Quality assurance of radiation therapy planning systems: current status and remaining challenges.

Jacob Van Dyk
The University of Western Ontario, vandyk@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/oncpub

Part of the Medical Biophysics Commons, and the Oncology Commons

Citation of this paper:
https://ir.lib.uwo.ca/oncpub/134
QA FOR RT SUPPLEMENT

QUALITY ASSURANCE OF RADIATION THERAPY PLANNING SYSTEMS: CURRENT STATUS AND REMAINING CHALLENGES

JACOB VAN DYK, M.Sc. (*)

(*) Department of Physics and Engineering, London Regional Cancer Program/London Health Sciences Centre, London, ON, Canada; and 1) Departments of Oncology, Medical Biophysics, Diagnostic Imaging and Nuclear Medicine, and Physics and Astronomy, University of Western Ontario, London, ON, Canada

Computerized radiation therapy planning systems (RTPSs) are pivotal for treatment planning. The acceptance, commissioning, and quality control of RTPSs are uniquely complex and are described in the American Association of Physicists in Medicine Task Group Report 53 (1998) and International Atomic Energy Agency Technical Report Series No. 430 (2004). The International Atomic Energy Agency also developed a document and data package for use by vendors and purchasers to aid with acceptance testing of RTPSs. This document is based on International Electrotechnical Commission standard 62083 (2000) and describes both “type” tests to be performed in the factory and “site” tests to be performed in the clinic. The American Association of Physicists Task Group Report 67 described benchmark tests for the validation of dose calculation algorithms. Test data are being produced with the backing of the U.S. National Cancer Institute. However, significant challenges remain. Technology keeps evolving rapidly, thus requiring new quality assurance (QA) procedures. Intensity-modulated radiation therapy with its use of inverse optimization has added a new dimension to QA, because the results are not intuitively obvious. New technologies such as real-time ultrasound guidance for brachytherapy, TomoTherapy, and Cyberknife, require their own specialized RTPSs with unique QA requirements. On-line imaging allows for the generation of dose reconstructions using image warping techniques to determine the daily dose delivered to the patient. With increasing computer speeds, real-time reoptimization of treatment plans will become a reality. Gating technologies will require four-dimensional dose calculations to determine the actual dose delivered to tissue voxels. With these rapidly changing technologies, it is essential that a strong QA culture is invoked in every institution implementing these procedures and that new protocols are developed as a part of the clinical implementation process.

Quality assurance, Treatment planning, Radiation therapy planning systems.

INTRODUCTION

A tremendous evolution (some would say a revolution) in radiation oncology has occurred in recent years. These rapid changes and enhancements have resulted from developments in computer technology, which have allowed advancements in diagnostic imaging and radiation therapy delivery capabilities. The result is that imaging using various procedures (e.g., computed tomography, positron emission tomography, single photon emission tomography, magnetic resonance imaging, ultrasonography) is much more readily available as a part of the radiation therapy planning process. In addition, enhancements in computer-controlled dose delivery, along with the use of multileaf collimators has allowed for both static (step-and-shoot) and dynamic intensity-modulated radiation therapy (IMRT). These new technologies have allowed for more controlled dose delivery with greater dose gradients and tighter margins. The net effect is that radiation oncologists are able to prescribe greater doses while maintaining normal tissue toxicities at acceptable levels. Central to the application of these new technologies is the radiation therapy planning system (RTPS).

A review of the historical development of RTPSs can be found in a recent chapter by Van Dyk (1). The modern RTPS allows for the use of images from various imaging modalities to aid in the definition of target volumes. It has more

Reprint requests to: Jacob Van Dyk, M.Sc., Department of Physics and Engineering, London Regional Cancer Program/London Health Sciences Centre, 790 Commissioners Rd. E., London, ON N6A 4L6 Canada. Tel: (519) 685-8607; Fax: (519) 685-8658; E-mail: jake.vandyk@lhsc.on.ca

Conflict of interest: J. Van Dyk has a license agreement with Modus Medical Devices, Inc. for the development and sale of QUASAR Phantoms.

