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Abstract

My dissertation focuses on the effect of magnetic fields on disk and core evolution during star-

formation. We investigate the fragmentation scales of gravitational instability of a rotationally-

supported self-gravitating protostellar disk using linear perturbation analysis in the presence of

two nonideal magnetohydrodynamic (MHD) effects: Ohmic dissipation and ambipolar diffu-

sion. Our results show that molecular clouds exhibit a preferred lengthscale for collapse that

depends on mass-to-flux ratio, magnetic diffusivities, and the Toomre-Q parameter. In addi-

tion, the influence of the magnetic field on the preferred mass for collapse leads to a modified

threshold for the fragmentation mass, as opposed to a Jeans mass, that might lead to giant planet

formation in the early embedded phase. Furthermore, we apply the nonideal MHD threshold

for fragmentation scales to fit the data of prestellar core lifetimes and as well as the number of

enclosed cores formed in a clump, as found with the observations of Herschel and Submillime-

ter Array (SMA), respectively. Our results show that the trend found in the observed lifetime

and fragmentation mass cannot be explained in a purely hydrodynamic scenario. Our best-fit

model exhibits B ∝ n0.43, which signifies a means to indirectly infer the effect of the ambipolar

diffusion on mildly supercritical dense regions of molecular clouds. We also develop a semi-

analytic formalism of episodic mass accretion (therefore episodic luminosity) from a disk to

star, which provides a good match to the observed luminosity distribution of protostars. In con-

trast, neither a constant nor a time-dependent but smoothly varying mass accretion rate is able

to do so. Our analytic work provides insight into global MHD simulations of protoplanetary

disks that we carry out using the FEOSAD numerical code. Our numerical results demonstrate

the long-term evolution of disks, including the formation and evolution of clumps, and espe-

cially the episodic nature of accretion, which might explain the origin of observed knots in the

molecular jet outflows.

Keywords: ISM: clouds - magnetic fields - magnetohydrodynamics (MHD) - stars: forma-

tion, gravitational collapse, disk evolution: episodic accretion, young stellar objects (YSOs)
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Summary for lay audience

Stars are the essential links between galaxies and planetary systems. The present-day solar

system is thought to be created about 4.5 billion years ago from the solar nebula- a giant cloud

of dust and gas in interstellar space (i.e., the space between the stars in a galaxy). During

the transformation from a gaseous nebula into a star-disk system there are many fundamental

physical mechanisms such as gravity, thermal pressure, and the magnetic fields that have to

come into action together. Their role in star formation is a matter of ongoing study. To form

a star, enough matter has to pile up to the center of a gas cloud such that no other force can

prevent the gravitational collapse. In recent times, cutting-edge observations have revealed

new horizons to studying star formation at high resolution and even beyond the confines of

our Galaxy. In this thesis, different evolutionary epochs of star formation have been studied,

starting from the collapse of a gas cloud to the birth of a star-disk system where the planets

may also form. Our results show that the gravitational fragmentation scales include the effects

beyond that set by thermal pressure alone. These findings signify the indirect imprints of the

magnetic fields on the star-forming clouds that are consistent with observations. Furthermore,

we develop a model that explains the basic mechanisms of how the matter falls onto the central

star through a series of luminous eruptive outbursts. Finally, we show that magnetic field can

further drive the rapid accumulation of matter from the inner disk onto the center, thereby

expediting star formation.
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Chapter 1

Introduction

1.1 Preliminaries and Overview

Stars are the fundamental building blocks of our observable universe. Therefore, the study of

star formation is at the center of galactic and planetary astrophysics. The overall evolutionary

cycle of the galaxies and structure formation within these galaxies is driven by star formation,

which in turn, determines the luminosity of galaxies. In addition to that, star formation is

also inextricably tied up with the formation and early evolution of planetary systems. Stellar

outflows/winds may also directly impact on the evolution of galaxies, the interstellar medium

(ISM), and the intergalactic medium (IGM). The interstellar medium (ISM) is composed of all

forms of matter and radiation in space between stars in a galaxy, which includes gas (in atomic,

molecular and ionized form) and dust, as well as magnetic fields and cosmic rays. Whereas

the intergalactic medium (IGM) permeating between galaxies, is comprised of the hot ionized

X-ray emitting gas. In the simplest terms, stars form when the densest regions of the ISM

(which are the so-called molecular clouds) get fragmented into locally collapsing objects. The

fragmentation of molecular clouds is a complex phenomenon driven by the interplay of sev-

eral forces e.g., gravity, magnetic fields, thermal pressure, and turbulence. Stars are formed

when the force primarily due to gravity exceeds all other opposing forces. In this context, the

key question is how and at what circumstances gravity wins over the other forces? The key

astrophysical problem of star formation has been addressed in many literatures from various

perspectives (Mouschovias & Spitzer, 1976; Larson, 1981; Shu et al., 1987). Despite signif-

icant progress over the past decades, complete theoretical and observational understanding of

1
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star formation remains elusive.

In this thesis, we investigate the physical processes which are responsible for the star forma-

tion in molecular clouds. We provide a comprehensive study of the fragmentation of large-scale

molecular clouds into cores, which eventually collapse under their self-gravity to form stars and

the protostellar (or protoplanetary or circumstellar) disks. The formation of a protostellar disk

is a natural outcome because of the conservation (or near conservation) of angular momentum

during the star formation process. We use theoretical semi-analytic models, magnetohydro-

dynamic (MHD) simulations, and observational data to bridge some of the existing gaps in

our current understanding of the role of the gravitational instability (GI), nonideal MHD, and

episodic accretion in the formation of a star-disk system. We find indirect signatures of the

magnetic fields on the observable structures, for example, the density scaling of magnetic field

strength, fragmentation mass and lengthscales, and timescales of the collapsing prestellar (star-

less) cores. Finally, we explore the role of episodic accretion on the mass growth of pre-main

sequence star (protostar) and their observed luminosity. We also study the role of the magne-

torotational instability (MRI) in the formation and long-term global evolution of a protostellar

disk including the onset of giant-planet formation.

1.2 Zooming in on star-forming regions

1.2.1 From molecular clouds to the birth of star-forming cores

Molecular clouds (the densest phase of the ISM) are the cradles of star formation. Molecu-

lar clouds consist primarily of molecular hydrogen (H2), having significant self-gravity with

mean densities 102 − 104 cm−3 and temperature T ≃ 10 − 50 K. The chemistry and physical

conditions of the interior of a molecular cloud are quite different from those of the surround-

ing low-density interstellar medium (for example, warm and cold neutral medium). A large

fraction of matter in the ISM resides in the Giant Molecular Clouds (GMCs), which are the

largest scales of molecular clouds, having masses up to a few million M⊙ (1 M⊙ = 1 solar

mass = 1.99 × 1033 g). GMCs are opaque clumps consisting of cold gas and dust. However,

dust constitutes a very tiny fraction of the total mass of the ISM, with an approximate dust-

to-gas mass ratio of 0.01 (Goldsmith et al., 1997). Star formation begins when the denser

colder parts of molecular cloud start to collapse under its own gravity. If gravity alone was
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responsible in the process of accumulating all the matter (gas and dust) present in our Galaxy

(∼ few billion M⊙) and converting these into stars, then the expected galactic star formation rate

(∼ Mgas/tff) would be ∼ 200 M⊙ yr−1, given that the free-fall time (also known as dynamical

time), tff ∝ 1/
√

Gρ (Jeans, 1929) associated with such an unrestrained gravitational collapse

of a region with a typical number density of 104 cm−3 would be ∼ 0.2 Myr. However, the ob-

served star formation rate (SFR) in our Galaxy is only ∼ 1 − 3 M⊙ yr−1 (McKee & Williams,

1997; Robitaille & Whitney, 2010; Chomiuk & Povich, 2011). Why is there such discrepancy

between the observed and theoretically predicted SFR? It signifies that only a few percent of

total gas actually form stars (Myers et al., 1986; Evans et al., 2009; Lada et al., 2010). So, what

are the additional forces that can counter the pull of gravity? The observed spectral linewidths

as measured in ISM and GMCs (Zuckerman & Palmer, 1974) captures the supersonic motions

(due to turbulence) that provides additional support (beyond thermal pressure) against grav-

ity. Another possible explanation is the magnetic field, which provides a non-thermal support

against gravity. Thus, the magnetic field can inhibit the gravitational collapse and rapid star

formation except in the densest regions of the cloud (known as "core") undergoes a runaway

collapse due to dissipation of magnetic fields (see discussions in in Section 1.3.2.1).

Over the decades, theory (Mestel & Spitzer, 1956; Mestel, 1965) and observations (Planck

Collaboration et al., 2015, 2016) suggest that the magnetic field plays a pivotal role in star

formation. Observations (Planck Collaboration et al., 2015, 2016) indicate that magnetic fields

are ubiquitous in the interstellar medium. This naturally raises the question: what generates

the magnetic fields in the ISM? Some large scale dynamo process (the process through which a

rotating electrically conducting fluid can maintain a magnetic field and can be described by the

induction equation of Maxwell’s theory) is necessary to generate the large scale magnetic field

B of astrophysical plasma. However, whatever the mechanism, a small drift in velocity between

electrons (ve) and positively charged ions (vi) has to be maintained. This small differential

velocity drift gives rise to conduction current density J = nee|ve − vi|. We can use Ampere’s

law J = c∇ × B/(4π) along with definition of electric current density and replace gradient

with 1/L to get the relation B = |ve − vi|4πeneL/c, where ne, L, e, and c are the electron

number density, length scale of the cloud, electron charge, and speed of light, respectively. For

a typical molecular cloud of size 10 pc (∼ 1019 cm, since 1 pc = 3.09 × 1018 cm), and average
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electron number density ne of ∼ 10−2 cm−3, a tiny velocity drift of ∼ 10−3 cm s−1 is sufficient

to produce the typically observed magnetic field strength of ≈ 3µG. Due to the high electrical

conductivity of the ISM (as it contains plasma i.e., positively/negatively charged fluid ), the

magnetic field is effectively frozen in (coupled to) the matter and can prevent gravitational

collapse. The clouds have nested structures ranging from larger filaments and clumps to dense

cores and disks, which are often created by the process of hierarchical fragmentation as seen

in the recent observational and simulation studies (see Dobbs et al., 2014; Heyer & Dame,

2015; Pokhrel et al., 2018). Depending on the spatial environments, as the cloud (typical size

of ≳ 10 pc) collapses, they fragment into clumps of typical size of ∼1 pc (Ridge et al., 2006;

Sadavoy et al., 2014). The clumps are usually defined as the largest scale of fragmentation of

a molecular cloud. Clumps may or may not be gravitationally bound, however star formation

requires to start with a gravitationally bound clump. Inside the clumps, there are elongated

gaseous filament (∼ 0.1pc) like structures (Arzoumanian et al., 2011), where 0.05−0.1 pc wide

dense cores (di Francesco et al., 2007) are observed that are the sites of star-formation. Deep

down in the cores, there are further dense concentrations of envelopes (∼ 3000 AU), within

which there are protostellar disks (∼ 10 − 500 AU) surrounding a central young protostar (of

size few R⊙). A protostar is defined as an object that is undergoing its main mass accumulation

phase. Residual mass accretion through the surrounding accretion disk continues into the so-

called pre-main-sequence phase. To understand the whole star-formation process starting from

the cloud scale down to protostar scale, theoretical study on the hierarchical structure formation

in a self-consistent manner is required to be carried out along with the observations.

The ISM is mathematically modeled with the theory of magnetohydrodynamics (MHD).

MHD is ‘fluid-approximation’ theory, which means that the ISM is treated as a continuum.

For a cloud of typical size L ∼ 10 pc (or ∼0.1 pc for cores), elastic scattering cross section

σ ∼ 10−15 cm−2, and typical density n ∼ 104 cm−3 (or ∼ 106 cm−3 in cores), the collisional

mean free path l = (nσ)−1 is ∼ 1011 cm (or 109 cm in cores), which is much smaller than the

length scale of the system (cloud size L). Therefore, the diffuse ISM clouds can effectively

be treated as fluids (as l ≪ L). Moreover, because of the presence of the magnetic field, the

charged particles gyrates about the field lines with a gyro-frequency wL = eB/mc (also known

as Larmor frequency). So, in molecular clouds with average thermal speed vth ∼ 10−1 km/s,
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the Larmor radius aL = vth/wL (or radius of gyration) is even smaller and can act as an effective

mean free path. For example, Larmor frequency for an electron wL ∼ 1 Hz, and Larmor radius

is ∼ 105 cm ∼ 10−13 pc (≪ L) that validates the fluid theory. In the MHD theory of the ISM, the

astrophysical community impose charge neutrality of the fluid by doing a basic approximation

that the evolutionary time is much longer than that of plasma oscillations. High frequency

plasma behaviour are not considered to be followed as it leads to charge separation. In addition,

slow-time variations of MHD theory also allows us to modify the equation of Maxwell’s theory

of electrodynamics (see equations in Chapter 2) by dropping the displacement current term

that corresponds to high frequency phenomena. For astrophysically realistic circumstances,

the fluid is treated as neutral assuming that collisions occur frequently enough to mechanically

couple the three constituents of the gas i.e., electrons, ions, and neutrals. Later, in Chapter 2,

3 we study the nonideal MHD effect in the gravitational collapse and disk evolution. Nonideal

MHD effects result in the dissipation and diffusion of magnetic flux, which arises from the

relative drift between neutrals and charged species (either ions or both electrons and ions)

as described later in Chapter 1.3.2.1. To better interpret and understand the observational

results, nonideal MHD effects (arise due to the imperfect coupling between charged species

and neutrals) have been considered to be imperative in the star formation process.

1.2.2 Tracers of the Molecular cloud

The observations of molecular/spectral line emission are an excellent probe to study the phys-

ical properties and kinematics of molecular clouds as well as the ongoing chemistry within.

Observations show that the less dense-regions of molecular clouds having number densities

nH2∼100 cm−3 exhibit supersonic linewidths, whereas dense prestellar (starless) cores have

densities nH2∼106 − 107 cm−3 and the gas appears to have subsonic velocities (Goodman et al.,

1998). Molecular hydrogen can be probed at mid/near IR (vibration-rotation) or UV (elec-

tronic) wavelengths. Note that the absence of dipole moment of the H2 molecule gives rise to

weak emission, which is caused by the weak quadrupole transitions. Thermal excitations of H2

molecules requires temperature ≳ 100 K (see Juvela et al., 2012, for a recent survey). However,

the mean temperature of molecular clouds (T∼10 K) is very low for any electronic, vibrational,

and rotational excitations of H2 molecules. CO, the second most abundant species having an
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abundance of 10−4 relative to the fraction of molecular hydrogen, is often used as main tracer (a

proxy for H2) of molecular gas. For CO, the ground state rotational transition J = 1→ 0 corre-

sponds to a wavelength 2.6 mm (∼ 115 GHz), whilst the 1−0 vibrational transition is associated

with a wavelength of 4.7 µm. CO has a small but finite dipole moment. The energy associated

with the allowed rotational transition can be calculated as E = ℏ2J(J + 1)/(2µr2) ≡ kBTex,

where ℏ is the reduced Planck’s constant (ℏ = h/(2π) where h is Planck’s constant), J is the

quantum number for total rotational angular momentum, µ is the reduced mass of the diatomic

molecule, Tex is defined as the excitation temperature, and r is the mean separation of the

molecule. The molecules can also be observed in isotopologues: 13CO, 12C16O, 12C18O, and
13C16O, which have different optical depths1. 13CO emission lines are very useful to measure

the column density of gas along the line of sight as such an emission line is optically thin i.e.,
13CO emission line comes out from all the layers because of its very low abundance.

To map the column density in molecular clouds, one of the widely used methods is the dust

extinction mapping in near-infrared (Lada et al., 1994, 1999). The extinction is empirically

proportional to the column density2 of the cloud. The typical value of dust-to-gas mass ratio

is 1 : 100 (Goldsmith et al., 1997). Clumps generally have a higher ionization fraction, on the

order of 10−4 (Ruffle et al., 1998) and exhibit a visual extinction corresponding to a column

density of ∼ 3 × 1021 cm−2. Whereas, cores have a lower ionization fraction, on the order of

10−7 and exhibit a visual extinction corresponding to a column density of ∼ 8 × 1021 cm−2

as these regions are self-shielded from incoming UV radiation. Dust (of typical size of ∼ 0.1

micron and primarily made up of silicates and graphites) also plays an extremely pivotal role to

determine the column density and the mass of the embedded dense cores along the line of slight.

Dust absorbs photons emitted by young stars embedded in the cloud and re-radiates these

photons at longer wavelengths. Dust thermal radiation peaks at a submillimeter wavelength

λ∼100−300 µm and radiates as a modified black body. However, the dust continuum emission

(in millimeter- submillimeter wavelengths) provides no kinematic information. The CO traces

the large-scale density and velocity dispersion of molecular gas. Dust is a major coolant of

molecular clouds, along with the line emission from CO, C+, and other molecules and atoms.

1Optical depth is a measure of how much absorption of the line occurs as it passes through the cloud.
2It is a measure of the integrated amount of matter per unit area in the object of interest along a particular

line-of-sight.
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Figure 1.1: The variation of the density distribution in the collapsing cloud with radial dis-
tance at different times (cgs units). The curves are labelled with the times in units of
1013 sec ≈ 0.3 Myr since the beginning of the collapse. Note that the density distribution
closely approaches the form ρ ∝ r−2 (Larson, 1969).

Nevertheless, CO is a good tracer for number densities near and below ∼ 103 cm−3. For tracking

down the dense star-forming cores (n ≳ 104 cm−3), nitrogen bearing species, such as NH3

and N2H+, are much preferred as these molecules are excited at such high densities and low

temperatures (T ≤ 20 K).

1.3 Microphysics of star formation

Molecular clouds are highly non-linear systems with many ongoing physical processes e.g.,

self-gravity, magnetic fields, nonideal magnetohydrodynamic effects (i.e., dissipation mecha-

nisms of magnetic fields), thermal pressure, turbulence, interstellar radiation field, etc. In this

section, we briefly discuss the current understanding of how stars form.

1.3.1 Gravitational collapse to star-forming cores

Star formation starts when some of the clumps (over-dense regions of GMCs) reach a critical

mass e.g., Jeans mass MJ ≡ c3
s/

√
G3ρ (Jeans, 1929), such that sound wave crossing time

becomes greater than the free-fall time tff ≡ 1/
√

Gρ, thus allowing it to collapse under their

own gravity, where cs, G, and ρ denote the sound speed, gravitational constant, and density

of the background medium, respectively. The cause of collapse could be as simple as random
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fluctuations of density within the cloud, or due to an outside influence such as collisions with

other clouds, a supernova, etc. The disturbance in the background medium compresses the gas

and dust to the point where it has enough gravity to collect more material onto itself. Jeans

theory states that this critical mass corresponds to the shortest wavelength for gravitational

fragmentation, which is known as the Jeans length λJ ≡ cs/(
√

Gρ). In simple words, any

region of lengthscale greater than Jeans length λJ (or equivalently, mass greater than Jeans mass

MJ), is more likely to collapse under its self-gravity unless there are some other stabilizing

forces present in molecular clouds (as discussed in the following sections 1.3.2 and 1.3.3).

According to Jeans theory, the clouds are initialized with a uniform density and temperature,

infinite spatial extent (e.g., no defined boundaries), which is not the case in a real scenario. An

alternative to an isothermal uniform system is that of a thin sheet. The thin disk approximation

yields a vertical half-thickness (as measured above and below the midplane of the thin sheet)

at which thermal pressure can halt further one-dimensional compression. In this thesis, we

explore the thin-disk approximation in Chapter 2 and 3.

In the current framework of star formation, it is realized that the isothermal cores under-

going gravitational collapse develop a density profile ρ ∝ r−2 (Larson, 1969; Bodenheimer &

Sweigart, 1968, see also Figure 1.1). The modern standard picture of isolated star formation

is introduced by Shu (1977); Shu et al. (1987). Typically collapse of a prestellar core is self-

similar with an initial singular isothermal sphere (SIS) with a density ρ = c2
s/(2πGr2). The in-

nermost densest part collapses faster due to free-fall, while the outer region follows ρ ∝ r−2. If

a self-gravitating isothermal gas cloud evolves subsonically before undergoing collapse which

denotes it is not very far from the hydrostatic equilibrium, the outer region of such a cloud can

tend to retain similar density profiles (ρ ∝ r−2) as that of an equilibrium state. As the den-

sity of the inner region increases, the opacity increases as well. Finally, when the temperature

of the central region rises enough so that the internal energy is sufficient to halt the collapse.

This is the formation of the first hydrostatic core (or first protostellar core of n∼1010 cm−3,

M∼10−2 M⊙, R≤ 1014 cm ∼ 104 R⊙), which is mostly composed of hydrogen molecules. After

the first core forms, the outer mass shells continue to fall in at a velocity corresponding to

free-fall i.e., |v| ≡ (2GM/r)1/2. Just after the hydrostatic core forms, an expansion wave moves

outward at the speed of sound speed and the gas behind it undergoes free-fall onto the collapsed
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core. Later on, Terebey et al. (1984) extended the self-similar SIS model, adding rotation, while

Galli & Shu (1993a,b) studied the case with magnetic fields but for a non-rotating core. The

central hydrostatic core steadily builds up its mass from the surrounding infalling envelope and

has a steady-state accretion rate Ṁ = 4πρr2|v| ≃ 0.975c3
s/G (Shu, 1977). The density profile

within the expansion wave acquires ρ ∝ r−3/2. When the temperature of the hydrostatic core

reaches ≳ 2000 K, it triggers the dissociation of H2 molecules. So, the hydrostatic core loses

internal energy and pressure due to the dissociation of H2 and the self-gravity takes over once

again. This is called second collapse, which is the birth of a protostar. Observations indicate

that the angular momentum, or equivalently, the rotational energy, of cores is indeed small and

is often characterized by the ratio of the rotational energy to the gravitational binding energy,

often defined as βrot ≡ Ω
2
rotR

3/(3GM) (typical median value is βrot = 0.02 for a uniformly ro-

tating, constant density sphere as found by Goodman et al., 1993), where Ωrot is the rotational

speed of the core, R and M are the radius and mass of the core, respectively. During the second

collapse, most of the gas in the first core is distributed around the newly born protostar with

angular momentum that is sufficient to allow the centrifugal force to balance gravity. There-

fore, most of gas in the first core quickly transforms into a rotationally supported disk. Later,

in Section 1.4, we discuss the formation and evolution of the star-disk system in detail.

1.3.2 Magnetic fields

The role of the magnetic field in regulating efficiency of star formation in molecular clouds has

been greatly explored over the decades. Magnetic pressure and tension forces can provide sup-

port against the self-gravity of the cloud. The ratio of mass to magnetic flux (M/Φ) determines

the relative importance of magnetic and gravitational field strength in the evolution of molecu-

lar clouds and their star-forming cores. Various authors (Mestel & Spitzer, 1956; Strittmatter,

1966; Mouschovias & Spitzer, 1976; Nakano & Nakamura, 1978) have shown that there ex-

ists a critical mass-to-flux ratio (M/Φ)crit (= (2πG1/2)−1. For clouds with (M/Φ) < (M/Φ)crit

(i.e., normalized mass-to-magnetic flux ratio µ = (M/Φ)/(M/Φ)crit < 1) are called subcriti-

cal clouds. The subcritical clouds are magnetically dominated and cannot collapse as long as

flux-freezing prevails. However, clouds with (M/Φ) > (M/Φ)crit (or µ > 1) are supercritical

clouds and are gravitationally unstable and prone to collapse even under flux-freezing. The
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subcritical clouds are thought to be flattened with the long axis perpendicular to the direction

of the background magnetic field and are stable against fragmentation as the magnetic pressure

is sufficiently strong to halt the gravitational collapse.

Most of the interstellar medium is composed of neutral atoms/molecules. However, the

magnetic force is felt only by the charged species (e.g., ions, electrons, charged dust grains) that

are gyrating around the magnetic field lines. The typical observed ionization fraction (primar-

ily cosmic-ray ionization) in molecular clouds can be parameterized as 10−7 (nn/104 cm−3)−1/2,

where nn is the neutral number density (nn ≃ n, where n is total number density including all

charged and neutral species). In the deep interiors of GMCs and/or in the protostellar disks,

the ionization fraction is fairly low, typically of the order of ∼10−10 to 10−12 i.e., the abundance

of charged species is extremely low. So, why the magnetic field is even relevant at all in an

overwhelmingly neutral gas? A charged species is able to induce a dipole moment on the neu-

tral via interaction potential V(r) = −Zαne2/(2r4), where αn is the polarizability of the neutral,

e is the electron charge, Z is the atomic number, and r is the distance between the charged

and neutral species (Draine, 2011). Thus the charged species increases the effective collisional

cross-section (calculated in the Langevin approximation) and by imparting a dipole moment

on the neutral. So, collisions between neutrals and charged species is what makes the neutrals

feel the Lorentz force. In the astrophysical community, the ideal MHD approximation (or flux-

freezing) corresponds to such a state when the magnetic field lines are completely frozen into

the matter, i.e., the neutrals are fully coupled to the charged species. For the astrophysical gas

in ISM to be in the ideal MHD limit, it has to be sufficiently ionized and it behaves as a perfect

conductor (with infinite conductivity). In the infinite conductivity limit, the self-inductance

keeps the magnetic flux within any comoving contour fixed, so we can think the particles as

moving with the field lines. In the ideal-MHD limit, the neutrals collide often enough with

the charged particles such that they are also perfectly tied (comoving) with the field lines. If

the collision rate of neutrals with ions is not so high, then the nonideal MHD effect of the

ambipolar diffusion will occur (see Section 1.3.2.1).

Despite substantial progress both theoretically and observationally, the debate still persists

as to how magnetic support (Mouschovias, 1991) can limit the star formation efficiency, or how

magnetic flux can be redistributed (via nonideal MHD effects) such that the star formation can



1.3. MICROPHYSICS OF STAR FORMATION 11

take place. The best way to converge to a unique answer to this long-standing controversy is to

directly measure the magnetic fields inside molecular clouds, which is not easy (as discussed in

Section 1.3.2.2). So, the dynamical importance of the magnetic field in evolution of the clouds

can be debated. Hence, the astronomers need to observe the indirect tracers of magnetic fields

and compare with theoretical predictions.

1.3.2.1 Nonideal magnetohydrodynamic effects

Nonideal MHD effects result from the imperfect coupling between charged species and neu-

trals3 when the gas is very weakly ionized. The ISM plasma consists of electrons, ions, and

charged dust grains. However, in this thesis we keep aside the nonideal MHD effects of the dust

grains. Interestingly, in molecular clouds, inter-species collisions are strong enough that the

friction forces are primarily due to elastic collisions with the collision timescales as follows:4,

τen = τne
ρe

ρn
= 1.21

(me + mn)
ρn⟨σw⟩en

, (1.1)

and

τin = τni
ρi

ρn
= 1.23

(mi + mn)
ρn⟨σw⟩in

, (1.2)

where ⟨σw⟩sn is the average collision rate between charged species ‘s’ e.g., electrons of mass

me and ions of mass mi (singly ionized Na and HCO of mass 23 and 25 amu respectively,

where 1 amu = 1.6726 × 10−24 g) with neutrals (H2 molecules) of mass mn. The reduced mass

µ = msmn/(ms+mn). Here, ρi, ρe, and ρn denote density of ions, electrons, and neutrals, respec-

tively. The pre-factors of order unity in Equations (1.1) and (1.2) account for the presence of

the He molecule which has a lower polarizability that prolongs the slowing-down time relative

to the value what it would have if only s−H2 collisions are considered. Also, it is worth noting

that, the density of the charged species (electrons and ions) ρi + ρe ≃ ρi is many orders of mag-

nitude smaller than the neutral density ρn, so its contribution to self-gravity can be neglected.

Assuming the force balance between the Lorentz force and collisions with neutrals, conductiv-

ity becomes a tensor (having non-zero off diagonal components) (Norman & Heyvaerts, 1985;

3Here, i and e represent charged species: ion and electron, respectively; n represent neutral species.
4Note that the timescale of ion-neutral collision is typically many orders of magnitude smaller than that of

neutral-ion collision τni. Similarly, the electron-neutral collision timescale is also smaller than that of neutral-
electron collision by many orders of magnitude.
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Wardle & Ng, 1999; Wardle, 2007; Dapp et al., 2012) in the nonideal MHD limit. Thereby,

it gives rise to three nonideal MHD effects, namely, Ohmic dissipation (OD), Hall effect, and

ambipolar diffusion (AD). In principle, all three nonideal MHD terms can be mathematically

derived from the generalized form of Faraday’s law (see details in Pandey & Wardle, 2008)

which states the evolution of magnetic field as follows:

∂B
∂t
= ∇ ×

[
(v × B) − ηOD(∇ × B) − ηH

[
(∇ × B) ×

B
B

]
+ ηAD

[
(∇ × B) ×

B
B

]
×

B
B

]
. (1.3)

Here, v is the bulk velocity such that v = (ρivi + ρnvn)/ρ, where ρ = ρi + ρe + ρn ≃ ρn is the

bulk density; vi, ve, vn denote the ion, electron, and neutral velocity, respectively, and B is the

magnetic field strength. The first term on RHS of Equation (1.3) represents the advective term.

If all the other terms are zero then Equation (1.3) expresses magnetic flux conservation within

any moving fluid element. The second, third, and fourth terms represent the three nonideal

MHD terms: Ohmic dissipation (OD), Hall effect (H), and ambipolar diffusion (AD), respec-

tively. The current density can be defined as J = c∇ × B/(4π), where c is the speed of light.

The magnetic diffusivities for Ohmic dissipation, Hall effect, and ambipolar diffusion are as

follows:

ηOD =
c2

4πσc
, ηH =

cB
4πene

, ηAD = v2
Aτni =

B2τni

4πρn
, (1.4)

respectively, where ne, e, and vA = B/
√

4πρ are the electron number density, electron charge,

and Alfvén wave speed and all the parameters are described earlier. Here, the Ohmic conduc-

tivity can be calculated as σc =
∑

s=e,i σs, where σs = nsq2
sτsn/ms. Here, ns is the number

density of each charged species (ne ≈ ni due to charge neutrality), qs is the charge of each

species, ms is the mass of each species, and τsn is the collision time of each charged species

with neutrals (see later in Section 2.2.1 and 2.6.2).

To grasp the physics behind the nonideal MHD effects, we need to intuitively understand

the microscopic velocity drifts between species. The tiny electron-ion velocity drift |ve−vi| that

maintains the magnetic field, is typically of the order of 10−6 km s−1 that is much smaller than

the characteristic speed in the molecular cloud, for example the sound speed cs is typically of

the order of 10−1 km s−1. Therefore, the plasma consisting of ions and electrons can be treated

as single fluid. The electron-neutral collisions are the primary drivers to the Ohmic resistivity
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which knocks the electrons and the electrostatically bound ions off from their gyration around

the twisted field lines and causes dissipation of current. In the case of Ohmic dissipation, there

is no species left which is frozen in the field unlike the other two cases where there is always

at least one species that is still partially frozen in the field lines (for example, electrons for Hall

effect; ions5 and electrons for AD). In the case of ambipolar diffusion, ions can efficiently inter-

act with neutrals despite the low ionization fraction because their electromagnetic cross-section

is much bigger than the actual geometric cross-section as discussed in the earlier section. The

neutrals exert a collisional force to ions and exchange momentum with them (while momen-

tum exchange to the electrons is negligible because of electron’s low inertia). So, there exists

a drift velocity between ions and neutrals, |vi − vn| (given that vi ≃ ve is assumed and OD is

negligible on the scales of interest), that reaches a terminal state when the collisional force felt

by ions balances the magnetic forces on ions. The neutrals slip past the ions which are gyrating

around the field line, and fall towards center of gravity. This is known as ambipolar diffusion.

Whereas, the magnetic field moves (at the speed of ions) in by a lesser amount. It is called dif-

fusion because the magnetic field is diffusing outward relative to the neutrals. Lastly, the Hall

effect (Kunz & Mouschovias, 2009) is caused by the drift between the positively and negatively

charged species (including dust). Here, for the completeness, we briefly discuss the Hall effect.

However, this thesis only includes the study of Ohmic dissipation and ambipolar diffusion. In

the context of a rotating collapsing core, the Hall current jH = nee|vi − ve| induces a toroidal

magnetic field depending on whether the mean field is parallel or anti-parallel to the rotation

axis of the collapsing core. The Hall effect is not really diffusion in the usual dissipative sense.

The Hall effect only rotates the magnetic-field fluctuations (arising due to oppositely charged

species caused by their disparate inertia) about the mean field and does not damp the magnetic

energy.

The relative significance between the Lorentz force and the neutral drag is characterized by

the Hall parameter, which is the ratio between the gyrofrequency of the charged species and its

momentum exchange rate with neutrals, having the following form:

βs =
|Zs|eB

mscγsρn
, (1.5)

5Although ions are less likely to be frozen in the field than the electrons due to their larger inertia.
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where s = i, e for ions, electrons, |Zs| is the atomic number of the charged species, ms is the

mass, e the is electron charge, B is the magnetic field strength, c is the speed of light, ρn is

neutral number density. Here, γs is rate coefficient of momentum transfer either between ion

and neutral or electron and neutral as follows:

γs =
⟨σw⟩sn

(mn + ms)
, (1.6)

where ⟨σw⟩ns is the collision rate6. Note that

γi = 1/(ρiτni) = 1/(ρnτin) , (1.7)

γe = 1/(ρnτen) = 1/(ρeτne) . (1.8)

Additionally, it follows that
ηH

ηOD
= βe ,

ηAD

ηH
= βi . (1.9)

The definitions of Ohmic and ambipolar diffusivities in terms of γs follows:

ηOD =
c2meγeρn

4πe2ne
, ηAD =

B2

4πγiρiρn
, (1.10)

which can be derived from Equation 1.4 using Equation 1.1, 1.2, 1.8, and 1.7. The physical

significance of the Hall parameter βs is that charged species ‘s’ is strongly coupled with neutrals

if βs ≪ 1, and on the other hand, is strongly tied to magnetic fields when βs ≫ 1. As electrons

are much more mobile than the ions because of inertia, implying βe ≫ βi. Therefore, Ohmic

resistivity is the dominant nonideal MHD effect when βi ≪ βe ≪ 1, where both electrons

and ions are coupled to the neutrals (complete break-down of flux-freezing). The Hall effect

dominates when βi ≪ 1 ≪ βe, where electrons are coupled to (frozen in) the magnetic field

and ions are coupled to the neutrals. Whereas, AD dominates when 1 ≪ βi ≪ βe, where both

electrons and ions are coupled to the magnetic field. Since the Hall parameter βs ∝ B/ρ, we see

that Ohmic resistivity dominates in high density regions with weak field, ambipolar diffusion

6Note that the collision rate takes into account of the polarization effects. For example, ⟨σw⟩sn =

2πZse(αN/µ)1/2, where αN is the polarizability coefficient (Osterbrock, 1961; Draine, 2011)
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dominates in low density regions with relatively stronger field. Lastly, the Hall regime lies

in between. Keeping in mind, if the coupling becomes perfect such that it possesses infinite

conductivity (σc → ∞) or negligible drift velocities (τni, τen → 0), the nonideal MHD regime

returns to the ideal-MHD case.

In the context of star formation, as the gravitational collapse proceeds and the thermal pres-

sure supported first hydrostatic core (of density around ρ ≳ 10−13 g cm−3 or n ≳ 1010 cm−3)

forms. The magnetic resistivity appreciably increases within the first core due to its high den-

sity In the first core, without magnetic diffusion (as seen in the ideal MHD simulations) the

typical value of plasma-β = 8πρc2
s/B2 is ∼ 10 (strong magnetic field which is inherited from

the prestellar core). Whereas for the nonideal MHD simulations, β becomes of the order of

∼ 104. Later on, when the density further increases (ionization fraction decreases) during the

second collapse (formation of Class 0 protostar), most of the gas in the first core is distributed

around the protostar and forms a rotationally supported disk. The ambipolar diffusion is domi-

nant nonideal MHD term for 1010 < n < 1012 cm−3. The Ohmic dissipation becomes dominant

at n ∼ 1012 − 1015 cm−3, especially within protostellar/protoplanetary (PD/PPD) disks. How-

ever, the ambipolar diffusion is still not negligible in this regime. The Hall effect is important

in between these two regimes of a protoplanetary disk, particularly ∼ 1 − 10 au from the cen-

tral protostar (Kunz & Mouschovias, 2009, 2010). Nonideal MHD effects are unavoidable for

the evolution of a PPD, as the gas is weakly ionized (∼ 10−6 − 10−9) in the densest regions

of molecular cloud cores (Caselli et al., 1998, 2002). We cannot explore the deep nonlinear

physics in the inner and outer disk without inclusion of the nonideal MHD effects (dissipation

and diffusion of magnetic flux) on the magnetic field. For the case of a PPD, all three non-

ideal MHD effects: ambipolar diffusion, the Hall effect, and Ohmic dissipation are important.

Because the PPD possesses a wide variety of ionization sources, temperatures, and densities,

which lead to a wide diversification of ionization fractions, collision rates, and plasma−β. We

still have very limited knowledge about the early protostellar stages of circumstellar disks. Ob-

servations of these very early stages of disk formation are challenging because such collapsing

cores are surrounded by a dusty envelope. Future three dimensional nonideal MHD global

simulations are required to be carried out to explore its effect on the star formation and disk

evolution. The relative strengths of the nonideal MHD effects determine the fate of protostellar
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disk formation, as well as the long-term evolution of the disk. The Chapter 2 and 3 of this thesis

present the consequences of Ohmic dissipation and ambipolar diffusion in core formation and

disk evolution.

1.3.2.2 Measurements of magnetic fields

The magnetic fields in the dense ISM can be measured in two primary ways. The first one

is using the Zeeman splitting of spectral lines of paramagnetic species (having an unpaired

electron). The line shift induced by Zeeman effect ∆νz ∝ µBB/h, where µB is the Bohr

magneton, can be observed either in absorption or emission spectra (Crutcher & Kemball,

2019) of HI (densities ∼ 1 − 100 cm−3), OH (densities ∼ 102 − 104 cm−3), and CN (densi-

ties ∼ 105 − 106 cm−3). In principle, the Zeeman effect can measure both the line-of-sight

(BLOS or B∥) and plane-of-sky (BPOS or B⊥) components7. The splitting in the BLOS component

is seen in Stokes parameter V (circular polarizations of π lines) associating with amplitude

∝ (∆νz/∆ν)BLOS, where ∆ν is the full line width at half intensity (or the characteristic width

of the spectral line). Whereas the splitting in BPOS component is seen in Stokes parameters Q

and U (linear polarizations) with an amplitude ∝ (∆νz/∆ν)2BPOS (as described in the reviews

by Crutcher & Kemball, 2019); (see also the discussions on Stokes parameters in Tinbergen,

1996). However, the splitting ∆νz due to Zeeman effect is observationally unmeasurable since

∆νz ≪ ∆ν. So, only the LOS field strength and direction can be observationally recovered

from the line splitting, which is more like a first-order effect. However, for an emission line

with a large velocity width either due to thermal or dynamic broadening, the Zeeman effect

widens the line width (or in other words the splitting is veiled under the broadened linewidth),

and the strength of the magnetic field B∥ can be inferred from the polarization measurements

of Stokes parameter V (Crutcher et al., 1993; Robishaw, 2008; Han, 2017; Crutcher & Kem-

ball, 2019). This is like a second-order effect. Since the Zeeman effect is detected using the

Stokes V spectrum, a precise definition of this parameter is necessary to be carried out in or-

der to correctly assign the direction of the probed line-of-sight magnetic field (see Robishaw,

2008, and references therein). The polarized maser emission arises from the dense regions with

high brightness temperature (due to population inversion) and densities e.g., OH emission from

the ultra compact HII regions, H2O from outflow shocks and protostellar disks, and CH3OH

7LOS and POS mean line-of-sight and plane-of-sky, respectively.
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found in the shocks from high-mass star forming regions (Class I and II) (Caswell et al., 2011;

Cyganowski et al., 2009; Vlemmings et al., 2006). Another way is to measure the plane of sky

component of the magnetic field B⊥ using the Chandrasekhar-Fermi (CF) method (Davis, 1951;

Chandrasekhar & Fermi, 1953), by comparing the fluctuations in the direction of B⊥ with those

in the velocity field δB/B0 ∝ δv/vA, which leads to BPOS = f
√

4πρ δvN,T/δθ (see the reviews by

Heiles & Crutcher, 2005), where B0 is the background magnetic field and vA is Alfvén speed,

δvN,T is the non-thermal linewidth in gas species taken to trace the regions of similar density

from the dust polarization, δθ is the dispersion in polarization angle, f is typically 0.5 used as a

correction factor (Ostriker et al., 2001) due to integration effects. Interstellar dust polarization

is another key mechanism to trace the magnetic field. According to the magnetic alignment

mechanism (Davis & Greenstein, 1951; Purcell, 1979), elongated (non-spherical) dust grains

spin around the axes parallel to the background magnetic field (i.e., perpendicular to its major

axis). The alignment of dust grains (see Figure 1.2) leads to dust thermal emission (in sub-

millimeter wavelengths) and absorption (in near infrared wavelengths) with electric field (net

polarization) perpendicular and parallel to the local magnetic field, respectively. Although the

polarization maps reveal a large scale, ordered magnetic field direction in the plane of sky, they

provide no useful information on the field strength. The CF method is a means of estimating

BPOS from the polarization maps of the dust emission or extinction. Emission line (non-maser

lines) polarization in the ISM can also arise from the Goldreich-Kylafis (GK) effect (Goldreich

& Kylafis, 1981), which causes the molecular line emission to be linearly polarized either paral-

lel or perpendicular to the plane-of-sky component of magnetic field. However, the ambiguity

on polarization direction complicates the interpretation. In the diffuse ISM, magnetic field

strengths are also obtained by Faraday rotation with results consistent with Zeeman observa-

tions. Faraday rotation is the rotation of linear polarization due to interaction with the electrons

along the line-of-sight is widely used to study galactic magnetic fields using linearly polarized

emission from pulsars and extragalactic compact sources (e.g., Brown et al., 2007; Van Eck

et al., 2011) or the magnetic field of strongly ionized regions within the Galaxy (Harvey-Smith

et al., 2011). However, the use of this method for the case of star-forming clouds is quite rare

as the rotation measure of the Faraday effect is extremely small due to low abundance of free

electrons in the dense molecular cloud core.
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Figure 1.2: Polarization of dust emission in the microwaves and of starlight at optical wave-
lengths resulting from the alignment of the dust grains with the long (major) axis perpendicular
the direction of the magnetic field (Tassis et al., 2018).

1.3.2.3 Density scaling of magnetic fields

For gravitationally contracting interstellar clouds and star-forming cores, the relation between

magnetic field strength (B) and gas density (ρ) of the cloud can provide key insights to the

dynamical importance of magnetic fields in the evolution of molecular clouds and star forma-

tion. The B − ρ relation allows us to study formation mechanisms of the cores (Crutcher et al.,

2010; Das et al., 2021; Myers & Basu, 2021; Auddy et al., 2022) whose observed form could

be interpreted in terms of effective flux-freezing at higher densities and significant neutral-ion

drift (breakdown of flux-freezing) at low densities. Due to a significant electrical conductivity

of the interstellar gas (Mestel & Spitzer, 1956) the magnetic flux is frozen in the matter and

can prevent fragmentation and spherical collapse. There is still persisting debate on the testable

predictions of the B − ρ relation in the flux-freezing limit (i.e. conservation of magnetic flux)
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Figure 1.3: Set of diffuse cloud and molecular cloud Zeeman measurements of the magnitude
of the line-of-sight (LOS) component of magnetic field strength Bz plotted against number
density of gas n(H) = n(H1) or 2n(H2) for H1 and molecular clouds, respectively. The solid
blue line shows the most probable maximum values for Btot(nH) determined from the plotted
values of BLOS of Crutcher et al. (2010). The light blue shading above and below the solid
blue line represents the ranges given by acceptable alternative model parameters to indicate the
uncertainty in the model (see more details in Crutcher, 2012).
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for a self-gravitating magnetic cloud. According to theory argued by Mestel (1965), if a weakly

magnetized self-gravitating cloud collapsing spherically and isotropically, the scaling between

the field strength and the density follows B ∝ ρ2/3. The above is true for a quasi-spherical col-

lapse where both the mass M and the magnetic flux Φ are conserved i.e., M ∝ ρR3 = constant,

Φ ∝ BR2 = constant, implying M ∝ Φ, given that R defines the cloud size. Tritsis et al.

(2015) also emphasized that B ∝ ρ2/3 can only be realized under isotropic contraction and is

unique for a spherical core. However, Mouschovias (1976a,b) presented a more self-consistent

theory of non-homologous quasistatic isothermal contraction of a self-gravitating isothermal

interstellar cloud bounded within a hot and tenuous medium and tied with a dynamically im-

portant magnetic field. According to this theory, the plasma−β = 8πρc2
s/B2 , i.e., the ratio

of thermal pressure to magnetic pressure, remains constant during contraction. Eventually, the

cloud flattens due to self-gravity along the field lines and settles itself into a vertical hydrostatic

equilibrium to form a thin-sheet like structure. The extent of the flattened sheet of surface den-

sity Σ depends on the strength of the magnetic field, gravitational force, and external pressure.

Hence, for such a non-homologous collapse, mass M (∝ ΣR2) and the magnetic flux Φ (∝ BR2)

are conserved, which implies B ∝ Σ. Also, note that for such an isothermal self-gravitating

sheet in vertical hydrostatic equilibrium, ρc2
s ∝ πGΣ2/2 implies Σ ∝ ρ1/2. It is straightforward

to show that this yields B ∝ ρ1/2 for such a non-spherical isothermal contraction tied with rel-

atively strong fields. Later on, Crutcher et al. (2010) presented a revised B − ρ relation for a

larger sample of both low-density diffuse clouds and high-density molecular clouds with the

magnetic field values ranging from a few µG to mG obtained from the Zeeman surveys of HI

(atomic hydrogen), OH, and CN spectral lines. Figure 1.3 shows the Zeeman measurements

of the line-of-sight component of B and the corresponding uncertainty of 1σ magnitude plot-

ted against the number density, combining the atomic hydrogen density n(HI) and molecular

hydrogen density n(H2) (Crutcher et al., 2010). The curve in Figure 1.3 consists of a flat part

i.e., B ∝ ρ0 at low-density (1 cm−3 ≲ nH ≲ 300 cm−3), and a power-law scaling B ∝ ρ2/3 at

high density (10 cm−3 ≲ nH ≲ 107 cm−3). Crutcher et al. (2010) interprets that the approxi-

mated flat region represents the initial accumulation of the gas along field lines, which results

in a gradual increase in density while keeping the magnetic field unchanged until it reaches a

certain density (break-point) where the two different profiles of power-law join. Eventually,
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when the gas accumulates enough mass that is sufficient to undergo a self-gravitating collapse,

it leads to a more isotropic spherical contraction with the density scaling of the flux-frozen field

as B ∝ ρ2/3. The magnetic field is therefore considered to be too weak to affect the spherical

morphology of the collapse.

