000408 

153.  Adebar TK, Fletcher AE, Okamura AM. 3-D ultrasound-guided robotic needle 
steering in biological tissue. IEEE Trans Biomed Eng. 2014;61(12):2899-2910. 
doi:10.1109/TBME.2014.2334309 

154.  Greer JD, Adebar TK, Hwang GL, Okamura AM. Real-Time 3D Curved Needle 
Segmentation Using Combined B-Mode and Power Doppler Ultrasound. Med Image 
Comput Comput Assist Interv. 2014;17(2):381-388. doi:10.1007/978-3-319-10470-
6_48 

155.  Cabreros SS, Jimenez NM, Greer JD, Adebar TK, Okamura AM. Remote 
electromagnetic vibration of steerable needles for imaging in power Doppler 
ultrasound. Robot Autom (ICRA), 2015 IEEE Int Conf. 2015:2244-2249. 
doi:10.1109/ICRA.2015.7139496 

156.  Kuang Y, Hilgers A, Sadiq M, Cochran S, Corner G, Huang Z. Modelling and 
characterisation of a ultrasound-actuated needle for improved visibility in 
ultrasound-guided regional anaesthesia and tissue biopsy. Ultrasonics. 2016;69:38-
46. doi:10.1016/J.ULTRAS.2016.02.018 

157.  Sun Y, Qiu W, Romagnoli C, Fenster A. 3D non-rigid surface-based MR-TRUS 
registration for image-guided prostate biopsy. Proc. SPIE 9036, Medical Imaging 
2014: Image-Guided Procedures, Robotic Interventions, and Modeling. 
2014;90362J. doi:10.1117/12.2043662 

158.  Narayanan R, Kurhanewicz J, Shinohara K, Crawford ED, Simoneau A, Suri JS. 
Mri-ultrasound registration for targeted prostate biopsy. Proc - 2009 IEEE Int Symp 
Biomed Imaging From Nano to Macro, ISBI 2009. 2009:991-994. 

159.  Hu Y, Ahmed HU, Taylor Z, et al. MR to ultrasound registration for image-guided 
prostate interventions. Med Image Anal. 2012;16(3):687-703. 
doi:10.1016/J.MEDIA.2010.11.003 

160.  Baco E, Ukimura O, Rud E, et al. Magnetic Resonance Imaging±Transectal 
Ultrasound Image-fusion Biopsies Accurately Characterize the Index Tumor: 
Correlation with Step-sectioned Radical Prostatectomy Specimens in 135 Patients. 
Eur Urol. 2015;67(4):787-794. doi:10.1016/J.EURURO.2014.08.077 

161.  Meng X, Rosenkrantz AB, Mendhiratta N, et al. Relationship Between Prebiopsy 



52 

 

Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-
ultrasound Fusion±targeted Prostate Biopsy Outcomes. Eur Urol. 2016;69(3):512-
517. doi:10.1016/J.EURURO.2015.06.005 

162.  Ukimura O, Marien A, Palmer S, et al. Trans-rectal ultrasound visibility of prostate 
lesions identified by magnetic resonance imaging increases accuracy of image-
fusion targeted biopsies. World J Urol. 2015;33(11):1669-1676. 
doi:10.1007/s00345-015-1501-z 

163.  Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical 
image segmentation. In: Lect Notes Comput Sci (including Subser Lect Notes Artif 
Intell Lect Notes Bioinformatics). 2015;9351:234-241. doi:10.1007/978-3-319-
24574-4_28 

164.  Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net 
Architecture for Medical Image Segmentation. Lect Notes Comput Sci (including 
Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2018;11045:3-11. 
http://arxiv.org/abs/1807.10165 

165.  Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: Redesigning Skip 
Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans 
Med Imaging. 2020;39(6):1856-1867. doi:10.1109/TMI.2019.2959609 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



53 

 

Chapter 2 

 

2 AXWRPaWic SURVWaWe VegPeQWaWiRQ XViQg deeS leaUQiQg RQ 
cliQicall\ diYeUVe 3D WUaQVUecWal XlWUaVRXQd iPageV 

 
Manual prostate segmentation in 3D TRUS images is a time-consuming and difficult task 

that must be completed in the operating room. An accurate automatic segmentation 

algorithm may reduce procedure and increase workflow efficiency in minimally invasive 

prostate cancer procedures. The purpose of Chapter 2 is to describe the development and 

validation of a deep learning-based automatic prostate segmentation algorithm for 3D 

TRUS images.  

 The contents of this chapter have been previously published in Medical Physics: 

Orlando N and Gillies DJ, Gyacskov I, Romagnoli C, D¶Souza D, and Fenster A. Medical 

Physics. 2020;47(6):2413-2426. Permission to reproduce this article was granted by John 

Wiley and Sons and is provided in Appendix A ± Copyright Releases. 

 

2.1 IQWURdXcWiRQ 
 

Diagnosing and treating prostate cancer continues to burden global populations as it 

is the second most common noncutaneous cancer among men worldwide.1 Investigation into 

methods to diagnose and treat prostate cancer has shifted towards improved needle-based 

approaches that utilize three-dimensional (3D) information intraoperatively. Magnetic 

resonance imaging (MRI)-3D transrectal ultrasound (TRUS) guided biopsy is one diagnostic 

method that fuses the superior soft-tissue contrast of MRI to accurately localize, target, and 

sample suspicious tissue regions for prostate cancer with the real-time, low-cost, and portable 

capabilities of ultrasound. In the treatment of prostate cancer, high- and low-dose-rate 

(H/LDR) brachytherapy (BT) procedures offer therapeutic benefits for patients by exploiting 

radiobiological effects and offering shorter treatment times, while minimizing adverse side 

effects. By adding 3D ultrasound intraoperatively, improved spatial context and targeting 
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can be achieved to further improve the conventional clinical workflow of biopsy and 

brachytherapy procedures; however, both procedures rely on accurate segmentation of the 

prostate in 3D TRUS images to perform necessary clinical tasks. This includes surface-based 

registration approaches with MRI2 and subsequent 3D TRUS images,3 glandular volume 

measurements,4,5 and dose-volume calculations,6 especially when using a commercial 

guidance system. These segmentations are predominantly performed manually during the 

procedure, which is time-consuming, variable, and often difficult, which can lead to 

increased patient risk due to increased anesthesia exposure.7 

Minimizing procedure time through fully or semi-automatic 3D TRUS prostate 

segmentation has been previously investigated.8±11 Many methods have been shown to be 

promising, but have lacked clinical translation due to computational complexity, 

computation time, and robustness to diverse clinical datasets. Convolutional neural networks 

(CNNs) have received widespread attention in many image processing applications with 

much work investigating their accuracy and speed in medical imaging tasks. Prostate 

segmentation in 3D TRUS is an image processing task that could be an ideal candidate for 

the data-driven predictions provided by CNNs, although most existing work has 

investigated their application in MRI,12,13 as ultrasound is considered more challenging due 

to noise and image artifacts. 

Recent work has investigated and provided promising results for the use of CNNs 

in 2D TRUS14 and 3D TRUS15,16 prostate segmentation. Ghavami et al.,15 evaluated the 

performance of an adapted U-Net on 109 side-fire sagittally-reconstructed (SR) 3D TRUS 

images. Predictions were performed on acquired 2D images and varying adjacent 

neighboring slices were also investigated to evaluate accuracy due to increasing spatial 3D 

context. The best results reported for the 2D Dice similarity coefficient (DSC), 3D DSC, 

and boundary distance were 89 ± 12 %, 89 ± 5 %, and 1.68 ± 1.57 mm, respectively. Lei 

et al.,16 investigated a multidirectional deeply supervised 3D V-Net with contour 

refinement on 44 patient 3D TRUS images. Their method was shown to improve 

performance when segmenting the apex and base of the prostate, which is often difficult 

due to low image contrast, and reported overall segmentation results for a 3D DSC, 

Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface 

distance (RMSD) of 92 ± 3 %, 3.94 ± 1.55 mm, 0.60 ± 0.23 mm, and 0.90 ± 0.38 mm, 
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respectively. However, these methods were tested using cross-validation approaches on 3D 

TRUS images from a single ultrasound machine with matched voxel dimensions and sizes, 

so further testing is still required on an unseen and variable dataset to provide a complete 

understanding of performance while avoiding potential limitations due to information 

bleeding.17,18 Furthermore, investigations into generalizability across procedures and 

acquisition geometries have been limited, to our knowledge, which could restrict usability 

when applying these techniques across applications. 

Our work aims to demonstrate that a diverse image dataset can train a supervised 

CNN to provide an accurate, fast, automated, and generalizable 3D prostate segmentation 

prediction. We used 206 3D TRUS patient images from two different procedures and 

acquisition geometries, two facilities, and four transducers used with three different 

ultrasound machine models to modify and train a deep learning-based 2D segmentation 

method followed by reconstruction into a 3D surface. Since deep learning approaches often 

improve in performance when using large datasets (i.e., >1000 images), we chose to reslice 

each 3D image to increase the amount of usable data for prostate segmentation training and 

prediction. Testing was performed on 40 unseen 3D TRUS patient images and 

segmentation performance was compared to state-of-the-art fully 3D approach¶s for 

assessing the impact of reducing spatial context. Various metrics are reported in the 

literature, and typically vary in choice and quantity between studies, but many metrics are 

required to obtain a complete understanding of segmentation performance and to allow for 

comparison with previous studies. By using a clinically diverse dataset with variable image 

representation and image quality of the prostate, we intend to provide a thorough analysis 

of performance for a broader scope of comparison. Once this method is evaluated, 

completion of required intraoperative image-guidance tasks can be facilitated for different 

needle-based prostate cancer procedures and potentially decrease overall clinical procedure 

times and anesthesia risks to patients. 
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2.2 MaWeUialV aQd MeWhRdV 
 

2.2.1 Clinical dataset 
 

3D images of the prostate were acquired using end-fire (as used in prostate biopsy) 

and side-fire SR (as used in some HDR-BT) mechanical scanning approaches (Fig. 2.1).19 

Both methods rotate a TRUS transducer around the long-axis to create geometrically 

different reconstructed 3D images that are influenced by the transducer array configuration. 

The images used in this study were acquired with the C9-5 transducer with the iU22 

(Philips, Amsterdam, the Netherlands), the C9-5 and BPTRT9-5 transducers with the ATL 

HDI-5000 (Philips, Amsterdam, the Netherlands), and the 8848 transducer with the 

Profocus 2202 (BK Medical, Peabody, MA, United States) ultrasound machine models. 

The total dataset of 246 3D TRUS images consisted of 104 end-fire and 142 side-fire 3D 

TRUS images and was split into training, validation, and testing datasets as shown in Table 

2.1. Manual 3D prostate segmentations (excluding the seminal vesicles) were performed 

by an observer (IG) with approximately 15 years of TRUS prostate image analysis 

experience. 3D image sizes ranged from [300⨯400⨯784] to [408⨯441⨯870] voxels with 

dimensions of [0.094⨯0.154⨯0.154] to [0.183⨯0.186⨯0.186] mm3/voxel for side-fire 

images and from [448⨯350⨯448] to [692⨯520⨯692] voxels with dimensions of 

[0.115⨯0.115⨯0.115] to [0.190⨯0.195⨯0.190] mm3/voxel for end-fire images.  
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Figure 2.1. Mechanical scanning approaches for acquiring 3D TRUS prostate images using 

end-fire (left) and side-fire (right) TRUS transducers. 2D images are acquired by rotating 

around the long axis of the transducer at known sample spacings to create 3D TRUS 

images. Example 3D TRUS images are shown in the bottom row, with the front face 

demonstrating the reconstructed image plane and the white lines showing representative 

acquisition planes. 

 

Table 2.1. Clinical 3D TRUS dataset split based on end-fire and side-fire scan geometries 

and resulting training, validation, and testing datasets used for deep learning. 

Image Training Validation Testing Total 

End-fire 67 17 20 104 
Side-fire 98 24 20 142 

Total 165 41 40 246 
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2.2.2 3D segmentation algorithm 

 
 A workflow diagram of our proposed method is shown in Fig. 2.2. This includes 

3D TRUS prostate image input, radial sampling, prediction using a trained modified U-

Net, 3D reconstruction, and 3D prostate surface output.  

Figure 2.2. Proposed 3D prostate segmentation workflow. A 3D TRUS prostate image is 

used as input, followed by radial sampling to generate 12 2D image planes. Each image 

plane was used to predict a prostate boundary with a trained modified U-Net prior to 

reconstruction into the 3D prostate surface.  

 

2.2.2.1 Training dataset for modified U-Net 

 
Images from the training and validation split were used to obtain resliced 2D images 

of the prostate. These 2D images were obtained at randomized axial, sagittal, coronal, 

radial, and oblique image planes with varying rotations and zooms. This resulted in a 

dataset of 6,773 2D TRUS images with matched manual contours. All 2D images were 

resized to 256⨯256 pixels with no preprocessing (i.e., despeckling or bias correction) and 

were separated into an 80/20 training/validation split for deep learning, resulting in 5418 

training and 1355 validation 2D TRUS images. 

 
2.2.2.2 Modified U-Net 

 
The previously published U-Net20 was implemented using Keras21 with 

TensorFlow22 and modified by adding 50% dropouts at every block on the expansion 

section of the network to increase regularization and prevent overfitting. In addition, 

transpose convolutions were used at each step in the expansion section instead of the 

standard upsampling followed by convolution, as this allowed for improved performance 
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in preliminary experiments. Data augmentation from random combinations of horizontal 

flips, 2D shifts (up to 20%), rotations (up to 20°), and zooms (up to 20%) were employed 

to double the training dataset to 10,836 2D TRUS images. Preliminary experiments led to 

the selection of an Adam optimizer, 0.0001 learning rate, Dice-coefficient loss function, 

200 epochs, and 200 steps per epoch. This network was trained and used for predicting 

unseen data on a personal computer with two Xeon E5645 central processing units at 2.40 

GHz (Intel Corporation, Santa Clara, CA, USA), 24.0 GB of memory, and a 6 GB Ge-

Force GTX TITAN (NVIDIA Corporation, Santa Clara, CA, USA) graphics processing 

unit (GPU). 

 
2.2.2.3 3D reconstruction 

 
Predicted 3D prostate segmentations were obtained by segmenting multiple 2D 

radial frames generated by rotation around a central axis, followed by reconstruction to a 

3D surface following a reconstruction method similar to Qiu et al.11 Previous observations 

have noted that segmenting the prostate on slices near the apex and base of the prostate can 

be challenging due to boundary incompleteness,15 so we chose to radially slice the 3D 

prostate image as opposed to transverse slicing in an attempt to improve segmentations at 

all boundaries. This choice was motivated by the experience of segmenting the prostate 

when the center of the gland is in-plane, which typically presents as an easier image to 

accurately define and segment the boundaries on the left and right sides of the 2D image. 

In contrast to this, a transverse slicing approach would result in 2D images with the prostate 

appearing as a different size and shape, with this difference more pronounced at the prostate 

apex and base, and when comparing end-fire and side-fire image geometries. Difficulty 

arises, predominantly in side-fire geometries, when segmenting the ends of the prostate 

along the axis of acquisition (when using a 2D approach) due to the changes in prostate 

appearance and size. Thus, radially slicing and segmenting the prostate in these views 

allows for a method that can train and predict on images containing similar structural 

shapes, across different acquisition geometries.  
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Figure 2.3. (a) Method for acquiring radially sliced 2D TRUS image planes (dotted lines) 

from previously acquired 3D TRUS images. The axis of rotation (red) is approximately at 

the central axis of the prostate and in the anterior-posterior direction. (b) 12 image slices 

were obtained to perform prostate segmentation. For an end-fire 3D TRUS image, 2D 

images are about the axis of image acquisition. (c) The majority of image slices obtained 

from side-fire 3D TRUS images are across many acquisition slices and are subject to 

increased interpolation, except for one slice, which matched the original acquired 2D 

TRUS image. 

 
Reconstructing a 3D contour was accomplished by radially slicing a 3D image in 

equal 15° spacings around the approximate central axis of the prostate (Fig. 2.3) to produce 

12 2D images for prediction. These 12 images were predicted using the trained modified 

U-Net to produce 2D prostate segmentations, and 204 equally spaced points were sampled 

around the boundary of each 2D image. Since the original spatial location of the input 2D 

image in the 3D volume was known, each predicted 2D segmentation was placed 

appropriately back into the 3D volume and the boundary points on each segmentation were 

connected to the adjacent slices. The intermediate surface was smoothed by a windowed 

sinc filter, resulting in a final reconstructed 3D contour. 

 

2.2.3 Evaluation and comparison 

 
Our algorithm was evaluated on a test data set of 20 unseen end-fire and 20 unseen 

side-fire 3D TRUS images of the prostate. Standard pixel map comparisons (DSC, recall, 

precision) were computed for both 2D radial slice segmentations and the reconstructed 3D 

segmentation for each prostate to obtain an understanding of the prediction quality and 

reconstruction accuracy. We also computed absolute area/volume percent differences 

(a) (b) (F) 
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(A/VPD), absolute mean surface distances (MSD), and absolute Hausdorff distances (HD), 

as well as signed A/VPD (sA/VPD), signed MSD (sMSD), and signed HD (sHD) for all 

2D predictions and reconstructed 3D segmentations. The signed metrics, while not 

commonly reported, are important as they provide information on the segmentation bias 

and whether the prostate boundary is over or underpredicted. The inclusion of these metrics 

will provide a more complete understanding of the performance of our proposed method. 

All pixel map comparisons and 2D MSD/sMSD and HD/sHD distance metrics were 

computed using MATLAB R2019a (MathWorks, Natick, MA, United States). The 3D 

MSD/sMSD and HD/sHD metrics were computed by measuring the distances between all 

points of the automatically predicted segmentation to the closest point on the manual gold-

standard segmentation (CloudCompare v2.10.2).23 For comparison purposes, the MSD 

reported here is similar to the boundary distance15 and mean surface distance16 presented 

previously. Computation times were recorded for 2D slice segmentation, 3D 

reconstruction, and overall 3D segmentation time.  

The performance of our algorithm was compared against three state-of-the-art fully 

3D predicting CNNs (V-Net,24 Dense V-Net,25 and High-resolution 3D-Net26) using an 

open-source implementation on the NiftyNet platform.27 It is often assumed that 

performing a prediction based on 3D information allows for an improved result due to 

increased spatial context, so we completed a direct comparison on the same test dataset to 

investigate this hypothesis. Similar to our proposed method, the same 165/41 3D TRUS 

images (Table 2.1) were used for training/validation, respectively. The 3D V-Net was 

chosen to optimize hyperparameters, including loss function, due to its widespread use and 

performance in preliminary experiments. For simplicity, these hyperparameters were also 

used for the Dense V-Net and High-resolution 3D-Net. Parameters were chosen to 

maximize the spatial window size and usable memory on the GPU with optimized 

hyperparameters shown in Table 2.2. Previous work has shown improved performance 

with a hybrid loss function,16 so we compared performance between a Dice loss function 

and a Dice plus cross-entropy (DiceXEnt) loss function, as provided in NiftyNet, using the 

3D V-Net. Although NiftyNet offers a patch-based analysis, preliminary experiments 

resulted in 3D segmentations with many flat surfaces throughout the prediction 

corresponding to patch edges. Since we had one structure of interest (i.e., the prostate), we 
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did not perform a patch-based analysis and predictions were performed on a resized image 

to match the spatial window. Data augmentation was employed to double the training 

dataset to 330 3D TRUS images. The chosen hyperparameters for the Dense V-Net and 

High-resolution 3D-Net were the same as shown in Table 2.2 (with the DiceXEnt loss 

function). These networks were trained and used for predicting unseen data on a personal 

computer with an Intel Core i7-4770 central processing unit at 3.40 GHz (Intel Corporation, 

Santa Clara, CA, USA), 32.0 GB of memory, and a 6 GB Ge-Force GTX TITAN (NVIDIA 

Corporation, Santa Clara, CA, USA) graphics processing unit (GPU). Training and 3D 

segmentation computation times were recorded.  

 
Table 2.2. Hyperparameter selection when employing the V-Net in NiftyNet.  

Hyperparameter Value 

Optimizer Adam 
Loss function Dice and Dice + cross-entropy 

Activation function PReLU 
Learning rate 0.0001 

Spatial window size [64, 64, 64] 
Mini-batch size 2 

Weighted L2-decay 0.0001 

 
2.2.4 Statistical analysis 

 
 Statistical calculations were performed in GraphPad Prism 8.3 (Graphpad 

Software, Inc., San Diego, CA, USA). The normality of distributions was evaluated using 

the Shapiro-Wilk test and led to the use of nonparametric statistical tests when the 

assumption was violated. The corresponding nonparametric alternative tests are presented 

in parentheses for the remainder of the section. The significance level for statistical analysis 

was chosen such that the probability of making a type I error was less than 5% (p < 0.05), 

with statistically significant differences denoted simply as significant for the remainder of 

this manuscript.  

 2D radial slice segmentation and 3D reconstructed segmentation accuracy as well 

as Dice and DiceXEnt 3D V-Net loss functions were compared using two-tailed paired t-

tests (Wilcoxon matched-pairs signed-rank tests). Comparisons between our proposed 
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algorithm and three fully 3D CNNs were performed using two-tailed paired t-tests 

(Wilcoxon matched-pairs signed-rank tests) with a Bonferroni multiple-comparison 

correction, which adjusted the significance level to p < 0.0167. Comparisons between 

segmentation accuracy for end-fire and side-fire 3D TRUS images on each network were 

completed using two-tailed unpaired t-tests (Mann-Whitney tests).  

 
2.3 ReVXlWV 

 
2.3.1 Reconstructed modified U-Net 

 
The results of our modified U-Net for 2D prostate segmentation and the effects of 

reconstruction on 3D surface generation are shown in Tables 2.3 and 2.4 for the absolute 

and signed evaluation metrics, respectively. Overall, our proposed method generated 3D 

surfaces with a median [first quartile (Q1), third quartile (Q3)] 3D DSC, recall, and 

precision of 94.1 [92.6, 94.9] %, 96.0 [93.1, 98.5] %, and 93.2 [88.8, 95.4] %, respectively, 

for the pixel map comparison metrics. Absolute VPD, MSD, and HD metrics resulted in 

5.78 [2.49, 11.5] %, 0.89 [0.73, 1.09] mm, and 2.89 [2.37, 4.35] mm with signed metrics 

of 2.38 [-2.98, 11.0] %, 0.11 [-0.24, 0.58] mm, and 2.02 [-3.34, 2.88] mm, respectively. 

All metrics, aside from the absolute and signed HD metrics, showed significant differences 

between the 2D predictions and 3D reconstructed segmentations. Interestingly, recall and 

MSD metrics were observed to significantly improve in performance after 3D 

reconstruction, with the HD metric improving as well when evaluating all unseen images. 

These findings agreed when splitting the results into end-fire and side-fire 3D TRUS 

images, other than end-fire A/VPD and the signed metrics. For end-fire images, absolute 

VPD increased after 3D reconstruction, although this was not significant, while the signed 

metrics significantly improved after 3D reconstruction. For side-fire images, the opposite 

was true, with signed metrics significantly improved for 2D slice segmentations. When 

comparing the performance of our proposed method between end-fire and side-fire 3D 

TRUS images, we found there was no significant difference in any metric for both 2D 

radial segmentations and 3D reconstructed segmentations. Mean computation times were 

observed to be 0.029 s for each 2D segmentation (i.e., 12 images) and 0.27 s for 
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reconstruction into a 3D surface, resulting in a total throughput time of 0.62 s from 3D 

image input to generated 3D surface. 

 

Table 2.3. Absolute median [Q1, Q3] results comparing 2D radial slice segmentation to 

3D reconstructed segmentation on an unseen test dataset of 20 end-fire and 20 side-fire 3D 

TRUS images of the prostate. 

Acquisition Segmentation DSC (%) Recall (%) Precision (%) A/VPD (%) MSD (mm) HD (mm) 

End-fire 

2D Radial 95.0  
[93.6, 95.6] 

94.5  
[92.7, 97.2] 

95.9  
[92.2, 97.4] 

4.71  
[1.71, 7.32] 

1.16  
[0.95, 1.37] 

3.64  
[3.11, 4.47] 

3D Reconstruction 94.3  
[93.1, 95.2] 

96.0  
[93.2, 98.7] 

94.6  
[88.8, 95.8] 

5.18 
[1.62, 11.2] 

0.99  
[0.78, 1.18] 

3.41  
[2.49, 4.41] 

p-value 0.0052* 0.0102* <0.0001 0.0532 <0.0001* 0.5217 

Side-fire 

2D Radial 94.6  
[92.7, 95.4] 

95.3  
[90.6, 96.9] 

94.9  
[92.6, 96.4] 

4.05  
[1.07, 6.23] 

0.95  
[0.82, 1.26] 

3.15  
[2.51, 4.27] 

3D Reconstruction 93.5  
[91.1, 94.6] 

96.2  
[92.5, 98.4] 

91.6  
[87.8, 94.8] 

5.89  
[3.17, 11.9] 

0.78  
[0.67, 0.98] 

2.61  
[2.32, 4.01] 

p-value 0.0037 0.0215 <0.0001* 0.0441 <0.0001 0.3683 

Overall 

2D Radial 94.9  
[93.2, 95.5] 

94.9  
[91.9, 97.0] 

95.6  
[92.6, 96.7] 

4.34  
[1.60, 6.77] 

1.06  
[0.85, 1.32] 

3.34 
[2.61, 4.41] 

3D Reconstruction 94.1  
[92.6, 94.9] 

96.0  
[93.1, 98.5] 

93.2  
[88.8, 95.4] 

5.78  
[2.49, 11.5] 

0.89  
[0.73, 1.09] 

2.89  
[2.37, 4.35] 

p-value <0.0001 0.0005 <0.0001 0.0061 <0.0001* 0.2766 

DSC, Dice similarity coefficient; A/VPD, area/volume percent diff.; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 

 

Table 2.4. Signed median [Q1, Q3] results comparing 2D radial slice segmentation to 3D 

reconstructed segmentation on an unseen test dataset of 20 end-fire and 20 side-fire 3D 

TRUS images of the prostate.  

Acquisition Segmentation sA/VPD (%) sMSD (mm) sHD (mm) 

End-fire 
2D Radial -1.39 [-3.82, 5.82] -0.13 [-0.50, 0.71] -0.91 [-2.74, 2.81] 

3D Reconstruction -0.05 [-2.98, 11.2] 0.06 [-0.38, 0.85] -0.34 [-3.82, 3.28] 
p-value 0.0011* <0.0001* 0.9563 

Side-fire 
2D Radial -0.57 [-5.24, 3.27] 0.09 [-0.46, 0.31] -0.31 [-1.83, 1.72] 

3D Reconstruction 3.20 [-2.96, 10.1] 0.20 [-0.22, 0.46] 2.25 [-2.53, 2.81] 
p-value 0.0001* <0.0001* 0.2305 

Overall 
2D Radial -0.91 [-4.93, 4.20] -0.09 [-0.46, 0.37] -0.91 [-2.15, 2.02] 

3D Reconstruction 2.38 [-2.98, 11.0] 0.11 [-0.24, 0.58] 2.02 [-3.34, 2.88] 
p-value <0.0001* <0.0001* 0.3611 

sA/VPD, signed area/volume percent diff.; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 
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2.3.2 3D CNNs and V-Net optimization 
 

 Results of the NiftyNet 3D V-Net with a Dice and DiceXEnt loss function on 20 

unseen end-fire and 20 unseen side-fire 3D TRUS images are shown in Tables 2.5 and 2.6 

for the absolute and signed evaluation metrics, respectively. When comparing 3D V-Net 

performance with Dice and DiceXEnt loss functions on the full testing dataset, all metrics, 

aside from DSC, showed significant differences. Precision, VPD/sVPD, MSD/sMSD, and 

HD/sHD were significantly improved with the DiceXEnt loss function, while recall was 

significantly improved with the Dice loss function. Although there was no significant 

difference in the DSC metric, the DiceXEnt loss function showed an improved median 

DSC. When considering end-fire and side-fire images individually, identical trends were 

observed for precision, recall, sMSD, and sHD. For the DSC, VPD, MSD, and HD metrics, 

we observed a significant and nonsignificant increase in performance with the DiceXEnt 

loss function for end-fire images and side-fire images, respectively. For end-fire images, 

the sVPD metric improved significantly with the DiceXEnt loss function, while the sVPD 

metric improved significantly with the Dice loss function for side-fire images. When 

comparing the 3D V-Net performance with DiceXEnt between end-fire and side-fire 3D 

TRUS images, we found no significant differences in any metric except HD, where side-

fire images had a significantly reduced median value compared to end-fire images. Overall, 

the 3D V-Net showed improved performance with the DiceXEnt loss function and 

produced 3D segmentations with median [Q1, Q3] 3D DSC, recall, and precision results 

of 91.3 [88.6, 93.1] %, 90.0 [85.6, 93.3] %, and 94.5 [90.0, 96.5] %, respectively, for the 

pixel map comparison metrics. Absolute VPD, MSD, and HD metrics resulted in 7.94 

[3.55, 13.4] %, 1.27 [0.92, 1.61] mm, and 6.18 [4.51, 7.82] mm with signed variants of -

3.66 [-9.25, 3.34] %, -0.13 [-0.73, 0.26] mm, and -4.16 [-7.04, 4.76] mm, respectively. 

Mean computation times were observed to be 3.43 s for a full 3D segmentation. 

 Results of the Dense V-Net and High-resolution 3D-Net with a DiceXEnt loss 

function on 20 unseen end-fire and 20 unseen side-fire 3D TRUS images are shown in 

Tables 2.A1 and 2.A2 in Supplement A for the absolute and signed evaluation metrics, 

respectively. Compared to the 3D V-Net, the High-resolution 3D-Net showed a reduction 

in median performance for all metrics, while the Dense V-Net showed a reduction in 
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performance for all metrics except recall. In contrast with our proposed method and the 3D 

V-Net, we observed significant differences in segmentation performance for several 

metrics when comparing end-fire and side-fire 3D TRUS images using the Dense V-Net 

and High-resolution 3D-Net. For the Dense V-Net, improved performance was observed 

on side-fire images for every metric except recall, with significant differences observed for 

the precision, recall, VPD/sVPD, and sMSD metrics. For the High-resolution 3D-Net, 

improved performance was observed on end-fire images for every metric except precision 

and HD, with significant differences observed for the DSC, precision, recall, VPD/sVPD, 

and sMSD metrics. Mean 3D segmentation times for the Dense V-Net and High-resolution 

3D-Net were observed to be 2.98 s and 2.83 s, respectively.  

