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Abstract

This thesis studies the estimability and the estimation methods for two models based on
Markov processes: the phase-type aging model (PTAM), which models the human aging
process, and the discrete multivariate phase-type model (DMPTM), which can be used to
model multivariate insurance claim processes.

The principal contributions of this thesis can be categorized into two areas. First, an
objective measure of estimability is proposed to quantify estimability in the context of statis-
tical models. Existing methods for assessing estimability require the subjective specification
of thresholds, which potentially limits their usefulness. Unlike these methods, the proposed
measure of estimability is objective. In particular, this objectivity is achieved via a carefully
designed distribution function sensitivity measure, under which the threshold will become an
experiment-based quantity. The proposed measure which is validated to be innately sound,
is then applied to assess and improve the estimability of several statistical models, the focus
being placed on the PTAM.

Secondly, Markov chain Monte Carlo (MCMC) algorithms are proposed for inference on
the PTAM and the DMPTM. Up to now, the MCMC algorithms for continuous phase-type
distributions have been applied via the Gibbs sampler which consists of two iterative steps: a
data augmentation step and a posterior sampling step. However, owing to unique structures
of the PTAM and the DMPTM, this Gibbs sampler turns out to be inadequate, giving rise
to problems occurring in either the data augmentation step or the posterior sampling step.
To circumvent these difficulties, we methodologically extend the existing Gibbs sampling
methodology in terms of rejection sampling and data cloning. The proposed algorithms
are then applied to calibrate the PTAM and the DMPTM based on simulated and real-life
data. Experimental results show that the proposed MCMC algorithms, as a stochastic ap-
proximation technique, achieve estimation results that are comparable to those obtained by
deterministic approximation techniques, which can also be seen as a contribution made to
the field of approximate inference.

Keywords: phase-type distributions, identifiability, estimability, Markov chain Monte
Carlo, data augmentation Gibbs sampler, rejection sampling, data cloning.
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Summary for Lay Audience

This thesis principally contributes to two areas of studies.
In statistics, it is well-known that a statistical model is identifiable if parameters can

be uniquely inferred from data. However, identifiability does not imply estimability. For
example, if the number of observations is low or the numerical algorithm is not sufficiently
accurate, then the parameters can only be roughly estimated, even if the model is identifi-
able. Identifiability has a rigorous mathematical definition. However, estimability is usually
measured subjectively and an objective measure appears to be lacking in the context of sta-
tistical models. Accordingly, the first contribution of this thesis is to propose an objective
measure to quantify estimability in the context of statistical models.

Secondly, Markov chain Monte Carlo (MCMC) algorithms are proposed for inference
on two actuarial models: the phase-type aging model (PTAM) and the discrete multivariate
phase-type model (DMPTM), where the former models aging processes and the latter models
multivariate insurance claim processes. MCMC is a methodology for sampling complicated
distributions, where one constructs a carefully designed Markov chain whose stationary dis-
tribution agrees with the target distribution. Then, sampling from the target distribution is
replaced with sampling from the designed Markov chain. In this thesis, we develop MCMC
algorithms for the PTAM and DMPTM, where the models’ special structures are utilized.
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Chapter 1

Introduction

1.1 Research motivation and objectives

This thesis investigates two phase-type actuarial models: the phase-type aging model (PTAM)
and the discrete multivariate phase-type model (DMPTM). The motivations behind these
two models are slightly different, which are discussed separately in Sections 1.1.1 and 1.1.2.

1.1.1 Motivation in connection with the PTAM

The PTAM belongs to a class of Coxian Markovian models that was proposed in Cheng et al.
(2021). The purpose of the PTAM is to provide a quantitative description of well-known
aging characteristics that are part of a genetically determined, progressive and irreversible
process. It has already been utilized to fit simulated and real-life data in Cheng et al. (2021)
and Cheng (2021).

However, previous model fitting results reveal a major issue: the profile likelihood func-
tions are flat for certain parameters. This phenomenon hinders the reliability of the param-
eter estimates as a wide range of estimates can produce nearly the same profile likelihood
value. Consequently, we aim to seek possible ways to address this issue. Two research
avenues are then pursued: Bayesian inference and estimability.

Bayesian inference

An intuitive approach for fixing the issue of flat profile likelihood functions is to utilize
Bayesian inference. As the (profile) likelihood functions are flat, the posterior distributions
will highly depend on the prior distributions. In that case, the reliability of the parameter
estimates can be improved via sound prior information, which produces narrow credible
intervals for the parameter estimates. In the context of continuous phase-type distributions,
the literature suggests that Bayesian inference be applied via the Gibbs sampler [Bladt et al.
(2003), Aslett and Wilson (2011), Okamura et al. (2014)], which belongs to the Markov
chain Monte Carlo method. Thus, the research objective consists of applying MCMC-based
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Bayesian inference to the PTAM with a view to improve parameter estimability via sound
prior information. This gives rise to the contributions presented in Chapter 4.

Estimability

Interestingly, based on another school of thoughts, it turns out that the problem result-
ing from flat profile likelihood functions is related to the concept of estimability, which is
also interchangeably referred to as “practical identifiability”. The concept of estimability
originates from system biology where ODE models are utilized to model dynamic biological
systems. However, an objective definition of estimability appears to be lacking in the context
of statistical models. Thus, the research objective consists of initiating a novel definition of
estimability to objectively quantify estimability for statistical models, particularly that of
the PTAM. After having objectively quantified estimability by redefining it, we may then
make improvements on the basis of the proposed definition. This gives rise to the contribu-
tions presented in Chapter 3.

However, this research objective cannot be readily implemented. According to the lit-
erature, identifiability must be assessed before estimability [Raue et al. (2009); Hengl et al.
(2007); Miao et al. (2011); Petersen et al. (2001); McLean and McAuley (2012); Brun et al.
(2001); Holmberg (1982); Gontier and Pfister (2020)]. Thus, the identifiability of the PTAM
must first be determined, which gives rise to the contributions presented in Chapter 2.

1.1.2 Motivation in connection with the DMPTM

The discrete multivariate phase-type model (DMPTM) is a class of discrete phase-type distri-
butions based on discrete time Markov chains with marked transitions. He and Ren (2016b)
established an EM algorithm with respect to its parameter estimation.

Similarly to the Bayesian inference on the PTAM, the aim is to develop an MCMC al-
gorithm for inference on the DMPTM. However, the motivation of this research project is
slightly different. The goal is not to utilize Bayesian inference as a means of improving
estimability, but to provide an alternative way of determining MLEs, which does not involve
the EM algorithm. This can be achieved by combining the MCMC algorithm with the data
cloning method [Lele et al. (2007, 2010)], which gives rise to the contributions in Chapter 5.

As well, there are convincing reasons for applying MCMC algorithms to the DMPTM
from the perspective of approximate inference. In the approximate inference, the EM algo-
rithm is classified as deterministic approximation, whereas the MCMC algorithm is classified
as stochastic approximation. These two categories are parallel and partitions the field of ap-
proximate inference [Bishop and Nasrabadi (2006)]. From the perspective of approximate
inference, while the application of a deterministic approximation to the DMPTM has been
researched via the EM algorithm in He and Ren (2016b), the stochastic approximation coun-
terpart remains unexplored to this day. The development of the MCMC algorithm will then
fill this gap and contribute to the field of approximate inference, focusing on the DMPTM.
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1.2 Structure of the thesis

The chapters of this thesis are organized as follows.

• In Chapter 1 (current chapter), the research motivation and objectives are discussed,
and the structure of the thesis is described.

• In Chapter 2, the identifiability of the PTAM is investigated, which is required for
investigation on its estimability in Chapter 3.

• In Chapter 3, a novel definition of estimability is introduced in the context of statistical
models. The proposed definition which is validated to be innately sound, will then be
applied to assess the estimability of several statistical models, and in particular that
of the PTAM.

• In Chapter 4, an MCMC-based Bayesian estimation method is proposed and applied
to the PTAM, with a view to improving its estimability. While numerical experimental
results indicate that the proposed methodology improves estimability for the PTAM
as opposed to the MLE method, this approach may also be utilized as a standalone
model fitting technique.

• In Chapter 5, an MCMC algorithm is developed in conjunction with data cloning tech-
nique for inference on the DMPTM. While the existing EM algorithm determines the
MLEs of the DMPTM based on a deterministic approximation approach, the proposed
algorithm provides an alternative way of obtaining the MLEs from a stochastic approx-
imation approach, which directly contributes to the field of approximate inference.

• In Chapter 6, we make general comments and concluding remarks related to our con-
tributions and state certain possible avenues for further research.

The appendices of this thesis are organized as follows.

• Appendix A rigorously investigates several mathematical properties of the dying rates
of the PTAM, which are utilized in establishing the identifiability of the PTAM in
Chapter 2.

• Appendix B presents rigorous proofs regarding sub-models of the PTAM, which are
utilized in assessing the estimability of the PTAM in Chapter 3.

• Appendix C provides the derivation of likelihood function of the PTAM for left-
truncated data, which supports the MCMC-based Bayesian inference on the PTAM
developed in Chapter 4.

• Appendix D provides algorithms for rejection sampling on a logarithmic scale, which
supports the MCMC-based Bayesian inference on the PTAM in Chapter 4.

• Appendix E presents the technical details of the proposed MCMC algorithm for the
DMPTM presented in Chapter 5.
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Chapter 2

Identifiability of the Phase-Type
Aging Model

In this chapter, identifiability of the phase-type aging model (PTAM) is thoroughly in-
vestigated. This provides supplementary support to Chapter 3 regarding estimability of the
PTAM, because identifiability must be assessed before estimability [Raue et al. (2009); Hengl
et al. (2007); Miao et al. (2011); Petersen et al. (2001); McLean and McAuley (2012); Brun
et al. (2001); Holmberg (1982); Gontier and Pfister (2020)]. An ad-hoc mathematical proof
is introduced, which establishes that the PTAM is identifiable when the number of states is
greater or equal to six.

2.1 Preliminaries on the phase-type aging model

The phase-type aging model (PTAM) stems from the phase-type mortality model proposed
in Lin and Liu (2007). The motivation for proposing the phase-type mortality model is that
it lends itself to linking its parameters to biological and physiological mechanisms of aging,
so that the longevity risk facing annuity products can be measured more accurately. Exper-
imental results showed that the phase-type mortality model with a four-state developmental
period and a subsequent aging period achieved very satisfactory fitting results with respect
to the Swedish and USA cohort mortality data [Lin and Liu (2007)]. Later on, Su and Sherris
(2012) applied the phase-type mortality model to an Australian cohort mortality data.

Subsequently, the PTAM proposed in Cheng et al. (2021) developed the aging period
of the phase-type mortality model, the difference being that a parsimonious yet flexible
representation was adopted for modeling various aging patterns. Similarly, the main objec-
tive of the PTAM is to describe the human aging process in terms of the evolution of the
distribution of physiological ages, utilizing mortality rates as aging-related variables. There-
fore, although the PTAM can reproduce mortality patterns, it ought not to be treated as a
mortality model. In this context, the PTAM is most applicable at human ages beyond the
attainment of adulthood, where relatively speaking the aging process is the most significant
factor that contributes to the variability in lifetimes [Cheng et al. (2021)].

4



Definition 2.1.1. Let {X(t)}t≥0 be a continuous time Markov chain (CTMC) defined on a
finite state space S = E∪∆ = {1, 2, . . . ,m}∪∆, where ∆ = {m+1} is the absorbing state and
E is the set of transient states. Let {X(t)}t≥0 have initial distribution π′ = (π1, π2, . . . , πm)
over the transient states such that π′e = 1, and let the transition intensity matrix be

Λ =

[
S h
0 0

]
, (2.1)

where h = −Se and e is a column vector of ones. Define T := inf{t ≥ 0|X(t) = m + 1}
as the time until absorption. Then, T is said to follow a continuous phase-type (CPH)
distribution denoted by CPH(π,S) of order m, and h is defined as the exit vector.

There is a long history of using phase-type distributions for survival modelling in the
category of “absorbing time” distributions; see Aalen (1995); Asmussen et al. (1996); Lin
and Liu (2007); Su and Sherris (2012).

Result 1. Given that T ∼ CPH(π,S) of order m,

• The p.d.f. of T is fT (t) = π′eSth.

• The c.d.f. of T is FT (t) = 1− π′eSte.

It is well-known that, if S of a CPH distribution of order m follows structure specified
in (2.2) and π′ = (1, 0, . . . , 0), then that distribution belongs to a Coxian distribution with
no probability mass at zero [Cox (1955b,a)].

S =


−(λ1 + h1) λ1 0 0 . . . 0 0

0 −(λ2 + h2) λ2 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λm−1 + hm−1) λm−1

0 0 0 0 . . . 0 −hm

 , (2.2)

where λi > 0, hj > 0, i = 1, 2, . . . ,m− 1, and j = 1, 2, . . . ,m.

Then, a phase diagram such as that displayed in Figure 2.1 can often be visualized:
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1 2 m− 1 m

m+ 1

λ1 λ2 λm−2 λm−1

h1 h2 hm−1 hm

Figure 2.1: Phase diagram for a Coxian distribution with no probability mass at zero.

Definition 2.1.2. Given that T > 0, the PTAM of order m is defined as a Coxian distribu-
tion of order m with transition intensity matrix S and exit rate vector h such that

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ h2) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ hm−1) λ
0 0 0 0 . . . 0 −hm

 , h =


h1
h2
...

hm−1

hm

 , (2.3)

where λ > 0, hm > h1 > 0 and

hi =


(
m−i
m−1

hs1 +
i−1
m−1

hsm
) 1
s , s ̸= 0,

h
m−i
m−1

1 h
i−1
m−1
m , s = 0,

(2.4)

i = 1, 2, . . . ,m. This is denoted by PTAM(h1, hm, s, λ,m).

As can be seen from Figure 2.2, the PTAM has a phase diagram similar to that of the Coxian
distribution shown in Figure 2.1, the difference being the constant transition rate and the
functionally related exit rates defined in (2.4).
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1 2 m− 1 m

m+ 1

λ λ λ λ

h1 h2(h1, hm, s) hm−1(h1, hm, s) hm

Figure 2.2: Phase diagram for the PTAM.

(i) In Figure 2.2, each state in the Markov process represents the physiological age -
a variable that reflects an individual’s health condition or frailty level. As the aging
process proceeds, the frailty level will increase, until the last state where the individual’s
health conditions have deteriorated to the point of causing death.

(ii) The transition rate λ is assumed to be constant. The exiting rates hi’s are the dying
rates or force of dying. With this setup, an individual will be randomly located in a
certain state at a given calendar age. This mathematically describes the fact that the
individuals involved will have different physiological ages given the same calendar age.

(iii) The assumption that dying rates have the structure given in (2.4) is somewhat remi-
niscent of the well-known Box-Cox transformation introduced by Box and Cox (1964).
The first and last dying rates h1 and hm are included in the model parameters, whereas
the remaining in-between rates are interpolated in terms of the parameter s which is
a model parameter related to the curvature of the exit rate pattern. To verify this,
Figure 2.3 presents the effect of s on the pattern of the exit rates. When s = 1, the
dying rates have a linear relationship. When s > 1, rates are concave, and when s < 1,
rates are convex. In particular, when s = 0, rates behave exponentially. In practice,
we believe that it is likely that s < 1 when calibrating to mortality data [Cheng et al.
(2021)]. That is, the dying rates increase faster than linearly as an individual ages.
Throughout this chapter, it will be assumed that hi will follow the structure given in
(2.4), for i = 1, 2, . . . ,m.
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Figure 2.3: Behaviour of the exit rate vector for various values of s with m = 100.

(iv) The value of λ needs to be appropriate to the value of m, otherwise there is no need
to have many m states if λ is small. We therefore let their ratio be a constant, that is,

m

λ
= ψ. (2.5)

(2.5) can be seen as a reparameterization of the PTAM as it still needs five parame-
ters as (h1, hm, s, ψ,m). However, such a reparameterization will establish a positive
covariance between λ and m, which is more in line with the biological interpretation.
Throughout this chapter, we will utilize these two parameterizations of the PTAM
interchangeably as needed.

The parameter structure of the PTAM proves to be parsimonious and flexible, which allows
one to model the internal aging process explicitly. Further information is available in Cheng
et al. (2021).
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2.2 Literature review on identifiability of the CPH dis-

tributions

Identifiability is also referred to as a priori identifiability or uniqueness of model represen-
tation in other sources. It relates to the property of the model structure itself before model
fitting. The definition of identifiability of a statistical model given in Lehmann and Casella
(1998) is presented in Definition 2.2.1.

Definition 2.2.1. Let M = {f(x;θ) : θ ∈ Θ} be a statistical model with either finite- or
infinite-dimensional parameter space Θ. We say that M is identifiable if

(f(x;θ1) = f(x;θ2)) ⇒ (θ1 = θ2) ,∀θ1,θ2 ∈ Θ. (2.6)

Based on Definition 2.2.1, if a model is non-identifiable, then there exists two p.d.f.-
equivalent models with different parameters. On the other hand, if a model is identifiable,
then such models do not exist. In other sources, the term “c.d.f.-equivalent” is used, but it
is equivalent to “p.d.f.-equivalent”. Both terms will be used interchangeably in this thesis.

2.2.1 Identifiability of acyclic phase-type distributions

The PTAM belongs to the class of so-called acyclic phase-type (APH) distributions, which
is defined as the class of CPH distributions whose associated Markov process is irreversible.
Cumani (1982) derived three c.d.f.-equivalent canonical forms for the APH distributions and
proved that any APH distribution with m transient states could be represented by one of the
equivalent forms with 2m−1 as the minimum number of parameters, assuming no probability
mass at zero. Each one of the canonical forms is identifiable. The same conclusion was also
obtained in Telek and Horváth (2007). We briefly recall their results in Theorem 2.2.2.

Theorem 2.2.2. Suppose that X follows an APH(π,S) of order m, and let the eigenvalues,
or diagonal terms1, of −S be denoted by (D1, D2, . . . , Dm−1, Dm). Let πi be the initial prob-
ability that the Markov process starts at state i, assuming no probability mass at zero. Then,
the minimal number of parameters required to represent the distribution of X is 2m− 1, and
there are three c.d.f.-equivalent canonical forms, with different underlying Markov processes
{X(t)}t≥0, as shown in Figures 2.4, 2.5 and 2.6, where D1 ≥ D2 ≥ · · · ≥ Dm are the ordered
eigenvalues of −S and π with π′e = 1 are the initial probabilities. Moreover, xi := πm+1−iD1

and yi := Di
πm+1−i∑m+1−i
j=1 πj

are transition rates in canonical forms 2 and 3, respectively. With

these relationships, they will be c.d.f.-equivalent to canonical form 1.

The proof is available from Cumani (1982).

1Since −S is upper triangular, its eigenvalues are its diagonal elements.
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1 2 3 m m+ 1
Dm Dm−1 Dm−2 D2 D1

π1 π2 π3 πm

Figure 2.4: Canonical Form 1 of the APH.

1 2 3 m m+ 1
xm Dm Dm−1 D3 D2

xm−1 x2 x1

Figure 2.5: Canonical Form 2 of the APH.

1 2 3 m m+ 1
y1 y2 y3 ym−1 Dm

D1 − y1 D2 − y2 D3 − y3

Figure 2.6: Canonical Form 3 of the APH.
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Accordingly, their representations can be obtained. For the canonical form 1,

π =


π1
π2
...

πm−1

πm

 , S =



−Dm Dm 0 0 . . . 0 0 0
0 −Dm−1 Dm−1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . −D3 D3 0
0 0 0 0 . . . 0 −D2 D2

0 0 0 0 . . . 0 0 −D1


. (2.7)

For the canonical form 2,

π =


1
0
...
0
0

 , S =



−
∑m

i=1 xi xm xm−1 xm−2 . . . x4 x3 x2
0 −Dm Dm 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . −D4 D4 0
0 0 0 0 . . . 0 −D3 D3

0 0 0 0 . . . 0 0 −D2


. (2.8)

For the canonical form 3,

π =


1
0
...
0
0

 , S =



−D1 y1 0 0 . . . 0 0 0
0 −D2 y2 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . −Dm−2 ym−2 0
0 0 0 0 . . . 0 −Dm−1 ym−1

0 0 0 0 . . . 0 0 −Dm


. (2.9)

In light of Theorem 2.2.2, it is possible for different APH distributions with different
underlying Markov processes to be c.d.f.-equivalent, even with the minimal number of pa-
rameters of 2m−1. This implies that the APH distribution will be non-identifiable as it can
be represented by different canonical forms. Fortunately, each one of the canonical forms
is identifiable. Therefore, the APH distribution is regarded as an appropriate subclass of
phase-type distributions for modelling purposes, provided that one specifies which of the
canonical forms is to be utilized [Okamura and Dohi (2016); Bobbio and Cumani (1992)].

2.2.2 Identifiability of the Coxian distribution

In view of Figure 2.6, the canonical form 3 belongs to a Coxian distribution with the con-
straint that the states are ordered. In fact, the ordering of states is an indispensable condition
for canonical form 3 to be identifiable. Without such ordering, it will be possible to create
c.d.f.-equivalent representations even within the class of Coxian distribution. Rizk et al.
(2019) investigated this issue in depth. We briefly recall their results in Theorem 2.2.3.
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Theorem 2.2.3. Consider two Coxian distributions of the same order m with different
representations (πa,Sa) and (πb,Sb), where π′

a = π′
b = (1, 0, . . . , 0). Then, they are c.d.f.-

equivalent only if following two conditions hold true.

(i) The exit rates from the first state are equal in both models, that is, h1a = h1b.

(ii) The diagonal entries in Sa are a permutation of those in Sb.

Proof. See Rizk et al. (2019).

Following Theorem 2.2.3, an approach for constructing a non-identifiable candidate of a
Coxian distribution was developed in Rizk et al. (2019). It is presented as Algorithm 1:

Algorithm 1 Construction of a non-identifiable candidate for a Coxian distribution [Rizk
et al. (2019)]
Require: Same order m.
Input: πa,Sa, where π′

a = (1, 0, . . . , 0).
Output: (πb,Sb) such that πb = πa and Sb ̸= Sa.

1: Fix the exit rate from the first state, that is, h1a = h1b.
2: Consider a possible permutation of the diagonal entries in Sa. This will result in the diagonal terms of Sb.
3: Solve for off-diagonal terms in Sb based on moment-matching method2.

Algorithm 1 will be the theoretical foundation for the proposed mathematical proof for
the identifiability of the PTAM, which will be discussed in the next section.

2.3 Identifiability of the PTAM

The principal contribution of this chapter is contained in this section. Since the PTAM
belongs to a special class of APH distributions, it also needs to be compared with the
three canonical forms when investigating its identifiability. According to Definition 2.1.2,
the following two characteristics of the PTAM can be observed when comparing it with the
canonical forms:

(i) The number of parameters is 2m− 1.

(ii) The first 2m− 1 states are ordered except the last state.

Clearly, the PTAM does not belong to any one of the three canonical forms. In fact, it almost
falls into canonical form 3, the only violation being the freedom of the last state. Due to
this violation, the identifiability of the PTAM cannot be immediately guaranteed by the
canonical forms. On the other hand, the two parameter constraints on the PTAM - constant

2The off-diagonal terms are solved based on equating the kth moments of the two models, where k =
1, 2, 3, . . .. We start with k = 1 until all the terms are solved. The details of this moment-matching method
are available in Rizk et al. (2019).
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λ and the constraint (2.4) on h′is - will increase the model identifiability, counteracting the
freedom associated with the last state. So, we could ask ourselves: which aspect takes
over? The non-identifiability concern brought about by the the freedom of last state or the
identifiability improvement resulting from imposing parameter constraints on λ and h′is? If
it is the former, then the PTAM will be non-identifiable; if it is the latter, then the PTAM
will be identifiable.

We approach this problem by considering an ad-hoc mathematical proof based on Rizk
et al. (2019). The main methodology being utilized is ‘proof by contradiction’. Given the
PTAM, we will examine all the possibilities of constructing non-identifiable candidates. If
there is no possible way to construct any non-identifiable candidates, then we will have
established that the PTAM is identifiable.

2.3.1 Identifiability of the PTAM for fixed large m

In this section, we initially fix the number of statesm assuming it is large, and then construct
non-identifiable candidate first by fixing the exit rate and then permuting the diagonal terms
of the intensity matrix.

Before beginning the proof, a modified algorithm needs to be developed for constructing
a non-identifiable candidate for the PTAM. We present it as Algorithm 2.

Algorithm 2 Construction of a non-identifiable candidate for the PTAM
Require: Same order m.
Input: πa, h1a, hma , sa, λa, where π′

a = (1, 0, . . . , 0).
Output: (πb, h1b, hmb , sb, λb) such that πb = πa and (h1a, hma , sa, λa) ̸= (h1b, hmb , sb, λb).

1: Fix the exit rate from the first state, that is, h1a = h1b.
2: Consider a possible permutation of the diagonal entries in Sa. This will result in the diagonal terms for Sb.
3: Verify that the parameter constraints - constant transition rate and (2.4) - are satisfied in Sb, so that the candidate is

eligible to be a PTAM.
4: Verify that the moments are matched between two models.

Unlike Algorithm 1, Step 3 in Algorithm 2 aims at verifying whether the model is still
eligible as a PTAM after fixing the first exit rate and permuting the diagonal terms in the
transition matrix. This step is needed because the parameters are independent in the case of
a Coxian distribution as defined in Rizk et al. (2019), whereas the parameters for the PTAM
have constraints. Thus, one must verify if the model is still eligible as a PTAM. In fact, as
will be pointed out further, it is generally difficult to construct a non-identifiable candidate
whose dying rates satisfy (2.4), which prevents the algorithm from going through in Step 3.
In that case, one does not even need to consider verifying the moments in Step 4, because
the construction has already failed at Step 3. We now begin the proof.
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Proof of the identifiability of the PTAM for large m

Proof. In this proof, we will discuss three cases separately as Cases 1, 2 and 3. They
correspond to different treatments on the permutations of the diagonal terms of the transition
matrix.

Case 1

In Case 1, we will consider whether Sb, as a non-identifiable candidate, can be possibly
produced after ordering the diagonal terms of Sa in descending order. According to Definition
2.1.2, the h′is are increasing. Thus, the first m − 1 terms on the diagonal entries in Sa are
decreasing: −h1−λ > −h2−λ > · · · > −hm−1−λ, which is satisfactory as they are already
ordered. However, the last term −hm can fall anywhere, its location depending on the value
of λ. Therefore, we will split Case 1 into sub-cases as explained below.

Case 1.1

Case 1.1 considers the instance where −hm is neither the smallest nor the largest diagonal
term. Mathematically, the diagonal terms of Sb after ordering become

−h1 − λ > −h2 − λ > · · · > −hn − λ ≥ −hm ≥ −hn+1 − λ · · · > −hm−1 − λ, (2.10)

where m ≥ 6, 1 ≤ n ≤ m− 2. Then hb, if it exists, should be

hb =



h1
h2
...
hn

hm − λ
hn+1
...

hm−1 + λ


. (2.11)

Notice that extra points hm−λ and hm−1+λ break the smooth structure of h1, h2, . . . , hm−1,
as shown in Figure 2.3. Therefore, by Proposition A.2.1 in Appendix A, hb cannot be
described by any alternative parameter sb. Thus, it is impossible to satisfy (2.4). In this
case, Step 3 in Algorithm 2 failed.

Case 1.2

Case 1.2 considers the instance where −hm is the largest diagonal term. Mathematically,
the diagonal terms of Sb after ordering become

−hm ≥ −h1 − λ > −h2 − λ > · · · > −hm−1 − λ, (2.12)
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where m ≥ 6. Then hb, if it exists, should be

hb =


h1

h1 + λ+ h1 − hm
...

hm−2 + λ+ h1 − hm
hm−1 + λ

 . (2.13)

Note that the second to (m− 1)th terms in hb can be seen as the corresponding components
of ha being shifted upwards by λ+ h1 − hm. Thus, the last term breaks the smooth pattern
as shown in Figure 2.3. Therefore, by Proposition A.3.1 in Appendix A, hb cannot be
described by any alternative parameter sb. Thus, it is impossible to satisfy (2.4) and Step 3
in Algorithm 2 failed.

Case 1.3

Case 1.3 considers the instance where −hm is the smallest diagonal element. Mathematically,
the diagonal terms of Sb after ordering become

−h1 − λ > −h2 − λ > · · · > −hm−1 − λ ≥ −hm, (2.14)

where m ≥ 6. Notice that the status quo holds, so that Case 1.3 is unnecessary. However,
it is included for the sake of completeness.

Case 1 Conclusion

Therefore, in Case 1, when we intend to construct a non-identifiable candidate, Sb, after
ordering the diagonal terms in descending order, there is no possible way to construct a
valid candidate as Step 3 in Algorithm 2 will fail.

Case 2

We will consider whether Sb, as a non-identifiable candidate, can be possibly produced after
ordering the diagonal terms of Sa in descending order and putting an arbitrary term last. It
is allowed to put a term last because the PTAM requires freedom of the last state. In Case
2, we will consider moving a term preceding −hm last.

Case 2.1

In Case 2.1, we require that the term being moved satisfies following conditions.

• The term is not right before −hm.

• The term is not the first term, −h1 − λ.
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Mathematically: −h1−λ > −h2−λ > · · · > −hk−λ > · · · > −hn−λ ≥ −hm ≥ −hn+1−λ >
· · · > −hm−1 − λ, where 3 ≤ n ≤ m− 1, 1 < k < n, m ≥ 6. After moving −hk − λ last, we
have

hb =



h1
...

hk−1

hk+1
...
hn

hm − λ
hn+1
...

hm−1

hk + λ



. (2.15)

Notice that the terms h1, . . . , hk−1, hn+1, . . . , hm−1, lie on the original curve. However, the
terms hk+1, . . . , hn, are shifted leftwards by one position from the original curve. Therefore,
by Proposition A.2.1, Case 2.1 cannot satisfy (2.4) and Step 3 in Algorithm 2 failed3.