Li et al. (2015) carried out three-dimensional supersonic turbulent (see Section 1.3.3) ideal

MHD simulations with weak and strong magnetic fields to justify the B ∝ ρκ scaling. Li et al.

(2015) found that their simulated values of κ are 0.70 ± 0.06 and 0.57 ± 0.05 for the strong

and weak field models, respectively. Nonideal MHD effects also have a influence on the B − ρ

relation of star-forming cores. Numerical simulations (Fiedler & Mouschovias, 1993; Ciolek

& Mouschovias, 1994; Tritsis et al., 2022) of ambipolar diffusion driven gravitational collapse

predict κ < 1/2. Such simulations impose a dynamically important magnetic field that leads to

flattening along the magnetic field direction, and subsequent evolution primarily perpendicular

to the field. In the astrophysical community, the more expected conclusion is that for the weak

magnetic field the density dependence is somewhat closer to κ = 2/3 as predicted by the weak

field spherical collapse theory (Mestel, 1965, 1966) and for the case of moderately strong large-

scale magnetic fields it is B ∝ ρ1/2. In Chapter 3, we explore the magnetic field and density

relation for the prestellar cores that essentially links the theoretical prediction and observational

findings and shows the imprints of the effect of nonideal MHD on core formation.

1.3.3 Effects of turbulence

In the field of star formation, there has been an ongoing debate over which mechanism between

magnetic field and turbulence is more important for driving the fragmentation of molecular

clouds and formation of stars. In simple words, turbulence means disruption in the laminar

or streamlined flow of a fluid. Quantitatively, turbulence is characterized by the Reynolds

number, R which is essentially the ratio of the inertial to viscous forces, and can be written

as R ≡ LV/ν, where L and V are the characteristic length and velocity scales of the flow and

ν is its kinematic viscosity (Frisch, 1995). If the Reynolds number increases either due to a

sufficiently small viscosity and or a sufficiently large combination of characteristic length and

velocity scale, the flow can become turbulent or chaotic. As a result, it forms turbulent eddies

of various lengthscales within the fluid. Within turbulence, the energy is generally injected on
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the largest scales (big whirls) and then the energy flow cascades down to the smallest scales

(small whirls) via nonlinear interaction between different size eddies. The smallest eddies are

affected by molecular diffusion and viscous dissipation (which converts the kinetic energy of

turbulence to thermal energy) when the inertial length scale of an eddy becomes comparable

to the viscous dissipation scale. There have been many theories on the turbulence-regulated

star formation (Elmegreen & Scalo, 2004; Hartmann, 2001; Palla & Stahler, 2002; Federrath

& Klessen, 2012; Padoan & Nordlund, 2002), which consider that turbulence is a key physical

parameter in the star formation process. Such large-scale turbulent motions are ubiquitous in

stellar outflows and jets, and within the interstellar medium (Elmegreen & Scalo, 2004), and

molecular clouds and can be either supersonic or subsonic. Generally, the Mach number is

used to quantitatively define a supersonic (Mach number ≳ 1) and subsonic (Mach number

≲ 1) flow. Supersonic turbulence generally decays within a dynamical time scale, whereas the

subsonic one sustains over a few dynamical timescales. The fundamental question is whether

turbulence induces or inhibits the star formation process. The answer is turbulence can act in

both ways. If the turbulent motions within a supercritical cloud are able to provide sufficient

balance (just like an internal pressure) against gravity, then the supercritical cloud will remain

stable against collapse within the free-fall time. However, a supercritical cloud would collapse

if the turbulence dissipates (typical dissipation time scale ≈ d/vlos, where vlos is line-of-sight

velocity and d is diameter of the molecular cloud) within a single crossing time of eddy-like

structures traversing the diameter of the molecular cloud (Mestel & Spitzer, 1956). The su-

personic turbulent motions induce compressions that gives rise to high density fluctuations and

radiative shocks that drain its energy. On the other hand, large scale turbulence with subsonic

motions acts like an external pressure and provides global support by stabilizing the cloud

against collapse.

Generally, large-scale flows in the ISM (Hartmann, 2001), supernovae (Klessen et al.,

2005), and stellar feedback (Hayward & Hopkins, 2017) are considered to provide the driv-

ing energy for turbulence in the system. Nonetheless, one major drawback of such turbulence

driven star formation models is the requirement of some continuous physical kinetic energy

input which will drive the turbulence in a system. Realistically such source of constantly pro-

ducing kinetic energy is not sustainable. If the cloud is filamentary (for the case of weak
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magnetic field) as a result of compression primarily due to shocks, it is thought that turbulence

might play an important role in star formation. However, if the cloud is wide enough, then

magnetic field might be more relevant than turbulence in the process of star formation. In

addition, numerical simulations show that turbulence can have an effect on the magnetic field

itself. Specifically, the models of Fatuzzo & Adams (2002); Zweibel (2002) show that turbu-

lence acts to decrease the ambipolar diffusion timescale within a molecular cloud irrespective

of subcritical or supercritical cloud.

1.4 Collapse to a star-disk system

Protostellar disks are formed almost immediately after the collapse of a molecular cloud core

as a natural byproduct of the angular momentum conservation (as described in the reviews

by Bodenheimer, 1991; Larson, 2010). A PPD is generally a flattened rotating accretion disk

around almost all low-mass young stars shortly after their birth. The disk extends for tens

to hundreds of au and is composed of gas and dust particles, and continues to feed its cen-

tral star through accretion. The mass accretion rate Ṁ from disk to star can be inferred from

the accretion luminosity measured by the UV excess that suppresses the intrinsic photospheric

spectrum of a YSO. Moreover, the accretion luminosity originates due to the accretion shock

formed at the stellar surface, which converts the gravitational energy into the heat and radiation

(Calvet & Gullbring, 1998; Gullbring et al., 2000) as discussed later in Chapter 4. In practice,

the accretion rate is commonly inferred from emission line profiles, in particular the Hα line,

whose strength correlates with the accretion luminosity (Muzerolle et al., 1998, 2001). The

inner disk is initially warm and cools later in the “classical T Tauri Star (CTTS)” stage by

possible formation of small dust grains made up of silicates smaller than 0.1µm, along with

graphite and polycyclic aromatic hydrocarbons (PAHs). In the disk, the dust grains agglomer-

ate through collisions. The dust emission from the interferometric and (sub-)millimeter (e.g.,

ALMA, SMA, etc.) observations is the primary diagnostic of PPD structure, for example disk

surface density, disk mass, disk size, and chemical compositions. Constraining the disk mass

from observations is subject to the inaccurate estimation because of the possible presence of

the optically thick dust (emission is self-absorbed) along the line-of-sight (Ko et al., 2020, and

references therein). If the disk emission is not optically thin (transparent), it predicts the lower
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limit of the disk mass, leading to an underestimate of the masses for most disks (Galván-Madrid

et al., 2018; Zhu et al., 2019).

By surveying spectral energy distributions (SEDs) from Spitzer and Herschel observations

in nearby star-forming regions, evolutionary phases of the pre-main sequence stars can be

classified from Class 0 to Class III objects. Any of the objects belonging to any of these phases

are collectively referred as to young stellar objects (YSOs). SEDs suggest that the near-IR and

mid-IR excess emission from the YSOs is essentially an indication of a dusty disk surrounding

a YSO. The fraction of such YSOs containing excess IR emission decreases with the age of the

star-forming region (see reviews by Williams & Cieza, 2011). Class 0 is the initial phase (age

∼ 104 yr), for which the SED peaks at > 100 µm (sub-mm region) with no IR excess (Andre

et al., 1993). Most of the Class 0 objects are detected through their vigorous outflows, which

indirectly reflects the presence of a protostellar disk, as the disk itself at this phase is too small

(≲ 50 au) to be observed and also shrouded by a dusty envelope. During the Class I phase

(age ∼ 105 yrs), the SED is approximately flat or rising into the mid-IR and the protostar is still

veiled by an optically thick residual envelope. Observations suggest that very young embedded

clusters (age ≤ 1 Myr) show disk fractions of the order 70% to 80% (Gutermuth et al., 2008).

During the Class II phase (age ≤ 106 yrs, Mdisk ∼ 0.01 M⊙), optical emission starts to come out

and this is the birth line of the pre-main sequence stars (also known as classical T Tauri phase).

The central T-Tauri star is still surrounded by an optically thick PPD with SED decreasing into

the mid-IR. Stellar black body emission is not yet completely unveiled. Thereafter, the disk

fraction reduces to about 40% to 50% (Lada et al., 2006) for clusters with ages ranging from

2 − 3 Myr. Finally, Class III is the phase (age ≳ 106 yrs, Mdisk ∼ 0.001 M⊙) of evolved T Tauri

stars, or in other words weak-line T Tauri stars (WTTS), with the SED showing little or no

excess IR fraction. This means that accretion is substantially halted. Class III objects might

not have a detectable circumstellar disk as they might be lost due to accretion or dispersal as

the star approaches the main sequence. The disk fraction eventually drops below 20% for about

a 5 Myr old cluster, and by ∼ 8− 10 Myr, excess IR emission (∼ 5%) become exceedingly rare

(Sicilia-Aguilar et al., 2006). During this evolution timeline some material accretes onto the

star, some is lost through outflows and photoevaporation, and some condenses into centimeter-

kilometer sized planetesimals which leads to first steps toward the planet formation.
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1.4.1 Origin of episodic bursts in the early stages of star-formation

In order to understand the evolution of a disk and protostar, it is important to understand the

ongoing physical processes that lead to the protostar and disk growth. In our present view of

low-mass star formation, a protostar in the early stages (in the so-called Class 0 and Class I

phases) is surrounded by a protostellar disk that is deeply embedded in an infalling envelope

from the collapse of a rotating prestellar cloud core. The bolometric luminosity found from the

observations of Class 0 and Class I objects appears to be around one to two orders of magni-

tude smaller than that predicted by the infall rate during the embedded phase. This is known

as the “luminosity problem". On top of that, low luminosities of Class 0 and Class I objects

imply that these protostars have low mass accretion rates, and hence it is difficult to accumu-

late a typical final stellar mass of ∼ 1 M⊙ within the short embedded timescale ∼ few 105 yr,

provided by embedded source statistics. Kenyon et al. (1990) suggested that this disagreement

between the accretion rates inferred from bolometric luminosities and the theoretical embed-

ded phase could be reconciled if the young stars accumulate most of their material in a time

that is short compared to the lifetime of the embedded phase. The general picture of evolution

of pre-main sequence accretion suggests that much of the material added to the central star

from the surrounding disk is done through a series of eruptive bursts (in an irregular periodic

fashion) interrupted by the long periods of relative quiescence (i.e., time span between two

successive accretion bursts), which is known as episodic accretion by the astrophysical com-

munity. Theoretical and numerical models indicate that the episodic bursts occur at all early

stages of star formation as soon as the star-disk system forms. However, it becomes observable

only when the protostellar envelope thins out (essentially from the T Tauri phase).

Recent evidence shows that flares of methanol masers that are the signposts of massive

YSOs, are driven by accretion bursts (e.g., SOFIA observations by Stecklum et al., 2021).

The energetic protostellar jets (of typical speed ∼ 100 km s−1) might be used to trace back

the history of protostellar accretion. Shocked gas from the collimated high-velocity jets can

survive for thousands of years and often propagate even up to a few pc from their driving source

and are powered by disk accretion (Reipurth & Cernicharo, 1995; Reipurth & Aspin, 1997).

Such jets were first observed as a sequence of knots, seen at optical wavelengths, and such

objects are known as Herbig-Haro (HH) objects (e.g., Herbig, 1966, 1977). The origin of the
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chain of knots as found in jets can be attributed to the episodic variation in the mass-accretion

rate (Arce et al., 2007). Vorobyov et al. (2018) show the potential link between the knotty jet

structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster observed by

Plunkett et al. (2015) using ALMA, and episodic accretion in young protostellar disks. Note

that the molecular outflows of typical speed ∼ 10 km s−1, launching radius of 10− 100 au (e.g.,

Alves et al., 2017; Hirota et al., 2017) have a much broader opening angle than jets of typical

speed ∼ 100 km s−1, launching radius of 0.5−7 au (e.g., Chen et al., 2016; Lee et al., 2017) and

are detected through sub-mm emission. This thesis is not focused on the molecular outflows

and jets, rather on the episodic accretion. The prototypical sample of bursts are known as FUor

eruptions (named after the first known example of this kind originated from the FU Orionis

system, e.g., Herbig, 1966, 1977) and EXor (EX Lupi-type) eruptions (e.g., Herbig, 1989,

2008). In one picture of pre-main sequence accretion, FUors and EXors are part of a continuum

of bursts. The physical mechanism of driving these two types of bursts can be different. FUors

are thought to occur mainly in the embedded Class 0/I phase (i.e. protostars with disk and

envelope). EXors would be associated with the disks of T Tauri stars (Class II YSOs). The

FUor bursts are relatively longer and stronger compared to EXor bursts. FUors have an average

duration of ∼ 100 yrs and luminosity of ∼ 100 − 300 L⊙ during their outbursts. The prototype

of this class, the star FU Ori; is slowly fading out since its 1936 outburst (Kenyon et al., 1990,

2000), and it is still in a relatively high state (with high brightening magnitude similar to its

outburst time) at present. Whereas, EXors have a duration of only ∼ 1 − 2 yrs and luminosity

of ∼ few to 10 L⊙ during outbursts (Lorenzetti et al., 2006; Audard et al., 2010), and about

1−2 L⊙ (Herbig, 2008) in their quiescence (including about 0.3−0.5 L⊙ of stellar photospheric

luminosity; Audard et al. (2014)).

During the continuous infall from the envelope, the surrounding cool disk is highly suscep-

tible to gravitational instability (GI). The gravitational instability is a hydrodynamic instability

that arises in a rotationally supported disk when self-gravity of the disk wins over the stabiliza-

tion due to thermal pressure on small lengthscales and due to shear (differential rotation) on

large lengthscales (as discussed in the review by Kratter & Lodato, 2016). The conditions for

fragmentation of a low-mass self-gravitating disk can also be written as a function of local (to a

first approximation) disk conditions. Quantitatively, the gravitational instability is denoted by
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the Toomre-Q parameter (Toomre, 1964) which can be defined as Q = csκ/(πGΣd), also often

called as Toomre-Q instability. Here, cs is the sound speed, G is the gravitational constant,

Σd is surface density of disk, κ is the epicyclic frequency (i.e., frequency at which a radially

displaced fluid element oscillates). In the absence of an external potential, for a Keplerian disk

the epicyclic frequency can be written as κ2 ≡ (2/r)d/dr(r2Ωd) ∼ Ωd
2, where Ωd is the angular

speed of the disk (Armitage, 2011). The growth of perturbations due to gravitational instability

occurs for Q ≲ 1, though more general disturbances (Papaloizou & Savonije, 1991) can grow

whenever Toomre-Q falls below 1 ≲ Q ≲ 2 (e.g., as found from the simulations of Vorobyov &

Basu, 2005a, 2006, 2007, and their series of papers). The Toomre-Q criteria is often simplified

as Q = f (H/Rd)(M∗/Md) for the case of Keplerian protostellar disks (Ωd =

√
GM∗/R3

d). In the

above expression, M∗ and Md denote the star and disk mass, respectively, f is factor of order

unity arising from the disk surface density profile, H and Rd are the vertical length scale and

disk radius, respectively. The surface density can also be rewritten as ∼ Md/R2
d. For a non-self-

gravitating disc in hydrostatic balance, one can use cs/Ωd = H (while for a self-gravitating disk

H = c2
s/(πGΣd)). Noting that, an equivalent but approximate local condition for gravitational

instability is Md/M∗ ≳ H/Rd. In principle, the factor H/Rd is ∼ 0.1 for PPDs. Gravitational

instability is thus likely to occur early, when protoplanetary disks are still massive.

Mass accretion from the envelope onto the protostellar disk takes place in a fairly uniform

(albeit generally declining with time) manner. Whereas accretion from the protostellar disk

onto the central protostar occurs primarily in short but vigorous episodes during which ∼ 0.01−

0.1 M⊙ can be accreted over a time span of ∼ 100 yrs. The following section addresses the

mechanism of transport of matter from the disk to star. These episodes of vigorous accretion

with mass accretion rate ≳ 10−4 M⊙yr−1 manifest themselves as FU Orionis variables (FUor).

Due to the mismatch between the infall and transport rate, the central protostar mass does not

grow at the same rate as the disk mass. Hence, the disk becomes more massive than the central

protostar, which leads to gravitational instability (GI) within the protostellar/protoplanetary

disk (PD/PPD). Generally, the disk gets fragmented into large spiral arms and gravitationally

bound clumps. Afterward, these clumps migrate inward through the spiral arms (e.g., Fig 4

of Vorobyov & Basu, 2006) and fall onto the center, which triggers the vigorous stochastic

accretion bursts. Between two successive accretion bursts (which is quiescent phase), a typical
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Class 0/Class I protostar is characterized by a low mass accretion rate of ∼10−7M⊙yr−1. Most

of the protostar mass (up to 30% − 40% of the final stellar mass) is accreted during the mass

accretion bursts rather than in the quiescent phase between the bursts. The early burst phase

terminates when the infalling envelope has lost most of its gas reservoir. The protostar then

enters in a T-Tauri phase and its subsequent evolution is characterized by a low-level accretion.

To study the effect of gravitational instability extensively in disk evolution, global numerical

simulations are required (Laughlin & Bodenheimer, 1994; Vorobyov & Basu, 2005a,b, 2006,

2007, 2008, 2010, 2015). Later in Chapter 4, we present our self-developed semi-analytic

model of episodic accretion from the disk to star. In Chapter 5, we discuss the characteristics

of episodic accretion bursts as obtained from a global MHD simulation of the star-disk system.

1.4.2 Disk Physics: mechanism of transport

Observations of the classical T Tauri stars (Bouvier et al., 1993) suggest that the specific angu-

lar momentum (total angular momentum per unit mass) for such stars is approximately equal

to j ≡ 4πR2
∗/(5P) ∼ 5.6 × 1016 cm2 s−1 (R∗/2R⊙)2(P/10 days)−1 using their rotation period

(P = 3 − 10 days) and radius (R∗ ≈ 2R⊙), given that star rotates uniformly. On the other hand,

Goodman et al. (1993); Jijina et al. (1999); Caselli et al. (2002) find that the specific angu-

lar momentum for cloud cores is ∼ 5 × 1021cm2 s−1 (R/0.1 pc)2 (Ω/4 km s−1pc−1) provided that

core has a density of ∼ 104 cm−3, size of ∼ 0.1 pc, and velocity gradient of 0.3 − 4 km s−1

as found from NH3 observations. It indicates that the specific angular momentum should

be reduced by 5 orders of magnitude when forming a star from the collapse of a molecular

cloud core. If the angular momentum is conserved through the collapse, which means the

gravity (GM/r2) should balance the centrifugal acceleration ( j2/r3) at the centrifugal radius

Rc ≡ j2/(GM) ∼ 0.06 pc (M/M⊙)−1 ( j/5 × 1021 cm2 s−1)2. It points out that if the angular

momentum is not sufficiently reduced, it prevents the formation of stellar sized objects (as

Rc ≫ R∗), leading to the overall “angular momentum problem” of star formation (Mestel,

1965; Spitzer, 1978; Tomisaka, 2000). Indeed, disks are observed or inferred around at least

some Class 0 and Class I protostars, and mostly T-Tauri (Class II) stars, and even around brown

dwarfs (objects with substellar masses). However, the observed mass ratios between the disk

and central object are typically ∼1 per cent (Andrews & Williams, 2005; Scholz et al., 2006).
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This fact implies that there is an efficient mechanism which drives inward accretion of material

and outward transport of angular momentum that sets in very early during the life of the disk

and even while it is forming. For example, in the case of our solar system, 99.9% of the mass

of the system is at the center and 99% of its total angular momentum is in the planetary orbits.

The following sections aim to discuss the physical processes (magnetic and non-magnetic) of

mass and angular momentum transport during the accretion from disk to star. Disk self-gravity

and the magnetorotational instability (MRI) are the most important dynamical processes in

protoplanetary disks that have been studied in this thesis.

1.4.2.1 Transport in self-gravitating disk

For a self-gravitating disk, the role of gravitational torques is significant in transporting mass

inward and angular momentum outward during different evolutionary stages of a protostellar

disk (Vorobyov & Basu, 2007). In the early phase, when the infall from the surrounding en-

velope is substantial, the disk becomes gravitationally unstable (Q ≲ 1 or in other words the

disk-to-star mass ratio exceeds few times 0.1) and gets fragmented into distinct spiral arms

and embedded clumps. Gravitational torques associated with the spiral arms trigger the clump

infall onto the protostar producing mass accretion bursts that are identified with the observed

Fuor eruptions. In the late phase, when the gas reservoir of the envelope is diminished, the

clear spiral structures weaken out. GI induced spiral structures are replaced by ongoing ir-

regular non-axisymmetric density perturbations, which further decays with time. Global hy-

drodynamic simulations of the protostellar disk (Vorobyov & Basu, 2007) reveals that there is

typically a residual non-zero gravitational torque from these density perturbations. Although at

large radial distances, the gravitational torques are expected to be small due to low gas surface

density and effective axial-symmetry in the envelope. In particular, the net gravitational torque

in the inner disk tends to be negative during first few one-tenth million years (≳ 0.5 Myr) of

the evolution, while the outer disk has a net positive gravitational torque (see Vorobyov &

Basu, 2007, for more discussions). In the later evolution (≳ 0.5 Myr), the spiral distribution of

gravitational torques shows an alternating behaviour in the azimuthal direction such that local

gas patches with positive torque if followed by patches with negative torque. These patches

with the positive and negative torques fluctuate with time. Even though the net global effect of

positive and negative torques appears to exactly cancel out globally, there is in fact a residual
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negative gravitational torque that arises from the density inhomogeneities (i.e.,their effects do

not exactly cancel out) at least within the inner disk (Vorobyov & Basu, 2007).

Numerical simulations of Vorobyov & Basu (2007) suggest that any slight deviation from

axial symmetry due to density fluctuations in a protostellar disk can give rise to gravitational

torques. Observations show the existence of a pronounced non-axisymmetry in disks that are

several Myr old, (e.g., around AB Aurigae, Fukagawa et al., 2004) and (HD 100546, Grady

et al., 2001). Larson (1984) pointed out even a tiny density fluctuation of the order of a few

percent in a self-gravitating disk can generate gravitational torques that can further drive the

sufficient angular momentum transport comparable to what is often obtained via disk viscosity

generated by turbulence. It is an alternative mechanism for transporting angular momentum

through the disk using a simple α− viscosity parametrization as prescribed by Shakura & Sun-

yaev (1973). The disk kinematic viscosity (dynamic viscosity per unit volume density) is

proportional to its temperature that can be written as ν = αc2
s/Ω = αcsH, where α is a dimen-

sionless viscosity parameter, given that the turbulence is subsonic, Ω is the Keplerian orbital

angular velocity, and the disk height H as an upper limit for the size of the eddies generated due

to turbulence in disk gas (Vorobyov et al., 2020). The direct proportionality between viscos-

ity and sound speed implies that an increase in disk temperature causes a higher rate of mass

accretion due to an enhanced viscous mass transfer (and vice versa). Global hydrodynamic

simulations of Vorobyov & Basu (2010) show that a higher rate of mass infall onto the disk

rather than that onto the star (Toomre-Q instability) is a necessary but not a sufficient condi-

tion for disk susceptibility to fragmentation. In regions of a disk where radiative cooling and

heating process occur, the local heating/cooling time also needs to be shorter than a few times

the local dynamical time (∼ Ω−1) such that fragmentation can occur. Heating due to stellar

and background irradiation is quantitatively treated in a way that is opposite to that of radia-

tive cooling, i.e., radiation from the central star and natal molecular cloud hits the surface and

diffuses down to the midplane where it transforms into heat. The cooling time can be param-

eterized as tcool = βΩ
−1
k , where β is dimensionless parameter of order unity, typically depends

on the conditions in the disk, e.g., disk thickness, chemical composition, dust content, etc as

found from the local hydrodynamic simulations of disks (Gammie, 2001; Rice et al., 2003;

Mejía et al., 2005). The above condition of disk fragmentation is often termed as β− cooling
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criterion. Short cooling times allow the disk to radiate away the energy provided by shocks or

turbulent dissipation, such that neither pressure support nor shear suffices to preclude gravita-

tional collapse. Within ∼ 50 AU, the cooling time becomes short enough such that it can induce

fragmentation (see Kratter & Lodato, 2016, and references therein). While at distances of the

order of tens of au, the cooling time is relatively longer than dynamical time. Hence, the disk

might survive in a self-regulated state (in other words, gravitationally stable). Global models of

a self-consistently formed disk by Vorobyov & Basu (2007) shows that it is also self-regulated

in the late phase, so that it is near the Toomre stability limit, with Q ≈ 1.5 − 2.0. Detailed

studies of the disk fragmentation and gravitational torques motivated by recent discoveries are

discussed extensively in the literature (e.g., Vorobyov & Basu, 2006, 2010; Kratter & Lodato,

2016).

1.4.2.2 Magnetic field as a source of transport

A protostellar accretion disk that is dynamically coupled to a weak magnetic field in the sense

that thermal energy exceeds the magnetic energy density i.e., B2
z/(8π) ≲ ρc2

s , where Bz, cs,

and ρ represent the vertical magnetic field, sound speed, and disk density, respectively. Such

a Keplerian disk (where angular speed Ω decreases as orbital radius of the disk increases) is

subject to an instability of shear flows that can likely initiate MHD turbulence. This instability

is often called the magnetorotational instability or MRI (Balbus & Hawley, 1991). Intuitively,

the magnetorotational instability can be understood in the following way. Consider a vertical

magnetic field of the disk that is slightly perturbed radially with a vertical wavelength such

that the radial perturbation varies with height (see also Figure 18 of Armitage, 2015). Thereby,

it now links the fluid elements in the disk at different radii, then the fluid parcel closer to the

central star orbits faster than the fluid parcel further out, which induces a toroidal field com-

ponent. For a fixed magnetic field strength, the disk becomes MRI unstable (Armitage, 2015)

when the separation between two fluid elements exceeds the critical lengthscale of separation

λcrit,MRI = 2πvA/(
√

3Ω), where vA = Bz/
√

(4πρ) is the Alfvén speed. The magnetic tension in

the string like magnetic field line joining two fluid parcels imparts azimuthal forces to both the

inner and outer fluid parcels such that the inner fluid parcel then moves further inward and the

outer fluid parcel moves further outward. This destabilizes the disk. However, the fluid element

going inward does not necessarily fall onto the central star. If we think of the global picture,

https://ui.adsabs.harvard.edu/abs/2015arXiv150906382A/abstract
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then the collective influence of all these different parcels moving back and forth triggers the

turbulent eddies in the disk. Each individual eddy scale acts like an effective mean free path.

Once there are sufficient number of turbulent eddies, these can exchange angular momentum

between the fluid parcels, which makes the inner fluid element rotate more rapidly and outer

fluid element rotate more slowly, just the way friction does. The resulting MHD turbulence

(in the form of eddies) often generates Maxwell stress tensor that result in angular momentum

transport (see reviews by Balbus & Hawley, 1998). That effective friction or turbulent viscos-

ity is the possible reason that drives the some fluid parcels inward eventually by reducing their

angular momentum. When these parcels are accreted rapidly onto the star, it gives rise to an

MRI outburst.

Observations suggest that the thermal ionization in most parts of T-Tauri disks is too low to

allow sufficient magnetic coupling for the MRI to operate. This problem might be mitigated by

invoking non-thermal ionization by cosmic rays (Gammie, 1996), or X-rays from the central

star (Glassgold et al., 1997). However, such a weakly magnetized disk is optically thick to

cosmic rays at a critical surface density of 100 g cm−2. Therefore, the cosmic rays can only

penetrate up to a smaller column density and ionize the photons only at those upper layers of

the disk. Thus the outer layers of the disk can remain ionized and magnetically coupled nearly

at all radii. However, the dense inner (near the midplane) region of low ionization fractions

becomes a so-called “dead zone” (MRI-inactive) where there is no obvious mechanism for

mass and angular momentum transport (Gammie, 1996). Generally in Class I disks, it seems

that the bulk of the disk mass might comprise these dead zones. Within such dead zones, due

to adiabatic compression, the temperature gradually increases. When the temperature becomes

≳ 1300 K, ionization of alkaline metals begins. Then the dead zone has increased magnetic

coupling and gets converted into MRI-active region which gives rise to a vigorous MRI burst

by further allowing the outward transport of angular momentum. To date no observation shows

the direct evidence either for or against the existence of dead zones. Theoretical calculations,

however, continue to suggest that it is more likely that the PPDs develop a dead zone at radii of

∼ 1 AU (Salmeron & Wardle, 2008; Terquem, 2008; Bai & Goodman, 2009; Turner & Drake,

2009; Turner et al., 2010). Nevertheless, future global nonideal MHD simulations of disks are

required to be carried out to investigate the disk formation and evolution at very early times.
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The primary obstacle for the MRI under the ideal MHD assumption of flux-freezing is that

the disk must remain sufficiently ionized. In the case of nonideal MHD, if the disk resistiv-

ity/diffusivity is too high, then the MRI will not operate as the field will diffuse out of a fluid

parcel much faster than the actual MRI growth timescale. In most of the astrophysical accre-

tion disks that are non self-gravitating, the MRI may be the main source of angular momentum

transport. These include the non-self-gravitating disks for example, disks around white dwarfs,

neutron stars, and black holes. For example, disks around black holes are likely to be thermally

ionized, the ionization fraction of the gas is not a concern. However, at larger distances from a

central star, from a few to tens of au, the disk becomes colder and denser and the penetration

of ionizing photons drops. While dead zones in the PPDs pose a hindrance to mass accretion,

they may enable another important process in protostellar disks i.e., planet formation. The

Chapter 5 of this thesis discusses the consequences of our results on episodic accretion and

disk evolution in this context.

1.5 Chapter review

In this thesis, we carry out a detailed study of the different physical processes that are possibly

responsible for star formation in molecular clouds. In Chapter 2, we provide a comprehensive

study on the fragmentation of the protostellar disk during the early embedded phase) in terms of

lengthscale, timescale, and mass scale, in the presence of nonideal MHD effects. In Chapter 3,

we show a similar study of fragmentation, but for the case of a molecular cloud and discuss the

consequences of nonideal MHD on the observed features e.g., prestellar core lifetime, mass,

etc. Thereafter, in Chapter 4, we study the effects of episodic accretion in the disk evolution

and in the observed luminosities using a semi-analytic model of mass accretion. In Chapter

5, we conduct numerical magnetohydrodynamic global simulations of a disk to investigate the

physical mechanism causing the episodic bursts and their detailed physical characteristics. We

compare these characteristics with the observational signatures of bursts. Finally, we quantify

their role of bursts in formation and long-term global evolution of protostellar disks and the

onset of giant-planet formation.



34 CHAPTER 1. INTRODUCTION

Bibliography

Alves F. O., Girart J. M., Caselli P., Franco G. A. P., Zhao B., Vlemmings W. H. T., Evans
M. G., Ricci L., 2017, A&A, 603, L3

Andre P., Ward-Thompson D., Barsony M., 1993, ApJ, 406, 122

Andrews S. M., Williams J. P., 2005, ApJ, 631, 1134

Arce H. G., Shepherd D., Gueth F., Lee C. F., Bachiller R., Rosen A., Beuther H.,
2007, in Reipurth B., Jewitt D., Keil K., eds, Protostars and Planets V. p. 245
(arXiv:astro-ph/0603071)

Armitage P. J., 2011, ARA&A, 49, 195

Armitage P. J., 2015, arXiv e-prints, p. arXiv:1509.06382

Arzoumanian D., et al., 2011, A&A, 529, L6

Audard M., et al., 2010, A&A, 511, A63

Audard M., et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P.,
Henning T., eds, Protostars and Planets VI. p. 387 (arXiv:1401.3368),
doi:10.2458/azu_uapress_9780816531240-ch017

Auddy S., Basu S., Kudoh T., 2022, ApJ, 928, L2

Bai X.-N., Goodman J., 2009, ApJ, 701, 737

Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214

Balbus S. A., Hawley J. F., 1998, Reviews of Modern Physics, 70, 1

Bodenheimer P., 1991, in Catalano S., Stauffer J. R., eds, NATO Advanced Study Institute
(ASI) Series C Vol. 340, Angular Momentum Evolution of Young Stars. p. 1

Bodenheimer P., Sweigart A., 1968, ApJ, 152, 515

Bouvier J., Cabrit S., Fernandez M., Martin E. L., Matthews J. M., 1993, A&A, 272, 176

Brown J. C., Haverkorn M., Gaensler B. M., Taylor A. R., Bizunok N. S., McClure-Griffiths
N. M., Dickey J. M., Green A. J., 2007, ApJ, 663, 258

Calvet N., Gullbring E., 1998, ApJ, 509, 802

Caselli P., Walmsley C. M., Terzieva R., Herbst E., 1998, ApJ, 499, 234

Caselli P., Benson P. J., Myers P. C., Tafalla M., 2002, ApJ, 572, 238

Caswell J. L., Kramer B. H., Reynolds J. E., 2011, MNRAS, 414, 1914

Chandrasekhar S., Fermi E., 1953, ApJ, 118, 116

Chen X., Arce H. G., Zhang Q., Launhardt R., Henning T., 2016, ApJ, 824, 72

Chomiuk L., Povich M. S., 2011, AJ, 142, 197

Ciolek G. E., Mouschovias T. C., 1994, ApJ, 425, 142

Crutcher R. M., 2012, ARA&A, 50, 29

Crutcher R. M., Kemball A. J., 2019, Frontiers in Astronomy and Space Sciences, 6, 66

http://dx.doi.org/10.1051/0004-6361/201731077
https://ui.adsabs.harvard.edu/abs/2017A&A...603L...3A
http://dx.doi.org/10.1086/172425
https://ui.adsabs.harvard.edu/abs/1993ApJ...406..122A
http://dx.doi.org/10.1086/432712
https://ui.adsabs.harvard.edu/abs/2005ApJ...631.1134A
http://arxiv.org/abs/astro-ph/0603071
http://dx.doi.org/10.1146/annurev-astro-081710-102521
https://ui.adsabs.harvard.edu/abs/2011ARA&A..49..195A
https://ui.adsabs.harvard.edu/abs/2015arXiv150906382A
http://dx.doi.org/10.1051/0004-6361/201116596
https://ui.adsabs.harvard.edu/abs/2011A&A...529L...6A
http://dx.doi.org/10.1051/0004-6361/200913037
https://ui.adsabs.harvard.edu/abs/2010A&A...511A..63A
http://arxiv.org/abs/1401.3368
http://dx.doi.org/10.2458/azu_uapress_9780816531240-ch017
http://dx.doi.org/10.3847/2041-8213/ac5a5a
https://ui.adsabs.harvard.edu/abs/2022ApJ...928L...2A
http://dx.doi.org/10.1088/0004-637X/701/1/737
https://ui.adsabs.harvard.edu/abs/2009ApJ...701..737B
http://dx.doi.org/10.1086/170270
https://ui.adsabs.harvard.edu/abs/1991ApJ...376..214B
http://dx.doi.org/10.1103/RevModPhys.70.1
https://ui.adsabs.harvard.edu/abs/1998RvMP...70....1B
http://dx.doi.org/10.1086/149568
https://ui.adsabs.harvard.edu/abs/1968ApJ...152..515B
https://ui.adsabs.harvard.edu/abs/1993A&A...272..176B
http://dx.doi.org/10.1086/518499
https://ui.adsabs.harvard.edu/abs/2007ApJ...663..258B
http://dx.doi.org/10.1086/306527
https://ui.adsabs.harvard.edu/abs/1998ApJ...509..802C
http://dx.doi.org/10.1086/305624
https://ui.adsabs.harvard.edu/abs/1998ApJ...499..234C
http://dx.doi.org/10.1086/340195
https://ui.adsabs.harvard.edu/abs/2002ApJ...572..238C
http://dx.doi.org/10.1111/j.1365-2966.2011.18510.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414.1914C
http://dx.doi.org/10.1086/145732
https://ui.adsabs.harvard.edu/abs/1953ApJ...118..116C
http://dx.doi.org/10.3847/0004-637X/824/2/72
https://ui.adsabs.harvard.edu/abs/2016ApJ...824...72C
http://dx.doi.org/10.1088/0004-6256/142/6/197
https://ui.adsabs.harvard.edu/abs/2011AJ....142..197C
http://dx.doi.org/10.1086/173971
https://ui.adsabs.harvard.edu/abs/1994ApJ...425..142C
http://dx.doi.org/10.1146/annurev-astro-081811-125514
https://ui.adsabs.harvard.edu/abs/2012ARA&A..50...29C
http://dx.doi.org/10.3389/fspas.2019.00066
https://ui.adsabs.harvard.edu/abs/2019FrASS...6...66C


BIBLIOGRAPHY 35

Crutcher R. M., Troland T. H., Goodman A. A., Heiles C., Kazes I., Myers P. C., 1993, ApJ,
407, 175

Crutcher R. M., Wandelt B., Heiles C., Falgarone E., Troland T. H., 2010, ApJ, 725, 466

Cyganowski C. J., Brogan C. L., Hunter T. R., Churchwell E., 2009, ApJ, 702, 1615

Dapp W. B., Basu S., Kunz M. W., 2012, A&A, 541, A35

Das I., Basu S., André P., 2021, A&A, 649, L13

Davis L., 1951, Physical Review, 81, 890

Davis Leverett J., Greenstein J. L., 1951, ApJ, 114, 206

Dobbs C. L., et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P.,
Henning T., eds, Protostars and Planets VI. p. 3 (arXiv:1312.3223),
doi:10.2458/azu_uapress_9780816531240-ch001

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium

Elmegreen B. G., Scalo J., 2004, ARA&A, 42, 211

Evans Neal J. I., et al., 2009, ApJS, 181, 321

Fatuzzo M., Adams F. C., 2002, ApJ, 570, 210

Federrath C., Klessen R. S., 2012, ApJ, 761, 156

Fiedler R. A., Mouschovias T. C., 1993, ApJ, 415, 680

Frisch U., 1995, Turbulence. The legacy of A.N. Kolmogorov

Fukagawa M., et al., 2004, ApJ, 605, L53

Galli D., Shu F. H., 1993a, ApJ, 417, 220

Galli D., Shu F. H., 1993b, ApJ, 417, 243

Galván-Madrid R., Liu H. B., Izquierdo A. F., Miotello A., Zhao B., Carrasco-González C.,
Lizano S., Rodríguez L. F., 2018, ApJ, 868, 39

Gammie C. F., 1996, ApJ, 457, 355

Gammie C. F., 2001, ApJ, 553, 174

Glassgold A. E., Najita J., Igea J., 1997, ApJ, 480, 344

Goldreich P., Kylafis N. D., 1981, ApJ, 243, L75

Goldsmith P. F., Bergin E. A., Lis D. C., 1997, ApJ, 491, 615

Goodman A. A., Benson P. J., Fuller G. A., Myers P. C., 1993, ApJ, 406, 528

Goodman A. A., Barranco J. A., Wilner D. J., Heyer M. H., 1998, ApJ, 504, 223

Grady C. A., et al., 2001, AJ, 122, 3396

Gullbring E., Calvet N., Muzerolle J., Hartmann L., 2000, ApJ, 544, 927

Gutermuth R. A., et al., 2008, ApJ, 674, 336

Han J. L., 2017, ARA&A, 55, 111

Hartmann L., 2001, AJ, 121, 1030

Harvey-Smith L., Madsen G. J., Gaensler B. M., 2011, ApJ, 736, 83

http://dx.doi.org/10.1086/172503
https://ui.adsabs.harvard.edu/abs/1993ApJ...407..175C
http://dx.doi.org/10.1088/0004-637X/725/1/466
https://ui.adsabs.harvard.edu/abs/2010ApJ...725..466C
http://dx.doi.org/10.1088/0004-637X/702/2/1615
https://ui.adsabs.harvard.edu/abs/2009ApJ...702.1615C
http://dx.doi.org/10.1051/0004-6361/201117876
https://ui.adsabs.harvard.edu/abs/2012A&A...541A..35D
http://dx.doi.org/10.1051/0004-6361/202140404
https://ui.adsabs.harvard.edu/abs/2021A&A...649L..13D
http://dx.doi.org/10.1103/PhysRev.81.890.2
https://ui.adsabs.harvard.edu/abs/1951PhRv...81..890D
http://dx.doi.org/10.1086/145464
https://ui.adsabs.harvard.edu/abs/1951ApJ...114..206D
http://arxiv.org/abs/1312.3223
http://dx.doi.org/10.2458/azu_uapress_9780816531240-ch001
http://dx.doi.org/10.1146/annurev.astro.41.011802.094859
https://ui.adsabs.harvard.edu/abs/2004ARA&A..42..211E
http://dx.doi.org/10.1088/0067-0049/181/2/321
https://ui.adsabs.harvard.edu/abs/2009ApJS..181..321E
http://dx.doi.org/10.1086/339502
https://ui.adsabs.harvard.edu/abs/2002ApJ...570..210F
http://dx.doi.org/10.1088/0004-637X/761/2/156
https://ui.adsabs.harvard.edu/abs/2012ApJ...761..156F
http://dx.doi.org/10.1086/173193
https://ui.adsabs.harvard.edu/abs/1993ApJ...415..680F
http://dx.doi.org/10.1086/420699
https://ui.adsabs.harvard.edu/abs/2004ApJ...605L..53F
http://dx.doi.org/10.1086/173305
https://ui.adsabs.harvard.edu/abs/1993ApJ...417..220G
http://dx.doi.org/10.1086/173306
https://ui.adsabs.harvard.edu/abs/1993ApJ...417..243G
http://dx.doi.org/10.3847/1538-4357/aae779
https://ui.adsabs.harvard.edu/abs/2018ApJ...868...39G
http://dx.doi.org/10.1086/176735
https://ui.adsabs.harvard.edu/abs/1996ApJ...457..355G
http://dx.doi.org/10.1086/320631
https://ui.adsabs.harvard.edu/abs/2001ApJ...553..174G
http://dx.doi.org/10.1086/303952
https://ui.adsabs.harvard.edu/abs/1997ApJ...480..344G
http://dx.doi.org/10.1086/183446
https://ui.adsabs.harvard.edu/abs/1981ApJ...243L..75G
http://dx.doi.org/10.1086/304986
https://ui.adsabs.harvard.edu/abs/1997ApJ...491..615G
http://dx.doi.org/10.1086/172465
https://ui.adsabs.harvard.edu/abs/1993ApJ...406..528G
http://dx.doi.org/10.1086/306045
https://ui.adsabs.harvard.edu/abs/1998ApJ...504..223G
http://dx.doi.org/10.1086/324447
https://ui.adsabs.harvard.edu/abs/2001AJ....122.3396G
http://dx.doi.org/10.1086/317253
https://ui.adsabs.harvard.edu/abs/2000ApJ...544..927G
http://dx.doi.org/10.1086/524722
https://ui.adsabs.harvard.edu/abs/2008ApJ...674..336G
http://dx.doi.org/10.1146/annurev-astro-091916-055221
https://ui.adsabs.harvard.edu/abs/2017ARA&A..55..111H
http://dx.doi.org/10.1086/318770
https://ui.adsabs.harvard.edu/abs/2001AJ....121.1030H
http://dx.doi.org/10.1088/0004-637X/736/2/83
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...83H


36 CHAPTER 1. INTRODUCTION

Hayward C. C., Hopkins P. F., 2017, MNRAS, 465, 1682

Heiles C., Crutcher R., 2005, in Wielebinski R., Beck R., eds, , Vol. 664, Cosmic Magnetic
Fields. p. 137, doi:10.1007/11369875_7

Herbig G. H., 1966, Vistas in Astronomy, 8, 109

Herbig G. H., 1977, ApJ, 217, 693

Herbig G. H., 1989, in European Southern Observatory Conference and Workshop Proceed-
ings. pp 233–246

Herbig G. H., 2008, AJ, 135, 637

Heyer M., Dame T. M., 2015, ARA&A, 53, 583

Hirota T., Machida M. N., Matsushita Y., Motogi K., Matsumoto N., Kim M. K., Burns R. A.,
Honma M., 2017, Nature Astronomy, 1, 0146

Jeans J. H., 1929, The universe around us

Jijina J., Myers P. C., Adams F. C., 1999, ApJS, 125, 161

Juvela M., et al., 2012, A&A, 541, A12

Kenyon S. J., Hartmann L. W., Strom K. M., Strom S. E., 1990, AJ, 99, 869

Kenyon S. J., Kolotilov E. A., Ibragimov M. A., Mattei J. A., 2000, ApJ, 531, 1028

Klessen R. S., Ballesteros-Paredes J., Vázquez-Semadeni E., Durán-Rojas C., 2005, ApJ, 620,
786

Ko C.-L., Liu H. B., Lai S.-P., Ching T.-C., Rao R., Girart J. M., 2020, ApJ, 889, 172

Kratter K., Lodato G., 2016, ARA&A, 54, 271

Kunz M. W., Mouschovias T. C., 2009, MNRAS, 399, L94

Kunz M. W., Mouschovias T. C., 2010, MNRAS, 408, 322

Lada C. J., Lada E. A., Clemens D. P., Bally J., 1994, ApJ, 429, 694

Lada C. J., Alves J., Lada E. A., 1999, ApJ, 512, 250

Lada C. J., et al., 2006, AJ, 131, 1574

Lada C. J., Lombardi M., Alves J. F., 2010, ApJ, 724, 687

Larson R. B., 1969, MNRAS, 145, 271

Larson R. B., 1981, MNRAS, 194, 809

Larson R. B., 1984, MNRAS, 206, 197

Larson R. B., 2010, Reports on Progress in Physics, 73, 014901

Laughlin G., Bodenheimer P., 1994, ApJ, 436, 335

Lee C.-F., Ho P. T. P., Li Z.-Y., Hirano N., Zhang Q., Shang H., 2017, Nature Astronomy, 1,
0152