 
2.3.3 Comparison of reconstructed modified U-Net and 3D CNNs 

 

 Sample segmentation results from the 20 unseen end-fire and 20 unseen side-fire 

3D TRUS images from our proposed method compared against the 3D V-Net with a 

DiceXEnt loss function and manual segmentations are shown in Fig. 2.4 and Fig. 2.5, 

respectively. A comparison of segmentation performance between our proposed method 

and a standard 3D V-Net is shown in Tables 2.7 and 2.8 for the absolute and signed 

evaluation metrics, respectively. Overall, our proposed method had significantly improved 

DSC, Recall, sVPD, MSD/sMSD, and HD when compared to the 3D V-Net. Absolute VPD 

and sHD, while not significantly different, were reduced for our proposed method. The 

only evaluation metric where the 3D V-Net outperformed our proposed method was 

precision, where the 3D V-Net showed a nonsignificant increase. Considering 

segmentation performance for end-fire and side-fire 3D TRUS images separately, similar 

trends hold. For end-fire images, our proposed method had better performance in all 

metrics except sHD, with DSC, recall, sVPD, MSD, and HD showing significant 

differences, and precision, VPD, and sMSD showing nonsignificant improvements. 

However, for side-fire images our proposed method was superior in all metrics except 

precision. Significant improvements were shown for DSC, recall, sVPD, MSD/sMSD, and 

HD/sHD, while the 3D V-Net had significantly improved precision. As was observed in 
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the overall case, our proposed method showed a nonsignificant decrease in VPD compared 

to the 3D V-Net for both end-fire and side-fire images.   

 

Table 2.5. Absolute median [Q1, Q3] results comparing a standard 3D V-Net with a Dice 

similarity coefficient loss function to a Dice similarity plus cross-entropy (DiceXEnt) loss 

function on an unseen test dataset of 20 end-fire and 20 side-fire 3D TRUS images of the 

prostate. 

Acquisition Loss function DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 

Dice 89.5 
[84.6, 92.0] 

97.8 
[94.6, 98.3] 

83.7 
[75.1, 88.4] 

17.8 
[7.57, 30.7] 

1.79  
[1.43, 2.47] 

8.64 
[7.53, 10.8] 

DiceXEnt 91.7  
[89.0, 93.2] 

91.7  
[86.8, 94.6] 

94.3  
[87.1, 95.8] 

7.94  
[2.95, 12.5] 

1.32 
[0.99, 1.77] 

6.95 
[5.06, 9.10] 

p-value 0.0037 <0.0001 <0.0001 0.0021 0.0009 0.0172 

Side-fire 

Dice 90.6 
[89.1, 93.2] 

94.5 
[91.1, 96.0] 

92.8 
[89.9, 96.9] 

9.08 
[4.35, 14.0] 

1.16 
[0.89, 1.46] 

5.81 
[3.85, 9.61] 

DiceXEnt 91.2  
[87.4, 92.8] 

89.5  
[80.7, 92.9] 

95.0  
[90.8, 97.5] 

7.71  
[3.55, 15.9] 

1.11 
[0.84, 1.47] 

4.92 
[4.28, 6.55] 

p-value 0.2943 <0.0001 0.0001 0.7012 0.7562 0.2305 

Overall 

Dice 90.3 
[86.5, 92.1] 

95.5 
[92.5, 97.8] 

87.8 
[81.0, 91.7] 

11.4 
[4.66, 19.3] 

1.46 
[1.16, 2.07] 

7.99 
[5.34, 10.4] 

DiceXEnt 91.3  
[88.6, 93.1] 

90.0  
[85.6, 93.3] 

94.5  
[90.0, 96.5] 

7.94  
[3.55, 13.4] 

1.27 
[0.92, 1.61] 

6.18 
[4.51, 7.82] 

p-value 0.1538 <0.0001 <0.0001 0.0356 0.0147 0.0067 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the loss function with reduced relative error. 
 

Table 2.6. Signed median [Q1, Q3] results comparing a standard 3D V-Net with a Dice 

loss function to a Dice plus cross-entropy (DiceXEnt) loss function on an unseen test 

dataset of 20 end-fire and 20 side-fire 3D TRUS images of the prostate.  

Acquisition Loss function sVPD (%) sMSD (mm) sHD (mm) 

End-fire 
Dice 17.8 [7.57, 30.7] 1.51 [0.85, 2.23] 7.99 [5.37, 10.84] 

DiceXEnt -2.16 [-8.47, 6.10] -0.07 [-0.71, 0.68] -0.05 [-7.33, 6.50] 
p-value <0.0001*  <0.0001* 0.0009 

Side-fire 
Dice 5.02 [0.93, 11.5] 0.43 [0.16, 0.80] 5.34 [3.18, 9.61] 

DiceXEnt -5.50 [-15.6, -0.62] -0.30 [-0.88, 0.02] -4.52 [-6.27, -3.04] 
p-value <0.0001* <0.0001* <0.0001 

Overall 
Dice 9.63 [3.90, 18.9] 0.83 [0.35, 1.78] 6.91 [3.35, 10.31] 

DiceXEnt -3.66 [-9.25, 3.34] -0.13 [-0.73, 0.26] -4.16 [-7.04, 4.76] 
p-value <0.0001* <0.0001* <0.0001* 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the loss function with reduced relative error. 
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Overall, our proposed method significantly improved performance on all metrics 

when compared to the Dense V-Net and showed improved performance on all metrics 

when compared to the High-resolution 3D-Net, with significant differences observed for 

all metrics except precision, sMSD, and sHD, where our method showed a nonsignificant 

improvement.  
 

Table 2.7. Absolute median [Q1, Q3] results comparing a standard 3D V-Net to our 

proposed reconstructed modified (rm) U-Net on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate.  

Acquisition Segmentation DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 
V-Net 91.7  

[89.0, 93.2] 
91.7  

[86.8, 94.6] 
94.3  

[87.1, 95.8] 
7.94  

[2.95, 12.5] 
1.32 

[0.99, 1.77] 
6.95 

[5.06, 9.10] 
rmU-Net 94.3  

[93.1, 95.2] 
96.0  

[93.2, 98.7] 
94.6  

[88.8, 95.8] 
5.18  

[1.62, 11.2] 
0.99  

[0.78, 1.18] 
3.41  

[2.49, 4.41] 
p-value 0.0003* <0.0001* 0.5459 0.4980 0.0003* <0.0001 

Side-fire 
V-Net 91.2  

[87.4, 92.8] 
89.5  

[80.7, 92.9] 
95.0  

[90.8, 97.5] 
7.71  

[3.55, 15.9] 
1.11 

[0.84, 1.47] 
4.92 

[4.28, 6.55] 
rmU-Net 93.5  

[91.1, 94.6] 
96.2  

[92.5, 98.4] 
91.6  

[87.8, 94.8] 
5.89  

[3.17, 11.9] 
0.78  

[0.67, 0.98] 
2.61  

[2.32, 4.01] 
p-value 0.0073 0.0002 0.0153 0.2611 0.0027 0.0001 

Overall 
V-Net 91.3  

[88.6, 93.1] 
90.0  

[85.6, 93.3] 
94.5  

[90.0, 96.5] 
7.94  

[3.55, 13.4] 
1.27 

[0.92, 1.61] 
6.18 

[4.51, 7.82] 
rmU-Net 94.1  

[92.6 , 94.9] 
96.0  

[93.1, 98.5] 
93.2  

[88.8, 95.4] 
5.78 

[2.49, 11.5] 
0.89  

[0.73, 1.09] 
2.89  

[2.37, 4.35] 
p-value <0.0001 <0.0001 0.1499 0.1701 <0.0001* <0.0001 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 
 

Table 2.8. Signed median [Q1, Q3] results comparing a standard 3D V-Net to our proposed 

reconstructed modified (rm) U-Net on an unseen test dataset of 20 end-fire and 20 side-fire 

3D TRUS images of the prostate.  

Acquisition Segmentation sVPD (%) sMSD (mm) sHD (mm) 

End-fire 
V-Net -2.16 [-8.47, 6.10] -0.07 [-0.71, 0.68] -0.05 [-7.33, 6.50] 

rmU-Net -0.05 [-2.98, 11.2] 0.06 [-0.38, 0.85] -0.34 [-3.82, 3.28] 
p-value 0.0030* 0.0444* 0.7942* 

Side-fire 
V-Net -5.50 [-15.6, -0.62] -0.30 [-0.88, 0.02] -4.52 [-6.27, -3.04] 

rmU-Net 3.20 [-2.96, 10.1] 0.20 [-0.22, 0.46] 2.25 [-2.53, 2.81] 
p-value 0.0001* 0.0025* 0.0107 

Overall 
V-Net -3.66 [-9.25, 3.34] -0.13 [-0.73, 0.26] -4.16 [-7.04, 4.76] 

rmU-Net 2.38 [-2.98, 11.0] 0.11 [-0.24, 0.58] 2.02 [-3.34, 2.88] 
p-value <0.0001* 0.0003* 0.0408 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 
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Figure 2.4. End-fire prostate segmentation results comparing manual (red), our proposed 

reconstructed modified (rm) U-Net (blue), and V-Net (yellow) 3D surfaces. The columns 

from left to right show the 25th, 50th, and 75th percentile results, respectively, based on DSC 

metrics. Segmentations in the axial plane, sagittal plane, 45° oblique radial plane, and 

reconstructed 3D surface error are shown in the respective rows from top to bottom. 
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Figure 2.5. Side-fire prostate segmentation results comparing manual (red), our proposed 

reconstructed modified (rm) U-Net (blue), and V-Net (yellow) 3D surfaces. The columns 

from left to right show the 25th, 50th, and 75th percentile results, respectively, based on DSC 

metrics. Segmentations in the axial plane, sagittal plane, 45° oblique radial plane, and 

reconstructed 3D surface error are shown in the respective rows from top to bottom.  
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2.4 DiVcXVViRQ 

 
2.4.1 Reconstructed modified U-Net 

 
 We proposed a new 3D TRUS prostate segmentation method, which utilizes a 

modified U-Net to segment 12 2D radial slices, which are then reconstructed into a 3D 

surface. We first compared segmentation accuracy in these 2D radial slices to segmentation 

accuracy following 3D reconstruction. In general, the performance was better on the 2D 

radial slice segmentations compared to the reconstructed 3D surface, but interestingly, our 

reconstruction method improved recall, MSD, and HD metrics when compared to 2D slice 

segmentation. When considered in combination, the reduced MSD and HD metrics showed 

better mean and irregular boundary accuracy, with the improved recall metric implying a 

reduction in underprediction (since decreasing underpredicted pixels, i.e., false negatives, 

will increase recall). The reduction in underprediction is contrasted with our method 

tending to overpredict, supported by the slight positive bias in the signed metrics and 

reduced precision. In the metrics where performance was worse for our 3D reconstructed 

segmentations, such as DSC and VPD, the difference in median values were less than 1% 

and 1.5% respectively. Thus, we saw that our 3D reconstruction method did not drastically 

reduce performance of the evaluation metrics when compared to our 2D segmentations, 

with the 3D reconstruction improving performance on select metrics. Examining the signed 

metrics shown in Table 2.4, we observed that sVPD, sMSD, and sHD are reduced 

compared to their absolute metrics, with median sVPD reduced to only 2.38 %, median 

sMSD reduced to 0.11 mm, and median sHD reduced to 2.02 mm. This demonstrated that 

our algorithm was not significantly biased to over or underpredict the prostate boundary.  

 As our proposed network was trained and tested on both end-fire and side-fire 3D 

TRUS images, we directly compared the performance of our method on each image type 

observing no significant difference between performance for end-fire and side-fire images 

on any metric. Both independent image geometries also followed the same trends as the 

total dataset, aside from a reduced signed bias in the end-fire images following 

reconstruction. These results demonstrated the effectiveness of radially sampling 3D 

TRUS prostate images to produce similar 2D images for prediction and the ability to 
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accurately segment the prostate in different 3D TRUS image geometries without the need 

for multiple trained networks, which, to our knowledge, is the first time this has been 

shown. 

  
2.4.2 3D CNNs and V-Net Optimization 

 
 The initial publication describing the V-Net architecture by Milletari et al.24 

proposed the use of a Dice coefficient-based loss function, but recent leave-one-out 

validation, described in Lei et al.,16 has advocated for the use of hybrid loss functions that 

combine standard logistic loss, such as the cross-entropy loss metric,20 with the Dice loss 

metric. We implemented a 3D V-Net with both a Dice loss function and a hybrid DiceXEnt 

loss function in order to compare performance between loss functions, as well as to directly 

compare performance to previously published V-Net implementations16 on an unseen 

dataset. Our results reiterate what has been previously reported, with the hybrid DiceXEnt 

loss function significantly improving performance on all metrics except DSC and recall, 

where we observed a nonsignificant increase in performance and a significant decrease in 

performance, respectively. Similar trends held when examining the results for end-fire and 

side-fire 3D TRUS images individually. Comparing 3D V-Net performance when using a 

DiceXEnt loss function between end-fire and side-fire 3D TRUS images showed similar 

results to our proposed network, as there was no significant difference in any metric except 

HD.  

Similar segmentation performance on end-fire and side-fire 3D TRUS images for 

all three 3D CNNs and our proposed 3D segmentation method demonstrated that we could 

potentially train a single network to accurately segment the prostate in geometrically 

variable 3D TRUS images. This was demonstrated predominantly with our approach and 

the 3D V-Net as the Dense V-Net and High-resolution 3D-Net were observed to have 

significant differences between several metrics when comparing end-fire and side-fire 

segmentation performance. Interestingly, performance differed between the Dense V-Net 

and High-resolution 3D-Net for different image geometries, with better predictions 

performed on side-fire and end-fires images, respectively. Although our method performed 

the best, the 3D V-Net outperformed the other two 3D CNNs investigated in this study. 
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This improved performance on 3D US prostate segmentation could be due to the number 

of parameters trained by the network since the 3D V-Net has approximately two orders of 

magnitude more parameters relative to the Dense V-Net and High-resolution 3D-Net. 

Although the latter networks are more efficient and required less computation time, we 

found this did not benefit performance. 

 Although Lei et al.16 reported on a deep supervision method with contour 

refinement, they also reported on the use of a standard 3D V-Net with a hybrid DiceXEnt 

loss function to segment the prostate in side-fire 3D TRUS images, showing a 3D DSC, 

precision, recall, HD, MSD, and RMSD of 90.5 ± 3.0 %, 88.1 ± 6.0 %, 93.5 ± 3.5 %, 4.643 

± 1.926 mm, 0.657 ± 0.270 mm, and 0.977 ± 0.410 mm, respectively. Comparatively, a 

standard 3D V-Net with a DiceXEnt loss function trained on our dataset and predicted on 

side-fire images resulted in a 3D DSC, precision, recall, HD, and MSD of 91.2 [87.4, 92.8] 

%, 95.0 [90.8, 97.5] %, 89.5 [80.7, 92.9] %, 4.92 [4.28, 6.55] mm, and 1.11 [0.84, 1.47] 

mm, showing very similar performance. Investigating the differences between mean and 

median values showed our V-Net implementation demonstrated improved 3D DSC and 

precision, while Lei et al.16 demonstrated improved recall, HD, and MSD. Although VDP 

or any signed metrics were not reported, this demonstrated similarity in performance. Thus, 

we suggest future comparisons should use a standardized V-Net, like the NiftyNet open-

source implementation, to provide a baseline for comparing network performance on 

different data sets.  

   
2.4.3 Comparison with 3D V-Net and previously published methods 

 
 For an identical training and testing dataset, our proposed method performed 

significantly better than the standard 3D V-Net with a hybrid loss function, with DSC, 

recall, sVPD, MSD/sMSD, and HD/sHD showing significant improvement. Our proposed 

method also demonstrated a reduced median VPD, although this difference was not 

significant. Similar differences in performance were observed when considering end-fire 

and side-fire 3D TRUS images separately. Fig. 2.4 and 2.5 show this difference in 

performance qualitatively for both image geometries, with the 3D V-Net often over or 

underpredicting the correct prostate boundary. This difference is readily apparent in the 
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side-fire middle 50th percentile column of Fig. 2.5. The V-Net is shown to have incorrectly 

contoured part of the bladder as the prostate, drastically affecting the overall segmentation 

accuracy. In contrast, our proposed method was able to correctly avoid the bladder, 

resulting in a more accurate segmentation. A similar result is shown in the left column of 

Fig. 2.4 as well as in Fig. 2.6, where we show that the 3D V-Net mistakenly underpredicted 

the prostate boundary due to the presence of a hyperechoic calcification artifact in the 

TRUS image, whereas our proposed method was typically able to avoid artifacts of this 

nature. We demonstrated a mean 3D segmentation time of 0.62 s with our proposed 

method, over five times faster than the 3D V-Net, which required an average of 3.43 s per 

segmentation. All segmentations were completed with the same NVIDIA GeForce GTX 

TITAN GPU with 6 GB of memory.  

Figure 2.6. A sample end-fire prostate segmentation result comparing manual (red), our 

proposed algorithm (blue), and V-Net (yellow) 3D surfaces in the presence of a 

hyperechoic calcification image artifact. 

 
Recent work by Ghavami et al.15 and Lei et al.16 report on automatic prostate 

segmentation in 3D TRUS images, with Ghavami et al.15 reporting best results for 2D DSC, 

3D DSC, and boundary distance of 89 ± 12 %, 89 ± 5 %, and 1.68 ± 1.57 mm, respectively, 

and Lei et al.16 reporting overall segmentation results for 3D DSC, precision, recall, HD, 

MSD, and RMSD of 91.9 ± 2.8 %, 90.6 ± 5.5 %, 93.8 ± 4.3 %, 3.938 ± 1.550 mm, 0.599 
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± 0.225 mm, and 0.900 ± 0.377 mm, respectively. Our proposed method demonstrated 

overall segmentation results for 2D DSC, 3D DSC, precision, recall, HD, and MSD of 94.9 

[93.2, 95.5] %, 94.1 [92.6, 94.9] %, 93.2 [88.08, 95.4] %, 96.0 [93.1, 98.5] %, 2.89 [2.37, 

4.35] mm, and 0.89 [0.73, 1.09] mm, respectively, outperforming the network reported by 

Ghavami et al.15 on all reported metrics, and outperforming the network reported by Lei et 

al.16 on all metrics except MSD. In addition, our paper reports on metrics not used in the 

studies described here, including VPD, and signed variants of VPD, MSD, and HD, 

providing additional insight into the performance of our network that is otherwise not 

present when these metrics are excluded. Lei et al.16 reported segmentation times of 

approximately 1-2 s for a U-Net, V-Net, and their proposed network, with segmentations 

completed using an NVIDIA TITAN XP GPU with 12 GB of memory. Comparatively, our 

V-Net implementation in NiftyNet had a mean segmentation time of 3.43 s, while our 

proposed method had a mean segmentation time of 0.62 s, with segmentations completed 

using an NVIDIA GeForce GTX TITAN GPU with 6 GB of memory. Although our V-Net 

had slower segmentation times, our proposed method was one and a half to three times 

faster, using a GPU with half the memory, demonstrating the advantage of our proposed 

method regarding segmentation time.  

 Studies reported by Ghavami et al.15 and Lei et al.16 are also limited by their use of 

cross-validation approaches, in addition to their dataset consisting of only one image 

geometry and a single ultrasound machine with matched voxel dimensions and sizes. In 

contrast, we used a clinically diverse dataset of 3D TRUS images of different image 

geometries, generated by several different ultrasound transducers used with different 

machine models, and used in distinct procedures. This dataset contains images with varying 

voxel dimensions, size, and image quality, and we have employed no pre-processing before 

training to reduce process complexity. To our knowledge, the use of a dataset with different 

image geometries, ultrasound transducers, ultrasound machine models, voxel dimensions, 

and image sizes for 3D TRUS prostate segmentation is unique and may allow for a more 

robust and generalizable segmentation method. In addition, we have not used a cross-

validation approach, instead testing our algorithm on 3D TRUS images that were 

completely unseen by the network, which we believe strengthens the significance of our 

results and may result in improved generalizability.  
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2.4.4 Limitations and future work 

 

 Although we have demonstrated excellent performance with our proposed 

algorithm, a parameter that may be interesting to explore in future work is the step angle 

for radial slice generation. Specifically, it would be interesting to investigate whether a 

decreased step angle and thus an increased number of radial slices would significantly 

increase performance, or whether a decreased number of slices could be used while 

maintaining similar performance. An increased number of radial slices would increase 

computation time, which motivated our choice of a 15° step angle for the proposed method. 

When training the 3D CNNs for performance comparison, hyperparameters were 

optimized on the V-Net and were used for the other two networks. Even though we 

investigated other combinations and found these hyperparameters to perform the best on 

the Dense V-Net and High-resolution 3D-Net, a rigorous optimization was not performed 

and has the potential to increase performance. Another limitation of our study is the use of 

only one observer for providing ground truth segmentations. This meant we could not 

directly assess inter-observer variability for our dataset. In addition, we did not directly 

assess intra-observer variability over several time points. Inter- and intra-observer 

variability in end-fire 3D TRUS images were previously assessed by our group,11 and are 

summarized here. To assess intra-observer variability, one observer segmented 15 3D 

images five times each, resulting in a 3D DSC of 93.0 ± 2.1 %. To assess inter-observer 

variability, three untrained observers segmented 15 3D images three times each, resulting 

in a DSC of 93.5 ± 2.1 %, 92.6 ± 3.1 %, and 92.3 ± 3.2 %, with an ANOVA demonstrating 

no significant difference. Inter- and intra-observer variability in side-fire 3D TRUS images 

were also assessed by our group,28 reporting 5.1 % variability and 99 % reliability in intra-

observer prostate volume estimates, and 11.4 % variability and 96 % reliability in inter-

observer estimates, for a study of eight observers measuring 15 prostate images twice. This 

variability is comparable to the reported DSC of our proposed method in this work, 

showing that our algorithm is performing at the level of intra-observer variability in the 

ground truth segmentations. Due to the demonstrated variability between different 

observers when segmenting 3D TRUS images, segmentations from other observers should 
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be incorporated into our testing dataset to further improve the robustness of our proposed 

method.  

 
2.5 CRQclXViRQV 

 
This study investigated the development of a 2D deep learning with 3D 

reconstruction approach for automatic prostate segmentation in 3D TRUS images. Multiple 

facilities, ultrasound machine models, and acquisition geometries were investigated to 

evaluate robustness and generalizability, with comparisons performed against multiple 3D 

CNNs. A fast, accurate, and generalizable automatic prostate segmentation algorithm could 

reduce physician burden and procedure time, offering potential workflow benefits for 

fusion-guided prostate biopsy, tumor-targeted HDR-BT, and TRUS-guided whole-gland 

BT. Reducing the time a patient is under anesthesia, as in HDR-BT, also promotes a 

potentially safer procedure with fewer adverse side effects. 
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2.7 SXSSlePeQW A 

 

Table 2.A1. Absolute median [Q1, Q3] results comparing a Dense V-Net (DenseNet) and 

High-resolution 3D Network (HighRes3dNet) on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate.  

Acquisition Segmentation DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 
DenseNet 87.9  

[84.9, 90.4] 
95.4  

[92.9, 97.0] 
82.2  

[77.4, 86.5] 
15.6  

[9.42, 20.8] 
2.11  

[1.55, 2.85] 
10.0  

[7.82, 12.5] 

HighRes3dNet 90.0  
[87.3, 91.4] 

91.7  
[84.6, 94.9] 

89.3  
[87.0, 93.7] 

6.88  
[4.30, 15.7] 

1.62  
[1.41, 2.08] 

8.95  
[7.56, 11.2] 

Side-fire 
DenseNet 88.7  

[81.6, 90.7] 
89.1  

[86.0, 95.1] 
89.6  

[82.8, 91.9] 
6.38  

[4.22, 12.6] 
1.47  

[1.26, 2.56] 
8.96  

[5.93, 13.8] 

HighRes3dNet 86.2  
[84.3, 88.7] 

80.5  
[76.8, 86.0] 

94.9  
[90.9, 96.1] 

15.3  
[9.77, 20.0] 

1.64  
[1.36, 1.93] 

7.82  
[6.67, 9.31] 

Overall 
DenseNet 88.2  

[84.3, 90.6] 
93.0  

[88.9, 96.1] 
84.8  

[79.2, 90.2] 
11.0  

[5.96, 19.3] 
2.00  

[1.36, 2.63] 
9.23  

[7.00, 13.2] 

HighRes3dNet 87.5  
[85.5, 90.3] 

85.4  
[79.8, 92.1] 

92.3  
[88.4, 95.8] 

11.8  
[4.68, 18.0] 

1.63  
[1.40, 1.97] 

8.37  
[6.89, 10.9] 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
 

Table 2.A2. Signed median [Q1, Q3] results comparing a Dense V-Net (DenseNet) and 

High-resolution 3D Network (HighRes3dNet) on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate.  

Acquisition Segmentation sVPD (%) sMSD (mm) sHD (mm) 

End-fire 
DenseNet 15.6 [9.42, 20.8] 1.44 [0.92, 2.18] 9.13 [7.19, 12.3] 

HighRes3dNet 2.86 [-6.42, 8.86] 0.37 [-0.46, 0.93]] 6.47 [-8.97, 9.71] 

Side-fire 
DenseNet 0.36 [-4.91, 7.07] 0.38 [-0.15, 1.03] 8.67 [-2.86, 13.8] 

HighRes3dNet -13.8 [-20.0, -7.55] -0.76 [-1.23, -0.08] -6.69 [-8.40, 4.38] 

Overall 
DenseNet 8.77 [-2.84, 18.3] 0.95 [0.29, 1.61] 8.87 [5.72, 13.2] 

HighRes3dNet -6.89 [-16.4, 4.09] -0.24 [-1.15, 0.58] -5.84 [-8.46, 8.32] 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 
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Chapter 3 

 

3 EffecW Rf daWaVeW Vi]e, iPage TXaliW\, aQd iPage W\Se RQ 
deeS leaUQiQg-baVed aXWRPaWic SURVWaWe VegPeQWaWiRQ iQ 
3D XlWUaVRXQd 

 
While deep learning-based segmentation approaches are promising, access to large 

clinically diverse datasets is rare, especially in US imaging. An efficient automatic 

segmentation algorithm that could maintain high segmentation accuracy when trained with 

smaller datasets may increase access to deep learning segmentation, even if data is scarce. 

The purpose of Chapter 3 is to examine the effect of dataset size and image quality on deep 

learning segmentation of the prostate in 3D TRUS images.  

 The contents of this chapter have been previously published in Physics in Medicine 

& Biology: Orlando N, Gyacskov I, Gillies DJ, Guo F, Romagnoli C, D¶Souza D, Cool 

DW, Hoover D, and Fenster A. Physics in Medicine & Biology. 2022;67:074002. 

Permission to reproduce this article was granted by IOP Publishing Ltd. and is provided in 

Appendix A ± Copyright Releases. 

 

3.1 IQWURdXcWiRQ 

 
 Prostate biopsy is the current clinical standard for prostate cancer (PCa) diagnosis, 

but the conventional two-dimensional (2D) transrectal ultrasound (TRUS)-guided biopsy 

has been reported to have a false negative rate up to 30%.1 Improved tumour sampling can 

be achieved with the addition of three-dimensional (3D) TRUS imaging using a magnetic 

resonance imaging (MRI)-3D TRUS fusion guided biopsy approach, which utilizes the 

superior soft-tissue contrast of MRI to identify suspicious tissue regions for targeting with 

real-time TRUS guidance.2 For PCa treatment, high-dose-rate (HDR) brachytherapy is a 

common treatment modality for intermediate and high-risk localized PCa.3,4 3D TRUS 

imaging provides spatial context through visualization of the anatomy in 3D, in addition to 
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improving intraoperative needle tip identification and patient-specific dose optimization.5 

While 3D TRUS imaging offers many benefits, it also necessitates accurate segmentation 

of the prostate to perform the biopsy and brachytherapy clinical tasks. Segmentations are 

often completed manually by the physician during the procedure, which can be time-

consuming and highly variable, extending procedure times and increasing risk due to 

anesthesia exposure.6  

 Multiparametric MRI is quickly becoming a standard of care imaging modality for 

both biopsy and brachytherapy procedures based on the results of recent randomized 

controlled clinical trials.7±9 While MRI offers high soft-tissue contrast, limitations 

including high-cost limit widespread adoption. For MRI-guided brachytherapy, patient 

movement to the MRI scanner after needle implant may cause needle shifts,10 while in-

bore procedures require highly specialized magnet-safe tools. In hospitals where MRI is 

utilized for MRI-3D TRUS fusion-guided biopsy or brachytherapy, registration between 

the modalities is required, often utilizing a surface-based approach, which requires accurate 

segmentation of the prostate in both image modalities. Thus, even with an MRI-based 

approach, accurate and fast prostate segmentation in 3D TRUS images is critical.  

 With the increasing prevalence of deep learning in medicine,11 and specifically of 

convolutional neural networks (CNNs) for medical imaging tasks, many deep learning-

based automatic prostate segmentation approaches have been proposed for TRUS imaging, 

promising reduced procedure time and similar performance compared to manual 

approaches.12±16 Recently, Lei et al. proposed an anchor-free mask CNN for multi-organ 

segmentation in 3D TRUS volumes, trained using data from 83 PCa patients with five-fold 

cross-validation.17 They reported prostate segmentation accuracy with a Dice similarity 

coefficient (DSC) of 0.93 ± 0.03 and 95% Hausdorff distance (HD95) of 2.27 ± 0.79 mm. 

van Sloun  et al. propose a U-Net based approach for zonal prostate segmentation trained 

on a large multi-institutional dataset of 436 3D TRUS volumes from 181 men, reporting a 

median (95% confidence interval) accuracy of 98 (95-99)%, Jaccard index of 0.93 (0.80-

0.96), and Hausdorff distance (HD) of 3.0 (1.3-8.7) mm.18 

 We previously proposed an automatic segmentation algorithm involving deep 

learning prediction with a modified U-Net on 2D TRUS images radially sliced from 3D 

TRUS volumes followed by reconstruction into a 3D surface.19 The algorithm was trained 
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on a large dataset with nearly 7000 2D images resliced from 206 clinically variable 3D 

TRUS images from various acquisition methods, procedure types (biopsy and HDR 

brachytherapy), ultrasound machines, and ultrasound transducers. On a testing set of 40 

unseen 3D TRUS volumes from different acquisition methods, we demonstrated high 

performance with a median [quartile 1, quartile 3] DSC, mean surface distance (MSD), and 

HD of 94.1 [92.6, 94.9] %, 0.89 [0.73, 1.09] mm, and 2.89 [2.37, 4.35] mm, respectively. 

This algorithm outperformed a fully 3D V-Net and state-of-the-art methods in the 

literature.19 

However, large and diverse medical image datasets are rare, especially for 

ultrasound, with recent papers reporting utilization of datasets with 2238 2D TRUS 

images,12 and 40,16 44,14 86,17 and 10913 3D TRUS volumes. Generation of large clinical 

datasets is time-consuming and costly, so generalizable and accurate automatic 

segmentation approaches suitable for small datasets are critical for the widespread 

integration of deep learning in minimally invasive PCa procedures. The U-Net++ 

architecture, an evolution of the standard U-Net, has recently been proposed and may help 

accomplish this goal, introducing multiple CNN backbones as well as nested, dense skip 

connections.20,21 These redesigned skip connections attempt to reduce the semantic gap 

between feature maps in the encoder and decoder sections of the network, resulting in an 

easier optimization problem and thus higher performance with small training datasets. 