Case 2.2

In Case 2.2, we require that the term being moved satisfies following conditions.

• The term is not right before −hm.

• The term is the first term, −h1 − λ.

• −hm is not the smallest term among the diagonal terms.

Mathematically: −h1−λ > −h2−λ > · · · > −hn−λ ≥ −hm ≥ −hn+1−λ > · · · > −hm−1−λ,
where 1 ≤ n ≤ m− 2, m ≥ 6. After moving −h1 − λ last, we have

hb =



h1
h3 + h1 − h2

...
hn + h1 − h2

hm − λ+ h1 − h2
hn+1 + h1 − h2

...
hm−1 + h1 − h2

h1 + λ


=



h2 + (h1 − h2)
h3 + (h1 − h2)

...
hn + (h1 − h2)

hm + (h1 − h2)− λ
hn+1 + (h1 − h2)

...
hm−1 + (h1 − h2)

h1 + λ


. (2.16)

3If n = m−1, then the points hn+1, . . . , hm−1 will disappear. However, the argument remains unchanged.
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We have the terms h2 + (h1 − h2), h3 + (h1 − h2), . . . , hn−1 + (h1 − h2) as the original curve
shifted upwards by (h1−h2). In addition, an extra entry hm+(h1−h2)−λ breaks the pattern
shown in Figure 2.3. Therefore, either by Proposition A.2.1 or A.3.1, Case 2.2 cannot satisfy
(2.4) and Step 3 in Algorithm 2 failed.

Case 2.3

In Case 2.3, we require that the term being moved satisfies following conditions.

• The term is not right before −hm.

• The term is the first term, −h1 − λ.

• −hm is the smallest term among the diagonal terms.

Mathematically: −h1 − λ > −h2 − λ > · · · > −hm−1 − λ ≥ −hm, m ≥ 6. After moving
−h1 − λ last, we have

hb =



h2 + (h1 − h2)
h3 + (h1 − h2)

...
hm−1 + (h1 − h2)
hm + (h1 − h2)− λ

h1 + λ


. (2.17)

We have the terms h2 + (h1 − h2), h3 + (h1 − h2), . . . , hn−1 + (h1 − h2) as the original curve
shifted upwards by (h1−h2). In addition, an extra entry hm+(h1−h2)−λ breaks the pattern
shown in Figure 2.3. Therefore, either by Proposition A.2.1 or A.3.1, Case 2.2 cannot satisfy
(2.4) and Step 3 in Algorithm 2 failed.

Case 2.4

In Case 2.4, we require that the term being moved satisfies following conditions.

• The term is right before −hm.

• The term is not the first term, −h1 − λ.
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Mathematically: −h1−λ > −h2−λ > · · · > −hn−λ ≥ −hm ≥ −hn+1−λ > · · · > −hm−1−λ,
where 2 ≤ n ≤ m− 1, m ≥ 6. After moving −hn − λ last, we have

hb =



h1
...

hn−1

hm − λ
hn+1
...

hm−1

hn + λ


. (2.18)

Since at least three points determine the structure of hb, the terms h1, h2, . . . , hn−1, hn+1,
. . . , hm−1 require that hb has to have same structure as ha. Therefore, we will have λ =
hm− hn. Substituting that into Sb and hn will yield an identical distribution with identical
parameters. Therefore, Case 2.4 does not work out.

Case 2.5

In Case 2.5, we require that the term being moved satisfies following conditions.

• The term is right before −hm.

• The term is the first term, −h1 − λ.

Mathematically: −h1 − λ ≥ −hm ≥ −h2 − λ > · · · > −hm−1 − λ, where m ≥ 6. After
moving −h1 − λ last, we have

hb =


h1

h2 + λ+ h1 − hm
...

hm−1 + λ+ h1 − hm
h1 + λ

 . (2.19)

We have the terms h2 + λ + h1 − hm, . . . , hm−1 + λ + h1 − hm as the original curve shifted
upwards by (λ+ h1 − hm), which breaks the pattern shown in Figure 2.3. Therefore, either
by Proposition A.3.1, Case 2.2 cannot satisfy (2.4) and Step 3 in Algorithm 2 failed.

Case 2 Conclusion

In Case 2, we considered moving an arbitrary term before −hm to the last position after
the diagonal terms of Sb are ordered. There is no possible way to construct a valid non-
identifiable candidate as Step 3 in Algorithm 2 will fail.
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Case 3

In Case 3, similar to Case 2, we will consider moving an arbitrary term after −hm last.

Case 3.1

In Case 3.1, we require that the term being moved satisfies following conditions.

• −hm is not the largest diagonal terms.

• The term is not right after −hm.

Mathematically: −h1 − λ > −h2 − λ > · · · > −hn − λ ≥ −hm ≥ −hn+1 − λ > · · · >
−hj −λ > · · · > −hm−1−λ, where 1 ≤ n ≤ m− 4, n+2 ≤ j ≤ m− 2, m ≥ 6. After moving
−hj − λ last, we have

hb =



h1
h2
...
hn

hm − λ
hn+1
...

hj−1

hj+1
...

hm−1

hj + λ



. (2.20)

Notice that h1, h2, . . . , hn, hj+1, . . . , hm−1 lie on the original curve. However, hn+1, . . . , hj−1 is
shifted rightwards by one position from the original curve, because of an extra point hm−λ.
Therefore, by Proposition A.2.1, Case 3.1 cannot satisfy (2.4) and Step 3 in Algorithm 2
failed.

Case 3.2

In Case 3.2, we require that the term being moved satisfies following conditions.

• −hm is not the largest diagonal terms.

• The term is right after −hm.
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Mathematically: −h1−λ > −h2−λ > · · · > −hn−λ ≥ −hm ≥ −hn+1−λ > · · · > −hm−1−λ,
where 1 ≤ n ≤ m− 3, m ≥ 6. After moving −hn+1 − λ last, we have

hb =



h1
h2
...
hn

hm − λ
hn+2
...

hm−1

hn+1 + λ


. (2.21)

Since at least three points determine the structure of hb, the terms h1, h2, . . . , hn, hn+2,
. . . , hm−1, require that hb has same structure as ha. We will then have λ = hm−hn+1. Sub-
stituting that into Sb will yield an identical distribution with identical parameters. Therefore,
Case 3.2 does not work out.

Case 3.3

In Case 3.3, we require that the term being moved satisfies following conditions.

• −hm is the largest diagonal terms.

Mathematically: −hm ≥ −h1 − λ > −h2 − λ > · · · > −hn − λ > · · · > −hm−1 − λ, where
1 ≤ n ≤ m− 2, m ≥ 6. After moving −hn − λ last, we have

hb =



h1
h1 + (λ+ h1 − hm)

...
hn−1 + (λ+ h1 − hm)
hn+1 + (λ+ h1 − hm)

. . .
hm−1 + (λ+ h1 − hm)

hn + λ


. (2.22)

We have the terms h1+(λ+h1−hm), . . . , hj−1+(λ+h1−hm), hj+1+(λ+h1−hm), . . . , hm−1+
(λ+ h1 − hm) as the original curve shifted upwards by (λ+ h1 − hm). Moreover, the missing
point hj + (λ + h1 − hm) breaks the pattern shown in Figure 2.3. Therefore, either by
Proposition A.2.1 or A.3.1, Case 3.3 cannot satisfy (2.4) and Step 3 in Algorithm 2 failed.
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Case 3 Conclusion

In Case 3, we considered moving an arbitrary term after −hm to the last position from
the ordered diagonal terms, and found that there is no possible way to construct a valid
non-identifiable candidate as Step 3 in Algorithm 2 will fail.

Overall conclusion

By combining Cases 1, 2 and 3, we have shown that it is impossible to construct a non-
identifiable candidate as Sb because the corresponding exit rates hb fail to satisfy (2.4)
which is a requirement in Step 3 in Algorithm 2. The proof is now complete.

Because Step 3 in Algorithm 2 failed, we do not have to attempt to go to Step 4 to
determine the parameters by moment matching. However, it is crucial to stress that the
proof presented in this section works only when m ≥ 6. In fact, when m < 6, it will be
relatively easier to find a non-identifiable candidate whose dying rates satisfy constraint (2.4)
because there are fewer elements in h. In that case, several sub-cases in Cases 1, 2 or 3 will
go through, which will give rise to non-identifiable candidates after verifying the moments
in Step 4. This will be discussed later in Section 2.3.3.

After having provided a thorough proof in this section, we may now present Theorem
2.3.1 regarding the identifiability of the PTAM for fixed m and m ≥ 6:

Theorem 2.3.1. Consider the PTAM of order m with parameters θ = (λ, h1, hm, s,m).
Given the value of m and m ≥ 6, then the PTAM is identifiable.

2.3.2 Identifiability of the PTAM for different m

In Section 2.3.1, we have determined the identifiability of the PTAM when m is fixed and
m ≥ 6. In this section, we will continue investigating the identifiability of the PTAM,
treating the number of states m as one of the model parameters.

According to Rizk et al. (2021), the survival function of a Coxian distribution has the
following form:

SX(t) =
m∑
k=1

pkSYk(t), (2.23)

where
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pk =


(

h1
λ+h1

)
, k = 1,(

λ
λ+h1

)
· · ·
(

λ
λ+hk−1

)(
hk

λ+hk

)
, k = 2, . . . ,m− 1,(

λ
λ+h1

)
. . .
(

λ
λ+hm−1

)
, k = m,

(2.24)

Yk = Z1 + · · ·+ Zk, (2.25)

Zj ∼ exp(λ+ hj), j = 1, 2, . . . ,m− 1, (2.26)

Zm ∼ exp(hm). (2.27)

Each Yk follows a general Erlang distribution. Moreover, it is a classical result that Yk can
further be expressed as a mixture of exponential distributions. That is,

SYk(t) =
k∑
i=1

qi(k)SZi(t), (2.28)

where q1(1) = 1, with

qi(k) =
k∏
j=1
j ̸=i

λ+ hj
hj − hi

, i = 1, 2, . . . , k, (2.29)

(2.30)

for 1 < k < m, and

qi(m) =


(

hm
hm−hi−λ

)∏m−1
j=1
j ̸=i

λ+hj
hj−hi , i = 1, 2, . . . ,m− 1,∏m−1

j=1
λ+hj

λ+hj−hm , i = m,
(2.31)

for k = m.

In other words, there are two layers of mixtures. We can combine these two layers and
express the survival function as a final mixture of exponential distributions:

SX(t) =
m∑
k=1

pkSYk(t) =
m∑
k=1

pk

k∑
i=1

qi(k)SZi(t) =
m∑
i=1

p̃iSZi , (2.32)

where

p̃i =
m∑
k=i

pkqi(k), i = 1, 2, . . . ,m. (2.33)
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In the context of the PTAM, since it is possible to have λ+ hi = hm for certain values of
λ and i, (2.32) can have m− 1 summands as the two summands with the same exponential
terms can be grouped together.

Lemma 2.3.2. Consider two Coxian distributions with no probability mass at zero. Let their
orders be ma and mb and let their transition intensity matrices be Sa and Sb, respectively.
Suppose that the diagonal terms of −Sa have na distinct elements and are denoted by λ

(a)
1 <

λ
(a)
2 < · · · < λ

(a)
na . The diagonal terms of the matrix for −Sb have nb distinct elements and

are denoted by λ
(b)
1 < λ

(b)
2 < · · · < λ

(b)
nb . We have that if na ̸= nb, then fSa(t) ̸= fSb(t).

Proof. In light of (2.32) in conjunction with grouping the terms having the same exponent,
we can write

SSa(t) =
na∑
i=1

p̃i,naSZ(a)
i
(t) =

na∑
i=1

p̃i,nae
−λ(a)i t,

where Z
(a)
i is exponential with rate λ

(a)
i and p̃i,na is the mixing probability corresponding to

S
Z

(a)
i
(t); and

SSb(t) =

nb∑
i=1

p̃i,nbSZ(b)
i
(t) =

nb∑
i=1

p̃i,nbe
−λ(b)i t,

where Z
(b)
i is exponential with rate λ

(b)
i and p̃i,nb is the mixing probability corresponding to

S
Z

(b)
i
(t).

• If λ
(a)
1 > λ

(b)
1 , then

lim
t→∞

SSa(t)

SSb(t)

= lim
t→∞

SSa(t)e
λ
(b)
1 t

SSb(t)e
λ
(b)
1 t

= lim
t→∞

∑na
i=1 p̃i,nae

−(λ
(a)
i −λ(b)1 )t

p̃1,nb +
∑nb

i=2 p̃i,nbe
−(λ

(b)
i −λ(b)1 )t

= 0

̸= 1.

Therefore, SSa(t) ̸= SSb(t).
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• If λ
(a)
1 < λ

(b)
1 , then

lim
t→∞

SSa(t)

SSb(t)

= lim
t→∞

SSa(t)e
λ
(a)
1 t

SSb(t)e
λ
(a)
1 t

= lim
t→∞

p̃1,na +
∑na

i=2 p̃i,nae
−(λ

(a)
i −λ(a)1 )t∑mb

i=1 p̃i,nbe
−(λ

(b)
i −λ(a)1 )t

=±∞
̸= 1.

Therefore, SSa(t) ̸= SSb(t).

• If λ
(a)
1 = λ

(b)
1 and p̃1,na ̸= p̃1,nb , then

lim
t→∞

SSa(t)

SSb(t)
=
p̃1,na +

∑na
i=2 p̃i,nae

−(λ
(a)
i −λ(a)1 )t

p̃1,nb +
∑nb

i=2 p̃i,nbe
−(λ

(b)
i −λ(b)1 )t

=
p̃1,na
p̃1,nb

̸= 1.

Therefore, SSa(t) ̸= SSb(t).

• If λ
(a)
1 = λ

(b)
1 and p̃1,na = p̃1,nb , then we continue to compare the remaining terms. That

is, SSa(t) − p̃1,naSZ(a)
1
(t) and SSb(t) − p̃1,nbSZ(b)

1
(t). To achieve this, we compare λ

(a)
2

and λ
(b)
2 in the similar fashion as above.

Continuing this process, we see that in order for SSb(t) = SSb(t), all the exponential rates
and the corresponding coefficients must be the same. However, this is not possible because
na ̸= nb.

Theorem 2.3.3. Given two PTAMs with p.d.f.’s fSa(t) and fSb(t), if ma ̸= mb, then
fSa(t) ̸= fSb(t).

Proof. • If the diagonal terms of −Sa and −Sb are all distinct, then na = ma and
nb = mb. Since na ̸= nb, then the result immediately follows by applying Lemma 2.3.2.

• If the diagonal terms of −Sa and −Sb are not all distinct for both −Sa and −Sb, then
we must have λa + hia = hma and λb + hib = hmb for certain values of λa, λb and i. In
that case, na = ma− 1 and nb = mb− 1. Since na ̸= nb, then the result still follows by
applying Lemma 2.3.2.

• If for instance the diagonal terms of −Sa and −Sb are not all distinct, then we must
have na = ma − 1 and nb = mb.

24



– If mb ̸= ma − 1, then na ̸= nb, and the result still follows by applying Lemma
2.3.2.

– If mb = ma − 1, then na = nb. In that case, the representations of fSa(t) and
fSb(t) will consist of same number of exponential terms with corresponding rates
as presented in (2.34) and (2.35):

h1a + λa < h2a + λa < · · · < hia + λa = hm < · · · < hma−1 + λa (2.34)

and

h1b + λb < h2b + λb < · · · < hmb < · · · < hmb−1 + λb. (2.35)

Observe that (2.34) exhibits a smooth pattern as the dying rates h1a, h2a, . . . , hma−1

are simply shifted up by λa. However, this observation does not hold true for (2.35)
as the term hmb breaks the smoothness of the pattern. Since having the same pat-
tern is a necessary condition for fSa(t) and fSb(t) to have the same exponential
rates, it is therefore not possible to have the same exponential rates. Then, we
can still conclude that fSa(t) ̸= fSb(t).

Therefore, based on all the possible cases discussed above, it is not possible to have
fSa(t) = fSb(t) if ma ̸= mb.

Corollary 2.3.4 can be obtained by taking the contrapositive statement of Theorem 2.3.3.

Corollary 2.3.4. Given two PTAMs with p.d.f.’s fSa(t) and fSb(t), if fSa(t) ≡ fSb(t), then
ma = mb.

We may now present Theorem 2.3.5 regarding the identifiability of the PTAM.

Theorem 2.3.5. Consider the PTAM of order m with parameters θ = (λ, h1, hm, s,m), then
the PTAM is identifiable when m ≥ 6.

Proof. By Theorem 2.3.1, the PTAM is identifiable for fixed m and m ≥ 6. Therefore, if we
still want to construct any non-identifiable candidate, we must relax the condition that m
is fixed. If we do it, we need to determine if there exists an Sb that qualifies for different
m. However, by Corollary 2.3.4, it is not possible for two p.d.f.-equivalent PTAMs to have
different values of m. Therefore, we may conclude that it is impossible to find an Sb, even
the condition that m is fixed is relaxed.

2.3.3 Non-identifiability of the PTAM when m < 6

In Sections 2.3.1 and 2.3.2, we have proved that the PTAM is identifiable when m ≥ 6. In
this section, we will explain why the PTAM is non-identifiable for m < 6. Moreover, we will
provide detailed illustrative examples regarding non-identifiable candidates constructed by
applying Algorithm 2.
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The case m = 2

When m = 2, the parameter s does not even need to be specified. We have

Sa =

[
−(h1 + λ) λ

0 −h2

]
, ha =

[
h1
h2

]
. (2.36)

According to Algorithm 2, we can construct

Sb =

[
−h2 (h2 − h1)
0 −(h1 + λ)

]
, hb =

[
h1

h1 + λ

]
. (2.37)

Since the parameter s is not specified, (2.4) is automatically satisfied. Since there are no
other parameters to be determined based on the moment matching condition, we are done.
Therefore, for m = 2, the PTAM is not identifiable, with a non-identifiability construction
as specified above.

It is straightforward to see that in view of this construction, one can create countless
non-identifiable candidates as long as 0 ≤ h1 ≤ h2 and λ > 0.

The case m = 3

We have

Sa =

−(h1 + λ) λ 0
0 −(h2 + λ) λ
0 0 −h3

 , ha =
h1h2
h3

 . (2.38)

According to Algorithm 2, we can construct 3!−1 = 5 possible candidates for Sb by permuting
the diagonal elements of Sa. One of the permutations yields

Sb =

−h3 (h3 − h1) 0
0 −(h1 + λ) (h3 − h1)
0 0 −(h2 + λ)

 , hb =
 h1
2h1 + λ− h3

h2 + λ

 . (2.39)

Since h has three elements, the parameter s will be specified as one of the parameters of
the PTAM. However, it still does not play its role in terms of parameter constraint, because
given three elements, we can always find a corresponding s. Thus, (2.4) is automatically
satisfied. In addition, we need λ > h3 − h1 to maintain the increasing pattern of hb.

We now move to Step 4 of Algorithm 2. We must verify whether the moments are
matched, given the parameter constraints of the PTAM. That is, we would like to check
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whether

π′
aSa

−1e = π′
bSb

−1e, (2.40)

where π′
a = π′

b = (1, 0, . . . , 0). It turns out that only when λ = (h3−h1)2
(h3−h2) can Step 4 be

satisfied. Thus, as long as λ = (h3−h1)2
(h3−h2) , countless non-identifiable candidates can also be

obtained via (2.39).
To verify this, we now present a detailed example following this construction. Consider

the PTAM with θa = (λa, h1a, hma, sa,ma) = (6.243918, 0.6, 2.8, 2, 3), which gives

Sa =

−6.843918 6.243918 0
0 −8.268764 6.243918
0 0 −2.8

 , ha =
 0.6
2.024846

2.8


and another model with θb = (λb, h1b, hmb, sb,mb) = (2.2, 0.6, 8.268764, 1.109574, 3), which
yields

Sb =

−2.8 2.2 0
0 −6.843918 2.2
0 0 −8.268764

 , hb =
 0.6
4.643918
8.268764

 .
Notice that h1a = h1b = 0.6 and Sa and Sb have permuted diagonal terms, which is in

line with Rizk et al. (2019). What is more, λa = (h3a−h1a)2
(h3a−h2a) = 6.243918. It can be verified

graphically that the above two PTAMs have equivalent p.d.f.’s.

The case m = 4

We have

Sa =


−(h1 + λ) λ 0 0

0 −(h2 + λ) λ 0
0 0 −(h3 + λ) λ
0 0 0 −h4

 , ha =

h1
h2
h3
h4

 . (2.41)

According to Algorithm 2, we can construct 4! − 1 = 23 possible candidates for Sb by
permuting diagonal terms of Sa. One of the permutations yields
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Sb =


−(h2 + λ) h2 + λ− h1 0 0

0 −h4 h2 + λ− h1 0
0 0 −(h3 + λ) h2 + λ− h1
0 0 0 −(h1 + λ)

 , hb =


h1
h1 + h4 − h2 − λ
h1 + h3 − h2

h1 + λ

 .
(2.42)

Since h has more than three elements, the parameter s starts to play its role as (2.4) in
terms of parameter constraint. Therefore, (h1, h4, λ, s) has to be carefully chosen to ensure
that hb can be described by a suitable s∗. That is,

h1 + h4 − h2 − λ =

[
2

3
hs∗1 +

1

3
(h1 + λ)s∗

] 1
s∗

, (2.43)

h1 + h3 − h2 =

[
1

3
hs∗1 +

2

3
(h1 + λ)s∗

] 1
s∗

. (2.44)

Moreover, we need to have

max(h3 − h2, h4 − h3) < λ < h4 − h2 (2.45)

in order to maintain the increasing pattern of hb. Finally, as before we would like to test
whether the moments are matched, that is,

π′
aSa

−ke = π′
bSb

−ke, where k = 1, 2, 3, . . . . (2.46)

Solving for (h1, h4, λ, s) that satisfy the constraints (2.43)–(2.46) is quite involved. A nu-
merical method needs to be considered as there are transcendental equations involved. Ac-
cordingly, a tolerance level ϵ for the method has to be specified.

We now present a detailed example following this construction. Consider the PTAM with

θa = (λa, h1a, hma, sa,ma) = (0.05873815, 1.883377, 2.020888, 3.885586, 4),

which yields

Sa =


−1.942115 0.05873815 0 0

0 −1.991135 0.05873815 0
0 0 −2.036808 0.05873815
0 0 0 −2.020888

 , ha =

1.883377
1.932397
1.978070
2.020888


and another model with

θb = (λb, h1b, hmb, sb,mb) = (0.1077578, 1.883377, 1.942115, 37.60599, 4),
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which yields

Sb =


−1.991135 0.1077578 0 0

0 −2.020888 0.1077578 0
0 0 −2.036808 0.1077578
0 0 0 −1.942115

 , hb =

1.883377
1.913130
1.929050
1.942115

 .
Similarly, notice that h1a = h1b = 1.883377 and Sa and Sb have permuted diagonal terms,
which is in line with Rizk et al. (2019). What is more, ha and hb follow our PTAM structure
and can be described by sa and sb, respectively. It can be verified graphically that the above
two PTAMs have equivalent p.d.f.’s with a tolerance level ϵ < 0.00001 in the numerical
method. In addition, it can be verified that this example corresponds to Case 2.2, the
difference being that Algorithm 2 went through.

The case m = 5

The non-identifiability construction for m = 5 is completely analogous to the case where
m = 4. Thus, we will directly provide a detailed example. Consider the PTAM with

θa = (λa, h1a, hma, sa,ma) = (0.523579, 0.0004428392, 0.5240306,−21.15625, 5),

which yields

Sa =

−0.5240218 0.523579 0 0 0
0 −0.5240279 0.523579 0 0
0 0 −0.5240366 0.523579 0
0 0 0 −0.5240518 0.523579
0 0 0 0 −0.5240306

 , ha =
0.0004428392

0.000448902
0.0004575883
0.0004728287
0.5240306


and another model with

θb = (λb, h1b, hmb, sb,mb) = (0.5235851, 0.0004428392, 0.5240218392,−26.34487, 5),

which yields

Sb =

−0.5240279 0.5235851 0 0 0
0 −0.5240306 0.5235851 0 0
0 0 −0.5240366 0.5235851 0
0 0 0 −0.5240518 0.5235851
0 0 0 0 −0.5240218

 , hb =
0.0004428392
0.0004455372
0.0004515255
0.0004667659
0.5240218392

 .
It can be verified graphically that the above two PTAMs have equivalent p.d.f.’s with a
tolerance level ϵ < 0.00001 in the numerical method. In addition, it can be verified that this
example corresponds to Case 2.2, difference being that Algorithm 2 went through.
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2.4 Discussion

It can be seen that the identifiability of the PTAM improves as m increases. When m = 2,
countless non-identifiability constructions can be achieved. When m = 3, countless non-
identifiability constructions can be achieved subject to certain constraints on λ. Whenm = 4
or m = 5, the non-identifiability construction becomes more difficult as more constraints
are involved. In this instance, although non-identifiable candidates can be established in
theory, it does not affect much the reliability of parameters as the parameters are still rather
close. All of these conclusions are consistent with intuition: as the parameter constraints
are increasingly strong as m increases, the model will move closer and closer towards being
identifiable. Until when m ≥ 6, the model will then become identifiable.

Last but not least, the threshold m = 6 exactly explains the balance between the two
forces discussed earlier in this chapter: the non-identifiability concern brought about by the
freedom of the last state and the identifiability improvement associated with the parameter
constraints in the PTAM. It is now clear that when 2 ≤ m < 6, the former dominates
whereas the latter dominates when m ≥ 6.

2.5 Conclusion

In this chapter, we have thoroughly investigated the identifiability of the PTAM. The PTAM
is identifiable when m ≥ 6, but possibly non-identifiable when 2 ≤ m < 6. However,
identifiability is only the first topic being investigated since other noisy measurements will
hinder the reliability of parameter estimation when it comes to practical implementations.
Such issues rest with the concept of estimability which will be discussed in Chapter 3.
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Chapter 3

An Objective Measure of Estimability
for Statistical Models

In this chapter, a novel definition of estimability is proposed in order to objectively quantify
estimability in the context of statistical models. More specifically, this objectivity is achieved
via a carefully designed c.d.f. sensitivity measure, under which the threshold will be tailored
to the empirical c.d.f. and therefore become an experiment-based quantity. The proposed
definition which is validated to be innately sound, will then be applied to assess and improve
the estimability of the PTAM.

3.1 Motivation

In Chapter 2, we have established the identifiability of the PTAM for m ≥ 6, where m
denotes the number of states. We also provided illustrative examples of non-identifiable
PTAM for 2 ≤ m < 6 to clarify the concept. The identifiability, or mathematical uniqueness,
guarantees that no other c.d.f.-equivalent representations of the model exists and that the
likelihood function has a unique global maximum.

However, identifiability does not imply estimability. Although the model representation
is unique, parameter estimates can still be unreliable when the profile likelihood functions
are extremely flat, as a large range of different estimates can produce nearly the same
likelihood.[Raue et al. (2009)]. According to Cheng (2021), the profile likelihood functions
of h1, hm and s of the PTAM turn out to be flat, which gives rise to this estimability issue.

3.2 Literature review on estimability

3.2.1 Methods for estimability assessment

Estimability is also referred to as practical identifiability in the literature. The non-estimability
issue will arise in the case of flat likelihood functions [Raue et al. (2009)], or equivalently,
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the insensitivity of the model c.d.f. with respect to its parameters [McLean and McAuley
(2012)], which may be due to the following two reasons:

(i) The model c.d.f. is insensitive with respect to parameter changes. Accordingly, this
aspect involves the model sensitivity.

(ii) The effect of one parameter on the c.d.f. might be offset by that of one of the other
parameters. This is defined as parameter correlation.

If the model is identifiable, then unreliable parameter estimates, if any, will be caused by
non-estimability issues that may be due to experimental error including data quality (too
few or too noisy), algorithm approximation or other noisy measurements [Miao et al. (2011)].
Unlike identifiability, estimability is less well-defined and its characterization has remained
an open problem. While it is straightforward to think qualitatively that parameters can
be “loosely estimated” under noisy measurements, one would need to define quantitatively
what this really means [Raue et al. (2009); Gontier and Pfister (2020)].

Estimability has been widely studied in system biology where an ODE model is utilized
to model dynamic biological systems. For instance, it is assumed that

dx(t)

dt
= f(t,x(t),u(t),θ), (3.1)

y(t) = h(x(t),u(t),θ) + ϵ(t), (3.2)

where

x(t) ∈ Rm is a vector of state variables,

y(t) ∈ Rd is the output vector,

u(t) ∈ Rp is the known system input vector,

θ ∈ Rq is the parameter vector,

ϵ(t) ∼ N(0, σ2(t)Id) is the measurement noise.

There are four broad types of methodologies for investigating estimability. We briefly
describe them next.

The Monte Carlo method

The first method involves repeated parameter estimation from a large number of data sets
simulated by the Monte Carlo method. To apply this method, threshold values for parameter
uncertainty levels are required to distinguish estimable and non-estimable parameters. Let
θ0 be the nominal parameters obtained from either fitting the model to original data or from
prior knowledge [Miao et al. (2011)]. Let θ̂i be the parameter estimates at the ith trial which
are based on data simulated from the model having θ0 as its parameters. Then, the average
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relative estimation error (ARE) associated with θ̂
(k)
i , the kth element of θ̂i, is defined as

AREk :=
1

N

N∑
i=1

|θ(k)0 − θ̂
(k)
i |

|θ(k)0 |
, (3.3)

where θ
(k)
0 is the kth element θ0 and k = 1, 2, . . . , q. Then, Miao et al. (2011) defined non-

estimability as occurring when the ARE of a parameter is sufficiently high, or equivalently,
exceeds a pre-selected threshold ∆.