Acknowledgments—This report is based on the work of various national and international committees and task groups dealing with quality assurance of radiotherapy planning systems, with the author being a member of a number of these. The author acknowledges the expertise provided by the members of these working groups in developing these reports and in providing a basis for this report.

Received Feb 16, 2007, and in revised form April 17, 2007. Accepted for publication April 18, 2007.

S23
sophisticated calculation algorithms, providing more accurate
dose calculation capabilities, especially for the small beams
associated with IMRT delivery techniques. Physical or
dynamic wedge calculation capabilities are provided. Auto-
mated optimization routines used in conjunction with inverse
planning are available to help define the multileaf collimator
delivery configurations. More sophisticated dose distribution
evaluation tools are integral to automated optimization and
plan evaluation. These include the use of dose–volume con-
straints, display of dose–volume histograms, and the applica-
tion of biologically related endpoints such as tumor control
probability, normal tissue complication probability, and the
equivalent uniform dose. For plan delivery verification, doses
can be reconstructed for specific phantom configurations, and
digitally reconstructed radiographs can be produced to com-
pare with the portal images.

NATIONAL AND INTERNATIONAL
REPORTS ON RTPSs

Early reports on the commissioning and quality assurance
(QA) of TPSs are relatively sparse. Perhaps the forerunner of
these was a study in 1980 by McCullough and Krueger (2).
The first committee findings from Canada was reported by
Van Dyk et al. (3). An early international report on RTPSs
was published in 1987 by the International Commission on
Radiation Units and Measurements in its Report 42 (4).
That report provided a detailed description of the state-of-
the art of RTPSs of that time; however, only two pages
were devoted to QA. The American Association of Physicists
in Medicine (AAPM) Task Group Report 65 (5) provided
a detailed description of dose calculation algorithms used
by RTPSs, especially in relation to tissue inhomogeneity cor-
rections. Recent years have seen various reports by national
and international organizations that have made recommenda-
tions regarding the commissioning and QA of RTPSs. In
1998, the AAPM published Task Group report 53 (6), giving
guidelines for users and vendors on QA for radiation therapy
planning. In 2000, the International Electrotechnical Com-
mission produced report No. 62083 (7), identifying the safety
requirements for manufacturers of RTPSs. In 1998, the IAEA
published Task Group report 65 (unpublished data: Bayouth J,
et al. AAPM Radiation Therapy Com-
mitee Task Group 67: Benchmark datasets for photon beams.
2005) described the development of a series of benchmark
tests for the validation of dose calculation algorithms of
RTPSs. The measured data for these benchmark tests are
generic guide for the commissioning and QA of RTPSs, it
does not provide a simple or unique protocol for these tasks
because (1) internationally, a wide variety of treatment ma-
chine capabilities exists, ranging from simple 60Co machines
to complex treatment machines with multileaf collimators and
the possibility of using IMRT; (2) a wide variety of treatment
procedures are in place that are dependent on institutional
resources, patient imaging availability for treatment planning,
and treatment machine capabilities; and (3) commercial
RTPSs have a wide diversity of capabilities, ranging from rel-
atively simple two-dimensional systems to comprehensive
three-dimensional treatment planning capabilities that make
full use of three-dimensional image data sets, possibly from
various imaging modalities. To provide guidance for this
very large scope of capabilities, the TRS-430 provides a com-
prehensive process that should be useful to every institution
providing radiation therapy. The report provides specific ex-
amples of the kinds of tests that need to be performed for
both commissioning and quality control (QC) purposes.

The IAEA TRS-430 does not address issues related to
acceptance testing in adequate detail. Although acceptance
testing is well-defined and a standard process for the purchase
of other radiation therapy equipment, it is not nearly as
straightforward for RTPSs. This process is complicated be-
cause the clinical implementation of an RTPS requires the
user to obtain, usually by measurement, very specific data
needed by the RTPS for proper functioning of the dose calcu-
lation algorithm for the specific radiotherapy machines used
to treat patients in the user’s clinic. To address this issue, the
IAEA has developed a new report (10) that is complete and
was published in early 2007. That report used as a guiding
document the International Electrotechnical Commission
specifications and safety requirements, Standard 62083 for
RTPSs (7), which was published in 2000 and specifically
aimed at manufacturers. The IAEA acceptance protocol re-
quires vendors to perform and document a series of “type”
tests using beam commissioning data supplied by the
IAEA. The beam data and added tests were based on con-
cepts originally developed in the AAPM Report 55 (12)
and later updated by Venselaar and Welleweerd (13). Using
the beam data provided with the IAEA acceptance report, the
user selects a subset of the vendor “type” tests and performs
“site” tests to ensure that the software complies with the
standards defined in the report.