Li P. S., McKee C. F., Klein R. I., 2015, MNRAS, 452, 2500

Lorenzetti D., et al., 2006, A&A, 453, 579

McKee C. F., Williams J. P., 1997, ApJ, 476, 144

http://dx.doi.org/10.1093/mnras/stw2888
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.1682H
http://dx.doi.org/10.1007/11369875_7
http://dx.doi.org/10.1016/0083-6656(66)90025-0
https://ui.adsabs.harvard.edu/abs/1966VA......8..109H
http://dx.doi.org/10.1086/155615
https://ui.adsabs.harvard.edu/abs/1977ApJ...217..693H
http://dx.doi.org/10.1088/0004-6256/135/2/637
https://ui.adsabs.harvard.edu/abs/2008AJ....135..637H
http://dx.doi.org/10.1146/annurev-astro-082214-122324
https://ui.adsabs.harvard.edu/abs/2015ARA&A..53..583H
http://dx.doi.org/10.1038/s41550-017-0146
https://ui.adsabs.harvard.edu/abs/2017NatAs...1E.146H
http://dx.doi.org/10.1086/313268
https://ui.adsabs.harvard.edu/abs/1999ApJS..125..161J
http://dx.doi.org/10.1051/0004-6361/201118640
https://ui.adsabs.harvard.edu/abs/2012A&A...541A..12J
http://dx.doi.org/10.1086/115380
https://ui.adsabs.harvard.edu/abs/1990AJ.....99..869K
http://dx.doi.org/10.1086/308515
https://ui.adsabs.harvard.edu/abs/2000ApJ...531.1028K
http://dx.doi.org/10.1086/427255
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..786K
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..786K
http://dx.doi.org/10.3847/1538-4357/ab5e79
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..172K
http://dx.doi.org/10.1146/annurev-astro-081915-023307
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..271K
http://dx.doi.org/10.1111/j.1745-3933.2009.00731.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399L..94K
http://dx.doi.org/10.1111/j.1365-2966.2010.17110.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408..322K
http://dx.doi.org/10.1086/174354
https://ui.adsabs.harvard.edu/abs/1994ApJ...429..694L
http://dx.doi.org/10.1086/306756
https://ui.adsabs.harvard.edu/abs/1999ApJ...512..250L
http://dx.doi.org/10.1086/499808
https://ui.adsabs.harvard.edu/abs/2006AJ....131.1574L
http://dx.doi.org/10.1088/0004-637X/724/1/687
https://ui.adsabs.harvard.edu/abs/2010ApJ...724..687L
http://dx.doi.org/10.1093/mnras/145.3.271
https://ui.adsabs.harvard.edu/abs/1969MNRAS.145..271L
http://dx.doi.org/10.1093/mnras/194.4.809
https://ui.adsabs.harvard.edu/abs/1981MNRAS.194..809L
http://dx.doi.org/10.1093/mnras/206.1.197
https://ui.adsabs.harvard.edu/abs/1984MNRAS.206..197L
http://dx.doi.org/10.1088/0034-4885/73/1/014901
https://ui.adsabs.harvard.edu/abs/2010RPPh...73a4901L
http://dx.doi.org/10.1086/174909
https://ui.adsabs.harvard.edu/abs/1994ApJ...436..335L
http://dx.doi.org/10.1038/s41550-017-0152
https://ui.adsabs.harvard.edu/abs/2017NatAs...1E.152L
https://ui.adsabs.harvard.edu/abs/2017NatAs...1E.152L
http://dx.doi.org/10.1093/mnras/stv1437
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.2500L
http://dx.doi.org/10.1051/0004-6361:20054562
https://ui.adsabs.harvard.edu/abs/2006A&A...453..579L
http://dx.doi.org/10.1086/303587
https://ui.adsabs.harvard.edu/abs/1997ApJ...476..144M


BIBLIOGRAPHY 37

Mejía A. C., Durisen R. H., Pickett M. K., Cai K., 2005, ApJ, 619, 1098

Mestel L., 1965, QJRAS, 6, 265

Mestel L., 1966, MNRAS, 133, 265

Mestel L., Spitzer L. J., 1956, MNRAS, 116, 503

Mouschovias T. C., 1976a, ApJ, 206, 753

Mouschovias T. C., 1976b, ApJ, 207, 141

Mouschovias T. C., 1991, ApJ, 373, 169

Mouschovias T. C., Spitzer L. J., 1976, ApJ, 210, 326

Muzerolle J., Hartmann L., Calvet N., 1998, AJ, 116, 455

Muzerolle J., Calvet N., Hartmann L., 2001, ApJ, 550, 944

Myers P. C., Basu S., 2021, arXiv e-prints, p. arXiv:2104.02597

Myers P. C., Dame T. M., Thaddeus P., Cohen R. S., Silverberg R. F., Dwek E., Hauser M. G.,
1986, ApJ, 301, 398

Nakano T., Nakamura T., 1978, PASJ, 30, 671

Norman C., Heyvaerts J., 1985, A&A, 147, 247

Osterbrock D. E., 1961, ApJ, 134, 347

Ostriker E. C., Stone J. M., Gammie C. F., 2001, ApJ, 546, 980

Padoan P., Nordlund Å., 2002, ApJ, 576, 870

Palla F., Stahler S. W., 2002, ApJ, 581, 1194

Pandey B. P., Wardle M., 2008, MNRAS, 385, 2269

Papaloizou J. C., Savonije G. J., 1991, MNRAS, 248, 353

Planck Collaboration et al., 2015, A&A, 576, A106

Planck Collaboration et al., 2016, A&A, 586, A138

Plunkett A. L., Arce H. G., Mardones D., van Dokkum P., Dunham M. M., Fernández-López
M., Gallardo J., Corder S. A., 2015, Nature, 527, 70

Pokhrel R., et al., 2018, ApJ, 853, 5

Purcell E. M., 1979, ApJ, 231, 404

Reipurth B., Aspin C., 1997, AJ, 114, 2700

Reipurth B., Cernicharo J., 1995, in Lizano S., Torrelles J. M., eds, Revista Mexicana de
Astronomia y Astrofisica Conference Series Vol. 1, Revista Mexicana de Astronomia y As-
trofisica Conference Series. p. 43

Rice W. K. M., Armitage P. J., Bate M. R., Bonnell I. A., 2003, MNRAS, 339, 1025

Ridge N. A., et al., 2006, AJ, 131, 2921

Robishaw T., 2008, PhD thesis, University of California, Berkeley

Robitaille T. P., Whitney B. A., 2010, ApJ, 710, L11

Ruffle D. P., Hartquist T. W., Rawlings J. M. C., Williams D. A., 1998, A&A, 334, 678

http://dx.doi.org/10.1086/426707
https://ui.adsabs.harvard.edu/abs/2005ApJ...619.1098M
https://ui.adsabs.harvard.edu/abs/1965QJRAS...6..265M
http://dx.doi.org/10.1093/mnras/133.2.265
https://ui.adsabs.harvard.edu/abs/1966MNRAS.133..265M
http://dx.doi.org/10.1093/mnras/116.5.503
https://ui.adsabs.harvard.edu/abs/1956MNRAS.116..503M
http://dx.doi.org/10.1086/154436
https://ui.adsabs.harvard.edu/abs/1976ApJ...206..753M
http://dx.doi.org/10.1086/154478
https://ui.adsabs.harvard.edu/abs/1976ApJ...207..141M
http://dx.doi.org/10.1086/170035
https://ui.adsabs.harvard.edu/abs/1991ApJ...373..169M
http://dx.doi.org/10.1086/154835
https://ui.adsabs.harvard.edu/abs/1976ApJ...210..326M
http://dx.doi.org/10.1086/300428
https://ui.adsabs.harvard.edu/abs/1998AJ....116..455M
http://dx.doi.org/10.1086/319779
https://ui.adsabs.harvard.edu/abs/2001ApJ...550..944M
https://ui.adsabs.harvard.edu/abs/2021arXiv210402597M
http://dx.doi.org/10.1086/163909
https://ui.adsabs.harvard.edu/abs/1986ApJ...301..398M
https://ui.adsabs.harvard.edu/abs/1978PASJ...30..671N
https://ui.adsabs.harvard.edu/abs/1985A&A...147..247N
http://dx.doi.org/10.1086/147165
https://ui.adsabs.harvard.edu/abs/1961ApJ...134..347O
http://dx.doi.org/10.1086/318290
https://ui.adsabs.harvard.edu/abs/2001ApJ...546..980O
http://dx.doi.org/10.1086/341790
https://ui.adsabs.harvard.edu/abs/2002ApJ...576..870P
http://dx.doi.org/10.1086/344293
https://ui.adsabs.harvard.edu/abs/2002ApJ...581.1194P
http://dx.doi.org/10.1111/j.1365-2966.2008.12998.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.2269P
http://dx.doi.org/10.1093/mnras/248.3.353
https://ui.adsabs.harvard.edu/abs/1991MNRAS.248..353P
http://dx.doi.org/10.1051/0004-6361/201424087
https://ui.adsabs.harvard.edu/abs/2015A&A...576A.106P
http://dx.doi.org/10.1051/0004-6361/201525896
https://ui.adsabs.harvard.edu/abs/2016A&A...586A.138P
http://dx.doi.org/10.1038/nature15702
https://ui.adsabs.harvard.edu/abs/2015Natur.527...70P
http://dx.doi.org/10.3847/1538-4357/aaa240
https://ui.adsabs.harvard.edu/abs/2018ApJ...853....5P
http://dx.doi.org/10.1086/157204
https://ui.adsabs.harvard.edu/abs/1979ApJ...231..404P
http://dx.doi.org/10.1086/118680
https://ui.adsabs.harvard.edu/abs/1997AJ....114.2700R
http://dx.doi.org/10.1046/j.1365-8711.2003.06253.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.339.1025R
http://dx.doi.org/10.1086/503704
https://ui.adsabs.harvard.edu/abs/2006AJ....131.2921R
http://dx.doi.org/10.1088/2041-8205/710/1/L11
https://ui.adsabs.harvard.edu/abs/2010ApJ...710L..11R
https://ui.adsabs.harvard.edu/abs/1998A&A...334..678R


38 CHAPTER 1. INTRODUCTION

Sadavoy S. I., et al., 2014, ApJ, 787, L18

Salmeron R., Wardle M., 2008, MNRAS, 388, 1223

Scholz A., Jayawardhana R., Wood K., 2006, ApJ, 645, 1498

Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33

Shu F. H., 1977, ApJ, 214, 488

Shu F. H., Adams F. C., Lizano S., 1987, ARA&A, 25, 23

Sicilia-Aguilar A., et al., 2006, ApJ, 638, 897

Spitzer L., 1978, Physical processes in the interstellar medium. John Wiley and Sons, USA,
doi:10.1002/9783527617722

Stecklum B., et al., 2021, A&A, 646, A161

Strittmatter P. A., 1966, MNRAS, 132, 359

Tassis K., et al., 2018, arXiv e-prints, p. arXiv:1810.05652

Terebey S., Shu F. H., Cassen P., 1984, ApJ, 286, 529

Terquem C. E. J. M. L. J., 2008, ApJ, 689, 532

Tinbergen J., 1996, Astronomical Polarimetry

Tomisaka K., 2000, ApJ, 528, L41

Toomre A., 1964, ApJ, 139, 1217

Tritsis A., Panopoulou G. V., Mouschovias T. C., Tassis K., Pavlidou V., 2015, MNRAS, 451,
4384

Tritsis A., Federrath C., Willacy K., Tassis K., 2022, MNRAS, 510, 4420

Turner N. J., Drake J. F., 2009, ApJ, 703, 2152

Turner N. J., Carballido A., Sano T., 2010, ApJ, 708, 188

Van Eck C. L., et al., 2011, ApJ, 728, 97

Vlemmings W. H. T., Diamond P. J., van Langevelde H. J., Torrelles J. M., 2006, A&A, 448,
597

Vorobyov E. I., Basu S., 2005a, MNRAS, 360, 675

Vorobyov E. I., Basu S., 2005b, ApJ, 633, L137

Vorobyov E. I., Basu S., 2006, ApJ, 650, 956

Vorobyov E. I., Basu S., 2007, MNRAS, 381, 1009

Vorobyov E. I., Basu S., 2008, ApJ, 676, L139

Vorobyov E. I., Basu S., 2010, ApJ, 719, 1896

Vorobyov E. I., Basu S., 2015, ApJ, 805, 115

Vorobyov E. I., Elbakyan V. G., Plunkett A. L., Dunham M. M., Audard M., Guedel M.,
Dionatos O., 2018, A&A, 613, A18

Vorobyov E. I., Khaibrakhmanov S., Basu S., Audard M., 2020, A&A, 644, A74

Wardle M., 2007, Ap&SS, 311, 35

http://dx.doi.org/10.1088/2041-8205/787/2/L18
https://ui.adsabs.harvard.edu/abs/2014ApJ...787L..18S
http://dx.doi.org/10.1111/j.1365-2966.2008.13430.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.388.1223S
http://dx.doi.org/10.1086/504464
https://ui.adsabs.harvard.edu/abs/2006ApJ...645.1498S
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S
http://dx.doi.org/10.1086/155274
https://ui.adsabs.harvard.edu/abs/1977ApJ...214..488S
http://dx.doi.org/10.1146/annurev.aa.25.090187.000323
https://ui.adsabs.harvard.edu/abs/1987ARA&A..25...23S
http://dx.doi.org/10.1086/498085
https://ui.adsabs.harvard.edu/abs/2006ApJ...638..897S
http://dx.doi.org/10.1002/9783527617722
http://dx.doi.org/10.1051/0004-6361/202039645
https://ui.adsabs.harvard.edu/abs/2021A&A...646A.161S
http://dx.doi.org/10.1093/mnras/132.2.359
https://ui.adsabs.harvard.edu/abs/1966MNRAS.132..359S
https://ui.adsabs.harvard.edu/abs/2018arXiv181005652T
http://dx.doi.org/10.1086/162628
https://ui.adsabs.harvard.edu/abs/1984ApJ...286..529T
http://dx.doi.org/10.1086/592597
https://ui.adsabs.harvard.edu/abs/2008ApJ...689..532T
http://dx.doi.org/10.1086/312417
https://ui.adsabs.harvard.edu/abs/2000ApJ...528L..41T
http://dx.doi.org/10.1086/147861
https://ui.adsabs.harvard.edu/abs/1964ApJ...139.1217T
http://dx.doi.org/10.1093/mnras/stv1133
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.4384T
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.4384T
http://dx.doi.org/10.1093/mnras/stab3740
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.4420T
http://dx.doi.org/10.1088/0004-637X/703/2/2152
https://ui.adsabs.harvard.edu/abs/2009ApJ...703.2152T
http://dx.doi.org/10.1088/0004-637X/708/1/188
https://ui.adsabs.harvard.edu/abs/2010ApJ...708..188T
http://dx.doi.org/10.1088/0004-637X/728/2/97
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...97V
http://dx.doi.org/10.1051/0004-6361:20054275
https://ui.adsabs.harvard.edu/abs/2006A&A...448..597V
https://ui.adsabs.harvard.edu/abs/2006A&A...448..597V
http://dx.doi.org/10.1111/j.1365-2966.2005.09062.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360..675V
http://dx.doi.org/10.1086/498303
https://ui.adsabs.harvard.edu/abs/2005ApJ...633L.137V
http://dx.doi.org/10.1086/507320
https://ui.adsabs.harvard.edu/abs/2006ApJ...650..956V
http://dx.doi.org/10.1111/j.1365-2966.2007.12321.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.381.1009V
http://dx.doi.org/10.1086/587514
https://ui.adsabs.harvard.edu/abs/2008ApJ...676L.139V
http://dx.doi.org/10.1088/0004-637X/719/2/1896
https://ui.adsabs.harvard.edu/abs/2010ApJ...719.1896V
http://dx.doi.org/10.1088/0004-637X/805/2/115
https://ui.adsabs.harvard.edu/abs/2015ApJ...805..115V
http://dx.doi.org/10.1051/0004-6361/201732253
https://ui.adsabs.harvard.edu/abs/2018A&A...613A..18V
http://dx.doi.org/10.1051/0004-6361/202039081
https://ui.adsabs.harvard.edu/abs/2020A&A...644A..74V
http://dx.doi.org/10.1007/s10509-007-9575-8
https://ui.adsabs.harvard.edu/abs/2007Ap&SS.311...35W


BIBLIOGRAPHY 39

Wardle M., Ng C., 1999, MNRAS, 303, 239
Williams J. P., Cieza L. A., 2011, ARA&A, 49, 67
Zhu Z., et al., 2019, ApJ, 877, L18
Zuckerman B., Palmer P., 1974, ARA&A, 12, 279
Zweibel E. G., 2002, ApJ, 567, 962
di Francesco J., Evans N. J. I., Caselli P., Myers P. C., Shirley Y., Aikawa Y., Tafalla

M., 2007, in Reipurth B., Jewitt D., Keil K., eds, Protostars and Planets V. p. 17
(arXiv:astro-ph/0602379)

http://dx.doi.org/10.1046/j.1365-8711.1999.02211.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.303..239W
http://dx.doi.org/10.1146/annurev-astro-081710-102548
https://ui.adsabs.harvard.edu/abs/2011ARA&A..49...67W
http://dx.doi.org/10.3847/2041-8213/ab1f8c
https://ui.adsabs.harvard.edu/abs/2019ApJ...877L..18Z
http://dx.doi.org/10.1146/annurev.aa.12.090174.001431
https://ui.adsabs.harvard.edu/abs/1974ARA&A..12..279Z
http://dx.doi.org/10.1086/338682
https://ui.adsabs.harvard.edu/abs/2002ApJ...567..962Z
http://arxiv.org/abs/astro-ph/0602379


Chapter 2

Linear Stability Analysis of a Magnetic

Rotating Disk with Ohmic Dissipation and

Ambipolar Diffusion

A version of this chapter has been published in the Astrophysical Journal as Das I.

and Basu S. 2021 ApJ, 910, 163, DOI:10.3847/1538-4357/abdb2c

2.1 Introduction

For decades, theoretical studies have suggested that magnetic fields play an indispensable role

in the formation and evolution of interstellar clouds, cloud cores, and protostellar disks (Mes-

tel & Spitzer, 1956; Mouschovias, 1978; Shu et al., 1987, 1999; Mouschovias & Ciolek, 1999;

Wurster & Li, 2018). Recent observations by the Planck satellite (Planck Collaboration et al.,

2015, 2016) have convincingly emphasized the importance of the magnetic field to the density

structures on physical scales ranging from tens of parsecs to approximately one parsec in the

nearby (d < 450 pc) well-known molecular clouds. They statistically evaluated the relative ori-

entation between the magnetic field projected on the plane of sky obtained from the polarized

thermal emission (353 Hz) of magnetically-aligned dust grains with the maps of gas column

density NH and found that the magnetic field became oriented more nearly perpendicular to the

elongations in column density maps when NH ≳ 1022 cm−2. This is consistent with self-gravity

becoming important at these column densities but being not so important at lower column den-
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sities. By using the Davis-Chandrasekhar-Fermi (DCF) method (Davis, 1951; Chandrasekhar

& Fermi, 1953) to estimate the magnetic field strength, they also found that the large-scale (low

density) magnetic field is quite strong relative to turbulence and self-gravity, with estimations

that the turbulence is sub-Alfvénic (or close to Alfvénic) and the mass-to-flux ratio is subcrit-

ical (see Table D.1 in Planck Collaboration et al., 2016). Pattle et al. (2017) used polarimetry

to estimate a subcritical mass-to-flux ratio (∼ 0.4) on the large scale in the Orion A filament.

Fiedler & Mouschovias (1993) carried out a two-dimensional (r, z in cylindrical coordi-

nates) simulation of core formation and prestellar collapse in a molecular cloud with an ini-

tial subcritical mass-to-flux ratio. In this situation, ambipolar diffusion, the drift of neutrals

through the plasma and magnetic field lines because of the imperfect coupling between the

neutrals and charged species, can lead to core formation. The cloud has time to settle into a

flattened structure with minor axis parallel to the background magnetic field. Based on this

result, Ciolek & Mouschovias (1993, 1994) and Basu & Mouschovias (1994, 1995a,b) stud-

ied ambipolar-diffusion-driven protostellar core formation and collapse using the “thin-sheet”

approximation, with axially symmetric disks threaded by a vertical magnetic field, with hydro-

static equilibrium maintained along field lines at all times.

The thin-sheet approximation was subsequently used by Basu & Ciolek (2004, see also In-

debetouw & Zweibel (2000)) for models of nonaxisymmetric, gravitationally collapsing cores

in subcritical and supercritical clouds. Ciolek & Basu (2006, see also Morton (1991)) presented

a linear stability analysis of isothermal, partially ionized, magnetic, self-gravitating sheets us-

ing the thin-sheet approximation. The preferred fragmentation scale typically has the largest

super-Jeans value at transcritical (but mildly supercritical) values of the mass-to-flux ratio. The

predicted preferred fragmentation length scales obtained from this linear analysis were verified

to agree with the average fragmentation scales of a large suite of nonlinear evolution calcu-

lations in the thin sheet approximation (Basu et al., 2009a). Three-dimensional simulations

of fragmentation including ambipolar diffusion (Kudoh et al., 2007; Kudoh & Basu, 2011)

showed that the general trends are robust.

Gravitational instability (hereafter GI) is also thought to be important in protostellar disks,

as a pathway for the formation of stellar companions, brown dwarfs, or giant planets (see

review by Kratter & Lodato, 2016). Global numerical simulations of disks show that it can
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produce clumps of the appropriate masses (e.g., Stamatellos & Whitworth, 2009; Vorobyov &

Basu, 2010a; Basu & Vorobyov, 2012; Vorobyov, 2016). Simulations of the self-consistent

formation of disks from the collapse of a prestellar core generally show that the disk mass is

comparable to the central protostar mass in the early evolution of disks, making them suscep-

tible to GI (Vorobyov & Basu, 2006, 2010b, 2015).

Interest in the early (possibly GI dominated or influenced) evolution of disks has increased

due to recent ALMA observations showing that they exist in the early class 0 stage of star

formation (Sakai et al., 2014; Ohashi et al., 2014; Lefloch et al., 2015; Plunkett et al., 2015;

Ching et al., 2016; Tokuda et al., 2016; Aso et al., 2017; Lee et al., 2017, 2018). ALMA

has also clarified the properties of disk structure in the later class I and II stages (Aso et al.,

2015; Bjerkeli et al., 2016; Pérez et al., 2016; Alves et al., 2017), including a vast array of

substructure like gaps, rings, and spiral arms revealed by the DSHARP project (see Andrews

et al., 2018; Huang et al., 2018). These observations show that the process of planet formation

is well underway soon after protostar and disk formation. The required rapid planet formation

implies a possible important role for GI during the early embedded phase of disks.

Despite extensive work to date on hydrodynamic modeling and observations of disks, the

complex role of magnetic fields is just beginning to be explored. Observationally, magnetic

fields are very difficult to detect in disks. An indirect detection through polarization of dust

emission due to elongated magnetically-aligned grains is complicated by the polarization due

to scattering that can dominate the signal at mm wavelengths (Kataoka et al., 2015, 2016; Yang

et al., 2016a,b).

In order to understand disk formation and subsequent evolution, the nonideal MHD effects

(Ohmic dissipation, ambipolar diffusion, Hall effect) are substantially key features. A nascent

disk forms in a magnetically subdominant region where the magnetic field is primarily weak-

ened by Ohmic dissipation (hereafter OD) and ambipolar diffusion (hereafter AD) (e.g., Dapp

& Basu, 2010; Dapp et al., 2012; Tomida et al., 2015; Masson et al., 2016; Tsukamoto et al.,

2018; Tsukamoto, 2016; Wurster et al., 2018; Hirano & Machida, 2019; Hirano et al., 2020).

Without the OD that becomes the dominant form of magnetic dissipation at number densities

above 1012 cm−3, a disk may not even form (e.g., Allen et al., 2003; Galli et al., 2006; Mellon

& Li, 2008; Li et al., 2014); the so-called “magnetic braking catastrophe”.
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In general then, a rotationally-supported circumstellar disk is formed around a newly born

star in a relatively high density region where OD becomes important. In the Ohmic regime, the

inductive effect of the plasma is restricted by the collisions that the charge carriers encounter

(i.e., the resistivity), primarily with neutral particles in the partially ionized environment. The

OD must then regulate the different (stable and unstable) modes that occur in the high density

environment of protostellar disks. Thus it is important to study the effect of nonideal MHD in

a rotating self-gravitating environment that is most applicable to the early evolution of disks.

The Toomre criterion is modified due to magnetic fields (Lizano et al., 2010). OD and AD will

modify it further still. The effect of GI in inducing giant planet formation (e.g., Bodenheimer,

1995; Saigo & Tomisaka, 2006; Lizano et al., 2010; Machida et al., 2016) will be modified by

these effects. Furthermore, the marginal state of instability described by the Toomre criterion

is known to introduce low-amplitude fluctuations in global disk models (Vorobyov & Basu,

2007) that can drive the angular momentum transport. Therefore, the effect of nonideal MHD

on marginally stable modes is also important to clarify. Three-dimensional MHD simulations

of disk formation starting from a prestellar core tend to show that the early evolution of disks

is characterized by a significant magnetic field strength such that the mass-to-flux ratio is only

mildly supercritical (Hirano et al., 2020).

In this paper, we present a linear stability analysis to explore the gravitational instability

in protostellar disks. We adopt a sheetlike model that is isothermal, self-gravitating, weakly

ionized, magnetic, and rotating. We investigate two nonideal MHD effects: Ohmic dissipa-

tion (OD) and ambipolar diffusion (AD). The interplay of OD and rotation are particularly

interesting extensions of the analysis presented by Ciolek & Basu (2006).

Our paper is structured as follows. In Section 2.2.1 and 2.2.2, we describe the fundamen-

tal assumptions and derive the necessary system of governing equations for a model cloud.

From Section 2.2.3 to Section 2.2.7, we describe the stability of the model cloud by linearizing

and Fourier analyzing the governing equations, and present some results including the gener-

alized (magnetically dependent) Toomre criterion and the stationary magnetic field limit. In

Section 5.3 we present numerical results of our model, and in Section 2.4 we relate our results

to observations and models of protostellar disks. Finally, in Section 2.5, we summarize and

conclude the consequences of our findings. In the interest of completeness, this paper contains
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Figure 2.1: Schematic diagram of the thin-disk model. An area A is indicated by the thick
dark line and can be seen edge-on in the z = 0 plane. The associated volume V is shown by
dark shaded region, and adjacent lightly shaded regions are bounded by the curves z = Z and
z = −Z and a hot, tenuous medium with external pressure Pext. The lines with arrows represent
the magnetic field.

many equations and derivations. Note that every parameter written with a ‘prime’ or ‘tilde’

denotes their dimensionless form.

2.2 Analytic Considerations

2.2.1 Physical Formulation

We formulate model clouds as rotating, self-gravitating, partially ionized, isothermal, mag-

netic, planar thin sheets with infinite extent in the x- and y- directions and a local vertical half-

thickness Z(x, y, t). Our model follows a similar kind of formulation as adopted and described

by Ciolek & Basu (2006) and Basu et al. (2009a,b), but with further interesting physics.
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The configuration of the magnetic field threading such a cloud is

B(x, y, z, t) = Bz,eq(x, y, t) ẑ for |z| ≤ Z(x, y, t),

=

[
Bz(x, y, z, t) ẑ + Bx(x, y, z, t)x̂

+ By(x, y, z, t)ŷ
]

for |z| > Z(x, y, t),

(2.1)

where Bz,eq is the magnetic field strength in the equatorial plane (z = 0) of the cloud (see

Figure 2.1). In the limit |z| → ∞, B → Bref ẑ, where Bref is a uniform reference magnetic

field very far away from the sheet. From now on, all physical quantities are understood to be a

function of time t.

The unit normal vectors to the upper and lower surfaces of the sheet are given by

n̂ =
± ẑ ∓

[
(∂Z/∂x) x̂ + (∂Z/∂y) ŷ

][
1 + (∂Z/∂x)2 + (∂Z/∂y)2

]1/2 , (2.2)

where the upper sign refers to the upper surface and the lower sign to the lower surface.

Using the integral form of Gauss’s law yields that the normal components of the magnetic

field across the upper and lower surfaces of the sheet are continuous. This leads to

Bz (x, y,±Z) − Bx (x, y,±Z)
∂Z
∂x

− By (x, y,±Z)
∂Z
∂y
= Bz,eq(x, y).

(2.3)

In our model, we adopt a velocity unit of cs, the isothermal sound speed, and a column

density unit of σn,0, the initial uniform column density. The length unit is L0 = c2
s/(2πGσn,0),

leading to a time unit t0 = cs/(2πGσn,0), where G is the universal gravitational constant. The

mass unit is M0 = c4
s/(4π

2G2σn,0) and the unit of acceleration is 2πGσn,0, which is the mag-

nitude of the vertical gravitational acceleration above the planar sheet. The magnetic field

strength unit is B0 = 2πG1/2σn,0. See Section 2.6.1 for the numeric values of all these free

parameters.

Vertical pressure equilibrium arises from a balance between thermal pressure and the com-

bined contribution from self-gravitational pressure, magnetic pressure and any other external
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pressure, which yields

ρnc2
s =

π

2
Gσ2

n + Pext

+
1

8π

[
B2

x,Z + B2
y,Z +

{
Bx,Z (∂Z/∂x) + By,Z (∂Z/∂y)

}2
]
,

(2.4)

where Bx,Z ≡ Bx(x, y,+Z), By,Z ≡ By(x, y,+Z), and ρn and σn are the volume and column mass

density of neutrals, respectively. The calculation of Bx,Z and By,Z is discussed in Ciolek & Basu

(2006). Note that in molecular clouds, ρn ≫ ρi, where ρi is the ion density. Furthermore, cs =

(kBT/mn)1/2 is the isothermal sound speed, kB is the Boltzmann constant, T is the temperature

and mn is the mean mass of a neutral particle (mn = 2.33 amu). The evolution equations of

our model include the effect of AD and OD. Because of AD, neutrals can stay at least partially

coupled to the magnetic field via neutral-ion collisions. This is quantified by the time scale for

collisions between neutrals and ions (e.g., Basu & Mouschovias, 1994, and references within):

τni ≡ 1.4
mi + mn

mi

1
ni⟨σw⟩iH2

, (2.5)

where ⟨σw⟩iH2 is the average collision rate between ions of mass mi (singly ionized Na, Mg,

and HCO, for which we adopt a typical mass of 25 amu) and neutrals of mass mn. We adopt a

neutral-ion collision rate between H2 and HCO+ as 1.69 × 10−9 cm3 s−1 (McDaniel & Mason,

1973). These collisions transport knowledge of the magnetic field to the neutral particles via

ions that are tied to the field lines. The factor 1.4 arises because the inertia of helium is ne-

glected in calculating the slowing-down time of the neutrals by collisions with ions (Ciolek &

Basu, 2006; Mouschovias & Ciolek, 1999).

We adopt a constant power-law approximation for calculating the ion number density (ni)

in terms of the neutral number density (nn):

ni = κ

(
nn

105 cm−3

)k

, (2.6)

where κ (= 3 × 10−3cm−3) and k (= 1/2) are constants (see Ciolek & Basu, 2006; Ciolek &
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Mouschovias, 1998) . So, the ionization fraction (χi) can be written as

χi =
ni

nn
≈ 10−5 n−1/2

n , (2.7)

and is typically a very small number, ≈ 10−7 when nn = 104 cm−3. Molecular clouds are weakly

ionized yet retain a relatively good (though imperfect) coupling between plasma and neutrals

due to the enhanced Langevin cross section for ion-neutral collisions (see Shu, 1992, § 27).

In our formulation we include the additional nonideal MHD effect of OD. It is a measure

of the decoupling of the charged species from the magnetic field, due to resistivity arising from

collisions of the charge carriers with neutrals. Collisions of the charged species with each other

is neglected as we are studying a weakly ionized plasma. The conductivity for each charged

species s = e, i can be written as

σs =
nsq2

sτsn

ms
, (2.8)

where ns is the number density of each charged species (we can assume ne ≈ ni due to charge

neutrality), qs is the charge of each species, ms is the mass of each species, and τsn is the mean

collision time of each charged species with neutrals (see Section 2.6.2). We define conductivity

σc =
∑

s=e,i σs, and the electron contribution is expected to dominate. So, finally, the expression

of Ohmic diffusivity (ηOD) can be written as

ηOD =
c2

4πσc
, (2.9)

where c is the speed of the light. Note that (4πηOD)/c2 is the Ohmic resistivity, i.e., the inverse

of the conductivity, and leads to the well-known form of Ohm’s law:

En =
4πηOD

c2 j, (2.10)

where j is the electric current density and En is the electric field in the reference frame of the

neutrals (for more details, see Dapp et al., 2012).
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2.2.2 Fundamental Equations

The system of equations for the model cloud are derived (see Ciolek & Basu, 2006) by inte-

grating the fundamental MHD equations over the vertical direction (i.e., from zlower = −Z(x, y)

to zupper = Z(x, y)). Doing the same for the equation of mass continuity yields

∂σn

∂t
+ ∇p · (σn vn) = 0, (2.11)

where σn(x, y) =
∫ Z

−Z
ρn(x, y)dz. Next, we consider the equation of force using the total stress

tensor (thermal plus Maxwell)

T = −
[
ρnc2

s +
B2

8π

]
1 +

BB
4π

, (2.12)

here, 1 is identity tensor. The force equation (per unit area) in the rotating frame of reference

for the neutrals is given by,

∂

∂t
(σn vn) + ∇p · (σnvn vn) = FT + FMag

+ σn

[
gp − 2(Ω × vn) +Ω × (Ω × r)

]
,

(2.13)

where

FT = −C2
eff∇pσn, (2.14)

FMag =
Bz,eq

2π

(
Bp − Z∇pBz,eq

)
+ O

(
∇pZ

)
, (2.15)

Z =
σn

2ρn
, (2.16)

gp = −∇pψ, (2.17)

ψ = F −1
[
−2πG

F (σn)
k

]
, (2.18)
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Bp = −∇pΨ, (2.19)

Ψ = F −1

F
(
Bz,eq − Bref

)
k

 , (2.20)

C2
eff =

π

2
Gσ2

n

[
3Pext +

π
2Gσ2

n

]
[
Pext +

π
2Gσ2

n

]2 c2
s . (2.21)

In the above equations, r = xx̂ + yŷ, ∇p ≡ x̂∂/∂x + ŷ∂/∂y is the planar gradient operator and ψ

and Ψ are the gravitational and magnetic potential, respectively. Here, F ( f ) and F −1( f ) repre-

sent the forward and backward Fourier transform of a function f , respectively. The Ceff is the

local effective sound speed which includes the effect of an external pressure. In the absence of

Pext, Ceff is reduced to the isothermal sound speed cs. The vn(x, y) = vn,x(x, y)x̂+vn,y(x, y)ŷ is the

velocity of neutrals in the plane of the sheet. The planar sheet is rotating with an angular veloc-

ity Ω about the z-axis, so that Ω = Ω ẑ. The magnetic field and rotation axis are perpendicular

to the sheet. Here, 2(Ω×vn) andΩ× (Ω× r) are the Coriolis and centrifugal acceleration terms,

respectively. A more complete expression of FMag can be written showing the O(∇pZ) terms

explicitly (see Equation 3.19, 3.20; also Ciolek & Basu (2006)). The vertical z-wavenumber k

(> 0) is presented as a function of kx and ky, which are the x-, and y-wavenumbers in the plane

of the sheet such that k ≡ kz = (k2
x + k2

y)1/2. By a sheet being thin we mean that for any physical

quantity f (x, y, z, t), the criterion f /∇p f ≫ Z is satisfied.

The advection of magnetic flux for our model is described by the magnetic induction equa-

tion,
∂Bz,eq

∂t
= ∇p ×

(
vi × Bz,eq

)
− ∇p ×

(
ηOD ∇p × Bz,eq

)
, (2.22)

where

vi = vn +
τni

σn
FMag. (2.23)

In the above equations, ηOD and τni are the Ohmic diffusivity, neutral-ion collision time, re-

spectively. The vi(x, y) is the ion velocity such that vi(x, y) = vi,x(x, y)x̂+ vi,y(x, y)ŷ. Finally, we

obtain a simplified form of these equations by separating the x- and y- components. Doing that
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for Equation 2.11, Equation 2.13, Equation 2.15, and Equation 2.22, yields

∂σn

∂t
+
∂

∂x
(σnvn,x) +

∂

∂y
(σnvn,y) = 0, (2.24)

∂

∂t
(σnvn,x) +

∂

∂x
(σnv2

n,x) +
∂

∂x
(σnvn,xvn,y)

= σn gx −C2
eff
∂σn

∂x
+ FMag,x + 2σnΩvn,y,

(2.25)

∂

∂t
(σnvn,y) +

∂

∂y
(σnvn,xvn,y) +

∂

∂y
(σnv2

n,y)

= σn gy −C2
eff
∂σn

∂y
+ FMag,y − 2σnΩvn,x,

(2.26)

FMag,x =
Bz,eq

2π

(
Bx,Z − Z

∂Bz,eq

∂x

)
+

1
4π
∂Z
∂x

[
B2

x,Z + B2
y,Z + 2Bz,eq

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)
+

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)2]
,

(2.27)

FMag,y =
Bz,eq

2π

(
By,Z − Z

∂Bz,eq

∂y

)
+

1
4π
∂Z
∂y

[
B2

x,Z + B2
y,Z + 2Bz,eq

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)
+

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)2 ]
,

(2.28)

∂Bz,eq

∂t
= −

∂

∂x

(
Bz,eqvi,x

)
−
∂

∂y

(
Bz,eqvi,y

)
+

[
∂

∂x

(
ηOD

∂Bz,eq

∂x

)
+
∂

∂y

(
ηOD

∂Bz,eq

∂y

)]
.

(2.29)

Note that in the force equations we no longer consider the centrifugal term [Ω × (Ω × r) =

−Ω2(xx̂ + yŷ)]. This is because we assume that the centrifugal force is balanced in the back-

ground state by a gravitational force produced by an unspecified mass distribution. This is a

form of the “Jeans swindle”, to rely on a force balance in the uniform background state (see

Binney & Tremaine, 2008, § 5.6.1).
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2.2.3 Stability of the model: Linearization and Analysis

Starting with a static uniform background, any physical quantity of the thin-sheet equations

can be expanded by writing it via

f (x, y, t) = f0 + δ faei(kx x+kyy−ωt), (2.30)

where f0 is the unperturbed background state, δ fa is the amplitude of the perturbation. kx, ky,

and k are the x-, y-, and z- wavenumbers, respectively, and ω is the complex angular frequency.

With this Fourier analysis, ∂/∂t → −iω, ∂/∂x −→ ikx , and ∂/∂y → iky. For assumed small-

amplitude perturbations such that |δ fa| ≪ f0, and retaining the linearized form of the perturbed

quantities from Eqs. 3.16, 3.17, 3.18 and 3.21, the following equations are obtained

ω δσ′n = kx cs δv′n,x + ky cs δv′n,y , (2.31)

ω cs δv′n,x =
kx

k

[
C2

eff,0 k − 2πGσn,0

]
δσ′n + i 2Ωcsδv′n,y

+
kx

k

[
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

]
δB′z,eq ,

(2.32)

ω cs δv′n,y =
ky

k

[
C2

eff,0 k − 2πGσn,0

]
δσ′n − i 2Ωcsδv′n,x

+
ky

k

[
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

]
δB′z,eq ,

(2.33)

ω δB′z,eq =
kx

µ0
cs δv′n,x +

ky

µ0
cs δv′n,y

− i
[
ηOD,0 k2 + τni,0

(
2πGσn,0µ

−2
0 k + k2 V2

A,0

)]
δB′z,eq,

(2.34)

where the perturbed eigenfunctions δσn, δvn,x (and δvn,y), δBz,eq are normalized by σn,0, cs and

B0 (= 2πG1/2σn,0), respectively such that δσ′n = δσn/σn,0, δv′n,x = δvn,x/cs, δv′n,y = δvn,y/cs ,

and δB′z,eq = δBz,eq/B0. Here, τni,0, ηOD,0, Ceff,0, and σn,0, ρn,0 represent the initial uniform

component of neutral-ion collision time, the Ohmic diffusivity, the local effective sound speed,

the mass column density of the sheet, and the volume density, respectively. The quantities

τni,0 and ηOD,0 are regarded as measures of AD and OD, respectively. From Equation 2.23 one
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obtains

vi,x = vn,x +
τni,0

σn

(
ρn,0

ρn

)1/2

FMag,x, (2.35)

vi,y = vn,y +
τni,0

σn

(
ρn,0

ρn

)1/2

FMag,y, (2.36)

where vi,x, vi,y, vn,x, vn,y have been discussed earlier. The above equations introduce the normal-

ized initial mass-to-flux ratio of the background reference state,

µ0 ≡ 2πG1/2σn,0

Bref
=

1
B̃ref

, (2.37)

where B̃ref = Bref/B0, and (2πG1/2)−1 is the critical mass-to-flux ratio for gravitational collapse

in the adopted model (Nakano & Nakamura, 1978; Ciolek & Basu, 2006), and Bref is the

magnetic field strength of the background reference state that is equal to the initial uniform

component of the magnetic field strength in the equatorial plane of the cloud (Bz,eq,0). Regions

with µ0 < 1 are defined as subcritical, regions with µ0 > 1 are defined to be supercritical, and

regions with µ0 ≈ 1 are transcritical. Furthermore, VA,0 is the initial uniform Alfvén speed,

V2
A,0 ≡

B2
ref

4πρn,0
= 2πGσn,0µ

−2
0 Z0 . (2.38)

The initial uniform component of the ambipolar diffusivity can be expressed as

ηAD,0 = V2
A,0τni,0 = 2πGσn,0µ

−2
0 Z0τni,0. (2.39)

The initial vertical half-thickness is

Z0 =
σn,0c2

s

πGσ2
n,0 + 2Pext

. (2.40)

From now on, we use the following form of the pressure balance equation

ρn,0c2
s =

π

2
Gσ2

n,0 + Pext, (2.41)

obtained by linearizing Equation 3.13.
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2.2.4 Dispersion Relation

A gravitationally unstable mode occurs if one of the imaginary parts of the complex angular

frequency (ωIM) leads to a growing solution, i.e., ωIM > 0. The growth time of such an in-

stability is obtained from the relation τg = 1/ωIM. The dispersion relation is found from the

following system of equations:



−ω kxcs kycs 0
kx
k A1 −ω cs 2iΩcs

kx
k A2

ky

k A1 −2iΩcs −ω cs
ky

k A2

0 kx
µ0

cs
ky

µ0
cs −[ω + i(θ + γ)]





δσ′n

δv′n,x

δv′n,y

δB′z,eq


= 0 , (2.42)

where

A1 =
(
C2

eff,0k − 2πGσn,0

)
, (2.43)

A2 =
(
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

)
, (2.44)

γ = ηOD,0 k2, (2.45)

θ = τni,0

(
2πGσn,0µ

−2
0 k + k2V2

A,0

)
= ηAD,0

(k + Z0k2)
Z0

, (2.46)

(see Section 2.6.3 for more discussion on ηAD,0 and ηOD,0). Now, solving the determinant of the

above matrix, the dispersion relation is

(ω + i [θ + γ])
(
ω2 −C2

eff,0 k2 + 2πGσn,0k − 4Ω2)
= ω

[
2πGσn,0kµ−2

0 + k2 V2
A,0

]
.

(2.47)

In the limit of flux-freezing (τni,0 −→ 0, ηOD,0 −→ 0),

ω2 −C2
eff,0 k2 + 2πGσn,0k − 4Ω2

= 2πGσn,0kµ−2
0 + k2 V2

A,0 .
(2.48)
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In the limit of OD only (τni,0 −→ 0),

(ω + i γ)
(
ω2 −C2

eff,0 k2 + 2πGσn,0k − 4Ω2)
= ω

(
2πGσn,0kµ−2

0 + k2 V2
A,0

)
.

(2.49)

In the limit of AD only (ηOD,0 −→ 0),

(ω + i θ)
(
ω2 −C2

eff,0 k2 + 2πGσn,0k − 4Ω2)
= ω

(
2πGσn,0kµ−2

0 + k2 V2
A,0

)
.

(2.50)

In the limit of flux-freezing, the gravitationally unstable mode corresponds to one of the roots

of ω2 < 0 and occurs for µ0 > 1. The growth time for this mode becomes a function of Ω and

µ0 and can be written as

τg =
λ

2π
[
Gσn,0(1 − µ−2

0 )(λ − λMS ) − Ω2λ2

π2

]1/2 , (2.51)

for λ ≥ λMS , where

λMS =

(
C2

eff,0 + V2
A,0

)
Gσn,0

(
1 − µ−2

0

) . (2.52)

The minimum growth time for the unstable mode occurs at the preferred magnetosonic length

scale λMS,m = 2λMS. As µ0 → ∞, this implies negligible magnetic support (B̃ref → 0).

In this regime, the growth time τg,T is dependent on the critical thermal length scale (λT ≡

C2
eff,0/(Gσn,0)) as follows:

τg,T =
λ

2π
[
Gσn,0 (λ − λT) − Ω2λ2

π2

]1/2 . (2.53)

In this regime (µ0 ≫ 1), the minimum growth time for the unstable mode occurs at the preferred

thermal length scale λT,m = 2λT.

After including the nonideal MHD effects, i.e., OD and AD, the gravitationally unstable

mode still corresponds to one of the roots of the full dispersion relation (Equation 3.4) and all

of them are obtained numerically. Because it is a cubic equation, an analytic expression of the
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growth time cannot be written down as simply as Equation 2.53.

2.2.5 Normalization

The model we use can be characterized by several dimensionless free parameters in addition

to µ0 (see Equation 3.3). We normalize all length scales by L0 and timescales by t0, mass by

M0, column densities by σn,0, magnetic field strength by B0. We define a dimensionless form

of the initial neutral-ion collision time τ̃ni,0 = τni,0/t0 =
(
2πGσn,0τni,0

)
/cs and a dimensionless

external pressure P̃ext ≡ (2Pext)/(πGσ2
n,0). The dimensionless local effective sound speed is

C̃eff,0 =
Ceff,0

cs
=

(
1 + 3P̃ext

) 1
2(

1 + P̃ext

) . (2.54)

The dimensionless Alfvén wave speed is

ṼA,0 =
VA,0

cs
= Z̃1/2

0 B̃ref = Z̃1/2
0 µ−1

0 , (2.55)

We define the normalized ambipolar diffusivity

η̃AD,0 = ηAD,0

(
t0/L2

0

)
= Ṽ2

A,0τ̃ni,0 = Z̃0µ
−2
0 τ̃ni,0, (2.56)

and a normalized Ohmic diffusivity η̃OD,0 = ηOD,0

(
t0/L2

0

)
. Here, Z̃0 is the normalized local

vertical half-thickness and is written as

Z̃0 =
Z0

L0
=

2(
1 + P̃ext

) , (2.57)

(note that Z̃0 = 2 with no external pressure). See Section 2.6.4 for more discussion on C̃eff,0

and Z̃0. The normalized isothermal magnetosonic speed in our units is written as

ṼMS,0 =
(
C̃2

eff,0 + Ṽ2
A,0

) 1
2
= C̃eff,0

[
1 +

2
µ2

0

(1 + P̃ext)
(1 + 3P̃ext)

] 1
2

. (2.58)
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The normalized form of governing equations (see Equations (3.25) to (3.28)) are following

ω′ δσ′n = k′x δv
′
n,x + k′y δv

′
n,y , (2.59)

ω′ δv′n,x =
k′x
k′

[
C̃2

eff,0 k′ − 1
]
δσ′n + i Qδv′n,y

+
k′x
k′
µ−1

0

[
1 + Z̃0k′

]
δB′z,eq ,

(2.60)

ω′ δv′n,y =
k′y
k′

[
C̃2

eff,0 k′ − 1
]
δσ′n − i Qδv′n,x

+
k′y
k′
µ−1

0

[
1 + Z̃0k′

]
δB′z,eq ,

(2.61)

ω′ δB′z,eq =
k′x
µ0
δv′n,x +

k′y
µ0
δv′n,y − i

[
γ̃ + θ̃

]
δB′z,eq . (2.62)

So, the normalized form of the dispersion relation is

(
ω′ + i[θ̃ + γ̃]

) (
ω′2 − C̃2

eff,0k′2 + k′ − Q2)
= ω′

(
k′µ−2

0 + Z̃0k′2µ−2
0

)
,

(2.63)

where k′ = kL0, ω′ = ωt0, and

γ̃ = γt0 = η̃OD,0 k′2, (2.64)

θ̃ = θt0 = τ̃ni,0 µ
−2
0

(
k′ + Z̃0k′2

)
= η̃AD,0

(
k′ + Z̃0k′2

)
Z̃0

. (2.65)

In the limit of flux-freezing (τ̃ni,0 −→ 0, η̃OD,0 −→ 0),

ω′2 − C̃2
eff,0k′2 + k′ − Q2 = k′µ−2

0 + Z̃0k′2µ−2
0 . (2.66)

In the limit of OD only (τ̃ni,0 −→ 0),

(
ω′ + iγ̃

) (
ω′2 − C̃2

eff,0k′2 + k′ − Q2)
= ω′

(
k′µ−2

0 + Z̃0k′2µ−2
0

)
.