 Image quality is highly variable between 3D TRUS volumes, including differences 

in acquisition methods, image acquisition artifacts, patient anatomy artifacts such as gas, 

calcifications, catheters, and prostate boundary visibility. These factors may influence 

prostate segmentation results, so a 3D TRUS image quality grading scale is required to aid 

in comparing results from different datasets and identify key image quality factors that will 

influence segmentation performance.  

 Our work aims to demonstrate that our 2D radial deep learning plus 3D 

reconstruction approach offers efficient utilization of training data and thus high 

segmentation performance when trained with smaller datasets and datasets split based on 

3D TRUS acquisition type (end-fire and side-fire). To assess the impact of image quality 

on segmentation performance, we propose an image quality grading scale containing three 

distinct image quality factors. By rigorously evaluating our deep learning segmentation 
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approach in the context of image quality, training dataset size, and 3D TRUS acquisition 

type (end-fire and side-fire), we intend to provide a widely accessible, robust, 

generalizable, and efficient prostate segmentation algorithm. This approach may allow for 

reduced clinical procedure time and increased efficiency for minimally invasive PCa 

procedures, allowing for optimization to a clinic¶s local preferences, without requiring 

access to large ultrasound image datasets.  

 

3.2 MaWeUialV aQd PeWhRdV 

 
3.2.1 Complete ultrasound dataset 

 
The complete ultrasound dataset consisted of 246 3D TRUS volumes of the 

prostate.22 This dataset contained 104 end-fire 3D TRUS volumes, obtained from clinical 

prostate biopsy procedures, and 142 side-fire 3D TRUS volumes, obtained from clinical 

prostate brachytherapy procedures. Patient clinical information such as age, stage of 

prostate cancer, and Gleason score were not recorded. The methods to acquire 3D TRUS 

volumes have been described previously, but are briefly summarized here.23±25 To generate 

these images, a TRUS transducer was mechanically rotated using a motorized fixture about 

its long axis. 2D TRUS images were acquired at set angular intervals, which were then 

reconstructed to generate 3D TRUS volumes. The choice of TRUS transducer leads to 

geometrically variable images: the end-fire transducer used for prostate biopsy was rotated 

180° while 2D TRUS images were acquired at 1.0° intervals and reconstructed into a 3D 

volume; the side-fire transducer used for prostate brachytherapy was rotated 140° while 

2D TRUS images were acquired at 0.5° intervals and reconstructed into a fan-shaped 3D 

TRUS volume.  

These 3D TRUS volumes were acquired with 3 transducers used with 3 different 

ultrasound systems of different ages and from two manufacturers. Specifically, an 8848 

transducer was used with the Profocus 2202 ultrasound system (BK Medical, Peabody, 

MA, USA), C9-5 and BPTRT9-5 transducers were used with the ATL HDI-5000 

ultrasound system (Philips, Amsterdam, the Netherlands), and a C9-5 transducer was used 

with the iU22 ultrasound system (Philips, Amsterdam, the Netherlands). 3D TRUS image 
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sizes ranged from [448⨯350⨯448] to [692⨯520⨯692] voxels with dimensions of 

[0.115⨯0.115⨯0.115] to [0.190⨯0.195⨯0.190] mm3/voxel for end-fire images and from 

[300⨯400⨯784] to [408⨯441⨯870] voxels with dimensions of [0.094⨯0.154⨯0.154] to 

[0.183⨯0.186⨯0.186] mm3/voxel for side-fire images. Manual prostate segmentations in 

the 3D TRUS volumes, excluding the seminal vesicles, were completed by an observer 

experienced with 3D TRUS imaging (IG). 20 end-fire 3D TRUS volumes and 20 side-fire 

3D TRUS volumes were randomly selected from the complete dataset and reserved as a 

testing dataset, thus were not included during training.  

As outlined in Orlando and Gillies et al., the complete training dataset of 206 3D 

TRUS volumes was resliced at randomized axial, sagittal, coronal, radial, and oblique 

image planes, resulting in a final training dataset of 6761 2D TRUS images with matched 

manual segmentations.19 This reslicing allowed for more efficient use of the TRUS data, 

demonstrating improved performance compared to a fully 3D V-Net approach.19,26 2D 

images were resampled to 256⨯256 pixels with no other applied preprocessing. The 

complete training dataset of 2D TRUS images was split for deep learning, with 80% (5409 

images) used for training and 20% (1352 images) used for validation.  

 
3.2.2 Reduced-size datasets 

 
 To evaluate our method¶s efficiency in utilizing the training data, we generated 

smaller datasets by splitting and reducing the complete dataset of 6761 2D TRUS images. 

In all smaller datasets, we maintained the 80/20 training/validation split for deep learning.  

 
3.2.2.1 Split end-fire and side-fire datasets 
 
 We first split the complete dataset into an end-fire training dataset of 2738 2D 

TRUS images and a side-fire training dataset of 4023 2D TRUS images (Table 3.1). This 

allowed for an assessment of generalizability by training two sets of parameters and testing 

on the opposite 3D TRUS acquisition type, which was unseen during training.  
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3.2.2.2 Smaller end-fire, side-fire, and mixed datasets 

 
 Smaller datasets were generated by reducing the split end-fire and side-fire datasets 

to assess how segmentation performance depends on the size of the dataset used for 

training, with an aim to find the smallest dataset which still maintains high segmentation 

performance. Using the split end-fire and side-fire datasets, images were removed at 

random to create training datasets with 1000, 500, 250, and 100 2D TRUS images of each 

acquisition type (Table 3.1). These smaller datasets were generated by reslicing from 36, 

18, 9, and 4 3D TRUS volumes, respectively. Thus, variation in image quality and 

anatomical features, as determined by the 3D TRUS volume, were similarly reduced. This 

resulted in eight reduced-size datasets (four end-fire and four side-fire).  

 

Table 3.1. Breakdown of the clinical 3D TRUS training dataset of 206 volumes resliced 

into 2D images for training 2D neural networks. Rows from top to bottom show the 

complete and reduced-size side-fire, end-fire datasets, and mixed datasets.  

Complete Dataset 6761 2D TRUS Images 

Split Dataset 

[Images] 

4023 Side-fire 

 

 

2738 End-fire 

4023 Mixed 

2738 Mixed 

Smaller Datasets 

[Images] 

1000 Side-fire 1000 End-fire 1000 Mixed 

  500 Side-fire   500 End-fire   500 Mixed 

  250 Side-fire   250 End-fire   250 Mixed 

  100 Side-fire   100 End-fire   100 Mixed 

 

 Similarly, smaller mixed datasets were generated by reducing the complete 2D 

TRUS dataset. Images were removed at random to create training datasets with 4023, 2738, 

1000, 500, 250, and 100 mixed 2D TRUS images (Table 3.1), resliced from 119, 86, 36, 

18, 9, and 4 3D TRUS volumes, respectively. The segmentation performance of a network 

trained using 4023 mixed acquisition images was compared to a network trained using 

4023 side-fire images; similarly, the segmentation performance using a training dataset of 

2738 mixed images and 2738 end-fire images were compared. In all reduced-size mixed 
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datasets, the ratio between end-fire and side-fire images matched the complete dataset, with 

40.5% end-fire images and 59.5% side-fire images. This resulted in six reduced-size mixed 

datasets.  

 
3.2.3 Image quality assessment 

 

 3D TRUS image quality varies across patients and 3D acquisition methods, and so 

it is expected to impact segmentation performance. To explore this effect, an experienced 

interventional and genitourinary radiologist (DC) developed a 3D TRUS image quality 

grading scale, provided in Table 3.2. To ensure the scale was not biased and was 

generalizable, it was developed before the physician viewed our 3D TRUS dataset. Image 

quality was graded using three factors: acquisition quality, artifact severity, and prostate 

boundary visibility. Acquisition quality rated the quality of the 3D TRUS acquisition itself, 

ignoring the anatomy artifacts and visibility, ranging from 1 (poor) to 5 (ideal). Examples 

of poor acquisition quality included image shadowing due to inadequate transducer contact, 

transducer translation during 3D TRUS acquisition causing anatomy distortion, and issues 

with ultrasound gain or depth. Artifact severity estimated the degree of image degradation 

caused by artifact-generating items within the prostate gland, such as calcifications, gas, 

urinary catheters, and brachytherapy seeds, ranging from 1 (major artifacts) to 5 (no 

artifacts at all). Prostate boundary graded the visibility or clarity of the prostate boundary 

with the adjacent periprostatic soft tissue, a key factor in the prostate segmentation task, 

ranging from 1 (more than 75% of the boundary is indistinguishable) to 3 (40% of the 

boundary is indistinguishable) to 5 (the entire boundary is clearly visible). The test dataset 

of 20 end-fire and 20 side-fire 3D TRUS volumes was graded by the same radiologist who 

was blinded to the qualitative and quantitative segmentation performance. Only the test 

dataset was graded; as the test dataset was randomly selected from the complete dataset, 

its images quality distribution was representative of the complete dataset.  Five-point 

numerical grading allowed for a quantitative comparison between end-fire and side-fire 3D 

TRUS volumes, including the calculation of means and statistical testing.  

 



88 

 

Table 3.2. Image quality grading scale for 3D TRUS images of the prostate.   

Image Quality Factor Description Scale 

Acquisition Quality Quality of the 3D TRUS image 
acquisition regardless of anatomy 

1 (poor) - 5 (ideal) 

Anatomy Artifacts Severity of anatomy artifacts 
(calcification, gas, catheter, etc.) 

1 (major artifacts) ± 5 (no artifacts) 

Prostate Boundary Visibility/clarity of the prostate 
boundary 

1 (> 75% of boundary indistinguishable) - 3 
(40% of boundary indistinguishable) - 5 (entire 
boundary visible) 

 
3.2.4 3D segmentation algorithm 

 
 Our radial prostate segmentation algorithm was first described in Orlando and 

Gillies et al. and will be briefly summarized here (Fig. 3.1). This method utilized a radial 

segmentation approach, first proposed by Qiu  et al. for a prostate segmentation algorithm 

based on convex optimization with shape priors.27 In this approach, a 3D TRUS volume is 

resliced radially about the approximate center of the prostate gland at 15° intervals, 

generating 12 2D TRUS images. The extracted 2D TRUS images appear very similar, as 

each plane passes through the mid-gland of the prostate, resulting in similar prostate size 

and shape regardless of the 3D TRUS acquisition method. This radial approach has been 

shown to improve segmentation performance in the apex and base of the prostate compared 

to alternative approaches such as transverse reslicing.27 The 12 radial 2D TRUS images 

were automatically segmented using neural networks trained with the 2D datasets 

described in sections 3.2.1 and 3.2.2 to generate 12 segmented prostate boundaries, which 

were used to reconstruct the 3D surface of the prostate (Fig. 3.1).  

 

3.2.5 2D neural networks 

 
 Two neural network architectures were used in this work, which were trained with 

identical 2D TRUS datasets (See sections 3.2.1 and 3.2.2). Detailed network diagrams are 

provided in Fig. 3.A1 and 3.A2 in Supplement A for the modified U-Net and U-Net++, 

respectively. Data augmentation using random combinations of horizontal flips, shifts up 

to 20%, rotations up to 20°, and zooms up to 20% were applied to double the training 
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datasets. A personal computer with an i7-9700K central processing unit (CPU) at 3.60 GHz 

(Intel Corporation, Santa Clara, CA, USA), 64 GB of RAM, and a 24 GB NVIDIA TITAN 

RTX (NVIDIA Corporation, Santa Clara, CA, USA) graphics processing units (GPU) was 

used for training all 2D neural networks and for subsequent prediction on unseen testing 

data.  

 

Figure 3.1. 3D prostate segmentation workflow using an example end-fire 3D TRUS 

volume. The input 3D TRUS volume was resliced radially at 15° spacing to generate 12 

2D TRUS images with similar size and shape. A trained 2D neural network was used to 

predict the prostate boundary locations in 2D binary masks, which were used to reconstruct 

the 3D prostate surface.  

 
3.2.5.1 Modified U-Net 

 
A five-layer deep modified version of the widely prevalent U-Net28 was 

implemented using Keras29 with TensorFlow.30 First, 50% dropouts were applied at the last 

block on the contracting section of the network and at every block on the expansion section 

of the network to increase regularization and prevent overfitting.19 In addition, transpose 

convolutions were applied in the expansion section of the network instead of the standard 

upsampling followed by convolution (upconvolution), as this allowed for improved 

performance 19. Padding and ReLU activation were applied in each (3⨯3) convolution 

operation, with sigmoid activation used in the final (1⨯1) convolution operation. 

Additional hyperparameter selection based on preliminary experiments included the use of 

an Adam optimizer, a learning rate of 0.0001, a Dice-coefficient loss function, 100 epochs, 

and 200 steps per epoch.  
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3.2.5.2 U-Net++ 

 
A state-of-the-art U-Net++ architecture20,21 was also implemented using Keras29 

with TensorFlow.30 We used a standard ResNet-50 architecture31 with batch normalization 

and a batch size of 10 as our CNN backbone, as it balanced the number of parameters and 

overfitting risk for the scale of our training datasets. As described in Section 3.2.5.1, the 

convolution operations and hyperparameters matched the modified U-Net implementation, 

including the use of transpose convolutions, Adam optimizer, 0.0001 learning rate, Dice-

coefficient loss function, and number of epochs.  

 
3.2.6 Evaluation and comparison 

 
 All trained models were evaluated using a testing dataset which consisted of 20 

end-fire plus 20 side-fire 3D TRUS volumes unseen by the networks during training. The 

evaluation metrics included Dice Similarity Coefficient (DSC), recall, precision, absolute 

volume percent differences (VPD), mean surface distances (MSD), and Hausdorff 

distances (HD), computed for both 2D radial slice and reconstructed 3D segmentations for 

each prostate. Computation times were recorded for 2D slice segmentation, 3D 

reconstruction, and overall 3D segmentation time. We have previously demonstrated 

significantly improved performance with a 2D radial deep learning plus 3D reconstruction 

approach compared to fully 3D CNNs; consequently, no 3D CNNs were used for 

comparison in this work. A detailed list of comparisons and corresponding statistical tests 

is provided in Table 3.3. 
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Table 3.3. List of comparisons and corresponding statistical tests. Parametric tests are 

shown with corresponding nonparametric alternative tests presented in parentheses.  

Comparison Statistical Test 

Complete Dataset (6,761 2D images) 

Modified U-Net vs U-Net++ with complete training 
dataset 

Paired t-test (Wilcoxon matched-pairs signed-
rank test) 

Segmentation performance vs prostate volume Pearson (Spearman) correlation coefficient 

Split end-fire and side-fire datasets (Table 3.1) 
 

End-fire training dataset: U-Net vs U-Net++ tested on 
both end-fire and side-fire images 

Paired t-test (Wilcoxon matched-pairs signed-
rank test) 

Side-fire training dataset: U-Net vs U-Net++ tested on 
both side-fire and end-fire images 

| | 

Split end-fire or side-fire network vs complete training 
dataset 

| | 

Smaller end-fire, side-fire, and mixed datasets (Section 
3.2.2.2) * 

 

Performance with reduced-size datasets vs complete 
dataset 

Repeated measured one-way ANOVA with 
Tukey¶s correction (Friedman Test with 
Dunn¶s correction) 

Mixed training dataset vs end-fire or side-fire dataset of 
equal size 

Paired t-test (Wilcoxon matched-pairs signed-
rank test) 

Image quality (Section 3.2.3) 
 

End-fire vs side-fire image quality grades for each factor Unpaired t-test (Mann-Whitney U test) 
Segmentation performance for U-Net and U-Net++ vs 
image quality grade in each factor and overall 

One-way ANOVA with Tukey¶s correction 
(Kruskal-Wallis test with Dunn¶s correction) 

Correlation between segmentation performance and 
image quality 

Pearson (Spearman) correlation coefficient 

* Due to superior performance of the U-Net++ when trained using split datasets, only the U-Net++ was 
used for reduced-size dataset experiments 

 
 Statistical calculations were performed in GraphPad Prism 9.2 (Graphpad 

Software, Inc., San Diego, CA, USA). The Shapiro-Wilk test was used to evaluate the 

normality of distributions. Failure of the Shapiro-Wilk test led to the use of nonparametric 

statistical tests and the reporting of median [quartile 1, quartile 3] results. The significance 

level for statistical analysis was chosen such that the probability of making a type I error 

was less than 5% (p < 0.05), with statistically significant differences denoted simply as 

³significant´ for the remainder of this manuscript.  
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3.3 ReVXlWV 

  
3.3.1 Complete dataset 

 
 Example U-Net, U-Net++, and manual segmentations for median end-fire and side-

fire cases are shown in Fig. 3.2. The evaluation metric results comparing the modified U-

Net to the U-Net++ when trained using the full dataset of 6761 images are shown in Table 

3.4. No significant differences were observed between the U-Net and U-Net++ for any 

metric for the full testing dataset. When considering the side-fire and end-fire test datasets 

separately, no significant differences were observed for the end-fire testing images, while 

only the precision and recall metrics were significantly different for side-fire testing 

images, with the U-Net demonstrating higher precision and the U-Net++ demonstrating 

higher recall. The mean computation time per 2D segmentation was 0.028 s for the 

modified U-Net and 0.088 s for the U-Net++. The mean 3D reconstruction time was 0.27s, 

resulting in a total 3D segmentation time of 0.61 s for the modified U-Net and 1.33 s for 

the U-Net++.  

Of note, a comparison of segmentation performance relative to prostate volume for 

the U-Net and U-Net++ demonstrated significant correlations between prostate size and 

the DSC and VPD metrics. The DSC metric showed a Spearman r coefficient of 0.58 and 

0.61 for the U-Net and U-Net++, respectively, while the VPD metric showed a Spearman 

r coefficient of -0.44 and -0.51 for the U-Net and U-Net++, respectively. 
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Figure 3.2. Example end-fire (top row) and side-fire (bottom row) prostate segmentation 

results comparing manual (red), modified U-Net (blue), and U-Net++ (yellow) 3D surfaces 

for median cases based on DSC. The columns from left to right show the prostate surface 

in the axial plane, sagittal plane, and an oblique radial plane, respectively.  

 

Table 3.4. Median [Q1, Q3] 3D results showing the modified U-Net and U-Net++ trained 

using the complete dataset and tested on an unseen test dataset of 20 end-fire and 20 side-

fire 3D TRUS volumes. 

Test 
Dataset 

Seg. Alg. DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire U-Net 94.3 
[93.1, 95.2] 

96.0 
[93.2, 98.7] 

94.6 
[88.8, 95.8] 

5.18 
[1.62, 11.2] 

1.01 
[0.80, 1.21] 

3.44 
[2.50, 4.65] 

U-Net++ 94.5 
[92.8, 95.5] 

96.0 
[93.3, 98.1] 

94.1 
[90.4, 96.5] 

3.54 
[1.80, 9.28] 

0.93 
[0.77, 1.20] 

3.39 
[2.81, 4.97] 

p-value 0.2904* 0.9932* 0.4749 0.0696 0.4284* 0.8695 
Side-fire U-Net 93.5 

[91.1, 94.6] 
96.2 

[92.5, 98.4] 
91.6 

[87.8, 94.8] 
5.89 

[3.17, 11.9] 
0.86 

[0.71, 0.97] 
2.73 

[2.42, 4.28] 
U-Net++ 93.3 

[91.7, 95.0] 
97.7 

[95.5, 98.4] 
89.8 

[86.0, 94.1] 
6.27 

[3.89, 12.8] 
0.84 

[0.69, 1.03] 
3.19 

[2.69, 4.33] 
p-value 0.9563 0.0153 0.0495* 0.3884 0.7562 0.1536 

Overall U-Net 94.1 
[92.6, 94.9] 

96.0 
[93.1, 98.5] 

93.2 
[88.8, 95.4] 

5.78 
[2.49, 11.5] 

0.89 
[0.77, 1.10] 

3.14 
[2.49, 4.47] 

U-Net++ 94.0 
[92.2, 95.1] 

96.7 
[94.1, 98.3] 

92.9 
[87.1, 95.1] 

4.79 
[2.93, 10.9] 

0.90 
[0.73, 1.14] 

3.27 
[2.71, 4.33] 

p-value 0.6179 0.0641 0.2265 0.6656 0.5657* 0.2317 
DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with significantly reduced relative error. 
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3.3.2 Split end-fire and side-fire datasets 

 
 Qualitative segmentation results comparing the modified U-Net and U-Net++ to 

manual segmentations for networks trained with only end-fire and only side-fire images 

are shown in Figs. 3.3 and 3.4, respectively, and the corresponding quantitative 

comparisons are shown in Tables 3.5 and 3.6. Plots showing DSC for the modified U-Net 

and U-Net++ trained using only end-fire and only side-fire datasets are shown in Fig. 3.5. 

For both the end-fire and side-fire networks evaluated on the complete testing dataset, 

which included images from both acquisition methods, the U-Net++ significantly 

outperformed the modified U-Net for all metrics except VPD for the side-fire networks. 

When evaluated on the end-fire and side-fire testing datasets separately, the U-Net++ also 

significantly outperformed the U-Net for all metrics aside from VPD when tested on the 

same image type it was trained on.  

Figure 3.3. Example end-fire (top row) and side-fire (bottom row) median DSC prostate 

segmentation results comparing manual (red), modified U-Net (blue), and U-Net++ 

(yellow) 3D surfaces for networks trained only using end-fire images. The columns from 

left to right show the prostate surface in the axial plane, sagittal plane, and an oblique radial 

plane, respectively. 
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Figure 3.4. Example side-fire (top row) and end-fire (bottom row) median DSC prostate 

segmentation results comparing manual (red), modified U-Net (blue), and U-Net++ 

(yellow) 3D surfaces for networks trained only using side-fire images. The columns from 

left to right show the prostate surface in the axial plane, sagittal plane, and an oblique radial 

plane, respectively.  

Figure 3.5. Plot of median DSC for the modified U-Net and U-Net++ trained using only 

end-fire (left) and only side-fire (right) images and tested on both end-fire and side-fire 

images shown on the left and right half of each graph, respectively.    
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Table 3.5. Median [Q1, Q3] 3D results showing the modified U-Net and U-Net++ trained 

using only end-fire images and tested on an unseen test dataset of 20 end-fire and 20 side-

fire 3D TRUS volumes.  

Test 
Dataset 

Seg. Alg. DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire U-Net 86.8 
[82.6, 89.9] 

89.3 
[82.7, 90.8] 

84.5 
[80.5, 89.4] 

7.80 
[2.30, 12.2] 

1.96 
[1.63, 2.39] 

6.43 
[5.25, 9.11] 

U-Net++ 94.2 
[92.4, 95.0] 

95.8 
[92.1, 98.3] 

93.0 
[89.5, 96.2] 

5.31 
[3.56, 8.48] 

1.00 
[0.85, 1.21] 

3.78 
[2.95, 5.20] 

p-value <0.0001 <0.0001* <0.0001* 0.3118 <0.0001* <0.0001* 
Side-fire U-Net 75.7 

[63.4, 82.6] 
91.7 

[83.7, 96.0] 
64.8 

[50.0, 78.1] 
35.9 

[12.1, 91.9] 
3.36 

[1.97, 4.49] 
12.4 

[8.35, 16.1] 
U-Net++ 87.9 

[78.2, 92.0] 
93.1 

[89.8, 96.6] 
84.0 

[71.6, 90.5] 
18.2 

[5.40, 34.9] 
1.75 

[1.17, 2.89] 
10.0 

[5.89, 11.4] 
p-value <0.0001 0.2611 <0.0001* 0.0005 0.0003 0.0363* 

Overall U-Net 82.6 
[75.5, 87.4] 

89.5 
[83.7, 94.6] 

78.9 
[64.2, 86.4] 

12.0 
[4.24, 37.3] 

2.19 
[1.69, 3.43] 

8.92 
[6.15, 12.7] 

U-Net++ 92.3 
[87.7, 94.3] 

93.6 
[91.2, 97.4] 

89.8 
[82.9, 95.0] 

6.84 
[4.35, 18.2] 

1.18 
[0.90, 1.78] 

5.53 
[3.61, 10.1] 

p-value <0.0001 0.0002 <0.0001 0.0006 <0.0001 <0.0001 
DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with significantly reduced relative error. 

 
 Comparing the results shown in Tables 3.4 and 3.5 of the U-Net++ trained with the 

full 6761 image dataset to the U-Net++ trained using only end-fire images, use of the full 

dataset only demonstrated a significant improvement for the HD metric (0.4 mm) when 

tested on end-fire images. Similarly, comparing the U-Net++ trained with the full dataset 

to one trained using only side-fire images, only the precision metric was significantly 

different (1.8%) when tested on side-fire images. When tested on the unseen acquisition 

type, the use of the full dataset demonstrated improved performance for every metric in 

both cases. 

3.3.3 Smaller end-fire, side-fire, and mixed datasets 

 
 Example segmentation results for the U-Net++ trained with varying-sized end-fire, 

side-fire, and mixed datasets are shown in Fig. 3.6.  Plots of DSC as a function of training 

dataset size are shown in Fig. 3.7, highlighting the high performance of the U-Net++ when 

trained with small datasets. Corresponding quantitative comparisons are provided in 

Supplement B Tables 3.B1, 3.B2, and 3.B3. 
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Table 3.6. Median [Q1, Q3] 3D results showing the modified U-Net and U-Net++ trained 

using only side-fire images and tested on an unseen test dataset of 20 end-fire and 20 side-

fire 3D TRUS volumes.  

Test Dataset Seg. Alg. DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire U-Net 81.4 
[77.8, 86.3] 

74.4 
[68.3, 85.3] 

90.2 
[86.3, 93.9] 

17.4 
[9.87, 26.3] 

2.48 
[1.79, 3.38] 

8.57 
[6.80, 11.8] 

U-Net++ 84.5 
[66.9, 90.3] 

75.3 
[51.0, 86.9] 

96.5 
[95.7, 99.2] 

23.3 
[13.0, 48.3] 

2.44 
[1.50, 4.72] 

8.90 
[7.18, 13.8] 

p-value 0.9854 0.2679* <0.0001 0.0121 0.5459 0.2436* 
Side-fire U-Net 84.9 

[79.2, 87.8] 
85.9 

[78.7, 92.3] 
82.2 

[77.5, 85.9] 
5.16 

[4.13, 13.0] 
1.81 

[1.43, 2.37] 
7.77 

[6.29, 8.68] 
U-Net++ 92.4 

[91.8, 95.1] 
95.2 

[91.8, 97.9] 
91.6 

[87.2, 95.5] 
7.11 

[3.34, 12.4] 
0.95 

[0.66, 1.05] 
3.21 

[2.58, 4.75] 
p-value <0.0001 <0.0001* <0.0001* 0.4091 <0.0001 <0.0001 

Overall U-Net 82.8 
[78.4, 87.4] 

80.4 
[71.4, 87.6] 

86.3 
[80.7, 90.6] 

11.9 
[5.03, 20.4] 

2.26 
[1.54, 2.83] 

7.98 
[6.62, 9.60] 

U-Net++ 91.5 
[84.3, 92.7] 

89.3 
[75.3, 96.0] 

95.6 
[88.0, 96.9] 

13.0 
[6.78, 23.4] 

1.25 
[0.95, 2.51] 

5.46 
[3.18, 9.48] 

p-value 0.0035 0.0394 <0.0001 0.0972 0.0192 0.0436 
DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 
*Normal distribution = paired t-test; Bolded metrics highlight the method with significantly reduced relative error. 

   
 

 

Figure 3.6. Example results for the U-Net++ trained with varying-size end-fire (top row), 

side-fire (middle row), and mixed (bottom row) datasets. The full dataset corresponds to 

2738 images for the end-fire network, 4023 images for the side-fire network, and 6761 for 

the mixed network. 
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As shown in Table 3.B1, for the U-Net++ trained with reduced-size end-fire 

datasets and tested on end-fire images, significant differences were observed between the 

full (2738 images) end-fire training dataset and the 250 and 100 image sets for the DSC 

and MSD metric, and all reduced-size image sets for the HD metric. 

 When the U-Net++ was trained with reduced-size side-fire datasets and tested on 

side-fire images (Table 3.B2), multiple comparisons tests showed significant differences 

for the DSC, MSD, and HD metrics between the full (4023 images) side-fire training 

dataset and the 500 and 100 image sets.  

 As shown in Table 3.B3, for the U-Net++ trained with reduced-size mixed datasets 

and tested on end-fire images, multiple comparisons tests showed significant differences 

between the full (6761 images) mixed training dataset and the 500, 250, and 100 image 

sets for the DSC, MSD, and HD metrics. When tested on side-fire images significant 

differences were observed between the full mixed training dataset and the 1000 through 

100 image sets for the DSC, MSD, and HD metrics. 

Figure 3.7. Median DSC for the U-Net++ trained using varying-sized end-fire (left), side-

fire (middle), and mixed (right) datasets, and tested on both end-fire (solid red) and side-

fire (dashed line) images. The number of training images are provided along the x-axis. 

The dotted line denotes the maximum performance achieved by the U-Net++ trained with 

the full 6761 image dataset.  

   
 Comparing the U-Net++ trained with 2738 mixed images to the U-Net++ trained 

with 2738 end-fire images, no significant differences were observed when tested on end-

fire images, but when tested on side-fire images, use of the mixed training dataset 

demonstrated significantly improved performance for all metrics. Similarly, for the U-

End-fire Side-fire Mixed 
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Net++ trained with 4023 mixed images compared to the network trained with 4023 side-

fire images, only the precision and recall metrics were significantly different when tested 

on side-fire images, with all metrics except precision significantly improved with use of 

the mixed training dataset when tested on end-fire images.   

 
3.3.4 Image quality 

 
 A comparison of average image quality grading results for side-fire and end-fire 

3D TRUS images of the prostate is shown in Table 3.7. There were no significant 

differences between end-fire and side-fire image quality for any image quality factor or for 

the total averaged image quality.   

 

Table 3.7. Mean plus/minus standard deviation image quality grading results for side-fire 

and end-fire 3D TRUS images of the prostate. Mean grades are provided out of five for 

each individual image quality factor and for the total image quality.   

Image Quality Factor Description End-fire 3D TRUS Side-fire 3D TRUS 

Acquisition Quality Quality of the 3D TRUS image 
acquisition regardless of anatomy 

4.4 ± 0.7 4.2 ± 1.2 

Anatomy Artifacts Severity of anatomy artifacts 
(calcification, gas, catheter, etc.) 