Methods based on the correlation matrix or the Fisher information matrix

According to Petersen et al. (2001), the Fisher information matrix (FIM) associated with
the ODE model is given by

FIM =
N∑
i=1

(
∂ŷi

∂θ̂

)T
V −1

(
∂ŷi

∂θ̂

)
, (3.4)

where (
∂ŷi

∂θ̂

)
is defined as the sensitivity matrix, and

V is a known positive definite matrix of weights on the variances.

Rodriguez-Fernandez et al. (2006) proposed a correlation matrix approach for analyzing the
estimability of the ODE model. By the Cramér-Rao Theorem, the covariance matrix can be
obtained as

C ≈ FIM−1, (3.5)

the correlation between θi and θj being

rij =
Cij√
CiiCjj

, i ̸= j, 1 ≤ i, j ≤ q.

Similarly, Quaiser and Mönnigmann (2009) proposed a total correlation measure, and θi and
θj are deemed non-estimable if their correlation is sufficiently high, or equivalently, exceeds
a certain threshold ∆.

There exist several methods focusing on the FIM. Dochain and Vanrolleghem (2001)
proposed that the condition number, which is defined as the ratio of the largest eigenvalue
to the smallest eigenvalue of the FIM, can also be used to assess estimability. The larger the
condition number, the more correlated the parameters, and the less estimable the parameters
will be. The model will then be non-estimable if the condition number is sufficiently high,
or equivalently, exceeds a certain threshold ∆. In addition, Brun et al. (2001) proposed
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a collinearity index to measure the parameter correlations. The model will be more non-
estimable if the collinearity index is relatively large. A threshold ∆ is also needed in that
case.

Methods based on the model sensitivity

The third approach is based on the model sensitivity. As seen from (3.4), the FIM is obtained
in terms of the sensitivity matrix. Thus, the sensitivity matrix may be extracted from the
FIM and analyzed specifically. The sensitivity matrix S with observation times (t1, . . . , tN)
is defined as

SdN×q(t1, · · · , tN) :=



∂y1(t1;θ)
∂θ1

· · · ∂y1(t1;θ)
∂θq

...
. . .

...
∂yd(t1;θ)
∂θ1

· · · ∂yd(t1;θ)
∂θq

...
...

...
...

...
...

∂y1(tN ;θ)
∂θ1

· · · ∂y1(tN ;θ)
∂θq

...
. . .

...
∂yd(tN ;θ)

∂θ1
· · · ∂yd(tN ;θ)

∂θq


.

Several methods are based on the sensitivity matrix. Jacquez and Greif (1985) calculated
the sample correlation between the matrix columns. If ρ(S.i,S.j) is close to one within a
threshold ∆, then θi and θj are considered non-estimable. Other methods exist such as the
principal components analysis (PCA) technique [Degenring et al. (2004)], the orthogonal
method [Yao et al. (2003)] and the eigenvalue method [Vajda et al. (1989)]. They all rely on
a subjective threshold ∆.

If the model is sufficiently simplified and involves fewer parameters, the sensitivity func-
tion ∂S(t)

∂θ
can be solved analytically, in which case the sensitivity matrix is not needed.

Holmberg (1982) proposed a visual inspection approach on the sensitivity function. The
larger the sensitivity measure of one parameter, the greater the change in the model c.d.f.
with respect to the change of that parameter. If the sensitivity functions of certain param-
eters are linearly dependent, then those parameters are functionally related. The drawback
of this approach is that correlation cannot be quantified based on graphs. Moreover, sub-
jective assessment is needed when resorting to visual inspection. Determining whether the
graphs of the sensitivity functions are linearly dependent will depend on the experimenter’s
assessment.

Methods based on profile likelihood

Raue et al. (2009) proposed an explicit definition of estimability that is based on the profile
likelihood function. They defined the profile likelihood confidence interval for parameter θi
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as

Ci,∆ := {θi|PL(x; θ̂i)− PL(x; θi) < ∆}, (3.6)

where PL(·) is the profile likelihood function of θi and ∆ is a subjectively chosen threshold.
Then, θi is said to be non-estimable if Ci,∆ is infinite. In other words, given a certain

threshold ∆, there exists a δi > 0 such that for all |θi| > δi, PL(x; θ̂i)−PL(x; θi) < ∆ holds
true. This definition is mathematically clear as it relies on a binary event: whether Ci,∆ is
infinite or not. However, a subjective threshold ∆ is still required as in the case of other
methods.

3.2.2 Relationships between identifiability, estimability and sen-
sitivity

Informally, sensitivity refers to the degree to which a model will be affected by its parameter
values. Graphically, the more sensitive a model is with respect to one parameter, the more
noticeably the model’s c.d.f. will be affected by changes in that parameter. In this chapter,
we quantify this concept by the c.d.f. sensitivity measure to be defined in (3.7).

The concept of sensitivity can bridge identifiability and estimability. From the perspective
of sensitivity, if a statistical model f(x;θ) is non-identifiable with the non-identifiable set
being

A := {θ1,θ2 ∈ Θ|∀x, f(x;θ1) = f(x;θ2)},

then f will have zero sensitivity if the parameter changes within A since the model c.d.f.
will not change. Thus, the non-identifiability issue cannot be overcome by improving the
experimental design because the model output will be the same for all x.

On the other hand, if the sensitivity is not zero, then different parameters will produce
different model c.d.f.’s. In that case, different x will produce different model outputs, and the
experiment will contribute to providing some information towards parameter inference. The
more sensitive the model with respect to one parameter, the more estimable that parameter
will be. Although, as previously mentioned, different measures such as those based on
correlations, condition numbers and eigenvalues may be employed, in each case a threshold
in connection with sensitivity must be set.

It should be emphasized that identifiability and estimability are equally important. If
a model is non-identifiable, then the likelihood function will have multiple global maxima.
In that case, although we are certain that a numerical algorithm is based on maximizing
the likelihood function, we may question the reliability of the parameter estimates produced
by that algorithm since other maxima may potentially exist. In the case of estimability,
although we are certain that the MLEs are unique, we may as well question the reliability
of the parameter estimates produced by that algorithm since a wide variety of estimates can
produce nearly the same likelihood values.
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3.3 Proposed methodology

Based on a thorough review of the literature, very little research on estimability appears to
have been conducted in connection with statistical models. To the best of our knowledge,
there is only one paper, namely Gontier and Pfister (2020), that studies estimability on
a statistical model, wherein a new definition of estimability based on a model selection
perspective is proposed. One of their contributions is the elimination of the subjective
threshold in (3.6) by introducing a Bayes factor into the new definition. Our contribution
also aims at addressing the problem of having to set a subjective threshold. Rather than
eliminating it, we shall make the threshold an objective, experiment-based quantity.

In order to do so, a methodology needs to be established, which relates the confidence
region to the experimental protocol. To achieve this, we rely on following two considerations:

(i) The curvature of the likelihood function reflects the sensitivity of the model (c.d.f.)
with respect to the parameters [McLean and McAuley (2012)].

(ii) The non-estimability issue is defined as occurring when the likelihood-based confidence
interval is infinite [Raue et al. (2009)].

With respect to the first consideration, we replace the likelihood-based confidence re-
gion in Raue et al. (2009) with an innovative confidence region that based on a carefully
designed c.d.f. sensitivity measure. The purpose of defining such a c.d.f. sensitivity measure
is to relate the confidence region to the experimental error by quantifying them into single
numbers. Then, by comparing the quantified numbers under the same measure, one may
indirectly achieve the comparison between the confidence region and the experimental error.
In that case, the threshold will be tailored to the experimental protocol and then, become
objective. Additionally, in light of the second consideration, we define the non-estimability
issue as occurring when this innovative confidence region is infinite.

Several preliminary definitions are needed before defining estimability. They are pre-
sented as Definitions 3.3.1–3.3.8.

Definition 3.3.1. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Then, for θ1, θ2 ∈ Θ, the c.d.f.
sensitivity between f(x;θ1) and f(x;θ2) with respect to data x = {x1, x2, . . . , xN} is defined
as

max
xi∈x

∣∣∣F (xi;θ1)− F (xi;θ2)
∣∣∣. (3.7)

Definition 3.3.2. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Then, for all real number e > 0,
f(x;θ1) and f(x;θ2) are said to be indistinguishable with respect to e if their c.d.f. sensitivity
with respect to data x = {x1, x2, . . . , xN} is no greater than e. That is, for θ1, θ2 ∈ Θ, e > 0,

max
xi∈x

∣∣∣F (xi;θ1)− F (xi;θ2)
∣∣∣ ≤ e. (3.8)
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Definition 3.3.3. For a given statistical model M = {f(x;θ) : θ ∈ Θ}. Consider the proce-
dure utilized for obtaining parameter estimates for θ based on the data x = {x1, x2, . . . , xN}
and the numerical algorithm being implemented. We define such a procedure as experiment
Φ.

Definition 3.3.4. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Let f(x; θ̂) be an estimated model
of f with respect to experiment Φ, and F̂n(t) be the empirical c.d.f. (ECDF) obtained from
Φ. Then, the experimental error of Φ is defined as the c.d.f. sensitivity between the estimated
model and the ECDF. That is,

ϵ := max
xi∈x

∣∣∣F (xi; θ̂)− F̂n(xi)
∣∣∣ . (3.9)

Definition 3.3.5. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Let f(x; θ̂) be an estimated model
of f with respect to experiment Φ. Then, f(x;θ) is said to be indistinguishable with respect
to Φ if f(x;θ) and f(x; θ̂) are indistinguishable with respect to the experimental error ϵ as
defined in (3.9). That is, for θ ∈ Θ,

max
xi∈x

∣∣∣F (xi; θ̂)− F (xi;θ)
∣∣∣ ≤ ϵ. (3.10)

Definition 3.3.6. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Let f(x; θ̂) be an estimated model
of f with respect to experiment Φ; then the set N (f,Φ) ⊂ Θ is called a c.d.f. sensitivity-based
confidence region (CSCR) with respect to Φ if

N :=

{
θ ∈ Θ

∣∣∣max
xi∈x

∣∣F (xi; θ̂)− F (xi;θ)
∣∣ ≤ ϵ

}
. (3.11)

where ϵ is as defined in (3.9).

Definition 3.3.7. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
dim(Θ) = d1 is the parameter space. Define a sub-space P ⊂ Θ with dim(P) = d2 < d1.
Define R := Θ \ P so that dim(R) = d1 − d2, and let the parameters in R be r =
{r1, r2, . . . , rd1−d2}. Let θB denote the boundary of the domain in the parameter space Θ.
Then, a statistical model M1 = {g(x;p) : p ∈ P} with parameter space P is said to be a
sub-model of M if

lim
r→rB

F (x;θ) = G(x;p), (3.12)

where rB are the elements in θB corresponding to r, and G is the associated c.d.f.
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Definition 3.3.8. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space. Then, F is said to be the sub-model family of M if it comprises
all the sub-models of M. Namely,

F :=
n⋃
i=1

Mi, (3.13)

where Mi is a sub-model of M and n ≥ 1 is the number of sub-models.

The principal contribution in this chapter is the definition of the estimability of a statis-
tical model that follows.

Definition 3.3.9. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} with
parameter space Θ. Then, M is said to be non-estimable with respect to experiment Φ if its
CSCR with respect to experiment Φ is infinite. Accordingly, M is said to be estimable if its
CSCR with respect to experiment Φ is bounded.

Observe that expression (3.9) quantifies the experimental error as ϵ. It can also be inter-
preted as the tolerance level within which the estimated model c.d.f. can vary. The CSCR
essentially includes all possible parameters such that the c.d.f. sensitivity of model having
those parameters is less than the experimental error. Clearly, the smaller the experimental
error, the smaller the CSCR, this being due to the fact that the experimental error is set as
an upper bound in (3.11).

The next step is to make Definition 3.3.9 applicable in practice, as this definition may
not be of practical use if utilized directly. Theorem 3.3.10 addresses this issue.

Theorem 3.3.10. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Assume that M has a sub-model
family F :=

⋃n
k=1 Mk. Then, M is non-estimable if there exists at least one sub-model

Mk = {g(x;p) : p ∈ P} which satisfies both of the following conditions:

(i) max
xi∈x

∣∣∣F (xi; θ̂)−G(xi; p̂)
∣∣∣ ≤ ϵ, where ϵ is as defined in (3.9), and F and G are the

associated c.d.f.’s.

(ii) Let rB be the boundary associated with Mk, that is, limr→rB F (x;θ) = G(x;p), then
rB consists of either ∞ or −∞.

Proof. By Definition 3.3.7, we have

lim
r→rB

F (x;θ) = G(x;p). (3.14)

Let p̃(r) be the estimates of p for given values of r. Assuming the parameters are estimated
under the same numerical algorithm, then for all x, we have

lim
r→rB

F (x; p̃(r) ∪ r) = G(x; p̂). (3.15)
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Subsequently, based on (3.15), we have

lim
r→rB

max
xi∈x

∣∣∣F (xi; θ̂)− F (xi; p̃(r) ∪ r)
∣∣∣ = max

xi∈x

∣∣∣F (xi; θ̂)−G(xi; p̂)
∣∣∣ . (3.16)

Applying conditions (i) and (ii), (3.16) then implies that,

∃δj > 0 such that ∀|rj| > δj,max
xi∈x

∣∣∣F (xi; θ̂)− F (xi; p̃(r) ∪ r)
∣∣∣ ≤ ϵ,

where j = 1, 2, . . . , d1 − d2.
Thus, p̃(r)∪r will be in the CSCR by Definition 3.3.6. In that case, the CSCR is infinite

in R. Then, by Definition 3.3.9, M will be non-estimable with respect to experiment Φ.

Consequently, Corollary 3.3.11 can be obtained as the complement of Theorem 3.3.10:

Corollary 3.3.11. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Let f(x; θ̂) be an estimated model
to experiment Φ. Then, M is estimable if one of the following statements holds true:

(i) M does not have the sub-model family F .

(ii) As M has the sub-model family F :=
⋃n
k=1Mk, then for all Mk ∈ F , (i) and (ii)

specified in Theorem 3.3.10 cannot be simultaneously satisfied.

Interestingly, as can been seen from the next result, the existence of sub-models also
brings some insights into the non-estimability issue in terms of flat profile likelihood surface.

Theorem 3.3.12. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. If M has a sub-model family
F :=

⋃n
k=1Mk, then at least one profile likelihood surface has a finite limit.

Proof. Let Mk = {g(x;p) : p ∈ P} satisfy (i) and (ii) as specified in Theorem 3.3.10, where
k ∈ {1, 2, . . . , n}. In other words, it is Mk that makes M non-estimable. Moreover, let h(·)
be the profile likelihood surface of r. Then, we have

lim
r→rB

h(r) = lim
r→rB

max
p

N∏
i=1

f(xi;θ) = max
p

N∏
i=1

g(xi;p) =: C.
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Let p̃(r) be the parameter estimates of p given certain values of r, under a numerical
maximum-likelihood algorithm. Then, we have1

lim
r→rB

h(r) = lim
r→rB

N∏
i=1

f(xi; p̃(r) ∪ r) =
N∏
i=1

g(xi; p̂) =: Ĉ.

Without any loss of generality, the same logic applies to other sub-models. Therefore, the
profile likelihood surface will have finite limits corresponding to each one of the sub-models.

Therefore, given the kth sub-model Mk, the profile likelihood surface of r will converge
to a finite limit of Ĉ. This is analogous to results available in the literature in that the non-
estimability issue arises from flat profile likelihood functions. The only difference is that,
based on the proposed definition, this flatness is not only obtained by visual inspection, but
is rigorously proved to converge to finite limit(s).

3.4 Validation of the proposed definition

In this section, we will validate the proposed definition and establish that it is innately
sound. The main idea is to show consistencies between the theoretical results and common
sense. This will be achieved by considering multiple perspectives, as discussed in Sections
3.4.1, 3.4.2 and 3.4.3. Finally, these consistencies are further supported by the illustrative
examples presented in Section 3.4.4.

3.4.1 Validation of the data noise, the algorithm noise and the
experimental error

We first validate the data noise, the algorithm noise and the experimental error as specified
in Definitions 3.4.1 and 3.3.4. Without any loss of generality, it is assumed that the exper-
imental error comes from the data noise and the algorithm noise [Chis et al. (2011)]. The
data noise and the algorithm noise can be defined as the following c.d.f. sensitivity measures:

Definition 3.4.1. Consider an identifiable statistical model M = {f(x;θ) : θ ∈ Θ} wherein
Θ is the parameter space and F (x;θ), the associated c.d.f. Let f(x; θ̂) be an estimated model
of f with respect to experiment Φ. Denoting by θ̂T the true value of the parameter estimate,
then the data noise ϵd and the algorithm noise ϵAL of M with respect to experiment Φ can

1Due to algorithm noise, the exact value of max
p

N∏
i=1

f(xi;θ), will slightly deviate from
∏N

i=1 f(xi; p̃(r)∪r).

This explains the difference between C and Ĉ.
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be respectively defined as the following c.d.f. sensitivities:

ϵd := max
xi∈x

∣∣∣FX(θ̂T ;xi)− F̂n(xi)
∣∣∣ , (3.17)

ϵAL := max
xi∈x

∣∣∣FX(θ̂T ;xi)− FX(θ̂;xi)
∣∣∣ . (3.18)

We now validate the data noise and the algorithm noise. As the sample size goes to
infinity,

ϵd := max
xi∈x

∣∣∣FX(θ̂T ;xi)− F̂n(xi)
∣∣∣

→ max
x∈Ω

∣∣∣FX(θ∗;x)− FX(θ
∗;x)

∣∣∣
= 0,

where θ∗ is the true parameter of the model (unknown of course) and Ω is the support of
FX . Notice that the limits of FX(θ̂

T ;xi) and F̂n(xi) are based on asymptotic theories of
consistent estimator θ̂T and ECDF F̂n(t), respectively. Thus, ϵd is a valid measure of the
data noise because it tends to zero as the number of observations increases to infinity. This
agrees with common sense.

Similarly, for the algorithm noise, as the accuracy of the algorithm tends to perfection,

ϵAL := max
xi∈x

∣∣∣FX(θ̂T ;xi)− FX(θ̂;xi)
∣∣∣

→ max
xi∈x

∣∣∣FX(θ̂T ;xi)− FX(θ̂
T ;xi)

∣∣∣
= 0.

This also agrees with common sense as the more accurate the algorithm is, the better the
approximation of θ̂T will be. Thus, ϵAL is a valid measure of the algorithm noise as well.
After validating the data noise and the algorithm noise, we may now validate the experi-
mental error. Notice that

ϵ :=max
xi∈x

∣∣∣FX(θ̂;xi)− F̂n(xi)
∣∣∣

=max
xi∈x

∣∣∣FX(θ̂;xi)− FX(θ̂
T ;xi) + FX(θ̂

T ;xi)− F̂n(xi)
∣∣∣

≤max
xi∈x

∣∣∣FX(θ̂T ;xi)− F̂n(xi)
∣∣∣+max

xi∈x

∣∣∣FX(θ̂;xi)− FX(θ̂
T ;xi)

∣∣∣
= ϵd + ϵAL. (3.19)

Then, as the experimental design tends to perfection, both the data noise and the algorithm
noise will tend to zero. In that case, ϵ will tend to zero by the Squeeze Theorem. Thus, ϵ is
a valid measure of the experimental error.
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It is worth emphasizing that ϵd and ϵAL will be unknown to the experimenter because
one will never2 know the true value of the parameter estimate, θ̂T . Instead, one only knows
θ̂ which is the output of the numerical algorithm. However, this does not prevent us from
validating the proposed measures by applying the Squeeze Theorem.

3.4.2 Validation of the c.d.f. sensitivity-based confidence region

We next validate the definition of the CSCR. Observe that the experimental error, ϵ, is an
upper bound in (3.11). Thus, as the experimental error decreases, the CSCR will shrink,
making the model more estimable, which is consistent with intuition. Now, as was done in
Section 3.4.1, consider the argument that the experimental design tends to perfection. Then,

N :=

{
θ ∈ Θ

∣∣∣max
xi∈x

∣∣F (xi; θ̂)− F (xi;θ)
∣∣ ≤ ϵ

}
→
{
θ ∈ Θ

∣∣∣max
x∈Ω

|F (x;θ∗)− F (x;θ)| ≤ 0

}
=

{
θ ∈ Θ

∣∣∣max
x∈Ω

|F (x;θ∗)− F (x;θ)| = 0

}
=
{
θ ∈ Θ

∣∣∣F (x;θ∗)− F (x;θ) = 0,∀x ∈ Ω
}

=
{
θ ∈ Θ

∣∣∣F (x;θ) = F (x;θ∗),∀x ∈ Ω
}

=: A,

where θ∗ is the true (unknown) parameter of the model.
The CSCR, N , will then collapse to A which is exactly the parameter set for which M is

non-identifiable. Therefore, if the experimental error goes to zero, then any remaining unre-
liability associated with the parameter estimates must originate from the non-identifiability
issue. This agrees with the statement found in the literature to the effect that it is unnec-
essary to analyze estimability if the model is non-identifiable, since the non-identifiability
issue cannot be overcome by improvements in the experimental design. Thus, the consistency
regarding the CSCR further validates the proposed definition of estimability.

3.4.3 Validation by known methods for improving estimability

The proposed definition can also be validated by making use of known methods for improving
estimability. These are discussed next.

2Otherwise, one would be able to calculate θ̂T analytically without resorting to numerical algorithms.
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Increasing the sample size

Increasing the sample size can decrease both ϵd and ϵAL. More observations will not only
decrease the data noise, but also decrease the algorithm noise as the likelihood functions will
then become more and more concave. Then, in light of the arguments presented in Sections
3.4.1 and 3.4.2, ϵ will decrease and the CSCR will shrink, which will improve estimability.
As the sample size tends to infinity, ϵ will tend to zero and the experiment will tend to
perfection. Thus, the proposed definition is consistent with an increase in the sample size.

Increasing the convexity of the log-likelihood function

Another way to increase the sample size is to clone the simulated data multiple times. This is
called the data cloning method [Lele et al. (2007, 2010)]. With this approach, the likelihood
functions become more and more concave, which makes the algorithm approximation more
accurate. Accordingly, ϵAL will decrease. However, it only reduces the algorithm noise. It
cannot improve ϵd as θ̂T will not change. Thus, the proposed definition is consistent with
the data cloning method.

Improving the algorithm design

As with the data cloning method, we can also decrease ϵAL by improving the quality of
the algorithm approximation. However, the data noise will remain unchanged, which is
consistent with intuition as the improvement pertains to the algorithm only.

Securing more complete information

Estimability can also be enhanced if more information is secured. As the data imparts more
complete information, ϵd will decrease. Then, in light of the arguments presented in Sections
3.4.1 and 3.4.2, ϵ will decrease and the CSCR will shrink, which will improve estimability.
Thus, the proposed definition is consistent with securing more complete information.

Using Bayesian inference with sound prior information

The non-estimability issue could also be improved by applying Bayesian methodologies.
Since the likelihood function is flat, the posterior distribution will be highly dependent on
the prior. In that case, sound prior information, say from an expert opinion for example,
will improve parameter estimability as the posterior distribution will then produce narrower
credible intervals. However, it turns out that Bayesian inference on the PTAM involves
the Markov chain Monte Carlo theory which is another big field of study. Thus, we will
specifically investigate this method in Chapter 4.
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3.4.4 Illustrative examples

In Sections 3.4.1, 3.4.2 and 3.4.3, we have theoretically validated the proposed definition
by establishing its consistencies with common sense. This will be further illustrated via
two examples in this section. These examples respectively consider the application of the
proposed definition on discrete and continuous statistical models.

Example A

Consider a constrained binomial model

M =

{
f(k;m, p) =

(
m

k

)
pk(1− p)m−k : mp = λ > 0, m ∈ Z+, 0 < p < 1

}
.

First, the binomial distribution is identifiable, which makes it eligible for estimability
assessment. According to Definition 3.3.8, Θ = {m,λ}, P = {λ}, R = {m}, θB = {0, 1,∞},
rB = {∞}. Then, the sub-model family of M based on rB is

F = M1 :=

{
g(k;λ) =

e−λλk

k!
: λ > 0

}
since the Poisson distribution is the limiting distribution of the binomial distribution as
m→ ∞ with the constraint mp = λ.

Let the underlying model have as its parameters m = 10 and p = 0.07, and consider
following three experiments:

• Experiment 1: The sample size is 50.

• Experiment 2: The sample size is 500.

• Experiment 3: The sample size is 1000.

The estimability assessment results are presented in Table 3.1, Figures 3.1 and 3.2. Table
3.1 compares the experimental error with the c.d.f. sensitivity between the fitted binomial
distribution and its sub-model, which is a direct application of Theorem 3.3.10.

Sample Size Sub-model max
ki∈x

{ ∣∣∣F (ki; m̂, p̂)−G(ki; λ̂)
∣∣∣ } ϵ

50 M1 0.004260893∗ 0.05132765

500 M1 0.004489167∗ 0.02269388

1000 M1 0.01275535 0.004800656

Table 3.1: Comparison between the c.d.f. sensitivity and the experimental error for the
constrained binomial model - Experiments 1 to 3. The asterisk indicates that the binomial
model is non-estimable.
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It can be observed that the experimental error decreases as the sample size increases,
which again validates the definition of the experimental error. According to Theorem 3.3.10,
M is non-estimable with respect to Experiments 1 and 2 because the c.d.f. sensitivity mea-
sure is less than the experimental error. However, M becomes estimable, with respect to
Experiment 3.

The above conclusions are further supported by Figure 3.1 where the CSCRs for Exper-
iments 1, 2 and 3 are visualized. In line with Theorem 3.3.10, the CSCR for Experiments
1 and 2 are both infinite indeed. As the sample size increases, the CSCR shrinks, until it
becomes bounded in Experiment 3 where M becomes estimable.

Figure 3.1: Contour plots of the CSCR on the parameter space of M. Shades from yellow
to orange correspond to high and low values of the c.d.f. sensitivity measure. The contour
lines display the boundary of the CSCR and the asterisk indicates the optimal parameter
estimates m̂ and p̂. Left panel: Experiment 1 - non-estimable. Middle panel: Experiment 2
- non-estimable but with some improvements. Right panel: Experiment 3 - estimable.

A more intuitive way of interpreting the concept of estimability is displayed in Figure
3.2. In Experiments 1 and 2, the model is assessed to be non-estimable. This can be
intuitively interpreted as, the inferential power from the data displayed in the histogram is
not sufficiently noticeable to tell apart the estimated p.m.f.s of the underlying model and its
sub-model. This is exactly why estimability is also referred to as “practical identifiability”
since the shape of the histogram cannot “practically identify” the estimated p.m.f.’s of the
underlying model and its sub-model. On the other hand, in Experiment 3, the model is
assessed to be estimable. Thus, the inferential power from the data displayed in the histogram
is sufficiently noticeable to tell the estimated p.m.f.’s apart. In this case, the shape of the
histogram will be sufficient to favor the underlying model and negate its sub-model. The
histogram then “practically identifies” the underlying model.

However, these conclusions cannot be reached only by eyeballing Figure 3.2, which is why
the CSCR associated with the proposed definition is crucial.
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Figure 3.2: Simulated data, estimated model and estimated sub-model for the constrained
binomial model. Left panel: Experiment 1 - non-estimable. Middle panel: Experiment 2 -
non-estimable but with some improvements. Right panel: Experiment 3 - estimable.

Example B

Consider a constrained Pareto model

M =

{
f(x;α, θ) =

αθα

(x+ θ)α+1
:
α

θ
= λ > 0, α > 0, θ > 0

}
.

First, the Pareto distribution is identifiable, which makes it eligible for estimability as-
sessment. According to Definition 3.3.8, Θ = {α, λ}, P = {λ}, R = {α}, θB = {0,∞},
rB = {∞}. Then, the sub-model family of M based on rB is

F = M1 :=
{
g(x;λ) = λe−λx : λ > 0

}
since the exponential distribution is the limiting distribution of the Pareto distribution as
α → ∞ with the constraint α

θ
= λ.

Let the underlying model have as its parameters α = 3 and θ = 30, and consider following
three experiments:

• Experiment 1: The sample size is 100.

• Experiment 2: The sample size is 250.

• Experiment 3: The sample size is 500.

The estimability assessment results are presented in Table 3.2, Figures 3.3 and 3.4. Table
3.2 compares the experimental error with the c.d.f. sensitivity between the fitted Pareto
distribution and its sub-model, which is a direct application of Theorem 3.3.10. It can be
seen that the results yield the same conclusions as those in Example A.
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Sample Size Sub-model max
xi∈x

{ ∣∣∣F (xi; α̂, θ̂)−G(xi; λ̂)
∣∣∣ } ϵ

100 M1 0.02081047∗ 0.05438388

200 M1 0.0262806∗ 0.02685047

500 M1 0.03654049 0.02500097

Table 3.2: Comparison between the c.d.f. sensitivity and the experimental error for the
constrained Pareto model - experiments 1 to 3. The asterisk indicates that the Pareto model
is non-estimable.

Figure 3.3: Contour plots of the CSCR on the parameter space of M. Shades from yellow
to orange correspond to high and low values of the c.d.f. sensitivity measure. The contour
lines display the boundary of the CSCR and the asterisk indicates the optimal parameter
estimates α̂ and θ̂. Left panel: Experiment 1 - non-estimable. Middle panel: Experiment 2
- non-estimable but with some improvements. Right panel: Experiment 3 - estimable.