(2.67)
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In the limit of AD only (η̃OD,0 −→ 0),

(
ω′ + iθ̃

) (
ω′2 − C̃2

eff,0k′2 + k′ − Q2)
= ω′

(
k′µ−2

0 + Z̃0k′2µ−2
0

)
.

(2.68)

Here, we represent the effect of rotation in terms of the Toomre parameter

Q ≡
csΩ

πGσn,0
(2.69)

(Toomre, 1964).

Similarly, under flux-freezing the normalized form of the growth time of the gravitationally

mode can be written as

τ′g =
λ′[

2π
(
1 − µ−2

0

) (
λ′ − λ′MS

)
− Q2λ′2

]1/2 , (2.70)

for λ′ ≥ λ′MS and for µ0 > 1,

λ′MS = 2π

(
C̃2

eff,0 + Z̃0µ
−2
0

)(
1 − µ−2

0

) . (2.71)

The minimum growth time for the unstable mode occurs at λ′MS,m = 2λ′MS. Note that, k′MS,m =

k′MS/2. The dimensionless thermal growth time (τ′g,T ) is

τ′g,T =
λ′[

2π(λ′ − λ′T) − Q2λ′2
] 1

2

, (2.72)

where the dimensionless critical thermal length scale is defined as

λ′T = 2πC̃2
eff,0 = π

(
1 + 3P̃ext

)(
1 + P̃ext

) Z̃0 . (2.73)

Interestingly, we notice that in the flux-frozen case the normalized shortest growth timescale is

different for each different normalized rotation rate Q, as obtained in Equation 2.70 and 2.72.

However, we find that the corresponding normalized preferred length scale remains the same

irrespective of any rotation as shown in Equation 2.71 and 2.73 (see also Figure 2.9 for relevant
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discussion). When µ0 → ∞ and Q = 0, the minimum growth time for the unstable mode occurs

at λ′T,m = 2λ′T and it yields a growth time

τ′g,T,m =

(
2λ′T
π

)1/2

= 2 C̃eff,0 , (2.74)

which is the same as the dimensionless dynamical (free-fall) timescale (t′d = td/t0 = Z̃0, or

td = Z0/cs) when P̃ext = 0. For the highly supercritical regime (µ0 ≫ 1), under the asymptotic

limit (λ′ ≫ λ′T),

τ′g →

(
λ′

2π

)1/2

, (2.75)

as obtained from Equation 2.70 for the case of no rotation (Q = 0). This behavior is seen in

Figure 2.5(a) and Figure 2.6 for very large length scales and µ0 > 1. These results show that

in the limit Q = 0, the isothermal sheet has a thermal length scale (λ′T = 2πC̃2
eff,0, effectively

the “Jeans length”) and a preferred thermal length scale λ′T,m = 4πC̃2
eff,0. Similarly, in the

limit P̃ext → 0, it becomes λT,m = 4π L0 = 2πZ0) and thermal (Jeans) timescale τ′T,m = 2

(similarly, τT,m = 2L0/cs = Z0/cs). We use λ′ as an independent variable since the characteristic

dispersion relation for our eigensystem is only a function of k′ ≡ k′z = (k
′2
x + k

′2
y )1/2. Under

this approximation, all the perturbations are independent of the planar angle of propagation α

(= tan−1[k′y/k
′
x]).

2.2.6 Generalized Toomre Criterion

We derive a generalized Toomre criterion in terms of a generalized rotation parameter (Qeff)

that includes a magnetic dependence (see Section 2.6.5). In the limit of flux-freezing, the

expression is

Qeff = Ω

(
C2

eff,0 + V2
A,0

)1/2

πGσn,0

(
1 − µ−2

0

) = Q

(
C̃2

eff,0 + Z̃0 µ
−2
0

)1/2(
1 − µ−2

0

) (2.76)

(see Lizano et al. (2010) for a similar expression). The above equation shows that Qeff has

a direct dependence on the mass-to-flux-ratio (µ0) as well as on the isothermal magnetosonic

speed
(
C2

eff,0 + V2
A,0

)1/2
(see Equation 2.58).

In the regime where the normalized mass-to-flux ratio approaches infinity, implying negli-
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Figure 2.2: Normalized generalized rotation parameter (Qeff) as a function of µ0 for different
values of Q = 0.1 (red), 0.2 (blue), 0.3 (green), 0.4 (magenta) with flux-freezing. The black
solid line represents the instability cutoff and occurs at Qeff = 1/2 under flux-freezing.

gible magnetic support, and for no external pressure (i.e., Ceff,0 = cs) one can show that

Qeff →
csΩ

πGσn,0
= Q. (2.77)

We evaluate the generalized Toomre instability criterion that yields

Qeff <
1
2
, (2.78)

or, equivalently,

Q < Qcrit,m =
1
2

(
1 − µ−2

0

)
(
C̃2

eff,0 + Z̃0 µ
−2
0

)1/2 . (2.79)

See the derivation in Section 2.6.5.
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Figure 2.3: Modified critical rotation parameter Qcrit,m (that has a magnetic dependence) as a
function of µ0. The solid line shows the case for flux-freezing such that instability occurs for
Q < Qcrit,m. The dashed line shows critical value of instability in the hydrodynamic limit (i.e.,
Qcrit,m → 1/(2C̃eff); see Equation 2.79.

Figure 2.2 shows the normalized magnetic Toomre Q factor (Qeff) as a function of normal-

ized mass-to-flux ratio (µ0) in the flux-freezing limit for four different values Q = 0.1, 0.2, 0.3, 0.4.

The solid line represents the cutoff value of 1/2 that implies no unstable mode can occur for

those values of µ0 for which Qeff ≥ 1/2, as long as flux-freezing prevails.

One can show (see Figure 2.3 and also Table 2.1) that in the hydrodynamic limit with no

external pressure (C̃eff,0 = 1), Qcrit,m reduces to the critical Toomre instability limit. Figure 2.3

presents the magnetic critical limit of Q (i.e., Qcrit,m) obtained under the limit of flux-freezing

as a function of µ0. The dotted line represents the critical boundary in the hydrodynamic limit

for a nonzero P̃ext, which is 1/(2C̃eff) (see Equation 2.79). We also show that the magnetic

dependent critical bound (Qcrit,m) goes back to the hydrodynamic value in the regime µ0 ≫ 1.
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This above criteria can easily be acquired from the following dispersion relation

ω2 = C2
eff,0k2 − 2πGσn,0k + 4Ω2,

or, ω′2 = k′2 − k′ + Q2,
(2.80)

which is same as the dispersion relation (Equation 2.48 or Equation 2.66) for an isothermal

planar sheet in the hydrodynamic limit.

We discuss the effect of rotation on the lower and upper limits of the unstable range of

wavelengths. From the dispersion relation under flux-freezing (Equation 2.66), setting ω′2 = 0

we obtain

k′±,Q = k′MS,m

[
1 ±

√
1 − 4Q2

eff

]
, (2.81)

where

k′MS,m =
2π
λ′MS,m

=
(1 − µ−2

0 )

2(C̃2
eff,0 + Ṽ2

A,0)
, (2.82)

see Section 2.2.5 for a detailed discussion on λ′MS,m. Here, ′+′ and ′−′ signs belong to the

minimum (maximum, i.e., λ′Q,max) and maximum (minimum, i.e., λ′Q,min) wavenumbers (wave-

lengths) for rotationally modulated instability, respectively. Under the approximation 4Q2
eff ≪

1, λ′Q,min and λ′Q,max can be obtained from the above relation. It follows that

λ′Q,min =
2π(

1 − Q2
eff

) (
C̃2

eff,0 + Z̃0µ
−2
0

)(
1 − µ−2

0

) =
λ′MS(

1 − Q2
eff

) , (2.83)

λ′Q,max =
2π
Q2

eff

(
C̃2

eff,0 + Z̃0µ
−2
0

)(
1 − µ−2

0

) =
λ′MS

Q2
eff

. (2.84)

We see that the lower and upper limits of unstable wavelengths gradually increase and decrease

for higher rotation, as seen from Figure 2.4(a) and (b), respectively. This suggests that rotation

stabilizes not only the longer wavelengths but also the smaller wavelengths. Hence, when

adding rotation, the total range of unstable length scales is reduced.

In the hydrodynamic limit (B̃ref → 0 ; µ0 → ∞), Equation 2.81 reduces to

k′±,Q =
1

2C̃2
eff,0

[
1 ±

√
1 − 4Q2C̃2

eff,0

]
. (2.85)
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Figure 2.4: Normalized maximum and minimum wavelength for rotationally modulated insta-
bility as a function of µ0. (a) is for minimum wavelength, λ′Q,min (see Equation 2.83) and (b) is
for maximum wavelength, λ′Q,max (see Equation 2.84).

Similarly, under the approximation 4Q2C̃2
eff,0 ≪ 1 in the hydrodynamic limit, we find

λ′Q,min =
2π(

1 − Q2C̃2
eff,0

)C̃2
eff,0, (2.86)

λ′Q,max =
2π
Q2 , (2.87)

which are similar to Equation 2.83 and Equation 2.84 for µ0 → ∞. In the limit P̃ext → 0,

Equation 2.85 becomes

k′±,Q =
1
2

[
1 ±

√
1 − 4Q2

]
, (2.88)

which can be directly obtained from Equation 2.80. Now, under the approximation 4Q2 ≪ 1,

we get

λ′Q,min =
2π

1 − Q2 , (2.89)

λ′Q,max =
2π
Q2 , (2.90)

which are counterparts to Equation 2.86 and Equation 2.87 in the limit P̃ext → 0 (i.e., C̃eff,0 = 1).
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2.2.7 Stationary Magnetic Field Limit

In the limit of stationary magnetic field, ωδB′z,eq → 0, we discuss the respective cases of Ohmic

dissipation (OD) and ambipolar diffusion (AD). Under the stationary magnetic field limit, we

obtain the normalized dispersion relation for the case of only OD (τ̃ni,0 = 0, Q = 0) is

ω′2 + ω′
i

η̃OD,0

(
1 + Z̃0k′

)
k′µ2

0

−
(
C̃2

eff,0k′2 − k′
)
= 0 , (2.91)

which yields a growth timescale of OD

τ′g,OD =
2η̃OD,0λ

′[(
λ′(λ′+2πZ̃0)

2πµ2
0

)2
+ 8πη̃2

OD,0

(
λ′ − λ′T

)] 1
2

−

(
λ′(λ′+2πZ̃0)

2πµ2
0

) . (2.92)

See Section 2.6.6 for a derivation of Equation 2.91. Minimizing τ′g,OD of Equation 2.92 with

respect to λ′ yields

λ′preferred,OD = λ
′
T. (2.93)

Furthermore, one obtains

τ′g,OD → ∞ at λ′preferred,OD = λ
′
T, (2.94)

and this feature is illustrated later in Figure 2.8(a) and (b). The remnant thermal pressure makes

the timescale of the contraction driven by OD to be infinitely long in the regime µ0 ≪ 1.

Under a similar approximation in the regime of only AD (η̃OD,0 = 0, Q = 0), the resulting

normalized dispersion relation is

ω′2 + ω′
i

τ̃ni,0
−

(
C̃2

eff,0k′2 − k′
)
= 0, (2.95)

(see also Ciolek & Basu, 2006). From the above relation of AD, one finds that an unstable

mode exists for λ′ > λ′T, and has a growth timescale of AD

τ′g,AD =
2τ̃ni,0λ

′[
λ′2 + 8πτ̃2

ni,0(λ′ − λ′T)
] 1

2
− λ′

. (2.96)

See Section 2.6.6 for a derivation of Equation 2.95. We further carried out the following cal-
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culation by minimizing τ′g,AD from Equation 2.96 with respect to λ′ which yields

λ′preferred,AD = 2λ′T . (2.97)

Furthermore, we obtain

τ′g,AD =
4τ̃ni,0λ

′
T[

4λ′2T + 8πτ̃2
ni,0λ

′
T

] 1
2
− 2λ′T

at λ′preferred,AD = 2λ′T, (2.98)

and this value is independent of µ0, which is illustrated later in Figure 2.8(c) and (d).

In the asymptotic limit (λ′ ≫ λ′T) from Equation 2.92 and Equation 2.96 we deduce

τ′g,OD =
2η̃OD,0

(λ′+2πZ̃0)
2πµ2

0


1 +

8πη̃2
OD,0(λ′−λ′T)(
λ′(λ′+2πZ̃0)

2πµ2
0

)2


1
2

− 1


→

λ
′2

4π2µ2
0η̃OD,0

,

(2.99)

τ′g,AD =
2τ̃ni,0[{

1 +
8πτ̃2

ni,0(λ′−λ′T)

λ
′2

} 1
2
− 1

] → λ′

2πτ̃ni,0
, (2.100)

respectively, (using (1 + x)1/2 ≈ 1 + x/2 for x ≪ 1). This behavior of the growth timescales is

seen in Figure 2.6 for very large length scales and µ0 < 1. In this figure we see the slope

of the curves for OD are steeper than the case for AD. Also we see that as η̃OD,0 → ∞,

τ′g,OD → λ′/
[
2π

(
λ′ − λ′T

)]1/2
, and when τ̃ni,0 → ∞, τ′g,AD → λ′/

[
2π

(
λ′ − λ′T

)]1/2
. This is

identical to Equation 2.72 when µ0 → ∞, i.e., when B̃ref → 0 and Q = 0. In the regime

µ0 ≪ 1, the minimum growth time for OD and AD occur at the preferred wavelength λ′T and

2λ′T, respectively as defined above. The limit η̃OD,0 → ∞ corresponds to an extremely high

rate of collisions encountered by the charged particles such that they become decoupled from

the magnetic field. On the other hand, τ̃ni,0 → ∞ corresponds to the case when there is no

collisional coupling between the neutrals and the ions (and hence with the magnetic field). The

ions are completely “invisible” to the neutrals in this situation, and there is no transmission of

magnetic force to neutrals via neutral-ion collisions.
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Figure 2.5: Normalized growth time of the gravitationally unstable mode (τ′g = τg/t0) as a
function of normalized wavelength (λ′g = λg/L0) for flux-frozen models (η̃OD,0 = 0, τ̃ni,0 = 0)
with different values of the normalized mass-to-flux-ratio. The left panel (a) shows the case
with Q = 0 for fixed µ0 = 1.1 (red), 2 (green), and 6 (blue). The right panel (b) shows the cases
with Q = 0 and Q = 0.2 for µ0 = 2 (green) and 6 (blue).

2.3 Numerical Results

In subsequent sections we generate figures based on solutions of the normalized dispersion

relation as described in (Section 2.2.5). Henceforth the normalized wavelength λ′ is attributed

as λ′g which means 2π/k′g; “g” corresponds to the “growth mode”.

2.3.1 Flux-frozen Model

Figure 2.5 shows the instability growth time τ′g (= τg/t0) as a function of the wavelength λ′g

(= λg/L0) for flux-frozen cases. Figure 2.5(a) shows the case without rotation (as obtained by

Ciolek & Basu (2006)), whereas Figure 2.5(b) shows the growth time for supercritical clouds

with µ0 = 2 and 6, including rotation (in terms of the Q parameter) as obtained from our model

(see Equation 2.66). Here, Q = 0 lines serve as a reference point. In the limit of large length

scale, τg varies as λ
′1/2
g , which can be seen from Equation 2.75. We notice that adding a small

rotation (Q = 0.2) causes the gravitational collapse timescale to be comparatively longer than

the case without rotation. Instability occurs for those length scales that are not stabilized by

the thermal, magnetic, and rotational support. We see that rotation plays a significant role to

stabilize the longer wavelengths. Furthermore, along with thermal pressure, rotation also helps

to stabilize the smaller length scales, as discussed earlier in Section 2.2.6 (see also Figure 2.4).
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Figure 2.6: Normalized growth time of the gravitationally unstable mode (τ′g = τg/t0) as a
function of normalized wavelength (λ′g = λg/L0). Each panel shows a model with a fixed µ0

= 0.5 (magenta), 1 (black), 1.1 (red), 2 (green), 6 (blue). Figures in the upper panel (a),(b),(c)
show the cases for normalized Ohmic diffusivity η̃OD,0 = 0.1, 1, and 10, respectively. Figures
in the lower panel (d),(e),(f) show the cases for neutral-ion collision time τ̃ni,0 = 0.001, 0.04,
and 0.2, respectively.

Hence, the range (or span) of unstable wavelengths has been reduced from both the left hand

side (shorter end of the length scales) and the right hand side (longer side of the length scales).

Later, in Section 2.3.5, we discuss the effect of the magnetic field in creating a modified value

of the critical rotation parameter.

2.3.2 Theoretical Models with Nonideal MHD

We evaluate the growth timescale and length scale of gravitational instability with nonideal

MHD effects. The larger the Ohmic diffusivity (η̃OD,0) and/or the neutral-ion collision time

(τ̃ni,0), the greater are the effects of Ohmic dissipation (OD) and ambipolar diffusion (AD),

respectively.

Figure 2.6 presents the instability growth time τ′g (= τg/t0) as a function of the wave-



2.3. NUMERICAL RESULTS 67

100 101 102 103 104
λ ′

g

100

101

102

103

104

105

106

τ′
g

̃τnĩ 0=0
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̃τnĩ 0=0
η̃OD̃ 0=1
μ0=2

μ=0
μ=0.1
μ=0.2
μ=0.3
μ=0.4

100 101 102 103 104
λ ′

g

100

101

102

103

104

105

τ′
g

̃τnĩ 0=0
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Figure 2.7: Normalized growth time τ′g = τg/t0 of gravitationally unstable mode as a function
of the normalized wavelength λ′g = λg/L0. Left to right: For models with different normalized
Ohmic diffusivities η̃OD,0 = 0.01 (1st column), 0.1 (2nd column), 1 (3rd column), 10 (4th
column). Top to bottom: For models with different normalized mass-to-flux-ratio µ0 = 0.5 [1st
row: a, b, c, d], µ0 = 1 [2nd row: e, f, g, h], µ0 = 1.1 [3rd row: i, j, k, l], µ0 = 2 [4th row: m, n,
o, p], µ0 = 6 [5th row: q, r, s, t]. Each figure shows timescale curves for models with different
normalized rotation Q = 0 (black), 0.1 (red), 0.2 (blue), 0.3 (green), and 0.4 (magenta).

length λ′g (= λg/L0) for different cases of OD and AD (see also Ciolek & Basu (2006) for

AD). Here, the three different cases in the upper panel represent various Ohmic diffusivities:

η̃OD,0 = 0.1, 1, 10. The lower panel represents various areas within a molecular cloud: diffuse
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regions with high ionization fractions (τ̃ni,0 = 0.001), dense core forming regions with low ion-

ization fractions (τ̃ni,0 = 0.2) and an intermediate region (τ̃ni,0 = 0.04). Each panel shows the

dependence for several labeled values of µ0 (= 1/B̃ref). Here, µ0 = 0.5 is a subcritical cloud,

µ0 = 1 is a transcritical cloud, µ0 = 1.1 is slightly supercritical, µ0 = 2 is somewhat super-

critical, and µ0 = 6 is highly supercritical. We see that the growth time decreases with greater

η̃OD,0 and τ̃ni,0. In the limit of very large length scale, the normalized timescale (τ′g) for OD and

AD asymptotically varies as λ′2g and λ′g, respectively for µ0 < 1, as derived from Equation 2.99

and Equation 2.100. Whereas, for the supercritical region, τ′g asymptotically varies as λ′1/2g , as

derived in Equation 2.75. Hence for this case, the minima of τ′g vs λ′g curves look shallower as

compared to the subcritical cases. The diffusive-driven instabilities for the subcritical clouds

have a sharper minimum (peak) in the growth time.

Figure 2.7 shows the instability growth timescale and length scale with OD as the only

nonideal MHD effect. The first, second, third, and fourth column (from left to right) show

the cases for η̃OD,0 = 0.01, η̃OD,0 = 0.1, η̃OD,0 = 1, and η̃OD,0 = 10, respectively. Each column

shows five different normalized mass-to-flux-ratios (µ0 = 0.5, 1, 1.1, 2, 6) and each panel shows

five different rotation levels (Q = 0, 0.1, 0.2, 0.3, 0.4). For the subcritical case (µ0 = 0.5, note

first row), as the Ohmic diffusivity (η̃OD,0) increases by each factor of 10, the instability growth

time significantly gets reduced. Since the magnetic flux is being dissipated at a faster rate, it

shortens the growth timescale. Changing η̃OD,0 from 0.01 to 10, the timescale gets smaller by

a factor of 103. Also, for the transcritical (µ0 = 1, note second row) and slightly transcritical

(µ0 = 1.1, note third row) clouds, the growth timescale is lowered down by a similar magnitude

when moving from η̃OD,0 = 0.01 to 10. For the mildly supercritical case (µ0 = 2, note fourth

row), a gradual reduction in the growth timescale is more prominent for the modes with higher

rotation. This signifies that in the regime of OD, gravitational collapse is likely to be faster

even with the higher rotation speed. Lastly, for the highly supercritical case (µ0 = 6, note fifth

row), since the inward gravitational pull is extremely dominant over the magnetic field and

rotation, there is not much appreciable change in the growth modes with the variation of η̃OD,0.

Earlier, for the flux-frozen case, we mentioned that there is no unstable, gravitationally

collapsing mode for µ0 < 1, implying that only initially supercritical clouds can collapse.

However, the addition of AD and OD (see Figure 2.6 and Figure 2.7) allows for unstable,
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gravitationally collapsing modes to exist for both subcritical (µ0 < 1) and supercritical (µ0 > 1)

regimes. See also Section 2.6.7 for the combined effects of OD and AD. For all these plots and

for each case of µ0 shown, we notice that each curve has a distinct minimum. This minimum

represents the shortest growth time (fastest growth rate) and a corresponding preferred length

scale for gravitational instability.
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Figure 2.8: Normalized shortest growth timescale τ′g,m = τg,m/t0 and preferred length scale
λ′g,m = λg,m/L0 of the gravitationally unstable mode as a function of the normalized mass-to-flux
ratio µ0. Upper panel (a and b) shows the case of Ohmic dissipation for models with normalized
Ohmic diffusivities η̃OD,0 = 0 (black), 0.01 (red), 0.1 (blue), 1 (green), and 10 (magenta). Lower
panel (c and d) shows the case of ambipolar diffusion for models with normalized neutral-ion
collision time τ̃ni,0 = 0 (black), 0.001 (red), 0.04 (blue), 0.2 (green). The black dashed line in
(b) and (d) denotes the value 2λ′T; λ′T is the normalized thermal length scale.

Figure 2.8 shows the normalized minimum growth time of the gravitationally unstable
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mode τ′g,m (= τg,m/t0) and length scale λ′g,m (= λg,m/L0) corresponding to this most unstable

mode (which we call the preferred length scale) as a function of µ0. The upper panel of Fig-

ure 2.8 shows the case with only OD as obtained from our model. On the other hand, the lower

panel of Figure 2.8 shows the same for different amounts of AD, as calculated previously by

Ciolek & Basu (2006) and Bailey & Basu (2012). For both nonideal MHD effects, we observe

qualitatively similar length scale curves, and timescale curves that are qualitatively similar in

the supercritical regime but differ in the subcritical regime.

In the limit of flux-freezing (η̃OD,0 = 0, τ̃ni,0 = 0), for the supercritical regime (µ0 > 1),

each of the flux-freezing curves in Figure 2.8 shows that the growth time and length scale for

instability are short; essentially the timescale and length scale follow the dynamical timescale

(td = Z0/cs) and preferred thermal length scale (λT,m). Even with nonideal MHD terms in-

cluded, the growth times are similar in the supercritical regime, since these modes are dom-

inated by gravity. As the normalized mass-to-flux ratio approaches the transcritical value

(µ0 = 1) the growth timescale/length scale for instability becomes infinitely long, since in

the flux-frozen case only supercritical clouds can collapse. With the addition of either nonideal

MHD effect (OD or AD), the growth timescale in the subcritical regime becomes finite.

In the OD-only regime, Figure 2.8(a) shows that an increasing η̃OD,0, which increases the

rate of magnetic flux dissipation, makes the growth time tend toward that of thermal collapse

τ′g,T,m (= τg,T,m/t0). For µ0 ≪ 1, the preferred length scale attains the thermal length scale as

shown in Equation 2.93, hence the corresponding minimum growth timescale goes to infinity

as derived in Equation 2.94.

Similarly, in the AD-only case, for a relatively large τ̃ni,0 > 0.2, the growth timescale of

the subcritical regime is decreasing toward that of thermal collapse. However, for each value

of τ̃ni,0, it has a plateau for all values of µ0 ≪ 1. This is a distinguishing characteristic of AD

in comparison to OD. As seen in Equation 2.39 and Equation 2.56, the ambipolar diffusivity

is proportional to the square of the background magnetic field strength, therefore proportional

to µ−2
0 . Even as µ0 decreases in the regime µ0 ≪ 1, η̃AD,0 increases as µ−2

0 and enforces a fixed

drift speed of ions and neutrals (see Section 2.6.8 for more details on the eigenfunctions) and

thereby in the growth timescale. For a typical normalized neutral-ion collision time as observed

in molecular clouds (τ̃ni,0 = 0.2), the timescale for collapse of a subcritical region is ∼ 10 times
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longer than that of a supercritical region (see Figure 2.8(c)). This leads to the often quoted

result that the ambipolar diffusion time is ∼ 10 times the dynamical time. However, note that a

transcritical region has a growth time that is intermediate to the two plateau values.

The preferred wavelengths for collapse (λ′g,m = λg,m/L0) exhibit an interesting dependence

on µ0 (see Figure 2.8(b) and (d)). For a nonzero Ohmic diffusivity or neutral-ion collision time,

the wavelength with the minimum growth time remains close to the flux-freezing value for

decidedly supercritical clouds, since these are gravity-dominated modes that collapse quickly

with little time for significant magnetic diffusion. For transcritical but slightly supercritical

clouds, there is a sharp rise in the preferred wavelength, similar to what happens in the flux-

frozen case. However, the preferred wavelength does not diverge at µ0 = 1 as in the flux-frozen

case. Instead, the magnetic diffusion caps the preferred wavelength at a finite, but potentially

large value that depends on the level of diffusivity. In these hybrid transcritical modes, there

is enough magnetic field dragging to create an hourglass shape with a strong curvature force

that resists the collapse, so that larger perturbations with more mass can more easily overcome

the magnetic support. For subcritical regions, where flux-freezing would allow no instability,

modes of diffusion-driven contraction now appear. These modes have very little magnetic field

enhancement in the perturbed region (see Section 2.6.8). Given the withdrawal of magnetic

support by OD or AD, the preferred scale converges back toward the thermal length scale.

The black dashed line in Figure 2.8(b) and (d) denotes the value 2λ′T. Specifically, for OD it

converges to λ′T, the critical thermal length scale, and for AD it converges to 2λ′T as would be

found in the hydrodynamic case. These limits were shown in Equation 2.93 and Equation 2.97

and the difference can be attributed to the stronger wavenumber dependence of the OD term

(see Section 2.6.3).

2.3.3 Results for a Protostellar Disk

In this section we focus on the region of parameter space that is most applicable to protostellar

disks, i.e., models with significant nonzero values of η̃OD,0 and Q, and potentially τ̃ni,0 as well.

Figure 2.9 shows the shortest growth timescale of the gravitationally unstable mode and

corresponding length scale as a function of the critical mass-to-flux ratio (µ0) for a rotationally-

supported protostellar disk in a regime with Ohmic dissipation (OD) only. We study the case
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Figure 2.9: Normalized shortest growth timescale (τ′g,m = τg,m/t0), preferred length scale
(λ′g,m = λg,m/L0) of the most unstable mode as a function of normalized mass-to-flux ratio
(µ0). This represents a model with a fixed normalized Ohmic diffusivity η̃OD,0 = 0.2 and with-
out ambipolar diffusion (τ̃ni,0 = 0). Each panel shows preferred timescale and length curves
for models with normalized rotation Q = 0 (black), 0.1 (red), 0.2 (blue), 0.3 (green), and 0.4
(magenta). The dashed lines in (a) show the corresponding timescale curves for different Q
under the limit of flux-freezing. In (b), the dashed line shows the corresponding length scale
curves for all Q under flux-freezing. In (b), the dash-dotted line shows the value 2λ′T.

of η̃OD,0 = 0.2 corresponding to neutral number density nn,0 = 1011 cm−3. In Figure 2.9(a), we

see that the minimum growth timescale of the disk becomes longer with higher rotation. This

indicates that rotation is providing more support together with the magnetic field and thermal

pressure against the inward gravitational pull. Overall, the reasoning behind this kind of trend

in the timescale and the length scale curves has been explained while discussing Figure 2.8. We

find that adding rotation to the flux-freezing case yields different minimum growth timescale

curves for each different rotation rate as shown by the dotted lines in Figure 2.9(a). In the

highly supercritical regime, the growth timescale for each different rotation rate belongs to a

different thermal collapse time for each different rotation. See Equation 2.70 and 2.72 for the

calculation. The dynamical time obtained with a higher rotation is longer than that with smaller

rotation.

Figure 2.9(b) shows that the preferred wavelength becomes smaller with higher rotation,

since the rotation stabilizes the longer length scales. Note that as rotation increases, each

respective peak preferred wavelength is gradually shifted to a larger µ0. This is because for
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Figure 2.10: Normalized shortest growth timescale (τ′g,m = τg,m/t0), preferred length scale
(λ′g,m = λg,m/L0) and preferred fragmentation mass (M′g,m = Mg,m/M0) of the most unstable
mode as a function of normalized mass-to-flux ratio (µ0). This model is shown for a fixed
normalized Ohmic diffusivity (η̃OD,0 = 0.2) and normalized neutral-ion collision time (τ̃ni,0 =

0.2) corresponding to nn,0 = 1011 cm−3 and T = 30 K. Each panel shows instability curves for
different normalized rotation Q = 0 (black), 0.1 (red), 0.2 (blue), 0.3 (green), and 0.4 (magenta).

an increased Q, the disk attains more support from rotation and becomes more stable against

the self-gravitational collapse. The field lines are not dragged in as much, and the (restorative)

effect of magnetic field curvature is maximized at progressively greater µ0, where gravity is

more dominant. This causes the peak of λ′g,m to move to greater values of µ0, but have decreased

value, as Q increases. Furthermore, we see that for higher rotation λ′g,m becomes larger than

that for smaller rotation in the regime µ0 < 1, in contrast to its trend in the regime µ0 ≥ 1.

Since rotation helps to stabilize the smaller length scales, an increment in rotation pushes the
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lower limit of unstable wavelengths to a larger value. So, the shortest growth time occurs at a

relatively larger wavelength for a higher Q in the regime µ0 < 1. We find that adding rotation

to the flux-freezing case yields the exactly same preferred length scale curve for each different

rotation rate as shown by the black dotted line in Figure 2.9(b), which is the same as for the

Q = 0 case. We found that the preferred wavelength is independent of Q for the flux-frozen

case (see Equation 2.71 and 2.73). The black dash-dotted line in Figure 2.9(b) shows 2λ′T, as

discussed in Figure 2.8.

In Figure 2.10, we present a more realistic case of a rotationally-supported protostellar disk

in the hybrid regime where OD and AD are both active. Figure 2.10(a) and 2.10(b) show the

minimum growth time of the gravitationally unstable mode τ′g,m and the corresponding length

scale, λ′g,m, respectively, as a function of µ0. These are shown for the density nn,0 = 1011 cm−3,

with specific values of normalized Ohmic diffusivity η̃OD,0 = 0.2 and normalized neutral-ion

collision time τ̃ni,0 = 0.2, and adopting different rotational speeds. Interestingly, in such high

density regions, the effects of AD are still present and cannot be neglected. Because of the

AD, the minimum growth timescale curves get plateaued in the subcritical regime, which are

indefinitely long for OD only, as seen in Figure 2.9(a). On the whole, the behavior of λ′g,m,

as shown in Figure 2.10(b), looks similar to the previously discussed length scale plots. The

presence of these two nonideal MHD effects together reduces the preferred length scale by an

order of 10 as compared to Figure 2.9(b) for the case of no rotation (Q = 0). In the subcritical

regime, as the magnetic diffusion becomes strong in the presence of AD and OD together, the

shortest growth times occur at the same preferred wavelength (that is similar to that of thermal

collapse) regardless of the level of rotation.

Continuing with these parameters, Figure 2.10(c) shows the normalized preferred mass

M′g,m = Mg,m/M0 corresponding to fastest growing mode as a function of normalized mass-

to-flux ratio (µ0) for different values of rotation. We see that the preferred mass for collapse

exceeds the Jeans mass by a factor of up to 10 when including OD and/or AD. The influence

of the magnetic field on the preferred mass of the most unstable mode can essentially lead to

the concept of a modified threshold for the fragmentation mass, as opposed to the Jeans mass

alone. This can allow a step forward to the understanding for the formation of clumps within a

protostellar disk in the early embedded phase.
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Figure 2.11: Normalized shortest growth time of gravitationally unstable mode (τ′g,m = τg,m/t0)
and normalized preferred length scale of most unstable mode (λ′g,m = λg,m/L0) as a function of
normalized Ohmic diffusivity (η̃OD,0) for a fixed normalized rotation Q = 0.2. Fig (a) and (b)
show the model for (i) τ̃ni,0 = 0. Fig (c) and (d) show the model for (ii) τ̃ni,0 = 0.2.

2.3.4 τ′g,m and λ′g,m as Functions of the Diffusion Parameters

We present an alternative way to look at the minimum growth timescale (τ′g,m) and length scale

(λ′g,m) by studying them as a function of diffusion parameters, i.e., Ohmic diffusivity (η̃OD,0)

and neutral-ion collision time (τ̃ni,0), for fixed µ0. Figure 2.11 shows τ′g,m and λ′g,m as a function

of η̃OD,0 with a finite rotation Q = 0.2. Figure 2.11(a) and (b) represent the case of only

Ohmic dissipation (OD) over a range of η̃OD,0 from 0.01 to 10. Figure 2.11(a) shows that for a

subcritical cloud with µ0 = 0.5, τ′g,m falls off with η̃OD,0 in almost a linear fashion. For µ0 ≈ 1.1,

the growth time decreases at a much faster rate up until η̃OD,0 ≈ 1, after which it settles down
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Figure 2.12: Normalized shortest growth time of gravitationally unstable mode (τ′g,m = τg,m/t0)
and normalized preferred length scale of most unstable mode (λ′g,m = λg,m/L0) as a function of
normalized neutral-ion collision time (τ̃ni,0). Fig (a) and (b) show the model for (i) η̃OD,0 = 0,
Q = 0. Fig (c) and (d) show the models for (ii) η̃OD,0 = 0.2, Q = 0.2.

to the thermal collapse time. For µ0 = 2, the timescale is plateaued for highly ionized regions

where the collapse time is longer, while for low ionization fractions the collapse time again

attains the thermal collapse time. For a highly supercritical case (µ0 = 6), the cloud is unstable

on the thermal timescale since gravity predominates.

Now, coming to Figure 2.11(b), for η̃OD,0 ≲ 1, we see that as µ0 increases from below unity,

λ′g,m increases from the thermal wavelength (λ′T) and becomes maximum at µ0 ≳ 1, and then

goes back toward λ′T for greater values of µ0. This is due to a sharp resonant-like peak in λ′g,m at

µ0 ≳ 1 (discussed earlier in Section 2.3.2). On the other hand, for η̃OD,0 ≫ 1, λ′g,m drops down
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toward λ′T as the preferred mode is dominated by OD.

The addition of AD causes a significant reduction in the timescale and length scale curves,

as shown in Figure 2.11(c) and (d). Overall, it depicts the interaction of the field lines with

two different magnetic diffusion mechanisms and self-gravity. For µ0 ≲ 1, Figure 2.11(c)

shows that the growth time becomes shorter by an order of about 100. In contrast, for µ0 = 1.5

(slightly supercritical cloud) this reduction in timescale is relatively smaller and for µ0 = 2 it

is smaller still. As µ0 increases to a highly supercritical value (µ0 = 6), self-gravity dominates

and the growth time tends to the thermal timescale. Figure 2.11(d) shows that for η̃OD,0 ≲ 1 and

µ0 = 1.5 or 2, the λ′g,m is shortened by a factor of about 1− 2 compared to the case without AD.

Whereas, for η̃OD,0 ≳ 1, all the λ′g,m corresponding to different µ0 become indistinguishable

from each other and merge to the thermal scale.

Figure 2.12 shows the variation of the growth time and wavelength as a function of the

neutral-ion collision time τ̃ni,0. The general trend of timescale and length scale curves shown

in Figure 2.12 behaves qualitatively in the same way as it does with regards to η̃OD,0. However,

from a closer look some subtle differences can be seen. For µ0 = 0.5 and 1, the timescale

curves decrease almost linearly until they reach τ̃ni,0 ∼ 1, as seen in Figure 2.12(a) (see also

Bailey & Basu, 2012). But in Figure 2.12(c), we see that the timescale curves corresponding

to these µ0 values attain the plateau at a much faster rate as they approach toward smaller τ̃ni,0.

Moreover, because of a nonzero rotation, the growth timescale for µ0 = 1.5 and 2 becomes a

little longer in comparison to that seen in Figure 2.12(a).

Moving to Figure 2.12(d), we notice that the maximum wavelength occurs at µ0 = 1.5 as

compared to Figure 2.12(b) where µ0 = 1.1 corresponds to the maximum wavelength. This

again shows that rotation provides an enhanced support even in a nearly transcritical regime,

because of which the peak preferred length scale is shifted toward a slightly more supercritical

region. Furthermore, on the side of high ionization fractions (i.e., τ̃ni,0 ≈ 0.01), the length scale

curves for µ0 ≲ 1 go to the thermal length scale (as discussed earlier in Section 2.2.7). Also,

the length scale curve for µ0 = 0.5 continues to decrease more rapidly than that for µ0 = 1.1.

This happens entirely because of stronger magnetic diffusion that is essentially lowering down

the length scale toward the thermal length scale. Lastly, coming to µ0 = 6; being highly

supercritical it evolves on the thermal length scale and timescale irrespective of any magnetic
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effects and the adopted rotation.

2.3.5 Critical Limit of the Generalized Toomre Criterion
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Figure 2.13: Normalized growth time of gravitationally unstable mode (τ′g = τg/t0) as a func-
tion of normalized wavelength (λ′g = λg/L0) for the following models. Fig (a) and (b) shows
flux-frozen model with fixed normalized mass-to-flux-ratio µ0 = 2 and µ0 = 6 respectively.
In (a) and (b), the timescale curves are shown for models with normalized rotation Q = 0
(black), 0.1 (blue), 0.2 (red), 0.3 (green), and 0.4 (magenta), 0.45 (cyan). Fig (c) shows
timescale curves for µ0 = 2 solely with Ohmic dissipation and η̃OD,0 = 0.01, 10 (red and
blue, respectively). Fig (d) shows timescale curves for µ0 = 2 solely with ambipolar diffusion
[τni,0 = 0.001, 0.2 (red and blue, respectively)]. Each one of (c) and (d) shows timescale scale
curves for Q = 0.1, 0.480 (solid line and dashed line for respective color). See also Table 2.1.

We introduced the effect of the magnetic field on Toomre’s instability criterion and obtained

an analytic expression in the flux-freezing limit (see Section 2.2.6). Here, we investigate the de-
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Table 2.1: Feasible Range of Q in Different Regimes. Generalized Toomre Instability criterion
(Q < Qcrit,m), see Figure 2.3, Equation 2.79. see also Figure 2.13 for nonideal MHD cases.
Here, HD, FF, OD, and AD present Hydrodynamic, Flux-frozen, ohmic dissipation, and am-
bipolar diffusion, respectively.

P̃ext C̃eff Regime Nonideal µ0 Qcrit,m

MHD = (1/B̃ref)
parameters

0 1 HD - ∞ 0.5
0.1 1.037 HD - ∞ 0.482

FF - 6 0.459
- 5 0.449
- 4 0.44
- 3 0.40
- 2 0.304
- 1.1 0.054

OD η̃OD,0 = [0.01, all 0.482
0.1, 1, 10]

AD τ̃ni,0 = [0.001, all 0.482
0.04, 0.2]

pendence of the nonideal MHD effects on the rotation parameter by analyzing our numerically

obtained results.

Figure 2.13 shows normalized growth timescale as a function of length scales in different

MHD regimes (ideal and nonideal). In Figure 2.13(a) and (b), under flux-freezing condition,

we see unstable growing modes can be obtained for a larger Q with µ0 = 6 than that with

µ0 = 2. As the cloud becomes more supercritical, the feasible instability range of Q expands

with the increase of µ0 until it merges with that of the hydrodynamic case (see Table 2.1 and

Figure 2.3). When we incorporate any of the nonideal MHD effects (either η̃OD,0 or τ̃ni,0), grow-

ing modes can be obtained almost for the entire feasible range of Q as seen in Figure 2.13(c)

and (d). These two cases are shown for a slightly supercritical value, µ0 = 2, to provide a

better comparison with respect to Figure 2.13(a). After adding a very small Ohmic diffusivity

(η̃OD,0 = 0.01) or neutral-ion collision time (τ̃ni,0 = 0.001), we obtain an unstable mode even

for Q = 0.480 when µ0 = 2, unlike the flux-frozen case in which Q = 0.480 corresponds to

stable modes. For a fixed value of Q at which an unstable mode exists in the flux-frozen case,

introducing a non-zero η̃OD,0 or τ̃ni,0 reduces the growth time of the instability as compared to

the flux-frozen case. In our model, an unstable mode occurs for Q < 0.482 (= 1/(2C̃eff,0))
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when we take P̃ext = 0.1, and for Q < 0.5 when P̃ext = 0.

Therefore, in the supercritical regime with magnetic diffusion, the critical instability limit

of Q reverts back to the hydrodynamic value. The growth times and wavelengths of preferred

unstable modes for low values of diffusivity are however much longer than for higher values

of diffusivity.

2.4 Discussion

We calculate some typical numbers based on our model for a rotationally-supported protostellar

disk. In the high density environment of a protostellar disk, both Ohmic dissipation (OD) and

ambipolar diffusion (AD) are expected to be active. Based on the parameters discussed in

Section 2.6.1, we estimate the nonideal MHD parameters using

τni,0 = 3.74 × 104
( T
10 K

) (0.01 g cm−2

σn,0

)2 (
10−7

χi,0

) (
1 + P̃ext

)−1
yr, (2.101)

where the ionization fraction is given by the approximate relation

χi,0 = 10−7
(

nn,0

104 cm−3

)−1/2

, (2.102)

and for OD we use

ηOD,0 =C1 1.3 × 1018
( nn,0

1012 cm−3

) ( T
10 K

)1/2

×

[
1 − tanh

( nn,0

1015 cm−3

)]
cm2 s−1,

(2.103)

as used by Machida et al. (2007) based on calculations by Nakano et al. (2002). The term within

the square brackets of Equation 2.103 is a cutoff representing the restoration of flux-freezing

at high densities due to thermal ionization. The uncertainties in C1 (adopting a dimensionless

scaling parameter whose standard value is unity) hinge largely on the grain properties (e.g.,

Dapp & Basu, 2010).

The magnetic field is expected to be largely dragged in by the collapse of a prestellar core

and there should be significant magnetization at early times. Three-dimensional nonideal MHD

simulations that start from a prestellar core show that in the very early embedded phase the disk

is only mildly supercritical with normalized mass-to-flux ratio µ0 ≳ 3 if the prestellar core has

µ0 = 3 (Hirano et al., 2020). Observationally, the magnetic field is difficult to detect directly



2.4. DISCUSSION 81

through the Zeeman effect in small-scale low mass objects like disks (Brauer et al., 2017).

Furthermore, the strength of polarized emission from embedded dust cannot be related to a field

strength, but an indirect means such as the DCF method could work in principle. However, this

has also proven to be challenging, since the spatially resolved polarization vectors detected at

mm wavelengths tend to be dominated by dust scattering instead (Kataoka et al., 2015, 2016;

Yang et al., 2016a,b). Observations of masers in compact high density regions near massive

protostars often reveal polarization that can be used to infer the magnetic field strength through

the Zeeman effect. Vlemmings et al. (2010) used methanol (CH3OH) maser emission around

the massive protostar Cepheus A HW2 to infer a large-scale magnetic field of strength ≈ 23

mG in the ≈ 1000 AU circumstellar disk. The field direction was also estimated to be nearly

perpendicular to the disk elongation and nearly parallel to the observed outflow. The inferred

mass-to-flux ratio was µ ≈ 1.7. In regions of low-mass star formation, Gonçalves et al. (2008)

and Myers et al. (2020) used the indirect means of fitting the magnetic field morphology to

determine the mass-to-flux ratios of the protostellar envelopes on ≈ 1000 AU scales, yielding

µ ≈ 1.7 and µ ≈ 1.5 for NGC 1333 IRAS 4A and BHR71 IRS1, respectively.

To gain insight into the values of the nonideal MHD coefficients, we refer to figure 4 of

Dapp et al. (2012), which shows the relative contribution from AD and OD to their respective

diffusivity coefficients. Their simulation shows that the diffusion coefficients for AD and OD

are nearly the same on the scale of the first core at r ≈ 1 AU. The contribution of OD continues

to increase sharply at higher densities (nn,0 ≳ 1011 cm−3) and significantly exceeds the contri-

bution from AD. At lower densities, the AD coefficient dominates that due to OD but this does

not cause a large flux loss since the dynamical time is less than the diffusion time associated

with AD during the runaway collapse phase.