4.0 ± 0.7 4.1 ± 1.0 

Prostate Boundary Visibility/clarity of the prostate 
boundary 

4.2 ± 0.7 4.2 ± 1.0 

Total Mean of three individual image 
quality factors 

4.2 ± 0.5 4.1 ± 0.9 

 
 A graph of DSC as a factor of grade for each individual image quality factor is 

shown in Fig. 3.8. For end-fire testing images, image quality grade did not have a 

significant effect on segmentation performance in any metric. For side-fire testing images, 

only the boundary visibility grade had a significant effect for the modified U-Net, while all 

image quality factors except anatomy artifact grade had a significant effect on the DSC 

metric for the U-Net++.  
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 Analysis of plots of DSC as a function of total image quality grade for the U-Net 

and U-Net++ (Fig. 3.9) showed no significant correlation for the end-fire testing dataset 

for any metric, with Spearman r coefficients less than 0.4. For the side-fire testing images, 

the modified U-Net showed a significant correlation between total image quality grade and 

DSC, recall, and HD metrics, with Spearman r coefficients of 0.60, 0.61, and -0.56, 

respectively, while the U-Net++ showed a significant correlation for the DSC and recall 

metrics with Spearman r coefficients of 0.46 and 0.55, respectively. 

Figure 3.8. Mean DSC as a factor of acquisition quality (left), anatomy artifacts severity 

(middle), and boundary visibility (right) for the modified U-Net (top row) and U-Net++ 

(bottom row) trained on the full dataset and tested on end-fire and side-fire images shown 

on the left and right side of each graph, respectively.  

  

U-Net 

U-Net++ 
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Figure 3.9. DSC as a function of total averaged image quality for the modified U-Net (left) 

and U-Net++ (right) trained on the full dataset and tested on end-fire (red) and side-fire 

(black) images. A linear regression is provided for each dataset.   

 
3.4 DiVcXVViRQ 

 
3.4.1 Complete dataset 

 
 To provide a baseline maximum performance level, we first compared the 

segmentation accuracy of the modified U-Net to the U-Net++ for both networks trained on 

the complete dataset. The results shown in Table 3.4 demonstrate the nearly equivalent 

performance of the networks. This highlights that with a large training dataset of nearly 

7000 2D images, the more advanced U-Net++ network with significantly more parameters 

did not offer any improvement in performance, motivating the experiments described in 

sections 3.3.2 and 3.3.3 focused on reduced-size datasets.  Using the same 24 GB NVIDIA 

TITAN RTX GPU, the modified U-Net demonstrated a segmentation time that was three 

times faster, with speeds of 0.028 s per 2D slice compared to 0.088 s per slice for the U-

Net++. After reconstruction of the 2D predictions into a 3D prostate surface, the total 

segmentation time was 0.61 s for the modified U-Net, which was half of the 1.33 s for the 

U-Net++. While this is a large relative difference, in a clinical setting the difference is 

inconsequential, as both present a significant reduction in segmentation time relative to 

manual segmentations, which can take 10-20 minutes.  

U-Net U-Net++ 
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 Correlations between segmentation performance and prostate size were only 

significant for the DSC and VPD metrics. This is an expected result due to the nature of 

these metrics, as absolute differences that would be readily apparent for smaller prostate 

volumes would be reduced for large volumes when considering these overlap and volume-

based metrics. As expected, boundary-based metrics showed no correlation with prostate 

size. The correlations we did observe were still weak, however, with Spearman coefficients 

of roughly r = 0.6 for DSC and r = -0.4 to -0.5 for VPD, highlighting the general robustness 

of our approach to prostate size differences.  

 Recent work by Lei et al. and van Sloun et al. report state-of-the-art methods for 

automatic prostate segmentation in 3D TRUS volumes. Lei et al. report best results for 

DSC, MSD, and HD95 of 93.0 ± 3.0, 0.57 ± 0.20 mm, and 2.27 ± 0.79 mm, respectively.17  

Our proposed 3D segmentation method using the modified U-Net and the U-Net++ 

demonstrated median [Q1, Q3] DSC of 94.1 [92.6, 94.9] % and 94.0 [92.2, 95.1] %, 

showing improved performance. Our proposed networks demonstrated median MSD [Q1, 

Q3] of 0.89 [0.77, 1.10] mm and 0.90 [0.73, 1.14] mm, with Lei et al. showing improved 

performance for this metric. We do not report an HD95 metric, but our networks 

demonstrated a median HD [Q1, Q3] of 3.14 [2.49, 4.47] mm and 3.27 [2.71, 4.33], which 

while higher, is a more stringent metric showing the full HD, not excluding the worst five 

percent. van Sloun  et al. report a median (95% confidence interval) accuracy of 98 (95-

99)%, Jaccard index of 93.0 (80.0-96.0), and HD of 3.0 (1.3-8.7) mm.18 While not reported, 

our modified U-Net and U-Net++ demonstrated a median [Q1, Q3] accuracy of 98.8 [98.4, 

99.2] % and 98.9 [98.4, 99.2] %, and a median HD [Q1, Q3] of 3.14 [2.49, 4.47] mm and 

3.27 [2.71, 4.33], both of which are similar, with our approach reporting higher accuracy 

and van Sloun et al. reporting lower HD. Our results were obtained with considerably less 

data, however, as van Sloun et al. utilized a training dataset of 436 3D TRUS volumes 

compared to our complete training dataset of 206 3D TRUS volumes.  
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3.4.2 Split end-fire and side-fire datasets 

 
 Segmentation performance of the modified U-Net and U-Net++ trained with only 

end-fire or only side-fire images (Fig. 3.5 and Tables 3.5 and 3.6) showed that the U-Net++ 

significantly outperformed the modified U-Net in nearly all cases. When trained using side-

fire images and tested on end-fire images, no difference was observed, but the U-Net++ 

did have higher median performance, countered by a larger variation. These differences 

highlight the generalizability and efficiency of the U-Net++ in utilizing small training 

datasets. The modified U-Net had boundary errors due to shadowing artifacts, even when 

tested on the same image type as seen in the top row of Fig. 3.3. When tested on the image 

type not seen during training of the network, the U-Net++ still performed better, although 

it also had difficulties with shadowing artifacts (e.g. the bottom row of Fig. 3.3, with the 

heavily shadowed region seen near the top of the prostate). The modified U-Net had a depth 

of five layers compared to 50 for the U-Net++. This reduction in depth and number of 

parameters for the U-Net compared to the U-Net++ may alleviate the overfitting problem, 

which is important as training dataset size is reduced.  

 When assessing how the U-Net++ trained with only end-fire or only side-fire 

images compared to one trained with the full dataset, we found that there was little 

difference when tested on the same TRUS acquisition type the networks were trained with. 

This highlights a potentially practical finding that the presence of other image types in the 

training dataset do not add a significant benefit to the segmentation performance when only 

one image type is required to be segmented. However, when the U-Net++ trained with only 

end-fire or only side-fire images were tested on the TRUS acquisition type they had never 

seen before, use of the full dataset significantly improved performance. This demonstrates 

the necessity of including all image types in the training dataset, especially when 

generalizability and widespread application is important. DSC performance in these cases 

was still in the range of 85-89% for the U-Net++, however, demonstrating the 

generalizability of our approach.  

 Differences between end-fire and side-fire images, including image quality and 

artifact prevalence, may explain the observed segmentation performance differences 

between TRUS image types. The differences in acquisition method between end-fire and 
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side-fire 3D TRUS may result in artifacts in side-fire images such as air gaps due to lack 

of transducer contact or distal shadowing due to transducer distance from the prostate. Due 

to the nature of end-fire image acquisition, the radial plane used for deep learning 

segmentation matches closely the acquisition plane, resulting in improved segmentation 

accuracy. For side-fire images, only one of the twelve radial planes is the acquisition plane 

and the other eleven are interpolated slices resulting in reduced resolution, potentially 

explaining some of the observed differences in segmentation performance. In HDR 

brachytherapy procedures where side-fire 3D TRUS is utilized, urinary catheters are 

commonly used, which create artifacts that are not seen in end-fire images used for prostate 

biopsy. The appearance of other organs such as the rectum and bladder also differ between 

end-fire and side-fire leading to increased prostate segmentation error where the algorithm 

included parts of the rectum or bladder when tested on the 3D TRUS type unseen by the 

network. Furthermore, due to differences in patient selection and the prevalence of 

hormone therapy prior to HDR brachytherapy treatment, the prostate sizes in patients 

presenting for end-fire TRUS-guided biopsy are typically larger than the prostate sizes of 

patients undergoing side-fire TRUS-guided HDR brachytherapy. This led to 

underpredictions for side-fire networks tested on end-fire images and overpredictions for 

end-fire networks tested on side-fire images, limiting generalizability and necessitating the 

presence of both 3D TRUS types in the training dataset so the network can learn differences 

in size and shape.  

 
3.4.3 Smaller end-fire, side-fire, and mixed datasets 

 
 For as small as 500 end-fire images used in the training dataset, which is just over 

7% of the full dataset, DSC performance was within 1% of the U-Net++ trained with the 

full dataset of 6761 images. Results were similar for the U-Net++ trained with reduced-

size side-fire datasets and tested on side-fire images. Networks trained with end-fire images 

performed better when tested on side-fire images compared to networks trained with side-

fire images and tested on end-fire images, suggesting features the network learns from end-

fire images are more generalizable to side-fire images. As expected, mixed training datasets 

had high segmentation performance when tested on both image types even as the dataset 
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size was reduced. This improved performance and generalizability is apparent in Fig. 3.7, 

highlighting the benefit of including all image types in the training dataset.  

 For a segmentation task involving only one image type, performance plateaus at a 

training dataset size of 1000 2D training images of that type, which were obtained from 

approximately 36 3D volumes. A dataset of this size is achievable at even small hospitals 

or research centers, showing that deep learning segmentation in 3D may be possible even 

with limited data by utilizing organ symmetry and a radial approach. The reduced training 

data requirement reduces the amount of manual segmentation required, a key benefit as 

accurate manual segmentation is a difficult and time-consuming process that is often a 

bottleneck in supervised machine learning. These results also show that for a segmentation 

task involving multiple image types, the presence of all image types in the training dataset 

is critical. Segmentation performance for mixed training datasets also plateaus at 

approximately 1000 training images, suggesting that deep learning segmentation in two 

image types is possible even if data is scarce. 

 
3.4.4 Image quality 

 
 We developed a 5-point image quality grading scale based on three factors 

specifically for 3D TRUS prostate images. This grading scale helps provide transparency 

regarding the image quality of our clinical dataset, helping to contextualize our results. A 

numerical scale with clearly defined image quality factors rated from one to five may 

enable an easier comparison of segmentation performance between networks trained using 

different datasets. Designing the image quality grading scale independently of our dataset 

should allow it to be successfully applied to 3D TRUS datasets of varying quality.  

 Mean image quality grades for each individual factor provided in Table 3.7 

highlight the overall high quality of our dataset and the general similarity in image quality 

between end-fire and side-fire images, with no statistically significant differences observed 

and a maximum difference in mean of only 0.2. Side-fire images did have an increased 

standard deviation for each individual factor, highlighting the larger range of image 

qualities, including the presence of grades of 2 in each factor, which was not seen in the 

end-fire images. Our dataset contained no images with a grade of 1.  
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 For end-fire images in our testing dataset, image quality had no significant effect 

on segmentation performance. In contrast, for side-fire images in our testing dataset, the 

boundary visibility grade and the acquisition quality, boundary visibility, and total 

averaged image quality grades significantly impacted segmentation performance for the U-

Net and U-Net++, respectively. Boundary visibility showed to be a key factor in the 

algorithm¶s ability to accurately segment the prostate boundary for both networks, as 

expected. These results were further confirmed with the correlation analysis shown in Fig. 

3.9, highlighting the significant effect of image quality on segmentation performance for 

side-fire images, but not for end-fire images. Correlations were not strong with Spearman 

r coefficients in the range of 0.46-0.6 for the DSC metric for both the U-Net and U-Net++.  

 The lack of significant differences observed when comparing how segmentation 

performance varies with image quality, especially considering the end-fire images, may be 

attributed to the high mean image quality and subtle variation between the poorest quality 

image and the highest quality image. A dataset with more variation in image quality may 

better demonstrate the dependence of segmentation performance on image quality. In 

addition, due to the testing set size of 20 end-fire and 20 side-fire 3D TRUS volumes, some 

individual image quality grades had a very small sample size, which likely factored into 

the lack of significant differences observed for some of the image quality factors.   

 The differences in image quality and its effect on segmentation performance for 

end-fire compared to side-fire images may be explained in part due to the nature of image 

acquisition. Ultrasound transducer orientation is one critical component; during end-fire 

image acquisition the transducer contacts the rectal wall at the end of the transducer 

pointing towards the prostate. During side-fire acquisition, however, the transducer is 

positioned horizontally inside the rectum, requiring a much larger contact area, which can 

result in increased prevalence of air gaps due to lost contact, reducing image quality. 

Furthermore, due to differences in transducer position based on the intended application 

the side-fire transducer is further away from the prostate, leading to hypoechoic regions 

away from the transducer due to issues with time-gain compensation.   
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3.4.5 Limitations and future work 

 
 Only one observer provided manual gold standard segmentations, thus inter- and 

intra-observer variability were not directly assessed; however, these considerations were 

addressed in Orlando et al.19 In addition, only one observer defined the image quality 

grading scale and graded the testing dataset, which did not assess the impact of inter- or 

intra-observer variability. Future work will include validation of our image quality grading 

scale and its reliability, including an assessment of inter- and intra-observer variability. 

Image quality of the training dataset may play a critical role in segmentation performance, 

and although image quality of the testing dataset should have been representative of the 

training dataset, direct grading of the training images would allow for confirmation of this 

assumption. As shown in Table 3.7, our 3D TRUS dataset was of high quality on average. 

A wide range in image quality is important for algorithm generalizability. Future work 

should investigate our segmentation approach when trained and tested with a lower quality 

dataset, ideally from a different center.  

 Patient clinical information, such as age, stage of prostate cancer, and Gleason score 

was not recorded for our dataset, and thus an assessment of how segmentation performance 

is impacted by these measures could not be completed. While this has not been assessed in 

previous work to our knowledge, differences in such measures could manifest as 

differences in image quality, potentially captured by our image quality grading scale as 

anatomy artifact severity for example. Future work could explicitly investigate the 

influence of patient clinical information on segmentation quality.  

 For our U-Net++ implementation, only one type of CNN backbone (ResNet) was 

used. Future work will utilize a U-Net++ ensemble network with results from multiple 

CNN backbones combined into one segmentation result using a method such as averaging, 

majority vote, or the STAPLE algorithm.32 Finally, a leave-one-out vendor study 

examining the impact of ultrasound machine vendor on segmentation performance would 

offer a strong assessment of generalizability, which is critical for widespread clinical 

translation.  
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3.5 CRQclXViRQV 

 
 This study investigated the effect of training dataset size, image quality, and image 

type on prostate segmentation in 3D TRUS volumes using a 2D radial plus 3D 

reconstruction approach, comparing a modified U-Net to a U-Net++ architecture. 

Beginning with a large, clinically diverse dataset of TRUS images, smaller training datasets 

were generated by splitting and reducing the dataset. Segmentation performance for the U-

Net++ plateaued at end-fire, side-fire, or mixed training dataset sizes of 1000 2D images, 

resliced from approximately 36 3D volumes. This high performance with small datasets 

highlights the potential for widespread use of our approach or similar methods, even if data 

is scarce, demonstrating the possibility for increased access to automated segmentation 

methods. The development of an image quality grading scale specifically for 3D TRUS 

imaging provides a quantitative tool for assessing segmentation performance, with an aim 

to increase transparency regarding dataset quality and aid in comparison between 

segmentation methods trained using different datasets.  
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3.7 SXSSlePeQW A 

 

Figure 3.A1. Network diagram for the modified U-Net.    

 

Figure 3.A2. Network diagram for the U-Net++ based on Zhou et al. 2018.    
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3.8 SXSSlePeQW B 

 

Table 3.B1. Median [Q1, Q3] 2D results for the U-Net++ trained using end-fire datasets 

of varying size, from 2738 (full end-fire set) to 100 images. The networks were evaluated 

on an unseen test dataset of 20 end-fire and 20 side-fire 3D TRUS images of the prostate. 

Test 

Dataset 

End-fire 

Training 

Images 

DSC (%) Recall (%) Precision (%) MSD (mm) HD (mm) 

End-fire 2738 94.5  
[93.5, 95.1] 

93.7  
[91.0, 95.9] 

95.8  
[93.6, 97.4] 

1.18  
[0.98, 1.42] 

3.79  
[2.97, 4.58] 

1000 93.7  
[91.7, 94.8] 

93.8  
[89.8, 95.3] 

95.9  
[94.0, 97.2] 

1.35  
[1.20, 1.97] 

4.76  
[3.89, 6.19] 

500 93.9  
[92.0, 94.8] 

95.1  
[90.3, 96.2] 

94.5  
[91.8, 97.1] 

1.38  
[1.06, 1.96] 

4.39  
[3.54, 5.60] 

250 93.2  
[91.9, 94.9] 

93.1  
[90.1, 95.8] 

95.4  
[93.1, 97.2] 

1.52  
[1.13, 1.70] 

4.66  
[3.86, 5.67] 

100 90.1  
[88.5, 92.6] 

87.5  
[84.0, 92.2] 

95.1  
[92.0, 96.8] 

2.04  
[1.46, 2.91] 

6.24  
[4.55, 7.60] 

Side-fire 2738 88.8  
[80.3, 92.7] 

89.7  
[84.7, 93.4] 

90.8  
[82.4, 94.5] 

2.00  
[1.46, 3.64] 

6.38  
[5.01, 11.1] 

1000 86.4  
[74.1, 90.7] 

92.6  
[89.2, 95.2] 

83.2  
[63.2, 91.2] 

3.81  
[1.96, 6.17] 

12.4  
[6.72, 17.5] 

500 83.8  
[73.9, 90.4] 

82.1  
[67.1, 90.9] 

88.9  
[81.8, 94.8] 

2.89  
[1.89, 4.89] 

9.83  
[6.14, 13.0] 

250 82.1 [ 
75.0, 88.2] 

85.1  
[70.8, 91.1] 

85.9  
[73.7, 92.9] 

3.62  
[2.64, 4.99] 

12.0  
[8.83, 14.5] 

100 75.3  
[64.4, 84.4] 

86.3  
[78.6, 92.5] 

71.3  
[59.3, 82.9] 

5.29  
[3.57, 6.84] 

16.1  
[11.7, 18.6] 

Overall 2738 93.3  
[88.5, 94.7] 

92.0  
[88.5, 95.1] 

94.0  
[90.6, 96.2] 

1.44  
[1.07, 2.03] 

4.78  
[3.47, 6.94] 

1000 91.3  
[86.2, 94.2] 

93.2  
[89.5, 95.3] 

93.3  
[82.9, 96.0] 

1.95  
[1.34, 4.55] 

6.40  
[4.26, 14.1] 

500 91.5  
[83.3, 93.9] 

90.5  
[81.8, 95.3] 

92.7  
[86.9, 95.7] 

1.94  
[1.24, 2.93] 

5.83  
[4.08, 9.83] 

250 89.2  
[81.7, 93.2] 

90.6  
[82.2, 93.8] 

93.1  
[83.8, 96.5] 

1.98  
[1.48, 3.75] 

6.60  
[4.63, 12.0] 

100 87.7  
[74.8, 90.3] 

87.0  
[82.5, 92.3] 

87.3  
[70.8, 95.2] 

3.01  
[2.03, 5.32] 

9.13  
[5.88, 16.7] 

DSC, Dice similarity coefficient; MSD, mean surface dist.; HD, Hausdorff dist. 
Bolded metrics denotes significant differences compared to the full (2738 images) dataset. 
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Table 3.B2. Median [Q1, Q3] 2D results for the U-Net++ trained using side-fire datasets 

of varying size, from 4023 (full end-fire set) to 100 images. The networks were evaluated 

on an unseen test dataset of 20 end-fire and 20 side-fire 3D TRUS images of the prostate. 

Test 

Dataset 

Side-fire 

Training 

Images 

DSC (%) Recall (%) Precision (%) MSD (mm) HD (mm) 

End-fire 4023 83.5  
[71.8, 90.7] 

74.8  
[58.3, 85.6] 

97.6  
[96.5, 98.8] 

3.07  
[2.15, 4.89] 

8.56  
[7.32, 12.4] 

1000 77.7  
[71.1, 84.2] 

64.5  
[57.2, 74.2] 

98.8  
[97.8, 99.7] 

3.83  
[3.13, 5.44] 

10.9  
[8.47, 14.2] 

500 74.4  
[66.0, 81.7] 

62.5  
[50.0, 71.3] 

98.0  
[95.8, 99.4] 

4.05 [ 
3.33, 6.15] 

12.4  
[9.31, 16.5] 

250 73.8  
[69.7, 81.1] 

60.2  
[57.1, 69.8] 

98.6  
[95.2, 99.6] 

4.59  
[3.76, 5.57] 

12.3  
[10.2, 14.6] 

100 65.3 [ 
58.0, 71.7] 

49.2  
[52.6, 59.1] 

97.0  
[94.8, 99.6] 

6.28  
[4.19, 7.28] 

14.8  
[10.8, 16.3] 

Side-fire 4023 93.3  
[91.5, 95.0] 

92.1  
[88.5, 94.6] 

95.1  
[93.7, 97.7] 

1.13  
[0.90, 1.48] 

3.50  
[2.96, 4.67] 

1000 90.3  
[89.0, 94.9] 

93.8  
[87.4, 95.5] 

93.7  
[87.9, 95.1] 

1.59  
[0.95, 2.13] 

4.95  
[3.59, 6.89] 

500 90.3  
[84.0, 92.7] 

86.6  
[78.9, 90.5] 

95.7  
[91.1, 98.0] 

1.68  
[1.20, 2.79] 

5.84  
[3.88, 8.99] 

250 89.2  
[85.4, 92.6] 

87.2  
[84.7, 91.8] 

91.8  
[89.0, 95.9] 

2.21  
[1.20, 2.98] 

8.44  
[4.17, 10.1] 

100 81.0  
[73.1, 83.7] 

75.9  
[67.0, 85.2] 

85.4  
[81.9, 95.9] 

3.46  
[2.88, 4.27] 

9.76  
[8.80, 11.6] 

Overall 4023 91.0  
[83.3, 93.6] 

86.7  
[74.5, 92.8] 

97.0  
[94.1, 98.1] 

1.65  
[1.09, 3.08] 

5.30  
[3.48, 8.60] 

1000 85.9  
[76.2, 92.9] 

84.6  
[63.7, 94.4] 

95.9  
[92.6, 99.0] 

2.35  
[1.26, 4.59] 

7.43  
[4.12, 11.8] 

500 82.4  
[70.9, 90.5] 

74.4  
[58.3, 87.2] 

97.1  
[94.3, 98.3] 

2.85  
[1.59, 4.79] 

9.32  
[5.54, 14.3] 

250 83.6  
[73.4, 89.5] 

80.4  
[60.1, 87.5] 

95.5  
[91.0, 98.6] 

3.13  
[1.85, 4.70] 

10.2  
[6.89, 12.7] 

100 72.1  
[62.3, 81.3] 

63.9  
[48.8, 77.2] 

93.5  
[84.7, 97.1] 

4.25  
[3.26, 6.76] 

11.5  
[9.45, 15.5] 

DSC, Dice similarity coefficient; MSD, mean surface dist.; HD, Hausdorff dist. 
Bolded metrics denotes significant differences compared to the full (4023 images) dataset. 
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Table 3.B3. Median [Q1, Q3] 2D results for the U-Net++ trained using mixed (end-fire 

and side-fire) datasets of varying size, from 6761 (full dataset) to 100 images. The networks 

were evaluated on an unseen test dataset of 20 end-fire and 20 side-fire 3D TRUS images. 

Test 

Dataset 

Mixed 

Training 

Images 

DSC (%) Recall (%) Precision (%) MSD (mm) HD (mm) 

End-fire 6761 94.9  
[93.8, 95.5] 

94.6  
[92.7, 95.6] 

96.3  
[94.0, 97.2] 

1.10  
[0.95, 1.38] 

3.68  
[2.87, 4.54] 

4023 94.4  
[93.4, 95.6] 

96.2  
[93.3, 97.6] 

94.0  
[90.7, 96.3] 

1.31  
[1.04, 1.50] 

4.34  
[3.60, 5.33] 

2738 94.8  
[93.2, 95.5] 

94.1  
[90.4, 95.6] 

96.4  
[95.5, 98.1] 

1.17  
[0.99, 1.41] 

3.71  
[3.30, 4.68] 

1000 94.3  
[92.0, 95.0] 

95.2  
[91.4, 96.6] 

94.4  
[91.8, 97.3] 

1.29  
[1.05, 1.95] 

4.05  
[3.45, 5.87] 

500 92.0  
[89.6, 93.8] 

90.0  
[84.5, 94.6] 

96.4  
[93.4, 98.0] 

1.58  
[1.38, 2.07] 

5.03  
[4.14, 6.65] 

250 89.5  
[84.3, 91.1] 

84.3  
[74.2, 88.9] 

96.5  
[93.3, 98.2] 

2.11  
[1.82, 3.42] 

6.16  
[5.10, 9.08] 

100 75.2  
[63.6, 80.2] 

60.5  
[48.9, 69.0] 

99.6  
[97.1, 99.9] 

4.90  
[3.88, 6.99] 

11.8  
[8.51, 14.9] 

Side-fire 6761 94.6  
[92.3, 95.1] 

95.7  
[91.3, 96.5] 

94.2  
[92.2, 96.4] 

1.00  
[0.83, 1.32] 

3.27  
[2.85, 4.19] 

4023 93.6  
[91.0, 95.2] 

94.4  
[90.8, 96.6] 

93.7  
[90.1, 95.9] 

1.09  
[0.91, 1.80] 

3.84  
[3.10, 5.72] 

2738 93.1  
[89.6, 94.9] 

92.5  
[89.3, 93.6] 

95.5  
[91.3, 96.7] 

1.23  
[0.88, 1.69] 

4.29  
[3.12, 5.69] 

1000 91.8  
[88.2, 94.6] 

92.5  
[88.8, 95.6] 

94.2  
[88.0, 96.4] 

1.44  
[1.00, 2.33] 

4.96  
[3.63, 7.14] 

500 90.5  
[86.4, 93.6] 

93.8  
[88.3, 95.5] 

90.9  
[83.8, 95.2] 

1.73  
[1.21, 2.74] 

5.61  
[3.78, 8.69] 

250 85.2  
[81.4, 90.8] 

92.2  
[88.6, 94.9] 

80.9  
[74.1, 89.1] 

3.05  
[1.73, 4.56] 

8.85  
[5.85, 15.6] 

100 84.3  
[77.4, 86.0] 

80.9  
[76.4, 87.1] 

85.6  
[80.2, 92.5] 

2.74  
[2.52, 3.88] 

8.48  
[6.66, 11.6] 

Overall 6761 94.7  
[92.6, 95.4] 

95.1  
[92.7, 96.4] 

95.7  
[92.9, 96.8] 

1.07  
[0.90, 1.33] 

3.60  
[2.87, 4.45] 

4023 94.2  
[92.6, 95.4] 

95.2  
[92.8, 97.1] 

93.9  
[90.6, 96.1] 

1.21  
[1.00, 1.52] 

4.00  
[3.50, 5.33] 

2738 94.1  
[92.1, 95.2] 

92.9  
[90.2, 94.8] 

96.1  
[92.4, 97.4] 

1.19  
[0.98, 1.56] 

3.98  
[3.30, 4.76] 

1000 93.2  
[89.7, 94.9] 

94.6  
[89.4, 95.9] 

94.3  
[88.3, 96.5] 

1.32  
[1.01, 2.03] 

4.45  
[3.52, 6.15] 

500 91.8  
[88.4, 93.8] 

92.0  
[87.4, 94.9] 

95.1  
[87.5, 96.7] 

1.63  
[1.35, 2.40] 

5.14  
[4.10, 7.99] 

250 87.0  
[82.9, 91.0] 

88.9  
[82.9, 92.5] 

91.4  
[80.8, 96.5] 

2.41  
[1.82, 3.56] 

7.84  
[5.46, 10.6] 

100 79.6  
[67.7, 85.8] 

73.1  
[58.0, 81.8] 

93.2  
[83.4, 99.7] 

3.88  
[2.61, 5.81] 

9.86  
[7.28, 13.4] 

DSC, Dice similarity coefficient; MSD, mean surface dist.; HD, Hausdorff dist. 
Bolded metrics denotes significant differences compared to the full (6761 images) dataset. 
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Chapter 4 

 

4 A SRZeU DRSSleU XlWUaVRXQd PeWhRd fRU iPSURYiQg 
iQWUaRSeUaWiYe Qeedle WiS lRcali]aWiRQ iQ iQWeUVWiWial 
SURVWaWe bUach\WheUaS\ 

 
Intraoperative needle tip localization is critical for treatment planning in prostate 

brachytherapy. However, tip visibility can be limited with conventional B-mode US due to 

image artifacts. A method to improve needle tip visibility intraoperatively may improve tip 

identification accuracy for difficult-to-see needles, thus improving treatment accuracy. The 

purpose of Chapter 4 is to describe the development and validation of a PD US-based 

needle tip localization method designed specifically for interstitial prostate brachytherapy.  

 The contents of this chapter have been submitted for publication in Medical Physics 

and are currently under peer review: Orlando N, Snir J, Barker K, D¶Souza D, Velker V, 

Mendez LC, Fenster A, and Hoover DA.  

 
4.1 IQWURdXcWiRQ 
 
 High-dose-rate (HDR) brachytherapy (BT) is a common treatment technique for 

localized intermediate to high-risk prostate cancer.1±3 In this treatment a single high-

activity radioactive source is passed through needles inserted into the prostate through the 

perineum, guided by a rigid grid of evenly spaced holes known as a template. Needles are 

typically inserted under transrectal ultrasound (TRUS) guidance, as it is a widely available 

and low-cost modality, offering real-time imaging and comparable needle tip localization 

accuracy to computed tomography (CT),4 making it the preferred method for prostate 

HDR-BT guidance at many centers.5 In addition, TRUS-guided procedures allow for all 

aspects of the treatment workflow to occur in the operating room, including intraoperative 

imaging and treatment planning, allowing the patient to remain stationary.  