Figure 3.4: Simulated data, estimated model and estimated sub-model for the constrained
Pareto model. Left panel: Experiment 1 - non-estimable. Middle panel: Experiment 2 -
non-estimable but with some improvements. Right panel: Experiment 3 - estimable.
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It is crucial to emphasize that the visualization of the CSCR displayed in Figures 3.1 and
3.3 will not be achievable if the parameter space extends to more than three dimensions,
such as the PTAM which will be assessed next. In that case, we will have to fully rely on
Theorem 3.3.10 and compare the c.d.f. sensitivity with the experimental error. The two-
dimensional illustrative examples presented in the previous subsections provide supporting
evidence corroborating the validity of Theorem 3.3.10.

Another crucial aspect is that the algorithm utilized to obtain parameter estimates follows
the algorithm recommended in Section 3.6.1. We will investigate this further in the remaining
part of this chapter.

3.5 Estimability of the PTAM

In Section 3.4, we have established that the proposed definition of estimability is innately
sound. In this section, we will apply this definition to assess the estimability of the PTAM.

3.5.1 Identifiability of the PTAM

The PTAM was proved to be identifiable when the number of states is greater or equal to
six in Chapter 2. Therefore, we may proceed to assess its estimability.

3.5.2 Sub-models of the PTAM

Based on Theorem 3.3.10, one must first investigate and obtain all sub-models of the PTAM
in order to investigate parameter estimability. The results are presented in the following
propositions, the proofs being provided in Appendix B.

Proposition 3.5.1. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. Given m, the limiting distribution as s → ∞ is Coxian of
order 2 with

S =

[
−(λ+ h1) λ

0 −hm

]
, h =

[
h1
hm

]
.

Denote this as sub-model M1.

Proposition 3.5.2. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.
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and f(x;θ), the associated p.d.f. Given m, the limiting distribution as s → −∞ is Coxian
of order m with

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ h1) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ h1) λ
0 0 0 0 . . . 0 −hm

 , h =


h1
h1
...
h1
hm

 .

Denote this as sub-model M2.

Proposition 3.5.3. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. Givenm, the limiting distribution as hm → ∞ and s→ −∞
is Coxian of order m− 1 with

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ h1) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ h1) λ
0 0 0 0 . . . 0 −(λ+ h1)

 , h =


h1
h1
...
h1

h1 + λ

 .

Denote this as sub-model M3.

Proposition 3.5.4. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (ψ, h1, hm, s,m)|hm > h1 > 0, ψ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. According to Cheng et al. (2021), the limiting distribution
as m→ ∞ is

f(t;h1, hm, s, ψ) = e−
∫ t
0 h(u;h1,hm,s,ψ)duh(t;h1, hm, s, ψ),

where

h(t;h1, hm, s, ψ) =


(
(hsm − hs1)

t
ψ
+ hs1

) 1
s
, s ̸= 0,

h
1− t

ψ

1 h
t
ψ
m, s = 0

is the hazard rate of the limiting distribution. Denote this as sub-model M4.
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It is worth pointing out that hm, even though depending on m, still remains in the
expression of the p.d.f. and the hazard rate. This is due to the fact that, while the number
of interpolated dying rates in Figure 2.3 increases as m increases, the value of hm remains
unchanged. In other words, the value of m only controls the number of interpolated rates
between h1 and hm, instead of the actual values of h1 and hm.

Interestingly, as m goes to infinity under the constraint (2.4), the hazard rates under
s ̸= 0 and s = 0, respectively correspond to the generalized Weibull distribution and the
Gompertz law of mortality, which are well-known mortality models [Pham and Lai (2007);
Gompertz (1825)].

Proposition 3.5.5. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. The limiting distribution as hm → ∞ and s → ∞ is
exponential with rate h1 + λ. Denote this as sub-model M5.

Proposition 3.5.6. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ) the associated p.d.f. The limiting distribution as m → ∞ and s → ∞ is expo-
nential with rate hm. This sub-model is again M5, with a different rate parameter for the
exponential distribution.

Proposition 3.5.7. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. The limiting distribution as m → ∞ and s → −∞ is
exponential with rate h1. This sub-model is again M5, with a different rate parameter for
the exponential distribution.

Proposition 3.5.8. Consider the PTAM M = {f(x;θ) : θ ∈ Θ} wherein Θ is the param-
eter space

Θ = {θ = (λ, h1, hm, s,m)|hm > h1 > 0, λ > 0, s ∈ R,m ≥ 6}.

and f(x;θ), the associated p.d.f. The limiting distribution as m → ∞, hm → ∞ and
s → −∞ is exponential with rate h1. This sub-model is again M5, with a different rate
parameter for the exponential distribution.
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Combining all these sub-models, the sub-model family of the PTAM becomes

F :=
5⋃
i=1

Mi.

3.5.3 Simulation studies

In this section, the proposed definition of estimability will be applied to assess the estimability
of the PTAM via simulation studies.

We consider an underlying PTAM with h1 = 0.0007, hm = 0.1542, s = −2.2152, λ =
0.3122 and m = 10. This underlying PTAM is utilized in Chapter 4 to model the aging
process of individuals residing in Channing House - a retirement community in Palo Alto,
California [Hyde (1980)].

In Table 3.3, the proposed definition is applied to assess model estimability with respect
to six experiments:

• Experiment 1: A sample size of 50, 100000 initial values in the algorithm.

• Experiment 2: A sample size of 50, 200000 initial values in the algorithm.

• Experiment 3: A sample size of 500, 100000 initial values in the algorithm.

• Experiment 4: A sample size of 500, 200000 initial values in the algorithm.

• Experiment 5: A sample size of 2000, 100000 initial values in the algorithm.

• Experiment 6: A sample size of 2000, 200000 initial values in the algorithm.

It can be observed from Table 3.3 that

(i) According the Theorem 3.3.10, the PTAM is non-estimable with respect to Experi-
ments 1 to 5, whereas it is estimable with respect to Experiment 6.

(ii) One potential threat to the estimability of the PTAM occurs when s → −∞, which
corresponds to M2 and M3.

(iii) The algorithm noise decreases as the number of initial values increases. This is again a
validation of the proposed definition. However, this trend does not always hold, unless
the algorithm is selected to be that recommended in Section 3.6.1. We will discuss this
shortly in Section 3.6.1.

In conclusion, the non-estimability issue of the PTAM can be thoroughly investigated
utilizing the proposed definition. One may then arrive at an experimental design that makes
the PTAM estimable such as that utilized Experiment 6.
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Sample Size Sub-model
100000 IVs 200000 IVs

max
xi∈x

∣∣∣F (xi; θ̂)−G(xi; p̂)
∣∣∣ ϵ max

xi∈x

∣∣∣F (xi; θ̂)−G(xi; p̂)
∣∣∣ ϵ

50

M1 0.23261 0.05807 0.22661 0.05310
M2 0.02414∗ 0.05807 0.01698∗ 0.05310
M3 0.04271∗ 0.05807 0.01863∗ 0.05310
M4 0.16902 0.05807 0.12708 0.05310
M5 0.36318 0.05807 0.35797 0.05310

500

M1 0.32839 0.04051 0.31173 0.03845
M2 0.02024∗ 0.04051 0.01520∗ 0.03845
M3 0.02352∗ 0.04051 0.02048∗ 0.03845
M4 0.30614 0.04051 0.155581 0.03845
M5 0.33164 0.04051 0.34158 0.03845

2000

M1 0.20239 0.02972 0.26365 0.01824
M2 0.02612∗ 0.02972 0.02270 0.01824
M3 0.03645 0.02972 0.02312 0.01824
M4 0.11637 0.02972 0.15976 0.01824
M5 0.34331 0.02972 0.36079 0.01824

Table 3.3: Comparison between the c.d.f. sensitivity and the experimental error for the
PTAM - experiment 1 to 6. The asterisk indicates that the PTAM is non-estimable.

3.6 Discussion

3.6.1 A recommendation regarding the algorithm design

A recommended though not mandatory design for the algorithm consists of searching a
parameter estimate θ̂T such that the following function g is minimized:

g(θ) = max
xi∈x

∣∣∣FX(θ;xi)− F̂n(xi)
∣∣∣ , (3.20)

where FX , F̂n and x are as defined in Definition 3.3.4. Otherwise, there will possibly exist
counter-intuitive situations where the experimental error actually increases when the algo-
rithm accuracy improves. To verify this, first notice that

ϵ = g(θ̂), (3.21)

ϵd = g(θ̂T ). (3.22)

Accordingly, if θ̂T is based on other optimization criterion instead of (3.20), for instance
the maximization of likelihood, then it is plausible to have ϵ = g(θ̂) < g(θ̂T ) = ϵd before
improving the algorithm accuracy. This is due to the fact that ϵd is not the minimum of
g. Now, let ϵ′ be the experimental error after the algorithm accuracy has improved. As
explained in Section 3.4.3, increasing the algorithm accuracy will not change ϵd but the
experimental error will converge to ϵd, so that it would be possible to have ϵ < ϵ′ < ϵd. This
will result in a counter-intuitive situation. Therefore, the only way to eliminate this concern
is to base θ̂T on minimizing g, in which case ϵd will be the minimum of g.
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3.6.2 Other potential definitions of estimability

Interestingly, minimizing g is essentially equivalent to fitting a regression model to the ECDF
F̂n, treating g as the loss function. This perspective then suggests additional possibilities
for g to define estimability. However, another valid g, if it exists, must also pass all the
validations presented in Sections 3.4.1, 3.4.2 and 3.4.3. For example, consider the mean
absolute deviation, that is,

g(θ) =
1

n

n∑
i=1

∣∣∣FX(θ;xi)− F̂n(xi)
∣∣∣ , (3.23)

where FX , F̂n and x are as defined in Definition 3.3.4. Indeed, we believe that there possibly
exist other alternative choices for g in addition to (3.20) and (3.23), which points to a possible
avenue of research.

Different loss functions will lead to different extents to which the inequality is scaled in
(3.19). The more stringent the inequality scaling (or the further ϵ to ϵd + ϵAL), the less
stringent the estimability assessment will be. This is due to the fact that a smaller ϵ will
more likely produce a narrower CSCR, which makes the model more likely to be assessed as
estimable. Therefore, different loss functions might help experimenters to further investigate
the stringency of the proposed definition.

3.6.3 Estimability versus density approximation

Estimability also relates to density approximation because they both involve measuring how
close models are relative to each other, as displayed in Figures 3.2 and 3.4. Interestingly,
estimability can be converted into a density approximation problem if one switches perspec-
tives. For example, Experiments 1 and 2 in Figures 3.2 and 3.4, while considered to be
disadvantaged from an estimability perspective, can be favored from a density approxima-
tion perspective. This is the case because we can alternatively interpret the results as a good
approximation of the underlying model with its sub-models, since the histogram cannot tell
them apart. Accordingly, we believe that the proposed definition has the potential to be ex-
tended to density approximation problems. In this context, the experimental error will then
provide an objective threshold that determines how well the proposed density approximates
the target density.

3.6.4 Caveat

A potential limitation of the proposed definition pertains to how one can define the non-
estimability issue on the basis of characteristics of the CSCR. Similarly to Raue et al. (2009),
we define the non-estimability issue as occurring when the CSCR is infinite. However, for
sufficiently wide but bounded confidence region, the region is almost as deficient as when it
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is infinite3. This is due to the fact that, as was done in Raue et al. (2009), we also relied on
a binary event: whether the confidence region is infinite or not. There might exists another
mathematical concept pertaining to multidimensional regions which relies on another binary
event instead of finite versus infinite. If such a concept exists, it would be worth attempting
to adapt the threshold to it.

3.7 Conclusion

A novel definition of estimability was proposed to objectively quantify this concept in the
context of statistical models. The proposed definition is similar to an existing method in
that the non-estimability is defined as occurring when the confidence region is infinite. How-
ever, unlike the existing method which utilizes a likelihood-based confidence region, a c.d.f.
sensitivity-based confidence region was proposed with a view to tailor the confidence region
to the experimental protocol. Under that setting, the threshold becomes objective as the
experimental error becomes an experiment-based quantity under the proposed methodology.
Multiple arguments showed that the proposed definition was innately sound as the corre-
sponding theoretical results agree with common sense. The validated definition was then
applied to assess the estimability of the PTAM, which solved the potential non-estimability
issue.

3This is confirmed by Raue et al. (2009).
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Chapter 4

Markov Chain Monte Carlo for
Bayesian Inference on the Phase-Type
Aging Model

In this chapter, we will investigate and implement Bayesian inference with sound prior in-
formation on the PTAM as one of the methods for improving the estimability of the PTAM
presented in Chapter 3, Section 3.4.3. The proposed method provides two methodological
extensions based on an existing MCMC inference method. First, we propose a two-level
MCMC sampling scheme that makes the method applicable to situations where the poste-
rior distributions do not assume simple forms after data augmentation. Secondly, an existing
data augmentation technique for Bayesian inference on continuous phase-type distributions
is further developed in order to incorporate left-truncated data. While numerical experimen-
tal results indicate that the proposed methodology improves parameter estimability for the
PTAM as opposed to the MLE method, this approach may also be utilized as a standalone
model fitting technique.

4.1 Motivation

As presented in Chapter 3, two sources of noises are currently assumed in connection with
estimability. The data noise ϵd and the algorithm noise ϵAL. We begin this chapter by fur-
ther elaborating on ϵAL for the PTAM since it is essentially more complicated than expected.
According to Cheng et al. (2021), the likelihood function of the PTAM with representation
(π,S) and order m, given data set y = (y1, y2, ..., yM), can be simplified using the Kol-
mogorov forward equation. This is due to the fact that only the first row of eSt is utilized
to calculate the density of the PTAM. The likelihood function of the PTAM is then:

L(h1, hm, s, λ,m; t) =
M∏
i=1

π′eStih =
M∏
i=1

m∑
k=1

P1k(ti)hk, (4.1)
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where

P1k(t) =



e−(λ1+h1)t, k = 1,∑k
j=1

(−1)k−1λk−1∏k
i=1
i ̸=j

(hj−hi)
e−(λ+hj)t, k = 2, 3, ...,m− 1,∑m−1

j=1
(−1)m−1λm−1(∏m−1

i=1
i ̸=j

(hj−hi)
)
(λ+hj−hi)

e−hmt + (−1)m−1λm−1∏m−1
i (hm−λ−hi)

e−hmt, k = m.

(4.2)

The gradient and Hessian matrix of the likelihood function are clearly intractable as the
expression of P1k(t) is very complicated, in the sense that it is impossible to find a closed
form representation of the MLEs at which the likelihood function is maximized; nor is it
possible to mathematically manipulate the gradient and the Hessian matrix. As a result,
certain analytical properties of the likelihood function of the PTAM cannot be determined,
which affects parameter estimation. For instance, any hill-climbing algorithm may not lead
to the correct MLEs, because the search might get stuck into local maxima (if any). Such
algorithms only guarantee that the final output approximately ends at one of the local
maxima, but it does not guarantee that it is the global maximum. To circumvent this
problem, the scatter search method used in Cheng (2021) repeatedly randomizes the initial
values of the optimization algorithm. In this chapter, we will develop an alternative approach
based on a Bayesian perspective.

The Bayesian method can be adopted to improve the parameter estimability issue of the
PTAM. It is a powerful approach for improving estimability owing to three main reasons:

(i) If the convexity of the likelihood remains extremely small over the entire parameter
space, then graphically the likelihood function will exhibit a very flat pattern, which
makes the posterior distributions very close to the prior distributions. Therefore, sound
prior information can improve the reliability of the posterior estimates.

(ii) Due to the nature of the Bayesian approach, parameters are inherently random. This
will eliminate the risk of getting stuck into local maxima. Actually, global optimiza-
tion algorithms can also be created by incorporating stochastic components into hill-
climbing algorithms used in frequentist settings. Examples include the scatter search
method where initial values are randomized [Burke et al. (2014)] and the simulated
annealing method which is essentially an MCMC algorithm [Michiels et al. (2007)].

(iii) As an approximate inference technique, the MCMC method changed our traditional
way of thinking from “analytical solution” to “algorithmic approximation”. This trend
is fostered by the advent of the ‘Big Data Era’.

Therefore, employing a Bayesian approach not only improves the parameter estimability
issue brought about by flat likelihood functions, but also eliminates the risk of getting stuck
into local maxima which is a further complication in ϵAL. In the next section, we will provide
a thorough literature review on the MCMC-based Bayesian methodology.
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4.2 Literature review on MCMC

4.2.1 The MCMC method’s role in Bayesian statistics develop-
ment

The debate between frequentist and Bayesian proponents has been well-known and enduring.
Unlike frequentist inference where model parameters are assumed to be unknown constants,
Bayesian inference stands from the view of the experimenter and incorporates the exper-
imenter’s initial belief via prior distributions. The prior distribution represents relevant
information apart from experimental data and is based on the experimenter’s subjective
judgment before the experiment. Different experimenters will assume different prior distri-
butions. The concept of prior distribution has always been attacked by frequentists because
they believe that a subjective component has no place in scientific methods. This caused
Bayesian statistics to nearly stagnate during the first half of 20th century [Tanner and Wong
(2010)].

In Bayesian statistics, the experimenter’s belief will be updated as more experimental
data are collected. The updated belief is depicted by a posterior distribution, taking into
account the information from prior knowledge and experimental data. Therefore, the in-
ference is made on the posterior distribution that contains all the relevant information. In
many problems, we often obtain the posterior density up to a constant of proportionality,
that is, the posterior kernel. Traditional methods rely on obtaining conjugate priors after
inspecting the structure of a posterior kernel. However, some posterior kernels are analyti-
cally intractable, especially for high-dimensional distributions. In that case, the normalizing
constant of the posterior has to be found via numerical integration in order to obtain the
posterior distribution. Several approaches are proposed such as Gaussian quadrature [(Nay-
lor and Smith, 1982; Smith et al., 1985)], importance sampling [(Kloek and Van Dijk, 1978;
Van Dijk and Kloek, 1980)], and Laplace approximation [Tierney and Kadane (1986)]. How-
ever, these approaches only work well when the parameter space has a moderate dimension.
Thus, numerical integration in high-dimensional parameter space has long been the bottle-
neck in the development of Bayesian statistics, until the MCMC method was introduced.

Modern Bayesian statistics with the MCMC method have following advantages:

(i) Pertinent prior knowledge (from experts) can be introduced as model input.

(ii) Using a prior distribution can counteract the non-identifiability issue to some degree,
as it is more likely to converge to global optimum.

(iii) The MCMC method makes it possible to sample from analytically intractable posterior
distribution, especially in high dimensions.

(iv) As an approximate inference technique, the MCMC method changed our traditional
way of thinking from “analytical solution” to “algorithmic approximation”.
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4.2.2 The MCMC method

The MCMC method is a powerful approach that overcomes the bottleneck associated with
sampling from high-dimensional posterior distributions. This technique was first proposed by
Metropolis et al. (1953), with a view to address high-dimensional particle state calculations
in nuclear physics. Later on, Hastings (1970) generalized the method as a statistical sampling
tool and proposed the Metropolis-Hasting algorithm.

At the heart of the MCMCmethod is the construction of a Markov chain whose stationary
distribution is the target distribution π(θ). Under this setting, the parameter samples,
θ1, θ2, . . . , θN , are no longer directly sampled from π(θ) as in the traditional Monte Carlo
method. Instead, the samples are generated by a carefully designed Markov chain based
on the detailed balance condition. This circumvents having to deal with any analytical
difficulties associated with the mathematical expression of π(θ). Finally, as the sample size,
N , becomes large, the samples will converge to the stationary distribution [Brooks et al.
(2011)].

Needless to say, there must be a relationship between the Markov chain and its stationary
distribution. Such a relationship is the so-called detailed balance condition.

Theorem 4.2.1. Consider an ergodic continuous-time Markov chain (CTMC) of size n with
transition kernel pij = k

(
θ(j)|θ(i)

)
, 1 ≤ i, j ≤ n with initial distribution π(θ) having density

πi := π
(
θ(i)
)
, 1 ≤ i ≤ n. Then, a sufficient condition for π to be the stationary distribution

of the CTMC (continuous time Markov chain) is

πipij = πjpji,∀1 ≤ i, j ≤ n. (4.3)

Equation (4.3) is called the detailed balance condition. If the constructed CTMC satisfies
the detailed balance condition, then the CTMC will converge to the stationary distribution
π.

The Metropolis-Hasting algorithm proposed by Hastings (1970) is widely used as one of
the MCMC methods to sample from a probability distribution. In the algorithm, the samples
are generated from a proposal density q(θ) chosen at the discretion of the experimenter, then
the samples are accepted or rejected based on an acceptance probability α determined at
each iteration. Algorithm 3 presents the Metropolis-Hasting algorithm for sampling from
π(θ).
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Algorithm 3 The Metropolis-Hasting algorithm
1: initialization Sample θ(i) from the proposal distribution q(θ), where i ∈ {1, 2, . . . , n}.
2: for k = 2 : N do
3: Sample θ(j) from the proposal distribution θ(j) ∼ q(θ|θ(i)).
4: Calculate the acceptance probability for θ(j) as

αij = min

(
1,
π
(
θ(j)

)
q
(
θ(i)|θ(j)

)
π
(
θ(i)
)
q
(
θ(j)|θ(i)

)) .
5: Simulate u ∼ U(0, 1).
6: If u < αij , then set θ(i) = θ(j).
7: end for

Suppose pij is the transition kernel of the CTMC constructed from the Metropolis-Hasting
algorithm, and Qij is the transition kernel for the proposal distribution. Then,

πipij = π
(
θ(i)
)
αijQij

= π
(
θ(i)
)
min

(
1,
π
(
θ(j)
)
q
(
θ(i)|θ(j)

)
π (θ(i)) q (θ(j)|θ(i))

)
q
(
θ(j)|θ(i)

)
= min

(
π
(
θ(i)
)
q
(
θ(j)|θ(i)

)
, π
(
θ(j)
)
q
(
θ(i)|θ(j)

))
= π

(
θ(j)
)
min

(
1,
π
(
θ(i)
)
q
(
θ(j)|θ(i)

)
π (θ(j)) q (θ(i)|θ(j))

)
q
(
θ(i)|θ(j)

)
= π

(
θ(j)
)
αjiQji

= πjpji.

The detailed balance condition is satisfied. Therefore, π(θ) is the stationary distribution of
the CTMC constructed in the Metropolis-Hasting algorithm.

An intuitive way of looking at the Metropolis-Hasting algorithm is the balance between
two driving forces: (1) the proposal distribution q(.) and (2) the Markov relationship be-
tween the previous and next sample point. While the samples are randomly sampled from
a subjectively defined proposal distribution via the traditional Monte Carlo method, the
Markov chain controls the trajectory of sample paths so that the samples are not totally
independent of each other. As a balance between these two forces, the simulated samples
will converge to π(θ).

Gibbs sampling is a special case of the Metropolis-Hasting algorithm. It is used for sam-
pling from high-dimensional distributions π(θ), where dim(θ) = n > 1. When applying
Gibbs sampling, one does not need to specify other types of proposal distributions. Instead,
the proposal distribution will be the conditional distributions obtained from the target dis-
tribution π(θ). Algorithm 4 presents the Gibbs algorithm for sampling from π(θ).
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Algorithm 4 The Gibbs algorithm
1: initialization Sample (θ1, θ2, . . . , θn) from the proposal distribution q(θ).
2: for k = 2 : N do
3: Sample θ∗1 from π1 (θ1|θ2, θ3, θ4, . . . , θn−1, θn).
4: Sample θ∗2 from π2

(
θ2|θ∗1 , θ3, θ4, . . . , θn−1, θn

)
.

5:
...

6: Sample θ∗n−1 from πn−1

(
θn−1|θ∗1 , θ∗2 , θ∗3 , ..., θ∗n−2, θn

)
.

7: Sample θ∗n from πn−1

(
θn|θ∗1 , θ∗2 , θ∗3 , ..., θ∗n−2, θ

∗
n−1

)
.

8: end for

Without any loss of generality, in each step of the loop in Algorithm 4, the acceptance
probability becomes

α = p(θ∗|θ) = min

(
1,
π (θ∗) q (θ|θ∗)

π (θ) q (θ∗|θ)

)
= min

(
1,
πi
(
θ∗i |θ∗

−i

)
p
(
θ∗
−i

)
πi
(
θi|θ∗

−i

)
πi (θi|θ−i) p (θ−i) πi (θ∗i |θ−i)

)
,

where i = 1, 2, . . . , n. Since the remaining dimensions do not change, θ−i = θ∗
−i. Then, we

have

α = p(θ∗|θ) = min

(
1,
πi
(
θ∗i |θ∗

−i

)
p
(
θ∗
−i

)
πi
(
θi|θ∗

−i

)
πi (θi|θ−i) p (θ−i) πi (θ∗i |θ−i)

)

= min

(
1,
πi
(
θ∗i |θ∗

−i

)
p
(
θ∗
−i

)
πi
(
θi|θ∗

−i

)
πi
(
θi|θ∗

−i

)
p
(
θ∗
−i

)
πi
(
θ∗i |θ∗

−i

))
= min(1, 1)

= 1,

where i = 1, 2, . . . , n. Thus, Gibbs sampling is a special case of the Metropolis-Hasting algo-
rithm with an acceptance rate equal to one [Gianola (2007)].

Geman and Geman (1984) applied Gibbs sampling to the Bayesian restoration of images.
Tanner and Wong (1987) applied Gibbs sampling to data augmentation. Gelfand and Smith
(1990) illustrated the essence of Gibbs sampling more deeply and comprehensively, and
established a relatively mature theory of the MCMC method.

Data augmentation Gibbs sampler

Gibbs sampling is dramatically improved when the data augmentation technique is further
applied. The idea behind data augmentation is to augment the original data y with new
data, x, so that the density function after data augmentation, that is p(θ|x,y), will have
a more tractable form [Tanner and Wong (2010)]. Figure 4.1 and Algorithm 5 present the
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iterative framework and Gibbs algorithm in connection with data augmentation. The tech-
nique consists of a data augmentation step and a posterior sampling step, which respectively
correspond to sampling from p(x|θ, y) and p(θ|x, y).

Figure 4.1: General framework of the data augmentation algorithm.

Algorithm 5 The Gibbs algorithm in conjunction with the data augmentation
1: initialization Sample θ(i) from the proposal distribution.
2: for k = 1 : N do
3: Sample x from p(x|θ(i), y).
4: Sample θ(j) from p(θ|x, y).
5: end for

Proof of convergence [Hobert (2011)]

Proof. The logic behind data augmentation is essentially identical to that justifying the
Gibbs algorithm:

p
(
θ(i)
)
k
(
θ(j)|θ(i)

)
= p

(
θ(i)
) ∫

p1
(
θ(j)|x

)
p2
(
x|θ(i)

)
dx

=

∫
p1
(
θ(j),x

)
p2
(
x,θ(i)

)
p3(x)

dx

=

∫
p2
(
θ(i),x

)
p1
(
x,θ(j)

)
p3(x)

dx

= p
(
θ(j)

) ∫
p2
(
θ(i)|x

)
p1
(
x|θ(j)

)
dx

= p
(
θ(j)

)
k
(
θ(i)|θ(j)

)
,

so that the detailed balance condition is satisfied.

In connection with the proof, one has that the transition kernel of data augmentation
will become

k
(
θ(j)|θ(i),y

)
=

∫
p1
(
θ(j)|x,y

)
p2
(
x|θ(i),y

)
dx.
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Burn-in period and thinning

Although the constructed Markov chain will converge to the target distribution in theory,
one may wonder how many iterations ought to be performed before convergence to the target
distribution is assured. To address this question, a burn-in period is often used. The idea
consists of discarding the samples from the first iteration up to a certain iteration, the final
value being then utilized as the starting point for the samples to be used in the analysis.
According to Lynch (2007), one way to select the burn-in period sample size consists of
visually inspecting the cumulative standard deviation (CSD) plot. The threshold is the
point beyond which the CSD plot does not show significant fluctuations.

Thinning is a common technique to reduce the autocorrelation among the samples. Then,
only one sample point is collected for every L samples. This will reduce the autocorrelation
and makes the samples similar to those obtained from traditional Monte Carlo sampling.
According to Lynch (2007), L can be chosen in terms of the autocorrelation functions (ACFs)
on the original samples, and should be such that the ACFs fall within the tolerance range
after one or two lags. If the ACFs are not decreasing as lags increase, this will indicate that
the constructed Markov chain does not converge.

The mixing time of the MCMC method

A well-known drawback of the MCMC method pertains to the mixing time of the Markov
chain. Although the convergence to the stationary distribution is guaranteed based on the
theory of Markov chain, to the best of our knowledge, there is no theoretical proof that
specifies the threshold beyond which we can reasonably accept the samples and believe that
they are “good enough” approximations of the stationary distribution. To address this
issue, scientific tools such as trace plot and ergodic means are often utilized. However, the
interpretation of the plot results relies on subjective assessment.

On the other hand, when the stationary distribution is multimodal, much longer chain
may be needed to allow the sampling to encompass the entire parameter space. Moreover,
the trace plots might be far more irregular than a level-off pattern. For example, consider
using simulated annealing algorithm to find the global minimum of a multimodal function.
If the initial temperature utilized in the simulated annealing algorithm is too low, then it
will take a significantly long time for the search to escape from one of the troughs, though
the MCMC samples do converge to the multimodal stationary distribution in theory. In that
case, the MCMC samples might appear to converge to a distribution but the search is still
getting stuck in the trough. This phenomenon is defined as “pseudo-convergence” in Brooks
et al. (2011).
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4.3 Literature review on MCMC-based Bayesian infer-

ence applied to the CPH distributions

In this section, existing MCMC algorithms for the CPH distributions are briefly reviewed.
Bladt et al. (2003) first proposed the Gibbs algorithm for the CPH distributions. Later on,
Aslett and Wilson (2011) enhanced the algorithm in terms of data augmentation and special
parameter structures.