Based on the simulations of Vorobyov & Basu (2006, see their figure 4) that follow the

self-consistent formation of disks from the collapse of prestellar cores, we infer a typical mid-

range neutral number density nn,0 ≈ 1011 cm−3 during the early embedded phase of the disk

that is characterized by recurrent GI. This is also the density at which both OD and AD con-

tribute significantly to magnetic dissipation, so it makes an interesting reference point to study.

Based also on these simulations (Vorobyov & Basu, 2006, 2007), we estimate a typical disk

temperature T = 30 K. These numbers lead to ρn,0 = 3.90 × 10−13 g cm−3, σn,0 = 59.95 g cm−2,
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L0 = 2.80 AU, t0 = 41.74 yr, M0 = 5.32×10−5 M⊙, and χi = 3.16×10−11. See figure 5 of Dapp

et al. (2012) for a comparison of ionization fraction for large number density. Using equations

(2.101) and (2.103), we then find that ηOD,0 = 2.25 × 1017 cm2 s−1 and τni,0 = 8.98 yr, leading

to η̃OD,0 = 0.2 and τ̃ni,0 = 0.2, respectively (see figure 2 of Dapp et al., 2012).

The adopted surface density σn,0 = 59.95 g cm−2 is congruent with a typical value in sim-

ulations of the early embedded class 0 phase (Vorobyov & Basu, 2006, see their figure 5).

Observationally, Pérez et al. (2016) estimated a surface density ≈ 5 g cm−2 for the disk sur-

rounding Elias 2–27, however that is a class II object representing a later stage of evolution.

Our estimated σn,0 does not include the inward pressure of an extra vertical squeezing W∗ due

to the gravity of the central star. This can reduce the value of the surface density for a given

volume density. The effect of W∗ is calculated quantitatively in Section 2.6.9, and we do not

deal with it further here as we are making order of magnitude estimates.

We refer the reader back to Figure 2.10(c) and note that for the values Q = 0, 0.1, 0.2, 0.3, 0.4,

the peak preferred modes with minimum growth time occur at µ0 = 1.17, 1.27, 1.52, 1.96, 3.05,

respectively. These correspond to magnetic field values Bref = 83.29, 76.56, 64.06, 49.72, 31.91 mG,

respectively. The normalized ambipolar diffusivity η̃AD,0 = Z̃0µ
−2
0 τ̃ni,0 = 0.29, 0.25, 0.17, 0.10, 0.04,

respectively, for the above mentioned values of µ0. These arise from ηAD,0 = V2
A,0τni,0 =

3.95, 3.35, 2.34, 1.41, 0.58, in units of 1017 cm2 s−1 for µ0 = 1.17, 1.27, 1.52, 1.96, 3.05. Mean-

while, η̃OD,0 does not explicitly depend on the magnetic field strength. Finally then, from Fig-

ure 2.10(c), we obtain the peak preferred fragmentation mass Mg,m to be 93.13, 56.78, 28.39,

16.13, 10.37 in units of MJup for Q = 0, 0.1, 0.2, 0.3, 0.4, respectively. Here, Mg,m = M′g,mMc

and Mc = πσn,0(L0/2)2 as the perturbation is taken to be circular with radius L0/2. For a typical

disk temperature T = 30 K and neutral number density nn,0 = 1011 cm−3, Mc = 4.18× 10−5 M⊙.

Protostellar disks in the early embedded class 0 phase can be prone to GI, especially while

they are still accreting matter from their surrounding envelope (Vorobyov & Basu, 2006). Re-

sistive MHD simulations also show that the magnetic field that is dragged in from the core

collapse leads to mildly supercritical disks in which magnetic dissipation mechanisms are ac-

tive (Hirano et al., 2020). Hydrodynamic simulations of global disk evolution have established

that the Q parameter, although initially derived through a local analysis, has wide ranging ap-

plicability to understanding global nonlinear disk evolution (see, e.g., Vorobyov & Basu, 2006,
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2007). For the intermediate regime 1 ≲ Q ≲ 2, small-amplitude fluctuations can persist and

lead to meaningful flocculent spiral structure. In the decidedly unstable regime Q ≲ 1, grand

design spiral arms are formed and clumps within them can form if the local cooling time is

also less than the orbit time (Vorobyov & Basu, 2010b); this is a criterion on the nonlinear

evolution that is not present in an isothermal linear analysis. Giant planet (or other companion)

formation by GI can then occur. The effect of the magnetic field on this scenario is just be-

ginning to be explored. Magnetic fields and nonideal MHD lead to a more complex instability

criterion including affecting the length scales and timescales of the instabilities, as we have

shown in this paper. The diffusivities play an important role in setting these quantitatively, and

for µ0 > 1 the preferred modes generally have larger length scales and longer timescales than

in the hydrodynamic case.

Future global simulations of the long term evolution of disks including nonideal MHD will

be able to explore the effect of nonideal MHD in clump formation and can potentially use the

linear results in this paper as a benchmark. The OD will also introduce important nonlinear

effects, since the resistive heating (not present in our linear isothermal analysis) can potentially

counteract the surface cooling. In fact, as Lizano et al. (2010) point out, a large amount of OD

is required in order to reduce the magnetic flux of disk material to the values inferred from the

paleomagnetism of meteorites in our solar system.

2.5 Summary

We have studied the effect of ambipolar diffusion (AD) and Ohmic dissipation (OD) on gravi-

tational instability within rotationally-supported protostellar disks, employing a linear analysis.

Our model clouds are isothermal, partially ionized, thin planar sheets with a finite local vertical

half thickness. Here, we highlight several interesting results that emerge.

We derive generalized criteria of Toomre instability that has a magnetic dependence (see

Section 2.2.6). We show that the magnetic field strength influences the critical limit of rotation

such that the instability criterion appears as Q < Qcrit,m. In the hydrodynamic limit (µ0 → ∞),

Qcrit,m reduces to 1/(2C̃eff,0), which is equivalent to standard Toomre’s instability criterion.

With the magnetic diffusion effects, i.e., AD and/or OD, the value of Qcrit,m also reverts back

to that of the hydrodynamic case (see Figure 2.3).
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Subcritical clouds (µ0 < 1) are stable against gravitational fragmentation in the flux-

freezing limit (η̃OD,0 → 0, τ̃ni,0 → 0). Supercritical clouds (µ0 > 1) are unable to support

themselves against their own gravity and are prone to collapse even in the flux-freezing regime.

In that regime, adding rotation helps to stabilize the longer wavelengths to a greater extent (re-

fer to Figure 2.5(b)). However, in the presence of any form of magnetic diffusion (OD or AD),

a fastest growing mode of gravitational instability having a minimum growth timescale and an

associated preferred length scale can be obtained even for subcritical clouds (Figure 2.8). The

two nonideal MHD effects reveal qualitatively similar kinds of features in the gravitationally

unstable modes, but there are quantitative differences. For highly subcritical clouds the pre-

ferred length scale in the AD only case converges to 2λT, i.e., twice the thermal critical length

scale, as in the highly supercritical (i.e., nonmagnetic) limit. For OD it converges to λT, the

minimum possible wavelength for instability due to the presence of thermal pressure, since the

OD-driven modes have stronger affinity for short wavelengths. In this highly subcritical limit,

the timescale of the fastest growing OD mode tends to infinity, since the preferred wavelength

is converging to λT. However, for AD, the diffusivity is proportional to the square of the field

strength, and this compensates for the strong magnetic support, and enforces a finite constant

drift speed and growth time that is independent of µ0 for µ0 ≪ 1. In a realistic situation of a

partially ionized protostellar disk, OD and AD are simultaneously active, and in this case AD

places an upper bound on the timescale of the diffusive-driven instability.

A peak length scale for collapse occurs at transcritical (but slightly supercritical, µ0 ≳ 1)

mass-to-flux ratios, but the peak occurs at different values for OD and AD and also depending

on the value of the diffusivities. For very high diffusivities, the peak can disappear. The

timescale for growth of the transcritical modes is intermediate between the dynamical (free-

fall) time and the ambipolar diffusion time.

The interplay of the effects of two nonideal MHD effects together with rotation in a pro-

tostellar disk can be seen in Figure 2.10 (Section 2.3.3). Rotation makes the growth timescale

longer and the peak preferred length scale becomes shorter because of an additional support

from rotation against gravitational collapse. The peak preferred wavelength of instability grad-

ually moves to a larger µ0 (∼ 2) as rotation increases. Furthermore, we find that the peak pre-

ferred mass for collapse exceeds the thermal critical (Jeans) mass by a factor of up to 10 when
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including OD and/or AD. The peak preferred fragmentation mass is likely to be ∼ 10−90 MJup

(see Section 2.4, Figure 2.10(c)). This magnetic field dependent mass creates a modified thresh-

old for AD and/or OD driven gravitational fragmentation in the magnetized disks.

The linear analysis we have presented is formally applicable to a local patch within a larger

disk-like cloud. The inclusion of rotation, OD, and AD makes the results particularly relevant

for protostellar disks. A local analysis of a nonmagnetic rotating cloud yields the usual Toomre

criterion, which has proven surprisingly effective in the interpretation of the global evolution

of disks that contain significant inhomogeneities. In a similar manner, our results may prove to

be useful in the analysis of global nonideal MHD models of disk evolution. Such simulations

are in their infancy, and the role of OD and AD in regulating GI and giant planet formation

may prove to be crucial. Future simulations have much to explore.

2.6 Appendices

2.6.1 Units of Defined Parameters

The typical values of the units used and other derived quantities are

σn,0 =
3.63 × 10−3(
1 + P̃ext

)1/2

( nn,0

103 cm−3

)1/2 ( T
10 K

)1/2

g cm−2, (2.104)

L0 = 1.54 × 104
( T
10 K

)1/2 (
103 cm−3

nn,0

)1/2 (
1 + P̃ext

)1/2
AU, (2.105)

t0 = 3.98 × 105
(
103 cm−3

nn,0

)1/2 (
1 + P̃ext

)1/2
yr, (2.106)

cs = 0.188
( T
10 K

)1/2

km s−1, (2.107)

M0 = 9.76 × 10−2
( T
10 K

)3/2 (
103 cm−3

nn,0

)1/2 (
1 + P̃ext

)1/2
M⊙ , (2.108)

Bref =
5.89 × 10−6

µ0

( nn,0

103 cm−3

)1/2 ( T
10 K

)1/2 (
1 + P̃ext

)−1/2
G , (2.109)
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ηAD,0 = 6.01 × 1021 µ−2
0

(1 + P̃ext)

( T
10 K

) (10−7

χi,0

) (
103 cm−3

nn,0

)
cm2s−1. (2.110)

2.6.2 Collision timescales

We use the collision time formula between the different species s and neutrals as computed by

Dapp et al. (2012), employing the work by Mouschovias (1996). The following expression is

the collision time for a charged species s with the neutrals:

τsn = ks,He
ms + mH2

ρn⟨σw⟩sH2

, (2.111)

where σ is the elastic scattering cross-section for electron-neutral or ion-neutral encounters,

and w equals the relative velocity of the charged particle as seen from the rest frame of the

neutrals. The angular bracket denotes an average over the velocity distribution function of the

charged species. The quantity ks,He is a correction factor due to the fact the gas also contains

helium. Helium contributes only a small correction due to its low polarizability as compared

to H2 (see Spitzer, 1978; Mouschovias, 1996):

ks,He = 1.23 if s = i,

= 1.21 if s = e.
(2.112)

The values of the collision rate ⟨σw⟩sH2 are (Mott & Massey, 1949; McDaniel & Mason,

1973):

⟨σw⟩sH2 = 1.69 × 10−9 cm3 s−1 if s = i,

= 1.30 × 10−9 cm3 s−1 if s = e.
(2.113)

2.6.3 Characteristic diffusion length scales for OD and AD

From Equation 2.45 we see that the characteristic diffusion length scale for Ohmic dissipation

(OD) is

lOD ∼
1
k
. (2.114)

It corresponds to the typically encountered diffusion rate (Equation 2.45) proportional to k2,

arising from the application of a resistivity ηOD,0 within the assumed finite thickness of our
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model cloud. Similarly, from Equation 3.5 we see that the characteristic diffusion length scale

for ambipolar diffusion (AD) is

lAD ∼

(
k
Z0
+ k2

)−1/2

, (2.115)

which contains an additional term (Z0/k)1/2 as compared to lOD. The diffusion rate (Equa-

tion 3.5) is the sum of two terms, with a term proportional to k that comes from the magnetic

tension term in the Lorentz force (see Equation 2.15) while a term proportional to k2 comes

from the magnetic pressure gradient force that acts within the finite thickness region of the

cloud. The magnetic tension, arising from a surface stress (see Equation 2.12), would exist

even in the limit of an infinitesimally thin sheet, and illustrates the fact that the relevant length

scale for a diffusive process in the limit of an infinitesimally thin sheet is l ∼ (Z0/k)1/2, which

is the geometric mean of Z0 and 1/k (see discussion in Lizano et al., 2010, Appendix). Even

though the sheet can be infinitesimally thin, one can still identify an effective length scale

Z0 ∝ c2
s/(Gσn,0) as a combination of the relevant parameters. The OD term would also attain

such a form if the sheet was infinitesimally thin and we only considered the dissipation of sur-

face currents, as shown by Lizano et al. (2010). In this study we consider the OD of the current

inside the finite thickness disk to be the most applicable.

2.6.4 Effective Sound Speed

In Figure 2.14, we review properties of the normalized local effective sound speed (C̃eff) and

initial vertical half-thickness (Z̃0) as a function of dimensionless external pressure (P̃ext). In the

limit of low external pressure (Pext → 0), the local effective sound speed reduces to the isother-

mal sound speed (see Equation 2.21) i.e., C̃eff = 1 (see Equation 2.54). We see that in this

limit (Pext ≪ (π/2)Gσ2
n,0), the half-thickness Z0 ∝ 1/σn,0 (see Equation 2.40). In this case, the

half-thickness increases in the direction of decreasing surface density, and the external pressure

acts to contribute a force in the direction opposite that of the surface density increase. Hence,

there is an increased restorative effect to density perturbations and therefore an increased ef-

fective sound speed. Whereas in the regime of large external pressure (Pext ≫ (π/2)Gσ2
n,0), Z0

becomes proportional to σn,0, determined by the interplay between internal thermal pressure

within the cloud and the external pressure. In this case, the half-thickness decreases in the

direction of decreasing surface density, and the external pressure acts to contribute a force in
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Figure 2.14: Normalized local effective sound speed (C̃eff) and normalized effective local ver-
tical half-thickness (Z̃0) as functions of the normalized external pressure P̃ext. The value of C̃eff

is maximum (=1.061) at P̃ext = 1/3 (as shown by the dashed horizontal and vertical lines).

the same direction as the surface density increase. Hence, there is a decreased restorative effect

to density perturbations and therefore a decreased effective sound speed. As a result, C̃eff,0 at-

tains a maximum (=1.061) at P̃ext = 1/3 and thereafter gradually decreases, while Z̃0 gradually

decreases with increasing P̃ext, as can be seen from Equation 2.57.

2.6.5 Notes on Generalized Toomre Criterion

In the limit of flux-freezing the dispersion relation is

ω2 = 4Ω2 + k2(C2
eff,0 + V2

A,0) − 2πGkσn,0(1 − µ−2
0 ). (2.116)
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To minimize ω2, the criteria are d(ω2)/dk = 0 and d2(ω2)/dk2 > 0 at k = kmin, yielding

kmin =
πGσn,0(1 − µ−2

0 )

(C2
eff,0 + V2

A,0)
. (2.117)

Now, to obtain the instability criterion, we set ω2 < 0 at k = kmin, which gives

4Ω2 + k2
min(C2

eff,0 + V2
A,0) − 2πGkminσn,0(1 − µ−2

0 ) < 0 , (2.118)

yielding
Ω(C2

eff,0 + V2
A,0)1/2

πGσn,0(1 − µ−2
0 )

<
1
2
. (2.119)

In the dimensionless form it becomes

cs Ω

πGσn,0

(C̃2
eff,0 + Z̃0µ

−2
0 )1/2

(1 − µ−2
0 )

<
1
2
,

or, Q
(C̃2

eff,0 + Z̃0µ
−2
0 )1/2

(1 − µ−2
0 )

<
1
2
,

or, Qeff <
1
2
,

or, Q <
1
2

(1 − µ−2
0 )

(C̃2
eff,0 + Z̃0µ

−2
0 )1/2

= Qcrit,m ,

(2.120)

where

Qeff =
Ω(C2

eff,0 + V2
A,0)1/2

πGσn,0(1 − µ−2
0 )
= Q

(C̃2
eff,0 + Z̃0µ

−2
0 )1/2

(1 − µ−2
0 )

. (2.121)

See Section 2.2.6 for further discussion.
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2.6.6 Notes on Stationary field limit

In the limit of stationary magnetic fields, ωδB′z,eq → 0, the resulting dispersion relation can be

obtained using Equations (2.42) to (2.45). It follows that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω kxcs kycs 0
kx
k A1 −ω cs 0 kx

k A2

ky

k A1 0 −ω cs
ky

k A2

0 kx
µ0

cs
ky

µ0
cs −i(θ + γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.122)

⇒ ω2 + ω ikA2
µ0(θ+γ) − kA1 = 0 , (2.123)

where A1, A2, θ, and γ are explicitly written in Section 2.2.4. Recall that θ and γ represent the

case of AD and OD, respectively. Simplifying each individual term of Equation 2.123 yields

ω2 = ω′2
(2πGσn,0)2

c2
s

, (2.124)

ω
ikA2

µ0θ
= ω

ik
µ0

(
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

)
τni,0

(
2πGσn,0µ

−2
0 k + k2V2

A,0

)
= i

ω′

τ̃ni,0

(2πGσn,0)2

c2
s

,

(2.125)

ω
ikA2

µ0γ
= iω

(
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

)
µ0ηOD,0k

= i
ω′

η̃OD,0k′µ2
0

(1 + k′Z̃0)
(2πGσn,0)2

c2
s

,

(2.126)

kA1 = k(C2
eff,0k − 2πGσn,0) = (C̃2

eff,0k′2 − k′)
(2πGσn,0)2

c2
s

. (2.127)

For the case of only OD (set θ = 0), combining 2.124, 2.126, 2.127 we obtain the resulting

dispersion relation and corresponding growth timescale as shown in Equation 2.91 and Equa-

tion 2.92. For the case of only AD (set γ = 0), combining 2.124, 2.125, 2.127 we obtain the

resulting dispersion relation and corresponding growth timescale as shown in Equation 2.95

and Equation 2.96.
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2.6.7 Additional figures of normalized growth timescale vs. length scale
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Figure 2.15: Normalized growth time τ′g = τg/t0 of gravitationally unstable mode as a func-
tion of the normalized wavelength λ′g = λg/L0 for models with a fixed normalized Ohmic
diffusivity η̃OD,0 = 0.2 and neutral-ion collision time τ̃ni,0 = 0.2, for different normalized mass-
to-flux-ratio µ0 = 0.5, 1, 1.1, 2, 6. Each figure shows timescale curves for models with different
normalized rotation Q = 0 (black), 0.1 (red), 0.2 (blue), 0.3 (green), and 0.4 (magenta).

Figure 2.15 shows the curves of normalized growth timescale as a function of normalized

length scale for different normalized rotation Q = 0, 0.1, 0.2, 0.3, 0.4. This figure represents our

model of the protostellar disk for distinct normalized mass-to-flux ratios µ0 = 0.5, 1, 1.1, 2, 6,

with η̃OD,0 = 0.2 and τ̃ni,0 = 0.2, corresponding to nn,0 = 1011 cm−3. This is one of our fun-

damental results, which can be obtained by plotting the normalized form of the full dispersion

relation as seen in Equation 2.63. Because of the combination of both nonideal MHD effects,

the timescale versus length scale curve attains a minimum at a smaller value of τ′g even for

the subcritical case µ0 = 0.5 as compared to the case when only one nonideal MHD effect

is present. With the transition of µ0 from subcritical to supercritical, these curves gradually

approach to that of the hydrodynamic case. See Section 2.3.2, 2.3.3 for a detailed discussion.



92 CHAPTER 2. LINEAR ANALYSIS OF A MAGNETIC ROTATING DISK

2.6.8 Monochromatic Perturbation

Here we focus on the form of the eigenfunctions with a single wavenumber k. The column

density perturbation is of the form

δσ′n(x, y, t) = δσ′n,a Re
[
ei(kx−ωt)

]
, (2.128)

where we take the uniform background state (σ′n,0 = 1) with a perturbed amplitude δσ′n,a.

Our dispersion analysis signifies that the linear disturbances are independent of the angle of

their propagation (α). Hence, the choice of direction of propagation becomes irrelevant to our

context. The reference has been set up by making α = 0 (parallel to the x- axis), which means

that k′y = 0, such that we can write k′x = k′z ≡ k′ (see Section 2.2.3). By adding a column density

perturbation in this way, we calculate the initial velocity and magnetic field perturbations that

are congruent with our system of equations. We explicitly derive the equations for perturbed

quantities from the dimensionless set of equations shown in Section 2.2.5. Now, solving for

the initial perturbations δv′n,x, δv
′
n,y, δv

′
i,x, δv

′
i,y, δB

′FF
z,eq, δB

′OD
z,eq , and δB

′AD
z,eq in terms of the given

δσ′n,0, k′x, and τ′g = i/ω′ (as a function of λ′ = 2π/k′) yields

δv′n,x(x, y, t) =
λ′

2πτ′g
δσ′n,a Re

[
ei( π2+kx−ωt)] , δv′n,y(x, y, t) = 0 (2.129)

δv′i,x(x, y, t) =
[
λ′

2πτ′g
− K1

]
δσ′n,a Re

[
ei( π2+kx−ωt)] ,

δv′i,y(x, y, t) = 0,

(2.130)

where

K1 =
B̃2

refλ
′τ̃ni,0

λ′ + 2πτ′gτ̃ni,0B̃2
ref

(
1 + 2πZ̃0

λ′

) (
1 +

2πZ̃0

λ′

)
. (2.131)

Linearization and normalization of FMag,x yields

F′Mag,x,0 =
FMag,x,0

(2πGσ2
n,0)
= −

ik′x
k′z

B̃ref (1 + k′z Z̃0) δB
′AD
z,eq ei(kx−ωt). (2.132)
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Figure 2.16: Normalized amplitudes of perturbed eigenfunctions as a function of x′/λ′g,m (x′ =
x/L0, λ′g,m = λg,m/L0). The upper, middle and lower panels show the cases of flux-freezing (FF),
Ohmic dissipation (OD), ambipolar diffusion (AD), respectively. The first column (a, d, g) of
each of three panels represents the spatial variation of normalized perturbed column density
field (δσ′n) (red), perturbed velocity field for neutrals (δv′n,x), perturbed magnetic field (δB′z,eq)
for a fixed µ0. For the case with AD the perturbed normalized velocity fields of ions (δv′i,x)
(magenta) is also shown in (g). The second (b, e, h) and third (c,f,i) column of these panels
show the case of perturbed velocity field of neutrals (δv

′FF
n,x , δv

′OD
n,x , δv

′AD
n,x ) and magnetic field

(δB
′FF
z,eq, δB

′OD
z,eq , δB

′AD
z,eq ), respectively, for different values of µ0 = 0.2 (red), 1.05 (green), 1.13

(black), 2 (magenta), 6 (blue). Note that for the flux-freezing case (a, b, c), only supercritical
normalized mass-to-flux-ratios (µ0 > 1) are considered.
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Applying the condition k′x = k′z ≡ k′ to the above expression and plugging it back into the

linearized and normalized form of Equation 3.22 yields

δv′i,x = δv
′
n,x + τ̃ni,0

(
−iB̃ref (1 + k′ Z̃0)

)
δB

′AD
z,eq . (2.133)

Further simplification of Equation 2.133 by substituting δB
′AD
z,eq (see Equation 2.136) gives

Equation 2.130.

Moving to the perturbed eigenfunctions for magnetic field, in the limit of flux-freezing

(η̃OD,0 → 0, τ̃ni,0 → 0),

δB
′FF
z,eq(x, y, 0) = B̃ref δσ

′
n,a Re

[
ei(kx−ωt)

]
. (2.134)

In the limit of only OD (τ̃ni,0 → 0),

δB
′OD
z,eq (x, y, t) =

[
B̃refλ

′2

λ′2 + 4π2τ′gη̃OD,0

]
δσ′n,a Re

[
ei(kx−ωt)

]
. (2.135)

In the limit of only AD (η̃OD,0 → 0),

δB
′AD
z,eq (x, y, t) =

 B̃refλ
′

λ′ + 2πτ′gτ̃ni,0B̃2
ref

(
1 + 2πZ̃0

λ′

) δσ′n,a Re
[
ei(kx−ωt)

]
. (2.136)

At t = 0, considering only the initial real amplitude, Re[ei(kx−ωt)] and Re[ei( π2+kx−ωt)] can be

written as cos (2πx/λ) and − sin (2πx/λ), respectively. By defining the correspondence between

the perturbed physical variables in this way, we are selecting the eigenvector of the perturbation

at a single wavelength (λ′). We call this a monochromatic perturbation that can excite a single

eigenmode of our model cloud at t = 0, corresponding to a particular λ′ for each different µ0

(recall B̃ref = 1/µ0). When one initiates the time evolution of a model cloud in this fashion, the

subsequent evolution is the continuous growth of that specific excited eigenmode. At t = 0, the

perturbed eigenmodes can be written as the following:

δσ′n(x, y, 0) = δσ′n,a cos
(
2πx
λ

)
, (2.137)
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δv′n,x(x, y, 0) = −
λ′

2πτ′g
δσ′n,a sin

(
2πx
λ

)
, (2.138)

δv′i,x(x, y, 0) = −
[
λ′

2πτ′g
− K1

]
δσ′n,a sin

(
2πx
λ

)
, (2.139)

δB
′FF
z,eq(x, y, 0) = B̃ref δσ

′
n,a cos

(
2πx
λ

)
, (2.140)

δB
′OD
z,eq (x, y, 0) =

[
B̃refλ

′2

λ′2 + 4π2τ′gη̃OD,0

]
δσ′n,a cos

(
2πx
λ

)
, (2.141)

δB
′AD
z,eq (x, y, 0) =

 B̃refλ
′

λ′ + 2πτ′gτ̃ni,0B̃2
ref

(
1 + 2πZ̃0

λ′

) δσ′n,a cos
(
2πx
λ

)
. (2.142)

Now, we are interested to study the spatial variation of these dimensionless perturbed real

amplitudes, e.g., as a function of x/λ (= x′/λ′ = (x/L0)/(λ/L0)). In this calculation, we take τ′g

as τ′g,m, the shortest growth time and λ′ as λ′g,m, the preferred length scale corresponding to the

shortest timescale.

Figure 2.16 shows the spatial variation of the perturbed column density function (δσ′n),

the perturbed velocity field for neutrals (δv′n,x) and ions (δv′i,x), and perturbed equatorial mag-

netic field (δB′z,eq) for three different MHD regimes: flux-frozen (FF), OD, and AD. We adopt

δσ′n,a = 0.02 to illustrate the regime of linear disturbances. Overall, we notice that adding a

small amplitude perturbation to the initial column density (δσ′n) gives rise to a perturbed mag-

netic field (as denoted by δB
′FF
z,eq, δB

′OD
z,eq , δB

′AD
z,eq ) that follows the similar trend as δσ′n but has a

relatively smaller amplitude as shown for each individual case (see the green line in Figure 2.16

a, d, g). This implies that the perturbation in the magnetic field will grow in the same way as

the column density because the field lines are (at least partially) attached to matter. Whereas,

the perturbed velocity field (δv′n,x and δv′i,x) evolves keeping a phase-shift of π/2 with respect

to the perturbed column density field for all three cases, denoting inward motion toward the

density peak. For the case of OD, δv′n,x = δv′i,x and for the case of AD we need to study the ve-

locities separately (see Figure 2.17 for the detailed discussion). For the case of flux-freezing, as
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shown by the upper panel of Figure 2.16 (see a, b, c), we study eigenfunctions for supercritical

clouds. For the OD and AD cases we study the subcritical as well as supercritical clouds, as

shown in the middle panel (see Figure 2.16 d, e, f) and lower panel (see Figure 2.16 g, h, i),

respectively. In the flux-frozen case, we find that the amplitude of δv
′FF
n,x gradually decreases as

µ0 increases (see Figure 2.16b). In contrast, for the case with OD and AD (see Figure 2.16e

and f, respectively), as µ0 goes from a subcritical value to a supercritical region, δv
′OD
n,x and

δv
′AD
n,x attain a maximum at a nearly transcritical µ0. Similarly, from Figure 2.16(c) we notice

that maximum amplitude of the perturbed magnetic field for the case of flux-frozen goes down

rapidly as µ0 increases implying that the magnetic field contribution becomes less effective

as it moves to a more supercritical regime. Whereas, we see that maximum amplitude of the

perturbed magnetic field for the case of OD and AD increase up to a certain µ0 and then drop

off for greater µ0 as seen from Figure 2.16(f) and (i) respectively. The value of µ0 with the

peak perturbed magnetic field amplitude corresponds to the peak preferred length scale for the

model with η̃OD,0 = 0.2 and τ̃ni,0 = 0, as well as for the model with τ̃ni,0 = 0.2 and η̃OD,0 = 0.

Figure 2.17(a) and (b) show a compact depiction of the maximum amplitude of the per-

turbed velocity field as a function of µ0 for the cases with only OD and only AD, respectively.

For the case with only OD, neutrals and all the charged particles move collectively as a single

fluid. Hence, the perturbed velocity is the same and is identified only by |δv
′OD
n,x |max which is

equal to |δv
′OD
i,x |max, (recall Equation 2.23). However, for the case of only AD, one can obtain

the perturbed velocity field separately for ions and neutrals. We find that the maximum am-

plitude of perturbed velocity for ions (|δv
′AD
i,x |max) is much less than that of neutrals (|δv

′AD
n,x |max)

over the entire subcritical region. With increasing η̃OD,0 and τ̃ni,0, the maximum amplitude of

perturbed infall velocity gradually increases for µ0 < 1. Finally, in the highly supercritical

regime (µ0 ∼ 10), all the curves for nonideal MHD cases attain the limiting value obtained for

the flux-frozen (FF) case. This is because in this limit, the motion is dominated by gravity and

all the particles move together.

Figure 2.17(c) and (d) present the maximum amplitude of the perturbed magnetic field

as a function of µ0 for OD and AD, respectively. For |δB
′OD
z,eq |max and |δB

′AD
z,eq |max, the peaks

occur at nearly transcritical values that correspond to the peak preferred length scale for each

respective case as seen in Figure 2.8(b) and (d). This feature uncovers the fact that magnetic
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Figure 2.17: Normalized maximum amplitude of perturbed velocity field and perturbed mag-
netic field as a function of normalized mass-to-flux-ratio (µ0). Upper left and lower left panel
shows the cases for ambipolar diffusion with different normalized neutral-ion collision times
τ̃ni,0 = 0.001, 0.04, 0.2. Upper right and lower right panel shows the cases for Ohmic dissipa-
tion with different normalized Ohmic diffusivity η̃OD,0 = 0.1, 1, 10.

field provides the greatest support at a specific µ0 that corresponds to the peak preferred length

scale of gravitational instability. In the hydrodynamic limit (µ0 → ∞), all the curves for FF,

OD, and AD (see Equations (2.140) to (2.142)) will diminish to zero.

Not surprisingly, the shortest growth timescale as obtained in Figure 2.8(a) and (c) can

also be deduced using the maximum amplitude of perturbed velocity field of neutrals for each
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respective case (i.e., FF, AD, OD), using

τ′g,m =
λ′g,m∣∣∣∣∣δv′n,x∣∣∣∣∣

max

δσ′n,a

2π
, (2.143)

which is derived from Equation 2.138. Coming to the case of AD, we know that collisions

between neutrals and ions give rise to a drift speed between the two fluids. For ion fluid there

is a balance between the Lorentz force and the drag force due to friction with neutrals. While

for the neutral fluid, the inward pull of gravity is opposed by collisions with ions and other

forces.

In the subcritical regime (µ0 < 1) the neutrals also come into an effective force-balance,

between gravity and the collisions with ions. As a consequence, the infall motion of the neutrals

(|δv
′AD
n,x |max) gets plateaued at a terminal velocity and becomes independent of µ0. Therefore,

the timescale of contraction reaches a saturation in the regime µ0 < 1. But the ions are still

tied to the field lines and hence the infall motion of ions as denoted by |δv
′AD
i,x |max gradually

increases toward the supercritical regime. For the case of only OD, all particles move together,

but collisions cause a loss of induced current, which dissipates the magnetic flux. When this

happens in the subcritical clouds, it is a cause for slow contraction of the perturbed column

density field.

2.6.9 Calculation of W∗

Using the thin-disk formalism, we earlier calculated the thermal midplane pressure for the

neutrals including the effects of the weight of the gas column, the external pressure, and the

magnetic pressure. Now, we investigate the effect of a central star (once present) of mass M∗

by including it in our vertical pressure balance equation (Dapp et al., 2012), which becomes

ρn,0c2
s =

π

2
Gσ2

n,0 + Pext +W∗, (2.144)

where W∗ is the extra vertical squeezing due to the newly formed star’s gravitational field,

integrated up to the disk’s local vertical finite half-thickness Z0. Therefore, it is

W∗ = 2GM∗ρn,0

∫ Z0

0

z dz
(r2 + z2)3/2 , (2.145)
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where z is the vertical coordinate and r2 = x2 + y2. Using the one-zone approximation we

integrate from z = 0 to a fixed Z0 (= σn,0/(2ρn,0)). Then we do a negative binomial expansion of

the integrated result
[
1/r − 1/(r2 + Z2

0)1/2
]

under the approximation Z0/r ≪ 1, keeping leading

order terms to yield

W∗ =
GM∗ρn,0Z2

0

r3 =
GM∗σ2

n,0

4ρn,0r3 . (2.146)

Next, we calculate a surface density keeping ρn,0 fixed. Substituting W∗ into Equation 2.144,

and using Equation 2.146, one finds the modified expression

σn,0 =

 ρn,0 c2
s

π
2G(1 + P̃ext) + GM∗

4ρn,0r3


1
2

. (2.147)

We choose M∗ = 0.01 M⊙ and r = 50 AU, corresponding to a very early stage of star formation,

yielding M∗/(4ρn,0r3) = 0.03 and σn,0 = 59.36 g cm−2 from Equation 2.147, which is roughly

the same as the protostellar disk surface density for T = 30 K if we take W∗ = 0 in our model.

Therefore, we see that Equation 2.147 can be simplified to the former Equation 2.41 when

M∗ = 0. Whereas, at a later stage of protostar formation, taking M∗ = 0.5 M⊙ and r = 50 AU,

we find σn,0 = 43.53 g cm−2 since M∗/(4ρn,0r3) = 1.54. We can also write a generalized

expression for Z0 including the effects of M∗ as follows:

Z0 =
1

2ρn,0

 ρn,0 c2
s

π
2G(1 + P̃ext) + GM∗

4ρn,0r3


1
2

. (2.148)

For the case of M∗ = 0, the above expression can be reduced to Z0 = σn,0/(2ρn,0) using Equa-

tion 2.41. Using Equation 2.148, the values of Z0 are calculated to be 5.11 AU and 3.74 AU for

M∗ = 0.01 M⊙ and 0.5 M⊙, respectively.
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Chapter 3

Variation of the core lifetime and

fragmentation scale in molecular clouds as

an indication of ambipolar diffusion

A version of this chapter has been published as a Letter in the Astronomy & As-

trophysics Journal as Das I., Basu S., & Andre P. 2021 A&A 649, L13.

DOI:10.1051/0004-6361/202140404

3.1 Introduction

There are still many gaps in our understanding of the condensation of dense structures out of the

diffuse interstellar medium (ISM). There are reasons to think that the influence of the magnetic

field is preponderant. In recent years, remarkable observational data have been obtained by

Planck Collaboration et al. (2016) that allow a quantitative analysis of the relative orientation

of the magnetic field within a set of nearby (d < 450 pc) molecular clouds. These observations

have helped to establish the significance of magnetic fields in the formation of dense structures

on physical scales ranging from approximately 1 to 10 pc. They show a clear correlation in

the direction of elongation of high-density regions (number column density NH ≳ 1022 cm−2),

which appears to be perpendicular to the ambient magnetic field direction.

Molecular clouds are known to contain hierarchical nested density structures with, for ex-

ample, clumps, filaments, and cores (see André et al., 2014; Dobbs et al., 2014; Heyer & Dame,
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2015). Pokhrel et al. (2018) studied hierarchical structure over five different scales (ranging

from ≳ 10 pc to 10 AU) in the Perseus molecular cloud using new observations from the

Herschel, the James Clerk Maxwell Telescope (JCMT), the Submillimeter Array (SMA), the

Very Large Array (VLA). They compared the number of fragments with the number of Jeans

masses at each scale to calculate the Jeans efficiency, which is the ratio of observed to ex-

pected number of fragments. Könyves et al. (2015) used the results of the Herschel Gould

Belt survey (HGBS- André et al., 2010) in the Aquila molecular cloud complex, and compared

the numbers of prestellar cores in various density bins to the number of young stellar objects

(YSOs). They estimated that the lifetime of prestellar cores is ∼ 1 Myr, which is about four

times longer than the core free-fall time, and that the lifetime decreases as the average core

density increases. While current observations cannot determine whether ambipolar diffusion

(neutral-ion slip) is occurring during the initiation of gravitational collapse, nonideal magne-

tohydrodynamic (MHD) simulations suggest it plays an important role in establishing mildly

supercritical mass-to-flux ratios in prestellar cores, whether starting from small-amplitude per-

turbations (see Kudoh et al., 2007; Basu et al., 2009a) or from large-scale turbulent or converg-

ing flows (see Nakamura & Li, 2005; Basu et al., 2009b; Chen & Ostriker, 2014). Furthermore,

in mildly supercritical regions, the hybrid modes driven by gravity and neutral-ion slip result

in preferred length scales and growth times that can significantly exceed the Jeans scale and

free-fall time, respectively (see Basu & Ciolek, 2004; Ciolek & Basu, 2006; Bailey & Basu,

2012).

In this Letter, we probe the variation of lifetime and fragmentation scales of dense struc-

tures in molecular clouds as a consequence of ambipolar diffusion. We apply the results of a

linear analysis of ambipolar-diffusion-driven fragmentation in planar, isothermal, weakly ion-

ized, self-gravitating sheetlike magnetic clouds. The calculated shortest growth timescale and

preferred fragmentation mass for collapse are used to explain the observationally estimated

lifetime of prestellar cores and the number of enclosed cores in a parent clump. In Section 3.2

we describe the analytic model, in Section 3.3 we present a comparison with the observational

findings, and finally, in Section 5.4 we summarize and draw conclusions from our results.
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3.2 Analytic model

We model interstellar molecular clouds as self-gravitating, partially ionized, isothermal, mag-

netic, planar, thin sheets with infinite extent in the x- and y-directions and a local vertical

half-thickness Z(x, y, t). Although sheets are an idealized geometry, a structured background

state like a sheet or filament does capture the essential feature of a preferred scale of instability

that is related to the local density scale length; this would not appear if assuming a uniform

background. We note that the critical length scale and timescale using thin-disk geometry can

differ typically by a factor of approximately two as compared to using a spherical (uniform)

geometry as the thin sheet exhibits stronger gravitational field for a fixed surface density (and

mass). Our static initial state also does not include the effect of any large-scale motion that

modifies the evolutionary timescale. The nonaxisymmetric equations and formulations of the

model have been described in detail in several papers (Ciolek & Basu, 2006; Bailey & Basu,

2012). The evolution equations include the nonideal MHD effect of ambipolar diffusion, the

process by which neutrals are partially coupled to magnetic field through collisions with ions.

This effect is quantified by the neutral-ion collision (momentum-exchange) timescale (e.g.,

Basu & Mouschovias, 1994):

τni ≡ 1.4
mi + mn

mi

1
ni⟨σw⟩iH2

, (3.1)

where ⟨σw⟩iH2 is the average collision rate between ions of mass mi (singly ionized Na, Mg,

and HCO, adopted to have a mass of 25 amu) and neutrals of mass mn (= 2.33 amu). We adopt

a neutral–ion collision rate between H2 and HCO+ of 1.69 × 10−9cm3s−1 (McDaniel & Mason,

1973). For the ion number density ni, there is an assumed constant power-law approximation

of the form ni ∝ n1/2
n,0 (Ciolek & Basu, 2006; Ciolek & Mouschovias, 1998), where nn,0 is

the initial uniform number density of neutrals. The typical observed ionization fraction in

molecular clouds (primarily due to cosmic ray ionization) (Elmegreen, 1979; Tielens, 2005) is

χi = 10−7
(

nn,0

104 cm−3

)−1/2

. (3.2)
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Such low ionization means that ambipolar diffusion is unavoidable in molecular clouds, but

there is still enough coupling with the charged species for the neutrals to be affected by the mag-

netic field. This is because of the high polarizability of the neutrals, particularly H2 molecules

(Osterbrock, 1961). The threshold for whether a region of a molecular cloud is magnetically

dominated or gravitationally dominated is given by the normalized mass-to-flux ratio,

µ0 ≡ 2πG1/2σn,0

Bref
, (3.3)

where σn,0 is the initial uniform column density of the sheet, Bref is the magnetic field strength

of the background reference state, G is the universal gravitational constant, and (2πG1/2)−1 is

the critical mass-to-flux ratio for gravitational collapse (Nakano & Nakamura, 1978). Regions

with µ0 < 1 are defined as subcritical, regions with µ0 > 1 are defined as supercritical, and re-

gions with µ0 ≈ 1 are defined as transcritical. For small amplitude perturbations, the governing

equations can be combined to yield the following dispersion relation:

(ω + i θ)
[
ω2 −C2

eff,0 k2+2πGσn,0k
]
=

ω
[
2πGσn,0kµ−2

0 + k2 V2
A,0

]
,

(3.4)

where

θ = τni,0

(
2πGσn,0µ

−2
0 k + k2V2

A,0

)
= ηAD,0(k Z0

−1 + k2), (3.5)

ω is an angular frequency, and k2 ≡ k2
z = k2

x + k2
y , where kx, ky, kz (or k) are the wavenumbers

in the x-, y-, and z- directions, respectively. To obtain the dispersion relation as shown in

Equation 3.4, the linearized perturbed MHD equations are used (see Section 3.5.1). Here, Ceff,0

and VA,0 are the local effective sound speed and the Alfvén speed, respectively. The term Ceff,0

includes the effects of a restoring force due to an external pressure Pext. The dimensionless

external pressure P̃ext (≡ 2Pext/(πGσ2
n,0)) and temperature (T ) are kept fixed at 0.1 and 10 K,

respectively.

Figure 3.1 presents the normalized shortest growth timescale, τg,m/tff , and normalized pre-

ferred fragmentation mass, Mg,m/MT,m , corresponding to this minimum timescale as a function

of µ0 for the case of normalized neutral–ion collision time τni,0/t0 = τ̃ni,0 = 0.2 which itself

corresponds to Equation 3.2. Here, tff is the dynamical, i.e., free-fall time (= Z0/cs), MT,m is
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Figure 3.1: Growth timescale τg,m (in the units of dynamical or free-fall time tff) and the pre-
ferred fragmentation mass Mg,m (in the units of preferred thermal fragmentation mass MT,m)
of the most unstable mode as a function of the normalized mass-to-flux ratio (µ0). The model
utilizes the standard ionization fraction corresponding to a normalized neutral–ion collision
time τni,0/t0 = τ̃ni,0 = 0.2. The shaded and unshaded zones represent the subcritical (µ0 < 1)
and supercritical (µ0 > 1) regimes, respectively. The present paper focuses on the (mildly)
supercritical regime.
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the preferred thermal mass based on our model, and MT,m = (4πC2
eff,0/c

2
s)

2M0, where M0 is

effectively the Jeans mass. See Section 3.5.1 for definitions and typical values of the units of

time (t0), length (L0), and mass (M0), and other parameters. For all objects shown in Table 3.2,

we calculate Mg,m in units of Mc = πσn,0(L0/2)2 = πM0/4, as the perturbation is taken to

be circular with radius L0/2. As the mass-to-flux ratio goes to the subcritical regime where

ambipolar diffusion drives the evolution, the curve of shortest growth timescale approaches a

plateau. It is noteworthy that the peak preferred fragmentation mass for collapse exceeds the

Jeans mass by a factor of up to ten. Furthermore, for τ̃ni,0 = 0.2, the timescale for collapse of a

subcritical region is around 10 − 12 times longer than that of a supercritical region; this is the

origin of the often-quoted result that the ambipolar diffusion time is approximately ten times

the free-fall time (Mouschovias, 1991; Ciolek & Basu, 2006; Bailey & Basu, 2012; Das &

Basu, 2021). Hereafter, for a better representation, we use nn, σn, and µ instead of nn,0, σn,0, µ0,

respectively. In this study, we are interested in the regime where the normalized mass-to-flux

ratio µ remains in the range 1 ≲ µ ≲ 2. See Kunz & Mouschovias (2009) for an application of

the linear theory in the subcritical regime to model core masses.

3.3 Observational correspondence to prestellar cores

In this section we discuss the relevance of our theoretical results to observational findings,

focusing on the mildly supercritical regime.

3.3.1 Lifetime of prestellar cores

The technique for finding the timescale of the core-formation process was introduced by Beich-

man et al. (1986) in the context of IRAS sources. These authors studied the embedded YSOs

within the core sample of Myers & Benson (1983) and Myers et al. (1983), and found that 35

cores had IRAS sources meeting the color-selection criteria of embedded YSOs and 43 had

no embedded IRAS sources. Beichman et al. (1986) calculated the percentage of cores with

embedded sources to estimate the lifetime of a core without an embedded YSO by comparing

it with the lifetime of the embedded YSO phase. Using an estimated lifetime of cores with

embedded class II sources of 1 − 2 Myr (as discussed in Ward-Thompson et al., 1994; Evans

et al., 2009), and assuming that the prestellar cores go on to form protostars, the prestellar core
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Figure 3.2: Estimated lifetime as a function of number density (nn). The green filled squares
are obtained from our model for a normalized neutral–ion collision time τ̃ni,0 = 0.2. The
blue filled triangles show the corresponding data points for the population of 446 candidate
prestellar cores identified with Herschel in the Aquila cloud (Könyves et al., 2015). Earlier
data from Ward-Thompson et al. (2007) are shown by the red circles for better comparison.
The black dashed line shows the dynamical time (Z0/cs), i.e., the free-fall time, of our model.



110 CHAPTER 3. LIFETIME AND FRAGMENTATION SCALE

lifetime is estimated to be

τ =
# of cores without embedded sources

# of cores with embedded sources
× [1 − 2] Myr. (3.6)

This formula was used by Jessop & Ward-Thompson (2000) on a catalog of molecular cloud

cores from the all-sky IRAS Sky Survey Atlas (ISSA), and their Fig. 6 (often called a “JWT”

plot) shows the estimated lifetime versus mean density. In a similar way, Könyves et al. (2015)

estimated the lifetime of prestellar cores (see their Fig. 9) by comparing the number of prestel-

lar cores found with Herschel to the number of Class II YSOs detected by Spitzer in the Aquila

cloud. This study had the advantage of considering a homogeneous sample of cores from a

single cloud (Aquila), measured using a single telescope, tracer (dust), and analysis technique

that separated prestellar (gravitationally bound) cores from starless (unbound) cores. Some of

the underlying assumptions in these studies are: (1) that prestellar cores will evolve into YSOs

in the future; and (2) that star formation proceeds at a roughly constant rate, at least when

averaged over an entire cloud.