 Identification of needle tip position directly influences the radiation treatment plan, 

making accurate tip localization critical for a safe and effective HDR-BT treatment.6±8 Error 
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in needle tip localization is the primary component of uncertainty in HDR-BT setup, with 

errors greater than 3 mm potentially leading to adverse outcomes including overexposed 

organs-at-risk or cancer recurrence due to an under-dosed tumor.7 For TRUS-guided HDR-

BT procedures, needle tip positions are typically identified using live two-dimensional (2D) 

brightness (B)-mode sagittal ultrasound (US).6 Siebert et al.6 investigated needle tip 

localization accuracy in water phantoms, demonstrating errors between 0.8 and 2.8 mm for 

2D sagittal US. Due to the homogeneity of water, images obtained using this phantom are of 

higher quality than typical clinical images, making this a best-case scenario.  Image artifacts 

such as shadowing or reverberation from nearby anatomy and needles can make it difficult 

to clearly visualize the needle tip in clinical ultrasound images, limiting the accuracy of 

needle tip localization.9 

 The use of Doppler US has been suggested to improve the visualization of surgical 

instruments in minimally invasive procedures.10±21 Doppler US images display the velocity 

component in the plane of the B-mode US image of tissues or instruments as a colored 

overlay. Doppler-based visualization techniques apply some form of perturbation to the 

surgical instrument, generating motion that can be detected and displayed by Doppler US, 

typically in one of two modes, Colour Doppler (CD) or Power Doppler (PD), to improve 

visibility.  While CD can display the direction of motion, PD is typically preferred in these 

applications as it has a higher sensitivity, and the direction of motion is unimportant. 

Doppler-based techniques for improving surgical instrument detection have been applied 

in a variety of procedure types and disease sites.10±21 This includes various tissue 

biopsies,10,11,13 pericardiocentesis,14 and radiofrequency ablation,12,13,15,20 with none 

focusing on brachytherapy to our knowledge. The motion was generated in numerous ways 

including vibrating devices clipped onto the needle,10,11,14,20 piezoelectric crystals,13,15,17 

and electromagnetic actuation of small permanent magnets inside the needle.12 These 

methods often required modifications to the clinical equipment or physical attachment to 

the needle or surgical tool. This is impractical in the BT workflow where 12 or more 

needles are typically used. There is also a clear lack of clinical validation in the literature 

of the use of PD methods to identify BT needles in human tissues. Thus, a PD-based 

method designed specifically for the BT workflow is required, in addition to an exploration 

of clinical feasibility. 
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 We have previously proposed a PD needle visualization method utilizing a simple 

mechanical device capable of oscillating at a fixed and controllable frequency, requiring 

no modifications to the clinical workflow.22 The device was both powered and controlled 

by a laptop computer, requiring two operators to use the device. The additional computer 

and required cables were cumbersome in the busy operating room environment. In 

addition, consistent Doppler signal generation was difficult with this end-piece design, as 

it required precise positioning of the device. These limitations made the device not feasible 

for long-term and efficient clinical use. To overcome these limitations and improve clinical 

translation potential, we presented the initial feasibility design of a wireless mechanical 

oscillator designed specifically for BT, tested in a small-scale proof-of-concept phantom 

study with six needles.23 

 In this paper, we report on the development and validation of our clinically-ready 

novel wireless mechanical oscillator and PD US needle tip localization method through 

comprehensive tissue-equivalent phantom experiments simulating prostate HDR-BT 

procedures and scenarios with extensive shadowing artifacts limiting needle visibility. In 

addition, we validated our PD US method in five prostate cancer patients undergoing 

standard HDR-BT as part of a prospective feasibility clinical trial, the first of its kind to 

our knowledge. Our cost-effective and easy to implement method, requiring no 

modifications to the clinical equipment or workflow, may allow for improved 

intraoperative needle tip localization accuracy, especially in cases with reduced needle 

visibility in standard US images. This has the potential to improve both patient safety and 

treatment accuracy in HDR-BT and more broadly in any minimally invasive needle-based 

procedure.  

 
4.2 MaWeUialV aQd MeWhRdV 

 
4.2.1 Wireless mechanical oscillator design 

 
Photographs of the wireless mechanical oscillator are shown in Fig. 4.1. The 

oscillator contains a Faulhaber 1331T006SR brushed DC motor and MCDC 3002 series 

motion controller (Faulhaber MicroMo LLC, Clearwater, FL, USA) powered by a 1200 
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milliamp hour Lithium-ion polymer battery, rechargeable via a micro-USB cable. The 

ergonomic cylindrical case, 3D printed using a nylon-aluminum material, had a diameter 

of 4.2 cm and length of 17.8 cm (including the end-piece). The oscillation frequency is 

controlled on the device using a 16-position rotary switch with resistances tuned to specific 

oscillation frequencies ranging from 22.0 Hz to 44.5 Hz. Frequency values are printed 

directly on the device, as shown in Fig. 4.1C, allowing the user to easily change to the 

desired frequency while still in the operating room. As the oscillator is battery-powered 

with frequency-control directly on the device, it is completely wireless and easily operated 

by one user, requiring no additional equipment, computer, or personnel in the operating 

room.  

The end-piece, machined from 400 series stainless steel, features a cylindrical cup 

shape, custom-designed for BT applications to fit over top of the commonly used 

cylindrical mandrins. The end-piece and example mandrins are shown in Fig 4.1B. This 

design provides two points of contact for needle vibration, while also removing ambiguity 

surrounding oscillator placement, as the cylindrical cup can be placed directly over the 

mandrin.  Thus, our method requires no modifications or attachment to the standard clinical 

equipment. Finally, the end-piece design ensures needle oscillation is perpendicular to the 

insertion direction, minimizing the possibility of vibration pushing the needle deeper into 

the patient. When powered, the end-piece oscillates with an amplitude of 1 mm. As clinical 

needle mandrins vary in shape, the end-pieces can be machined to any size. In our 

application, two end-piece sizes were required as shown in Fig. 4.1B. For easy removal, 

the end-piece is attached to the oscillator magnetically. This allows for easy bagging of the 

device in the sterile operating room environment, as a plastic covering can be placed over 

the 3D-printed case, with the magnetic end-piece attached through the plastic. The end-

piece and plastic covering can then be disposed of after the procedure, maintaining a sterile 

device. 
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Figure 4.1. (A) Photograph of our wireless mechanical oscillator. (B) Front view showing 

the magnetically attached cylindrical end-pieces and example plastic needle with the 

corresponding mandrin. Two end-piece sizes were used corresponding to plastic and metal 

Varian needles. (C) The oscillation frequency is controlled using a 16-position rotary dial 

at the bottom of the device. Frequency values are printed on the device for ease of use.  

 

4.2.2 Phantom validation 

 
Prior to clinical testing, phantom validation of our PD needle tip localization 

method involved three experiments, with details outlined in sections 4.2.2.1 and 4.2.2.2. 

For each experiment, a tissue-mimicking agar phantom was made containing 35 g agar 

powder (Sigma Aldrich Co., St. Louis, MO, USA) and 80 mL glycerol (Sigma Aldrich Co., 
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St. Louis, MO, USA) per 1 L of distilled water, simulating the speed of sound in soft tissue, 

approximately 1540 m/s.24 10 g of SigmaCell cellulose powder (Sigma Aldrich Co., St. 

Louis, MO, USA) per 1 L distilled water was also added to simulate soft tissue scatter. A 

prostate mold with a volume of 50.0 cm3 was 3D printed based on a prostate segmented 

from a patient MR image. An identical agar mixture was used to fill the mold; however, 

only 1 g of cellulose powder per 1 L distilled water was used to provide contrast between 

the prostate and the background in the US image and 10 g of Tungsten powder (Sigma 

Aldrich Co., St. Louis, MO, USA) per 1 L distilled water was added to ensure visibility of 

the prostate in CT images. In addition to the embedded agar prostate, multiple landmarks 

were embedded in three layers 1 cm away from the prostate to facilitate US-to-CT rigid 

image registration. Each layer contained two 1.5 mm steel ball bearings (McMaster-Carr, 

Elmhurst, IL, USA) and three 9.5 mm agar spheres. To provide contrast with the phantom 

background and allow visibility in CT, the agar spheres contained 10 g Tungsten powder 

per 1 L distilled water but no cellulose powder.  

All US imaging was completed using a BK3000 system with an E14CL4b biplane 

endocavity transducer (BK Medical, Peabody, MA, USA), supported by a CIVCO EX3 

Stepper (CIVCO Medical Solutions, Coralville, IA, USA). B-mode gain and frequency 

were 60% and 9 MHz, respectively, with a depth of 6.5 cm. For all experiments, the pulse 

repetition frequency (PRF) was 0.8 kHz and Res/Hz was 4/22 Hz. Doppler gain and 

oscillation frequency were the two key parameters used to optimize the power Doppler 

signal. To best optimize the Doppler signal, Doppler gain and oscillation frequency were 

increased until flash artifacts were observed, then the gain was reduced. The optimal 

Doppler gain and oscillation frequency varied depending on needle type, distance from the 

transducer, and artifact presence. Specific values are provided in sections 4.2.2.1 and 

4.2.2.2. All PD US imaging and needle perturbations were done with the mandrins inserted 

and the needle position locked by the template. This ensured that needle vibration did not 

change the position of the needle.    
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Figure 4.2. Photograph of our experimental set-up showing needle implant patterns for a 

simulated HDR-BT procedure with metal needles (A), and a simulated case with extensive 

needle shadowing with plastic needles (B). The US transducer, needle template, and 

varying size needle mandrins can be seen in both experiments.  

 
4.2.2.1 Mock HDR-BT procedure 

 
 In a phantom experiment simulating standard prostate HDR-BT procedures at our 

center, 12 stainless steel needles (17G) with corresponding mandrins (Varian Medical 

Systems, Palo Alto, CA, USA) were inserted into our tissue-equivalent phantom through 

the Crook prostate template (Varian Medical Systems, Palo Alto, CA, USA) shown in Fig. 

4.2A. Following the standard clinical procedure, needles were inserted to provide the best 

possible radiation coverage for the embedded agar prostate, as shown in Fig. 4.2A. All 12 

needles were first inserted into the prostate mid-gland, where they were identified in the 

axial US plane in Vitesse (Varian Medical Systems, Palo Alto, CA, USA). Needles were 

then advanced, one at a time, to the base of the prostate and verified in the sagittal US 

plane.  

Metal 
Needles 

Plastic 
Needle

s 
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 Needle tip locations were first identified using standard B-mode US in the sagittal 

plane by a board-certified medical physicist experienced with prostate brachytherapy 

(D.H.). To maintain the highest image resolution, needle tip positions were identified 

directly on the US screen and subsequently transferred to Vitesse. Next, needle tip locations 

were identified using PD US with perturbation from our wireless mechanical oscillator. To 

test needle tip localization accuracy without B-mode US information, the observer was 

blinded by reducing the B-mode gain to 0, as shown in Fig. 4.3C. The needle tip position 

was then identified using only the PD signal after mechanical perturbation. This also 

simulated the clinical case of a needle that is not visible in the standard B-mode US image 

due to shadowing. Finally, needle tip positions were identified using B-mode US and PD 

US together with mechanical perturbation. The needle tip location was selected directly on 

the US screen as the furthest point in the Doppler signal. The distance from the template to 

the end of the needle, the so-called end length, was recorded for each needle, verified by a 

second observer.  

 For PD US imaging, the optimal Doppler gain and oscillation frequency varied 

depending on the needle position and the presence or absence of needle shadowing 

obstructions. For unobstructed needles close to the US transducer, Doppler gain was 10-

15% and oscillation frequency was 32.5-40 Hz. For the needles far from the US transducer 

or obstructed by needle shadowing artifacts the Doppler gain was 32-40% and oscillation 

frequency was 43 Hz.  

 
4.2.2.2 Explicit needle shadowing 

 
 The second set of phantom experiments examined needle tip localization accuracy 

in the presence of needle shadowing artifacts. 15 stainless steel needles with corresponding 

mandrins were inserted into our tissue-equivalent agar phantom. Needles were inserted in 

three columns extending from the transducer. The left and right columns formed a V-shape, 

while the middle column extended upwards away from the transducer, as shown in Fig. 

4.2B. This needle insertion pattern ensured every needle, apart from the three closest to the 

US transducer, was shadowed by one or multiple needles below it, simulating the clinical 

scenario where the needle tip location in the B-mode US image is obscured by shadowing 
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artifacts. This implant pattern was repeated in a second experiment utilizing 13 plastic 

needles (2 mm diameter) with corresponding metal mandrins (Varian Medical Systems, 

Palo Alto, CA, USA). In this implant, the left and right columns had four needles each, 

while the central column had five needles.  

 As described in section 4.2.2.1, needle tip locations were identified in an identical 

manner, starting with standard B-mode US alone, then PD US with mechanical 

perturbation alone by reducing B-mode gain to 0, and finally B-mode and PD US together. 

Once again, the distance from the template to the end of the needle, the end length, was 

recorded for each needle. 

 For PD US imaging with the stainless-steel needles, the Doppler gain and 

oscillation frequency ranged from 35% and 32.5 Hz for needles close to the transducer to 

45-55% and 40-44.5 Hz for shadowed needles far from the transducer. Similarly, for the 

plastic needles, the Doppler gain and oscillation frequency ranged from 35-40% and 32.5 

Hz for close needles to 40-50% and 43 Hz for obstructed needles far from the transducer.  

 
4.2.2.3 Evaluation of tip localization accuracy 

 
 Needle tip localization error was computed using a clinical method based on ideal 

reference needles. For each phantom experiment, 1-2 clearly visible, unobstructed needles 

were selected as reference needles, which were typically along the row closest to the US 

transducer. Using the measured exposed needle end lengths and the known total needle 

length, the difference between the identified needle tip location and the expected tip 

location based on the reference needles was computed in Vitesse, providing a metric for 

tip localization error. In addition, the absolute distance in the insertion (z) direction 

between needle tip positions identified using PD US only and PD plus B-mode US were 

computed for each needle using MATLAB (MathWorks, Natick, MA, USA) to examine 

the impact of B-mode context on PD US tip localizations.   

Needle tip localizations using B-mode and PD US were also compared to tip 

localizations using CT as a gold standard. To enable registration between US and CT, 

axially reconstructed step-back 3D US images were acquired with 1 mm step spacing using 

Vitesse after needle insertion was completed. 3D US images had a size of [1100⨯700⨯70] 
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voxels with a voxel size of [0.083⨯0.110⨯1.00] mm3. CT imaging was completed using a 

Philips Brilliance Big Bore CT Scanner (Philips Healthcare, Andover, MA, USA) with 120 

KV potential, 325 mA x-ray tube current, and 2 mm slice thickness, generating images 

with a size ranging from [512⨯512⨯299] to [512⨯512⨯339] voxels and voxel size ranging 

from [0.355⨯0.355⨯1.00] to [0.684⨯0.684⨯1.00]   mm3. All CT scans were performed 

with the mandrins removed to limit metal artifacts. The needle tip positions were manually 

identified in the CT images by an experienced medical physicist (D.H.). Manual rigid 

landmark registration between 3D US and CT was performed using the embedded 

landmarks described in section 4.2.2. With a total of six 1.5 mm steel ball bearings and 

eight 9.5 mm agar spheres per phantom, three ball bearings, and four agar spheres were 

used as fiducials for registration, while the remaining landmarks were used to compute 

target registration error (TRE).25 After registration to the same coordinate system, the 

distance in the insertion (z) direction between needle tip positions identified in B-mode or 

PD US and in CT could be calculated.  

 

4.2.3 Clinical validation 

 
 Our PD US needle localization method was validated in a prospective feasibility 

clinical trial (NCT03861507) approved by the Research Ethics Board at Western 

University (London, ON, Canada). This feasibility trial had a planned accrual of five 

patients with a maximum of 20 patients, all of whom were scheduled to undergo standard 

interstitial HDR prostate brachytherapy at the London Regional Cancer Program. To be 

considered for the study, patients had to be male, aged 18 years or older, willing to provide 

informed consent, have pathologically confirmed prostate cancer on a previous biopsy, and 

are suitable for and consenting to HDR-BT for treatment as standard of care. Any patient 

who previously received radiotherapy to the prostate was excluded from the study. 

Treatments were completed by three radiation oncologists specializing in brachytherapy. 

Our study protocol was completed during the time required to create and validate the 

radiation treatment plan and did not influence treatment decision-making or the total 

procedure time. 12-15 stainless steel needles were used per patient, inserted following the 

standard clinical protocol (63 needles total).  
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 Needle tip locations were first identified using standard B-mode US alone. The 

treating radiation oncologist rotated the US transducer to the optimal plane. The needle tip 

location was identified by consensus between the radiation oncologist and board-certified 

medical physicist (D.H.) on the live sagittal US view directly on the US machine as 

described in section 4.2.2.1. The tip location was then transferred to Vitesse. This B-mode 

localization is distinct from the clinical version as the needles are already inserted to the 

base of the prostate and are locked in position by the needle template, meaning they cannot 

be rotated. The visibility of each needle in the live B-mode US image was labeled on a 

three-tiered scale as clearly visible, partially visible, or mostly/completely obscured. 

Needle tip locations were then identified using PD US with mechanical perturbation using 

our wireless oscillator, which was controlled by the radiation oncologist. The optimal 

Doppler gain and oscillation frequency varied between patients and was dependent on 

needle position and the presence or absence of obstructions, leading to a wide range of 

values. Doppler gain ranged from 8% to 50%, with an average for unobstructed needles of 

15-25%. The oscillation frequency was consistently high, ranging from 38.5 Hz to 44.5 

Hz. All needle perturbations were performed with the mandrins inserted and the needles 

locked in place individually using the Crook prostate template. Exposed needle end length 

measurements were repeated after the study protocol was complete to ensure that needle 

position remained the same.  

 As described in section 4.2.2.3, needle tip localization accuracy was computed 

using the clinical method based on the ideal reference needles selected during the clinical 

procedure. Tip localization error was computed in Vitesse using the measured exposed 

needle end lengths and the known total needle length to compare the identified needle tip 

location and the expected tip location based on the reference needles. Our center does not 

use a post-implant CT scan for HDR prostate brachytherapy, so the comparison to CT as 

ground truth was not possible for the clinical study.  

 
4.2.4 Statistical analysis 

 
 All statistical analyses were performed in GraphPad Prism 9.3.1 (Graphpad 

Software, Inc., San Diego, CA, USA). The normality of distributions was assessed using 
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the Shapiro-Wilk test. Failure of this test led to the use of alternative nonparametric 

statistical tests, presented in parentheses in the following paragraph. The significance level 

for statistical analysis was chosen such that the probability of making a type I error was 

less than 5% (p < 0.05). Statistically significant differences are denoted simply as 

significant for the remainder of this manuscript.  

 Comparisons between needle tip localization accuracy using B-mode US, PD US 

only, and PD plus B-mode US in phantom experiments, including comparisons to CT as a 

gold standard, were completed using repeated measures one-way ANOVA with Tukey¶s 

multiple comparisons tests (Friedman test with Dunn¶s multiple comparisons tests). 

Differences in tip localization accuracy in the mock HDR-BT procedure and the explicit 

shadowing experiment for each US visualization method were compared using two-tailed 

unpaired t-tests (Mann-Whitney U Tests). Similarly, the accuracy for identifying plastic 

and metal needle tips in the explicit shadowing experiments were directly compared using 

the same tests. For clinical validation, comparisons of needle tip localization accuracy 

using B-mode US and PD US for all needles and specifically for unobstructed, partially 

obstructed, and unobstructed needles were compared using two-tailed paired t-tests 

(Wilcoxon matched-pairs signed-rank tests) for each individual patient and overall. A 

comparison of needle tip localization accuracy between the three visibility grades for B-

mode and PD US was completed using a two-way ANOVA with Tukey¶s multiple 

comparisons test. Needle localization accuracy between physicians for both B-mode and 

PD US were compared using one-way ANOVA with Tukey¶s correction for multiple 

comparisons (Kruskal-Wallis tests with Dunn¶s correction for multiple comparisons). 

 

4.3 ReVXlWV 

 
4.3.1 Phantom validation 

 

Examples of needle visualization using standard B-mode US, PD plus B-mode US, 

and PD US only are shown in Fig. 4.3.  

 



128 

 

Figure 4.3.  Example needle visualization results in phantom, showing (A) a standard B-

mode US image, (B) PD US image with perturbation from our mechanical oscillator, and 

(C) PD US only with B-mode context blinded to the observer. 

 
 Quantitative comparisons of absolute needle tip localization error, computed based 

on clearly visible reference needles, are shown in Fig. 4.4 for three phantom experiments, 

with complete absolute and signed results provided in Table 4.1. For the metal needles 

inserted to mimic a standard HDR-BT procedure, only PD US alone had significantly 

higher signed tip error compared to PD plus B-mode US, with no significant difference 

observed for absolute tip error (Fig. 4.4A). With metal needles implanted to maximize 

shadowing artifacts, no significant differences in tip error were observed for either absolute 

or signed metrics (Fig. 4.4B). Similarly, no significant differences were observed for the 

identical shadowing experiment with plastic needles, although the mean tip error and 

variance we variance were much higher for standard B-mode US compared to both PD US 

approaches, as shown in Fig. 4.4C.  

The impact of B-mode information on needle tip identification was investigated by 

computing the difference in the insertion (z) direction between needle tip locations 

identified using PD US alone and PD plus B-mode US. The absolute difference was 0.7 ± 

0.8 mm, 0.5 ± 0.5 mm, and 0.7 ± 0.9 mm while the signed difference was 0.6 ± 0.9 mm, 

0.5 ± 0.5 mm, and -0.6 ± 0.9 mm for the mock HDR-BT procedure, shadowing experiment 

with metal needles, and shadowing experiment with plastic needles, respectively.   
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Figure 4.4. Box and whisker plots of absolute needle tip localization errors, in mm, 

comparing needle visualization with standard B-mode US, PD US alone, and PD plus B-

mode US. Plots from left to right show results for the mock HDR-BT procedure with (A) 

metal needles (N=12) and the explicit needle shadowing implant patterns with (B) metal 

(N=15) and (C) plastic needles (N=13). Boxes denote interquartile range from the 25th to 

75th percentile while whiskers show the minimum and maximum values. Each individual 

tip error is shown with a bar representing the median.     

 

Table 4.1. Mean ± standard deviation absolute and signed tip localization errors based on 

ideal reference needles for visualization with standard B-mode US, PD US alone, and PD 

plus B-mode US in three phantom experiments with two needle types. Negative values 

represent an underprediction relative to the expected tip location.   

   Tip Error (mm) 

   Absolute Signed 

Experiment N B-mode 
US 

PD US 
Alone 

PD+B-
mode 

B-mode 
US 

PD US 
Alone 

PD+B-
mode 

Mock HDR-BT 
Procedure 12 0.3 ± 0.3 0.6 ± 0.5 0.4 ± 0.2 0.1 ± 0.4 0.6 ± 0.5 -0.2 ± 0.4 

Shadowing ± 
Metal Needles 15 0.5 ± 0.2 0.5 ± 0.3 0.6 ± 0.2 0.3 ± 0.5 0.3 ± 0.5 0.3 ± 0.5 

Shadowing ± 
Plastic Needles 13 0.8 ± 1.7 0.4 ± 0.6 0.3 ± 0.5 0.3 ± 1.9 -0.1 ± 0.8 -0.3 ± 0.5 

 

B C A 
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 Needle tip localization error for B-mode US, PD US alone, and PD plus B-mode 

US compared to CT imaging as a gold standard is shown in Table 4.2. The mean ± standard 

deviation TRE using a total of 18 landmarks for the rigid registrations between 3D US and 

CT was 0.8 ± 0.3 mm. For metal needles inserted in a standard HDR-BT configuration, tip 

locations identified using B-mode US had significantly higher agreement to the CT gold 

standard compared to PD plus B-mode US. When metal needles were inserted to maximize 

shadowing artifacts, PD plus B-mode US demonstrated significantly higher error compared 

to PD US alone and B-mode US. For plastic needles inserted to maximize needle 

shadowing artifacts, the difference compared to needle tip locations identified using CT 

imaging was significantly lower for PD plus B-mode US compared to PD US alone. 

Although B-mode US and PD plus B-mode US compared to the CT gold standard were not 

significantly different in this case, we did observe reduced mean tip error and variance 

compared to CT for PD plus B-mode US.   

 

Table 4.2. Mean ± standard deviation absolute and signed tip localization errors compared 

to the CT gold standard for needle visualization with standard B-mode US, PD US alone, 

and PD plus B-mode US in three phantom experiments with two needle types.   

   Tip Error vs CT (mm) 

   Absolute Signed 

Experiment N B-mode 
US 

PD US 
Alone 

PD+B-
mode 

B-mode 
US 

PD US 
Alone 

PD+B-
mode 

Mock HDR-BT 
Procedure 12 0.9 ± 0.5 1.6 ± 0.7 1.9 ± 0.6 0.9 ± 0.6 1.3 ± 1.2 1.9 ± 0.6 

Shadowing ± 
Metal Needles 15 0.7 ± 0.4 0.9 ± 0.5 1.4 ± 0.5 0.7 ± 0.4 0.9 ± 0.5 1.4 ± 0.5 

Shadowing ± 
Plastic Needles 13 3.7 ± 0.5 4.1 ± 0.5 3.7 ± 0.4 3.3 ± 1.9 4.1 ± 0.5 3.7 ± 0.4  
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4.3.2 Clinical validation 

 
 Six patients consented to our prospective feasibility clinical trial. Due to treatment 

complications unrelated to our study, we had insufficient time to complete the study 

protocol for one patient (PD-04), meaning five patients completed the study. 12 needles 

were inserted for all patients apart from PD-05, where 15 needles were used. Example B-

mode US and PD US needle visualizations in clinical prostate HDR-BT patients are shown 

in Fig. 4.5 for varying needle visibilities.  

Figure 4.6 shows clinical results comparing absolute tip localization error 

computed using the reference needles chosen during the clinical procedure for standard B-

mode US and PD US with mechanical perturbation. Complete numerical results are 

provided in Table 4.3, with the mean absolute tip error computed for each individual patient 

and averaged for each of the three physicians who participated in the trial. As shown in 

Table 4.3, there were no significant differences in tip localization error between B-mode 

US and PD US with mechanical perturbation for any individual patient or overall, although 

PD US did show reduced mean tip error and variance. A scatter plot of PD US tip error as 

a function of B-mode US tip error for all needles in clinical cases is shown in Fig. 4.7. 

When tip errors were averaged for each physician, there was once again no 

significant difference between the US visualization methods, as seen in the right side of 

Table 4.3. Physician 1, who completed three cases, was observed to have the largest 

improvement when utilizing PD US, although B-mode tip error was also the highest with 

a mean of 1.0 mm. Comparing standard B-mode US tip localization between physicians, 

significant differences were observed, specifically between physician 1 and 3. When PD 

US tip localizations were compared between physicians, no significant differences were 

observed.  
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Figure 4.5. Example images from the clinical trial showing needle visualization in patients 

using standard B-mode US (left) and PD US with perturbation (right). The rows show an 

example (A) unobstructed needle, (B) partially obstructed needle, and (C) obstructed 

needle. Arrows point to the needle in question.  
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Figure 4.6. Box and whisker plot of absolute needle tip localization errors comparing 

needle visualization with standard B-mode US to PD US with perturbation in clinical cases. 

Tip error for each individual patient and the total tip error are shown from left to right. 

Boxes denote interquartile range from the 25th to 75th percentile while whiskers show the 

minimum and maximum values. Each individual tip error is shown with a bar representing 

the median.   

 
 

Table 4.3. Mean ± standard deviation absolute tip localization errors comparing needle 

visualization with standard B-mode US to PD US with perturbation for clinical cases. Tip 

errors for each individual patient and averaged for each physician are shown in the left and 

right halves of the table, respectively. Overall tip error is shown in the bottom row.   

  Tip Error (mm) Tip Error per Physician (mm) 

Physician Patient B-mode US PD US p-value B-mode US PD US p-value 

1 
1 1.0 ± 0.9 0.9 ± 0.5 ² 

1.0 ± 0.7 0.9 ± 0.5 0.6036b 2 0.9 ± 0.7 0.7 ± 0.7 ² 
6 1.2 ± 0.5 1.0 ± 0.2 ² 

2 3 0.9 ± 0.6 1.0 ± 0.7 ² 0.9 ± 0.6 1.0 ± 0.7 0.7681a 

3 5 0.5 ± 0.4 0.7 ± 0.5 ² 0.5 ± 0.4 0.7 ± 0.5 0.1843a 

Total 0.9 ± 0.7 0.8 ± 0.5 0.9563b ² ² ² 
p-values correspond to apaired t-test or bWilcoxon matched-pairs signed-rank test between B-mode and 
PD US 
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Figure 4.7. Scatter plot of PD US absolute tip error as a function of B-mode US absolute 

tip error for all 63 needles in the feasibility clinical trial.  

 
 For a total of 63 needles inserted across our five clinical cases, 27 were identified 

as unobstructed needles, 25 were identified as partially obstructed needles, and 11 were 

identified as obstructed needles. Absolute mean tip errors using B-mode US and PD US 

needle tip localization methods for each needle visibility tier are shown in Fig. 4.8. A two-

way ANOVA showed a significant main effect for needle visibility grade, with the multiple 

comparison tests showing significant differences between unobstructed and obstructed 

needles. The US visualization method showed no significant main effect, although PD US 

corresponded to lower variance as visibility worsened, also reducing mean tip error for 

partially obstructed needles, as shown in Fig. 4.8.  
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Figure 4.8. Plot of the mean ± standard deviation absolute tip localization errors comparing 

B-mode US to PD US with perturbation in clinical cases with varying needle visibility. 

Mean tip error for unobstructed, partially obstructed, and obstructed needles are shown 

from left to right.   

 

4.4 DiVcXVViRQ 

 
4.4.1 Phantom validation 

 
 For the first experiment, an implant with metal needles meant to simulate a clinical 

prostate HDR-BT procedure showed nearly identical performance between B-mode US 

alone and PD plus B-mode US, with our PD approach reducing the maximum tip error 

(Fig. 4.4A). Tip error for our PD US method alone had a higher mean and variation, likely 

due to the inherent limitations of our blinding approach. By reducing the B-mode gain to 

zero for the entire PD procedure, it became impossible to tell whether transducer contact 

with the phantom was maintained, or whether the transducer was in proper alignment with 

the needle plane. Doppler signal is dependent on transducer alignment and contact, 

potentially resulting in increased mean tip error. For phantom experiments where needle 

implant was determined to maximize needle shadowing artifacts, a second observer 
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ensured the transducer alignment to the needle plane and contact with the phantom was 

maintained before reducing B-mode gain to zero, effectively eliminating this source of 

uncertainty. For the explicit shadowing experiment with metal needles, tip error was nearly 

identical regardless of visualization method, as shown in Fig. 4.4B, but for the same 

experiment with plastic needles, large differences can be seen in Fig. 4.4C. Maximum tip 

error and variation for B-mode US alone is more than double that of PD US alone and PD 

plus B-mode US. The high mean and standard deviation are due to difficulty visualizing 

the needle tip as a result of excessive needle shadowing, including two needles where the 

tip was not at all visible using only B-mode US, resulting in the observer needing to guess 

the tip location. These same needles were clearly visible in PD US both with and without 

B-mode context to less than 1 mm tip error, demonstrating a clear use case for the PD 

method. The ability to clearly visualize needles using PD US with mechanical perturbation 

that were otherwise not visible in standard B-mode US was also shown in Orlando et al.23 

The similarity in tip error between PD US alone and PD plus B-mode US for both explicit 

shadowing experiments demonstrates the reliability of our PD US method, as it does not 

depend on B-mode information.  