4.3.1 Data augmentation for the CPH distributions

The data augmentation scheme with respect to the CPH distributions was proposed by
Asmussen et al. (1996). It is widely applied to EM, MCMC, and variational Bayes algorithms
[Asmussen et al. (1996); Bladt et al. (2003); Aslett and Wilson (2011); Watanabe et al.
(2012); Okamura et al. (2014)]. Consider a CPH distribution of order m with θ = (π,S).
Its likelihood function, given the data set y = (y1, y2, ..., yM), is

L(π,S;y) =
M∏
i=1

π′eSyih, (4.4)

where h = −Se.
According to Asmussen et al. (1996), a sample path associated with a CPH distribution

can be characterized by the initial state, the transitions among states and the sojourn time
at each state. Let X =

{
X(t)(k)

}
t≥0

, k = 1, 2, . . . ,M , be M independent sample paths

augmented from observed absorption time data y =
{
y(k)
}
, k = 1, 2, . . . ,M . Each sample

path is generated by a CPH distribution (π,S) of order m. Then, the likelihood function
for the augmented data, (x,y), is given by

L(θ;x,y) =
( m∏
i=1

πBii

)( m∏
i=1

m∏
j ̸=i

λ
Nij
ij e−λijZi

)( m∏
i=1

h
Ni,m+1

i e−hiZi
)
, (4.5)

where Bi is the number of sample paths starting at state i among M individuals, Nij is
the total number of transitions from state i to state j among M individuals, and Zi is the
total sojourn time in state i among M individuals. In that case, the absorption time for an
individual is equal to the sum of the sojourn times of its corresponding sample path.

4.3.2 Sampling from p(x|θ, y)
Sampling the latent sample path given the absorption time proves to be a difficult problem.
To solve it, Bladt et al. (2003) suggested to make use of the Metropolis-Hasting algorithm
with proposal distribution p(x|θ,Y ≥ y). Rejection sampling is utilized to draw the latent
sample path from the proposal distribution, and the distribution will eventually converge to
p(x|θ,Y = y). However, this method is time-consuming because many sample paths will
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get rejected if some data points in y is large. This will hinder computational efficiency.
Later on, Aslett and Wilson (2011) further improved the methodology by making two

principal contributions:

(i) A faster and more efficient algorithm was developed to simulate the latent sample
path from p(x|θ,y). The algorithm is named the exact conditional sampling (ECS)
algorithm.

(ii) Unlike the CPH distributions considered by Bladt et al. (2003) which assumed full
and unstructured parameters, Aslett and Wilson (2011) took into account the special
parameter structure as indicated by the context of the experiment. Using a reliability
model as an example, they discussed situations where parameters might be zero or have
identical values. For identical parameters, they argued to combine all the relevant terms
in (4.5) so that parameters with same values be sampled from one single distribution.
The zero-valued parameters were ignored when constructing the likelihood function.

Watanabe et al. (2012) proposed another efficient MCMC algorithm to sample the latent
sample path. The method is based on the uniformization technique and backward likelihood
computation. In this chapter, we elected to adopt the ECS algorithm in Aslett and Wilson
(2011) as part of the proposed methodology.

We now conveniently present the ECS algorithms applied to the PTAM in Algorithms
6 and 7, respectively. Since the PTAM is a Coxian distribution whose underlying Markov
process is irreversible, Algorithms 6 and 7 turn out to be somewhat simpler than the original
ECS algorithm that was introduced in Aslett and Wilson (2011).

Algorithm 6 The ECS algorithm [Aslett and Wilson (2011)] applied to the PTAM given
absorption times
1: Sample a starting state i from the probability mass function:

P(X(0) = i|π,S, Y = y) =

(
e′ie

Syh
)
πi

π′eSyh

and set t = 0.
2: With probability

P(X[t, y) = i ∩ Y {y} = m+ 1|S, Y = y,X(t) = i) =
eSii(y−t)hi

e′ie
S(y−t)h

set X[t, y) = i and X(y) = m+ 1 and end the algorithm; else continue.
3: Sample the sojourn time d from

p(δ = d|S, Y = y,X[t, t+ δ) = i,X(t+ δ) ∈ {1, 2, ...,m} \ i)

=
p′
i.e

S(y−t−d)s(−Sii)eSiid∫ y−t
0 p′

i.e
S(y−t−d)s(−Sii)eSiiddδ

and set X[t, t+ d) = i.
4: Update t = t+ d and i = i+ 1, then go to Step 2.
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Algorithm 7 The ECS algorithm [Aslett and Wilson (2011)] applied to the PTAM given
right-censored times
1: Sample a starting state i from the probability mass function

P(X(0) = i|π,S, Y ≥ y) =

(
e′ie

Sye
)
πi

π′eSye

and set t = 0.
2: With probability min

{
1, eSii(y−t)

}
, the sojourn time is d = max{y− t, 0}+T where T ∼ exp(Sii). Else, the sojourn time

is a sample from the finitely supported density on [0, y − t), that is,

p(δ = d|S, Y ≥ y,X(t) = i) ∝ p′
i.e

S(y−t−d)e(−Sii)eSiid

and set X[t, t+ d) = i.
3: j = i+ 1.
4: If j = m+ 1, end the algorithm; else, update t = t+ d and i = j, go to Step 2.

4.3.3 Sampling from p(θ|x, y)
The next step consists of simulating the posterior distribution of the parameter θ from the
augmented data. Fortunately, this step is quite straightforward for the CPH distributions.
The likelihood function consisting of kernels of Dirichlet and Gamma distributions provides
an indication to utilize Dirichlet and Gamma distributions as the conjugate prior distribu-
tions. According to Bladt et al. (2003), the prior distributions are

π ∼ Dirichlet(β1, β2, . . . , βm), (4.6)

λij ∼ Gamma(vij, ξij), (4.7)

hi ∼ Gamma(vi,m+1, ξi,m+1), (4.8)

and posterior distributions after data augmentation are

π|x, y ∼ Dirichlet(β1 +B1, β2 +B2, . . . , βm +Bm), (4.9)

λij|x, y ∼ Gamma(vij +Nij, ξij + Zij), (4.10)

hi|x, y ∼ Gamma(vi,m+1 +Ni,m+1, ξi,m+1 + Zi,m+1). (4.11)

The p.d.f.’s of Dirichlet and Gamma distributions introduced above are as follows:

f(π) :=

∏m
i=1 Γ(πi)

Γ(
∑m

i=1 πi)

m∏
i=1

πβi−1
i , where

m∑
i=1

πi = 1 and βi > 0 for all i, (4.12)

f(λij) :=
ξ
vij
ij λ

vij−1
ij e−ξijλij

Γ(vij)
, where ξij > 0, vij > 0, (4.13)

f(hi) :=
ξ
vi,m+1

i,m+1 λ
vi,m+1−1
i,m+1 e−ξi,m+1λi,m+1

Γ(vi,m+1)
, where ξi,m+1 > 0, vi,m+1 > 0. (4.14)

65



4.3.4 The MCMC algorithm for the CPH distributions

The MCMC algorithm (or Gibbs sampler) for the CPH distributions can finally be con-
structed. It is presented in Algorithm 8.

Algorithm 8 The MCMC algorithm for the CPH distributions [Bladt et al. (2003); Aslett
and Wilson (2011)]
1: initialization θ(0)

2: for k = 1 : N do
3: Sample x from p(x|θ(k−1), y), based on the ECS algorithms for full and right-censored data.
4: Sample θ(k) from p(θ|x, y), based on the Dirichlet and Gamma distributions.
5: end for

Note that x is as previously defined, the M sample paths augmented from the data
y = {y(k)}, k = 1, 2, . . . ,M.

4.4 MCMC for Bayesian inference on the PTAM

As mentioned earlier, there are convincing reasons for applying the Bayesian approach on
the PTAM due to its potential contributions. The MCMC algorithm for Bayesian inference
on the PTAM introduced in this section constitutes the principal contribution of this chap-
ter. This contribution involves two aspects. Firstly, the proposed MCMC algorithm can be
considered as a methodological extension of the existing algorithm in terms of sampling from
p(θ|x, y). This is due to the fact that the likelihood function of the PTAM is so involved that
no simple conjugate prior distributions such as the Dirichlet and Gamma distributions are
adequate. Although special parameter structures such as zero-valued and identical parame-
ters are considered in Aslett and Wilson (2011), the prior conjugacy still holds as it simply
involves deleting and regrouping parameters. However, further extensions are required in the
case of the PTAM, since its parameters exhibit more complicated functional relationships
as a result of the constraint specified in (2.4). Secondly, similarly to Olsson (1996) where
the EM algorithm was developed for censored data from the CPH, we have developed the
MCMC-based Bayesian approach for left-truncated data from the PTAM. This development
is crucial for the estimation of the PTAM parameters based on real-life data, since it is
unlikely that, in practice, each individual will enter the study at the same physiological age.
Thus, there exists additional difficulty in analyzing left-truncated data.

With these contributions, a methodologically extended MCMC algorithm is proposed in
order to carry out the sampling from p(θ|x, y), so that an MCMC-based Bayesian inference
on the PTAM could be achieved.
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4.4.1 Likelihood function of the PTAM with left-truncated data

Taking into account left-truncated data, the likelihood function for the PTAM after data
augmentation becomes the following:

L(λ, h1, hm, s;x,y) =

(∏m−1
i=1 λNi,i+1−Qi,i+1e−λZ

A
i

)(∏m
i=1 h

Ni,m+1

i e−hiGi
)

(∏
i∈A e

−λdi
) , (4.15)

where di is the time at which individual i enters the study, Qij is the total number of
transitions from state i to j which occurred before the entry times, Gi is the total sojourn
time in state i for the portions of the sample paths after the entry times, ZA

i is the total
sojourn time in state i for the sample paths in A, and Nij is as specified in Section 4.3.
Finally, A is defined as

A :=
{
k ∈ Z+

∣∣∣the kth sample path enters the study before reaching state m
}
, (4.16)

where t
(k)
j is the sojourn time at state j for the kth sample path.

The likelihood function (4.15) can be regarded as a generalized version of the likelihood
function given in Asmussen et al. (1996), taking into account left-truncated data. To verify
this, if the data do not involve left truncation, then the Qij’s and di’s will be reduced to zero
for all i and j, A will be reduced to the set of indices of all sample paths, and both the Gi’s
and ZA

i ’s will be reduced to Zi’s for all i. Thus, the likelihood function in (4.15) will boil
down to (4.5). The details of the derivation of the likelihood function (4.15) are presented
in Appendix C.

4.4.2 Characteristics of the posterior distribution of the PTAM

In the PTAM, the posterior distribution of the model parameters is no longer a product of
independent kernels. To verify this, we start by substituting (2.4) into the likelihood function
(4.15):

L(λ, h1, hm, s;x,y) =

(∏m−1
i=1 λNi,i+1−Qi,i+1e−λZ

A
i

)
(∏

i∈A e
−λdi

)
×
( m∏
i=1

(m− i

m− 1
hs1 +

i− 1

m− 1
hsm

)Ni,m+1
s

e−(
m−i
m−1

hs1+
i−1
m−1

hsm)
1
sGi
)
, (4.17)

where s ̸= 0.
Then, the posterior distribution p(λ, h1, hm, s|x,y) can be written as

p(λ, h1, hm, s|x,y) ∝
(
π1(λ)L1(λ;x,y)

)(
π2(h1, hm, s)L2(h1, hm, s;x,y)

)
, (4.18)
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where

π1(λ)L1(λ;x,y) = π1(λ)
(m−1∏

i=1

λNi,i+1−Qi,i+1e−λZ
A
i

)(∏
i∈A

eλdi
)
, (4.19)

π2(h1, hm, s)L2(h1, hm, s;x,y) = π2(h1, hm, s)

×
( m∏
i=1

(m− i

m− 1
hs1 +

i− 1

m− 1
hsm

)Ni,m+1
s

e−(
m−i
m−1

hs1+
i−1
m−1

hsm)
1
sGi
)
,

(4.20)

with πi and Li denoting the respective prior distributions and likelihood functions, for i =
1, 2.

Based on (4.18), one has that the posterior distribution of the PTAM parameters can
be decomposed into two independent posterior distributions: p(λ|x,y) and a joint posterior
distribution p(h1, hm, s|x,y) where

p(λ|x,y) ∝ π1(λ)L1(λ;x,y), (4.21)

p(h1, hm, s|x,y) ∝ π2(h1, hm, s)L2(h1, hm, s;x,y). (4.22)

Thus, we can evaluate the posterior distribution for λ separately using as conjugate prior the
gamma distribution specified in (4.23), which will produce the posterior distribution given
in (4.24) of the same class.

λ ∼ Gamma (vλ, ξλ) , (4.23)

λ|x,y ∼ Gamma
(
vλ +

m−1∑
i=1

Ni,i+1 −
m−1∑
i=1

Qi,i+1, ξλ +
m−1∑
i=1

ZA
i −

∑
i∈A

di

)
. (4.24)

However, the likelihood function of (h1, hm, s) does not consist of independent kernels, which
prevents one from determining conjugate priors. The prior distributions for h1, hm and s
which are then subjectively determined, are taken to be πH1(h1), πHm(hm) and πS(s). We
assume for simplicity that h1, hm and s are independently distributed. Accordingly, their
joint prior distribution, π2(h1, hm, s), will be the product of πH1(h1), πHm(hm) and πS(s).

4.4.3 The proposed methodology for sampling from p(θ|x, y)
Next, a methodology is developed for sampling from the joint posterior distribution given in
(4.20). The Gibbs algorithm can be utilized again, further taking advantage of the MCMC
method. In that case, the proposed algorithm will become a nested MCMC algorithm. The
nested Gibbs algorithm samples from the joint posterior distribution given the augmented
data. The algorithm framework is presented in Figure 4.2, for a p-dimensional posterior
distribution. Since general notations are adopted in Figure 4.2, we believe that the algo-
rithm is applicable to other models whose posterior distributions are complicated after data
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augmentation. The PTAM considered in this paper is but one of its applications, where
p(θ|x, y) = p(h1, hm, s, λ|x, y).

Figure 4.2: The MCMC algorithm framework for the proposed methodology.

As in the Gibbs sampling algorithm, in order to sample from p(h1, hm, s|x, y) in the
(k + 1)th iteration for example, we need to sample from the corresponding conditional dis-
tributions. These are also the transition kernels of the Gibbs algorithm, that is,

p
((
h
(k+1)
1 , h(k)m , s(k)

)∣∣∣(h(k)1 , h(k)m , s(k)
))

:= p
(
h1
∣∣h(k)m , s(k),x, y

)
, (4.25)

p
((
h
(k+1)
1 , h(k+1)

m , s(k)
)∣∣∣(h(k+1)

1 , h(k)m , s(k)
))

:= p
(
hm
∣∣h(k+1)

1 , s(k),x, y
)
, (4.26)

p
((
h
(k+1)
1 , h(k+1)

m , s(k+1)
)∣∣∣(h(k+1)

1 , h(k+1)
m , s(k)

))
:= p

(
s
∣∣h(k+1)

1 , h(k+1)
m ,x, y

)
. (4.27)

Define g(h1, hm, s) := π2(h1, hm, s)L2(h1, hm, s;x,y).

First, we introduce a sampling scheme for p
(
h1
∣∣h(k)m , s(k),x, y

)
, the conditional distribu-

tion of h1. We know that

p
(
h1
∣∣h(k)m , s(k),x, y

)
=

g
(
h1, h

(k)
m , s(k)

)
∫ h(k)m

0
g
(
h1, h

(k)
m , s(k)

)
dh1

∝ g
(
h1, h

(k)
m , s(k)

)
. (4.28)

Rejection sampling can then be utilized in conjunction with g
(
h1, h

(k)
m , s(k)

)
as described in

Algorithm 9.
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Algorithm 9 The rejection sampling algorithm for p
(
h1
∣∣h(k)m , s(k),x, y

)
1: Calculate the maximum value of ln

(
g
(
h1, h

(k)
m , s(k)

))
on (0, h

(k)
m ). Denote it by ln.mh1.

2: Draw a pair of samples (x, ln(y)). X ∼ Unif(0, h
(k)
m ) and ln(Y ) = ln(U) + ln.mh1

, where U ∼ Unif(0, 1).

3: while ln
(
g
(
x, h

(k)
m , s(k)

))
≤ ln(y) do

4: repeat Step 2
5: end while
6: Take h

(k+1)
1 = x.

Secondly, we consider the sampling scheme for p
(
hm
∣∣h(k+1)

1 , s(k),x, y
)
, the marginal dis-

tribution of hm. We know that

p
(
hm
∣∣h(k+1)

1 , s(k),x, y
)
=

g
(
hm, h

(k+1)
1 , s(k)

)∫∞
h
(k+1)
1

g
(
hm, h

(k+1)
1 , s(k)

)
dhm

∝ g
(
hm, h

(k+1)
1 , s(k)

)
. (4.29)

Rejection sampling can be utilized in conjunction with g
(
hm, h

(k+1)
1 , s(k)

)
as described in

Algorithm 10.

Algorithm 10 The rejection sampling algorithm for p
(
hm
∣∣h(k+1)

1 , s(k),x, y
)

1: Calculate the maximum value of ln
(
g
(
hm, h

(k+1)
1 , s(k)

))
on (h

(k+1)
1 , a). Denote it by ln.mhm. In this case, a is a large

enough truncation point.

2: Draw a pair of samples (x, ln(y)). X ∼ Unif(h
(k+1)
1 , a) and ln(Y ) = ln(U) + ln.mhm, where U ∼ Unif(0, 1).

3: while ln
(
g
(
x, h

(k+1)
1 , s(k)

))
≤ ln(y) do

4: repeat Step 2
5: end while
6: Take h

(k+1)
m = x.

Thirdly, we consider the sampling scheme for p
(
s
∣∣h(k+1)

1 , h
(k+1)
m ,x, y

)
, the marginal dis-

tribution of s. We know that

p
(
s
∣∣h(k+1)

1 , h(k+1)
m ,x, y

)
=

g
(
s, h

(k+1)
1 , h

(k+1)
m

)∫∞
−∞ g

(
s, h

(k+1)
1 , h

(k+1)
m

)
ds

∝ g
(
s, h

(k+1)
1 , h(k+1)

m

)
. (4.30)

Rejection sampling can be utilized in conjunction with g
(
s, h

(k+1)
1 , h

(k+1)
m

)
as described in

Algorithm 11.

Algorithm 11 The rejection sampling algorithm for p
(
s
∣∣h(k+1)

1 , h
(k+1)
m ,x, y

)
1: Calculate the maximum value of ln

(
g
(
s, h

(k+1)
1 , h

(k+1)
m

))
on (b, c). Denote it by ln.ms. In this case, |b|, c are large enough

truncation points.
2: Draw a pair of samples (x, ln(y)). X ∼ Unif(b, c) and ln(Y ) = ln(U) + ln.ms, where U ∼ Unif(0, 1).

3: while ln
(
g
(
x, h

(k+1)
1 , h

(k+1)
m

))
≤ ln(y) do

4: repeat Step 2
5: end while
6: Take s(k+1) = x.
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The rejection sampling schemes presented in Algorithms 9, 10 and 11 constitute origi-
nal contributions among others that are made in this chapter. Unlike traditional rejection
sampling where a proposal function is chosen to fully cover the target density, the proposed
rejection sampling transforms them to a logarithmic scale. This is due to the fact that the
values of the posterior kernels are often too small to be handled by making use of the likeli-
hood functions. In fact, sampling on a logarithmic scale is analogous to taking the logarithm
of likelihood functions in order to find MLEs, since both frequentist and Bayesian will face
the same problem caused by small likelihood function values. However, they deal with this
problem differently. According to Bishop and Nasrabadi (2006), frequentist inference is es-
sentially a numerical optimization problem, corresponding to the well-known MLE method
where log-likelihood functions are maximized. On the other hand, Bayesian inference is
essentially a numerical integration problem, where the output is a (posterior) distribution
rather than a point estimate. In this context, it will involve random sampling techniques
instead of optimization techniques, for instance the rejection sampling on a logarithmic scale
presented in Algorithms 9, 10 and 11. Therefore, the proposed rejection sampling scheme on
a logarithmic scale is parallel to its frequentist counterpart, we then believe it should as well
be as widely applicable as the maximization of log-likelihood functions. Technical details
regarding rejection sampling on a logarithmic scale are elaborated on in Appendix D.
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4.4.4 The MCMC for the PTAM

Combining all these building blocks, Algorithm 12 presents the proposed steps for Bayesian
inference on the PTAM:

Algorithm 12 The MCMC algorithm for Bayesian inference on the PTAM
Require: The number of states, m, based on prior knowledge or subjective judgment.
Input:

1. The data observations y.

2. The hyper-parameters for posterior distributions: (vλ, ξλ), (vh1
, ξh1

), (vhm , ξhm ) and β.

3. The number of states m.

4. The number of inner iterations w1.

5. The number of outer iterations w2.

6. The size of the burn-in period.

Output: The posterior samples for h1, hm, s and λ, each of which has w2 sample points.

1: Initialization
(
λ(1), h

(1)
1 , h

(1)
m , s(1)

)
2: Initialization

(
λ
(1)
Gibbs, h

(1)
1,Gibbs, h

(1)
m,Gibbs, s

(1)
Gibbs

)
=
(
λ(1), h

(1)
1 , h

(1)
m , s(1)

)
3: for k = 2 : w2 do

4: Draw sample paths x from p
(
x
∣∣∣λ(k−1), h

(k−1)
1 , h

(k−1)
m , s(k−1),y

)
, based on Algorithm 6 (or Algorithm 7 for right-

censored data).
5: Based on x, calculate (N ,Q,ZA,A,G).
6: for j = 2 : w1 do

7: Sample h
(j)
1,Gibbs from p

(
h1

∣∣∣h(j−1)
m,Gibbs, s

(j−1)
Gibbs,N ,G

)
, based on Algorithm 9.

8: Sample h
(j)
m,Gibbs from p

(
hm

∣∣∣h(j)1,Gibbs, s
(j−1)
Gibbs,N ,G

)
, based on Algorithm 10.

9: Sample s
(j)
Gibbs from p

(
s
∣∣∣h(j)1,Gibbs, h

(j)
m,Gibbs,N ,G

)
, based on Algorithm 11.

10: end for
11: Sample λ(k) from p

(
λ|N ,Q,ZA).

12:
(
h
(k)
1 , h

(k)
m , s(k)

)
=
(
h
(N)
1,Gibbs, h

(N)
m,Gibbs, s

(N)
Gibbs

)
13: Reset the inner Gibbs sampling vector to zeros.

14:
(
λ
(1)
Gibbs, h

(1)
1,Gibbs, h

(1)
m,Gibbs, s

(1)
Gibbs

)
=
(
λ(k), h

(k)
1 , h

(k)
m , s(k)

)
15: end for

It is worth noting that, for the inner Gibbs sampling in each iteration, the initial values
are selected to be the parameter outputs in the previous iteration, as indicated in Step 14 of
Algorithm 12. Because the parameter outputs themselves also become increasingly accurate
as they converge to the true posterior distribution, using the parameter outputs in previous
iterations as initial values is then believed to be more reasonable and objective than random
selection. In that case, we can make the most of Algorithm 12.
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4.5 Simulation study

In this section, the proposed algorithm is implemented via a simulation study. We then
determine whether parameter estimability is improved. Consider the following experimental
conditions:

• The underlying parameters are m = 10, λ = 1.99908, h1 = 0.0008, hm = 1.65349, s =
−0.11118. The parameter values were taken from the simulation study on the Le Bras
limiting distribution that was carried out in Cheng et al. (2021), except that m is
assumed to take a moderate value of ten.

• The sample size is 50.

• There are 4500 iterations of the Gibbs sampler for data augmentation.

• There are 500 iterations of the inner Gibbs sampling for the posterior distribution.

• The first 500 iterations are taken as burn-in, based on the CSD plots.

• A thinning rate of 10 is adopted, based on the ACFs.

• The prior distributions are:

πH1(h1) = p.d.f. of Gamma(vh1 = 1, ξh1 = 1000),

πHm(hm) = p.d.f. of Gamma(vhm = 30, ξhm = 18),

πS(s) = 8e8s, s < 0,

π1(λ) = p.d.f. of Gamma(vλ = 24, ξλ = 16).

After implementing Algorithm 12, the results are listed in Table 4.1, and illustrated in
Figures 4.3 and 4.4:

Parameter True Posterior Mean 95% Credible Interval

h1 0.00080 0.001326039 (0.00006395895, 0.00353304747)
hm 1.65349 1.770213467 (1.230238, 2.478763)
s −0.11118 −0.085397339 (−0.347967221,−0.001345516)
λ 1.99908 1.977085034 (1.698050, 2.258719)

Table 4.1: Posterior means and 95% credible intervals obtained from the MCMC algorithm
and the true parameters.
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Figure 4.3: Posterior distributions and parameter correlations obtained from the MCMC
samples.

In Table 4.1, the Bayesian estimates, taken as the posterior means, are all within their
corresponding 95% credible intervals. This indicates that the proposed MCMC algorithm for
Bayesian inference is quite satisfactory. It can be seen from Figure 4.3 that the correlations
between h1, hm and s are minimal. This indicates that the likelihood function has little effect
on the shape of the posterior distributions, so that h1, hm and s are still nearly independent
as was assumed in the prior distributions. This observation suggests that the estimability
of h1, hm and s could be poor. In fact, same conclusion can as well be reached by observing
the diagonal panels in Figure 4.3, which show the shapes of their posterior distributions.
According to Lynch (2007), posterior distributions should tend to be normal. Clearly, in
Figure 4.3, the posterior distribution for λ demonstrates a more bell-shaped behaviour than
the posterior distributions of h1, hm and s do (particularly h1 and s). This suggests that
the posterior distributions of h1, hm and s are less responsive to data so that the prior
effects are to some degree still preserved in the behaviour of their posterior distributions.
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This indicates a weaker inferential power and therefore poorer estimability for h1, hm and
s. In contrast, the estimability for λ is better. Therefore, the role of prior distributions is
crucial for estimating h1, hm and s. Sound prior information can improve the accuracy of
the parameter estimates as the posterior distributions are highly dependent on the priors.
Beautifully, the poor estimability of hm and s is also consistent with the conclusions included
in Chapter 3, Section 3.5.3.

Figure 4.4: Diagnostics plots of the MCMC samples.

In Figure 4.4, the convergence of the proposed MCMC algorithm is being assessed by
means of trace plots, ACFs and ergodic mean plots. First, the trace plots demonstrate the
stationarity of the MCMC samples in terms of level-off patterns, though there are occa-
sionally a few spikes for h1 and s. However, such spikes are a normal phenomenon as the
shapes of their posterior densities still remain close to their skewed prior densities due to
poor estimability. Secondly, the ACFs for all parameters are within the tolerance range after
the second lag. This indicates that the thinning rate effectively reduces the ACFs between
the MCMC samples. Thirdly, the ergodic means all converge as the number of iterations
increases. This suggests that the number of iterations, that is, 4500, is sufficient to be-
lieve that the simulated MCMC samples were approximately generated from the stationary
distributions which are the target posterior distributions.
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4.5.1 Estimability improvement

We compare the Bayesian estimates, the MLEs and the true values. The MLEs are calculated
based on 500000 initial values, employing the scatter search method utilized in Cheng (2021).
The results are presented in Figure 4.5:

Figure 4.5: Left panel: Parameter estimates and 95% credible intervals. Right panel: En-
larged plot for h1.

It is seen that Bayesian inference indeed performs better than the MLE approach as
it improves parameter estimability. This is particularly manifest for hm, s and λ whose
MLEs lie outside their credible intervals, whereas the intervals still successfully cover the
true values. In that case, their Bayesian estimates are more accurate than the MLEs in
terms of narrower credible intervals. This is due to the advantage of making use of the
Bayesian methodology which incorporates sound prior information.

4.5.2 Prior sensitivity analysis

To further validate the vital role of sound prior information in terms of estimability improve-
ment, we now conduct a prior sensitivity analysis. Two alternative types of priors are tested.
The first type is taken to be falsely informative,

where the prior means deviate noticeably from the true parameter values with low vari-
ances. The second type is taken to be non-informative, where parameters are uniformly
distributed. The results are listed in Table 4.2 and illustrated in Figures 4.6 and 4.7:

Parameter True MLE Falsely informative priors Non-informative priors

h1 0.00080 0.001210155 (0.01122067, 0.02576926) (0.0006370074, 0.0514890336)
hm 1.65349 0.957246758 (3.936409, 6.170863) 0.5202541, 21.9348132)
s −0.11118 −1.989832312 (−4.8561343,−0.5556046) (−49.4620012,−0.7391115)
λ 1.99908 2.514277429 (1.749293, 2.170121) (1.819338, 3.221812)

Table 4.2: 95% credible intervals obtained from falsely informative and non-informative
priors, MLEs and true parameters.
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Figure 4.6: Left panel: Parameter estimates and 95% credible intervals for falsely informative
priors. Right panel: Enlarged plot for h1.

Figure 4.7: Left panel: Parameter estimates and 95% credible intervals for non-informative
priors. Right panel: Enlarged plot for h1.