Figure 3.2 presents the core lifetime (values in green filled squares) estimated from our

model as the instability growth time at a particular density nn, when adopting a specific model

for Bref as a function of nn (see Figure 3.4 and Equation 3.7 below). The corresponding esti-

mated numbers based on the observations of candidate prestellar cores identified with Herschel

(Könyves et al., 2015) and the literature data (Ward-Thompson et al., 2007) are also shown.

We achieve the good correspondence by varying only one relationship, namely that between

the normalized mass-to-flux-ratio µ and the number density nn, with µ ranging from about 1.1

to 1.5 for nn in the range of 104 − 106 cm−3. To calculate µ we evaluate σn using Equa-

tion 3.13. These values of µ are in the range of mildly supercritical values generally obtained

from Zeeman detections and use of the Davis-Chandrasekhar-Fermi (DCF) method (Crutcher,

2012; Pattle & Fissel, 2019). The ionization level is set by the value τ̃ni,0 = 0.2 corresponding

to the standard value set by Equation 3.2. Our use of the instability growth time as a proxy

for the evolutionary time is similar to the commonly used comparison of the free-fall time at a

particular density with the evolutionary time of a core at that density. Figure 3.2 shows that the

typical lifetime of prestellar cores decreases from ∼ 1.37 Myr for cores with a number density
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Figure 3.3: Number of enclosed cores (log[NumCORE]) as a function of Jeans number
(log[NJ, CLUMP]) of clumps. The blue filled circles represent the observed number of enclosed
cores as found by Pokhrel et al. (2018). The green filled crosses are obtained from our model
for a normalized neutral–ion collision time τ̃ni,0 = 0.2. The black dashed line corresponds to
an efficiency of unity.

of ∼ 104 cm−3 to ∼ 0.35 Myr at ∼ 105 cm−3 , and to ∼ 0.05 Myr at ∼ 106 cm−3 (see Table 3.1).

The timescale for collapse of a core with a number density of ∼ 104 cm−3 is around 10 − 50

times longer than that of a highly dense core of ∼ 105−106 cm−3. The highest density cores are

significantly supercritical and evolve essentially on a free-fall timescale (tff = Z0/cs) as shown

in Figure 3.1. The lower black dashed line presents the dynamical timescale, or free-fall time,

as a reference line.

3.3.2 Number of enclosed cores

Sadavoy et al. (2010) used point-source photometry to explore the dense cores in the Perseus

star-forming complex as found in surveys with SCUBA (85 µm) and Spitzer Space Telescope
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(3.6 − 70 µm). Mercimek et al. (2017) characterized the distribution of these cores inside the

clumps. Pokhrel et al. (2018) analyzed the submillimeter starless or protostellar cores in the

Herschel column density maps of Mercimek et al. (2017) and used the estimated mass and

areas (see Table 3.2) to determine the average density of each clump for AV > 7 mag. These

authors used the dust temperatures from Sadavoy et al. (2014) to estimate the thermal support.

To calculate the Jeans number (NJ, CLUMP ≡ M/MJ,th, i.e., the number of contained thermal Jeans

masses MJ,th) of the clumps, Pokhrel et al. (2018) used the line-of-sight averaged temperatures

and mass derived in Sadavoy et al. (2014).

We fit the observations of the number of enclosed cores (NumCORE) in each clump as a

function of the corresponding Jeans number of the clumps, as seen in Figure 3.3. We calculate

NumCORE in the context of our model by dividing the total clump mass M by the preferred

fragmentation mass Mg,m, adopting τ̃ni,0 = 0.2. We note that Mg,m significantly exceeds MJ,th

for mildly supercritical objects. The Jeans number NJ, CLUMP is the expected number of cores in

the context of thermally regulated fragmentation. See Table 3.2 for detailed specifications of all

the clumps. The clumps are arranged in an increasing order of NumCORE (i.e., number of cores).

Figure 3.3 shows that the number of cores (blue filled circles) increases with the Jeans number

of the clumps, as shown in Figure 6 of Pokhrel et al. (2018). The filled green crosses represent

our model values. The black dashed line shows the efficiency of unity (ϵ th = 1, i.e., NumCORE =

NJ, CLUMP) corresponding to purely thermally regulated fragmentation. The observations show

fewer cores than that predicted with only thermal pressure. This hints at a larger threshold

for fragmentation mass that includes effects beyond that set by thermal pressure alone. In

our model, Mg,m serves such a purpose as a magnetic-field-dependent instability threshold in

contrast to a Jeans mass.

It is worth noting that the number of fragmented cores is also dependent on the clump mass.

The relatively massive clumps are able to generate more cores and NumCORE comes closer to

(but stays below) the value of NJ, CLUMP. Therefore, the number density might not be the only

key parameter in this context. The nonthermal motions in these massive clouds could also play

a role. However, using the nonthermal dispersion in the calculation of the Jeans mass would

not fit the observations for these clouds either, predicting many fewer cores than are observed

(see the discussion in Pokhrel et al., 2018).
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The inability of the observed nonthermal dispersion to be used as the source of an internal

pressure when estimating the number of fragmented cores could possibly be attributed to the

following reasons. First, the nonthermal motions may arise at least in part due to large-scale ve-

locity gradients, in which case they cannot act as an effective pressure. Simulations in turbulent

boxes that have global stability show that small-scale collapse still occurs unless the driving

scale and/or power spectrum is peaked at extremely short scales (e.g., Vazquez-Semadeni et al.,

1996; Klessen et al., 2000). Second, the nonthermal dispersion may be dominated by motions

in the lowest densities that are traced, while a dense layer that actually undergoes fragmenta-

tion may have a lower dispersion that is closer to the thermal value. The latter explanation is

supported by simulations (Kudoh & Basu, 2003, 2006; Folini et al., 2004) that show that the

velocity dispersion peaks in the low-density regions of a stratified molecular cloud. In obser-

vations as well, the velocity dispersion peaks in low-density regions and starless dense cores

correspond to minima in velocity dispersion maps (see, e.g., Fig. 13 of Friesen et al., 2017).

3.3.3 Estimation of magnetic field

For gravitationally contracting fragments (particularly cores) in magnetic interstellar clouds,

the relation between magnetic-field strength Bref and gas number density nn is of considerable

interest. In Figure 3.4, we present log(Bref/µG) (which is obtained from our model) as a func-

tion of log(nn/cm−3) for the two different density regimes shown in Figure 3.2 and Figure 3.3

based on our model for τ̃ni,0 = 0.2. We use the least-squares method to find a best fit to the

data:
Bref

10 µG
= A

( nn

104 cm−3

)κ
, (3.7)

where κ = 0.427 and A = 1.766, and shown by the black dashed line in Figure 3.4.

Mestel (1965) argued that for a spherically and isotropically collapsing magnetic cloud,

the scaling between the magnetic field strength and the density is B ∝ n2/3
n . This argument is

true for a quasi-spherical collapse where both the mass M and the magnetic-flux Φ are being

conserved, and the magnetic field energy is insignificant compared to the gravitational energy.

Later, Mouschovias (1976a,b) argued that the plasma β (= 8πρc2
s/B2) remains constant during

self-contraction of a cloud with a dynamically important magnetic field, therefore B ∝ n1/2
n ,

although for individual points within the cloud the exponent was in the range 1/3− 1/2. These
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Figure 3.4: Magnetic field log(Bref/µG) vs. number density log(nn/cm−3). The filled squares
and crosses represent the number density region corresponding to the fitting of the lifetime of
prestellar cores and NumCORE as shown in Figure 3.2 and Figure 3.3 (see Table 3.1 & Table 3.2).
The dashed line is the least-squares fit. The vertical error bars correspond to magnetic field
variations that yield a total factor of two (greater or lesser by a factor

√
2) values of the growth

time (lifetime).
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theories assume an evolutionary sequence and that the mass-to-flux ratio and internal thermal

(or turbulent) velocity dispersion stays fixed. We should keep in mind that the full virial relation

is

B ∝ σ n1/2
n /µ , (3.8)

where σ is the velocity dispersion. With the inclusion of ambipolar diffusion and a systemati-

cally increasing value of µ as nn increases, the slope in the Bref − nn relation is expected to be

less than in the flux-freezing models. On the other hand, a systematic dependence of σ on nn

can also have an effect. Crutcher et al. (2010) fitted a slope of ≈ 2/3 to Zeeman magnetic field

data for an ensemble of dense molecular gas clouds. The B − n relation shown in Figure 3.4 is

for prestellar cores while the B − n relation shown by Crutcher et al. (2010) includes a number

of massive protostellar cores or clumps. Those objects definitely do not represent an evolu-

tionary sequence, with the higher density objects representing much more massive clouds that

also have an increased velocity dispersion σ. A better fit to the ensemble of different clouds

measured by the Zeeman effect is B ∝ σn1/2 (Basu, 2000) and was verified by Li et al. (2015)

who used the updated data in Crutcher (2012) and pointed out that the ensemble of objects in

the data set also have the correlation σ ∝ n1/6, thereby leading to an apparent B ∝ n2/3. A

similar result was obtained for B determined using the DCF technique (Myers & Basu, 2021).

3.4 Conclusions

We used a semi-analytic model of ambipolar-diffusion-driven gravitational fragmentation in

isothermal self-gravitating interstellar molecular clouds. The only requirements in our model

are that prestellar cores are transcritical (mildly supercritical), with 1 ≲ µ ≲ 2, and an evolution

toward the higher values of µ as the density increases. With this assumption we show that

there is a significant and systematic variation of lifetime and fragmentation scale in molecular

clouds. Such systematic variations do not exist in standard thermal-pressure-dominated (Jeans)

fragmentation theory and are difficult to reproduce in turbulence-regulated models. Our best-

fit model for prestellar cores suggests B ∝ n0.43 (see Figure 3.4 and Equation 3.7), which

attains a shallower slope than the flux-frozen case due to the effects of ambipolar diffusion.

The estimated lifetime of prestellar cores and the possible number of cores within a parent

clump/cloud based on the model for τ̃ni,0 = 0.2 agree well with that of observations presented
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by Könyves et al. (2015) and Pokhrel et al. (2018), respectively. For the lower end (∼ 104 cm−3)

of the density regime, the timescale for collapse of prestellar cores is approximately six times

longer than the free-fall timescale. On the other hand, for the case of higher number density

(∼ 106 cm−3), the timescale is nearly the same as the free-fall timescale. The mass scales of

fragment formation are also significantly greater than the Jeans mass in this mildly supercritical

regime.

We adopted the dimensionless neutral-ion collision time τ̃ni,0 = 0.2 because of its corre-

spondence to the typical ionization fraction (∼ 10−7) at a neutral number density (∼ 104 cm−3).

In future studies, the role of varying τ̃ni,0 could be explored in order to compare with measured

ionization fractions in cores (see Caselli et al., 2002), and perhaps constrain the cosmic ray

ionization rate (canonical value ζCR = 10−17 s−1).

Our model provides a means to indirectly infer the effect of ambipolar diffusion on mildly

supercritical dense regions (prestellar cores) of molecular clouds. The importance of ambipo-

lar diffusion in dense supercritical molecular cloud gas has not been discussed widely and is

independent of its possible effects in low-density molecular cloud envelopes.

3.5 Appendices

3.5.1 System of equations

We formulate model clouds as rotating, self-gravitating, partially ionized, isothermal, mag-

netic, planar thin sheets with infinite extent in the x- and y- directions and a local vertical half-

thickness Z(x, y, t) (see Figure 1 from Das & Basu (2021)). In our model, we adopt a velocity

unit of cs, the isothermal sound speed, and a column density unit of σn,0, the initial uniform

column density. The length unit is L0 = c2
s/(2πGσn,0), leading to a time unit t0 = cs/(2πGσn,0),

where G is the universal gravitational constant. The mass unit is M0 = c4
s/(4π

2G2σn,0) and the

magnetic field strength unit is B0 = 2πG1/2σn,0. The free-fall time is

tff = Z0/cs = (Z̃0L0)/cs = Z̃0 t0 , (3.9)

where

Z0 = σn,0/(2ρn,0) (3.10)
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is the initial uniform local vertical half-thickness, with dimensionless form

Z̃0 =
2

(1 + P̃ext)
. (3.11)

Here P̃ext = 2Pext/(πGσ2
n,0) is the dimensionless external pressure. The initial local effective

sound speed, Ceff,0, comes from

C2
eff,0 =

π

2
Gσ2

n,0

[
3Pext +

π
2Gσ2

n,0

]
[
Pext +

π
2Gσ2

n,0

]2 c2
s , (3.12)

and reduces to the isothermal sound speed, cs, in the limit of very low Pext. It can be obtained

from the linearized condition of vertical hydrostatic equilibrium:

ρn,0c2
s =

π

2
Gσ2

n,0 + Pext =
π

2
Gσ2

n,0(1 + P̃ext) . (3.13)

The initial uniform Alfvén speed VA,0 is related to the mass-to-magnetic-flux ratio (µ0) via

V2
A,0 ≡

B2
ref

4πρn,0
= 2πGσn,0µ

−2
0 Z0 , (3.14)

where ρn,0 is the initial uniform volume density. The initial uniform ambipolar diffusivity can

be expressed as (see Das & Basu, 2021)

ηAD,0 = V2
A,0τni,0 = 2πGσn,0µ

−2
0 Z0τni,0. (3.15)

Now, from the system of governing equations (see Equations (11) to (23) of Das & Basu (2021),

which are the fundamental MHD equations obtained by integrating over the z-direction), we

obtain a simplified form in x- and y- components:

∂σn

∂t
+
∂

∂x
(σnvn,x) +

∂

∂y
(σnvn,y) = 0, (3.16)
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∂

∂t
(σnvn,x) +

∂

∂x
(σnv2

n,x) +
∂

∂x
(σnvn,xvn,y)

= σn gx −C2
eff
∂σn

∂x
+ FMag,x + 2σnΩvn,y,

(3.17)

∂

∂t
(σnvn,y) +

∂

∂y
(σnvn,xvn,y) +

∂

∂y
(σnv2

n,y)

= σn gy −C2
eff
∂σn

∂y
+ FMag,y − 2σnΩvn,x,

(3.18)

FMag,x =
Bz,eq

2π

(
Bx,Z − Z

∂Bz,eq

∂x

)
+

1
4π
∂Z
∂x

[
B2

x,Z + B2
y,Z + 2Bz,eq

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)
+

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)2]
,

(3.19)

FMag,y =
Bz,eq

2π

(
By,Z − Z

∂Bz,eq

∂y

)
+

1
4π
∂Z
∂y

[
B2

x,Z + B2
y,Z + 2Bz,eq

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)
+

(
Bx,Z

∂Z
∂x
+ By,Z

∂Z
∂y

)2 ]
,

(3.20)

∂Bz,eq

∂t
= −

∂

∂x

(
Bz,eqvi,x

)
−
∂

∂y

(
Bz,eqvi,y

)
+

[
∂

∂x

(
ηOD

∂Bz,eq

∂x

)
+
∂

∂y

(
ηOD

∂Bz,eq

∂y

)]
.

(3.21)

where

vi,x = vn,x +
τni,0

σn

(
ρn,0

ρn

)1/2

FMag,x, (3.22)

vi,y = vn,y +
τni,0

σn

(
ρn,0

ρn

)1/2

FMag,y. (3.23)

Here, vi,x, vi,y, vn,x, and vn,y are the x- and y- components of ion and neutral velocities. The planar

sheet is rotating with an angular velocity Ω about the z-axis, so that Ω = Ω ẑ. The magnetic

field and rotation axis are perpendicular to the sheet. Here, ηOD,0 is the ohmic diffusivity that is

considered as a measure of ohmic dissipation. Starting with a static uniform background, any
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physical quantity of the thin-sheet equations can be expanded by writing it via

f (x, y, t) = f0 + δ faei(kx x+kyy−ωt), (3.24)

where f0 is the unperturbed background state, δ fa is the amplitude of the perturbation, kx, ky,

and k are the x-, y-, and z- wavenumbers, respectively, and ω is the complex angular frequency.

For assumed small-amplitude perturbations such that |δ fa| ≪ f0, and retaining the linearized

form of the perturbed quantities from Eqs. 3.16, 3.17, 3.18 and 3.21, the following equations

are obtained:

ω δσ′n = kx cs δv′n,x + ky cs δv′n,y , (3.25)

ω cs δv′n,x =
kx

k

[
C2

eff,0 k − 2πGσn,0

]
δσ′n + i 2Ωcsδv′n,y

+
kx

k

[
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

]
δB′z,eq ,

(3.26)

ω cs δv′n,y =
ky

k

[
C2

eff,0 k − 2πGσn,0

]
δσ′n − i 2Ωcsδv′n,x

+
ky

k

[
2πGσn,0 µ

−1
0 + k V2

A,0 µ0

]
δB′z,eq ,

(3.27)

ω δB′z,eq =
kx

µ0
cs δv′n,x +

ky

µ0
cs δv′n,y

− i
[
ηOD,0 k2 + τni,0

(
2πGσn,0µ

−2
0 k + k2 V2

A,0

)]
δB′z,eq,

(3.28)

where the perturbed eigenfunctions δσn, δvn,x (and δvn,y), δBz,eq are normalized by σn,0, cs, and

B0 (= 2πG1/2σn,0), respectively, such that δσ′n = δσn/σn,0, δv′n,x = δvn,x/cs, δv′n,y = δvn,y/cs , and

δB′z,eq = δBz,eq/B0. Now, finding the determinant from the above set of equations one obtains

the full dispersion relation

(ω + i [θ + γ])
(
ω2 −C2

eff,0 k2 + 2πGσn,0k − 4Ω2)
= ω

[
2πGσn,0kµ−2

0 + k2 V2
A,0

]
.

(3.29)

This is derived in Das & Basu (2021) (see Equation (47)), where

γ = ηOD,0 k2 , (3.30)
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which is same as Equation (45) of Das & Basu (2021), and θ is described earlier (see Equation

3.5 and Equation (46) of Das & Basu (2021)). Finally, the dispersion relation (see Equation

3.4) is the same as the Equation 3.29 when setting Ω = 0 and ηOD,0 = 0. In the above,

we discuss all the equations in detail for completeness and clarity of our model. See also

Equations 32(a)–32(d) of Ciolek & Basu (2006) for the dimensionless representation of the

Equations (3.25) to (3.28) for the model with Ω = 0 and ηOD,0 = 0; also see Equations (10) to

(13) of Bailey & Basu (2012) for the dimensional representation of Equations (3.25) to (3.28)

for the same model.

Based on these parameters, typical values of the units used and other derived quantities are

σn,0 =
3.63 × 10−3(

1 + P̃ext

) 1
2

( nn,0

103 cm−3

) 1
2

( T
10 K

) 1
2

g cm−2, (3.31)

L0 = 7.48 × 10−2
( T
10 K

) 1
2

(
103 cm−3

nn,0

) 1
2 (

1 + P̃ext

) 1
2 pc, (3.32)

t0 = 3.98 × 105
(
103 cm−3

nn,0

) 1
2 (

1 + P̃ext

) 1
2 yr, (3.33)

cs = 0.188
( T
10 K

) 1
2

km s−1, (3.34)

M0 = 9.76 × 10−2
( T
10 K

)3/2 (
103 cm−3

nn,0

)1/2 (
1 + P̃ext

)1/2
M⊙ , (3.35)

τni,0 =
3.74 × 104(

1 + P̃ext

) ( T
10 K

) (0.01 g cm−2

σn,0

)2 (
10−7

χi,0

)
yr , (3.36)

Bref =
5.89 × 10−6

µ0

( nn,0

103 cm−3

)1/2 ( T
10 K

)1/2 (
1 + P̃ext

)−1/2
G . (3.37)
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Figure 3.5: Top: Normalized shortest growth time of gravitationally unstable mode (τ′g,m =
τg,m/t0) as a function of normalized mass-to-flux ratio (µ0). Bottom: Normalized preferred
length scale of the most unstable mode (λ′g,m = λg,m/L0) as a function of the normalized mass-
to-flux ratio (µ0). Each panel shows curves for models (as shown in Equation 3.4) with normal-
ized neutral–ion collision time τ̃ni,0 = 0 (black), 0.001 (red), 0.04 (blue), and 0.2 (green). Here,
τ̃ni,0 = 0 represents the flux-frozen case as a reference. The Toomre-Q rotation parameter and
the dimensionless ohmic diffusivity η̃OD,0 are set to be zero. As the degree of ambipolar diffu-
sion (i.e., τ̃ni,0) increases, the growth timescale and length scale become shorter (see Ciolek &
Basu, 2006; Bailey & Basu, 2012; Das & Basu, 2021) for further details.
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3.5.2 Tables

Table 3.1: Fitting data for calculating the lifetime of prestellar cores. Here, µ is a free parameter
of our model, σn is calculated using Equation 3.13, Bref is obtained from Equation 3.3, and
tff is the free-fall timescale. The estimated lifetime of prestellar cores is obtained based on
Figure 3.1, as shown in Figure 3.2.

nn µ σn Bref (µG) Estimated lifetime of
(× 105 cm−3) (× 10−2 g cm−2) prestellar cores (Myr)

0.1 1.080 1.094 16.45 1.371 (∼ 5.777 tff)
1 1.125 3.461 49.94 0.355 (∼ 4.728 tff)
10 1.486 10.944 119.57 0.053 (∼ 2.220 tff)

Clump Clump Area σn × 10−2 nn × 105 µ Bref Mg,m Nth
J Nth,nth

J NumCORE ϵ th ϵ th,nth

name Mass (M⊙) (pc2) (g cm−2) (cm−3) (µG) (M⊙)
B5 62 0.32 4.064 1.383 1.178 56.01 20.165 16.2 1.5 3 0.185 2.000

L1455 251 1.3 4.050 1.373 1.176 55.90 20.339 53.1 4.3 12 0.226 2.791
IC348 511 2.9 3.697 1.144 1.132 53.00 23.858 58.6 6.4 21 0.358 3.281
L1448 159 0.48 6.948 4.042 1.470 76.73 5.108 55.1 4.6 31 0.562 6.739

B1 598 2.5 5.018 2.107 1.286 63.34 11.738 103.9 9.5 50 0.481 5.263
NGC1333 568 2.0 5.958 2.971 1.379 70.13 7.508 119 10.5 75 0.630 7.142

Table 3.2: Fitting data for calculating the number of enclosed cores (NumCORE).
Clump name, Clump Mass, Area, Nth

J , Nth,nth
J are taken from Table 2 of Pokhrel et al. (2018).

In the above table, nn, σn, µ, Bref, Mg,m, NumCORE, ϵ th, ϵ th,nth are evaluated based on our model.
Here, σn is the clump mass per unit area, nn is obtained using Equation 3.13, µ is a free
parameter of our model, Bref is calculated using Equation 3.3, and Mg,m is obtained based on
Figure 3.1, NumCORE = Clump Mass/Mg,m, ϵ th = NumCORE/Nth

J , ϵ th,nth = NumCORE/Nth,nth
J .

Table B.2 is arranged in the ascending order of NumCORE.
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Chapter 4

A semi-analytic model for the temporal

evolution of the episodic disc-to-star

accretion rate during star formation

A version of this chapter has been published in the Monthly Notices of Royal

Astronomical Society as Das I. and Basu S. 2022, MNRAS, 514, 5659–5672,

DOI:10.1093/mnras/stac1654.

4.1 Introduction

The luminosities of protostars from sub-millimetre/millimetre and mid-infrared observations

of nearby molecular clouds reveal low to intermediate mass star formation occurring within

dense protostellar cores. In the early phase (so-called Class 0 and Class I phases), a protostar

is surrounded by a protostellar disc, which is in turn deeply embedded within an infalling en-

velope that has emerged from the collapse of the surrounding cloud core. In order to achieve

a typical final stellar mass within a certain timescale, the protostar accumulates mass with

episodes of vigorous mass accretion rate (≥ 10−4 M⊙ yr−1) as observed in FU Orionis (see Au-

dard et al., 2014, and references therein). It is widely accepted that stellar mass is accumulated

in a time-dependent and episodic (not steady) fashion. Several surveys of protostars suggest

that the luminosities of young stellar objects (YSOs) are about an order of magnitude lower

than that expected from a steady mass accretion rate (Enoch et al., 2009; Dunham et al., 2010).
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The sporadic and sudden mass accretion bursts give rise to the luminous bursts as observed in

YSOs, which are often known as FUor (∼ 100 L⊙, ∼ 100 yr duration, thought to occur mainly

in the embedded Class 0/I phase) and EXor (∼ 10 L⊙, ∼ 1yr duration, appearing in the Class

II YSOs) eruptions (see Hartmann & Kenyon, 1996; Herbig, 2008; Audard et al., 2014, refer-

ences therein). The majority of the accretion outbursts that have been detected belong to the

star-forming regions within the immediate solar neighbourhood. Less is known about episodic

eruptions at larger distances (∼ few kpc) due to drawbacks in time-domain astronomy at those

distances.

An additional observational channel that can imply episodic accretion is the luminosity his-

togram of young stellar objects (YSOs). Several surveys show that the luminosities of YSOs

are typically about an order of magnitude lower than that expected from a steady mass accretion

rate (Enoch et al., 2009; Dunham et al., 2010). This has been used by the authors to provide

further evidence of episodic accretion, in which the majority of time is spent in a lower accre-

tion rate. However, long-term evolution of the accretion rate and low-amplitude variability can

also potentially match the observed luminosities of protostars given favourable assumptions

(Offner & McKee, 2011; Fischer et al., 2017). Further studies are required to distinguish these

scenarios.

The overall protostellar accretion history can be thought of as a combined effect of two

successive phases. In the early phase, when the infall of matter from the surrounding envelope

is substantial, mass is transported inward because of envelope-induced gravitational instability

in a protostellar disc. However, the accretion from the surrounding protostellar disc on to the

central protostar primarily occurs at a much lower rate than the envelope accretion. In this

early stage, even though both processes are coexisting, the envelope accretion dominates the

disc accretion in driving the overall evolution. Simulations show that during the protostellar

accretion phase (Class 0/I phase), intermittent accretion bursts occur due to episodes of dense

clump infall on to the central protostar (Vorobyov & Basu, 2005b, 2006). Mass is infalling

from the envelope to the disc, and the disc is transporting the matter to the star at a different

rate. Because of the mismatch between the infall and transport rate, the central protostar mass

does not grow at the same rate as the disc mass. Hence, the disc mass becomes comparable to

that of the central protostar, which leads to gravitational instability (GI) within the protostel-
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lar/protoplanetary disc (PD/PPD). Generally, the disc gets fragmented into large spiral arms

and gravitationally bound clumps. Afterward, these clumps migrate inward through the spiral

arms and fall to the centre (Vorobyov & Basu, 2005b, 2006), which triggers the luminosity

bursts.

In the later phase, when the gas reservoir of the envelope is depleted, mass is accreted

on to the star due to internal torques, which usually result in a power-law decrease of mass

accretion rate with time. Specifically, for accretion due to gravitational torques within the disc,

analytic theory yields the form Ṁ ∝ t−6/5 (Lin & Pringle, 1987, hereafter LP) that has also

been found in numerical simulations (Vorobyov & Basu, 2008). At these times, disc accretion

occurs independent of any exterior influence and the system moves into the Class II phase.

In this paper, we develop a semi-analytic formalism that successfully produces the evolu-

tion of the mass accretion rate for specified density and velocity profiles that emerge from the

runaway collapse of prestellar cloud core. We treat the prestellar core as an isothermal finite

mass reservoir that is in hydrostatic equilibrium. In our model, we incorporate a prescription

for generating the vigorous episodic outbursts that arise due to GI within the disc. The effect

of GI can be characterized with the Toomre Q-parameter (Toomre, 1964), which in turn can

be expressed as a disc-to-star mass ratio that we use widely in our paper. We determine a self-

consistent evolution of the mass accretion rate by joining the spherical envelope accretion and

the disc accretion, together with the episodic accretion bursts.

The semi-analytic model elucidates the basic physics of otherwise complex nonlinear sim-

ulations (e.g. Vorobyov & Basu, 2005b, 2006). Aside from its simplicity and pedagogical

value, it opens up new avenues for future work to model episodic accretion. The simulations

are used to calibrate the model, and the computational efficiency of a model that requires mere

seconds of wall clock run time opens up the possibility of running large parameter surveys and

population synthesis modelling. We demonstrate a preliminary example of this by estimating

a synthetic luminosity histogram in this paper. Such work can guide interpretation of whether

the episodic accretion or a long timescale evolution of the accretion rate is the primary cause

of the breadth of observed luminosity histograms.

Our semi-analytic prescription for the determination of the mass accretion rate from the

spherical collapse of an isothermal cloud core is described in Section 4.2, where the two cases
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of spherical envelope accretion (Section 4.2.2) and disc accretion (Section 4.2.3) are discussed

separately. In Section 4.3.1.1 we also provide a semi-analytic prescription to determine the

specific angular momentum profile. We describe the formulation of episodic outbursts due

to GI in Section 4.2.4. We present our numerical results in Section 5.3. The logical flow of

our calculation is described in Section 4.3.2, the temporal evolution of the mass accretion rate

is presented in Section 4.3.3, the modelling of the distribution of mass in the disc, star, and

envelope is in Section 4.3.4, and the estimation of the luminosity distribution is described in

Section 4.3.5. We discuss the applications and limitations of our results in Section 4.4 and

summarize the main features of our work in Section 4.5.

4.2 Methodology

We develop a semi-analytic prescription to determine the evolution of the protostellar mass

accretion rate during star formation. This requires the modelling of three key ingredients: a

prestellar density profile, the envelope accretion on to the disc, and the disc accretion. We

describe these in the following subsections.

4.2.1 Prestellar density profile

We start with the modified isothermal density profile

ρ(r) =
ρc

1 + (r/rc)2 , (4.1)

where rc and ρc are the central lengthscale and density, respectively. The parameter rc repre-

sents the size of the central flat region of the density profile. Here, rc is comparable to the

central Jeans length, rc = kcs/
√
πGρc, such that inner profile remains close to that of a Bonnor-

Ebert sphere, where cs is the isothermal sound speed and G is the gravitational constant, k

(= 1.1) is a constant of proportionality, ρc = µmHnc is the volume density, in which µ = 2.33

and nc is the central number density. The asymptotic density profile is 2.2 times the equi-

librium singular isothermal sphere value ρSIS = c2
s/(2πGr2) (see more in Vorobyov & Basu,

2005a). For the sake of convenience of our calculations, we normalize the physical quantities

by the following units: [L] = rc, [t] = 1/
√

Gρc, [M] = ρcr3
c , [ρ] = ρc, [v] = [L]/[t] = rc

√
Gρc,

[Ṁ] = [M]/[t]. Our normalized variables are defined as r̃ = r/rc, t̃ = t/[t], M̃ = M/[M],
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ṽ = v/[v], and ˙̃M = Ṁ/[Ṁ].

Next, we present the density profile of a tapered isothermal sphere,

ρ(r) =
ρc

1 + (r/rc)2

[
1 −

r2

R2
out

]
, (4.2)

where Rout is the outer radius of the cloud. Note that we later use Rout as the key parameter to

set the cloud mass. The density model of the tapered isothermal sphere provides a modified

isothermal profile for an inner region, as well as a very steep outer density profile beyond some

radial length scale. Qualitatively, this kind of transition in the density profile is consistent

with the transition from an inner region with supercritical mass-to-flux ratio (gravitationally

dominated) to a subcritical outer region (magnetically dominated) as found in numerical mag-

netohydrodynamic (MHD) simulations of the gravitational collapse of a prestellar core (e.g.

Ciolek & Mouschovias, 1993; Basu & Mouschovias, 1994). It can also arise in hydrodynamic

calculations due to a finite mass reservoir in the numerical domain (Vorobyov & Basu, 2005a).

The tapered isothermal sphere mimics these cases by having an enclosed mass that saturates to

a final value as r → Rout.

4.2.2 Spherical envelope accretion

We consider the collapse of the isothermal prestellar cloud core for modelling the spherical

envelope accretion on to a central protostar and disc system.

4.2.2.1 Mass accretion rate from collapse of the cloud

The equation of motion of a pressure-free, self-gravitating spherically symmetric cloud is

dv
dt
= −

GM(r)
r2 , (4.3)

where v is the velocity of a thin spherical shell at a radial distance r from the centre of a cloud,

and M(r) is the mass inside a sphere of radius r. Equation (4.3) can be integrated to yield the

expression for velocity v(r, t) at a given radial distance r and time t, which follows

v = −

√
2GM(r0)

(
1
r
−

1
r0

)
, (4.4)
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where r0 is the initial position of a mass shell at t = t0, and M(r0) is the mass inside r0. Here,

it is assumed that all shells are initially at rest: v0(r0) = 0. Equation (4.4) can be integrated by

introducing a new dimensionless variable β such that

r ≡ r0 cos2 β , (4.5)

(see Hunter, 1962). Then the time it takes for a shell located initially at r0 to move to a smaller

radial distance r due to the gravitational pull of the mass M(r0) is

t =
arccos

√
r/r0 + 0.5 sin(2 arccos

√
r/r0 )√

2GM/r3
0

. (4.6)

The values of r and t are sufficient to determine r0 (a value > r but < Rout, the radius of the

cloud) from Equation (4.6). The dimensionless form of Equations (4.4) and (4.6) are

ṽ = −

√
2M̃(r̃0)

(
1
r̃
−

1
r̃0

)
, (4.7)

t̃ =
arccos

√
r̃/r̃0 + 0.5 sin(2 arccos

√
r̃/r̃0)√

2M̃/r̃3
0

, (4.8)

respectively, where r̃0 = r0/rc. Subsequently, we use the obtained value of r0 in Equation (4.7)

to obtain v(r, t). Provided that the shells do not pass through each other (i.e. the mass of a

moving shell is conserved, so dM(r, t) = dM(r0, t0), the gas density of a collapsing cloud is

ρ(r, t) = ρ0
r2

0

r2

dr0

dr
, (4.9)

where ρ0(r0) is the initial gas density at r0. The ratio of dr0/dr determines how the thickness of

a given shell evolves with time. The relative thickness dr0/dr is determined by differentiating

Equation (4.5) with respect to r0, yielding

dr
dr0
=

r
r0
− r0 sin(2 arccos

√
r/r0)

dβ
dr0

. (4.10)
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Next, dβ/dr0 is determined from an alternative form of Equation (4.6):

β +
1
2

sin 2β = t

√
2GM(r0)

r3
0

, (4.11)

and differentiating the above with respect to r0 yields

dβ
dr0
=

√
G

2M(r0)r3
0

(
t

r0

2r

) [dM(r0)
dr0

−
3M(r0)

r0

]
. (4.12)

Normalizing Equation (4.11) and Equation (4.12) we obtain

β +
1
2

sin 2β = t̃

√
2M̃(r̃0)

r̃3
0

(4.13)

and
dβ
dr̃0
=

√
1

2M̃(r̃0)r̃3
0

(
t̃

r̃0

2r̃

) [dM̃(r0)
dr̃0

−
3M̃(r̃0)

r̃0

]
, (4.14)

respectively, where
dM̃(r̃0)

dr̃0
= 4πρ̃0(r̃0)r̃2

0 . (4.15)

Now that the density ρ(r, t) and velocity v(r, t) distributions of a collapsing pressure-free sphere

are explicitly determined, the mass accretion rate at any given radial distance r and time t is

Ṁ(r, t) = 4πr2ρ(r, t)v(r, t) . (4.16)

The normalized form of Equation (4.16) is

˙̃M(r̃, t̃) = 4πr̃2ρ̃(r̃, t̃)ṽ(r̃, t̃) . (4.17)

4.2.2.2 Evolution of mass accretion rate for different density models

We study the evolution of mass accretion rate for the spherical envelope accretion based on two

different density models, a modified isothermal sphere and tapered isothermal sphere, given by

Equations (4.1) and (4.2), respectively. The enclosed mass of the modified isothermal density
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model of Equation (4.1) is

M(r0) = 4πρcr2
c

(
r0 − rc arctan

r0

rc

)
. (4.18)

Normalization of Equation (4.18) yields

M̃(r̃0) = 4π (r̃0 − arctan r̃0) . (4.19)

Next, we calculate the enclosed mass for the tapered isothermal density model of Equation

(4.2), which yields

M(r0) = 4πρcr3
c

∫ r0/rc

0

r̃2

1 + r̃2 dr̃

−
4πρcr5

c

R2
out

∫ r0/rc

0

r̃4

1 + r̃2 dr̃ ,
(4.20)

where r̃ is the dimensionless radial lengthscale described in Section 4.2.1. After integrating

Equation (4.20) we obtain

M(r0) = 4πρcr2
c

(
r0 − rc arctan

r0

rc

)
−

4πρcr5
c

R2
out

(
arctan

r0

rc
+

r3
0

3r3
c
−

r0

rc

)
.

(4.21)

Normalizing Equation (4.21) yields

M̃(r̃0) = 4π
[
(r̃0 − arctan r̃0) −

1
R̃2

out

(
arctan r̃0 +

r̃3
0

3
− r̃0

)]
. (4.22)

4.2.3 Disc accretion

The disc accretion plays an important role in the formation and evolution of disc. During the

early stellar evolution the solar nebula was an accretion disc (see discussion in Pringle, 1981).

Primarily, the matter falls on to the disc from the envelope and then it is partially transported to

the star from the disc. In a simple viscous disc, matter is transported inward in an axisymmetric

model and results in an accretion rate on to the central star. At the same time, the disc evolution

results in a loss of angular momentum associated with the accreting material (Lynden-Bell
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& Pringle, 1974; Pringle, 1981). Hartmann et al. (1998) applied such a model in which the

accretion and angular momentum transfer/redistribution occurs due to a well-defined viscosity

ν ∝ Rγ, where R is the disc radius. This viscosity profile yields a declining mass accretion rate

Ṁdisc ∝ t−η, where η ≳ 1.5 corresponds to γ ≳ 1. Note that any η > 1 corresponds to a finite

mass reservoir. Hartmann et al. (1998) discussed that the limit γ ∼ 1 essentially corresponds to

roughly constant α in the turbulent viscosity parameterization of Shakura & Sunyaev (1973),

which is ν = αcsH, where H is the disc scale height (half thickness).

In a more realistic disc, the gravitational torques produced by the nonaxisymmetric str-

cuture including spiral arms can dominate the angular momentum transfer. To model such

evolution we use the gravitational torque driven accretion (Lin & Pringle, 1987), which leads

to Ṁdisc ∝ t−6/5, which was also found in simulations by Vorobyov & Basu (2008, see their fig.

3) for late time evolution when envelope accretion had become negligible. The mass of the

disc during its evolution can be written as

Md(t) =
4π
3
Σ0dR2

0d

(
t

t0d

)−1/5

, (4.23)

as described in Lin & Pringle (1987), where M0d(t = t0d) ≡ (4π/3)Σ0dR2
0d. So, taking the time

derivative of Equation (4.23) yields the mass accretion rate from the disc to the star as

Ṁds(t) = −
1
5

(
4π
3
Σ0d R2

0d t1/5
0d

)
t−6/5 . (4.24)

Normalization of Equation (4.24) yields

˙̃Mds(t̃) = −
C1

5
t̃−6/5 , (4.25)

where

C1 =

4π
3 Σ0dR2

0d

ρcr3
c

(
t0d

[t]

)1/5

≡
M0d

[M]

(
t0d

[t]

)1/5

= M̃0d t̃1/5
0d , (4.26)

and ˙̃Mds(t̃) = Ṁds(t)/[Ṁ]. Here [Ṁ], [t], and [M] are defined in the previous section. Note that

use of C1 requires us to initialize the disc evolution with an initial mass M0d at time t0d. These

values are episodically updated in a manner that depends on the mass accretion bursts and is
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described in Section 4.2.4.

We take note of the fact that all accretion on to the star is not occurring purely through

the disc. Our simplified spherical envelope accretion model implies that some matter would

accrete in a direction along or nearly along the rotation axis. Even in a more realistic geometry,

some infall may be funneled along the edge of the outflow cavity and directly reach the in-

nermost region of the stellar magnetosphere. Furthermore, the disc-to-star accretion may itself

be enhanced above the values calculated above for an isolated disc when there is forcing from

envelope accretion. For all of these reasons, we adopt the total accretion rate of mass reaching

the star to be

Ṁ∗ = Ṁds(t) + q Ṁinfall(t), (4.27)

where q is the fraction of envelope mass accretion that goes directly to the star and Ṁinfall is the

accretion rate calculated according to the prescription in Equation (4.16). We adopt q = 0.1,

which means in practice that the second term in Equation (4.27) will dominate the first until

Ṁinfall undergoes a rapid drop due to the tapering of the isothermal density profile. Once this

has happened, the Ṁ∗(t) will equal Ṁds(t) for subsequent evolution.

4.2.4 Episodic accretion bursts

We invoke the condition for the occurrence of episodic accretion bursts in terms of the Toomre-

Q instability criterion:

Q ≡
csΩ

πGΣ
≲ 1 , (4.28)

where Ω =
√

GM∗/R3
d is the Keplerian angular speed, Σ is the disc surface density, M∗ is the

stellar mass, Md (≡ πR2
dΣ) is the disc mass, Rd is the disc radius, and cs and G are defined

earlier. We use cs/Ω = H for a non-self-gravitating disc in hydrostatic balance, where H is the

vertical half-thickness of the disc. Rearranging the parameters within Equation (4.28) yields

Q ≃
H
Rd

M∗
Md

. (4.29)

Therefore, the Toomre instability criterion can be written as

Md

M∗
≳

H
Rd

. (4.30)
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For a typical disc, H/Rd is a few times 0.1 (see discussion in Kratter & Lodato, 2016). The

factor H/Rd also includes the effects of the disc surface density profile. The Equation (4.30) is

another way of representing gravitational instability in terms of disc-to-star-mass ratio, which

is a constraint that is more related to observations. In our model, this depiction is widely used.

The disc becomes gravitationally unstable, and a burst occurs, if the disc-to-star-mass ratio

satisfies
Md

M∗
≳ Rb , (4.31)

where we consider Rb = 0.33 as found in the hydrodynamic simulations (e.g. Vorobyov &

Basu, 2006). The value of Rb can vary up to 10% − 20% depending on the numerical model.

The disc becomes gravitationally stable after the burst, which means the updated disc-to-star-

mass ratio (Rf) becomes fairly lower than the threshold. However, it can still be of the order

few times ∼ 0.1. A very small Rf (≲ 0.1) is not a good choice as it produces massive bursts

that could exceed typical values (∼ 0.01 − 0.05 M⊙) by a factor up to 10 − 15. There is some

freedom in choosing Rf and we set it to 0.23 in order to obtain a reasonable number of bursts in

comparison to simulations. A higher value will result in more bursts and a lesser value yields

fewer bursts. During a burst, the disc loses mass and the star gains mass, both in an amount

equal to the mass of the clump. So, the updated disc-to star mass ratio becomes

M†d
M†∗
= Rf , (4.32)

where Rf < Rb, M†d = Md − Mburst, and M†∗ = M∗ + Mburst. So, simplifying Equation (4.32) the

clump mass (often called as burst mass) can be calculated as

Mburst =
Md − Rf M∗

(1 + Rf)
. (4.33)

After every burst, we modify M0d with the updated disc mass. We further calculate Ṁds and C1

as shown in Equation (4.25) and (4.26) using the updated disc mass until the next burst. We

describe our numerical prescription in detail in Section 4.3.2. In our formalism we set the time

duration for each burst as

∆tburst = 100
Mburst

0.01 M⊙
yr . (4.34)
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Table 4.1: Model parameters: temperature T , the central number density nc, the central flat
region of the core rc, outer radius of the core Rout, mass of core Mcore, and final stellar mass M∗
at the end of the desired evolution.

T nc rc Rout Rout/rc Mcore M∗
[K] [× 104 cm−3] [pc] [pc] [M⊙] [M⊙]

MODEL1 12 4.95 0.037 0.118 3.2 0.50 0.28
MODEL2 12 4.95 0.037 0.148 4.0 1.10 0.57
MODEL3 12 4.95 0.037 0.185 5.0 1.98 1.0

MODEL2A 12 8.5 0.028 0.112 4.0 0.84 0.45
MODEL2B 12 2.0 0.058 0.232 4.0 1.74 0.9
MODEL2C 8 3.25 0.037 0.148 4.0 0.75 0.39
MODEL2D 16 6.70 0.037 0.146 4.0 1.46 0.77

For simplicity, we correlate the time duration of the burst with the mass of the burst in a linear

fashion such that time duration of an episodic burst of typical mass 0.01 M⊙ is around 100 yr as

found in the simulations and observations (Hartmann & Kenyon, 1996; Herbig, 2008; Audard

et al., 2014, references therein). The linear relation between the burst mass and its time duration

in Equation (4.34) results in an increasing burst duration with time since the relatively more

massive clumps (few times 0.01 M⊙) that form at later times in the more massive discs will be

tidally sheared into multiple clumps of ∼ 0.01 M⊙ that collectively produce a longer duration

burst (Vorobyov & Basu, 2015). A linear relation is the simplest function that can be used

to show an increasing duration as the burst masses become larger in the later evolution. The

simulations do not provide a large number of data points in this regard, so a linear relation is the

simplest fitting function and exhibits a luminosity evolution that is reasonable in comparison

to the simulations.

4.3 Results

We implement our formalism for models with three different parent core masses as described

in Table 4.1. We study cores of different masses by varying the outer radius. The actual size of

the prestellar cloud core is one of the significant constraints from observations. For example, in

the dense cores in Taurus, 0.02 pc ≲ Redge ≲ 0.1 pc (e.g. Motte & André, 2001). Simulations

show that beyond some such distance Redge, the column density merges into a near-uniform
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Figure 4.1: 2D representations of mass accretion rate as a function of space and time for the
isothermal density profile.

background or fluctuates about a typical mean value resembling the ambient molecular cloud

(Basu & Ciolek, 2004).