 The impact of needle implant pattern and shadowing artifacts on tip error was 

investigated by comparing the mock HDR-BT implant with metal needles and the implant 

designed to maximize needle shadowing with metal needles. For B-mode US, the tip error 

was significantly higher when needles were implanted to maximize shadowing, showing 

that artifacts significantly influenced needle visibility in B-mode images. Contrary to this, 

no significant differences were observed for PD US visualization, demonstrating increased 

robustness to shadowing artifacts, with the PD signal helping to improve visibility.  

 Calculation of the difference in the insertion (z) direction between needle tip 

positions identified using PD US alone and PD plus B-mode US allowed for examination 

of the impact of B-mode information on needle tip localization. With mean absolute 

difference ranging from 0.5-0.7 mm, needle tip localization with PD US was very similar 

regardless of the presence or absence of B-mode information. This demonstrates the 

robustness of our method, as we can accurately identify the needle tip without seeing the 

B-mode image at all.  
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 As shown in Table 4.2, B-mode US demonstrated higher agreement with gold 

standard tip locations identified using CT imaging compared to PD+B-mode US for metal 

needles. Although tip error vs CT was higher, the standard deviation for PD+B-mode US 

was approximately equal to B-mode US. This demonstrated that the PD method was 

consistently identifying the same point on the needle, thus this systematic offset could be 

corrected with commissioning experiments to adjust the needle digitization technique.  For 

plastic needles, both B-mode and PD had identical absolute tip error compared to CT; 

however, B-mode US had considerably higher variation when considering signed tip error. 

Deviation from the CT tip location for all US methods was higher for plastic needles with 

mean values between 3.7 and 4 mm. Standard deviation was less than or equal to 0.5 mm, 

so this large difference may be explained by a systematic shift. Tip locations identified in 

the US images rely on the step-back 3D US image coordinate system, which is defined 

before needle insertion begins. The needle tip location identified in the live sagittal US 

image is then mapped to the 3D US coordinate system based on this initial registration. 

Any phantom movement during needle insertion could result in a global shift in needle 

position relative to the 3D US coordinate system, and thus potential large differences even 

if tip localization in the live US image was accurate. In addition, the needle tip does not 

appear as clearly in the B-mode US image for plastic needles compared to metal needles. 

The London Regional Cancer Program also transitioned from plastic needles to metal 

needles as their standard of care during this work, so recent practice was heavily weighted 

towards metal needles. Registration error was low with an average TRE of only 0.8 mm. 

As fiducial landmarks included large agar spheres, we believe fiducial localization error 

(FLE) may account for some of the observed TRE due to difficulty identifying the centroid. 

Future work could include a formal evaluation of FLE to assess the impact on registration 

accuracy. 

  Limitations of our phantom experiments included the use of only one observer to 

identify the needle tips and landmarks in both US and CT, preventing the evaluation of 

inter-observer variability. The use of live US meant needle tip positions were identified 

only once, thus intra-observer variability could not be computed either. Although the 

reference needle-based error metrics are utilized clinically, there are limitations to address. 

Importantly, the accuracy of reference-based approaches relied on accurately identifying 
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the needle tip of the reference needle(s). This error is mitigated by selecting clear, easy to 

see, needle tips. In addition, the calculation assumed no needle bending or deflection, 

which for a homogenous phantom is a good assumption. Any bending that does occur could 

influence the calculated tip error. The reference needle calculations also rely on end-length 

measurements, which are only accurate to 0.5 mm as they were measured using a ruler. 

The experiments were also limited by their small sample size, with only 12-15 needles 

inserted per experiment. This may have been a factor in the lack of observed statistically 

significant differences. 

 
4.4.2 Clinical validation 

 
 Our PD US-based needle tip localization method was validated in five patients who 

underwent HDR-BT to treat prostate cancer. To our knowledge, this was the first Doppler 

US-based needle localization technique applied in a clinical BT procedure. The wireless 

design of the oscillator, with no cables or computer required to provide power to or control 

of the device, allowed for easy operation by one user, which will help increase the ease of 

further clinical translation. The easy-to-use design also allowed for the application of the 

oscillator in quick bursts as envisioned for difficult-to-see needles.  The magnetically 

attached end-piece allowed for easy bagging of the device for use in the sterile operating 

room environment, while not negatively impacting Doppler signal generation. During the 

clinical HDR-BT procedures, the oscillator was controlled by the treating radiation 

oncologist. Three physicians participated in the trial, and in all cases, the physicians were 

able to competently use the oscillator after only a brief two-minute demonstration, 

highlighting the ease-of-use.   

 For clearly visible needles as shown in Fig. 4.5A, the addition of our PD approach 

did not offer much benefit for these cases. As needle visibility decreased (Fig. 4.5B and 

4.5C), the PD US signal helped to clearly define the needle tip, increasing physician 

confidence in its location. This example also shows the PD ³flash´ artifacts that occur more 

commonly in clinical cases due to the tissue softness compared to the firm agar phantom. 

As seen in the PD image, these artifacts typically have no negative impact on needle tip 

localization.  
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 Although there were no statistically significant differences in tip error observed 

between B-mode and PD US for both individual patients and overall (Fig. 4.6 and Table 

4.3), some interesting trends were observed. In three of five patients, the mean and standard 

deviation tip error were reduced with the use of PD US. This improvement in performance 

was especially clear in patient 1 and patient 6, with a clear decrease in mean tip error and 

a reduction in standard deviation by a factor of two to three. Patient 5 represented an 

interesting case, as both B-mode US and PD US tip errors were smaller than for any other 

patient due to very clear needle visibility for almost all needles, and thus B-mode US alone 

allowed for good visualization of the needle tips. Although the PD US tip error was also 

small, it did not offer an improvement compared to B-mode US, further highlighting the 

use case of difficult-to-see needles. Considering the total tip error across all patients, PD 

US showed a reduction in mean tip error and variance. Fig. 4.6 also highlights the reduction 

in outliers seen with PD US compared to B-mode US, demonstrating our method¶s ability 

to improve needle visibility for challenging needles. This is clear when examining the tip 

error of all patients together, with an approximately equal median but greatly reduced 

variation and reduction in maximum tip error. This is critical clinically, as 1-2 needles with 

tip error greater than 2 mm could result in deviation from the planned radiation dose. This 

point is further reinforced in Fig. 4.7 where the tip error distribution is skewed towards the 

B-mode US axis, including several needles where tip error was greater than 2mm with B-

mode US and less than 1.5 mm with PD US. This demonstrated ability to reduce the tip 

error of outlier needles with PD US, offering the potential for improved patient safety and 

treatment effectiveness. 

 Needle tip localization error separated by physician was shown in Table 4.3. 

Interestingly, the three patients where PD US offered the largest improvement compared 

to B-mode US corresponded to physician 1 who had substantially more time and 

experience using the device compared to physician 2 and 3 who only treated one patient 

each. Difference in the level of needle tip localization improvement based on physician 

could be explained in several ways. Although all physicians were able to successfully use 

the device after a brief tutorial, there was a learning curve for generating a strong, 

consistent Doppler signal. As physician 1 had substantially more time using the oscillator, 

the Doppler signal was more consistent suggesting that with further practice Doppler signal 
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generation would improve. For clinical cases, there was more difficulty generating a useful 

PD image compared to phantom experiments, necessitating trial and error with oscillator 

position to achieve the best signal which contributed to the learning curve for physicians. 

In addition, alignment of the transducer with the needle plane is critical for Doppler signal 

generation, and can be very difficult, so any deviation in this angular alignment could result 

in increased tip localization error. Differences between physicians may also be explained 

in part by the inherent differences in needle visibility between patients as opposed to 

differences in skill identifying the needle tip. In addition, the metal needles have a trocar 

tip, so alignment of the ³face´ of the needle tip with the US plane results in better needle 

visibility. As our experiments were completed with the needle position locked, they could 

not be rotated to take advantage of this in all cases. 

 Needle visibility was approximately equally split between unobstructed and 

partially obstructed needles, with only 11 fully obstructed needles, indicating in general 

good needle visibility. There was a clear increase in the mean and variance as needle 

visibility worsened for B-mode US, but PD US showed approximately no change in 

variation, demonstrating some level of robustness to needle visibility. This was most 

evident in the obstructed case where PD US showed approximately half the standard 

deviation of B-mode US. These results clearly demonstrate the utility of PD US in 

improving needle tip localization accuracy when needle visibility is poor.   

 There are several limitations to consider in our prospective clinical trial. Although 

no inter-observer calculations were possible, this is mitigated by the fact that needle tip 

locations in the clinical trial were the result of a consensus between the physician and 

expert medical physicist. Many of the clinical results utilize a reference needle-based 

metric, so concerns outlined in section 4.4.1 also apply here. Since we did not have access 

to alternative imaging such as CT or MRI, we did not have a proper ground truth to compare 

to. As we could not lengthen the standard procedure time, there was a clear time constraint 

imposed by the planning period in which we completed our study protocol resulting in 

different lengths of time case-to-case, often leading to rushed PD needle localizations that 

could have a negative impact on the obtained results. The relatively small sample size of 

63 total needles may have played a role in the lack of statistically significant differences 

observed. As needle tip localization was completed after all needles were inserted to the 
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base of the prostate, there may be increased needle shadowing artifacts compared to the 

clinical scenario where needle tips are typically localized individually starting anteriorly 

and moving posteriorly to limit shadowing.  

 Future work includes redesigning the end-piece to improve signal generation and 

decrease operator dependence. As well, identification of multiple needles at once using PD 

US may be beneficial. Using an axial US image as shown in Fig. 4.9A, the needles can be 

seen as bright spots in the prostate. By vibrating the needle template directly, motion is 

induced in all needles, allowing for visualization of all needles in the PD US image (Fig. 

4.9B). By obtaining a 3D US scan during PD US with mechanical perturbation, all needles 

could be simultaneously identified in 3D, with potential use as an initialization for an 

automatic needle segmentation approach26 or as a confirmation for the needle position 

before the radiation treatment plan is generated. Furthermore, although our PD US-based 

method was first tested in prostate HDR-BT, it could be extended to any template-based 

brachytherapy procedure, such as gynecological brachytherapy, and more broadly to other 

minimally invasive procedures such as radiofrequency ablation. Future work will 

investigate these applications.  

Figure 4.9. (A) Example axial B-mode US image of a tissue-mimicking agar phantom with 

an embedded agar prostate showing 12 implanted needles. (B) Example PD US image after 

vibration of the needle template, showing visualization of all needles.  
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4.5 CRQclXViRQV 

 
 This study investigated the development and validation of a PD US-based needle 

tip localization method utilizing a novel wireless mechanical oscillator in both phantom 

experiments and clinical HDR-BT treatments. The oscillator design is inexpensive and 

easy to manufacture, and the PD US method is easy to implement requiring no 

modifications to the clinical equipment or workflow. Phantom validation demonstrated 

improved tip localization accuracy relative to B-mode US for heavily shadowed needles, 

including the ability to accurately visualize needles previously not visible using B-mode 

US alone. Results of our prospective feasibility clinical trial demonstrated, for the first time 

to our knowledge, the promising utility of a PD US tip localization method in clinical HDR-

BT procedures. PD US offered clear visualization of needle tips with a demonstrated ability 

to reduce tip error for outlier needles that were difficult to see in B-mode US, increasing 

confidence in tip localization, especially as needle visibility worsens. The proposed PD US 

method may offer improved needle tip localization accuracy and reduced variability, 

potentially improving HDR-BT treatment accuracy.  
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Chapter 5 
 

5 ValidaWiRQ Rf a VXUface-baVed defRUPable MRI-3D 
XlWUaVRXQd iPage UegiVWUaWiRQ algRUiWhP WRZaUdV cliQical 
iPSlePeQWaWiRQ fRU iQWeUVWiWial SURVWaWe bUach\WheUaS\ 

 
In tumour-targeted brachytherapy procedures, the integration of MRI information into the 

intraoperative 3D US image is commonly done using cognitive fusion, resulting in 

variation between physicians. An automated registration algorithm could standardize the 

registration procedure, potentially reducing operator dependence and facilitating dose 

escalation to the MR-defined tumour. The purpose of Chapter 5 is to describe the 

development and clinical implementation of a surface-based deformable MRI-3D US 

image registration algorithm designed for prostate brachytherapy.  

 The contents of this chapter have been submitted for publication in Brachytherapy 

and are currently under peer review: Orlando N, Edirisinghe C, Gyacskov I, Vickress J, 

Sachdeva R, Gomez JA, D¶Souza D, Velker V, Mendez LC, Bauman G, Fenster A, and 

Hoover DA.  

 
5.1 IQWURdXcWiRQ 

 
 Conventional prostate brachytherapy (BT) aims to deliver a uniform dose to the 

whole prostate, with maximum dose limited by the surrounding organs-at-risk.1 Studies 

have demonstrated that the site of local recurrence following radiation therapy is often the 

dominant intraprostatic lesion (DIL).2±4 Tumour-targeted brachytherapy has been 

suggested as an alternative treatment technique, proposing the escalation of dose to the DIL 

while maintaining the conventional whole-gland dose, potentially offering improved 

tumour control while limiting toxicity.5,6 Unfortunately, US imaging lacks the sensitivity 

to effectively detect and localize the DIL and other sensitive organs-at-risk such as the 

neurovascular bundles (NVB).7 Magnetic resonance imaging (MRI) provides higher soft 

tissue contrast compared to US, allowing for effective DIL identification and localization.8±
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10 Intraoperative MRI needle guidance is costly and challenging, requiring incorporation 

of MRI information into the operating room environment where US is the primary imaging 

modality. In many centres, the current standard of care involves rigid or cognitive fusion 

of MR contours into the US image, done intraoperatively by the physician. This results in 

inter-physician variability and high operator dependence. In addition, this manual approach 

is cumbersome if performed in the operating room, adding up to 15 minutes to complete 

both the registration and contour transfer. An automated MR-US registration approach is 

required to standardize the registration and reduce procedure time.  

 Conventional automated and semi-automated MR-US registration approaches have 

been proposed for use in minimally invasive prostate procedures.11±15 The majority of these 

image registration methods have focused on MR-US fusion-guided prostate biopsy, with 

both rigid16±18 and non-rigid approaches.11,12,19±22 The presence of the US transducer or 

endorectal coil in the rectum during US or MR imaging, respectively can deform the 

prostate, suggesting deformable registration approaches may offer improved registration 

accuracy.15 Shaaer et al. proposed a deformable registration approach for prostate BT based 

on a modified rigid registration algorithm using 6 degrees-of-freedom, demonstrating 

increased registration accuracy compared to rigid registration in 10 patients.14 More 

recently, deep learning-based registration approaches have been proposed,23±28 utilizing 

methods including segmentation-based algorithms24±26 and adversarial networks.27 These 

approaches require large, curated image datasets, which can be rare in BT settings, 

presenting a barrier for widespread clinical translation.  

 Prostate biopsy-based registration approaches typically use different 3D US image 

acquisition methods than those used in BT. However, no study focused on BT applications 

for the purpose of dose sparing has described the registration and translation of MR-defined 

organ-at-risk contours outside of the prostate, such as the NVBs. Furthermore, prospective 

validation and clinical implementation for these approaches is lacking. An automated 

algorithm capable of accurate MR-US deformable registration of both target and organ-at-

risk contours, designed for BT, including demonstrated clinical feasibility, may improve 

the clinical translation potential for MR-US fusion-guided BT procedures.  

 In this paper, we report on the development and validation of a surface-based MR-

US deformable image registration (DIR) algorithm for prostate BT, including registration 
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and translation of MR-defined targets and organs-at-risk into the intraoperative US image. 

Our DIR method was validated in tissue-mimicking phantom experiments with varying 

deformation levels as well as in retrospective high-dose-rate brachytherapy (HDR-BT) 

clinical cases.  Clinical implementation of our method demonstrated the feasibility of 

intraoperative registration, facilitating tumour-targeted dose escalation. This has the 

potential to reduce procedure time, standardize the registration procedure between 

physicians, thus reducing operator dependence, and could be extended to any minimally 

invasive prostate procedure employing MR and US imaging.  

 
5.2 MeWhRdV aQd PaWeUialV 

 
5.2.1 Deformable surface-based image registration 

 
The workflow of our DIR algorithm is summarized in Fig. 5.1. The algorithm takes 

as input an MR image, 3D US image, and corresponding 3D prostate contours. The 

algorithm is fully automated, requiring no manual initialization, but does require a pre-

operative preprocessing step if the 3D US and MR images are not in the same orientation. 

Surface contours can be equidistant parallel 2D contours or radial 2D contours with equal 

angular separation about an arbitrary axis. Using these 2D contours, 3D surfaces are formed 

using Delaunay Triangulation, available in the Visualization Toolkit (VTK).29 

The registration workflow has two fully automated steps: rigid translation, scaling, 

and alignment, and non-rigid warping. First, 3D cuboids are determined that enclose all the 

points in each of the US-and MR-defined prostate surfaces. The center points of each 

cuboid are then matched, overlapping the surfaces. The MR-defined cuboid is then scaled 

in the x, y, and z-directions to align its edges with the US-defined cuboid and the 

triangulated surfaces are scaled accordingly. Then, iterative closest point (ICP) 

transformation is used to align the MR and US prostate surfaces through a series of affine 

transformations.29 Finally, thin plate spline (TPS) deformation is used for non-rigid 

warping of the MR prostate surface to match the US prostate surface. This is accomplished 

by creating a sphere with a 5 mm margin around the aligned surfaces. From the center point 

of the sphere, 2304 equidistant lines are drawn outwards to the sphere surface. The MR 
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and US prostate surface points that intersect with each line are labelled as corresponding 

point pairs. Using the VTK TPS module, a transformation is then computed to warp the 

MR prostate image such that corresponding points on the MR prostate surface match the 

points on the US prostate surface.29 Using the computed transformation, other organs 

contoured in the MR image are warped and translated to the US image space.  

 

Figure 5.1. Summary of proposed deformable image registration algorithm workflow.  
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The DIR algorithm was implemented on a personal computer using a Windows 10 

operating system (Microsoft, Redmond, WA, USA) with an Intel Core i7-4770 central 

processing unit (Intel Corporation, Santa Clara, CA, USA), 32.0 GB of memory, and a 6 

GB Ge-Force GTX TITAN (NVIDIA Corporation, Santa Clara, CA, USA) graphics 

processing unit.  

 
5.2.2 Phantom validation 

 
The proposed DIR algorithm was first validated in phantom using the 053L tissue-

equivalent US deformable prostate phantom (CIRS Inc., Norfolk, VA, USA) for use with 

an endocavity US transducer. A simulated 53 cm3 prostate, urethra, and three stiff 1 cm 

diameter spherical simulated lesions distributed uniformly throughout the prostate are 

contained within the 11.5⨯7.0⨯9.5 cm3 acrylic container.  

3D US images of the phantom were acquired at three different deformation levels 

to simulate potential clinical scenarios. Deformation levels were no deformation, moderate 

deformation, and large deformation, controlled by the amount of upward force applied to 

the phantom by the transducer. The US images were acquired using a BK3000 system with 

an E14CL4b biplane endocavity transducer (BK Medical, Peabody, MA, USA). The 

transducer was supported by an encoded CIVCO EX3 Stepper (CIVCO Medical Solutions, 

Coralville, IA, USA), allowing for axially reconstructed 3D US step-back acquisition with 

a 1-mm step spacing using Vitesse v4.03 (Varian Medical Systems, Palo Alto, CA, USA). 

3D US images had a size of [1100⨯700⨯73] voxels with a voxel size of 

[0.083⨯0.110⨯1.00] mm3. B-mode US frequency was 9 MHz with a depth of 6.5 cm for 

all image acquisitions.  

The phantom was imaged using 1.5T and 3T MR scanners to simulate different 

clinical scenarios and examine the impact of MR image quality on registration accuracy. 

The 1.5T MR image was acquired using a GE SIGNA HDxt scanner (GE Healthcare 

Systems, Chicago, IL, USA) with an 8-channel body coil. An axial T2-weighted fast spin 

echo (FSE) sequence was used, acquiring a 3D image with a size of [512⨯512⨯30] voxels, 

voxel size of [0.430⨯0.430⨯5.00] mm3, and slice thickness of 2 mm. The 3T MR image 

was acquired using a GE Discovery MR750 scanner (GE Healthcare Systems, Chicago, 
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IL, USA) with a 32-channel cardiac coil. For consistency, an axial T2-weighted FSE 

sequence was once again used for the 3T MR image acquisition, resulting in a 3D image 

with a size of [512⨯512⨯65] voxels, voxel size of [0.352⨯0.352⨯2.00] mm3, and slice 

thickness of 2 mm.  

The prostate, urethra, and spherical landmarks were manually contoured by a 

trained observer (NJO) using custom-made image visualization software.30 To overcome 

the limitation of large slice spacing for the MR images, manual prostate and landmark 

contours were generated using a radial approach.  Contours were drawn on 18 radial slices 

extracted every 10 degrees about an arbitrary axis of rotation defined by the observer at the 

object¶s centroid. The boundary points of neighbouring slices were then connected with a 

smoothing filter, generating a 3D surface. For the 3D US images, the parallel manual 

contouring method was used on the axial/acquisition planes, which were separated by 

1mm.  

The 1.5T and 3T MR images were each registered to the 3D US images with three 

levels of deformation, resulting in a total of 6 registrations. Each registration used our 

surface-based DIR algorithm and the manually defined prostate surfaces in the MR and 3D 

US images. For comparison, manual rigid registrations of the 1.5T and 3T MR images to 

the 3D US images based on the prostate surfaces were completed using MIM 7.0.5 (MIM 

Software Inc., Cleveland, OH, USA).  

 
5.2.3 Retrospective clinical validation 

 
 Our DIR algorithm was retrospectively validated using three patients who were 

imaged with 3D US and MRI and underwent standard whole-gland HDR-BT treatment. 

All 3D US images were acquired as described in section 5.2.2. 3D US image sizes were 

[1100⨯700⨯52], [1100⨯700⨯57], and [1100⨯700⨯46] voxels for patients 1, 2, and 3, 

respectively. All MR images were acquired with 1.5T scanners. Images of patients 1 and 2 

were acquired using a Philips Achieva 1.5T MRI system (Philips Healthcare, Andover, 

MA, USA) with an axial T2-weighted pulse sequence generating images with a voxel size 

of [0.3125⨯0.3125⨯3.00] mm3 and image sizes of [576⨯576⨯32] and [576⨯576⨯30], 

respectively. The image of patient 3 was acquired using a GE Optima MR450w 1.5T MRI 
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System (GE Healthcare Systems, Chicago, IL, USA) with an axial T2-weighted FSE pulse 

sequence to produce a [512⨯512⨯76] voxel image with voxel size of 

[0.3906⨯0.3906⨯3.00] mm3.  

 The prostate in each 3D US image and the prostate, urethra, clinical target volume 

(CTV), and left/right NVBs in each MR image were manually contoured by a radiation 

oncologist specializing in brachytherapy (physician 1) in parallel axial slices using 

contouring tools within ARIA 15.6 (Varian Medical Systems, Palo Alto, CA, USA). Using 

these prostate contours, the surface-based DIR algorithm was used to register the MR 

image to the 3D US image. For comparison, a manual rigid registration from MRI to 3D 

US was completed for each clinical case using MIM. The proposed DIR algorithm was 

then compared to the standard approach at our cancer centre, which involves rigid MR-to-

US registration and transfer of MR contours to the US space followed by manual physician 

editing using a cognitive fusion approach. Three physicians with 5, 7, and 21 years of 

experience performing prostate brachytherapy procedures completed these cognitive 

fusions using the contours from physician 1.   

 
5.2.4 Evaluation of registration accuracy 

 
Phantom validation 

 As the spherical simulated lesions and urethra were clearly visible in both US and 

MR images, direct comparisons between the contour locations in the 3D US image and the 

locations of the MR contours registered into the 3D US image could be completed for all 

registrations. The target registration error (TRE)31 was computed for each registration by 

comparing the centroid locations of each of the three spherical landmarks in the 3D US 

image to the registered 1.5T and 3T MR-defined contour centroid locations. The centroid 

locations were selected by a trained observer (NJO) using custom-made image 

visualization software.30 In addition, the fiducial localization error (FLE)31 was computed 

for both the 3D US contours and the registered MRI contours to assess the variability in 

the centroid localization. Centroid localization was repeated three times by the same 

observer with a one-week washout period between each localization.   
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 Using tools within MIM, the Dice similarity coefficient (DSC) metric was 

computed to assess the overlap between the US-identified contours and the registered MR 

contours of the three spherical landmarks and the urethra.  

 
Retrospective clinical validation 

 Due to the lack of reproducible identification of anatomical landmarks visible in 

both US and MRI, evaluation of registration accuracy utilized the DSC metric. The DSC 

between the registered contours generated using our proposed DIR algorithm and the 

manual rigid registration were compared to the manual MR-to-US cognitive registrations 

performed by the three physicians. Inter-physician variability was computed as the average 

DSC when comparing between physician cognitive fusion outputs. This allowed for 

comparison of the algorithm accuracy and variability to the variability between different 

physicians. The DSC metric was computed for the CTV and the left and right NVBs in 

MIM. 

 
5.2.5 Clinical implementation 

 
 Our proposed DIR algorithm was implemented for the first patient of a prospective 

randomized clinical trial at the London Regional Cancer Program approved by the 

Research Ethics Board at Western University. The trial involved a two-part clinical 

procedure including an initial targeted biopsy based on MRI and prostate specific 

membrane antigen-positron emission tomography (PSMA-PET) imaging followed by 

standard HDR-BT treatment with boosted dose to the lesion identified in MRI and PSMA-

PET. Pre-procedural MRI and PSMA-PET images were acquired simultaneously using a 

Siemens Biograph mMR PET-MR system (Siemens Healthineers, Erlangen, Germany). 

The prostate, urethra, rectum, MR-defined gross tumour volume (GTV), PSMA-PET-

defined GTV, and CTV were manually contoured by a radiation oncologist.  

 In the operating room, a pre-biopsy 3D US image was first acquired using the 

BK3000 system with the same image parameters described in section 5.2.2. The prostate 

was contoured in the pre-biopsy 3D US image by the treating radiation oncologist using 

Vitesse v4.03. MR-to-US registration was completed in the operating room using our DIR 

algorithm and the physician-defined prostate contours, thus registering the PET-MR 
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contours to the 3D US image space. The registered CTV and combined GTV contours were 

imported into Vitesse using existing rigid registration tools and were subsequently used to 

guide 3 targeted biopsy needles. The standard HDR-BT procedure was initiated following 

the targeted biopsy. With all needles implanted, a second 3D US image was acquired, and 

the prostate was contoured by the treating radiation oncologist. MR-to-US registration was 

once again completed using our DIR algorithm in the operating room. The registered 

combined GTVs and CTV were edited by the radiation oncologist and were subsequently 

used during the treatment planning process to ensure dose coverage and facilitate accurate 

dose escalation to the CTV. To quantify the registration accuracy of our DIR algorithm, 

one of the targeted biopsy cores was analyzed pathologically to determine the presence of 

cancer. Due to the lack of ground truth or reproducible anatomical landmarks visible in 

both US and MRI, further evaluation of registration accuracy was limited to qualitative 

comparison.  

 
5.2.6 Statistical analysis 

 
 All statistical analyses were performed in GraphPad Prism 9.3.1 (Graphpad 

Software, Inc., San Diego, CA, USA). Shapiro-Wilk tests were used to assess the normality 

of distributions. Failed normality tests led to the use of nonparametric statistical tests, 

presented in parentheses in the following paragraph. The significance level for statistical 

analysis was set such that the probability of making a type I error is less than 5% (p < 0.05). 

Statistically significant differences are denoted simply as significant for the remainder of 

this manuscript.  

 A comparison of registration accuracy in phantom in terms of DSC and TRE 

between the three deformation levels for our DIR algorithm and manual rigid registration 

was completed using a two-way ANOVA with Tukey¶s correction for multiple 

comparisons. This test was repeated for comparisons of DSC and TRE between 1.5T and 

3T MR images registered to 3D US images with varying deformation levels. 1.5T and 3T 

MRI FLE, and US and total MRI FLE for the varying deformation levels were compared 

using the same two-way ANOVA. For the retrospective clinical validation, registration 

accuracy in terms of DSC for our DIR algorithm, rigid registration, and physician cognitive 
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fusion were compared using one-way ANOVA with Tukey¶s multiple comparisons tests 

(Kruskal-Wallis tests with Dunn¶s multiple comparisons tests).  

 

5.3 ReVXlWV 

 
5.3.1 Phantom validation 

 
 Examples of the registration results obtained using our DIR algorithm and manual 

rigid registration for three deformation levels of the phantom are shown in Fig. 5.2.  

Figure 5.2. Example phantom registration results for three deformation levels ranging from 

no deformation to large deformation shown in columns from left to right, respectively. The 
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top row shows an example 3T MR image, 3D surface view of the phantom highlighting 

landmark distribution, and contour legend. The middle and bottom rows show MR-to-US 

registration results generated using our DIR algorithm and manual rigid registration, 

respectively. Each deformation level examines a different landmark location.  

 
Quantitative comparisons of the registration accuracy using our DIR algorithm and 

rigid registration in terms of landmark DSC and TRE are shown in Figs. 5.3A and 5.3B, 

respectively, with complete results provided in Table 5.1. Mean DSC across all 

deformation levels and MR images were 0.80±0.12 and 0.72±0.17 for the DIR algorithm 

and rigid registration, respectively. Mean TRE for the embedded spherical landmarks using 

the DIR algorithm and rigid registration was 0.94±0.49 mm and 1.88±1.24 mm, 

respectively. Although registration type and deformation level had no significant effect on 

DSC for the prostate and urethra, the mean prostate DSC was lower for the rigid 

registrations. For the spherical landmarks, registration type, deformation level, and the 

interaction between them had significant effect on DSC score, with the DSC increasing 

when using the DIR algorithm and decreasing as deformation increases. These results were 

mirrored for the TRE measurements based on landmark centroid location, with registration 

type, deformation level, and the interaction between them significantly impacting TRE 

values. MR field strength showed no significant main effect on DSC and TRE for 

algorithmic or rigid registrations. Landmark location within the prostate had no significant 

effect on DSC and TRE for either registration method. Total registration computation time 

ranged from 85s to 150s depending on the number of registered contours.  