It can be seen from Table 4.2 and Figure 4.6 that, when priors are taken to be falsely infor-
mative, the 95% credible intervals for h1, hm and s all failed to cover the true values. This
is as expected because their likelihood functions are flat due to poor estimability. Then,
the posterior distributions will be highly dependent on the prior distributions. On the other
hand, the interval for λ remains narrow and covers the true value, which corroborates a
better estimability than that of h1, hm and s.

Next, when the priors are taken to be non-informative, the shape of posterior density will
be totally determined by the shape of the likelihood function. It can be seen from Table 4.2
and Figure 4.7 that the 95% credible intervals for h1, hm and s, while covering their MLEs
as expected, are extremely wide. This further corroborates the flatness of their likelihood
functions and therefore poor estimability. On the other hand, the interval for λ still remains
narrow while covering its MLE, which corroborates a better estimability.

Upon completing this prior sensitivity analysis, all conclusions are consistent with each
other throughout this simulation study. The poor estimability of h1, hm, s and the better
estimability of λ have been supported with solid evidence. The significant prior sensitivity
on h1, hm and s indicates that sound prior information indeed plays a significant role on
improving their estimability. Therefore, it is crucial to select priors that are as sound as
possible when making Bayesian inference. Otherwise, deficient priors might yield unreliable
parameter estimates, particularly when their estimability is poor or unknown.
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4.6 Data analysis

In Section 4.5, we have shown that the proposed Bayesian approach can improve parameter
estimability for the PTAM by making use of sound prior information. In this section, we
will demonstrate that, in addition to its advantage on improving estimability, the proposed
Bayesian approach can also be utilized to adapt the PTAM to real-life data as a model fitting
methodology.

Consider data collected from the Channing House - a retirement community in Palo
Alto, California. The data consist of entry ages, ages at death and ages at study end for
462 people (97 males and 365 females) who resided in the facility between January 1964
to July 1975 [Hyde (1980)]. The Channing House data is chosen because all the residents
in the community are approximately subject to the same circumstances, so that relatively
speaking the aging process is the most significant factor that contributes to the variability
in their lifetimes, which is the process we intend to model using the PTAM. What is more,
the female data is chosen to preclude the effects of gender differences.

Only 361 records are considered, as three records have equal entry and exit ages and
one record has a typo that causes the entry age to be greater than the exit age. Of the 361
females, 129 died while residing in the Channing House, whereas the other 232 survived until
the end of the study.

In practice, residents join a retirement community at various physiological ages. Accord-
ing to the Channing House data, the youngest entry age is 61. Thus, for modelling purposes,
it will be assumed that the aging process starts at calendar age 50 for all residents. Under
that setting, residents will then be expected to have variability in their physiological ages
at the time of entering the study. Moreover, we continue to assume that m = 20 for the
PTAM. We currently are limited to using moderate values of m, a restriction that will be
further discussed in Section 4.7.

As opposed to Section 4.5, there does not exist an underlying model. In that case, the
prior distributions are surmised to be as follows:

πH1(h1) = p.d.f. of Gamma(vh1 = 0.002, ξh1 = 2),

πHm(hm) = p.d.f. of Gamma(vhm = 12.5, ξhm = 5),

πS(s) = es, s < 0,

π1(λ) = p.d.f. of Gamma(vλ = 1.5, ξλ = 5).

It is worth stressing that the priors are deliberately chosen such that the model with parame-
ters taken as the prior means is far away from the Kaplan-Meier survival function estimates,
as displayed in Figure 4.8. The purpose of this is to more persuasively demonstrate that the
proposed Bayesian approach is sound. This is only done for the purpose of this study. In
practice, of course, one should assume the priors to be such that the model with its param-
eters taken as the prior means is as close to the Kaplan-Meier survival function estimates as
possible.
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Using the proposed Bayesian approach, the parameter estimation results are displayed
in Table 4.3.

Parameter Posterior Mean 95% Credible Interval

h1 0.0045658 (0.00006130736, 0.00923589434)
hm 2.475408 (1.459456, 3.422970)
s −1.085645 (−1.8089289,−0.1331294)
λ 0.4906715 (0.4353424, 0.5284059)

Table 4.3: Posterior means and 95% credible intervals obtained from the MCMC algorithm
for the Channing House female data.

In Figure 4.8, we illustrate the goodness of fit of the PTAM to the Channing House
female data by plotting the fitted survival function along with the nonparametric Kaplan-
Meier survival function estimates. In addition, for comparison purposes, we also plotted the
model with parameters taken as the prior mean, the fitted model using the MLE method and
the fitted model obtained in Cheng et al. (2021). It can be observed that the PTAM fits the
Channing House female data very well as the associated fitted survival function stays within
the 95% confidence limits of the Kaplan-Meier estimates. The significant difference between
the fitted model and the model with parameters taken as the prior mean, as mentioned earlier,
very persuasively validates the proposed Bayesian approach. This difference clearly shows
that the prior distributions are actually updated to the corresponding posterior distributions
for the Channing House female data.

Furthermore, the fitted models with m = 20, whether estimated based on the MLEs or
the proposed Bayesian method, are in very close agreement with the fitted model in Cheng
et al. (2021) where m = 100. In fact, the fitted model with m = 20 fits the data even better
for older ages between 91 and 101.
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Figure 4.8: Survival functions of the PTAM calibrated to the Channing House female data
using maximum likelihood estimates and the proposed Bayesian approach; the calibrated
survival function with parameters taken as the prior mean; the calibrated survival function
obtained in Cheng et al. (2021) and the Kaplan-Meier estimates of the survival function and
corresponding 95% confidence limits.

80



4.7 Discussion

4.7.1 Computing matrix exponentials

The calculation of matrix exponentials is the principal drawback that affects the compu-
tational efficiency of the proposed Bayesian approach. The computing time will increase
significantly when m is large. It almost takes 10 minutes for a single iteration when m is
greater than 100. Thus, we are currently somewhat limited to using moderate values ofm for
Bayesian inference on the PTAM. Actually, MCMC-based Bayesian inference in connection
with continuous phase-type distributions with a large transition intensity matrix has never
been discussed in the literature. Aslett and Wilson (2011) made use of a simple reliability
model with m = 4 and Watanabe et al. (2012) presented several examples with m no greater
than 5. However, for large m, the required matrix exponential calculation will compound the
computing time requested by the MCMC method. The calculation of matrix exponentials
has been an open problem for years.

4.7.2 Number of states

Currently, the number of states m is treated as being fixed throughout the proposed MCMC-
based Bayesian approach. Inference on m has rarely been discussed as it was not defined as
a parameter according to the definition of phase-type distributions. However, it deserves at-
tention for the PTAM as it determines the variability of the physiological age [Cheng (2021);
Cheng et al. (2021)]. To the best of our knowledge, only Bladt et al. (2003) suggested that the
reversible jump MCMC (RJMCMC) might constitute a plausible way to incorporate m into
an MCMC-based Bayesian inference framework. This aspect could be further investigated.

4.8 Conclusion

An MCMC algorithm for Bayesian inference on the PTAM was proposed. Two contributions
were made on the basis of existing MCMC algorithms for Bayesian inference on continuous
phase-type distributions. First, a sampling scheme was proposed for posterior sampling after
data augmentation. Secondly, existing data augmentation technique was further developed
to incorporate left-truncated data. In the simulation study, the proposed approach was ap-
plied to a twenty-state PTAM. The results showed that, with sound prior information, the
proposed approach indeed improved parameter estimability by producing narrower credible
intervals which captured the true values. Then, it was also applied to calibrate the PTAM
to aging-related mortality data from a retirement community, which produced reasonable re-
sults that are comparable to those obtained in previous research. All in all, while numerical
experimental results indicate that the proposed methodology improves parameter estimabil-
ity for the PTAM as opposed to the MLE method, this approach may also be utilized as a
standalone model-fitting technique.
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Chapter 5

Combining the Markov Chain Monte
Carlo Procedure with Data Cloning
to Make Inferences on the Discrete
Multivariate Phase-Type Model

The discrete multivariate phase-type model (DMPTM) is a class of discrete phase-type dis-
tributions based on discrete time Markov chains with marked transitions. With respect to
its parameter estimation, He and Ren (2016b) proposed an EM algorithm which is classified
as a deterministic approximation in the field of approximate inference. However, parallel to
deterministic approximation, the other methodology in the field of approximate inference is
stochastic approximation which utilizes stochastic techniques. This approach remains unex-
plored with respect to the DMPTM. In this chapter, we address this gap by developing an
MCMC algorithm for estimating the parameters of the DMPTM. Once combined with the
data cloning method, the proposed approach can be regarded as an alternative for determin-
ing the MLEs of the DMPTM. The design of the proposed algorithm is inspired by the ECS
algorithm [Aslett and Wilson (2011)] presented in Chapter 4. Numerical experiments show
that the proposed MCMC algorithm combined with data cloning achieves results that are
comparable to those obtained by applying the EM algorithm.

5.1 Motivation

The discrete multivariate phase-type model (DMPTM) was proposed in He and Ren (2016a).
It belongs to a class of discrete phase-type distributions that is based on discrete time Markov
chains with marked transitions. It can be viewed as a generalization of the discrete univariate
phase-type distributions. In He and Ren (2016a), the DMPTM was utilized to model mul-
tivariate insurance claim processes in risk analysis, with claims allowed to arrive in batches.
Later on, He and Ren (2016b) developed an EM algorithm to estimate the parameters of
the DMPTM.
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The theoretical background of the EM approach traces back to the field of approximate
inference. There are two parallel, exhaustive classes of approximation schemes in this: de-
terministic approximation and stochastic approximation [Bishop and Nasrabadi (2006)]. In
the context of deterministic approximation, a variational inference (VI) algorithm is applied
to maximize the evidence lower bound (ELBO) at each iteration. The EM algorithm, as a
special case of the VI algorithm, then belongs to the class of deterministic approximations1.

Unlike deterministic approximation, stochastic approximation utilizes stochastic tech-
niques such as the MCMC procedure to make inferences on the model parameters, which
was reviewed in Section 4.2.

Thus, from the perspective of approximate inference, it is manifest that, while the ap-
plication of a deterministic approximation to the DMPTM has been investigated via the
EM algorithm proposed in He and Ren (2016b), the stochastic approximation counterpart
remains to this day unexplored. This gap is addressed in this chapter by developing an
MCMC algorithm that is applicable to the DMPTM. Contrary to the approach employed in
Chapter 4, a frequentist perspective is held in this chapter. The application of the MCMC
in connection with the frequentist view can be realized via the data cloning method, which
will be briefly reviewed in Section 5.3.

5.2 Discrete multivariate phase-type model

5.2.1 Preliminaries

Definition 5.2.1. Let {Jt}t=0,1,... be a discrete time Markov chain (DTMC) defined on a
finite state space S = E ∪ ∆ = {1, 2, . . . ,m} ∪ ∆, where ∆ = {m + 1} is the absorbing
state and E is the set of transient states. Let {Jt}t=0,1,... have initial distribution β such that
β′e = 1, and let the transition probability matrix be

P =

[
B b0
0 0

]
, (5.1)

where b0 = (Im − B)e and e is the column vector of ones. Define T as the number of
transitions before absorption (the absorbing transition is not included). Then, T is said to
follow a discrete phase-type (DPH) distribution denoted by DPH(β,B) of order m. The
exit vector is denoted by h.

Result 2. Given T ∼ DPH(β,B) of order m,

(i) The p.m.f. of T is pT (t) = β′Bth.

(ii) The c.d.f. of T is FT (t) = 1− β′Bte.

1Some familiarity with the EM and VI approaches is assumed. Details are available in Chapters 9 and
10 of Bishop and Nasrabadi (2006).
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Definition 5.2.2. Consider a DPH(β,B) of order m whose underlying DTMC includes
batch event arrivals. Define the collection of batch events as C0 with |C0| denoting the number
of batches. Then, the vector {Xh,h ∈ C0} follows a multivariate phase-type distribution if
Xh is the number of arrivals of batch h accumulated before the underlying DTMC enters the
absorbing state. Denote it by DMPTM(β,B0,Bh,h ∈ C0) of order m.

Result 3. Consider a DMPTM(β,B0,Bh,h ∈ C0) of order m. Then B can be decomposed
into {B0,Bh,h ∈ C0}, where

B = B0 +
∑

h:h∈C0

Bh. (5.2)

Throughout this thesis, we assume that no batches are associated with the absorbing
transition b0. This assumption was made in He and Ren (2016b) and does not involve any
loss of generality.

To facilitate the application of Definition 5.2.2, Algorithm 13 presents the algorithm for
simulating Xh from a DMPTM(β,B0,Bh,h ∈ C0):

Algorithm 13 Simulation of {Xh,h ∈ C0} from the DMPTM
1: initialization Xh,0 = 0, ∀h ∈ C0, k = 0.
2: Let Ik = i be simulated from initial distribution β.
3: while Ik < m+ 1 do
4: Simulate Ik+1 based on B0 and Bh.
5: for h ∈ C0 do
6: If h is associated with the state move in Step 4, then let Xh,k+1 = Xh,k + 1. Otherwise, Xh,k+1 = Xh,k.
7: k = k + 1.
8: end for
9: end while
10: ∀h ∈ C0, let Xh = Xh,k.
11: end the algorithm.

Let Yk be the total number of type k items that arrived before absorption. That is,

Yk :=
∑
h∈C0

hkXh, (5.3)

where hk is the kth element of h and K is the number of elements in the batches. For
example, letting C0 = {h1,h2,h3} = {(0, 0, 1, 1, 0), (0, 2, 1, 0, 1), (1, 0, 0, 1, 1)} and Xh1 =
2, Xh2 = 1, Xh3 = 1, we have Y = (Y1, Y2, Y3, Y4, Y5) = (1, 2, 3, 3, 2). Moreover, |C0| = 3 and
K = 5.

The vectors {Xh,h ∈ C0} and {Yk, 1 ≤ k ≤ K} can be useful in insurance risk and other
areas. For example, an organization could be subject to several types of perils and a loss
event can result in claims of more than one type. Consider two types of claims in workers’
compensation insurance, medical and income replacement. A single loss event could give rise
to any type of claims or both. So, K = 2 and C0 = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1)}, Y1
and Y2 being the total number of the two types of claims.
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5.2.2 Mathematical properties in connection with the DMPTM

He and Ren (2016a,b) established recursive relationships for state probabilities of Y for full
and right-censored observations, which then underlies the EM algorithm. In this chapter, the
recursive relationships for these state probabilities will as well underpin the proposed MCMC
algorithm. Thus, we now conveniently present them in Results 4, 5 and 6 which correspond
to full, partially right-censored and fully right-censored observations, respectively. Relevant
derivations and proofs can be found in He and Ren (2016b).

Result 4. Consider {Xh,h ∈ C0} following a DMPTM(β,B0,Bh,h ∈ C0) of order m and

Yk as defined in (5.3). Define pY (y) :=
(
pY ,1(y), . . . , pY ,m(y)

)′
as an m× 1 vector with

pY ,i(y) := P(Y1 = y1, . . . , YK = yK |Jt = i), (5.4)

where i = 1, 2, . . . ,m, t = 0, 1, . . ., and k = 1, 2, . . . , K. Then,

pY (0) = (Im −B0)
−1(Im −B)e, (5.5)

pY (y) = (Im −B0)
−1
( ∑

h:y≥h

BhpY (y − h)
)
, (5.6)

where y ≥ h means yk ≥ hk,∀k ∈ {1, . . . , K}.

Result 5. Consider {Xh,h ∈ C0} following a DMPTM(β,B0,Bh,h ∈ C0) of order m and

Yk as defined in (5.3). Define p
(0,1)
Y,≥ (y(1), y(2)) :=

(
p
(0,1)
Y ,≥,1(y

(1), y(2)), . . . , p
(0,1)
Y ,≥,m(y

(1), y(2))
)′

as an m× 1 vector with

p
(0,1)
Y ,≥,i(y

(1), y(2)) := P(Y1 = y1, . . . , YL = yL, YL+1 ≥ yL+1, . . . , YK ≥ yK |Jt = i), (5.7)

where

y(1) := (y1, . . . , yL)
′,

y(2) := (yL+1, . . . , yK)
′,

h(1) := (h1, . . . , hL)
′,

h(2) := (hL+1, . . . , hK)
′,
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and i = 1, 2, . . . ,m, t = 0, 1, . . ., and k = 1, 2, . . . , K. Then,

p
(0,1)
Y,≥ (0(1),0(2)) =

(
Im −B0 −

∑
h:h(1)=0

Bh

)−1

(Im −B)e, (5.8)

p
(0,1)
Y,≥ (y(1),y(2)) =

(
Im −B0 −

∑
h:y(1)≥h(1),(y(1)−h(1),(y(2)−h(2))+)=y

Bh

)−1

×
( ∑

h:y(1)≥h(1),(y(1)−h(1),(y(2)−h(2))+ )̸=y

Bhp
(0,1)
Y (y(1) − h(1), (y(2) − h(2))+)

)
,

(5.9)

where y(1) ≥ h(1) means yk ≥ hk, k = 1, . . . , L; and (y(2) − h(2))+ := {max(yk − hk, 0)},
k = L+ 1, . . . , K.

Similarly, one can derive a recursion relationship for p
(1,0)
Y,≥ (y(1), y(2)) with

p
(1,0)
Y ,≥,i(y

(1), y(2)) := P(Y1 ≥ y1, . . . , YL ≥ yL, YL+1 = yL+1, . . . , YK = yK |Jt = i). (5.10)

However, this is not necessary because the expression of p
(0,1)
Y,≥ (y(1), y(2)) does not involve

any loss of generality. One can obtain this expression by rearranging all the right-censored
variables in p

(1,0)
Y,≥ (y(1), y(2)) last. Result 5 is then sufficient for partially right-censored data.

Result 6. Consider {Xh,h ∈ C0} following a DMPTM(β,B0,Bh,h ∈ C0) of order m and

Yk as defined in (5.3). Define p
(1,1)
Y,≥ (y) :=

(
p
(1,1)
Y ,≥,1(y), . . . , p

(1,1)
Y ,≥,m(y)

)′
as an m × 1 vector

with

p
(1,1)
Y ,≥,1(y) := P(Y1 ≥ y1, . . . , YK ≥ yK |Jt = i), (5.11)

where i = 1, 2, . . . ,m, t = 0, 1, . . ., and k = 1, 2, . . . , K. Then,

p
(1,1)
Y,≥ (0) =

(
Im −B0 −

∑
h

Bh

)−1

(Im −B)e = e, (5.12)

p
(1,1)
Y,≥ (y) =

(
Im −B0 −

∑
h:(y−h)+=y

Bh

)−1( ∑
h:(y−h)+ ̸=y

Bhp
(1,1)
Y ((y − h)+)

)
, (5.13)

where (y − h)+ := {max(yk − hk, 0)}, k = 1, . . . , K.
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5.3 Literature review on data cloning

Since the MCMC output is a distribution rather than a point estimate, it is usually applied
in a Bayesian context (just as in Chapter 4). However, MCMC, as a stochastic technique
alone, can also be applied in connection with the frequentist view. In this context, the
MCMC method is utilized as an alternative approach for approximating MLEs, indicating
that the contributions of the prior choices then become negligible.

The main idea of combining MCMC with the frequentist view is to make the target dis-
tribution narrowly spread out so that it will have significant peaks around the MLEs. In
that case, the parameters simulated from the target distribution will be sufficiently close to
the MLEs. In fact, this is exactly the mechanism behind the simulated annealing algorithm
[Michiels et al. (2007); Burke et al. (2014)] which is a well-known application of MCMC in
connection with the frequentist view. In the simulated annealing algorithm, the target distri-
bution is the Boltzmann distribution which naturally exists in physics. As the temperature
parameter of the Boltzmann distribution decreases, the distribution will produce significant
peaks around the optimal values.

As for the data cloning method, it is completely analogous to the simulated annealing
algorithm as it also manipulates the peaks of the target distribution, the only difference
being that, rather than being related to physics and using the Boltzmann distribution, one
starts with MCMC-based Bayesian inference and then clones the data numerous times. In
that case, the posterior density will exhibit statistical features similar to those of the likeli-
hood function such as the convexity, variance, mean and mode. The shape of the posterior
density will then become very similar to the likelihood function and will have significant
peaks around the MLEs. This method is called the data cloning method [Lele et al. (2007,
2010)].

Algorithm 14 presents the data cloning algorithm. It is essentially Algorithm 5 with
cloned data.

Algorithm 14 The data cloning algorithm [Lele et al. (2007, 2010)]
1: initialization θ(0)

2: Clone the data w times. Let the cloned data be yc.
3: for k = 1 : N do
4: Sample x from p(x|θ(k−1), yc).
5: Sample θ(k) from p(θ|x, yc).
6: end for

In line with Section 3.4.3, data cloning can only decrease the algorithm noise by making
the posterior estimates close to their MLEs. However, the values of MLEs will remain
unchanged. In other words, data cloning cannot improve the values of MLEs produced by
small data size. The larger the data size, the less necessary data cloning is, as both the data
noise and algorithm noise will be reduced.
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5.4 MCMC-based Bayesian inference for the DMPTM

As pointed out in Section 5.3, the starting point of the data cloning method is the MCMC-
based Bayesian inference. We then start with the likelihood function (5.14) specified in He
and Ren (2016b):

L(θ;x, y) =
( m∏
i=1

βDii

)( ∏
h∈C0∪{ϕ}

m∏
i=1

m∏
j=1

(Bh,ij)
N(i,j),h

)( m∏
i=1

(b0,i)
N(i,m+1)

)
, (5.14)

where Di is the number of the sample path starting at state i, N(i,j),h is the number of
transitions from state i and j which includes the batch event h (if h = ϕ, then no batch
event is associated with the state move) and N(i,m+1) is the number of transitions entering
the absorbing state from state i.

As was done in Chapter 4, a data augmentation step and a posterior sampling step need to
be developed for MCMC-based Bayesian inference on the DMPTM, which will be presented
in subsequent sections. We first introduce the sampling from the posterior sampling step in
Section 5.4.1. Sampling from the data augmentation step, which is far more involved, will be
expounded upon in Section 5.4.2. Finally, the proposed MCMC algorithm with data cloning
on the DMPTM is presented in Section 5.4.3.

5.4.1 The posterior sampling step - sampling from p(β,B, b0|x,y)
The likelihood appearing in (5.14) consists of Dirichlet kernels, which immediately implies a
Dirichlet distribution as the conjugate prior. Then, the conjugate prior for β becomes

β′ = (β1, β2, . . . , βm) ∼ Dirichlet(v1, v2, . . . , vm). (5.15)

Denote the m × 1 vector corresponding to the ith row of matrix Bh by Bh,i., where h ∈
C0 ∪ {ϕ}. The conjugate prior for B can be expressed in terms of its row vectors. Namely,(

(B′
0,i·), (B

′
h1,i·), . . . , (B

′
h|C0|,i·), (b0,i)

)
∼ Dirichlet

(
η
(i)′

B0
,η

(i)′

Bh1
, . . . ,η

(i)′

Bh|C0|
, η

(i)
b0

)
, (5.16)

where

η
(i)
B0

=
(
η
(i)
1 , η

(i)
2 , . . . , η

(i)
m

)′
,

η
(i)
Bh1

=
(
η
(i)
m+1, η

(i)
m+2, . . . , η

(i)
2m

)′
,

...

η
(i)
Bh|C0|

=
(
η
(i)
|C0|m+1, η

(i)
|C0|m+2, . . . , η

(i)
(|C0|+1)m

)′
,

η
(i)
b0

= η
(i)
(|C0|+1)m+1,
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and 1 ≤ i ≤ m.
Notice that there are m(|C0| + 1) + 1 parameters in (5.16) for a given i. They simply

correspond to elements in each of the ith row vector of B0 and B′
hs, plus one more parameter

as the ith element of b0.
The posterior distributions for β and B then become:

(β1, β2, . . . , βm|x,y) ∼ Dirichlet(v1 +D1, v2 +D2, . . . , vm +Dm) (5.17)

and(
(B′

0,i·), . . . , (B
′
h|C0|,i·), (b0,i)

∣∣∣x,y) ∼ Dirichlet
(
η
(i)′

B0
+N

(i)′

B0
, . . . , η

(i)
b0

+N
(i)
b0

)
, (5.18)

where
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+N
(i)
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η
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(i)
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(i)
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...

η
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,

η
(i)
b0

+N
(i)
b0

= η
(i)
m(|C0|+1)+1 +N(i,m+1),

and 1 ≤ i ≤ m.

5.4.2 The data augmentation step - sampling from p(x|β,B, b0,y)
The data augmentation algorithm on the DMPTM can be developed from the ECS algorithm
given in Aslett and Wilson (2011) (Algorithms 6 and 7). They are presented as Algorithms
15, 16 and 17 which correspond to full, partially right-censored and fully right-censored
observations, respectively. The technical details are available in Appendix E.

First, let the data size be |y| = M , let {J (k)(t)}t≥0 and {N (k)
h (t)}t≥0 be the augmented

sample paths for the kth data, and let Tk be the absorption time for the kth data. Then,

Di =
M∑
k=1

1{
J
(k)
0 =i

}, (5.19)

N(i,j),h =
M∑
k=1

Tk∑
t=0

1{
N

(k)
h (t+1)=N

(k)
h (t)+1,J

(k)
t =i,J

(k)
t+1=j

}, (5.20)

N(i,m+1) =
M∑
k=1

1{
J
(k)
Tk−1=i

}. (5.21)
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Therefore, in order to complete the data augmentation step, one would need to generate the
latent Markov process and batch arrival process, namely {Jt}t≥0 and {Nh(t)}t≥0, ∀h ∈ C0.
Algorithms 15, 16 and 17 presented in the following subsections will achieve this goal.

5.4.2.1 Sampling from p(x|β,B, b0,Y = y)

Algorithm 15 presents the data augmentation algorithm for full observations y.

Algorithm 15 Sampling from p(x|β,B, b0,Y = y)
Output: {Jt}t≥0, {Nh(t)}t≥0, ∀h ∈ C0.

1: Initialization Set t = 0, and set Nh(t) = 0, ∀h ∈ C0.
2: Simulate Jt = i from p(Jt|Y = y).
3: if y = 0 then
4: Go to Step 17.
5: end if
6: Simulate (Jt+1 = j, I) from p(Jt+1 = j, I|Y = y, Jt = i), where I ∈ {h|y ≥ h} ∪ {ϕ}.
7: if I = ϕ then
8: Nh(t+ 1) = Nh(t), ∀h ∈ C0,
9: else if I = h∗ then
10: Nh∗ (t+ 1) = Nh∗ (t) + 1.
11: Nu(t+ 1) = Nu(t), ∀u ∈ C0 \ {h∗}.
12: y = y − h∗.
13: end if
14: i = j.
15: Delete j.
16: Go to Step 3.
17: Simulate Jt+1 = j from p(Jt+1 = j|Y = 0, Jt = i).
18: if j = m+ 1 then
19: end the algorithm.
20: end if
21: Nh(t+ 1) = Nh(t),∀h ∈ C0.
22: t = t+ 1; i = j.
23: Go to Step 17.

The followings are specific features of Algorithm 15 which are analogous to the ECS
algorithm for full observations (Algorithm 6).

(i) Step 2 is analogous to Step 1 of Algorithm 6. That is, simulating the initial state of
the sample path.

(ii) Steps 6 and 17 are analogous to Step 2 of Algorithm 6. That is, simulating the next
state conditioning on the previous information.

(iii) Steps 7–12 are analogous to Step 3 of Algorithm 6. That is, subtracting the simulated
data from the original data. Then, the simulated data is accumulated forward as the
algorithm proceeds and less data will remain until all the data is used up, at which
point the algorithm will end.

As the DMPTM involves both the underlying Markov process and the batch arrival process,
what is unique in the case of the DMPTM is that two types of sample paths need to be
simulated: {Jt}t≥0 and {Nh(t)}t≥0.
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5.4.2.2 Sampling from p(x|β,B, b0,Y (1) = y(1),Y (2) ≥ y(2))

Consider the data where the last K − L data are right-censored. That is, Y =
(
y(1),y(2)

)
,

where |y(1)| = L and |y(2)| = K − L. The data augmentation algorithm for partially
right-censored data y is given in Algorithm 16:

Algorithm 16 Sampling from p(x|β,B, b0,Y (1) = y(1),Y (2) ≥ y(2))
Output: {Jt}t≥0, {Nh(t)}t≥0, ∀h ∈ C0.

1: Initialization Set t = 0, and set Nh(t) = 0, ∀h ∈ C0.
2: Simulate Jt = i from p(·|Y (1) = y(1),Y (2) ≥ y(2)).
3: if (y1,y2) = 0 then
4: Go to Step 17.
5: end if
6: Simulate (Jt+1 = j, I) from p(Jt+1 = j, I|Y (1) = y(1),Y (2) ≥ y(2), Jt = i), where I ∈ {h|y(1) ≥ h(1)} ∪ {ϕ}.
7: if I = ϕ then
8: Nh(t+ 1) = Nh(t), ∀h ∈ C0.
9: else if I = h∗ = (h(1)∗,h(2)∗) then
10: Nh∗ (t+ 1) = Nh∗ (t) + 1.
11: Nu(t+ 1) = Nu(t), ∀u ∈ C0 \ {h∗}.
12: y(1) = y(1) − h(1)∗; y(2) = (y(2) − h(2)∗)+.
13: end if
14: i = j.
15: Delete j.
16: Go to Step 3.
17: Simulate (Jt+1 = j, I) from p(Jt+1 = j, I|Y (1) = 0,Y (2) ≥ 0, Jt = i), where I ∈ {h|h(1) = 0} ∪ {ϕ}.
18: if j = m+ 1 then
19: end the algorithm.
20: end if
21: if I = ϕ then
22: Nh(t+ 1) = Nh(t), ∀h ∈ C0.
23: else if I = h∗ = (0(1)∗,h(2)∗) then
24: Nh∗ (t+ 1) = Nh∗ (t) + 1.
25: Nu(t+ 1) = Nu(t), ∀u ∈ C0 \ {h∗}.
26: y(1) = 0(1); y(2) = (0(2) − h(2)∗)+ = 0(2).
27: end if
28: t = t+ 1; i = j.
29: Go to Step 17.