4.3.1 Envelope accretion

We numerically solve the mass accretion rate using Equation (4.16) for the modified isothermal

density profile of Equation (4.1) by combining the Equations (4.3)–(4.16). Figure 4.1 shows

the mass accretion rate Ṁ(r, t) as a function of space and time for a pressure-free cloud with

nc ∼ 5× 104 cm−3 and rc = 0.037 pc. The mass accretion rate initially increases with time and

appears to approach a constant value at later times t > 0.7 Myr. The temporal evolution of the

mass accretion rate also has a radial dependence. Hence, we see that at smaller radial distances,

Ṁ(r, t) approaches the constant value at a faster time. In Figure 4.2a, b, c we present the mass

accretion rate Ṁ(r, t) as a function of space and time for the tapered isothermal density profile
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Figure 4.2: 2D representations of mass accretion rate as a function of space and time for
the modified density profile with different outer radius (a) Rout = 3.2rc, (b) Rout = 4rc, (c)
Rout = 5rc.
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Figure 4.3: 1D representation of the temporal evolution of mass accretion rate for models with
Rout = 3.2rc (red line), Rout = 4rc (green line), Rout = 5rc (blue line) calculated at a fixed radial
distance r = 2rc.

of Equation (4.2) with three different outer radii Rout = 3.2rc, 4rc, 5rc, respectively. Initially

Ṁ(r, t) increases with time. Afterwards, because of the finite mass reservoir when the envelope

is depleted, Ṁ(r, t) gradually decreases over the time as well as over the radial distance. We find

the Ṁ(r, t) rises faster to a peak at a smaller radial lengthscale. With increasing Rout, Ṁ(r, t)

falls off at a later time. Figure 4.3 shows the temporal evolution of Ṁ(r, t) at a fixed radial

distance r = 2rc for all three models as shown in Figure 4.2. It is evident from this plot that,

with increasing Rout, Ṁ starts to evolve at a slightly later time and attains the maximum and

then falls after a longer time.

4.3.1.1 Spatial profiles of mass and angular momentum

In our model we deal with the geometry of a spherical cloud with an outer radius Rout. To

obtain the column density and angular momentum as function of an observationally tractable
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Figure 4.4: Top: Radial profiles of density ρ(r)/rc (red) and mass accretion rate Ṁ (blue) as a
function of radial distance x/rc at a fixed time t = 0.35 Myr for model with Rout = 5rc. Bottom:
Column density Σ(x)/Σc (green) and the specific angular momentum j(x) (blue) as a function
of radial offset x/rc at the same time for the same model.
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Figure 4.5: Schematic illustration of a cut through a spherical cloud of radius R. The observer
is positioned along the direction of the coordinate s, and measures an integrated column density
Σ as a function of the offset x (figure taken from Dapp & Basu, 2009).

parameter, we consider a cut through of the spherical cloud. If we are positioned along the

direction of line-of-sight coordinate s, then we can measure these quantities as function of

radial offset x using the transformation from s coordinate to the radial offset coordinate x,

which yields s =
√

r2 − x2 and hence ds = rdr/
√

r2 − x2. The geometry is portrayed in Figure

4.5. The column density can be calculated by integrating the volume density along a line of

sight through the spherical cloud:

Σ(x) = 2
∫ √R2

out−x2

0
ρ(s)ds

=

∫ Rout

0

ρ(r)r
√

r2 − x2
dr ,

(4.35)

as described in § 2.1 of Dapp & Basu (2009). Once Σ(x) is obtained, we calculate the enclosed

mass by integrating the column density along the radial offset through the sphere, yielding

M(x) =
∫ x

0
Σ(x′) x′dx′ . (4.36)
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In Figure 4.4a, we show the evolution of the density ρ(r)/ρc (red line) as a function of

radial distance r/rc at a later time t = 0.35 Myr. For r/rc ≲ 1, ρ(r) ∝ r−3/2, characteristic of

an expansion wave (Shu, 1977); and for r/rc > 1, ρ(r) starts to diverge and sharply falls. In

our model, Rout is not large enough to show a clear power law ρ(r) ∝ r−2 profile before the

steep descent near the edge. In Figure 4.4a, the blue line presents the mass accretion rate Ṁ

(blue line) as a function of r/rc at t = 0.35 Myr. In our work, we exclude the case of large

Rout/rc ∼ 10 or 100 as it will give rise to intermediate to high mass stars.

In Figure 4.4b, the green line shows Σ(x)/Σc as a function radial offset x/rc at a time t =

0.35 Myr for the model with Rout = 5rc. Here, Σc = Σ(x = 0) = 2rcρc arctan(Rout/rc) for

the modified isothermal density profile shown in Equation (4.1) (see more in Dapp & Basu,

2009). The profile of Σ(x)/Σc essentially traces the profile of ρ(r)/ρc and falls sharply at the

outer edge. Hence, M(x) gets saturated at the outer radius. However, the conservation of the

specific angular momentum corresponds to the total enclosed mass Mtot(x). It can be calculated

as Mtot(x) = M(x) + M∗(t), which includes the mass that has reached the star. Here, M∗(t) is

the stellar mass at the centre at time t. The relation between specific angular momentum j(x)

and the total enclosed mass Mtot(x) can be written as

j(x) =
Ω0πG1/2

Bref
Mtot(x) , (4.37)

as shown in Basu (1998). Here, Ω0 is the typical (mean) rotational rate for the dense molecular

cloud and is about 10−14 rad s−1 (see Goodman et al., 1993), and Bref is the canonical magnetic

field of 30 µG for a molecular cloud core (see Goodman et al., 1993; Crutcher et al., 1993).

We follow a semi-analytic approach to numerically calculate the angular momentum profile at

a later phase after the collapse has started. In Appendix 4.6.1, we present the spatial profiles

of Σ(x) and j(x) at t = 0 for the tapered isothermal density profile of Equation (4.2), which are

analytically tractable for this special case. In the inner region where M∗(t) > M(x), Mtot(x) will

be nearly constant and approximately equal to M∗(t). In Figure 4.4b the blue curves shows the

specific angular momentum j(x) as a function of x/rc at a time t = 0.35 Myr after the collapse

has proceeded and the central star is formed. We notice that within the inner region, j(x) is

almost flat up to x/rc ≈ 0.15 and then outside this region j(x) increases linearly and comes to
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a saturation at the outer edge. This kind of j(x) profile reasonably corresponds to the evolution

starting from the prestellar collapse (in the outer region) to a radial expansion wave regime (in

the inner region) with Ω ∝ r−2 (see Dapp et al., 2012). For a typical rc = 0.033 pc, the break

occurs around x = 1021 AU. The range of j(x) ≃ 1020 − 1021 cm2 s−1 and the shape of the

profile is generally consistent with observations (e.g. fig. 6 of Ohashi et al. (1997), fig. 13 of

Yen et al. (2011), fig. 11 of Kurono et al. (2013), fig. 9 of Yen et al. (2017), and fig. 17(b) of

Gaudel et al. (2020)).

4.3.2 Formalism of stellar accretion

In this section we describe (see Figure 4.6) how we obtain the mass accretion rate on to the

star, Ṁ∗, with episodic bursts as shown by the black line in Figures 4.7a, 4.8a, 4.9a. Here Ṁ∗ is

obtained from the joint result of the infall rate from the envelope and mass transportation rate

from the disc to the star. We obtain the temporal evolution of the mass accretion rate at a radial

distance r = 2rc from envelope accretion for the models with different Rout. We perform the

following steps that demonstrate our semi-analytic formalism:

(i) The initial masses of the disc and protostar are set to be 0.001 M⊙ and 0.01 M⊙, respectively.

We consider 90% of the total accretion from the envelope goes to the disc and the rest goes

directly to the protostar (see Equation (4.27)). At each time, the disc and star mass can be

calculated by integrating the respective mass accretion rates from the envelope to the disc and

the star, respectively.

(ii) Thereafter the mass transportation is calculated from disc to the star by integrating Equation

(4.25). Note that, before the occurrence of the burst, t0d is considered as t0. We calculate C1

accordingly as shown in Equation (4.26). The amount of mass that the disc loses is added to

the star. We then update the disc and the star masses.

(iii) If the disc-to-star-mass ratio Md/M∗ does not go above the threshold, then the disc is

gravitationally stable and we calculate the Ṁ∗ using only the contributions of the mass accretion

rate from disc to star and from envelope to the star.

(iv) However, if the disc-to-star-mass ratio Md/M∗ goes above 0.33 (and the disc mass is at

least 0.01 M⊙), the disc becomes gravitationally unstable. The disc transfers the matter to the

star (which gives rise to an accretion burst) so that the Md/M∗ ratio goes below the threshold
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Calculate Ṁinfall from envelope

Calculate Ṁds to estimate mass transportation rate from disc to the star

Total accretion rate on to star
Ṁ∗= 10% of Ṁinfall(t) + 90% of the accretion via Ṁds(t)

Update Md with 90% mass from Ṁinfall – mass transferred via Ṁds,
Update M∗ with 10% mass from Ṁinfall + 0.9 × mass transferred via Ṁds

If Md/M∗ > 0.33
(burst criterion)

Episodic burst and mass transfer from disc to star through
clump infall: Md → Md − Mburst; M∗ → M∗ + 0.5 × Mburst

We update M0d, t0d after every burst,
calculate new C1 and update Ṁds;

(see steps (iv) to (viii) of Section 3.1)

Total accretion rate on to star
Ṁ∗ = 10% of Ṁinfall(t) + 0.5 × Mburst/∆tburst

Proceed to the next time step and iterate from top

True

False

Figure 4.6: Flowchart of our formalism for the episodic accretion model.
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and the disc becomes gravitationally stable.

(v) The amount of mass depleted with each burst is called the burst mass and we require that

at least 0.01 M⊙ should be associated with a burst. During an accretion burst, the burst mass

goes from the unstable disc toward the central protostar, adding to its mass. Outflows are taken

into account such that during the envelope accretion phase 50% of the mass accreted during

a single burst episode goes to the outflows, while 10% of the mass that is accreted via disc-

to-star accretion goes to outflows. The molecular outflows are ubiquitous among protostars.

The outflow energetics reflects a correlation to the mass infall/accretion rate (Bontemps et al.,

1996a). Hence, during the disc accretion phase we update the stellar mass by taking 90%

contribution of the disc-to-star mass accretion rate Ṁds as mentioned in the third and fourth

step of the flowchart (see Figure 4.6). Whereas, during episodic bursts 50% of the burst mass

gets finally accreted onto star as shown in the second last step of the flowchart.

(vi) After the burst, C1 is calculated using the updated disc mass and t0d. We update t0d to

correspond to the most recent burst time and the disc mass is also updated accordingly as

mentioned in point (iii).

(vii) Once a burst occurs, we calculate the burst mass as shown in Equation (4.32) and the time

duration as shown in Equation (4.34). We calculate the mass accretion rate due to the burst by

dividing the burst mass by the time duration of the burst. Then we add this to the pre-calculated

mass accretion rate (from the disc and envelope) on to the star to calculate the final Ṁ∗ at that

time.

(viii) In between the bursts, the baseline of Ṁ∗ is determined by the net mass accretion rate

from the disc to the star and a little portion goes directly from the envelope to the star (see

Equation (4.16)).

(ix) We iterate the above steps as described in the points (i)-(viii) and also in Figure 4.6 until

the desired end of the evolution.

The envelope accretion and disc accretion continue to coexist until approximately 99% of

the envelope has been consumed by the protostar and protostellar disc. After that, the evolution

of the mass accretion is set only by the disc accretion, which has a steady form Ṁds ∝ t−6/5.

Hence, when the envelope accretion ends, from then onwards Ṁ∗ (black line) identically over-

laps with Ṁds (blue line), as shown in Figures 4.7a, 4.8a, 4.9a. The accretion bursts do not
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occur during this phase. Due to the lack of accretion from the envelope, the disc can not

become sufficiently massive for the GI that leads to outbursts.

4.3.3 Temporal evolution of the mass accretion rate

Figure 4.7a, 4.8a, 4.9a present the temporal evolution of the mass accretion rate for the models

with different core masses as described in the Table 4.1. In each of these figures, the red line

shows the mass accretion rate from the spherical envelope accretion, which is similar to the

curves shown in Figure 4.3. Moreover, this curve resembles the infall rate from envelope as

calculated in the simulations. The black line shows the mass accretion rate on to the central

star from the disc and directly from the envelope. The distribution of mass accretion rate from

the envelope separately to the disc and to star is mentioned in Section 4.3.2. The spikes rep-

resent the episodic accretion bursts. The amplitude of the mass accretion rate at each burst

is calculated as the burst mass divided by its time duration (Equation (4.34)). The blue line

shows the mass accretion rate from disc to the star via the LP formula (see Equation (4.25)).

There is a step-like increment at the occurrence of each burst, which corresponds to an updated

intercept C1 (see Equation (4.26)). The factor C1 has an implicit time dependence through the

updated disc and star mass at the time instance of a burst. The bursts occur due to the onset of

gravitational instability within the disc. The disc is transporting material to the star via the LP

formula. Simultaneously, the disc is gaining matter from the envelope infall at a different rate.

Due to the mismatch between the infall rate and transport rate, the disc becomes sufficiently

massive that the disc-to star-mass ratio exceeds the threshold for gravitational Toomre-Q in-

stability. Such a gravitationally unstable disc gets fragmented into spiral arms and clumps.

The spiral arms are moving outward (gaining angular momentum) and the clumps are driven

inward through the gravitational torques (losing angular momentum) and fall on to the central

protostar. This leads to vigorous episodic accretion bursts that produce luminosity outbursts

seen in observations.

Because of the finite mass reservoir, the envelope gets depleted at an earlier time for the

lower mass cores. At a later time, during the phase with only disc accretion, there is no burst,

which delineates the simple power law profile where Ṁds ∝ t−6/5 with a constant intercept.

We notice the total number of bursts is increasing with increasing core mass. We see the least
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Ṁ̇s

(a)

0.1 1.0 2.00.2 0.4 0.5 0.7 0.8 1.5
time (Myr)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ma
ss
 (M

⊙
)

Menv
Md
M ⊙
Md/M ⊙

(b)

0.1 1.0 2.00.2 0.4 0.5 0.7 0.8 1.5
time (Myr)

10−3

10−2

10−1

100

101

102

103

Lu
m
in
os
ity

 (L
⊙
)

(c)

Figure 4.7: MODEL1: (a) temporal evolution of the mass accretion rate (the total number of
bursts is 32), (b) distribution of masses in the envelope-disc-star system, (c) temporal evolution
of the accretion luminosity distribution. In (b) and (c), the solid line presents the joint evolution
from envelope accretion together with disc accretion and the dashed line shows the evolution
due to disc accretion only.
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Figure 4.8: MODEL2: (a) temporal evolution of the mass accretion rate (the total number of
bursts is 48), (b) distribution of masses in the envelope-disc-star system, (c) temporal evolution
of the accretion luminosity distribution. In (b) and (c), the solid line presents the joint evolution
from envelope accretion together with disc accretion and the dashed line shows the evolution
due to disc accretion only.
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 ṀP

(a)

1.0 2.00.2 0.4 0.5 0.7 0.8 1.5
time (Myr)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ma
ss
 (M

⊙
)

Menv
Md
M ⊙
Md/M ⊙

(b)

1.0 2.00.2 0.4 0.5 0.7 0.8 1.5
time (Myr)

10−3

10−2

10−1

100

101

102

103

Lu
m
in
os
ity

 (L
⊙
)

(c)

Figure 4.9: MODEL3: (a) temporal evolution of the mass accretion rate (the total number of
bursts is 60), (b) distribution of masses in the envelope-disc-star system, (c) temporal evolution
of the accretion luminosity distribution. In (b) and (c), the solid line presents the joint evolution
from envelope accretion together with disc accretion and the dashed line shows the evolution
due to disc accretion only.



150 CHAPTER 4. SEMI-ANALYTIC MODEL FOR EPISODIC MASS ACCRETION

number of bursts for MODEL1. Because for the evolution of a small core of 0.5 M⊙, the disc

does not get much time to continue to grow and spherical envelope accretion ceases early.

Additionally, at the very initial time, the baseline of the Ṁ increases to ∼ 2 × 10−7 M⊙ yr−1,

∼ 3×10−7 M⊙ yr−1, ∼ 4×10−7 M⊙ yr−1 for MODEL1, MODEL2, and MODEL3, respectively. We

do not get any burst during the disc accretion phase, which starts typically after t ≈ 0.35 Myr,

0.45 Myr, and 0.55 Myr for MODEL1, MODEL2, and MODEL3, respectively. Overall, we find

that the evolution starts early for a low core mass and it starts at a later time for an increased

core mass.

4.3.4 Mass estimation

Figures 4.7b, 4.8b, 4.9b present the masses contained in the envelope (black line), protostellar

disc (red line), and the central protostar (blue line), for the models with different core masses

as described in Table 4.1. The mass in the envelope gradually falls over the time as it is being

continuously absorbed by the protostellar disc and star. In the earlier stage, the spherical en-

velope accretion (the segments shown by solid lines) takes over the disc accretion (as shown

by the corresponding dashed line) until 99% of the envelope mass has been depleted. We find

that each sharp increase in the stellar mass is correlated with a corresponding sharp decrease

in the disc mass. These sharp step-like increments/decrements happen because of the addi-

tion/subtraction of the finite burst mass to/from the star/disc, respectively, during every infall

of a clump from the gravitationally unstable disc to the star. The accretion bursts continue to

occur until the envelope mass has reduced by 90% − 95% and the mass accretion rate drops to

∼ 10−7 M⊙ yr−1.

Our study shows that at the end of the evolution the final stellar mass acquired is about 50%

of the initial parent envelope mass, which is approximately consistent with some observational

estimates (e.g. Alves et al., 2007). Outflows also constrain the final stellar mass as found from

the observations and theoretical models. In our model, on average 50 − 60% of the final stellar

mass comes from the accretion bursts. However, the observations have been used to estimate

that 10% − 35% of the total stellar mass is accumulated during the bursts. This is obtained for

low mass star formation (Dunham & Vorobyov, 2012) and also for high mass stars (Caratti o

Garatti et al., 2017; Meyer et al., 2017; Magakian et al., 2019). In our study, episodic accretion
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plays a dominant role in the stellar mass growth as the disc accretion via the LP formula is

not as vigorous as the episodic accretion. A more sophisticated model of mass and angular

momentum transfer due to disc viscosity could help to refine the results. We keep this aside

for future studies. The green line shows the temporal evolution of the disc-to-star-mass ratio.

The spiky behaviour in the temporal evolution of the disc-to-star-mass ratio corresponds to

the episodic bursts when the disc loses mass and star gains mass. At the early times, this

ratio exceeds unity. Soon after that, the disc-to-star-mass ratio goes below unity, as found in

observations. We note that our model is applied to very early times consistent with the Class

0/I phase, when this ratio may be greater than in the later (and more frequently observed) Class

II phase when the envelope mass has largely dissipated and bursts are less frequent.

During the episodic bursts, the clumps of ∼ 0.01−0.08 M⊙ migrate inward to the centre. As

the mass associated with a burst increases so does the time duration of the burst (see Section

4.3.4). It happens because of the choice of a simple linear formula for fitting time duration

with the mass for each burst as seen in Equation (4.34); a typical burst of 0.01 M⊙ corresponds

to a duration of 100 yr. For MODEL1 with core mass 0.5 M⊙, the burst masses are ranging

from 0.01 − 0.017 M⊙, with a time duration of 110 − 170 yr. For MODEL2 with core mass

1.1 M⊙, the burst masses range from 0.01 − 0.037 M⊙, with a time duration of 132 − 377 yr.

For MODEL3 with core mass ≃ 2 M⊙, the burst masses range from 0.01 − 0.05 M⊙, with a time

duration of 132 − 500 yr up to a time t = 0.3 Myr. At a later stage (0.3 Myr < t < 0.46 Myr),

for this relatively high-mass model, there are a few bursts (around 4 − 6), and the burst mass

goes up to ∼ 0.05 − 0.08 M⊙ with a time duration of 500 − 830 yr. This amount of mass and

time duration for the physical episodic bursts may seem excessive, however it can be thought

of as the accumulation of several clumps of ∼ 0.01 − 0.02 M⊙ occurring in rapid succession,

each with ∼ 100 yr duration. Such clustered (knotty) bursts occur due to the disintegration of

large clumps that are tidally disrupted as they approach the star, as described by Vorobyov &

Basu (2015) and used by Vorobyov et al. (2018) to explain the multiple knots in the vigorous

jets from Herbig-Haro objects. The time resolution of our current scheme is ∼ 4 kyr and we

note that we do not resolve smaller intervals in order to keep our computation simple. Our

aim is to reproduce the big picture of the main characteristics of mass accretion as found from

the very time-consuming numerical hydrodynamic simulations. Finally, we notice that sums
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of all masses remain constant, which implies that there is a global conservation of mass in our

semi-analytic model.

4.3.5 Estimating luminosity and comparing with observations

Figure 4.7c, 4.8c, 4.9c present the temporal evolution of the accretion luminosity for three dif-

ferent core masses, as described in the Table 4.1. In our formalism, we calculate the accretion

luminosity as

Lacc = facc
GM∗Ṁ∗

R∗
, (4.38)

where Ṁ∗ is mass accretion rate on to the central protostar during spherical envelope accretion,

M∗ and R∗ are the stellar mass and radius, respectively. We assume that a factor facc of the

total incoming gravitational potential energy is converted to radiation at a shock front where

the infalling material meets the star. Here, we take R∗ = 3 R⊙ and facc = 0.5. The luminosity

evolution reveals a peaked curve since the product M∗Ṁ∗ reaches a peak at a certain time. At a

very early time, Ṁ∗ has a high value and M∗ is still low, whereas at a later time, Ṁ∗ decreases

and M∗ has increased.

Apart from the accretion luminosity, we account for the contribution from the photospheric

luminosity. The intrinsic photospheric luminosity can be expressed as

Lphot = 4πR2
effσSBT 4

eff , (4.39)

where σSB is the Stefan-Boltzmann constant, and Reff and Teff are the radius and effective

temperature of the stellar photosphere, respectively. In general, Lphot is much less than Lacc

during the bursts. In between the bursts it is comparable to Lacc. For the completeness of our

study, we add the contribution from the photospheric luminosity based on the survey of stellar

masses (Yorke et al., 1993, 1995) during the evolution, as used in the numerical simulations of

Vorobyov et al. (2020).

We present a comparison of different luminosity distributions in Figure 4.10a. The filled

histogram shows the luminosity distributions for the Class 0 stellar objects within an evolu-

tionary span of ∼ 0.1 Myr based on all the models of different final stellar masses as shown in

Table 4.1. This time interval essentially corresponds to the time until the end of the embedded
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Figure 4.10: Top (a): Histograms of luminosities from our episodic model (the filled his-
togram), and the observations (red dashed line) as shown in the right panel of figure 2 of Fischer
et al. (2017). Middle (b): Histograms of luminosities from a single episodic model (MODEL2)
(orange dashed line) and its respective envelope infall model (cyan solid line). Bottom (c):
Histogram of luminosity for the analytic models with constant (magenta), exponentially grow-
ing (blue), exponentially decaying (green) mass accretion rate. The luminosity histogram from
observations is shown in the red dashed line for comparison.
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protostellar phase. We consider this time range based on the mass remaining (about 50%) in

the envelope for a typical Class 0 object. Once the object goes to the Class I phase, the enve-

lope is diminished. To construct the luminosity histogram (the filled histogram in Figure 4.10a,

we consider models with a fairly large range of final stellar masses. We also take into account

of the appropriate weights based on the initial mass function (IMF) for the different models

categorized by the final stellar mass. These weights for the respective logarithmically spaced

mass bins are calculated from the cumulative probability distribution presented in Basu et al.

(2015). The red dashed histogram in Figure 4.10a presents the luminosities of YSOs found

from the Herschel Orion Protostar survey as carried out by Fischer et al. (2017, see their fig.

2). The observed histogram is drawn from 91 Class 0 objects. Figure 4.10b clarifies the dif-

ference in luminosity distribution due to episodic accretion in a single model. The histograms

in cyan (with solid line) and orange (with dashed line) in Figure 4.10b show the luminosity

distributions obtained for MODEL2 calculated from the spherical envelope infall (see the red

curve of Ṁinfall in Figure 4.8a) and the calculated episodic accretion (see the black curve of

Ṁinfall in Figure 4.8a), respectively. The histogram obtained from the spherical envelope infall

contains many fewer low luminosity values, corresponding to the ‘luminosity problem’ when

the theoretical mass accretion rate c3
s/G is compared with the observed rate. In a realistic situ-

ation with a rotating core, the nonrotating spherical model value c3
s/G can be thought of as the

envelope accretion on to the disc.

In the filled histogram as obtained from our episodic model and shown in Figure 4.10a, the

range of luminosities from ∼ 10 L⊙ to ∼ 100 L⊙ correspond to the episodic bursts. On the other

hand, luminosities around 10−2 L⊙ are associated with the early time evolution. However, such

faint objects are hard to detect observationally. We compare the observed and theoretically

obtained histograms quantitatively by using the histogram intersection method. This method

calculates the similarity between two distinct histograms by adding the minimum fraction from

each bin, with a maximum possible value of 100% if the histograms are identical. A compar-

ison in this case yields a reasonably good cumulative value of 55%. Sampling over many

episodic models of different stellar masses and ages might provide a better match to the peak

of the observed histogram and can be pursued in future work.

To investigate the effect of accretion bursts in the luminosity distributions, we also study the



4.3. RESULTS 155

similar diagnostics with a constant mass accretion rate as well as time dependent but smoothly

increasing and decreasing mass accretion rates. Figure 4.10b shows the histogram of luminos-

ity distributions for analytic models with constant, exponentially growing, and exponentially

decaying mass accretion rate, respectively. The models are described by

Ṁ(t) =


Ṁ0 constant (a),

Ṁ0e(t−ta)/τ exponentially growing (b),

Ṁ0e−(t−ta)/τ exponentially decaying (c),

(4.40)

where Ṁ0 is the initial mass accretion rate 2 × 10−6 M⊙ yr−1, τ is the growth or decay constant

for the evolution of mass accretion and is set to 0.1 Myr, ta is the initial time 0.1 Myr. We

evolve these models from 0.1 Myr to 0.2 Myr with the initial M∗ = 0.01 M⊙. We choose this

value of τ so that the mass of the YSO at sampled time 0.2 Myr is 0.14 M⊙ for the decaying so-

lution and 0.35 M⊙ for the growing solution. These values contain approximately the expected

range of Class 0 object masses in low mass star-forming regions. Substantially different values

of τ can lead to a range of protostar masses that are too small or too large. Of course, a more

comprehensive study of growing and decaying mass accretion models remains to be done and

is beyond the scope of our present work. We find that the range of luminosity distributions for

our models are ∼ 0.1− 1 L⊙, ∼ 0.1− 4 L⊙, ∼ 0.1− 10 L⊙ for exponentially decaying, constant,

exponentially growing mass accretion rates, respectively. We notice from Figure 4.10c that the

entire range (i.e. from the low to high end) of luminosities for the above mentioned analytical

models is less than that of the observations. The range of the observational luminosity distri-

bution (the red dashed line in Figure 4.10a) is larger by a few orders of magnitude than that

predicted with the constant or smoothly decreasing and increasing mass accretion rates. Note

that the luminosity histogram for the model with exponentially decaying mass accretion rate

covers the shortest range of luminosities (0.1 L⊙ ≲ L ≲ 1 L⊙), and is the least viable model.

We see that the histogram of total luminosities obtained from our semi-analytic episodic ac-

cretion model provides a better fit to the observed histogram. It implies that episodic accretion

bursts are required, at least at this initial stage, in order to reach solar-type masses within a

decent time interval of ∼ 0.1 Myr. Episodic accretion aids in accumulating ∼ 35% of the final
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stellar mass within a timeline of ∼ 0.1 Myr (as seen in Figure 4.9b).

4.4 Discussion

Our semi-analytic model captures the main physical insights of the evolution of episodic mass

accretion rate during star formation. Our prescription captures some basic characteristics such

as the evolution of the stellar and disc masses, the episodic accretion bursts, the burst ampli-

tudes and corresponding luminosities. These are obtained in a simple computational scheme

that is consistent with the results obtained from detailed hydrodynamic simulations of episodic

accretion (Vorobyov & Basu, 2007, see also Vorobyov & Basu (2010, 2015)).

The prestellar core is thought to be threaded by a magnetic field with a supercritical mass-

to-flux ratio, so that the magnetic field is weaker than self-gravity and a magnetically-diluted

gravitational collapse can happen (e.g. Basu, 1997; Basu & Ciolek, 2004). In this work we

ignore the effect of this magnetic field and work in the limit of spherical envelope accretion. We

also ignore any modification to the Toomre criterion in the disc due to the magnetic field (Das &

Basu, 2021). Our approach in this paper has some conceptual similarity to the work of Terebey

et al. (1984), who modeled the quasi-spherical collapse solution of a freely-falling singular

isothermal sphere with a perturbational addition of rotation. They also joined the solution

at small radii to a disc evolution model. We have studied pure spherical collapse and treated

angular momentum as only a passively advected quantity with no dynamical back reaction. Our

disc evolution model differs from that of Terebey et al. (1984) in that it features the influence

of GI and the occurrence of accretion bursts in the early evolution, and at late times is set by a

model of gravitational torques that follows a mass accretion rate time dependence ∝ t−6/5.

We have derived a profile of specific angular momentum (Figure 4.4b) as found in the

observations as measured from C18O (J = 1 − 0) in the core and H13CO+ (J = 1 − 0) in the

envelope (Ohashi et al., 1997; Yen et al., 2011; Kurono et al., 2013). A break point in the

profile of specific angular momentum may be related to the transition from an inner density

profile ρ ∝ r−3/2 of dynamical free-fall collapse to an outer profile ρ ∝ r−2 characteristic of

near-equilibrium conditions. This has been investigated by Kurono et al. (2013) and has been

seen in theoretical models (e.g. Terebey et al., 1984; Dapp et al., 2012). In our models, we

take the cloud radius Rout to be 5rc, and the transition to a r−2 power law in the density profile
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is not distinguishable since the density falls sharply near the outer edge. Extending the outer

edge of cloud might help to obtain a more distinct power-law break in the density in addition

to that in the specific angular momentum along the line-of-sight. Additionally, assigning a

rotation profile Ω(r) to each mass shell during the runaway collapse and studying the evolution

self-consistently might be a more realistic way to probing the break in the specific angular

momentum during the protostellar collapse.

During the earliest evolution, protostars are embedded and heavily obscured by a dusty

envelope. The high extinction inhibits a determination of protostellar evolution, lifetimes,

and the accretion process until the envelope mass reduces to ∼ 50% of the original. We find

that during the very early stage, the ratio Md/M∗ goes above 1 during the early evolution of

the protostar (see Figures 4.7b, 4.8b, 4.9b), as also found in some numerical simulations (e.g.

Machida & Basu, 2019; Xu & Kunz, 2021). We consider 10% of envelope infall goes directly to

the star, i.e. it occurs along polar regions and not through a disc. By increasing this fraction, the

stellar mass growth will be relatively faster and the disc mass can not grow as substantially. The

disc would become less gravitationally unstable and less likely to have episodes of accretion

bursts. Our semi-analytic model yields the evolution history even for the early embedded phase,

which is important to explain and predict the later phase of star formation.

Work by Armitage et al. (2001) and Bae et al. (2013) has modeled the disc evolution in a

semi-analytic manner using a constant or exponentially decreasing external mass infall rate on

to the disc. The disc evolves due to viscous terms that model either GI or the magnetorotational

instability (MRI) in different regions. These disc models distinguish between a GI-driven outer

region and an inner region controlled by MRI. The GI-driven evolution leads to a pileup of

matter in the inner region that is then delivered in episodic bursts to the central star through

the activation of the MRI. In our work, we have focused on the large-scale picture of episodic

accretion by building a model for the envelope accretion and the evolution of the major part of

the disc that is driven by GI and gravitational torques. This assumes that the burst properties

are set by the physics of the outer disc and we do not include any modulation by the inner

disc physics including MRI. Inclusion of a separate model for the inner disc is beyond the

scope of our current study but remains a target for the future. Our model is meant to provide

a semi-analytic means to model the numerical simulations of e.g. Vorobyov & Basu (2006,
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2010, 2015), who modeled disc evolution with envelope infall but had a central sink cell of

size several AU that precluded a study of the inner disc physics.

In our work, we have modeled the histogram of luminosity distribution during a limited

time range (∼ 0.1 Myr) of the Class 0 and early Class I phase. The choice of such an evo-

lutionary period corresponds to the typical time until the end of the embedded Class 0 phase

when about half of the envelope is accreted. Comparing the histogram of luminosity distribu-

tion during this time with the observed luminosity histogram for these phases (Fischer et al.,

2017), we find that the episodic accretion is needed in order to provide a reasonable match. In

our model, we neglect the luminosity contribution from the disc emission as we expect it to be

3 − 4 orders of magnitude lesser than either the photospheric or accretion luminosity. As an

example many simulations (e.g. Vorobyov & Basu, 2007; Vorobyov et al., 2018, 2020) show

an elevated temperature T ≳ 40 K at radius r ≲ 14 au, and this region would dominate disc

emission from larger radii and is also well within the beam size of infrared telescopes used

to observe Class 0 objects in the nearest star-forming regions. The estimated contribution to

bolometric luminosity ∼ σSBT 4πr2 using the above values is only ∼ 10−3 L⊙. We also do not

include an excess luminosity from external heating of the envelope by the interstellar radiation

field. This is more likely to be significant for Class 0 objects since they have more envelope

mass to heat, and could dominate at the very early stages with very low mass and luminosity

central objects. However, we do not include this effect in our luminosity histograms due to the

lack of precise estimates of its value.

In a different study, Offner & McKee (2011) used models of either constant or time-

dependent (initially increasing and then tapering off) mass accretion rate and found that the

time-dependent models could in some cases provide an adequate fit to the luminosity his-

togram. Their best fit required an ensemble of objects that had a longer age spread (∼ 0.3 Myr)

than generally assumed and an accelerating star formation rate. These effects increase the

number of observed young low mass and low luminosity objects. Their model also included

a modest degree of episodic accretion. Our mass accretion model contains the initially near

constant accretion rate along with bursts and the later tapered accretion rate, due to depletion

of envelope accretion as well as the natural decline of disc accretion due to internal torques. A

declining accretion rate is a feature of all simulation models that have a finite mass reservoir
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(Vorobyov & Basu, 2005a), as well as being inferred from observational analysis of outflow ac-

tivity (Bontemps et al., 1996b). However, it is also the case that to create high-mass protostars,

which are not in the observational samples of Dunham & Vorobyov (2012) and Fischer et al.

(2017), a period of exceptionally high mass accretion rate seems required. This is because

the total time to form stars of all masses within a stellar cluster seems to be nearly constant

(Myers & Fuller, 1993). Using numerical MHD simulations of star cluster formation, Wang

et al. (2010) found that massive stars form in the central region of a cluster as a result of global

gravitationally-driven flows that are temporally increasing. If this is correct, then one can add

a period of temporally increasing accretion rate at later times to account for the relatively small

fraction of massive stars. A series of works on the stellar initial mass function have assumed

an exponentially increasing accretion rate together with equally likely stopping of accretion in

each time interval that allows only a small fraction of protostars to reach the high accretion

rate phase and become high mass stars (Myers, 2000; Basu & Jones, 2004; Myers, 2011, 2014;

Basu et al., 2015; Hoffmann et al., 2018; Essex et al., 2020). A variety of accretion scenar-

ios, for example, either a long-term lower-amplitude variation or a combination of long-term

lower-amplitude variation (i.e. secular variability) and short-term high amplitude accretion

(i.e. stochastic variability or episodic accretion) can also be plausible at matching the observed

luminosities of protostars (see review by Fischer et al., 2022). Future observations are essen-

tial to place tighter constraints on the luminosity evolution, and therefore elucidate the mass

assembly history of protostars of all masses.

In future work, we plan to generalize our model to perform a large parameter survey to

understand/portray more systemically the physics of mass accretion during star formation. In-

clusion of other transport mechanisms such as MRI together with the existing GI approach

might give a more complete picture. One can take a random sample of prestellar cores of

different masses and study the long-term evolution (∼ 2 Myr) of their protostellar discs and

protostars. One can then compare the luminosity distribution for an ensemble of objects of

different masses and ages with that of observations.
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4.5 Summary

We have presented a semi-analytic model for the temporal evolution of episodic disc-to-star

mass accretion rate during star formation. Our formalism can explain the basic features of

the hydrodynamic simulations of episodic accretion (Vorobyov & Basu, 2005a, 2006, 2007;

Vorobyov et al., 2020) as discussed in Section 5.3. In doing so, it provides an intuitive under-

standing of the detailed nonlinear physics of the simulations in terms of basic physical princi-

ples. The model captures the evolution of the masses of the disc, star, and envelope, as seen

in Figure 4.7, 4.8, and 4.9 (as compared to fig 6a of Vorobyov & Basu, 2006). Our formalism

combines the spherical envelope accretion with the episodic disc accretion for determining the

mass accretion rate on to the star. The former is calculated from the collapse of the prestellar

isothermal cloud core for a given density and velocity profile, which controls the infall of the

material from the envelope to the disc and a very little portion (about ∼ 10% of the infalling

matter) directly on to the centre. The latter governs the mass transport from the disc to the star,

which follows a power law Ṁds ∝ t−6/5. We incorporate the episodic accretion bursts due to

gravitational instability within the disc by tracking the disc-to-star mass ratio. In our model,

both the envelope and disc accretion are co-existing. The envelope accretion dominates the

disc accretion in the earlier stages. However, in the later stage, when the envelope mass is

depleted, episodic bursts cease to occur and the disc accretion becomes dominant. From then

on, the disc accretion solely determines the mass accretion rate on to the central protostar.

Our model includes of the effect of the episodic accretion bursts for determining the mass

accretion rate and henceforth the accretion luminosity. We find that a constant or even an expo-

nentially growing or decaying mass accretion rate is not sufficient to produce solar-mass type

stars within a typical protostar formation time ∼ 0.1 Myr. The episodic bursts work through the

migration of clumps of ∼ 0.01 M⊙ from the disc to the centre and helps to accumulate enough

mass at the centre within a desirable time frame, in contrast to a steady or exponentially in-

creasing or decreasing accretion rate. Our results (e.g. Figure 4.10) indicate that the bursts are

required to obtain a good fit to the observed distribution of bolometric luminosities of YSOs,

as compared to a smoothly increasing or decreasing evolution of the mass accretion rate. The

episodic accretion seems necessary to explain the long-standing ‘luminosity problem’.
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Figure 4.11: Column density Σ(x)/Σc (green), the specific angular momentum j(x) (blue) as a
function of radial offset x/rc at t = 0 (analytic solution).

4.6 Appendix

4.6.1 Analytic solutions for mass and specific angular momentum profile

We discuss the semi-analytic approach to evaluate the specific angular momentum j(x) as a

function of radial offset x/rc. We find that the integral is analytically tractable for t = 0. In-

serting Equation (4.2) into Equation (4.35), the closed-form expression for the column density

is

Σ̃(x̃) =
2

√
1 + x̃2

arctan


√

R̃2
out − x̃2

1 + x̃2


−

1
R̃out

√(R̃2
out − x̃2)(1 + x̃2) − arctan


√

R̃2
out − x̃2

1 + x̃2



 ,

(4.41)

where Σ̃ = Σ/Σ0, Σ0 = ρcrc, x̃ = x/rc, R̃out = Rout/rc, and the central column density is

Σc = 2Σ0 arctan(R̃out); some of these parameters are defined earlier in Section 4.3.1.1. The
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enclosed mass is found by integrating Equation (4.41) according to Equation (4.36), yielding

M̃(x̃) = 2

√1 + x̃2 arctan


√

R̃2
out − x̃2

1 + x̃2

 − arctan(R̃out) + R̃out

−

√
R̃2

out − x̃2 −
1

R̃2
out

 R̃3
out

3
−

 (R̃2
out − x̃2)

3
2

3

 + √
R̃2

out − x̃2

−R̃out + arctan(R̃out) −
√

1 + x̃2 arctan


√

R̃2
out − x̃2

1 + x̃2



 ,

(4.42)

where M̃ = M/(ρcr3
c ). We note that the effect of the boundary is exclusively contained in the

factor in square brackets. If the quantity Rout is large, the power law profile is more pronounced.

However, if Rout/rc is of the order of unity (e.g. for our case it is 5), then the cut off dominates

close enough to the flat region to prevent the appearance of the power law. In Figure 4.11 the

green dashed line shows the analytic Σ/Σc curve, which is flat within the inner region x/rc ≲ 1,

and then falls sharply. The integrated M(x) attains a saturation at the outer edge. Keeping in

mind at t = 0, Mtot(x) = M(x). During the pre-collapse phase, j(x) increases linearly with

radial offset x/rc and gets saturated at the very outer radius. This behaviour of j(x) implies the

conservation of angular momentum.
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Chapter 5

Numerical simulations of mass accretion

bursts in magnetized gas-dust

protoplanetary disks

A version of this chapter is in preparation for a future publication.

5.1 Introduction

Young stellar objects are generally understood to form because of the gravitational collapse of

dense cores and globules containing gas and dust. These are often called as prestellar cores.

In the early evolutionary stage (known as embedded phase), the nascent star is still surrounded

by the infalling envelope of the natal core. According to the simplest model of low-mass

star formation, the typical mass infall rate for an isothermal spherical collapse is Ṁinfall ∼

c3
s/G (Shu, 1977), given that cs and G are local sound speed and gravitational constant. This

value declines with time due to a depleting mass reservoir in the envelope (Vorobyov & Basu,

2005). However, the instantaneous infall rate is not equal to the mass accretion rate onto

the star as most of the matter lands on the disk before it reaches to the star. A wide range

of protostellar accretion rates (Enoch et al., 2009) inferred in the embedded phase suggests

a strong time variability in accretion. Several physical processes in the disk, for example,

gravitational, thermal, and magnetorotational instabilities, can give rise to vigorous luminosity

outbursts during which the matter is transported through the disk to the star at the center. The
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prototypical sample of bursts are known as FUor eruptions (Herbig, 1966, 1977, named after

the first known example of this kind originated from the FU Orionis system) and EXor (EX

Lupi-type) eruptions (Herbig, 1989). The physical mechanism of driving these two types of

bursts can be different. The peak luminosity during the active phase of the bursts ranges from

few tens to several hundreds of solar luminosities (1 L⊙ ∼ 1033 erg s−1), in general showing an

enhancement in luminosity of three to five magnitudes1 compared to the pre-burst state (Audard

et al., 2014).

In this Chapter, we are only interested to study the FUor outbursts. About half of the known

FUors are young embedded objects (Class 0) as found by silicate signatures in their absorption

spectra (Quanz et al., 2007). Several dozens of such objects have been discovered (Audard

et al., 2014) since 1937, many more candidates are being monitored (Contreras Peña et al.,

2017). The burst magnitude can be estimated from multi-wavelength observations. However,

the burst duration and frequency is difficult to derive from the observations because of the long

timescales of the bursts. Despite several works are made to infer them from the known statistics

of the bursts (Scholz et al., 2013; Hillenbrand & Findeisen, 2015; Contreras Peña et al., 2019;

Fischer et al., 2019). On the other side, such burst characteristics can be estimated from the

well-known hydrodynamic and/or magnetohydrodynamic numerical models (e.g., Vorobyov

& Basu, 2010, 2015; Vorobyov et al., 2020). During the vigorous outbursts, the temperature

becomes high enough to ionize the chemical species in the inner disk regions. Thus FUors

could play as an important tool for studying the chemical composition and dust distribution

of the inner disk. Therefore, it is crucial to study the duration, frequency, and mass accretion

amplitude (or luminosity) of the bursts that may occur in the early evolution of a young stellar

object. These findings further motivates detailed investigations as to the nature of the burst

phenomenon. Three-dimensional simulations (e.g., Zhu et al., 2020) are able to provide the

subtle details of the burst. However, for studying the burst characteristics over many model re-

alizations, 3D simulations are numerically expensive. In that case, a simplified 2D simulations

1Here, magnitude corresponds to the bolometric apparent magnitude scale and it is a unitless measure of the
brightness of a celestial object, on an inverse logarithmic astronomical magnitude scale. Any difference of 5 unit
corresponds to a factor of 100 in the brightness. In simple words, a magnitude 2 star is exactly 100 times brighter
than a magnitude 7 star. Thus each step of one magnitude appears as 5√100 ≈ 2.512 times brighter than the
next faintest. The brighter an object is, the lower the value of its magnitude, with the brightest objects reaching
negative values.
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can provide a panoramic view of the burst phenomenon over long evolutionary times. We use

the two-dimensional magnetohydrodynamical simulations of gas-dust protoplanetary disks in

the thin-disk limit which takes into account of the magnetic fields and dynamics of dust growth.

These sub-micron sized dust grows to become pebbles, which further grows into planetesimals

of size hundreds of kilometers. The planetesimals are considered to be the building blocks of

planetary cores, which eventually lead to the formation of exoplanet systems through further

processes e.g., gas accretion, pebble accretion.

The Chapter is organized as follows. In Section 5.2, we provide a detailed description of

our model. In Section 5.3, we describe the global evolution of the magnetized disk and focus on

the magnetorotational instability- (MRI) triggered accretion bursts and comparison with other

relevant work. The main discussions are summarized in Section 5.4.

5.2 Methods

In this Chapter, we summarize the numerical magnetohydrodynamics (MHD) model that is

used for studying the formation and long-term evolution of protostellar/protoplanetary disks.

The simulation is performed using FEOSAD (Formation and Evolution Of a Star And its

circumstellar Disk) code which takes into account magnetic fields in the flux-freezing limit

as well as the co-evolution of the dust components (small dust and grown dust) as described

in detail in (Vorobyov et al., 2020). Our simulation begins from the gravitational collapse

of a prestellar core with a uniform mass-to-magnetic-flux ratio. The spatially uniform mass-

to-magnetic flux ratio, µ = (2π
√

G)Σg/Bz, where Σg is the surface density of disk, G is the

gravitational constant, and Bz is the z−component of the magnetic field. In the ideal MHD

limit Bz stays constant during the entire evolution. The evolution continues into the embedded

(Class 0) phase of star formation where the nascent central star is surrounded by a rotationally

supported accretion disk along with remaining infalling envelope as shown in Figure 5.1.

5.2.1 Initial Conditions

The initial profile of the gas surface density Σg and angular velocity Ω of the prestellar core has

the following form:

Σg =
r0Σ0√
r2 + r2

0

, (5.1)
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Figure 5.1: Schematic representation of the numerical model. See the text for a detailed expla-
nation (figure taken from Vorobyov & Basu, 2010).