Works in progress

The IAEA has initiated an additional document to be used
as a guide for the commissioning of RTPSs, although this
document is primarily intended to help clinics in the develop-
ing world, largely with simpler RTPSs. Meanwhile, using the
recommendations from AAPM Task Group report 53, the
AAPM Task Group report 67 (unpublished data: Bayouth J,
Followill D, Fraass B, et al. AAPM Radiation Therapy Com-
mitee Task Group 67: Benchmark datasets for photon beams.
2005) described the development of a series of benchmark
tests for the validation of dose calculation algorithms of
RTPSs. The measured data for these benchmark tests are

IAEA TRS-430 guidelines

The IAEA TRS-430 begins by providing a rationale for QA
of RTPSs by describing significant treatment errors that have
occurred because of the inappropriate development of QA
procedures in the clinic. Although this report is intended as
now being produced with the financial support of the U.S. National Cancer Institute.

REMAINING CHALLENGES

Although progress in the development of these documents, protocols, and standards is certainly a dramatic improvement over work done in previous decades, significant challenges remain. Technology keeps evolving at such a rapid rate that it is difficult to maintain up-to-date, routine, and documented QA procedures and protocols. The following highlights some of the outstanding challenges. Some of these challenges overlap between fundamental research to develop procedures to improve the quality of treatment and actually addressing QA and QC issues related to the implementation of new procedures and technologies.

Plan optimization parameters

Modern RTPSs provide automated plan optimization capabilities using objective functions that aid in the determination of the quality of the plan. Objective functions contain information about the desired and actual dose distribution. The form of the objective function tends to be unique to each commercial system. Included in the objective function are quantities that aid in determining the importance of one endpoint vs. another. These quantities are often known as “importance” factors or “weighting” factors or “penalty” factors. As a part of the planning process, the user needs to define the dose–volume constraints for each structure of interest, whether tumor or organ at risk. In addition, the treatment planner needs to determine the values for the importance/weighting/penalty factors. The choice of values for these factors is dependent on the treatment site, tumor size and location, and normal tissue type. The present practice is for each clinic to develop its own experience on the values for these factors based on practical experience for individual treatment sites. The result is that the actual implementation of automated optimization procedures is based on the very subjective choice of these factors. One of the remaining challenges for the medical physic community is to determine some form of standardization of both objective functions and the relevant importance/weighting/penalty factors. It would then be possible to generate some class solutions for the use of these factors that can be applied to some generic clinical situations.

Optimization in presence of uncertainties

Recent years have seen a significant number of publications addressing the uncertainties associated with the radiation therapy process, including setup, geometric, and organ motion uncertainties. Interest is growing in accounting for these uncertainties in the optimization process (14–18), because of recognition that an optimized plan developed without accounting for uncertainties could be quite different from one developed that did account for the uncertainties. Once implemented, these algorithms will require special QA procedures to test for their capabilities, limitations, and proper functioning.

Intensity-modulated radiation therapy QA

Intensity-modulated radiation therapy, with its use of inverse optimization, has added a new dimension to QA, because the results are no longer intuitively obvious, and manual or simple checks of the results are not possible. Consequently, individualized patient plans must be recalculated for phantom geometries and corresponding measurements performed on the phantom for patient-specific treatment procedures. None of the publications described in the present report addressed the QA and QC issues adequately for IMRT planning. Recent trends are moving toward independent software packages that can calculate the monitor units using the IMRT delivery configurations provided by the RTPS but using entirely different software. Because this software tends to be less sophisticated than the software used by the RTPS that developed the original plan, under certain conditions, discrepancies are likely to result between the original monitor unit calculations done on the RTPS and those done by the QC software. The user must make an educated rationalization as to whether the results are acceptable or whether the difference is significant and needs additional review. Thus, two issues evolve from this process. The first is that new QA techniques must be developed to evaluate the software that performs the secondary checks. The second is that the criteria of acceptability between the results of the primary software calculations and the secondary software calculations need to be developed such that a consistent and meaningful assessment is possible of the comparison of these results.