The main idea of the ECS algorithm for right-censored data (Algorithm 7) is applicable
to specific steps in Algorithms 16 and 17 as well. As they are quite similar, they will be
omitted.

91



5.4.2.3 Sampling from p(x|β,B, b0,Y ≥ y)

Consider the data where all the data are right-censored. The data augmentation algorithm
for fully right-censored data y is given in Algorithm 17:

Algorithm 17 Sampling from p(x|β,B, b0,Y ≥ y)
Output: {Jt}t≥0, {Nh(t)}t≥0, ∀h ∈ C0.

1: Initialization Set t = 0, and set Nh(t) = 0, ∀h ∈ C0.
2: Simulate Jt = i from p(·|Y ≥ y).
3: if y = 0 then
4: Go to Step 17.
5: end if
6: Simulate (Jt+1 = j, I) from p(Jt+1 = j, I|Y ≥ y, Jt = i), where I ∈ {ϕ, C0}.
7: if I = ϕ then
8: Nh(t+ 1) = Nh(t), ∀h ∈ C0.
9: else if I = h∗ then
10: Nh∗ (t+ 1) = Nh∗ (t) + 1.
11: Nu(t+ 1) = Nu(t), ∀u ∈ C0 \ {h∗}.
12: y = (y − h∗)+.
13: end if
14: i = j.
15: Delete j.
16: Go to Step 3.
17: Simulate (Jt+1 = j, I) from p(Jt+1 = j, I|Y ≥ 0, Jt = i), where I := {ϕ, C0}.
18: if j = m+ 1 then
19: end the algorithm.
20: end if
21: if I = ϕ then
22: Nh(t+ 1) = Nh(t), ∀h ∈ C0.
23: else if I = h∗ then
24: Nh∗ (t+ 1) = Nh∗ (t) + 1.
25: Nu(t+ 1) = Nu(t), ∀u ∈ C0 \ {h∗}.
26: y = (0− h∗)+ = 0.
27: end if
28: t = t+ 1; i = j.
29: Go to Step 17.
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5.4.3 The MCMC algorithm for the DMPTM

With the building blocks provided in Algorithms 15, 16 and 17, Algorithm 18 presents the
MCMC algorithm for inference on the DMPTM using data cloning, which is the principal
contribution of this chapter. Since the DMPTM is discrete, one does not need to sample
sojourn times, which requires computing matrix exponentials. This fact, combined with
the recursive relationships specified in Results 4, 5 and 6, will make the implementation of
Algorithm 18 more efficient than Algorithm 12 for the PTAM.

Algorithm 18 The MCMC algorithm for inference on the DMPTM using data cloning
Require: m, C0, the number of data cloning w1, the number of iterations w2.
Input:

1. The data observations y.

2. The hyper-parameters for posterior distributions: v,η.

3. The number of states m.

4. The number of MCMC iterations w2.

5. The size of burn-in period.

Output: The posterior samples for the model parameters β,Bh, b0 where h ∈ C0.

1: Initialization
(
β(1),B

(1)
h , b

(1)
0

)
, where h ∈ C0.

2: Repeat the data w1 times. Let the cloned data be yc.
3: for k = 2 : w2 do
4: Calculate all possible pY (·) based on recursive relationships in Result 4. If there are right-censored data, then calculate

all possible p
(0,1)

Y,≥ (·) and p
(1,1)

Y,≥ (·) based on recursive relationships in Results 5 and 6, respectively.

5: Sample x :=
(
{Jt}t≥0, {Nh(t)}t≥0

)
from p

(
x
∣∣∣β(k−1),B(k−1), b

(k−1)
0 ,yc

)
, based on Algorithm 15. If there are

right-censored data, then Algorithms 16 and 17 will also be used.
6: Obtain Di and N(i,j),h for all i, j,h.

7: Sample
(
β(k),B(k), b

(k)
0

)
from p

(
β,B, b0

∣∣∣x,yc
)
.

8: end for

5.5 Simulation studies

As pointed out earlier, the proposed approach has two components: the MCMC-based
Bayesian inference and the data cloning. Thus, we will consider two simulation studies
which are presented in Sections 5.5.1 and 5.5.2 to validate each component, respectively.

5.5.1 Example 2.1 in He and Ren (2016b)

Example 2.1 in He and Ren (2016b) provides one of the simplest form of the DMPTM, where
K = 2, |C0| = 3, C0 = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1)}, m = 1, β = 1, B0 = 0, Bh1 > 0,
Bh2 > 0, Bh3 > 0 and b0 = 1 − Bh1 − Bh2 − Bh3 > 0. The DMPTM of this type is also
called the trivariate geometric distribution.

We now perform a simulation study on this example. Data are simulated from a pre-
specified underlying trivariate geometric distribution based on Algorithm 13. Then, the
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proposed MCMC algorithm is applied to estimate the parameters which are then compared
with the true underlying values.

Consider following experimental conditions:

• Let the underlying model be the trivariate geometric distribution with Bh1 = 0.3,
Bh2 = 0.2, Bh3 = 0.1 and b0 = 1−Bh1 −Bh2 −Bh3 = 0.4.

• 500 sample points are simulated from the underlying model. They are not cloned in
this example

• The conjugate prior distributions of the parameters is

(Bh1 , Bh2 , Bh3 , b0) ∼ Dirichlet(1, 3, 5, 0.5).

The prior is deliberately chosen to be informative yet false, similar to experiments in
Lele et al. (2007, 2010). The purpose of this choice is to exhibit more significantly the
effect of Bayesian inference.

• 10000 samples are simulated with the MCMC method.

• The first 1000 iterations are taken as burn-in, based on the CSD plot.

• A thinning rate of 20 is adopted, based on the ACFs.

The results are included in Table 5.1 and Figure 5.1:

Parameter True Posterior Mean 95% Credible Interval

Bh1 0.3 0.2922798 (0.2588544, 0.3238664)
Bh2 0.2 0.1820329 (0.1525789, 0.2119733)
Bh3 0.1 0.1097666 (0.07463419, 0.14450728)
b0 0.4 0.4159207 (0.3836012, 0.4460370)

Table 5.1: Bayesian estimates and credible intervals for the trivariate geometric model.
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Figure 5.1: Posterior distributions for the trivariate geometric model.

In Table 5.1 and Figure 5.1, the Bayesian estimates, taken as the posterior means, are
all within their corresponding 95% credible intervals. This is the initial indication that the
proposed MCMC algorithm for Bayesian inference is quite satisfactory. In addition, the
posterior distributions in Figure 5.1 are all bell-shaped, which indicates a desirable degree
of estimability.
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Figure 5.2: Diagnostic plots of the MCMC samples.

In Figure 5.2, the convergence of the proposed MCMC algorithm is being examined by the
trace plot, the ACFs and the ergodic mean plot. First, the trace plots all point to stationary
and level-off patterns of the MCMC samples. Secondly, the ACFs for all parameters are
within the tolerance range after the second lag. This demonstrates that the thinning rate
significantly reduces the ACFs between the MCMC samples. Thirdly, the ergodic means
all start to converge as iteration increases. This indicates that the number of iterations,
that is, 10000, is sufficient to intimate that the MCMC samples that were obtained, were
approximately generated from the target posterior distributions.
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5.5.2 Example 2.1 in He and Ren (2016b) with data cloning

Following Section 5.5.1, consider another simulation study with the following experimental
conditions:

• 20 sample points are simulated from the underlying model. The sample size is de-
liberately chosen to be small. That way, the effect of data cloning on the posterior
distributions is more noticeable.

• Data are cloned 0 (status quo), 10 and 50 times.

• All other conditions remain identical to those assumed in the simulation study carried
out in Section 5.5.1.

The results are included in Figure 5.3. It can be seen that, without data cloning, the
posterior distributions deviate markedly from the MLEs. This is due to the fact that the
prior is chosen to be falsely informative and the data size is small, in which case the shape
of the posterior density is still dominated by the shape of the prior density. However, as
the number of cloned data increases, the shape of likelihood function starts to dominate the
shape of posterior density, tilting it towards the MLEs. This is particularly obvious for Bh1

and Bh3 . This validates the theory of data cloning as applied to the DMPTM.

Figure 5.3: Comparison between the MLEs and the posterior distributions for the trivariate
geometric model using data cloning. The numbers of times data is cloned denoted by w1 are
0, 10 and 50.
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Another crucial aspect to point out based on Figure 5.3 is that increasing the number of
cloned data can only make the stochastic approximation closer to the MLEs, which decreases
the algorithm noise of the MCMC algorithm. However, the MLEs themselves do not depend
on data cloning as they relate to the data noise. They can only be improved upon if more data
(or more information) is secured. This agrees beautifully with the contributions discussed
in Section 3.4.3.

It is also worth emphasizing that the precondition of comparing the parameter estimates
with the true parameter is that the underlying model must be identifiable, which is why
we chose the trivariate geometric distribution in this section. However, the DMPTM with
m > 1 will suffer from the non-identifiability issue such as in the experiment to be presented
in the next section. In that case, comparing parameters will be meaningless. Instead, one
should compare the prediction results.

5.6 Data analysis

In the simulation studies presented in Section 5.5, we have validated the proposed MCMC
algorithm for the DMPTM using data cloning. In this section, we will apply the proposed
approach to fit the DMPTM to real-life data. Following the research carried out in He and
Ren (2016b), we continue to investigate the auto insurance property damage and bodily
injury claim data discussed in Cummins and Wiltbank (1983). The data are listed in Table
5.2 with K = 2 types of claims.

Property damage events

(y1, y2) 0 1 2 ≥3 Totals

Bodily injury events 0 44 49 2 1 96
1 10 20 2 1 33
2 2 6 1 1 10
≥3 0 4 5 1 10

Totals 56 79 10 4 149

Table 5.2: Property damage data in Cummins and Wiltbank (1983).

As assumed in He and Ren (2016b), there are |C0| = 4 batches, that is,

C0 = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1),h4 = (1, 2)}.
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This implies that the possible combinations of claims are:

• an accident causing one property damage claim only,

• an accident causing one bodily injury claim only,

• an accident causing one property damage claim and one bodily injury claim,

• an accident causing one property damage claim and two bodily injury claims.

The matrices B0 and Bh were assumed to have full entries, in which case the DMPTM
will have m − 1 + (|C0| + 1)m2 parameters to be estimated. The data is cloned 100 times
and the prior is chosen arbitrarily. Finally, after the fitted DMPTM is obtained using the
proposed approach, the prediction results are compared with the EM approach proposed in
He and Ren (2016b). The results are presented in Tables 5.3, 5.4, 5.5, 5.6 and 5.7.

Property damage events

0 1 2 ≥3 m

Bodily injury events 0 Data (44) (49) (2) (1)
EM 66.153227 21.202277 6.795384 3.205218 1

MCMC 64.232440 20.160677 6.327844 2.894679 1

1 Data (10) (20) (2) (1)
EM 15.491349 9.979265 4.845027 3.428309 1

MCMC 15.332570 10.672893 5.190542 3.601593 1

2 Data (2) (6) (1) (1)
EM 3.627667 3.511087 2.276583 2.280428 1

MCMC 3.659953 3.946583 2.652148 2.675831 1

≥3 Data (0) (4) (5) (1)
EM 1.109265 1.542454 1.350268 2.202193 1

MCMC 1.147579 1.813615 1.702878 2.988172 1

Table 5.3: Prediction results for the auto insurance claim data when m = 1 - EM vs MCMC
with data cloned 100 times.
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Property damage events

0 1 2 ≥3 m

Bodily injury events 0 Data (44) (49) (2) (1)
EM 44.6210500 45.697456 1.598340 0.9100688 2

MCMC 43.5525635 45.648331 1.696490 0.7812590 2

1 Data (10) (20) (2) (1)
EM 8.8677200 22.238564 3.182727 1.0731121 2

MCMC 9.7269901 22.661608 3.507644 1.1024578 2

2 Data (2) (6) (1) (1)
EM 1.7866334 8.049978 2.434963 0.8776059 2

MCMC 2.1904608 7.498144 2.622216 0.9434692 2

≥3 Data (0) (4) (5) (1)
EM 0.4628932 3.653967 2.261937 1.2829853 2

MCMC 0.6416705 2.976259 2.141847 1.3085899 2

Table 5.4: Prediction results for the auto insurance claim data when m = 2 - EM vs MCMC
with data cloned 100 times.

Property damage events

0 1 2 ≥3 m

Bodily injury events 0 Data (44) (49) (2) (1)
EM 44.8169137 49.1444185 2.0426025 0.8733413 3

MCMC 44.0650724 49.106799 2.054026 0.8344180 3

1 Data (10) (20) (2) (1)
EM 8.9692214 20.1817881 1.8492699 1.1942515 3

MCMC 9.8338358 20.538636 1.861705 1.0203017 3

2 Data (2) (6) (1) (1)
EM 1.7950128 5.9619534 1.0210211 0.7024357 3

MCMC 1.7110203 5.319394 1.713639 0.7155012 3

≥3 Data (0) (4) (5) (1)
EM 0.4491188 3.9719636 4.6113153 1.4153726 3

MCMC 0.3791378 4.180922 3.944238 1.7213526 3

Table 5.5: Prediction results for the auto insurance claim data when m = 3 - EM vs MCMC
with data cloned 100 times.
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Property damage events

0 1 2 ≥3 m

Bodily injury events 0 Data (44) (49) (2) (1)
EM 44.0032477 49.0950878 1.9765702 0.9458369 4

MCMC 44.1232817 48.500675 1.987970 0.8602734 4

1 Data (10) (20) (2) (1)
EM 10.0440489 20.0356399 2.0202334 1.0235015 4

MCMC 10.1761654 19.758579 2.266369 1.0812184 4

2 Data (2) (6) (1) (1)
EM 1.9513996 5.9933529 0.9916737 0.9066508 4

MCMC 1.8085572 5.448871 1.717686 0.8067970 4

≥3 Data (0) (4) (5) (1)
EM 0.0000015 3.9758322 4.8757383 1.1611848 4

MCMC 0.3374578 4.074688 4.303132 1.7482812 4

Table 5.6: Prediction results for the auto insurance claim data when m = 4 - EM vs MCMC
with data cloned 100 times.

m Methods Log-likelihood AIC

1 EM -312.9074 635.8148
MCMC -312.3437 634.6874

2 EM -280.1488 602.2976
MCMC -280.7239 603.4478

3 EM -277.6401 649.2802
MCMC -276.9631 647.9262

4 EM -276.9631 719.9262
MCMC -277.7945 721.5890

Table 5.7: Log-likelihood and AIC for the fitted DMPTM with m = 1, 2, 3 and 4 using the
EM and the proposed MCMC algorithms.

It can be seen from Tables 5.3, 5.4, 5.5 and 5.6 that the prediction results obtained from
the proposed MCMC approach and the EM approach are in close agreement for m = 1, 2, 3
and 4, which validates the proposed approach as an alternative way of determining MLEs.
Moreover, based on the AIC values included in Table 5.7, we may arrive at the conclusion
reached by He and Ren (2016b) to the effect that the DMPTM with m = 2 turns out to be
the best model which produces the lowest AIC. This further validates the proposed MCMC
algorithm with data cloning as an alternative method to obtain the MLEs of the DMPTM.
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Then, we may utilize the fitted DMPTM with m = 2 as specified below:

β = (0.6769916, 0.3230084)′, Bh1 =

[
0.1838569 0.009865069
0.0560322 0.143507819

]
,

Bh2 =

[
0.005560552 0.5929008383
0.020528796 0.0001368295

]
, Bh3 =

[
0.001467756 0.04908077
0.001217004 0.00178014

]
,

Bh4 =

[
0.0006199654 0.0004056259
0.0004124564 0.0003874211

]
, b0 =

[
0.02939067
0.60564915

]
.

This fitted DMPTM is quite distinct from that obtained in He and Ren (2016b). This is
due the fact that for m > 1, the DMPTM with full parameters is non-identifiable. Actually,
the DMPTM is very likely to suffer from the non-identifiability issue. This is discussed in
the next section.

5.7 Discussion

5.7.1 Identifiability of the DMPTM

At this moment, we have not yet fully investigated the identifiability of the DMPTM. How-
ever, based on preliminary results, it is certain that the DMPTM with full parameters
will be beset by the non-identifiability issue for m > 1. In particular, one may simply
rearrange the parameters and relabel the states in a consistent manner so that the over-
all process will remain unchanged. To verify this, consider the following simple example.
Let the batch set be C0 = {h1,h2}, m = 2 and B0 = 0; then two DMPTMs, namely,

DMPTM(β(1),B
(1)
0 = 0,B

(1)
h , C0) and DMPTM(β(2),B

(2)
0 = 0,B

(2)
h , C0), will be non-

identifiable if

β(1) = (0.3, 0.7)′, B
(1)
h1

=

[
0.04 0.2
0.1 0.3

]
, B

(1)
h2

=

[
0.3 0.4
0.05 0.2

]
, b

(1)
0 =

[
0.06
0.35

]
, (5.22)

β(2) = (0.7, 0.3)′, B
(2)
h1

=

[
0.3 0.1
0.2 0.04

]
, B

(2)
h2

=

[
0.2 0.05
0.4 0.3

]
, b

(2)
0 =

[
0.35
0.06

]
. (5.23)

However, as the objective is to eventually fit the DMPTM to real-life data and to achieve
sound prediction results, then the non-identifiability issue of the DMPTM does not seem
to be the most crucial problem to tackle. Nonetheless, the identifiability of the DMPTM
constitutes a worthwhile topic to investigate further.

102



5.7.2 Applicability

Unlike the case of univariate phase-type distributions, the observed data Y = y of the
DMPTM does provide at least some clues about the latent information Xh, although they
might not be sufficiently compelling for us to fully determine Xh. To illustrate this, consider
the following simple example. Let an underlying DMPTM have batches h1 = (2, 0) and
h2 = (1, 1). Then, there is no possible way to generate the data point y = (3, 0), which
eliminates the possibility of using this DMPTM when the data includes (3, 0). In other
words, for a specific underlying DMPTM with its batch types, the model cannot be utilized
to arbitrarily fit any given data points. Thus, if we are given the observed data, then the first
step must be to determine an eligible batch set C0. This might require subjective assessments
or prior knowledge depending on the context of the experiment.

5.8 Conclusion

An MCMC algorithm was proposed for inference on the DMPTM using data cloning. The
algorithm was constructed on the basis of existing MCMC algorithms for Bayesian inference
on continuous phase-type distributions. While the known EM algorithm yields MLEs for
the DMPTM based on a deterministic approximation, the proposed algorithm provides an
alternative way to obtain the MLEs of the DMPTM based on a stochastic approximation,
which directly contributes to the field of approximate inference. Two simulation studies
validated the proposed MCMC algorithm combined with data cloning as applied to the
DMPTM. Then, the proposed MCMC algorithm with data cloning was applied to calibrate
the DMPTM to a real-life insurance claim frequency data set. It was observed that, once
enhanced with data cloning, the proposed MCMC algorithm produced results that are as
sound as those secured with the existing EM algorithm.
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Chapter 6

Summary and Future Research Topics

6.1 Summary

In this thesis, we made contributions in two areas. In one area, the concept of estimability
was objectively defined in the context of statistical models. In the other area, the Markov
chain Monte Carlo procedure was applied to the PTAM and the DMPTM.

In Chapter 2, the identifiability of the PTAM was investigated, which paved the way for
investigating its estimability. In Chapter 3, a novel definition of estimability was introduced
to objectively quantify estimability for statistical models, and more particularly that of the
PTAM, in order to solve the non-estimability issue. In Chapter 4, an MCMC algorithm was
developed for Bayesian inference on the PTAM, which improved estimability via sound prior
information. The algorithm was also utilized as a standalone model fitting technique. In
Chapter 5, an MCMC algorithm combined with data cloning was developed for inference on
the DMPTM. The algorithm which provides an alternative approach to determining MLEs
achieved model fitting results that were comparable to those obtained by applying the EM
algorithm.

Here are principal research contributions of this thesis:

(i) It is established that the PTAM is identifiable when the number of states is greater or
equal to six; it is otherwise possibly non-identifiable.

(ii) Unlike existing methods utilized for estimability assessments which require a subjec-
tively specified threshold, the proposed definition of estimability is objective. This
objectivity is achieved via a carefully designed c.d.f. sensitivity measure which relates
the confidence region to the experimental error. Under that setting, the threshold
becomes objective as the experimental error becomes an experiment-based quantity.
The proposed definition not only solves the issue of subjective thresholds in exist-
ing methods, but also extends the concept of estimability in the context of statistical
models.
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(iii) An MCMC algorithm is developed for Bayesian inference on the PTAM. The proposed
method provides two methodological extensions based on an existing MCMC inference
method. First, a two-level MCMC sampling scheme is proposed to make the method
applicable to situations where the posterior distributions are complicated after data
augmentation. Secondly, the data augmentation technique is further developed in order
to incorporate left-truncated data.

(iv) An MCMC algorithm is developed for inference on the DMPTM using data cloning.
From the perspective of approximate inference, while the application of a determin-
istic approximation to the DMPTM has been investigated via the EM algorithm, the
stochastic approximation counterpart had remained hitherto unexplored. The pro-
posed MCMC algorithm therefore fills this gap and provides another way of determin-
ing the MLEs of the DMPTM based on stochastic approximation.

6.2 Future research topics

The results obtained in Chapter 3 could be further investigated as follows:

(i) Other potential definitions of estimability can be envisaged by utilizing different loss
functions involving the ECDF. This might help experimenters investigate the strin-
gency of the proposed definition.

(ii) Other potential definitions of estimability might be put forward by relying on a binary
event other than “the confidence region being finite or infinite”. This might provide
a more realistic criterion regarding the size of the confidence region. As confirmed
by Raue et al. (2009), an extremely wide but bounded confidence region is almost
as deficient as an infinite region, which makes the proposed definition somewhat less
practical. Thus, it is a worthwhile direction to seek other mathematical concepts
regarding the size of a multidimensional region. In that case, the criterion can be
improved upon while retaining its objectivity.

(iii) The application of the proposed definition can be extended to density approximation
problems. In that case, the experimental error will be interpreted as an objective
threshold that determines how well the proposed density approximates the target den-
sity.

Possible future research undertakings that are related to Chapter 4 are suggested below.

(i) RJMCMC can be applied to make inferences on the number of states of phase-type
distributions, which was suggested by Bladt et al. (2003). To the best of our knowledge,
treating the number of states as one of the parameters of phase-type distributions has
seldom been considered in the literature. However, since the number of states conveys
biological meanings in the context of the PTAM, this aspect deserves attention.
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(ii) Finding efficient ways of calculating large matrix exponentials has been an open prob-
lem for years. If large matrix exponentials can be calculated more efficiently, this
will directly facilitate the application of the proposed MCMC on the PTAM when the
number of states is large.

In Chapter 5, a possible future research topic is the identifiability of the DMPTM. Canonical
forms such as those presented in Cumani (1982) might be expected. If it turns out that such
canonical forms are indeed available for the DMPTM, then one may consider utilizing them
rather than resorting to assuming full entries in the transition probability matrices.
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Appendix A

Properties of the hi
′s

A.1 Preliminaries

Proposition A.1.1. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4); then any
sub-sequence of h with n elements {ha, ha+1, . . . , ha+n−1}, where 1 ≤ a < a+ n− 1 ≤ m and
n ≥ 3, can be described by the same structures as (2.4) with

h∗1 = ha, (A.1)

h∗n = ha+n−1, (A.2)

s∗ = s. (A.3)

Proof. It suffices to prove that h∗j = ha−1+j, j = 1, 2, . . . , n. When s∗ = 0, we have

h∗j = h
∗n−j
n−1

1 h
∗ j−1
n−1
n

= h
n−j
n−1
a h

j−1
n−1

a+n−1

=
(
h
m−a
m−1

1 h
a−1
m−1
m

)n−j
n−1
(
h
m−a−n+1

m−1

1 h
a+n−2
m−1
m

) j−1
n−1

= h
m−a−j+1
m−1

1 h
a+j−2
m−1
m

= ha−1+j. (A.4)
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When s∗ ̸= 0, we have

h∗j =

(
n− j

n− 1
h∗s

∗

1 +
j − 1

n− 1
h∗s

∗

n

) 1
s∗

=

(
n− j

n− 1
hsa +

j − 1

n− 1
hsa+n−1

) 1
s

=

(
n− j

n− 1

(
m− a

m− 1
hs1 +

a− 1

m− 1
hsm

)
+
j − 1

n− 1

(
m− a− n+ 1

m− 1
hs1 +

a+ n− 2

m− 1
hsm

)) 1
s

=

(
m− a− j + 1

m− 1
hsa +

a+ j − 2

m− 1
hsa+n−1

) 1
s

= ha−1+j. (A.5)

The next proposition follows immediately.

Proposition A.1.2. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4); then any
new sequence with extrapolated points of h, namely, {a1, a2, . . . , aM , h1, h2, . . . , hm, b1, b2, . . . , bN},
where M ≥ 1, N ≥ 1, can be described by the same structures as (2.4) with

Case 1: s∗ = s ̸= 0

h∗1 = a1 =

(
M +m− 1

m− 1
hs1 −

M

m− 1
hsm

) 1
s

, (A.6)

hm+M+N∗ = bN =

(
− N

m− 1
hs1 +

N +m− 1

m− 1
hsm

) 1
s

, (A.7)

Case 2: s∗ = s = 0

h∗1 = a1 = h
M+m−1
m−1

1 h
− M
m−1

m , (A.8)

hm+M+N∗ = bN = h
− N
m−1

1 h
N+m−1
m−1

m . (A.9)

Proof. From Proposition A.1.1, we know that h is a sub-sequence of the larger extrapolated
sequence, and we have

h∗M+1 = h1, (A.10)

h∗M+m = hm, (A.11)

s∗ = s. (A.12)
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We can then solve for a1 and bN . When s ̸= 0, we have

h∗1 = a1 =

(
M +m− 1

m− 1
hs1 −

M

m− 1
hsm

) 1
s

, (A.13)

hm+M+N∗ = bN =

(
− N

m− 1
hs1 +

N +m− 1

m− 1
hsm

) 1
s

. (A.14)

When s = 0, we have

h∗1 = a1 = h
M+m−1
m−1

1 h
− M
m−1

m , (A.15)

hm+M+N∗ = bN = h
− N
m−1

1 h
N+m−1
m−1

m . (A.16)

Therefore, this proposition provides manageable formulas to calculate extrapolated points
of h. In simple words, the two previous propositions establish that a given sequence h =
{h1, h2, . . . , hm}, whether being extrapolated or a given subset, the resulting new sequence
can be described by the same structure with new starting and ending points and the same
s.

Proposition A.1.3. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4) where
m ≥ 6. If a point h∗ is inserted between hi and hi+1 where i = 1, 2, . . . ,m − 1, then there
will be no structure of (2.4) that can describe the new sequence.

Proof. Case 1
Suppose h∗ is inserted between hi and hi+1 where 1 ≤ i ≤ m − 3, then there are at

least three points in hi+1, . . . , hm. Assuming structure of (2.4) can describe the new se-
quence, then based on propositions A.1.1 and A.1.2, we know that we must have h∗ = hi;
however, we cannot have h∗ = hi because the sequence described by (2.4) must be in-
creasing. Therefore, there will be no structure of (2.4) that can describe the new sequence
{h1, h2, . . . , hi, h∗, hi+1, . . . , hm}.
Case 2

Similarly, suppose h∗ is inserted between hi and hi+1 where 3 ≤ i ≤ m − 1, then there
are at least three points in h1, . . . , hi. Assuming structure of (2.4) can describe the new se-
quence, then based on propositions A.1.1 and A.1.2, we know that we must have h∗ = hi+1;
however, we cannot have h∗ = hi+1 because the sequence described by (2.4) must be in-
creasing. Therefore, there will be no structure of (2.4) that can describe the new sequence
{h1, h2, . . . , hi, h∗, hi+1, . . . , hm}.

Proposition A.1.4. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4) where
m ≥ 6. If a point hi is removed where 2 ≤ i ≤ m− 1, then there will be no structure of (2.4)
that can describe the new sequence.
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Proof. Case 1
Suppose hi is removed where 2 ≤ i ≤ m − 3, then there are at least three points in

hi+1, . . . , hm. Assuming structure of (2.4) can describe the new sequence, then based on
Propositions A.1.1 and A.1.2, we know that the first to (i− 1)th points must be {h2, h3, . . . , hi}.
However, they are in fact {h1, h2, . . . , hi−1}, which is certainly different because the sequence
described by (2.4) must be increasing. Therefore, there will be no structure of (2.4) that can
describe the new sequence {h1, h2, . . . , hi−1, hi+1, . . . , hm}.
Case 2

Similarly, suppose hi is removed where 4 ≤ i ≤ m − 1, then there are at least three
points in h1, ..., hi. Assuming structure of (2.4) can describe the new sequence, then based
on Propositions A.1.1 and A.1.2, we know that the ith to (m− 1)th points must be the set
{hi, hi+1, . . . , hm−1}. However, they are in fact {hi+1, hi+2, . . . , hm}, which is surely different
because the sequence described by (2.4) must be increasing. Therefore, there will be no
structure of (2.4) that can describe the new sequence {h1, h2, . . . , hi−1, hi+1, . . . , hm}.