Ω = 2Ω0

(r0

r

)2

√

1 +
(

r
r0

)2

− 1

 , (5.2)

consistent with an axially symmetric core collapse (Basu, 1997). Here, Σ0 and Ω0 are the gas

surface density and angular speed at the center of the core, r0 =
√

Ac2
s/(πGΣ0) is the radius of

the central plateau (similar to as seen in Figure 1.1), where cs is the local sound speed in the

core, r is the radial distance from the center. The dimensionless parameter A corresponds to the

density perturbation and it is set to 2 that makes the core unstable to collapse (see Vorobyov

et al., 2020, for more details). The initial prestellar cores with a supercritical mass-to-flux

ratio i.e., µ > 1 are understood to form through ambipolar diffusion (neutral-ion drift) driven

gravitational collapse. Once collapse begins, the profile of specific angular momentum versus

enclosed mass remains conserved. The initial dust-to-gas ratio is set to 1 : 100, where all

the dust is in the form of small sub-micron dust grains that are fully coupled with the gas

component. The gas temperature of the initial prestellar core is set to T = 20 K and a uniform

background vertical magnetic field of strength is taken as B0 = 10−5 G, in agreement with

typical observed values (Crutcher, 2012).
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5.2.2 Numerical Equations for gaseous component

The equations of mass continuity, momentum conservation, and energy transport are solved

in the thin-disk approximation (Ciolek & Mouschovias, 1993; Basu & Mouschovias, 1994),

which can be written as follows

∂Σg

∂t
+ ∇p ·

(
Σgvp

)
= 0, (5.3)

∂

∂t

(
Σgvp

)
+ [∇ ·

(
Σgvp ⊗ vp

)
]p = −∇pP + Σg

(
gp + g∗

)
+(∇ ·Π)p − Σd,gr f p +

BzB+p
2π
− Hg ∇p

(
B2

z

4π

)
, (5.4)

∂e
∂t
+ ∇p ·

(
evp

)
= −P(∇p · vp) − Λ + Γ + (∇v)pp′ : Πpp′ , (5.5)

respectively. Here, the subscripts p and p′ refer to the planar components (r, ϕ) in polar coordi-

nates, Σg is the gas surface density, P is the vertically integrated gas pressure, e is the internal

energy per surface area. The viscous stress Π tensor is defined as Π = 2Σgν (∇v − (∇ · v)1/3),

where ν is the kinematic viscosity, 1 is the unit tensor, and ∇v is the symmetrized velocity

gradient tensor (see §2 and Appendix B of Vorobyov & Basu, 2009). Here, Hg is the verti-

cal scale height of the gas disk calculated assuming local vertical hydrostatic balance in the

gravitational field of disk and star, and vp = vr r̂ + vϕϕ̂ is the gas velocity in the disk plane,

∇p = r̂∂/∂r + ϕ̂r−1∂/∂ϕ is the gradient along the planar coordinates of the disk. The term f p

is the drag force per unit mass between dust and gas, and Σd,gr is the surface density of grown

dust (see details in Sec 5.2.3). Here, Bz is the vertically constant but radially and azimuthally

varying z-component of the magnetic field within the disk thickness. The planar components of

the magnetic field is defined as B+p = B+r r̂ + B+ϕ ϕ̂ where the ‘+’ corresponds to the component

at the top of the surface of the disk. The ideal gas equation of state is used to calculate the

vertically integrated gas pressure, P = (γ − 1)e with γ = 7/5. The gravitational acceleration

in the disk plane gp = gr r̂ + gϕϕ̂, takes into account self-gravity of disk by solving for the

disk gravitational potential using the Poisson integral (see details in Vorobyov et al., 2020).

The term g∗ is the gravitational acceleration due to the central protostar, which only has a ra-
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dial component. Once a central protostar is formed, we add stellar gravitational field to the

gravitational acceleration gp in the disk plane. The stellar gravitational field follows:

g∗ = gr,∗ r̂ = −
GM∗

r2 r̂ , (5.6)

where M∗ is the accumulated mass in the protostar. Coming to the magnetic field physics, the

planar component of the magnetic field at the top surface of the disk is denoted by B+p and the

midplane symmetry is assumed, such that B−p = −B+p (Vorobyov et al., 2020). In Equation

(5.4) the last two terms on the right-hand side are the Lorentz force (including the magnetic

tension term) and the vertically integrated magnetic pressure gradient. The magnetic tension

term arises formally due to the Maxwell stress tensor, that can be intuitively understood as the

interaction of an electric current at the disk surface (see also Figure 2.1). The discontinuity in

tangential field component gives rise to surface current while no current within the disk. The

vertical component of magnetic field is calculated by explicitly solving the induction equation

in the ideal MHD regime:

∂Bz

∂t
= −

1
r

(
∂

∂r
(rvrBz) +

∂

∂φ

(
vφBz

))
, (5.7)

wherein the advection of Bz is considered. The diffusive effects of Ohmic dissipation and

ambipolar diffusion are neglected due to high computational cost. The total magnetic field

can be written as the gradient of a scalar magnetic potential ΦM and the planar component of

magnetic field (B+p) is calculated by solving the Poisson integrals (see details Vorobyov et al.,

2020) with the source term of (Bz − B0)/(2π), where B0 is the constant background field.

The heating and cooling rates Γ and Λ, respectively are based on the analytical calculations

of the radiation transfer in the vertical direction (Dong et al., 2016). The equation of cooling

rate is as follows:

Λ =
8τPσSBT 4

mp

1 + 2τP + 1.5τRτP
, (5.8)

where, Tmp = Pµ/RΣg is the midplane temperature, µ = 2.33 is the mean molecular weight, R

is the universal gas constant, and σSB is the Stefan-Boltzmann constant. Here, τP = 0.5Σd,totκP

and τR = 0.5Σd,totκR represent the Planck and Rosseland optical depths to the disk midplane,
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where κP and κR are the Planck and Rosseland mean opacities taken from Semenov et al. (2003)

and the optical depths in the calculations are proportional to the total dust surface density

(Σd,tot).

The heating function takes into account the irradiation at the disk surface from the stellar

as well as background black-body irradiation. The heating function per unit surface area of the

disk is expressed as follows:

Γ =
8τPσSBT 4

irr

1 + 2τP + 1.5τRτP
, (5.9)

where Tirr is the irradiation temperature at the disk surface and is defined as follows:

T 4
irr = T 4

bg +
Firr(r)
σSB

, (5.10)

where Tbg presents the corresponding temperature for the background black-body irradiation,

Firr(r) = L∗ cos γirr/(4πr2) is the radiation flux (i.e., energy per unit surface area per unit

time) absorbed by the disk surface at radial distance (r) from the central star with a stel-

lar luminosity L∗. Here, the stellar luminosity (L∗) is the sum of the accretion luminosity

L∗,accr = 0.5 GM∗Ṁ/R∗ arising from the gravitational energy of accreted gas and the photo-

spheric luminosity L∗,ph due to gravitational compression and deuterium burning in the stellar

interior, where Ṁ, M∗, and R∗ are the mass accretion rate onto the star, stellar mass, and radius

of the star, respectively. Here, γirr is the incidence angle of radiation that arrives at the disk

surface w.r.t. normal at a radial distance r (see Eq. (10) of §2.1 of Vorobyov et al., 2020).

The resulting model has a flared structure, wherein the disk vertical scale height increases with

radius. Both the disk and the envelope receive a fraction of the irradiation energy from the

central protostar. The adopted opacities in the numerical model of FEOSAD do not take dust

growth into account.

5.2.3 Dust Physics

The dust in the numerical model of FEOSAD is based on two components, small dust and

grown dust (see Vorobyov et al., 2018b, 2020, for more details). In our numerical model, small

dust has a grain size of amin < a < a∗, and grown dust corresponds to a size of a∗ ≤ a < amax),

where amin = 5 × 10−3 µm, a∗ = 1.0 µm. Here, amax is a dynamically varying maximum
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radius of the dust grains, which depends on the efficiency of radial dust drift and the rate of

dust growth. Small dust is dynamically coupled with the gas as it is sub-micron dust grains

by definition. Whereas, grown dust dynamics is regulated by friction with gas and the total

gravitational potential of the star, gas, and dusty components. All dust grains combined are

assumed to have a density of ρs = 3.0 g cm−3. The equations of continuity and momentum

conservation for small and grown dust components are as follows:

∂Σd,sm

∂t
+ ∇p ·

(
Σd,smvp

)
= −S (amax), (5.11)

∂Σd,gr

∂t
+ ∇p ·

(
Σd,grup

)
= S (amax), (5.12)

∂

∂t

(
Σd,grup

)
+ [∇ ·

(
Σd,grup ⊗ up

)
]p = Σd,gr

(
gp + g∗

)
+ Σd,gr f p + S (amax)vp, (5.13)

where Σd,sm and Σd,gr are defined as the surface densities of small and grown dust, respectively.

The term f p is the drag force per unit mass due to the back-reaction on the gas due to dust,

and Σd,gr is the surface density of grown dust. The term up describes the planar components

of the grown dust velocity, and S (amax) is the rate of conversion from small to grown dust per

unit surface area during one time step (∆t) and S (amax) is a function of the fragmentation size

of the dust. The rate of conversion from small to grown dust can be described as S (amax) =

−∆Σd,sm/∆t (see §2.2 of Vorobyov et al., 2020). The dust is assumed to mix with the gas along

the vertical direction, which is a reasonable approximation for a young disk evolving under both

the gravitationally unstable and/or magnetorotationally unstable disks (see Rice et al., 2004;

Yang et al., 2018). For a case of a more evolved disks, dust settling becomes significant and

accelerates the conversion of small to grown dust (Vorobyov et al., 2018b). The rate of small

to grown dust conversion S (amax) is derived from the assumption that the size distributions of

both the dust populations can be described by a power law with a fixed exponent of −3.5 (see

details in Mathis et al., 1977; Vorobyov et al., 2018b, 2020). The evolution of the maximum

radius that the grown dust can achieve obeys a continuity equation as following

∂amax

∂t
+ (up · ∇p)amax = D , (5.14)
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where the growth rateD represents the coagulation and can be written as

D =
ρdvrel

ρs
. (5.15)

Here ρd is the total dust volume density and vrel is the relative dust collision velocity. Further-

more, the maximum size of amax is limited by the fragmentation barrier (Birnstiel et al., 2012),

which follows

afrag =
2Σgv2

frag

3πρsαc2
s
, (5.16)

where vfrag is the fragmentation velocity set to 3 m s−1 and cs is the local sound speed. The

growth rate D is set to zero when amax exceeds afrag. In the numerical model of FEOSAD, the

dust growth is limited to keep the size of dust particles within the Epstein regime, which means

particle size is small enough compared to the mean free path2. Under such approximation, the

dust can get accumulate on a timescale shorter than that of the orbital timescale at that radius

(see more details in Armitage, 2015).

5.2.4 Adaptive viscosity and ionization fraction

In protostellar/protoplanetary disks, viscosity plays a major role for the mass and angular mo-

mentum transport. In numerical setup of FEOSAD, the viscosity is taken into account via

the viscous stress tensor Π in Eq. (5.4). Note that, gravitational torques, which arises from

the non-linear density perturbations in the spiral arms, are another means of transporting mass

and angular momentum in disks (see details in Vorobyov & Basu, 2007, 2010). In FEOSAD,

viscosity in protoplanetary disks possibly arises primarily due to the turbulence induced by

the MRI (Vorobyov et al., 2020). MRI acts in the presence of the magnetic field and causes

turbulence in the weakly ionized gas in the shearing Keplerian disk. The magnetic field line

linking two fluid elements at different radii is stretched beyond the critical lengthscale, such

that it destabilizes the disk by moving the inner fluid element further inward and the outer fluid

element further outward (as described in Section 1.4.2.2 of Chapter 1). However, the fluid

parcel drifting inward does not necessarily fall onto the star. The phenomena explained above

is more of a local outcome. In practice, the collective effect of all these local fluid parcels

2The mean free path in the inner protoplanetary disks is ∼ 1 cm and larger in the outer disk.
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active layer

(not to scale)

Layered structure of a protoplanetary accretion disk

Figure 5.2: Sketch of a layered structure of the protoplanetary accretion disk. The dead zone
that forms as the cosmic rays can ionize up to a certain thickness of the layer is sandwiched
between the active layers above and below.

moving backward and forward give rise to turbulence eddies in the disk which aid in exchange

the angular momentum between the fluid elements and eventually guide some fluid parcels to

fall onto the center. Simulations are not yet able to provide any fixed value of effective αeff

parameter that requires some self-sustained turbulent state, in which there is a steady inflow

to the center. To activate MRI within disks, the temperature of inner disk should have to be

sufficient to thermally ionize (ionization temperature is T ≈ 1300 K) the alkali metals (e.g.,

potassium). The Galactic cosmic rays are the primary sources of ionization, which is external

to the disk and penetrate the disk from both the above and below.

In the inner regions of the disk, the gas surface density is typically large and the midplane is

insufficiently ionized for the magnetic field to be well enough coupled to lead to the MRI. The

disk in this region is thought to be accreted through a magnetically layered structure (Gammie,

1996; Armitage et al., 2001) as shown in Figure 5.2, wherein most accretion occurs via the

MRI-active surface layers and a magnetically dead zone is formed at the midplane. The kine-

matic viscosity ν = αcsHg is parameterized using the Shakura & Sunyaev (1973) prescription.

In order to simulate the accretion through a layered disk, we consider an effective and adaptive



176 CHAPTER 5. NUMERICAL SIMULATIONS OF EPISODIC ACCRETION BURSTS

parameter αeff as a weighted average which follows:

αeff =
ΣMRI αMRI + Σdz αdz

ΣMRI + Σdz
, (5.17)

where ΣMRI is the gas column density of the MRI-active layer and Σdz is that of the magnetically

dead layer at a given radial distance, so that Σg = ΣMRI + Σdz. Here, αMRI and αdz correspond

to the strength of the turbulence in the MRI-active layer and the dead zone, respectively. In

the simulations, αMRI is set to the canonical value of 0.1. Due to the nonzero residual viscosity

arising from hydrodynamic turbulence driven by the Maxwell stress in the active layer, a very

small value of 10−5 is considered for αdz. Canonically, the column density of the MRI active

layer ΣMRI is considered to be a constant, at about 100 g cm−2, which is the average penetra-

tion/attenuation depth of cosmic rays. Under the regime of low temperatures, T ≲ 1000 K, the

ionization fraction (x) is determined from the balance of collisional, radiative recombination,

and recombination on dust grains. This is expressed as

(1 − x)ξ = αrx2nn + αdxnn, (5.18)

where x is the ionization fraction, ξ is the ionization rate that is composed of a cosmic-ray

ionization rate and the ionization rate by radionuclides (Umebayashi & Umebayashi, 2009), nn

is the number density of neutrals, αd is the total rate of recombination onto the dust grains, and

αr is the radiative recombination rate having a form αr = 2.07 × 10−11 T−1/2 cm3s−1 (Spitzer,

1978). In the regions, where the gas temperature exceeds several hundred Kelvin, an additional

term is added to the ionization fraction x from Eq. 5.18, which is the thermal ionization calcu-

lated by considering the ionization of potassium, the metal with the lowest ionization potential

(see details in Vorobyov et al., 2020). The cosmic abundance of potassium set to 10−7 for

these calculations. The total recombination rate for each dust population (small and grown) is

calculated as

⟨αd⟩ = ⟨Xd · σd · vi⟩, (5.19)

where Xd is the dust-to-gas volume number density ratio in the disk midplane, and σd = πa2 is

the grain cross-section, and the bracket ⟨...⟩ denotes averaging over the dust size distribution of
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a given dust population (small or grown). The quantity vi represents the approximate thermal

speed of ions with mass 30 mH, representing the dominant ionic species, e.g., HCO+, N2H+.

The total stellar luminosity Ltot is the sum of the accretion luminosity L∗,accr and photo-

spheric luminosity L∗,ph. The accretion luminosity L∗,accr = 0.5 GM∗Ṁ/R∗ arising from the

gravitational energy of accreted gas, where M∗, Ṁ, and R∗ are the stellar mass, mass accre-

tion rate onto the star, and radius of the star, respectively. The photospheric luminosity L∗,ph

accounts for the gravitational compression and deuterium burning in the stellar interior. The

stellar mass and accretion rate onto the star are determined by taking into account of the amount

of matter passing through the sink cell. The photospheric luminosity L∗,ph and stellar radius R∗

are calculated using the stellar evolution tracks inferred with the STELLAR code of Yorke &

Bodenheimer (2008) (see more details in Vorobyov et al., 2020).

In principle, the MRI cannot arise if the wavelength associated with the MRI turbulent ed-

dies exceeds the disk scale height Hg. So, a disk can become MRI unstable only when the disk

vertical scale height Hg is greater than the critical wavelength for the MRI to occur under flux-

freezing. For such a disk, the MRI wave would be damped if timescale of MRI growth (τMRI,g)

becomes longer than that of damping due to Ohmic dissipation (OD) τOD,damping. In the numer-

ical model of FEOSAD we neglect the other nonideal MHD effects (ambipolar diffusion and

Hall effect) because the Ohmic dissipation is known to prevail in the innermost several au of the

disk (Balbus & Terquem, 2001; Kunz & Balbus, 2004). The wavelength of the most unstable

MRI mode Hg = 2πη/vA (Sano et al., 2000) is obtained by equating timescale of MRI growth

(τMRI,g ≡ Hg/vA) to that of damping due to Ohmic dissipation (τOD,damping ≡ H2
g/η), where η is

Ohmic diffusivity and vA = B/
√

4πρcrit is the Alfvén speed. Note that, Ohmic diffusivity can

be written as η = c2menn⟨σv⟩en/(4πe2ne), where e is the charge of an electron, me is mass of

the electron and ⟨σv⟩en = 2 × 10−9 cm3 s−1 is the slowing-down coefficient (Spitzer, 1978) for

the electron-neutral collisions. Thus the critical gas surface density Σcrit (= ρcrit/(
√

2πHg)) for

the MRI development (see details in Vorobyov et al., 2020) is expressed as

Σcrit =

[(
π

2

)1/4 c2me⟨σv⟩en

e2

]−2

B2
z H3

g x2 . (5.20)

where x = ne/nn is ionization fraction. The criterion stated in Eq. (5.20) formally implies
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that there is no MRI if Bz is zero. Note that in this approach, effects of Ohmic diffusivity are

considered and other nonideal MHD effects are neglected. The dead zone gas surface density

is calculated as following:

if Σg < Σcrit , then ΣMRI = Σg , and Σdz = 0 , (5.21)

if Σg ≥ Σcrit then ΣMRI = Σcrit and Σdz = Σg − ΣMRI . (5.22)

The depth of the dead zone in terms of the αeff-parameter can be determined by the balance

between ΣMRI and Σdz using Eq. (5.17). The Eq.(5.21) demonstrates that a sharp increase in

Σcrit triggers the burst if the ionization fraction x experiences a sharp rise as well.

5.2.5 Boundary Conditions

The set up of the inner boundary of the computational domain is very crucial. It cannot be

placed at a distance from the protostar that is much less than 0.1 au due to strict limitations of

the Courant condition. In simple words, Courant condition is the condition that the timestep

∆t must be less than the time for information to traverse a cell. Because the reduction in time

step imposed by the Courant condition will make the simulations computationally infeasible.

On the other hand, placing the inner boundary much farther out (at several au) could eliminate

the part of inner disk that may be dynamically important since it is where (at sub-au scales) the

GI-induced MRI outbursts take place.

In FEOSAD, a special type of boundary condition is used for the inner boundary for fulfill-

ing the physical realisation. FEOSAD features inflow-outflow boundary condition, wherein the

matter is allowed to flow freely from the disk to the sink cell and vice versa. If the matter would

be allowed to flow in only one direction at the inner edge, for example, only from the disk to

sink cell (inward direction), it causes an artificial drop in the gas density at the inner edge due

to lack of compensating back flow. Because, then any wave-like motions at the inner boundary,

which are triggered by the spiral density waves in the disk, would result in a disproportionate

flow through sink-disk surface. Due to the inflow-outflow boundary condition, the mass exiting

the inner boundary is divided between the sink cell and star, with the ratio set to 5% : 95%. It

means most of the matter quickly lands on the star after crossing the sink-disk interface. The
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material in the sink cell may enter back into the immediate active cell in the disk, based on its

radial velocity and surface density gradient. Thus, the behavior of surface densities of gas and

dust in the vicinity of the inner boundary can be trusted to be performed accurately without any

numerical artefacts. The inflow-outflow boundary condition is explained in detail in Vorobyov

et al. (2018b, 2020). The flow of matter from and to the sink cell also carries magnetic flux,

hence, the inner boundary condition also modifies the vertical component of magnetic field

Bz based on the amount of magnetic flux transported. The inner boundary maintains the ini-

tial spatially constant mass-to-magnetic-flux ratio µ across time, which also serves as a test of

disk evolution in the ideal MHD limit. The inner boundary conditions also conserve mass and

magnetic-flux budget of the star-disk system. The outer boundary of the computational domain

is taken as standard free outflow, where the material is only allowed to leave (no inflow) the

computational domain.

5.3 Results

We present the results from the simulation model in Table 5.1. In this section, we present

Model Mcore β Ω0 r0 Σg,0 rout µ M∗,fin

[M⊙] [%] [km s−1 pc−1] [au] [g.cm−2] [pc] [M⊙]

model-1 2.04 0.133 1.6 1285 0.249 0.05 2 1.38

Table 5.1: Parameters of the simulation model: initial mass of the core Mcore, ratio of the
rotational to gravitational energy β, angular speed Ω0, gas surface density at the center of the
core Σg,0, the radius of the central plateau in the initial core r0, radius of the core rout note that,
1 pc = 206265 au), the mass-to-magnetic flux ratio µ, and the final stellar mass M∗,fin at the end
of simulation.

numerical results on the long-term evolution of disks. The evolution of the star and disk are

interconnected: the star grows according to the mass accretion from the disk and in turn heats

the disk according to its photospheric and accretion luminosities. Figure 5.3 shows the long-

term evolution (up to 1 Myr) of the star-disk system since the disk formation. Top panel of

Figure 5.3 shows the temporal evolution of mass accretion rate Ṁ (black curve) from disk

onto star. The red dashed line shows the infall rate from envelope on the disk versus time

that gradually diminishes with time because of the finite mass reservoir. The black curve in
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Figure 5.3: Top panel: Long-term evolution of mass accretion rate Ṁ (black line) along with
mass accretion outbursts. Middle panel: Long-term evolution of luminosity Ltot along with
luminosity outbursts. Bottom panel: evolution of stellar mass M∗ (black line), disk mass Md

(red line), and envelope mass Menv (blue line).

the middle panel presents the temporal evolution of the total luminosity Ltot (accretion plus

photospheric luminosity), which takes into account of the accretion luminosity along with the

photospheric luminosity. The bottom panel shows the mass evolution of envelope Menv (blue

dashed line), disk Md (red dashed line), star M∗ (black line). The temporal evolution of masses

obtained from the simulation (solving non-linear terms) is very similar to that obtained from

our semi-analytic model (see Figure 4.9b in Chapter 4). The disk forms after the centrifugal

barrier (where angular velocity is sufficient to allow the centrifugal force to balance gravity)
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Figure 5.4: Image of the protostellar disk, showing the gas volume density distribution imme-
diately preceding a mass accretion burst (top) and in the quiescent phase between the bursts
(bottom). The protostellar /protoplanetary embryos with n ≳ 1013 cm−3 are indicated in the
left image (arrows). The scale bar is in cm−3. The bright circle in each image represents the
protostar plus some circumstellar matter (Vorobyov & Basu, 2006).
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is reached, which prevents further mass infall toward the center. During the initial time, the

bursts are more frequent with shorter quiescent periods on the order of a few hundred years.

Whereas, in the later time, the quiescent periods between luminosity bursts are much longer,

which are on the order of few hundred to a few thousand years.

In our work, the mass accretion bursts are considered to occur as a combined effect of

the gravitational instability (GI) in the outer spiral arms and as well as the magnetorotational

instability (MRI) in the innermost region of the disk. Though GI and MRI are usually treated in

isolation, however, they may coincide at some evolutionary stages of the protoplanetary disks.

Observationally, it is hard to distinguish which mechanism solely causes the outburst (Riols &

Latter, 2018). During the onset of a GI burst the disk becomes gravitationally unstable giving

rise to the local density inhomogeneities. Hence, the spiral arms and dense clumps are formed

as a consequence of the elevated mass and angular momentum redistribution within the disk.

Thereafter, these clumps are migrated inward and accreted onto the star giving rise to a GI

burst. Figure 5.4 shows a two-dimensional image of the gas volume density distribution of a

protostellar disk as shown by Vorobyov & Basu (2006). The top panel shows the formation

of dense clumps as pointed out by the arrows (Toomre-Q < 1) within quite sharp and chaotic

spiral arms immediately preceding a mass accretion burst. On the other hand, the bottom panel

of Figure 5.4 shows the density distribution during the quiescent phase of accretion (1 < Q < 2)

when the disk exhibits typically a more diffuse and smoother spiral pattern than in the period

before a burst. In contrast, an MRI burst occurs when an inner region reaches a high enough

temperature that the ionization threshold of alkaline metals is exceeded. The increased level

of ionization leads to effective magnetic coupling and the MRI is activated in the inner region.

The nonlinear development of the MRI leads to turbulence, and the interaction of the turbulent

eddies leads to an effective viscosity that far exceeds that due to microphysical processes.

Here, the effective viscosity reaches a maximum value (αeff = 0.1) and the viscous effect leads

to rapid redistribution of angular momentum and a burst of mass accretion onto the star.

The top panel of Figure 5.5 shows the temporal evolution of total luminosity from the disk

formation instance till 0.3 Myr. The bottom panel shows the zoomed-in version of a single

luminosity burst obtained from the numerical simulation (as shown by the black line) for a

time interval from t = [0.2439, 0.2441] Myr. This single luminosity burst has sharp rise, slow
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Figure 5.5: Top panel: long-term evolution of luminosity Ltot along with luminosity outbursts
upto 0.3 Myr. Bottom panel: similar to the top-left panel, but zoomed-in version of a single
luminosity burst for a time interval t = [0.2439, 0.2441] Myr (black line). Yellow dotted curve
presents the longest ever observed FU Ori burst Herbig (1977).

decline, and a sharp fall. The rise time and duration of the burst are ∼ 5 yr and 170 yrs,

respectively. The yellow dotted line shows the longest observed FU Orionis outburst (FU Ori

itself) (see Herbig, 1977). Such bright patches of eruption (collimated jets of partially ionised

gas) from the members of FU Orionis class are often named as “Herbig-Haro (HH) objects”.

The emission of FU Orionis objects in outburst has been identified as arising from rapidly

accreting protoplanetary disks by the observations (Kenyon et al., 1990). Later, in this section,

we discussed more about HH objects and present a comparative study between the observed

and the numerically simulated burst. This FU Ori burst is in the active state for more than

80 years already. It has a sharp rise time of ∼ 1yr and the amplitude declines very slowly

(Audard et al., 2014). These key characteristics of the observed FUOri burst are consistent

with the findings from our numerical simulations.

To further analyze a single burst, we plot the time evolution of several quantities in Figure

5.6 at the sink-disk interface (0.52 au) as a GI-induced MRI burst developes and decays. The



184 CHAPTER 5. NUMERICAL SIMULATIONS OF EPISODIC ACCRETION BURSTS

10−9
10−8
10−7
10−6
10−5
10−4

Ṁ
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Figure 5.6: Time evolution of several disk and burst characteristics at the sink–disk interface
as the burst develops and decays for a FUOr interval t = [0.2439, 0.2441] Myr. Shown are the
mass accretion rate (top left), total luminosity (top right), midplane temperature (middle left),
gas and grown dust surface densities (middle right), αeff value (bottom left), and ionization
fraction (bottom right). The dashed horizontal line in middle left panel denotes the temperature
of 1300 K.

top panel of Figure 5.6 shows the mass accretion rate Ṁ and total luminosity Ltot; the middle

panel shows the midplane temperature Tmp, surface densities of gas and grown dust (Σg and

Σd,g respectively); the bottom panel shows the αeff−parameter, and the ionization fraction. The

characteristics during the pre-burst phase are similar to that of the post-burst phase. During

the active phase, some small-scale variabilities are present. The vertical sharp-drops in the

mass accretion rate curve represents that mass accretion has been stopped for that time being.

During the active phase of the burst, mass accretion jumps to ∼ 10−4 M⊙ yr−1 and it reduces to

∼ 10−7 M⊙ yr−1 after the burst. The pre- and post-burst luminosity is about 9 L⊙ and the peak

luminosity reaches around 100 L⊙. The midplane temperature before and after burst is around
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350 K, and the ionization fraction is around 10−12. Whereas during the burst, the temperature

rises up to 1450 K and ionization fraction becomes 10−7. Starting from the onset of the burst,

the temperature gradually rises due to heating provided by residual viscosity in the disk and

adiabatic compression due to inflow of the matter along spiral arms of the disk (Bae et al.,

2014), which further increases thermal collisions and inner disk temperature. Thermal colli-

sions raise the ionization level, the ionization is again accompanied by the viscous heating, and

causing the temperature to further increase such that ionization of the alkaline metals (at about

1300 K) can take place and finally the producing burst by raising the αeff (see more discussions

in Vorobyov et al., 2020). In the early stage, the inner disk is sufficiently hot to support thermal

ionization (ionization temperature T = 1300 K) of alkaline metals and the disk is mostly in

the MRI-active state. Accumulation of dust and gas in the dead zone induces to trigger the

MRI effect. It happens because increased dust and gas density in the dead zone (MRI-inactive)

increases the optical depth, which in turn makes the dead zone prone to warm up easily. As the

burst decays, gas and grown dust densities decrease, which means loss of disk mass right after

the burst.

The upper panel of Figure 5.7 shows the two-dimensional spatial distributions of tempera-

ture (first row), ionization fraction (second row), αeff− value (third row) at three different times

of burst phases. On the other hand, the lower panel shows the corresponding temporal evolu-

tion of the mass accretion burst (left-hand axis) and total luminosity (right-hand axis) where

the vertical lines at tA, tB, and tC resemble the three different time epochs during pre-burst,

active-burst, and post-burst phase, respectively. White contours in the two-dimensional panels

portrait the dead zone boundary. The dead zone may not be continuous and may be patchy. We

see that during pre-burst time, the dead zone forms in the inner disk region and could extend

even up to the inner disk boundary (or, in other words, the inner boundary of dead zone coin-

cides with the sink-disk surface). At the outer boundary of dead zone, the ionization fraction

is on the order of 10−12, temperature is few hundred Kelvin. As the burst occurs (at t = tB), in-

nermost region of the dead zone becomes an MRI-active region and inner dead zone boundary

is pushed outwards to about 5 au. During the burst, the sharp rise in the midplane tempera-

ture is primarily caused by the adiabatic compression provided by gradually inflowing matter,

which makes the inner disk more opaque. The rise in the midplane temperature means that the
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Figure 5.7: Upper rows (top three rows) of panels: two-dimensional distributions (in 80×80 au2

box) of the gas temperature (first row), ionization fraction (second row), and turbulent param-
eter αeff (third row) in the region r ≲ 40 au at time instants t = 243.5, 244.0, and 244.5 Myr
marked with three vertical dotted lines in the lower panel, respectively. The white contour de-
lineates the boundary of the dead zone. Lower panel: accretion rate onto the star versus time
in the time interval t = [0.2439, 0.2441] Myr after the disk formation.

thermal collisions can ionize the alkaline metals. This rise of ionization increases the magnetic

coupling and viscous transport which in turn leads to viscous heating. Finally, the dead zone

turns turn into an MRI-active region and an MRI burst occurs. The MRI-activation within the

inner disk leads to an enhanced mass accretion rate of about 10−4 M⊙ yr−1 , ionization fraction
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10−8 − 10−7, and effective viscosity αeff− value of 0.1. After the active burst phase, there is

a drop in temperature because of radiative cooling as the inner disk loses mass and becomes

relatively less optically thick to its own thermal radiation. The boundary of the dead zone ap-

proximately coincides with the isocontours of the ionization fraction, at which the condition

for suppressing the MRI is fulfilled.
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Figure 5.8: Time evolution of several disk and burst characteristics at the sink–disk interface
as a burst develops and decays for a time interval t = [0.282, 0.289] Myr. Shown are the mass
accretion rate (top left), total luminosity (top right), midplane temperature (middle left), gas
and grown dust surface densities (middle right), αeff value (bottom left), and ionization fraction
(bottom right). The dashed horizontal line in middle left panel denotes the temperature of
1300 K.

Figure 5.8 shows zoomed-in characteristics of a series of bursts which can be thought as

GI-induced successive MRI bursts over a span of ∼ 3940 yr. Since the onset of the initial burst

at t = 283.95 Myr until 288.0 Myr, we find there are several small (∼ 34 − 47 L⊙) and medium

(∼ 40−75 L⊙) amplitude bursts with the average duration of about 77−134 yrs and 296−396 yrs,
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Figure 5.9: The object is known as Herbig-Haro 30 (HH 30), a prototypical young stellar
object surrounded by a disk and jet. The Hubble Space Telescope captures the emission in
optical wavelength while the young central star is obscured by the dust in the disk and the
images show changes over only a five-year period.
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Figure 5.10: Lee et al. (2017) presents ALMA SiO and continuum observations of the rotating
outflow from the Class 0 protostar HH 212. While the outflow itself extends to much larger
scales, this shows the region within ≈ 120 au of the central source, at a resolution of ≈ 8 au
on top of the continuum map of the disk. The maps show the intensity (in unit of K km s−1)
integrated over the outflow velocity range. (a) A chain of SiO knots trace the primary jet
emanating from the disk testifying to the episodic nature of the outflow. (b) Blue-shifted and
red-shifted SiO emission of the jet plotted with the continuum (disk) emission. The direction
of rotation of the disk is shown with blue and red arrows and this is the same as the direction
of rotation of the red and blue-shifted jets.



190 CHAPTER 5. NUMERICAL SIMULATIONS OF EPISODIC ACCRETION BURSTS

100 101
r (au)

102

103

104

Σ g
(g
.c
m

−2
) t=284.0 Kyr

t=285.0 Kyr
t=286.0 Kyr
t=287.0 Kyr
t=288.0 Kyr

102

103

T(
K)

t=284.0 Kyr
t=285.0 Kyr
t=286.0 Kyr
t=287.0 Kyr
t=288.0 Kyr

283.5 284.0 285.0 286.0 287.0 288.0 288.5
t (kyr)

10−9

10−7

10−5

Ṁ
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Figure 5.11: Top and middle panel: temporal evolution of the radial distribution of surface
density and temperature at different time instances during the burst. Lower panel: Accretion
rate history during the burst over a time interval t=[0.2835, 0.2885] Myr. disc radial profiles in
the MRI model.

respectively followed by a larger amplitude (∼ 200 L⊙) burst with duration of about 801 yrs

at the initial time. The quiescent phase in between the bursts ranges from 86 − 188 kyr. The

mass associated with the larger-amplitude long-duration, medium amplitude-medium duration,

and small amplitude shorter duration bursts are about 17.4, 3.5, 0.8 MJup
3, respectively. This

phenomena of a series of episodic accretion bursts might resemble the sequence of knots seen

at optical wavelengths in the HH objects as shown in Figure 5.9. Figure 5.9 presents image of

object HH30, the emission from a young central star surrounded by a dusty disk seen at optical

wavelength. Figure 5.10 shows ALMA SiO and continuum observations of knotty outflow

from the Class 0 protostar HH 212, which testifies to the episodic nature of the outflow (Lee

et al., 2017). Bontemps et al. (1996) suggest that outflow energetics reflects a correlation to

the mass infall/accretion rate such that Ṁinflow ∝ Ṁoutflow. The knots in the observed molecular

jets could correspond to the series of episodic eruptions, i.e., repetitive ejection of clumps

3 1 MJup ≡ 1047 M⊙
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onto the star over a long period of time (∼ few hundred to few thousand years) during the

star formation process as described by Vorobyov et al. (2018a). Such accretion bursts can be

by caused by both the gravitational instability and magnetorotational instability. The chain of

knots at different epochs can reveal the variability of outflows in time and episodically ejected

accretion bursts. The difference between the dynamic timescales of the ejected knots as found

from the observations can be used to estimate the durations of quiescent phases between two

consecutive episodic ejections (e.g., Fig. 5 of Vorobyov et al., 2018a).

Figure 5.11 presents the radial profiles of gas surface density (top panel) and temperature

(middle panel) at various time instances for the GI induced MRI burst. The lower panel shows

the temporal evolution of the mass accretion rate of the burst along with vertical lines represent-

ing the five different time instances. The horizontal dashed line (magenta color) in the second

panel shows the activation temperature of MRI (T = 1300 K). When the temperature drops be-

low this activation threshold, the MRI-active region becomes a dead zone (MRI-inactive). At

time t = 284 yr (active phase of burst), the MRI-active region extends up to around 4 au. The

inner boundary of the dead zone starts where the MRI-active region ends. During the active

phase of the burst, the inner boundary of the dead zone gets pushed out to ∼ 4 au because of

formation of MRI-active region at the center. At this active phase, disk loses mass because of

infall of the gaseous clumps onto star, so the surface density of gas also decreases gradually.

When the temperature drops below the MRI activation threshold, the surface density of gas

also starts to increase as matter starts to pile up in the dead zone, which is reflected as a local

minima in the σg profile at the inner boundary of dead zone. Enhanced gas surface density

also hinders the cosmic rays to penetrate the inner disk and as a result the ionization fraction

rapidly drops and the dead zone forms (Elbakyan et al., 2021). However, as time progresses,

the extent of the MRI-active region reduces and shrinks toward the inner disk edge. Finally, at

t = 288 yr when the burst decays significantly, the MRI-active region turns back into a dead

zone. The inner boundary of the dead zone eventually approaches toward the inner disk edge

(0.52 au).
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5.4 Conclusions and Discussions

In this study, we present the results of global long-term numerical magnetohydrodynamic sim-

ulations of protostellar disks in the thin-disk limit. The simulation is conducted using coupled

dust-gas MHD equations of protoplanetary disks, with a focus on the structure and evolution

of GI-induced episodic MRI bursts occurring in the inner disk. The simulations are started

with the core collapse phase of a prestellar molecular cloud core, so that the initial conditions

could be self-consistent. Our results capture the intricate structure of individual episodic out-

bursts formed in the inner disk region both in the spatial and temporal domain. Protostellar

disks are characterized by time-varying episodic accretion with intermittent bursts. Such FU-

Orionis-like eruptions can lead to a sudden deposition of mass at au to sub-au scales within

the inner disk either by triggering of magnetorotational instability or gravitational instability.

Accretion variability is frequent in the early evolution and reduces with time as the disk insta-

bility weakens because of diminishing mass infall from the envelope. The series of GI induced

MRI bursts could potentially provide more information on the chain of knots in a molecular

jet as found from observations. If the quiescent time between two successive bursts becomes

comparable or longer than the planetesimal formation timescale (typically few thousand years),

then rapid dust coagulation can likely occur via the streaming instability (Youdin & Goodman,

2005; Youdin & Johansen, 2007). Our results show that during earlier times, the quiescent

time between two bursts e.g., at 0.3540 Myr and 0.3823 Myr, is to be ≈ 28.3 kyr, and between

another two bursts e.g., at 0.4770 Myr and 0.5627 Myr, it is to be 85.7 kyr. Whereas at later

times, it is to be ≈ 127.2 kyr in between two bursts at 0.8169 Myr and 0.9443 Myr. For the

bursts that occurred between ≈ 0.35 − 1 Myr, the intervening quiescent time for most of the

cases is longer than the typical freeze-out time of gas-phase CO (on the order of hundreds to

few thousands years) in the envelope (Visser & Bergin, 2012; Vorobyov et al., 2013; Rab et al.,

2017). Therefore, studying the quiescent phase i.e., pre- and post-burst phase are dynamically

important since planetesimal formation occurs far inwards of the region where CO freezes out.

Although the ideal MHD regime was adopted for the evolution of the magnetic field and the

nonideal effects were neglected, this model is far more complex than the gas-only semi-analytic

model presented earlier in Chapter 4. In future work, the implementation of nonideal MHD

physics, we will able to compare fragmentation lengthscale, timescale and mass scale with the
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findings from the linear analysis work by Das & Basu (2021) as presented in Chapter 2. The

effect of the inner disk physics on the mass accretion rate history requires high-resolution stud-

ies, which are planned for the future. More sophisticated numerical models and observational

data are needed to further explore the connections between episodic accretion and the knot-

ted outflows as well as between the time duration of the quiescent phase and the planetesimal

formation time.
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Chapter 6

Summary

In this Thesis, we highlight the importance of the self-gravity, magnetic field, nonideal MHD,

episodic accretion on the star formation process. Starting from the evolution of the prestellar

cores to the formation of a star-disk system, these processes all play an important role. Some

of the important results from the different chapters are compiled in this chapter.

In Chapter 2, we present a semi-analytic model using linear stability analysis (in the limit

of thin-disk approximation) to explore gravitational instability in a rotating protostellar disk in

the presence of two nonideal MHD effects: Ohmic dissipation and ambipolar diffusion (Das

& Basu, 2021). Ohmic dissipation is important in the innermost regions of a disk, whereas

ambipolar diffusion is dominant in the outer parts of disks. Our results may prove to be useful

in the analysis of global nonideal MHD models for the evolution of rotationally supported

self-gravitating protostellar disks. We derive a generalized Toomre instability criterion for a

rotating fluid modified by the magnetic field in the flux-freezing limit. We then study the

effect of the nonideal MHD effects on the gravitational instability. Qualitatively, we see that

both the nonideal MHD effects behave similarly. However, the timescales and lengthscales of

instability also depend on the neutral-ion collision time (the measure of ambipolar diffusion)

and Ohmic diffusivity (the measure of Ohmic dissipation), rotation parameter (Toomre-Q).

For a supercritical cloud (gravity dominated), when nonideal MHD (i.e., diffusion of magnetic

field) effects are included, the results get reduced to that of the hydrodynamic (non-magnetic)

case. We found that in the presence of nonideal MHD effects, the peak fragmentation mass

occurs at a slightly transcritical mass-to-magnetic flux ratio and exceeds the non-magnetic
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(thermal, or Jeans) scale by a factor of up to 10, and the fragmentation mass is likely to be

around 10 − 90 times the Jupiter mass (1MJup ≈ 10−3M⊙). We apply our results to protostellar

disk properties in the early embedded phase that are probed by astronomical observations.

Giant planets in many extrasolar systems are now thought to form by a direct gravitational

instability rather than the traditional hypothesis of planetesimal accretion.

In Chapter 3, we apply the linear analysis results of ambipolar diffusion-driven gravitational

instability (Ciolek & Basu, 2006) to fit the data of the evolutionary time/lifetime and fragmen-

tation mass of prestellar cores identified with Herschel Space Observatory in the Aquila cloud.

We also fit the number of enclosed cores formed in a parent clump measured in Perseus cloud

complex with the Submillimeter Array (SMA) (Das et al., 2021). The model discussed in

Ciolek & Basu (2006) can be derived from our general semi-analytic model as presented in

Das & Basu (2021) in the limit of negligible rotation and Ohmic resistivity, which is applica-

ble for the case of a molecular cloud rather than a disk. By varying a single parameter, the

mass-to-magnetic flux ratio, over the range of observationally measured densities, we use our

model-derived instability growth time as a proxy for the evolutionary time of prestellar cores

(that varies from 0.1 to a few Myr). Linear analyses show that the lifetime and fragmenta-

tion scales are significantly greater than the non-magnetic (Jeans) values even for clouds with

mildly supercritical mass-to-flux ratio. Such variations do not exist in the standard thermal

pressure dominated (Jeans) fragmentation theory. The preferred fragmentation mass of our

model serves as a magnetic field dependent instability threshold, in contrast to a Jeans mass

(hydrodynamical limit). Our best-fit model for prestellar cores exhibits a relation in which the

magnetic field is directly proportional to the neutral number density, however, it has a shal-

lower slope than the flux-frozen (ideal MHD) case due to the effects of ambipolar diffusion

(nonideal MHD).

In Chapter 4, we develop a semi-analytic formalism (Das & Basu, 2022) for the deter-

mination of the evolution of the stellar mass accretion rate for specified density and velocity

profiles that emerge from the runaway collapse of a prestellar cloud core. Our model provides a

self-consistent evolution of the mass accretion rate by joining the spherical envelope accretion

with the disk accretion and accounts for the presence of episodic accretion bursts at appropri-

ate times. In our model, we emphasize the gravitational torques as a means of transporting
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mass from disk to star through the spiral arms. Our episodic accretion model shows that bursts

are required to provide a good match to the observed distribution of bolometric luminosities

and toward the efficient mass growth of the protostar. In contrast, a smoothly time-dependent

mass accretion rate, whether monotonically increasing or decreasing, is unable to do so. Our

framework reproduces key elements of detailed hydrodynamical numerical simulations of disk

accretion and can aid in developing intuition about basic physics as well as in comparing theory

with observations.

In Chapter 5, we study the detailed structure of the individual accretion burst using numer-

ical MHD simulations of the long-term (∼ 1.0 Myr) evolution of protoplanetary disks in the

thin-disk limit (Vorobyov et al., 2020). Mass accretion bursts are the nonlinear outcome of the

transport of clumps within the disk. In Chapter 4, we model the nonlinear effect with simple

approximations keeping the linear-order terms. In Chapter 5, we carry out MHD simulations

where all the nonlinear equations are solved self-consistently to investigate their global effects

within the disk as it evolves from a gravitationally unstable state to a viscous-dominated state.

We investigate the physical mechanism causing the episodic bursts and their characteristics in

terms of burst duration, rise time, burst amplitude, accreted mass associated with the burst, etc.,

and compare them with the observed knots in the molecular protostellar jets. Observation and

modeling of episodic accretion bursts across a wide range of mass models of YSOs seem to be

promising probes for investigating inner disk structure and fragmentation of the outer disk due

to gravitational instability.

To sum up, we explore the consequences of gravitational instability and (ideal and non-

ideal) MHD effects in the fragmentation of the protostellar disk that occurs in the protostellar

phase (after the protostar is born) as discussed in Chapter 2. In addition to that, the prestellar

counterpart of this study is also discussed in Chapter 3, which captures the fragmentation of a

molecular cloud and evolution of prestellar cores. After studying the fragmentation of molecu-

lar cloud core and protostellar disk, we focus on the disk evolution. In Chapter 4, we investigate

the significance of episodic accretion toward the overall disk evolution and mass growth of a

protostar in the hydrodynamic limit using our semi-analytic model of episodic accretion. Over

and above, finally, in Chapter 5, we show the numerical results of magnetohydrodynamic sim-

ulation of self-consistent disk evolution starting from prestellar core collapse by taking into
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account most of the important disk physics. Future work will involve investigating a much

wider range of initial conditions, particularly the magnetic field strength, prestellar cores with

different masses, the physics of nonideal MHD. All of our studies from various perspectives

fill in many gaps of our knowledge of how the pre-main sequence stars formed over time and

consolidate the broad picture of star formation.

The theory of star formation has evolved a lot over the last few decades. A a complete un-

derstanding of the role of magnetic fields in the star-disk formation still requires more observa-

tional constraints and comparison with theoretical models and global simulations. In principle,

the magnetic field acts against the gravitational inward pull and hinders the core-collapse. It is

very fascinating to find out under what circumstances gravity can win over all the opposing ef-

fects. Understanding the connection between the diffusion of magnetic field and the formation

mechanism of the star-disk system is the key to explaining the process of star formation. Future

works require an intensive study using three-dimensional nonideal MHD codes (like FLASH,

Athena) with a much higher resolution accompanied by multi-wavelength observations (e.g.,

Herschel, SOFIA, SMA, ALMA, and JCMT) to obtain a three-dimensional picture of the mag-

netic fields in a star-forming region. It is important to determine how the gas is channeled either

along the field lines or through them and triggers the collapse. Additionally, further studies on

protostellar/protoplanetary disk could also shed some light on the planetesimal formation that

can eventually lead to the formation of exoplanet systems through further processes.
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