For treatment planning software associated with specialized treatment technologies (e.g., helical Tomotherapy, Cyberknife), no third-party QA software exists. Does this mean that users must perform patient-specific dose delivery QA measurements indefinitely or can alternative QC techniques be developed? Thus, the challenge is to develop time-efficient QA procedures for these specialized technologies.

Plan evaluation and radiobiological models

Modern RTPSs are also providing new plan evaluation and optimization capabilities such as dose–volume histogram comparisons and radiobiological evaluation. To date, the clinical application of radiobiological models remains controversial, because a general mistrust exists of their clinical relevance and a clear understanding of their capabilities and limitations has not been achieved (19). However, commercial vendors of RTPSs are providing radiobiological models that allow users to apply them to clinical situations. The challenge is that educational materials are needed for users of these systems to describe the capabilities and limitations of both the models themselves and the corresponding uncertainties in the parameters used in these models, because they are generally derived from limited clinical data. One approach used by some is to use a radiobiological tumor control probability and normal tissue complication probability calculation for patients undergoing treatment, not as a means of optimizing
the treatment, but rather as a QA tool. If the resulting tumor control probability, or normal tissue complication probability, is of concern, this would require follow-up. Thus, the radiobiologic model, at least in its early phase of clinical implementation, is not the primary calculation determining the treatment technique but becomes a QA check. It is only after sufficient clinical evidence is available that radiobiological models can provide a prediction of treatment outcome accurate enough that they should come into routine clinical practice.

Dose reconstruction

Daily on-line imaging allows for the generation of dose reconstructions using image or dose warping techniques to determine the actual daily dose delivered to specific voxels within the tumor and organs at risk (20–22). Furthermore, as the speed of computers improves, real-time reoptimization of treatment plans, using the anatomy of the day, will become a reality in the future. Again, the challenge will be to assure the users that both the daily imaging system and the corresponding dose reconstruction and reoptimization algorithms behave as intended, especially when done in a real-time mode of operation.

Four-dimensional treatment

At present, four-dimensional computed tomography and beam gating technologies determine the specified times during the breathing cycle when the beam is to be turned on or off. The research challenge is to ensure a consistent correlation between tumor motion and external fiducials or the references used to trigger the beam gating system. In addition, to obtain a sense of the true dose delivered to both the target and the organs at risk, gating technologies will require four-dimensional dose calculations to be performed during the parts of the breathing cycle in which the beam is on. Furthermore, QA procedures will need to be developed for both the four-dimensional dose calculation procedures and the actual gated delivery of the radiation dose.

Phantoms and QA tools

As a result of the increasing complexity of the radiation therapy process, new and more specialized QA and QC procedures are being developed. This will require new QA tools, new phantoms, and new analysis procedures. With highly shaped dose distributions, the trend is toward multidimensional measurement techniques with two-dimensional detector arrays and three-dimensional gel dosimetry (for a summary see Van Dyk [23]). Furthermore, the use of gating and dose delivery techniques to account for breathing motion requires the use of phantoms that include a time component. Although technologies and QA tools are being developed, no consistent or cohesive approach is yet available for quality assessment of these new technologies. Thus, the challenge remains for improved QA and QC tools that are relatively inexpensive, relatively easy to use, and relatively universal to apply.

CONCLUSION

The RTPS is at the hub of the overall radiation therapy process. This report provides a review of the documents produced by various working groups, both national and international, associated with QA of RTPSs. With the rapid development and on-going changes in imaging and radiation therapy technologies, QA and QC procedures require constant redevelopment and evolution. Future directions are considered and challenges outlined. With these rapidly changing technologies, it is essential that a strong QA culture is invoked in every institution implementing these new and advanced procedures and that new protocols are developed as a part of the clinical implementation process.

REFERENCES