 Landmark centroid localization for the three deformation levels had a mean ± 

standard deviation FLE of 0.16±0.07 mm (N=54), 0.19±0.09 mm (N=27), and 0.18±0.10 

mm (N=27) for US, registered 1.5T MR, and registered 3T MR contours, respectively, for 

a total mean of 0.17±0.08 mm (N=108). There was no significant difference in FLE 

between 1.5T and 3T MR, between US and MR, or based on landmark position.   
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Table 5.1. Mean ± standard deviation registration error metrics for our deformable image 

registration (DIR) algorithm and manual rigid registration evaluated using 1.5T and 3T 

MRI phantom images with three deformation levels. Dice similarity coefficient (DSC) 

scores are provided for the prostate, urethra, and three spherical landmarks. Target 

registration error (TRE), in mm, is provided for the three spherical landmark centroids.  

 
 1.5T MRI 3T MRI 

DIR Algorithm No Def. Med Def. Large Def. No Def. Med Def. Large Def. 

 DSC       
 Prostate 0.98 0.98 0.97 0.98 0.98 0.98 
 Landmarks 0.79±0.02 0.74±0.03 0.64±0.03 0.82±0.06 0.78±0.04 0.64±0.06 
 Urethra 0.84 0.80 0.76 0.81 0.79 0.73 
 TRE (mm)       
  Landmarks 0.52±0.36 1.13±0.81 1.34±0.23 0.58±0.01 0.75±0.04 1.32±0.43 

Rigid Registration No Def. Med Def. Large Def. No Def. Med Def. Large Def. 
 DSC       
 Prostate 0.94 0.91 0.83 0.95 0.93 0.85 
 Landmarks 0.76±0.05 0.65±0.03 0.45±0.06 0.81±0.03 0.69±0.05 0.46±0.17 
 Urethra 0.83 0.84 0.78 0.84 0.80 0.68 
 TRE (mm)       
  Landmarks 0.77±0.07 1.79±0.46 3.22±0.66 0.50±0.09 1.73±0.42 3.24±1.42 

Figure 5.3. Box and whisker plots showing (A) landmark Dice similarity coefficient (DSC) 

and (B) target registration error (TRE) for 1.5T and 3T MRI images registered to 3D US 

using our DIR algorithm and manual rigid registration in phantom, averaged across three 

deformation levels. Boxes denote the interquartile range while whiskers show the 
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minimum and maximum values. A bar and plus sign represent the median and mean, 

respectively. Statistically significant differences (p<0.05) are denoted by an asterisk.  

 
5.3.2 Retrospective clinical validation 

 
 Example clinical registration results for one of our three retrospective cases are 

shown in Fig. 5.4, including results obtained using our DIR algorithm, manual rigid 

registration, and physician cognitive fusion. 

Figure 5.4. Example clinical registration results for one retrospective HDR-BT case. The 

top row shows the physician-contoured MRI and US as well as the contour legend. The 

bottom row shows the MR-to-US registration using our DIR algorithm, manual rigid 

registration, and cognitive fusion completed by three physicians, respectively.  

 
 Figure 5.6 shows the DSC score for the MR-defined CTV and NVBs registered to 

US using our DIR algorithm, rigid registration, and physician cognitive fusion. Complete 

results are provided in Table 5.2, including comparisons to each physician individually and 

all together, as well as the inter-physician variability. Mean DSC between the US and 

registered MR-defined prostate was 0.98±0.01 and 0.89±0.02 for the DIR algorithm and 
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manual rigid registration, respectively. When comparing the DIR and rigid registration 

output to the individual physician cognitive fusion results, only comparisons to physician 

1 showed significant differences, with the DIR algorithm demonstrating significantly 

higher DSC score for the right NVB relative to the rigid registration approach. 

Furthermore, when comparing DSC scores averaged for comparisons to all physicians, 

there was no significant difference observed between the DIR algorithm and rigid 

registration results and the inter-physician variability.  

 

Table 5.2. Mean ± standard deviation Dice similarity coefficient (DSC) values averaged 

from three clinical cases registered using our deformable image registration (DIR) 

algorithm and manual rigid registration. Columns show DSC values for the clinical target 

volume (CTV) and the left and right neurovascular bundles (NVB) compared to cognitive 

fusion results for each physician individually, averaged DSC results compared to all 

physicians, and inter-physician variability, from left to right respectively.  

  Total Mean DSC 

DIR 
Alg. 

Contour Compared to 
Physician 1 

Compared to 
Physician 2 

Compared to 
Physician 3 

Compared to 
all Physicians 

Inter-
physician var. 

  CTV 0.66±0.11 0.49±0.21 0.50±0.37 0.55±0.23 0.56±0.29 
   NVB-L 0.51±0.18 0.50±0.08 0.59±0.09 0.53±0.12 0.52±0.18 
   NVB-R 0.48±0.09 0.50±0.05 0.50±0.08 0.50±0.06 0.41±0.14 

   Mean 0.55±0.14 0.49±0.11 0.53±0.20 0.53±0.15 0.50±0.21 

Rigid 
Reg. 

Contour Compared to 
Physician 1 

Compared to 
Physician 2 

Compared to 
Physician 3 

Compared to 
all Physicians 

Inter-
physician var. 

  CTV 0.67±0.03 0.53±0.19 0.49±0.34 0.56±0.21 0.56±0.29 
   NVB-L 0.49±0.13 0.41±0.29 0.51±0.24 0.47±0.20 0.52±0.18 
   NVB-R 0.30±0.04 0.50±0.04 0.65±0.17 0.48±0.18 0.41±0.14 

   Mean 0.48±0.17 0.48±0.18 0.55±0.24 0.50±0.19 0.50±0.21 
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Figure 5.5. Box and whisker plots showing the Dice similarity coefficient (DSC) score for 

clinical target volume (CTV) and neurovascular bundle (NVB) contours registered using 

our DIR algorithm, manual rigid registration, and manual cognitive fusion by the physician, 

presented as inter-physician variability. Boxes denote the interquartile range while 

whiskers show the minimum and maximum values. A bar and plus sign represent the 

median and mean, respectively.  

 
5.3.3 Clinical implementation 

 
 Our DIR algorithm was implemented intraoperatively for one patient who 

consented to a prospective clinical trial approved by the Research Ethics Board at Western 

University. Example MR as well as pre- and post-implant US images and the 

corresponding registration results are shown in Fig. 5.6. After pathological evaluation, the 

biopsy core targeted to the combined PET-MRI GTV based on the registration results 

obtained using our DIR algorithm, was positive for prostate cancer. The corresponding 

histology slide is shown in Fig. 5.7.  
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Figure 5.6. Example intraoperative clinical registration results in a prospective clinical 

case. The physician-contoured MR image is shown in the top left pane. The pre- and post-

implant US image and registration results generated using our DIR algorithm are shown in 

the top and bottom row, respectively.  The contour legend is provided in the bottom left 

pane.  

 

Figure 5.7. Histology slide demonstrating the presence of cancer for the GTV-targeted 

biopsy result obtained using our DIR algorithm. 
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5.4 DiVcXVViRQ 

 
 Results from the phantom experiments showed that the deformation level and 

registration type had a significant impact on the segmentation performance, highlighting 

the need for deformable registration. This is mirrored in the qualitative results shown in 

Fig. 5.2, which showed similar results between the rigid and deformable methods when no 

deformation was applied. In the second and third column where deformation was applied, 

there was significant misalignment between the MR-defined landmarks and US-defined 

landmarks when using the rigid approach. In addition, the MR prostate contour no longer 

matches the US prostate contour, which would make accurate contour translation from the 

MR to the US images and treatment planning difficult. Both DSC and TRE results showed 

that our DIR algorithm was robust to MR field strength and landmark location within the 

prostate, which is a critical finding as both these parameters vary between clinical cases. 

When examining the TRE results, it is important to consider the FLE for centroid 

identification. A TRE less than 1 mm for all deformation levels with our DIR algorithm 

and a mean FLE of 0.17 mm suggest that the TRE value is only minimally affected by the 

observer¶s ability to reliably identify the landmark centroid. With an average computation 

time under two minutes, our DIR algorithm may also reduce procedure time, as manual 

rigid registration and physician cognitive fusion may require up to 15 minutes in the 

operating room.  

 The retrospective clinical validation results show similar mean DSC scores between 

our DIR algorithm, rigid registration, and physician cognitive fusion. This may be due in 

part to the low levels of deformation in our clinical cases, compounded by the lack of 

endorectal coil for MR image acquisition. We did observe a greater than 5% reduction in 

variability for our DIR algorithm compared to the inter-physician variability. This was 

most prominent for the NVB contours where mean DSC was 5% higher and variation was 

approximately 7% lower when using the DIR algorithm compared to cognitive fusion, 

highlighting the ability of our algorithm to accurately translate small contours outside of 

the prostate volume, which is critical for dose-avoidance during treatment planning. Inter-

physician variability is demonstrated in the bottom right pane of Fig. 5.4, where there is 

inconsistent placement of both the CTV and NVBs between physicians. Deformation may 
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impact posterior structures such as the NVBs and peripheral zone lesions more than 

anterior targets, contributing to the DIR algorithm¶s observed improvement in registration 

accuracy relative to the rigid approach for the NVB. This reduced variation afforded by the 

DIR algorithm demonstrates that standardized use of our method would result in more 

consistent registration results compared to the current inter-physician variability, thus 

improving treatment planning consistency and highlighting the potentially clinical utility 

of our method.  

 Our DIR algorithm was successfully implemented in a prospective clinical case, 

demonstrating the feasibility of integrating our method into the clinical workflow. The ease 

of integration highlights the clinical translation potential of our method, as it required only 

minimal pauses in the workflow and the registration result integrated seamlessly into the 

clinical software. This allowed for a successful targeted biopsy of the combined PSMA-

PET/MR-GTV, confirmed histologically as shown in Fig. 5.7. Qualitative results shown in 

Fig. 5.6 highlight the large urethra defect resulting from a previous transurethral resection. 

Our DIR algorithm was shown to be robust to this artifact, successfully registering the 

prostate contours and translating the CTV and GTVs. Application of the algorithm pre-

implant to target biopsy needles and post-implant to facilitate dose escalation demonstrated 

the versatility of our method, further highlighting translational potential. The method could 

be easily extended to other minimally invasive prostate procedures employing MR-

imaging such as fusion-guided prostate biopsy and tumour-targeted low-dose-rate BT.  

 The main limitation of our surface-based DIR algorithm is its reliance on accurate 

and consistent manual contouring, particularly for the prostate in US and MRI. 

Implementation of defined contouring guidelines for the prostate in both MR and US would 

reduce contouring variability between physicians, further improving registration 

consistency and accuracy. The addition of AI-based automatic prostate contouring 

tools32,33 could also help to standardize the contouring process and further reduce procedure 

times. The retrospective clinical dataset used to validate our algorithm is small with only 

three cases, so further validation with a larger dataset is an important next step in our future 

work. Furthermore, validation using MR images acquired with endorectal coils would be 

important, as we expect the increased deformation necessitates a DIR approach. Future 

work will also include expanding the prospective implementation of our algorithm to 
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additional patients and additional procedure types, including an approved study assessing 

the benefits of NVB avoidance in BT.  

  
5.5 CRQclXViRQV 

 
 This study investigated the development and validation of a surface-based MR-US 

DIR algorithm for prostate BT. This approach demonstrated improved registration 

accuracy compared to rigid registration, as well as decreased variation compared to the 

clinical standard of physician cognitive fusion. Prospective clinical implementation 

demonstrated the feasibility of applying our DIR algorithm intraoperatively, facilitating 

targeted biopsies and dose escalation to a PET-MR-defined lesion. This algorithm offers 

the potential to reduce operator dependence and standardize the registration procedure 

between physicians.  
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Chapter 6 

 

6 CRQclXViRQV, LiPiWaWiRQV, aQd FXWXUe WRUk 
 
Minimally invasive procedures for prostate cancer diagnosis and treatment, including 

biopsy and brachytherapy, rely on medical imaging for accurate needle guidance, target 

definition, and treatment planning. Efficient utilization of these imaging modalities, 

specifically US and MRI, involves challenges such as time-consuming manual 

segmentation, poor needle tip visualization, and variable MR-US cognitive fusion. The 

work in this thesis seeks to address these challenges through the development and 

validation of generalizable and easy-to-implement software- and hardware-based 

approaches described in Chapters 2-5. This chapter provides a summary and conclusions 

for the described work including a discussion of limitations and potential future work. 

 
6.1 SXPPaU\ aQd CRQclXViRQV 
 

While the incorporation of 3D TRUS imaging can improve needle guidance for minimally 

invasive procedures such as biopsy and brachytherapy, it also necessitates time-consuming 

and difficult manual prostate segmentation, which must be completed by the physician in 

the operating room environment while the patient is under sedation or anesthetic. Chapter 

2 described the development and validation of a deep learning-based automatic prostate 

segmentation algorithm for 3D TRUS images, potentially improving workflow efficiency 

and reducing procedure time. Our algorithm utilized a modified U-Net architecture1 to 

segment 12 radially sampled 2D US images before reconstruction into a 3D surface. The 

clinically diverse training dataset consisted of 84 end-fire (biopsy) and 122 side-fire (BT) 

3D TRUS images acquired using three different US systems, which was subsequently 

resliced to generate 6773 2D TRUS images for training a 2D neural network. Our proposed 

algorithm generated 3D surfaces with a median [first quartile (Q1), third quartile (Q3)] 

DSC, recall, precision, absolute VPD, MSD, and HD of 94.1 [92.6, 94.9] %, 96.0 [93.1, 

98.5] %, 93.2 [88.8, 95.4] %, 5.78 [2.49, 11.5] %, 0.89 [0.73, 1.09] mm, and 2.89 [2.37, 
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4.35] mm, respectively, significantly improving performance compared to fully 3D CNNs 

including a V-Net, Dense V-Net, and High-resolution 3D-Net trained using the same 

dataset. Average total 3D segmentation time of 0.62 s with our proposed method 

demonstrated a significant reduction compared to manual segmentation, which can take up 

to ten minutes. Our proposed segmentation algorithm demonstrated fast and accurate 3D 

segmentation of the prostate across variable TRUS acquisition methods, providing a 

generalizable and robust algorithm that has the potential to reduce procedure time in 

minimally invasive prostate procedures.  

 Chapter 2 described a deep learning-based algorithm capable of accurate prostate 

segmentation, trained using a large, clinically diverse dataset with variable image quality. 

As large clinical datasets are rare, particularly for US imaging, widespread adoption of 

deep learning-based segmentation could be facilitated through demonstration of 

performance with smaller and less diverse datasets. Chapter 3 examined the impact of the 

dataset on segmentation performance using our 2D deep learning plus 3D reconstruction 

approach, specifically the effect of dataset size, image quality, and image type. First, end-

fire and side-fire datasets were generated by splitting the complete dataset of 6761 2D 

images, followed by the creation of smaller end-fire, side-fire, and mixed datasets with 

1000, 500, 250, and 100 images. A modified U-Net and U-Net++ algorithm were 

implemented for this work, as the latter has shown improved performance with small 

datasets.2 A 3D TRUS image quality grading was developed based on three factors rated 

from 1 to 5: acquisition quality, artifact severity, and boundary visibility. While the U-Net 

and U-Net++ showed no difference in performance when trained with the full dataset, the 

U-Net++ significantly outperformed the U-Net when trained using only side-fire or only 

end-fire images. For the U-Net++ trained using smaller datasets, performance plateaued at 

a training dataset of 1000 mixed images with a median DSC of 93.2 [89.7, 94.9] %. For 

our testing dataset, image quality showed no significant effect on segmentation 

performance for end-fire images but did show a significant effect for side-fire images, 

specifically boundary visibility and acquisition quality. The image quality grading scale 

specific to 3D TRUS imaging, the first of its kind to our knowledge, may help improve 

transparency of published results, easing comparison between algorithms trained on 

datasets of different image quality. The demonstrated performance of our algorithm when 
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trained with smaller datasets supports the potential for widespread use of deep learning 

segmentation methods, even when data is scarce.  

 Needle tip localization in prostate HDR-BT is typically done using standard B-

mode TRUS imaging, which can be limited due to image artifacts, potentially resulting in 

deviation from the planned dose. Chapter 4 described the development and validation of 

a PD US-based needle tip localization method designed specifically for HDR-BT. Needle 

perturbations generated using a custom-built wireless mechanical oscillator could be 

detected using PD US, presented as a coloured overlay on the B-mode US image, 

potentially improving needle visualization. The mechanical oscillator featured a cylindrical 

end piece designed to fit overtop the standard needle mandrins used for HDR-BT, 

improving Doppler signal generation. Our PD US needle localization method was 

evaluated in tissue equivalent agar phantoms as well as in 5 HDR-BT patients as part of a 

prospective feasibility clinical trial. In the phantom, B-mode alone, PD alone, and PD plus 

B-mode needle visualization methods demonstrated absolute mean ± standard deviation tip 

error of 0.3 ± 0.3 mm, 0.6 ± 0.5 mm, and 0.4 ± 0.2 mm for the mock HDR-BT needle 

implant; 0.8 ± 1.7 mm, 0.4 ± 0.6 mm, and 0.3 ± 0.5 mm for the explicit shadowing implant 

with plastic needles; and 0.5 ± 0.2 mm, 0.5 ± 0.3 mm, and 0.6 ± 0.2 mm for the explicit 

shadowing implant with metal needles, respectively. The averaged absolute tip error for all 

five patients in the prospective clinical trial was 0.9 ± 0.7 mm and 0.8 ± 0.5 mm for PD US 

and B-mode US needle visualization, respectively. PD US was demonstrated a particular 

advantage for needles classified as difficult to see using B-mode US, including providing 

the ability to visualize needles previously not visible using standard US alone. Our PD US 

method demonstrated equivalent needle tip error for unobstructed needles and reduced tip 

error and variation for obstructed needles, potentially increasing treatment accuracy in 

HDR-BT. The method is easy-to-implement and requires no modifications to the clinical 

workflow, while also being generalizable to other minimally invasive procedures, 

described in detail in Section 6.3.3.  

 Tumour-targeted BT has been proposed to overcome the limitation of  conventional 

whole-gland BT, motivated by studies which have shown the most likely recurrence site 

following therapy is the DIL.3±5  The DIL is not typically visible in US, necessitating the 

use of an additional imaging modality such as MRI, and thus challenging and variable 
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cognitive fusion of MR-US images is required to utilize the information intraoperatively. 

Chapter 5 described the validation and clinical implementation of a surface-based 

deformable MR-3D TRUS image registration algorithm for prostate BT. Our DIR 

algorithm has two fully automated steps starting with an affine alignment of the prostate 

surfaces using the ICP algorithm followed by non-rigid warping using thin plate spline 

deformation.6 Validation utilized a deformable prostate phantom and three retrospective 

HDR-BT clinical cases with comparison to manual rigid registration and physician 

cognitive fusion. When evaluated using phantom images at three deformation levels, the 

DIR algorithm significantly improved registration accuracy compared to rigid registration, 

demonstrating mean DSC and TRE of 0.74±0.08 and 0.94±0.49 mm compared to 

0.64±0.16 and 1.88±1.24 mm for the rigid registrations. The mean CTV and NVB DSC 

compared to physician cognitive fusions, averaged for the three retrospective clinical cases, 

was 0.53 ± 0.15 for our DIR algorithm, demonstrating reduced variation compared to the 

inter-physician variability, which had a DSC of 0.50 ± 0.21. Prospective clinical 

implementation of our DIR algorithm allowed for a successful PSMA-PET-MRI GTV-

targeted biopsy, confirmed histologically, and facilitated dose escalation to the registered 

CTV. Our DIR algorithm allows for the registration and translation of MR-defined target 

and organ-at-risk contours into the intraoperative US image, allowing for dose escalation 

and dose avoidance while standardizing the registration procedure between physicians, 

reducing operator dependence.   

 
6.2 LiPiWaWiRQV 
 

6.2.1 General Limitations 
 

A limitation common to the work described in all Chapters of this thesis is the difficulty 

obtaining gold standard comparisons for assessing the accuracy of our proposed methods. 

In Chapters 2-3, gold standard manual prostate segmentations were completed by a non-

physician observer, limiting the clinical translation potential as physician contours can 

follow different guidelines and will vary physician-to-physician. In Chapters 4-5, 

retrospective and prospective clinical validation experiments were conducted, but there 

was no way to generate gold standard needle tip locations and MR-US registrations, 
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respectively. This necessitated the use of alternative evaluation metrics such as reference 

needle-based tip localization error used in Chapter 4 and comparisons to inter-physician 

variability as the standard of care in Chapter 5. Contrary to this, phantom experiments in 

Chapters 4-5 provided clear gold standards, specifically through CT imaging for the PD 

study and through US- and MR-visible landmarks for the registration study.  

 Another limitation common to each chapter is the difficulty in validating our 

proposed methods prospectively. Chapters 2-3 rely solely on retrospective data for training 

and evaluation. Prospective clinical implementation and evaluation of our deep learning-

based automatic prostate segmentation algorithm would be critical for successful clinical 

translation. Among the challenges involved in implementing a deep learning algorithm in 

the clinic is the difficulty integrating with the clinical software. In particular, the vendor-

provided computers typically do not contain a dedicated GPU with enough memory to 

complete the segmentations with the low computation time described in Chapters 2 and 3. 

In Chapters 4-5, prospective clinical validation was completed; however, it was limited to 

small feasibility studies with 5 and 1 clinical cases for the PD and registration studies, 

respectively. As described for Chapters 2-3, prospective studies with additional clinical 

cases are critical for demonstrating robustness towards the widespread clinical 

implementation of our proposed approaches.  

 
6.2.2 Study-Specific Limitations 
 
Chapter 2: Deep learning segmentation of the prostate in 3D TRUS images  

The main limitations of the work described in Chapter 2 relate to the TRUS image dataset 

used in the study. While both side-fire and end-fire images were included, acquired using 

three different US systems, all images of a certain type were obtained from the same centre. 

This limited the generalizability and potential performance of our algorithm when 

implemented in a new centre where different US systems or acquisition geometries may be 

used. Importantly, all manual gold standard prostate segmentations were completed by one 

non-physician observer. While this offered consistency in the segmentation approach, there 

was variability in segmentation technique between physicians clinically, making exposure 

and robustness to multiple manual segmentation techniques critical for clinical translation. 

In addition, inter- and intra-observer segmentation variability was not examined for our 
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dataset, although this has been previously assessed for end-fire7 and side-fire8 3D TRUS 

images, with our proposed algorithm demonstrating performance comparable to this 

variability. Finally, the dataset was limited to pre-implant 3D TRUS images with minimal 

obstructions, disregarding prostate segmentation in post-implant images which is critical 

to the HDR-BT workflow.   

Beyond the dataset, there were also limitations to our algorithm design and network 

comparison implementation. Our algorithm utilized radial slices extracted with a 15° step 

angle about the approximate central axis, chosen to balance computation time and 

segmentation performance. While performance was excellent with this 15° step angle, no 

experiment with varying step angle was completed, so the optimal angle is not known. 

When comparing the performance of our proposed method to fully 3D CNNs trained using 

the same dataset, hyperparameter optimization was completed for the V-Net, with identical 

hyperparameters used for subsequent CNNs (Dense V-Net and High-resolution 3D-Net). 

This meant that the performance observed for these two CNNs may not be optimal, as this 

would require individual optimization for each architecture. While radial segmentation 

approaches have previously demonstrated improved segmentation performance in the base 

and apex of the prostate,7 our analysis was limited to whole-gland segmentation 

performance. In addition, there was no analysis of the dosimetric impact of segmentation 

error.  

 
Chapter 3: Effect of dataset size, image quality, and image type on deep learning 

prostate segmentation in 3D TRUS 

As the same TRUS dataset was used for the work described in Chapter 2 and Chapter 3, 

the same dataset limitations described in the previous section apply to this chapter as well. 

Specific to Chapter 3, only one physician observer developed the 3D TRUS image quality 

scale and graded the testing dataset. Thus, inter and intra-observer variability in image 

quality classification was not assessed. Image quality was only graded for the testing 

dataset of 40 3D TRUS images, with no grading completed for the larger training dataset, 

which may play a critical role in algorithm performance. While we expect the randomly 

sampled testing dataset to be representative of the total dataset, explicit grading of the 

training dataset would demonstrate any potential biases. Furthermore, our 3D TRUS 
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dataset was shown to be of high quality on average. To improve algorithm generalizability 

and further explore the impact of image quality on segmentation performance, an expanded 

dataset with a wider range of image qualities, including low quality images, could be used, 

ideally from a different centre. While our dataset included TRUS images from multiple 

vendors, no experiment was conducted to examine the impact of US machine vendor on 

segmentation performance. Such a study would offer a strong assessment of 

generalizability, which is critical for widespread clinical translation. Our U-Net++ 

implementation was limited to only a ResNet CNN backbone. Higher performance may be 

achieved through utilization of an ensemble network with results from multiple CNN 

backbones combined into one segmentation result using averaging, majority vote, or the 

STAPLE method for example.9  

 
Chapter 4: Power Doppler needle localization for interstitial prostate brachytherapy 

The main limitation of the work described in Chapter 4 is the evaluation metric used. In 

both the phantom and clinical validation, needle tip localization error was computed using 

a reference needle calculation, which relied on accurate identification of the reference 

needle tip. Although tip error is mitigated by choosing easy to see needles as a reference, 

any error contributes to the resulting tip localization error. In addition, the reference needle 

calculation utilizes end-length measurements, which assumes there is no bending or 

deflection of the needle. While this is a fair assumption in the homogenous phantom, needle 

deflection can occur in clinical cases. End-length measurements were also made by hand 

using a ruler, limiting accuracy to within 0.5 mm, which may further impact the computed 

tip localization error. In the phantom experiments, only one observer identified the needle 

tip and landmark locations in US and CT, so no inter-observer variability was computed. 

Live US imaging was used for needle tip localization with both B-mode and PD US, 

causing needle tips to be identified once, preventing any examination of intra-observer 

variability. Specific to the clinical validation, no alternative imaging such as CT or MRI 

was used, so there was no proper ground truth to compare to. Another limitation is the time 

constraints imposed by the small window in which we completed our study protocol during 

the HDR-BT clinical workflow, as we could not extend the procedure time. This resulted 

in rushed needle tip localization, which occurred often for the PD US method localization 
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as this was completed after the B-mode localizations were done. Finally, both phantom and 

clinical validation experiments were limited by their sample size, with only 12-15 needles 

per case and a total of 3 phantom cases and 5 clinical cases. In addition, needle visibility 

was graded highly on average, with only 11 fully obstructed needles across 5 patients. 

Further validation in additional phantom and clinical cases with more variable needle 

visibility would allow for a more robust assessment of needle tip localization error. 

 
Chapter 5: Surface-based deformable MRI-3D TRUS image registration algorithm  

The main limitation of the surface-based DIR algorithm described in Chapter 5 is its 

reliance on accurate and consistent manual prostate contouring. Differences in manual 

prostate segmentation technique between MR and US images as well as between and within 

observers7,8 would directly impact the registration result and subsequent target and organ-

at-risk contour translation. Implementation of defined prostate contouring guidelines for 

both MR and US imaging would help to standardize the contouring process between 

different physicians and further reduce operator dependence. The datasets used for 

phantom validation and retrospective clinical validation are both small, with 6 and 3 cases 

respectively. In addition, clinical implementation was limited to only one prospective 

HDR-BT case, including one pre-implant registration and one post-implant registration. 

No MR images utilized in this work were acquired with an endorectal coil, which would 

result in more deformation than a standard pelvic or body coil. Validation in more 

retrospective and prospective cases, including for MR images acquired with endorectal 

coils would strengthen the clinical translation potential. Registration accuracy assessment 

for the prospective clinical validation case was limited to histological evaluation of the 

targeted biopsy result. Quantitative evaluation of our DIR algorithm performance in 

prospective patients in terms of DSC or TRE is another critical step towards widespread 

implementation.  
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6.3 FXWXUe WRUk 
 
6.3.1 Multi-Institution and Multi-Physician Validation of Deep 

Learning Prostate Segmentation Towards Clinical 
Implementation 

 
A 2D deep learning plus 3D reconstruction automatic prostate segmentation algorithm for 

3D US images was described in Chapter 2, evaluated using retrospective images acquired 

in clinical prostate biopsy and HDR-BT procedures. Future work for this project will be 

focused on successful clinical implementation through further clinical validation and 

dataset improvements. The dataset used in Chapter 2 and 3 was limited to 3D TRUS images 

acquired using three different US systems, all from one centre. Successful clinical 

implementation of this algorithm, particularly at a different clinical site, is highly 

dependent on the generalizability and robustness of the trained network. A multi-centre 

dataset of 3D TRUS images acquired using numerous US systems from different minimally 

invasive procedures with varied image quality would result in a more generalizable 

segmentation algorithm, improving performance in prospective clinical scenarios. Manual 

prostate segmentation also varies between physicians. While our current dataset is limited 

to one non-physician observer who provided all ground truth segmentations, the inclusion 

of manual segmentations produced by different observers would strengthen the training 

dataset and thus algorithm robustness.  

 Furthermore, in Chapter 2 and 3, algorithm performance evaluation was limited to 

segmentation accuracy metrics including DSC, boundary distance metrics, and VPD. 

While the performance of our algorithm was strong according to these metrics, the clinical 

utility of the segmentation output is related to the physician¶s confidence in the result. The 

prostate contour produced by the algorithm would require manual editing by the physician, 

so a study examining how much editing time is required on average would allow for 

determination of a clinically relevant total segmentation time. Such a metric may better 

reflect the clinical utility of the algorithm. Using multiple physician observers, both 

algorithmic and manual physician-defined prostate contours could be provided blindly to 

the observer, with the required editing time documented. This would allow for 

determination of the average editing time for algorithm-generated contours in addition to 
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an evaluation of how this time compares to the editing time for manual contours, effectively 

comparing to the current standard-of-care. This multi-center, multi-physician study would 

serve to further validate and improve our algorithm¶s robustness and generalizability as a 

critical step towards clinical implementation.  

 Finally, widespread clinical implementation of deep learning methods in medical 

imaging is limited in part by the restricted nature of the proposed models and datasets. 

Future work could focus on improving public access to deep learning models and the 

datasets used to train and evaluate them. This would increase transparency in the presented 

results and would greatly increase access to deep learning methods, accelerating clinical 

translation. There are significant challenges in widespread data sharing including the 

protection of patient information, restrictions related to research ethics agreements, and the 

high cost associated with dataset curation and management.  