A.2 Inserting or removing an element in h

Proposition A.2.1. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4) where
m ≥ 6, if we insert or remove a point, then there will be no structure of (2.4) that can
describe the new sequence, provided that the inserted or removed point is not the starting or
ending point

Proof. A combination of Propositions A.1.3 and A.1.4 will establish this result.

A.3 Vertically shifting h

Proposition A.3.1. Let the sequence h = {h1, h2, . . . , hm} be generated by (2.4) where
m ≥ 6 and s ̸= 0; if we vertically shifted the components by ϵ (where ϵ > 0), then the shifted
curve {h1 + ϵ, h2 + ϵ, . . . , hm + ϵ} cannot be described by the structure of (2.4), except for
s = 1.

Proof. For the new sequence we obviously need to choose

h∗1 = h1 + ϵ, (A.17)

h∗m = hm + ϵ. (A.18)

Therefore, it suffices to prove that there is no such s∗ that can produce

h∗i = hi + ϵ for all i. (A.19)
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Since s ̸= 0, we have

hsi =
m− i

m− 1
hs1 +

i− 1

m− 1
hsm (A.20)

and

h∗i
s∗ =

m− i

m− 1
(h1 + ϵ)s∗ +

i− 1

m− 1
(hm + ϵ)s∗. (A.21)

Since the two previous equations can be seen as two sequences exhibiting a linear pattern,
for convenience, we define

a = hs1, (A.22)

d =
hsm − hs1
m− 1

, (A.23)

a+ δ = (h1 + ϵ)s∗, (A.24)

c =
(hm + ϵ)s∗ − (h1 + ϵ)s∗

m− 1
. (A.25)

Thus, (A.20) and (A.21) become

hsi = a+ (i− 1)d, (A.26)

h∗i
s∗ = a+ δ + (i− 1)c, (A.27)

and the problem then becomes determining whether one can find an s∗ such that

[a+ δ + (i− 1)c]
1
s∗ = [a+ (i− 1)d]

1
s + ϵ, for all i. (A.28)

Solving for s∗, we have

s∗ =
ln(a+ δ + (i− 1)c)

ln
(
[a+ (i− 1)d]

1
s + ϵ

) . (A.29)

We now can see that the value of s∗ is a function of i, which means there is no constant
value of s∗ that can satisfy (A.28) for all i, unless s = 1. In fact, for s = 1, one will have
s∗ = 1, in which case δ = ϵ and c = d.
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Appendix B

Proofs in connection with the
Sub-models of the PTAM

B.1 Proof of Proposition 3.5.1

Proof. Given m,

lim
s→∞

hi = lim
s→∞

(
m− i

m− 1
hs1 +

i− 1

m− 1
hsm

) 1
s

= max(h1, hm) lim
s→∞

(
m− i

m− 1

(
h1

max(h1, hm)

)s
+

i− 1

m− 1

(
hm

max(h1, hm)

)s) 1
s

= hm lim
s→∞

(
m− i

m− 1

(
h1
hm

)s
+

i− 1

m− 1

) 1
s

, since hm > h1 > 0.

Let L := lims→∞

(
m−i
m−1

(
h1
hm

)s
+ i−1

m−1

) 1
s

, then

lnL = ln lim
s→∞

(
m− i

m− 1

(
h1
hm

)s
+

i− 1

m− 1

) 1
s

= lim
s→∞

ln

(
m− i

m− 1

(
h1
hm

)s
+

i− 1

m− 1

) 1
s

= lim
s→∞

ln
(
m−i
m−1

(
h1
hm

)s
+ i−1

m−1

)
s

=
ln
(
i−1
m−1

)
∞

= 0.
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Thus,

lim
s→∞

hi = hmL = hme
0 = hm

for i = 2, 3, . . . ,m− 1.

Therefore, the limiting distribution as s→ ∞ is Coxian with

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ hm) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ hm) λ
0 0 0 0 . . . 0 −hm

 , h =


h1
hm
...
hm
hm

 .

Since the last m− 1 states have the dying rate hm, they can be merged into one state. That
is,

S =

[
−(λ+ h1) λ

0 −hm

]
, h =

[
h1
hm

]
.

B.2 Proof of Proposition 3.5.2

Proof. Given m,

lim
s→−∞

hi = lim
s→−∞

(
m− i

m− 1
hs1 +

i− 1

m− 1
hsm

) 1
s

= min(h1, hm) lim
s→−∞

(
m− i

m− 1

(
h1

min(h1, hm)

)s
+

i− 1

m− 1

(
hm

min(h1, hm)

)s) 1
s

= h1 lim
s→−∞

(
m− i

m− 1
+

i− 1

m− 1

(
hm
h1

)s) 1
s

, since hm > h1 > 0.
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Let L := lims→−∞

(
m−i
m−1

+ i−1
m−1

(
hm
h1

)s) 1
s

, then

lnL = ln lim
s→−∞

(
m− i

m− 1
+

i− 1

m− 1

(
hm
h1

)s) 1
s

= lim
s→−∞

ln

(
m− i

m− 1
+

i− 1

m− 1

(
hm
h1

)s) 1
s

= lim
s→−∞

ln
(
m−i
m−1

+ i−1
m−1

(
hm
h1

)s)
s

=
ln
(
m−i
m−1

)
−∞

= 0.

Thus,

lim
s→−∞

hi = h1L = h1e
0 = h1

for i = 2, 3, . . . ,m− 1.

Therefore, the limiting distribution as s→ −∞ is Coxian with

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ h1) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ h1) λ
0 0 0 0 . . . 0 −hm

 , h =


h1
h1
...
h1
hm

 .

B.3 Proof of Proposition 3.5.3

Proof. Given m,

lim
hm→∞

lim
s→−∞

hi = lim
hm→∞

h1, by Proposition 3.5.2

= h1,

where i = 1, 2, 3, . . . ,m − 1. As hm goes to infinity, the sojourn time in the last state will
tend to zero. In other words, simply leaving the (m− 1)th state is equivalent to absorption.
The rate of absorption will be h1 + λ as there are two ways to leave the (m− 1)th state.
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Therefore, the limiting distribution as hm → ∞ and s → −∞ is Coxian of order m − 1
with

S =


−(λ+ h1) λ 0 0 . . . 0 0

0 −(λ+ h1) λ 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −(λ+ h1) λ
0 0 0 0 . . . 0 −(λ+ h1)

 , h =


h1
h1
...
h1

h1 + λ

 .

B.4 Proof of Proposition 3.5.4

Proof. The limiting distribution of the PTAM as m → ∞ is difficult to obtain. The result
stated in Proposition 3.5.4 was proved in Cheng (2021) and mentioned in Cheng et al. (2021).
Interested readers may refer to their work for more information.

B.5 Proof of Proposition 3.5.5

Proof. Given m,

lim
hm→∞

lim
s→∞

hi = lim
hm→∞

hm, by Proposition 3.5.1

= ∞,

where i = 2, 3, . . . ,m. Since the parameter space is continuous, the result can be obtained
if the limits are switched. As hm goes to infinity, the sojourn time goes to zero. In that
instance, simply leaving the first state is equivalent to absorption. Therefore, the lifetime is
exponentially distributed with rate h1 + λ.
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B.6 Proof of Proposition 3.5.6

Proof. Let h(t;h1, hm, s, ψ,m) be the hazard rate function associated with the PTAM. Then,

lim
s→∞

lim
m→∞

h(t;h1, hm, s, ψ,m)

= lim
s→∞

(
(hsm − hs1)

t

ψ
+ hs1

) 1
s

, by Cheng (2021)

= max(h1, hm) lim
s→∞

(((
hm

max(h1, hm)

)s
−
(

h1
max(h1, hm)

)s)
t

ψ
+

(
h1

max(h1, hm)

)s) 1
s

=hm lim
s→∞

(
t

ψ
+

(
1− t

ψ

(
h1
hm

)s)) 1
s

.

Let L := lims→∞

(
t
ψ
+
(
1− t

ψ

(
h1
hm

)s)) 1
s

, then

lnL = ln lim
s→∞

L = lim
s→∞

lnL = lim
s→∞

ln
(
t
ψ
+
(
1− t

ψ

(
h1
hm

)s))
s

=
ln
(
t
ψ

)
∞

= 0.

Therefore,

lim
s→∞

lim
m→∞

h(t;h1, hm, s, ψ,m) = hmL = hme
0 = hm,

which is the hazard function for an exponentially distributed random variable with rate
hm.

B.7 Proof of Proposition 3.5.7

Proof. Let h(t;h1, hm, s, ψ,m) be the hazard rate function associated with the PTAM. Then,

lim
s→−∞

lim
m→∞

h(t;h1, hm, s, ψ,m)

= lim
s→−∞

(
(hsm − hs1)

t

ψ
+ hs1

) 1
s

, by Cheng (2021)

= min(h1, hm) lim
s→−∞

(((
hm

min(h1, hm)

)s
−
(

h1
min(h1, hm)

)s)
t

ψ
+

(
h1

min(h1, hm)

)s) 1
s

=h1 lim
s→−∞

(
t

ψ

(
hm
h1

)s
+

(
1− t

ψ

)) 1
s

.
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Let L := lims→−∞

(
t
ψ

(
hm
h1

)s
+
(
1− t

ψ

)) 1
s

, then

lnL = ln lim
s→−∞

L = lim
s→−∞

lnL = lim
s→−∞

ln
(
t
ψ

(
hm
h1

)s
+
(
1− t

ψ

))
s

=
ln
(
t
ψ

)
−∞

= 0.

Therefore,

lim
s→−∞

lim
m→∞

h(t;h1, hm, s, ψ,m) = h1L = h1e
0 = h1,

which is the hazard function for an exponentially distributed random variable with rate
h1.

B.8 Proof of Proposition 3.5.8

Proof. Let h(t;h1, hm, s, ψ,m) be the hazard rate function associated with the PTAM. Then,

lim
hm→∞

lim
m→∞

lim
s→−∞

h(t;h1, hm, s, ψ,m) = lim
hm→∞

h1, by Proposition 3.5.7

= h1,

which is the hazard function for an exponentially distributed random variable with rate
h1.
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Appendix C

Data Augmentation with
Left-truncated Data for the PTAM

C.1 Case 1 - entering the study before reaching state

m

To begin with, consider a sample path of the underlying Markov process of the PTAM
presented in Table C.1, where m > 5:

state 1 2 3 4 5 m+ 1
sojourn time t1 t2 t3 t4 t5 0

Table C.1: A PTAM sample path generated from data augmentation.

In that case, the augmented data is x = (t1, t2, t3, t4, t5, 1, 2, 3, 4, 5) and the original data
is the absorption time y, which is equal to the sum of all sojourn times. The likelihood
function of this sample path is then

L(h1, hm, s, λ;x, y) =
4∏
i=1

(
λe−(λ+hi)ti

)
h5e

−(λ+h5)t5 . (C.1)

Now, suppose the individual enters the study at d where t1 < d < t1 + t2 without any
loss of generality; then the likelihood function for this left-truncated data is,

L(h1, hm, s, λ;x, y) =

∏4
i=1

(
λe−(λ+hi)ti

)
h5e

−(λ+h5)t5

λe−(λ+h1)t1e−(λ+h2)(d−t1)

= λe−(λ+h2)(t1+t2−d)
4∏
i=3

(
λe−(λ+hi)ti

)
h5e

−(λ+h5)t5 . (C.2)

118



C.2 Case 2 - entering the study after reaching state m

On the other hand, when the individual enters the study at the last physiological age, the
likelihood function will be slightly different. To verify this, consider another case where the
simulated sample path is as presented in Table C.2:

state 1 2 3 4 5 · · · m m+ 1
sojourn time t1 t2 t3 t4 t5 · · · tm 0

Table C.2: A PTAM sample path generated from data augmentation.

Accordingly, we have
∑m−1

i=1 ti < d <
∑m

i=1 ti. In that case, the likelihood function
becomes

L(h1, hm, s, λ;x, y) =

∏m−1
i=1

(
λe−(λ+hi)ti

)
hme

−hmtm∏m−1
i=1 (λe−(λ+hi)ti) e−hm(d−

∑m−1
i=1 ti)

= hme
−hm(

∑m
i=1 ti−d). (C.3)

Clearly, what makes the two cases different is the rate in the exponent. For the previous
m−1 states, the rate includes λ; however, for the last state, the rate does not, which is due to
the PTAM definition. Thus, in order to construct the likelihood function for left-truncated
data, one needs to consider these two cases separately, which explains why the set A needs
to be defined.

C.3 Proof for likelihood function with left-truncated

data

Now, let us finally consider sample paths from M individuals. To consider the two cases
separately, let A is the set of indices of the sample paths occurring in the second case. Let
m(i) be the state right before absorption for the ith individual. Moreover, let n(i) be such
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that
∑n(i)

j=1 t
(i)
j < di <

∑n(i)+1
j=1 t

(i)
j . Then, the likelihood function for M individual becomes

L(λ, h1, hm, s;x,y) =
∏
i∈A

(
λe

−
(
λ+h

n(i)+1

)(∑n(i)+1
j=1 t

(i)
j −di

)
m(i)−1∏
j=n(i)+2

(
λe−(λ+hj)t

(i)
j

)
hm(i)e

−(λ+hm(i))t(i)
m(i)

)
×
∏
i/∈A

(
hme

−hm(
∑m
j=1 t

(i)
j −di)

)
=
(
λ
∑
i∈A(m(i)−n(i)−1)

)(
e−λ

∑
i∈A

∑m(i)

j=1 t
(i)
j

)( M∏
i=1

hm(i)

)
×
(∏
i∈A

e
−h

n(i)+1

(∑n(i)+1
j=1 t

(i)
j −di

)
−
∑m(i)

j=n(i)+2
hjt

(i)
j
)(∏

i/∈A

e
−hm

(∑m
j=1 t

(i)
j −di

))
×
(∏
i∈A

eλdi
)
. (C.4)

According to our definitions of Qij, Z
A
i and Mi and definitions on Nij and the definitions of

Zi in Asmussen et al. (1996), it can be observed from above that

∑
i∈A

(m(i) − n(i) − 1) =:
m−1∑
i=1

(Ni,i+1 −Qi,i+1) , (C.5)

∑
i∈A

m(i)∑
j=1

t
(i)
j =:

m−1∑
i=1

ZA
i , (C.6)

M∏
i=1

hm(i) =:
m∏
i=1

h
Ni,m+1

i , (C.7)

and(∏
i∈A

e
−h

n(i)+1

(∑n(i)+1
j=1 t

(i)
j −di

)
−
∑m(i)

j=n(i)+2
hjt

(i)
j
)(∏

i/∈A

e
−hm

(∑m
j=1 t

(i)
j −di

))
=:

m∏
i=1

e−hiGi . (C.8)

Substituting (C.5)–(C.8) into (C.4) yields the final representation given in (4.15).
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Appendix D

Rejection Sampling on the
Logarithmic Scale

We briefly recall the rejection sampling method, in order to sample from a given continuous
p.d.f. p(θ) where θ ∈ (a, b), given that f(θ) ∝ p(θ):

Algorithm 19 The rejection sampling algorithm with a uniform proposal distribution
1: Calculate the global maximum of f(θ) on (a, b). Define it as w.
2: Draw a pair of uniformly distributed sample (θ, y); Θ ∼ Unif(a, b) and Y ∼ Unif(0, w).
3: while f(θ) ≤ y do
4: repeat Step 2
5: end while
6: Take θ as the sample.

Note that Algorithm 19 utilizes a uniform distribution of Θ as the proposal distribution,
with p.d.f. defined as v(θ) = 1

b−a . Subsequently, in order to satisfy the requirement for
rejection sampling, a constant c = w

(b−a) is selected so that cv(θ) = w ≥ f(θ), ∀θ ∈ (a, b).

According to the theory on rejection sampling, the proposal distribution v(θ) does not have
to be uniform, as long as the requirement cv(θ) ≥ f(θ) is satisfied. In this paper, it is taken
as the uniform distribution as the implementation turns out to be simpler.

However, when f is a posterior kernel, its value is likely to be small by making use of the
likelihood function. In fact, in the simulation study on the PTAM, its value is so small that
it outputs a value of zero in R. Thus, in order to carry out the rejection sampling scheme,
we have to transform the posterior kernel to a logarithmic scale. In other words, instead of
comparing f(θ) and y, we compare lnf(θ) and ln(y). Accordingly, we need to determine the
distribution of ln(Y ).

Given that x ∈ (−∞, ln(w)), we have

P(ln(Y ) ≤ x) = P(Y ≤ ex)

=
ex

w
. (D.1)
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Upon inverting the c.d.f., we may achieve the sampling of ln(Y ) via the relationship

ln(Y ) = ln(w) + ln(U), (D.2)

where U ∼ Unif(0, 1). Therefore, one may sample on a logarithmic scale as in Algorithm
20. That allows one to work with ln(w), when w is so small that it outputs a value of zero
in R.

Algorithm 20 Algorithm 19 on a logarithmic scale
1: Calculate the global maximum of lnf(θ) on (a, b). Define it as ln.w.
2: Draw a pair of samples (θ, ln(y)); Θ ∼ Unif(a, b) and ln(Y ) = ln(U) + ln.w, where U ∼ Unif(0, 1).
3: while lnf(θ) ≤ ln(y) do
4: repeat Step 2
5: end while
6: Take θ as the sample.

Then, Algorithms 9, 10 and 11 are direct applications of Algorithm 20.
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Appendix E

Data Augmentation for the DMPTM

In this appendix, we will address the technical details in connection with certain specific
steps of Algorithms 15, 16 and 17.

E.1 Algorithm 15: Sampling from p(x|β,B, b0,Y = y)

E.1.1 Step 2 of Algorithm 15

To simulate Jt = i from p(Jt|Y = y), Bayes Theorem can be utilized:

p(Jt = i|Y = y) =
πiP(Y = y|Jt = i)∑m
j=1 πjP(Y = y|Jt = i)

=
πipY ,i(y)∑m
j=1 πjpY ,j(y)

, i = 1, 2, 3, . . . ,m, (E.1)

where pY (y) is obtained by applying the recursive relationship specified in Result 4.

E.1.2 Step 6 of Algorithm 15

Let ϕ be a fictitious batch corresponding to the event “no batches in C0 occurs”. Letting
I ∈ {h ∈ C0|y ≥ h} ∪ {ϕ}, we have

p(Jt+1 = j, I|Y = y, Jt = i) =
P(Jt+1 = j, I,Y = y, Jt = i)

P(Y = y, Jt = i)

=
P(Jt+1 = j, I,Y = y|Jt = i)

P(Y = y|Jt = i)

=
P(I,Y = y|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y = y|Jt = i)
, (E.2)
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where j = 1, 2, . . . ,m.
Letting the numerator in expression (E.2) be denoted by R, we have

R =

{
(B0,ij)pY ,j(y), if I = ϕ,

(Bh,ij)pY ,j(y − h), if I ∈ {h ∈ C0|y ≥ h},
(E.3)

=:

{
R1, if I = ϕ,

R2, if I ∈ {h ∈ C0|y ≥ h},
(E.4)

where pY (y) and pY (y−h) are obtained by applying the recursive relationship specified in
Result 4.

Therefore,

p(Jt+1 = j, I|Y = y, Jt = i) =
R

P(Y = y|Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +
∑

h∈C0:y≥hR2

.

E.1.3 Step 17 of Algorithm 15

Step 17 of Algorithm 15 is similar to Step 6 presented in Appendix E.1.2; however, there are
two differences:

(i) At this stage, we know that Y = 0 so that no batch in C0 should be generated.

(ii) Y being reduced to 0 means that no data remains, and the algorithm is ready to end.
Thus, the absorbing transition should be included. That is, j = m+ 1 is allowed.

Then, we have

p(Jt+1 = j|Y = 0, Jt = i) = p(Jt+1 = j|Y = 0, Jt = i, I = ϕ) (E.5)

=
P(Jt+1 = j, I = ϕ,Y = 0, Jt = i)

P(Y = 0, Jt = i, I = ϕ)

=
P(Jt+1 = j, I = ϕ,Y = 0|Jt = i)

P(Y = 0, I = ϕ|Jt = i)

=
P(I = ϕ,Y = 0|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y = 0, I = ϕ|Jt = i)
, (E.6)
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where j = 1, 2, . . . ,m+ 1.
Letting the numerator in expression (E.6) be denoted by R, we have

R =

{
P(Y = 0|Jt+1 = j)P(Jt+1 = j|Jt = i), if j ̸= m+ 1,

P(Jt+1 = m+ 1|Jt = i), if j = m+ 1 (absorbed),
(E.7)

=

{
(B0,ij)pY ,j(0), if j ̸= m+ 1,

b0,i, if j = m+ 1 (absorbed),
(E.8)

=:

{
R1, if j ̸= m+ 1,

R2, if j = m+ 1 (absorbed),
(E.9)

where pY (0) is obtained by applying the recursive relationship specified in Result 4.
Therefore,

p(Jt+1 = j|Y = 0, Jt = i) =
R

P(Y = 0|Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +R2

.

E.2 Algorithm 16: Sampling from p(x|β,B, b0,Y (1) =

y(1),Y (2) ≥ y(2))

The technical details pertaining to Algorithm 16 are similar to those presented in Appendix
E.1 for Algorithm 15, the only difference being that the recursive relationship specified in
Result 5 is utilized rather than that given in Result 4.

E.2.1 Step 2 of Algorithm 16

To simulate Jt = i from p(·|Y (1) = y(1),Y (2) ≥ y(2)), Bayes Theorem can be utilized:

p(Jt = i|Y (1) = y(1),Y (2) ≥ y(2)) =
πiP(Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)∑m
j=1 πjP(Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)

=
πip

(0,1)
Y ,≥,i(y

(1), y(2))∑m
j=1 πjp

(0,1)
Y ,≥,j(y

(1), y(2))
, i = 1, 2, 3, . . . ,m, (E.10)

where p
(0,1)
Y,≥ (y(1), y(2)) is obtained by applying the recursive relationship specified in Result

5.
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E.2.2 Step 6 of Algorithm 16

Let ϕ be a fictitious batch corresponding to the event “no batches in C0 occurs”. Let
I ∈ {h ∈ C0|y(1) ≥ h(1)} ∪ {ϕ}. Define Q := p(Jt+1 = j, I|Y (1) = y(1),Y (2) ≥ y(2), Jt = i).
Then, we have

Q =
P(Jt+1 = j, I,Y (1) = y(1),Y (2) ≥ y(2), Jt = i)

P(Y (1) = y(1),Y (2) ≥ y(2), Jt = i)

=
P(Jt+1 = j, I,Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)

P(Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)

=
P(I,Y (1) = y(1),Y (2) ≥ y(2)|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)
, (E.11)

where j = 1, 2, . . . ,m.
Letting the numerator in expression (E.11) be denoted by R, we have

R =

{
(B0,ij)p

(0,1)
Y ,≥,j(y

(1), y(2)), if I = ϕ,

(Bh,ij)p
(0,1)
Y ,≥,j(y

(1) − h(1), (y(2) − h(2))+), if I ∈ {h ∈ C0|y(1) ≥ h(1)},
(E.12)

=:

{
R1, if I = ϕ,

R2, if I ∈ {h ∈ C0|y(1) ≥ h(1)},
(E.13)

where p
(0,1)
Y,≥ (y(1), y(2)) and p

(0,1)
Y,≥ (y(1) − h(1), (y(2) − h(2))+) are obtained by applying the

recursive relationship specified in Result 5.
Thus,

p(Jt+1 = j, I|Y (1) = y(1),Y (2) ≥ y(2), Jt = i) =
R

P(Y (1) = y(1),Y (2) ≥ y(2)|Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +
∑

h:h∈C0,y(1)≥h(1) R2

.

E.2.3 Step 17 of Algorithm 16

Step 17 of Algorithm 16 is similar to Step 6 presented in Appendix E.2.2; however, there are
two differences:

(i) At this stage, we know that Y = 0 so that any batch to be generated must have
y(1) = 0.

(ii) Y being reduced to 0 means that no data remains, and the algorithm is ready to end.
Thus, the absorbing transition should be included.
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Define Q1 := p(Jt+1 = j, I|Y (1) = 0(1),Y (2) ≥ 0(2), Jt = i). Then, we have

Q1 =
P(Jt+1 = j, I,Y (1) = 0(1),Y (2) ≥ 0(2), Jt = i)

P(Y (1) = 0(1),Y (2) ≥ 0(2), Jt = i)

=
P(Jt+1 = j, I,Y (1) = 0(1),Y (2) ≥ 0(2)|Jt = i)

P(Y (1) = 0(1),Y (2) ≥ 0(2)|Jt = i)

=
P(I,Y (1) = 0(1),Y (2) ≥ 0(2)|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y (1) = 0(1),Y (2) ≥ 0(2)|Jt = i)
, (E.14)

where j = 1, 2, . . . ,m+ 1.
Letting the numerator in expression (E.14) be denoted by R, we have

R =


(B0,ij)p

(0,1)
Y ,≥,j(0

(1),0(2)), if j ̸= m+ 1 and I = ϕ,

(Bh,ij)p
(0,1)
Y ,≥,j(0

(1),0(2)), if j ̸= m+ 1 and I ∈ {h ∈ C0|h(1) = 0(1)},
b0,i, if j = m+ 1 (absorbed),

(E.15)

=:


R1, if j ̸= m+ 1 and I = ϕ,

R2, if j ̸= m+ 1 and I ∈ {h ∈ C0|h(1) = 0(1)},
R3, if j = m+ 1 (absorbed),

(E.16)

where p
(0,1)
Y,≥ (0) is obtained by applying the recursive relationship specified in Result 5.

Thus,

p(Jt+1 = j, I|Y (1) = 0(1),Y (2) ≥ 0(2), Jt = i) =
R

P(Y (1) = 0(1),Y (2) ≥ 0(2), Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +
∑

h∈C0:h(1)=0R2 +R3

.
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E.3 Algorithm 17: Sampling from p(x|β,B, b0,Y ≥ y)

The technical details pertaining to Algorithm 17 are similar to those presented in Appendix
E.1 for Algorithm 15, the only difference being that the recursive relationship specified in
Result 6 is utilized rather than that given in Result 4.

E.3.1 Step 2 of Algorithm 17

To simulate Jt = i from p(·|Y ≥ y), Bayes Theorem can be utilized:

p(Jt = i|Y ≥ y) =
πiP(Y ≥ y|Jt = i)∑m
j=1 πjP(Y ≥ y|Jt = i)

=
πip

(1,1)
Y ,≥,i(y)∑m

j=1 πjp
(1,1)
Y ,≥,j(y)

, i = 1, 2, 3, . . . ,m, (E.17)

where p
(1,1)
Y,≥ (y) is obtained by applying the recursive relationship specified in Result 6.

E.3.2 Step 6 of Algorithm 17

Let ϕ be a fictitious batch corresponding to the event “no batches in C0 occurs”. Letting
I ∈ {ϕ, C0}, we have

p(Jt+1 = j, I|Y ≥ y, Jt = i) =
P(Jt+1 = j, I,Y ≥ y, Jt = i)

P(Y ≥ y, Jt = i)

=
P(Jt+1 = j, I,Y ≥ y|Jt = i)

P(Y ≥ y|Jt = i)

=
P(I,Y ≥ y|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y ≥ y|Jt = i)
, (E.18)

where j = 1, 2, . . . ,m.
Letting the numerator in expression (E.18) be denoted by R, we have

R =

{
(B0,ij)p

(1,1)
Y ,≥,j(y), if I = ϕ,

(Bh,ij)p
(1,1)
Y ,≥,j((y − h)+), if I ∈ C0,

(E.19)

=:

{
R1, if I = ϕ,

R2, if I ∈ C0,
(E.20)

where p
(1,1)
Y,≥ (y) and p

(1,1)
Y,≥ ((y − h)+) are obtained by applying the recursive relationship

specified in Result 6.

128



Finally,

p(Jt+1 = j, I|Y ≥ y, Jt = i) =
R

P(Y ≥ y|Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +
∑

h:h∈C0 R2

.

E.3.3 Step 17 of Algorithm 17

Step 17 of Algorithm 17 is similar to Step 6 presented in Appendix E.3.2. Y being reduced
to 0 means that no data remains, and the algorithm is ready to end. Thus, the absorbing
transition should be included. Then, we have

p(Jt+1 = j, I|Y ≥ 0, Jt = i) =
P(Jt+1 = j, I,Y ≥ 0, Jt = i)

P(Y ≥ 0, Jt = i)

=
P(Jt+1 = j, I,Y ≥ 0|Jt = i)

P(Y ≥ 0|Jt = i)

=
P(I,Y ≥ 0|Jt+1 = j)P(Jt+1 = j|Jt = i)

P(Y ≥ 0|Jt = i)
, (E.21)

where j = 1, 2, . . . ,m+ 1.
Letting the numerator in expression (E.21) be denoted by R, we have

R =


(B0,ij)p

(1,1)
Y ,≥,j(0), if j ̸= m+ 1 and I = ϕ,

(Bh,ij)p
(1,1)
Y ,≥,j(0), if j ̸= m+ 1 and I ∈ C0,

b0,i, if j = m+ 1 (absorbed),

(E.22)

=:


R1, if j ̸= m+ 1 and I = ϕ,

R2, if j ̸= m+ 1 and I ∈ C0,
R3, if j = m+ 1 (absorbed),

(E.23)

where p
(1,1)
Y,≥ (0) is obtained by recursive relationship specified in Result 6.

Therefore,

p(Jt+1 = j, I|Y ≥ 0, Jt = i) =
R

P(Y ≥ 0, Jt = i)

=
R∑

j:(B0)ij ̸=0R1 +
∑

h:h∈C0 R2 +R3

.
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