 
6.3.2 Automatic Prostate Segmentation in Post-Implant 3D TRUS 

Images 
 

The training dataset used in Chapter 2 and 3 was limited to end-fire and side-fire 3D TRUS 

acquisition. As described in Section 1.4.2.2, axially reconstructed step-back 3D TRUS 

images are commonly used in prostate BT.10±12 Compared to end-fire and side-fire 3D 

TRUS acquisitions which utilize transducer rotation, step-back 3D TRUS utilizes 

transducer translation in inferior steps, resulting in decreased image resolution in the 

sagittal plane. Evaluation and supplemental training of our segmentation algorithm for use 

with step-back 3D TRUS images would allow for implementation in any centre where 3D 

TRUS is used. In addition, the described dataset is limited to pre-insertion 3D TRUS 

images, which have minimal obstructions, presenting a simpler segmentation task. In 

HDR-BT procedures, prostate segmentation in post-implant 3D TRUS images is critical 

for treatment planning. Segmentation of the prostate in post-implant images presents a 

significant challenge due to the hyperechoic artifacts created by the implanted needles 

obscuring the prostate boundary. Supplemental training and evaluation of our algorithm 

for post-implant 3D TRUS images is a necessary step towards clinical implementation for 

HDR-BT. Successful validation in post-implant 3D TRUS would demonstrate a versatile 

algorithm that could aid in both pre-implant segmentation for needle guidance and post-
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implant segmentation for treatment planning, greatly reducing procedure time and 

standardizing the segmentation procedure. 

 
6.3.3 Power Doppler Needle Localization Extended to other 

Minimally Invasive Procedures 
 
Chapter 4 described the development and validation of a PD-based needle tip localization 

method for interstitial prostate BT. This method was validated in both phantom and 

prospective clinical cases, focusing on simulated and clinical HDR-BT procedures, 

respectively. As our PD-based technique demonstrated improved needle tip visibility and 

reduced variability compared to standard B-mode US for HDR-BT, future work could 

expand our approach to other minimally invasive procedures where needle tip localization 

is equally critical. Candidate procedures where PD US may offer potential utility include 

LDR-BT, gynecological BT, focal ablation procedures, and hyperthermia procedures. As 

our method requires no additions to the clinical equipment or workflow, translation to new 

minimally invasive procedures would be smooth, only requiring modification of the end 

piece design based on the needle-like tools shape. Each procedure does present new 

challenges, however. Focal ablation and hyperthermia procedures commonly require 

needle insertion at oblique angles, resulting in needle tip visibility challenges using 

standard US,13 and thus a natural application for PD US. In gynecological BT procedures, 

needle visibility can be limited by the presence of a vaginal cylinder.14 Validation of PD 

US for needle tip identification in other minimally invasive procedures could greatly 

increase the clinical translation and potential impact of our method.  

 As shown in Fig. 4.9, PD US combined with 3D US image acquisition could allow 

for the simultaneous identification of all implanted needle tip locations within the 3D US 

image. This is particularly relevant for interstitial HDR prostate and gynecological BT 

where multiple needles are inserted, including potential use as an initialization for 

automatic multi-needle segmentation algorithms.14,15 
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6.3.4 Deep Learning-Based Automatic MRI-3D US Image 
Registration Algorithm 

 
Chapter 5 described the validation of a deformable surface-based MRI-3D TRUS 

registration algorithm for tumour-targeted prostate BT. Our proposed surface-based 

algorithm is limited by its dependence on manual prostate segmentation, which has been 

shown to vary within and between observers.7,8 Implementation of deep learning prostate 

segmentation as input to the DIR algorithm could improve segmentation consistency and 

accuracy compared to standard manual segmentation as well as further reducing procedure 

time. 3D TRUS segmentation could utilize the trained networks described in Chapter 2 and 

3, requiring no modification.16,17 Prostate segmentation in MR images could utilize the 

same algorithm trained with MR data, or a pre-trained MR-specific algorithm could be 

implemented.18,19 The underlying registration algorithm could remain unchanged, making 

this a natural next step with a large potential impact for reducing operator dependence and 

procedure time.  

 To further improve registration accuracy, the deep learning segmentation 

initialization could be augmented with a deep learning-based registration procedure.20±25 A 

full deep learning registration procedure would offer significant advantages in terms of 

computation time compared to our conventional approach which took approximately two 

minutes on average. There are challenges in implementing a full deep learning registration 

algorithm, most importantly the difficulty in creating a large dataset of paired 3D TRUS 

and MR images with high quality prostate contours.  

 

Image-guided minimally invasive procedures are a powerful tool for prostate 

cancer management, while also presenting numerous challenges. This thesis described 

several easy-to-implement, generalizable software- and hardware-based approaches 

designed specifically for prostate biopsy and brachytherapy. These tools offer the potential 

to reduce procedure time and variability, potentially increasing the effectiveness of 

minimally invasive procedures towards improved prostate cancer management for men 

worldwide.  
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A, Meldrum A. Refractometric micro-sensor using a mirrored capillary resonator. Optics 

Express 24, 24959-24970 (2016). 

II. Under Review (2 First Author, 2 Total) 

1. Orlando N, Edirisinghe C, Gyacskov I, Vickress J, Sachdeva R, Gomez JA, D’Souza D, 

Velker V, Mendez LC, Bauman G, Fenster A, Hoover DA. Validation of a surface-based 
deformable MRI-3D ultrasound image registration algorithm towards clinical 
implementation for interstitial prostate brachytherapy. Brachytherapy. Submitted June 15, 

2022. Manuscript number BRACHYJOURNAL-D-22-00138. 

2. Orlando N, Snir J, Barker K, D’Souza D, Velker V, Mendez LC, Fenster A, Hoover DA. 

A power Doppler ultrasound method for improving intraoperative needle tip localization 
in interstitial prostate brachytherapy. Medical Physics. Submitted March 28, 2022. 

Manuscript number 22-538. 

Peer-Reviewed Conference Proceedings (3 First Author, 5 Total) 

1. Park C, Papernick S, Orlando N, Jonnalagadda M, Bax J, Gardi L, Barker K, Fenster A. 

Toward point-of-care breast cancer diagnosis: validation of a spatially tracked automated 
3D ultrasound system. Proc. SPIE 12038, Medical Imaging 2022: Ultrasonic Imaging and 

Tomography, 1203804 (2022). (Robert F. Wagner All Conference Best Student Paper 

Award runner-up.) 

2. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Wireless oscillating device for power 
Doppler-based interstitial needle tip identification. Proc. SPIE 11602, Medical Imaging 

2021: Ultrasonic Imaging and Tomography, 11602-19 (2021). 

3. Papernick S, Orlando N, Park C, Dima R, Gillies DJ, Bax J, Gardi L, Barker K, Appleton 

T, Fenster A. Spatially tracked three-dimensional ultrasound imaging for monitoring the 
synovial membrane in knee arthritis. Proc. SPIE 11602, Medical Imaging 2021: Ultrasonic 

Imaging and Tomography, 11602-13 (2021). 

4. Orlando N, Gillies DJ, Gyacskov I, Fenster A. Deep learning-based automatic prostate 
segmentation in 3D transrectal ultrasound images from multiple acquisition geometries 
and systems. Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, 

Robotic Interventions, and Modeling, 11315-83 (2020).  

5. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Power Doppler ultrasound imaging 
with mechanical perturbation for improved intraoperative needle tip identification during 
prostate brachytherapy: a phantom study. Proc. SPIE 10951, Medical Imaging 2019: 

Image-Guided Procedures, Robotic Interventions, and Modeling, 1095131 (2019).  
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News Articles 

1. Park C and Orlando N. Improving Internal Radiation Treatment of Cervical Cancer with 
3D Imaging. Canadian Cancer Society Research Information Outreach Team (RIOT), 

News and Views (2021). 

Scholarships 

2020-2022 Queen Elizabeth II Graduate Scholarship in Science and Technology 

Government of Ontario 

Value: $15,000 per year ($30,000 total) 

2018-2020  Translational Breast Cancer Research Scholarship 

Breast Cancer Society of Canada 

Value: $18,000 per year ($36,000 total) 

2017-2018  Cancer Research and Technology Transfer (CaRTT) Trainee 

CaRTT Strategic Training Program  

Value: $18,000  

2017-2022  Western Graduate Research Scholarship (WGRS) 

Western University 

Value: $5,000-$7800 per year ($27,800 total) 

2014-2016  Jason Lang Scholarship 

Government of Alberta 

Value: $1,000 per year ($3,000 total) 

2013 University of Alberta Academic Excellence Scholarship  

University of Alberta 

Value: $2,000  

2013 Faculty of Science Academic Excellence Scholarship 

University of Alberta 

Value: $1,000  

2013 Alexander Rutherford Scholarship 

Government of Alberta  

Value: $2,500 

Awards and Honours 

2022 First Place Pitch Presentation Award 

Imaging Network of Ontario (ImNO) 2022 

Imaging for Musculoskeletal Analysis Session 

Toronto, ON (Virtual Meeting Due to COVID-19) 

Value: $50 
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2022 First Place Pitch Presentation Award 

Imaging Network of Ontario (ImNO) 2022 

Hardware, Software, and System Development Session 

Toronto, ON (Virtual Meeting Due to COVID-19) 

Value: $50 

2022 Robert F. Wagner All Conference Best Student Paper Award runner-

up 

SPIE Medical Imaging 2022 

San Diego, CA  

2021 New Investigator Award Runner-up in Basic Science 

New Investigator Scientific Session 

Annual Integrative Ultrasound Meeting (AIUM) 2021 

Orlando, FL (Virtual Meeting Due to COVID-19) 

2021 OICR Rising Stars Poster Award 

OICR Translational Research Conference 2021 

Toronto, ON (Virtual Meeting Due to COVID-19) 

Value: $100 

2021 First Place Oral Presentation Award 

Imaging Network of Ontario (ImNO) 2021 

Machine Learning II Session 

Toronto, ON (Virtual Meeting Due to COVID-19) 

Value: $250 

2020 Second Place in the John R. Cameron - John R. Cunningham Young 

Investigators Symposium 

2020 Joint AAPM/COMP Meeting 

Vancouver, BC (Virtual Meeting Due to COVID-19) 

Value: $230 

2020 Medical Physics Editor’s Choice 

Medical Physics Volume 47, Issue 6, published in June 2020.  

2020 Dr. Alfred Jay Award for Translational Research 

Department of Medical Biophysics, Western University 

Value: $2,000 

2019 Selected to present in “Highlights” section for top scoring abstract 

submissions 

Canadian Organization of Medical Physicists (COMP) Annual Scientific 

Meeting  

Kelowna, BC 

2019 Third Place Oral Presentation Award 

London Imaging Discovery Day (LIDD) 2019 

London, ON 
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2019 Top Imaging Abstract  

Robarts Research Retreat 2019 

London, ON 

Value: $100 

2018 Third Place Poster Award  

London Imaging Discovery Day (LIDD) 2018 

London, ON 

2018 Second Place Poster Award in Advances in structural and 

physiological treatment of disease and therapeutic intervention 

London Health Research Day (LHRD) 2018 

London, ON  

2017 The Dean’s Silver Medal in Science 

University of Alberta 

2016 Departmental Undergraduate Student Research Award (USRA)  

University of Alberta  

Value: $4,500  

2014-2017 Dean’s Honor Roll 

University of Alberta 

Research Funding 

Agency/Program: 

 

Project Title: 

 

 

Project Role: 

 

Amount: 

Funding Period:  

London Regional Cancer Program (LRCP) Catalyst Grant for 

Translational Cancer Research  

Development and Implementation of an Accurate and Efficient MRI-to-

Ultrasound Registration Framework for Focal Dose Escalation in Prostate 

Cancer 

Co-applicant with Dr. Douglas Hoover (PI), Dr. Lucas Mendez, and Dr. 

Aaron Fenster 

Value: $10,574 

January 1, 2021 - December 31, 2022 

Presentations 

Invited Presentations (5 First Author, 10 Total) 

1. Orlando N. Deep learning prostate segmentation in three-dimensional ultrasound. Invited 

oral presentation in the inaugural Institute of Physics (IOP) AI in Medical Physics week 

(Virtual). June 20-24, 2022. 

2. Fenster A, Park C, Orlando N, Gillies D, Rodgers J. Applications and trends for use of 3D 
Ultrasound in image-guided Interventions and point of care diagnostic applications. 
Plenary presentation at IEEE International Conference on Imaging Systems & Techniques 

(IST), New York, NY, USA (Virtual). August 24-26, 2021.  
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3. Fenster A, Orlando N, Gillies D, Rodgers J. Applications of 3D Ultrasound in Image-
guided Prostate and Liver Interventions. Invited presentation at Xidian University, Xi’an, 

China. August 23, 2021.  

4. Orlando N. A Generalizable and Efficient Deep Learning Algorithm for Automatic 
Prostate Segmentation in 3D Ultrasound. 30-minute invited presentation at the Canadian 

Association of Physicists (CAP) Congress, Virtual. June 6-11, 2021.  

5. Fenster A, Orlando N, Gillies D, Rodgers J. Machine Learning for Improving Ultrasound-
guided Interventional Cancer Procedures. Invited oral presentation at 5th International 

Caparica Conference on Ultrasonic-based applications from analysis to synthesis, 

Caparica, Portugal. May 31-June 3, 2021. 

6. Orlando N. Deep Learning Prostate Segmentation in 3D Ultrasound. Invited public oral 

presentation in the Machine Learning for Medical Imaging Consortium (MaLMIC) Forum, 

Virtual. February 19, 2021.  

7. Orlando N. How Artificial Intelligence Can Improve Radiation Therapy for Prostate 
Cancer. Invited public oral presentation at RIOT Progress in Cancer Research Symposium, 

Virtual. November 14, 2020.  

8. Fenster A, Rodgers J, Orlando N, Gillies D, Park C. Development of 3D Ultrasound 
Systems for Image-Guided Interventions. Invited oral presentation at 4th International 

Caparica Conference on Ultrasonic-based Applications: from analysis to synthesis, 

Caparica, Portugal. July 20-23, 2020.  

9. Orlando N. Improving Prostate Cancer Radiation Therapy. Invited public oral 

presentation at the Kiwanis Club of St. Thomas Golden K, St. Thomas, ON, Canada. 

November 26, 2019. 

10. Fenster A, Orlando N, Rodgers J, Park C, Gillies DJ. 2D and 3D Ultrasound Devices for 
image-guided interventions. Invited oral presentation at BC Cancer Agency Sindi 

Ahluwalia Hawkins Centre for the Southern Interior Grand Rounds, Kelowna, BC, Canada. 

September 30, 2019. (Group presentation.) 

Oral Presentations (15 First Author, 19 Total) 

1. Orlando N, Gyacskov I, Gillies DJ, Cool DW, Hoover D, Fenster A. Deep Learning 
Prostate Segmentation in 3D Ultrasound and the Impact of Image Quality and Training 
Dataset Size. American Association of Physicists in Medicine (AAPM) Annual Meeting, 

Washington, DC, USA. July 10-14, 2022.  

2. Park C, Papernick S, Orlando N, Jonnalagadda M, Bax J, Gardi L, Barker K, Fenster A. 

Toward point-of-care breast cancer diagnosis: Validation of a spatially tracked automated 
3D ultrasound system. SPIE Medical Imaging: Ultrasonic Imaging and Tomography, San 

Diego, CA, USA. February 20-24, 2022.  

3. Orlando N, Snir J, Barker K, Hoover D, Fenster A. A novel wireless mechanical oscillator 
for power Doppler-based needle tip identification in brachytherapy. AAPM Annual 

Meeting, Virtual. July 25-29, 2021.  
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4. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, Hoover D, Fenster A. Deep 
learning-based prostate segmentation in 3D ultrasound: a study of dataset size and its 
effect on performance. COMP Annual Scientific Meeting, Virtual. June 22-25, 2021.  

5. Park C, Papernick S, Orlando N, Jonnalagadda M, Bax J, Gardi L, Barker K, Fenster A. 

Development of a spatially tracked three-dimensional ultrasound system for whole-breast 
imaging. COMP Annual Scientific Meeting, Virtual. June 22-25, 2021.  

6. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D'Souza D, Fenster A. An Efficient 
Deep Learning Algorithm for Automatic Prostate Segmentation in Three-Dimensional 
Ultrasound. Annual Integrative Ultrasound Meeting (AIUM), Orlando, FL, USA (Virtual). 

April 10-14, 2021. (Runner-up award for basic science category in New Investigator 

Scientific Session.) 

7. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D'Souza D, Hoover D, Fenster A. Effect 
of dataset size and acquisition type on deep learning segmentation of the prostate in 3D 
ultrasound. Imaging Network of Ontario (ImNO), Toronto, ON, Canada (Virtual). March 

23-24, 2021. (Received award for oral presentation.) 

8. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Wireless oscillating device for power 
Doppler-based interstitial needle tip identification. SPIE Medical Imaging: Ultrasonic 

Imaging and Tomography, San Diego, CA, USA (Virtual). February 14-18, 2021  

9. Papernick S, Orlando N, Park C, Dima R, Gillies DJ, Bax J, Gardi L, Barker K, Appleton 

T, Fenster A. Spatially tracked three-dimensional ultrasound imaging for monitoring the 
synovial membrane in knee arthritis. SPIE Medical Imaging: Ultrasonic Imaging and 

Tomography, San Diego, CA, USA (Virtual). February 14-18, 2021 

10. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, Fenster A. rmU-Net: A 
Generalizable Deep Learning Approach for Automatic Prostate Segmentation in 3D 
Ultrasound Images. American Association of Physicists in Medicine (AAPM) and 

Canadian Organization of Medical Physicists (COMP) Joint Meeting, Vancouver, BC, 

Canada (Virtual). July 12-16, 2020. (Second place in the J.R. Cameron - J.R. 

Cunningham Young Investigator Symposium.) 

11. Orlando N and Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, Fenster A. A Deep 
Learning-based Method for Generalized Prostate Segmentation in 3D Ultrasound. 

Imaging Network of Ontario (ImNO), Toronto, ON, Canada (Virtual). March 26-27, 2020.   

12. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, Fenster A. A Deep Learning 
Approach for Automatic Prostate Segmentation in Clinically Diverse 3D Ultrasound 
Images. Western Research Forum (WRF), London, ON, Canada. March 19, 2020 

(Cancelled due to COVID-19.) 

13. Orlando N, Gillies DJ, Gyacskov I, Fenster A. A generalizable deep learning-based 
method for automatic prostate segmentation on 3D ultrasound. SPIE Medical Imaging: 

Ultrasonic Imaging and Tomography, Houston, TX, USA. February 15-20, 2020.  

14. Orlando N, Snir J, Barker K, Hoover D, Fenster A. A power Doppler ultrasound-based 
intraoperative needle tip identification method for interstitial brachytherapy. Canadian 

Organization of Medical Physicists (COMP) Annual Scientific Meeting, Kelowna, BC, 

Canada. September 24-27, 2019.  
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15. Zhang C, Hilts M, Batchelar D, Orlando N, Fenster A, Crook J. Rigid Registration of 
Computed Tomography Images and 3D Ultrasound Images for Permanent Breast Seed 
Implant Planning Procedure. Canadian Organization of Medical Physicists (COMP) 

Annual Scientific Meeting, Kelowna, BC, Canada. September 24-27, 2019. (Selected to 

present in “Highlights” section for top scoring abstract submissions.) 

16. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Development and validation of a power 

Doppler ultrasound method for improved intraoperative needle tip visualization during 

high-dose-rate brachytherapy. American Association of Physicists in Medicine (AAPM) 

Annual Meeting, San Antonio, TX, USA. July 14-18, 2019.  

17. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Use of needle-vibrating device and 
power Doppler ultrasound for improved intraoperative needle tip localization. London 

Imaging Discovery Day (LIDD), London, ON, Canada. June 12, 2019. (Received award 

for oral presentation.) 

18. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Development of a power Doppler 
ultrasound method for improved intraoperative needle tip localization during interstitial 
brachytherapy. Robarts Research Retreat, London, ON, Canada. June 7, 2019.  

19. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Power Doppler ultrasound for 
improved needle tip visualization during prostate brachytherapy. Western Canadian 

Medical Physics Meeting (WesCan), Edmonton, AB, Canada. March 28-30, 2019. 

Poster Presentations (19 First Author, 24 Total) 

1. Orlando N, Snir J, Barker K, D’Souza D, Velker V, Mendez LC, Fenster A, Hoover D. 

Clinical validation of a power Doppler-based needle visualization method in high-dose-
rate prostate brachytherapy procedures. Canadian Organization of Medical Physicists 

(COMP) Annual Scientific Meeting, Quebec City, QC, Canada. June 22-25, 2022.  

2. Orlando N, Tessier D, Hoover D, Fenster A. Needle Tip Identification in Clinical Power 
Doppler Ultrasound Using Induced Vibrations by an Innovative Mechanical Oscillator. 

Canadian Association of Physicists (CAP) Congress, Hamilton, ON, Canada. June 5-10, 

2022. 

3. Orlando N, Du Toit C, Papernick S, Dima R, Gyacskov I, Fenster A. A deep learning 
algorithm for automatic cartilage segmentation in three-dimensional ultrasound images of 
healthy participants. Imaging Network of Ontario (ImNO), Toronto, ON, Canada 

(Virtual). March 22-24, 2022. (Received award for pitch presentation.) 

4. Park C, Xing S, Papernick S, Orlando N, Bax J, Gardi L, Barker K, Tessier D, Fenster A. 

Spatially tracked whole-breast three-dimensional ultrasound system toward point-of-care 
breast cancer screening in women with dense breasts. Imaging Network of Ontario 

(ImNO), Toronto, ON, Canada (Virtual). March 22-24, 2022. (Received award for pitch 

presentation.) 

5. Orlando N, Gyacskov I, Gillies DJ, Romagnoli C, D’Souza D, Hoover D, Fenster A. Deep 
learning prostate segmentation in three-dimensional ultrasound: the role of dataset size. 

Image-guided Therapeutics & Diagnostics Symposium, University of British Columbia, 

Virtual. November 17-18, 2021. 
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6. Park CK, Xing S, Papernick S, Orlando N, Bax J, Gardi L, Barker K, Tessier D, Fenster 

A. Whole-breast phantom validation of a spatially tracked 3D ultrasound system for point-
of-care breast cancer imaging. Image-guided Therapeutics & Diagnostics Symposium, 

University of British Columbia, Virtual. November 17-18, 2021.  

7. Park CK, Papernick S, Orlando N, Jonnalagadda M, Bax J, Gardi L, Barker K, Fenster A. 

Automatic Spatial Registration System for Whole-Breast Three-Dimensional Ultrasound. 

ePoster and live discussion session at AAPM Annual Meeting, Virtual. July 25-29, 2021. 

(Interactive ePoster Session for high-scoring abstracts.) 

8. Orlando N, Gyacskov I, Gillies DJ, Romagnoli C, D’Souza D, Hoover D, Fenster A. How 
does dataset size and diversity influence prostate segmentation performance in 3D 
ultrasound? Robarts Research Retreat, Virtual. June 17, 2021.  

9. Park CK, Papernick S, Orlando N, Jonnalagadda M, Bax J, Gardi L, Barker K, Fenster A. 

Spatially-tracked 3DUS system for whole-breast imaging. Robarts Research Retreat, 

Virtual. June 17, 2021.  

10. Orlando N, Snir J, Barker K, Hoover D, Fenster A. A wireless oscillator for power 
Doppler ultrasound-based needle identification in brachytherapy. Oncology Research and 

Education Day, Virtual. June 14-18, 2021.  

11. Orlando N, Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, Hoover D, Fenster A. A 
Robust and Efficient Deep Learning Prostate Segmentation Algorithm for 3D Transrectal 
Ultrasound Images. London Health Research Day 2021, London, ON, Canada (Virtual). 

May 11, 2021. 

12. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Power Doppler Ultrasound: A Method 
for Improving Needle Tip Identification in Brachytherapy. OICR Translational Research 

Conference (TRC), Toronto, ON, Canada (Virtual). March 25-26, 2021. (Received award 

for e-poster presentation.) 

13. Orlando N and Gillies DJ, Gyacskov I, Fenster A. Deep learning-based automatic prostate 
segmentation in 3D transrectal ultrasound images from multiple acquisition geometries 
and systems. SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, 

and Modeling, Houston, TX, USA. February 15-20, 2020.  

14. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Improved needle tip visualization in 
interstitial brachytherapy using needle vibration. Oncology Research and Education Day, 

London, ON, Canada. June 14, 2019.  

15. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Power Doppler ultrasound for 
improved intraoperative needle tip visualization during prostate brachytherapy. London 

Health Research Day (LHRD), London, ON, Canada. April 30, 2019.  

16. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Improved Intraoperative Needle Tip 
Identification Using Power Doppler Ultrasound. Imaging Network of Ontario (ImNO), 

London, ON, Canada. March 28-29, 2019.  

17. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Improving needle tip localization in 
interstitial prostate brachytherapy using power Doppler imaging. OICR Translational 

Research Conference, Toronto, ON, Canada. March 21-22, 2019. 
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18. Orlando N, Snir J, Barker K, Hoover D, Fenster A. Power Doppler ultrasound imaging 
with mechanical perturbation for improved intraoperative needle tip identification during 
prostate brachytherapy: a phantom study. SPIE Medical Imaging, San Diego, CA, USA. 

February 16-21, 2019. 

19. Orlando N, Hoover D, Edirisinghe C, D’Souza D, Wong E, Fenster A. An examination of 
needle deflection in high dose rate prostate cancer brachytherapy. CARO-COMP-

CAMRT Joint Scientific Meeting, Montreal, QC, Canada. September 12-15, 2018. 

20. Snir J, Orlando N, Patrick J, Surry K, Velker V, Hoover D. Mechanical perturbation 
enhanced power Doppler ultrasound imaging for improved intra-operative localization of 
interstitial brachytherapy needles. CARO-COMP-CAMRT Joint Scientific Meeting, 

Montreal, QC, Canada. September 12-15, 2018. 

21. Orlando N, Hoover D, Edirisinghe C, D’Souza D, Wong E, Fenster A. Needle deflection 
in high dose rate prostate cancer brachytherapy. Eight-minute e-poster presentation at 

London Imaging Discovery Day (LIDD), London, ON, Canada. June 14, 2018. (Received 

award for poster presentation.) 

22. Orlando N, Hoover D, Edirisinghe C, D’Souza D, Wong E, Fenster A. An examination of 
needle deflection in high dose rate prostate cancer brachytherapy. Oncology Research and 

Education Day, London, ON, Canada. June 8, 2018. 

23. Orlando N, Hoover D, Edirisinghe C, D’Souza D, Wong E, Fenster A. An examination of 
needle deflection in high dose rate prostate cancer brachytherapy. Robarts Research 

Retreat, London, ON, Canada. June 1, 2018. 

24. Orlando N, Hoover D, Edirisinghe C, Wong E, Fenster A. Quantifying needle deflection 
in high dose rate prostate cancer brachytherapy. London Health Research Day (LHRD), 

London, ON, Canada. May 10, 2018. (Received award for poster presentation.)  

Leadership Experience and Academic Service 

09/2021 – 04/2022  Co-supervisor – Engineering Co-op Student 

Summary: Co-supervised 8-month research co-op at the London Regional 

Cancer Program focusing on deep learning prostate segmentation.  

09/2021 – 04/2022 CAMPEP Mentor – Medical Biophysics Academic Mentorship 

Program 

Summary: Responsible for mentoring a one-year CAMPEP MSc student 

in the Department of Medical Biophysics.  

11/2021 – 12/2021 Organizer – Robarts Professional Development Miniseries 

Summary: Part of the organizing committee for a three-part professional 

development series featuring Dr. Aaron Fenster.  

06/2021 J.R. Cunningham Young Investigator Symposium Co-moderator 

COMP 2021 

Summary: Co-moderated this marquee session at the COMP 2021 

Annual Scientific Meeting. 



	

	

206 

03/2021 Pitch Presentation Co-chair and Judge 

ImNO 2021 

Summary: Responsible for chairing and judging two pitch presentation 

sessions at ImNO 2021.  

09/2020 – 08/2021  Mentor - Medical Biophysics Academic Mentorship Program 

Summary: Responsible for mentoring a first-year MSc student in the 

Department of Medical Biophysics.  

01/2020 – 07/2022  Deep Learning Club – Organizing Committee Founding Member 

Summary: Founding member of this committee which built and connected 

a network of students interested in AI from across Western University.  

07/2019 – 07/2021 Robarts Association of Trainees Committee Member 

Summary: Elected committee which represents, connects, and advocates 

for trainees at the Robarts Research Institute.  

01/2019 – 04/2019 

12/2019 – 04/2020 

02/2021 – 04/2021 

Founding member and Academic Coordinator - Medical Biophysics 

Undergraduate Research Day Planning Committee  

Summary: Helped organize the first three annual Medical Biophysics 

undergraduate research conference at Western University.  

09/2018 – 08/2021  CAMPEP Student Representative  
Summary: One of two peer-elected student members on the CAMPEP 

steering Committee.  

Teaching Experience 

09/2020 – 04/2021 

09/2021 – 04/2022 

Teaching Assistant – Practical Radiotherapy Physics - BIOPHYS 

9672 

Course Instructor: Kathleen Surry, Ph.D., MCCPM  

Western University 

02/2021 Invited Guest Lecturer - Biomedical Applications of Neural 

Networks - BIOPHYS 9709  

Western University 

01/2020 – 05/2020  Pedagogy in Biophysics – BIOPHYS 9674B 

Summary: Contributed to the development of a graduate-level course 

curriculum titled “Biomedical Applications of Neural Networks”.  

10/03/2020 An Introduction to Deep Learning with Keras Tutorial 

Summary: 30-minute tutorial introducing deep learning with Keras.  

Clinical Experience 

05/2018 – 09/2018 

09/2019 – 01/2020 
Linear Accelerator Mechanical and Output Quality Assurance  
London Regional Cancer Program, London, ON, Canada 

Supervisor: Rob Barnett, Ph.D., FCCPM  
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Independently performed routine mechanical and output quality assurance 

measurements for Varian Clinac iX and TrueBeam linear accelerators.  

Undergraduate Research Experience 

09/2016 – 12/2016 Undergraduate Honors Thesis Project 

Title: SAR Dosimeter for MRI  

Supervisor: Nicola De Zanche, Ph.D., MCCPM  
Summary: Designed and built a dosimeter to independently verify 

Specific Absorption Rate (SAR) levels of an MRI system.  

05/2016 – 08/2016 Undergraduate Research Assistant 

Department of Physics, University of Alberta, Edmonton, AB, Canada  

Supervisor: Alkiviathes Meldrum, Ph.D. 

Summary: Assisted with the development of a refractometric liquid and 

gas sensor using both polymer and silver coated microcapillaries.  

Professional Development Experience  

09/2017 – 06/2022 Own Your Future Trainee  
Summary: Curriculum-based professional development program at 

Western University designed specifically for doctoral students.  

09/2017 – 08/2018 Cancer Research and Technology Transfer (CaRTT) Trainee  
Summary: Training program in cancer biology and treatment which aims 

to development partnerships between basic and clinical researchers.  

Professional Memberships  

2019 – Present American Association of Physicists in Medicine (AAPM) 

Student Member 

2018 – Present Canadian Organization of Medical Physicists (COMP) 

Student Member 

2021 – 2022 Canadian Association of Physicists (CAP) 

Student Member 

2019 – 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) 

Student Member 
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