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Abstract 

Corrosion at the modular head-neck taper interface of total and hemiarthroplasty hip implants 

(trunnionosis) is a cause of implant failure and thus a clinical concern. Patient and device 

factors contributing to the occurrence of trunnionosis have been investigated in prior implant 

retrieval studies. The Goldberg corrosion scoring method is considered the gold standard for 

observing trunnionosis, but it is labour-intensive. As a result, previous studies have generally 

looked at under 250 implants for analysis. The purpose of this thesis was to do a large-scale 

analysis of trunnionosis and explore its relationship to device and patient factors and compare 

to previously known tends from more limited studies. Additionally, it was to develop a tool 

using machine learning for rapid screening of implants to identify for further study in order to 

reduce the labour burden associated with implant retrieval studies.  
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Summary for Lay Audience 

 

Hip replacements are an increasingly common procedure for Canadians. Despite their safety 

and efficacy, sometimes the devices fail, requiring the patient to undergo an additional surgery 

to remove the original device. This accounts for ~10% of hip replacement surgeries done each 

year. Corrosion of the device has become an increasing reason for failure, and it is thought that 

corrosion is underreported. It is known that wear and corrosion of implants in the body may 

affect the tissue in the immediate area in a negative way and some patient factors may 

contribute to a more corrosive environment in the body. There is a need to study these retrieved 

devices to better understand potential patient factors that may contribute to increased rate of 

failure.  

Goldberg scoring is a method used to observe corrosion at the taper interface for these devices. 

This method is labour-intensive and as a result, studies have generally looked at under 250 

implants when studying their corrosion and the patient and device factors that may contribute 

to it. This thesis has done a 664-device study of implants and their corrosion and determined 

relationships between corrosion severity and patient and device factors and compared them to 

previously identified relationships in smaller studies. Additionally, it has developed a tool to 

distinguish no/mild corrosion from moderate/severe corrosion to allow for rapid screening of 

implants for further study, reducing the labour barrier for implant retrieval studies.  

This thesis has provided the first large-scale study of retrieved hip arthroplasty devices and 

created a tool to make large-scale studies more accessible by reducing the labour required for 

early identification of devices with significant corrosion. The ability to conduct more large-

scale studies allows for refinement of device design and identification of patients who may be 

at increased risk for corrosion of the taper. As hip arthroplasty surgeries continue to become 

more frequent, it is important to attempt to minimize their possible failure.  
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Chapter 1  

1.1 Osteoarthritis  

Osteoarthritis is a degenerative disease that leads to the breakdown of joint cartilage and 

the underlying bone and may have associated synovial inflammation. [1]. Risk factors for 

osteoarthritis include prior injury, occupation, joint misalignment/deformity, muscle 

weakness, lifestyle, sex, obesity, and genetics [2]. Although all risk factors contribute, 

genetic factors have been found to be strong determinants of the disease [3]. Osteoarthritis 

is possible in any joint but is most commonly in weight bearing joints such as the knees, 

hips, big toes, and spine, as well as hands.  

Osteoarthritis is a debilitating disease. Approximately 25% of patients with osteoarthritis 

cannot perform their usually daily activities and 80% have limitations in movement [4]. It 

is the most common form of arthritis, currently affecting 4.6 million people in Canada and 

is projected to affect 10 million people in Canada within the next 30 years [5]. Joint-specific 

symptoms include joint pain, stiffness, swelling, crepitus (creaking/grinding noise) and 

instability [2]. 

Early detection of osteoarthritis allows for conservative management of the disease, but the 

disease cannot be reversed and will continue to progress. Osteoarthritis is confirmed 

through physical examination and x-ray imaging is used to grade the disease. The most 

common grading system used is Kellgren and Lawrence, where grade 0 is normal/non-

diseased, and grade 4 is end-stage. Grade 4 shows a complete loss of joint space and a 

“bone on bone” appearance [6]. 

1.2 The Hip  

The hip joint (acetabulofemoral joint) is one of the most common sites of osteoarthritis. It 

is a synovial ball and socket joint, with a large articulating surface created by the head of 

the femur and the acetabulum of the pelvis and lined with hyaline articulate cartilage. It is 

a weight bearing joint and its primary function is to support the weight of the body in static 

and dynamic postures [7]. 
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Symptoms of osteoarthritis in the hip includes pain in the groin, pain that flares up with 

vigorous activity, locking of the joint with a grinding noise, and decreased range of motion. 

In imaging, osteoarthritis of the hip is indicated by a narrowing joint space (thinning of the 

cartilage), the presence of bone spurs, and damaged cartilage. By end-stage osteoarthritis, 

conservative management methods no longer relieve pain, and the only available treatment 

is joint replacement [2]. 

 

Figure 1: a) Natural hip anatomy, b) hemiarthroplasty, c) total hip arthroplasty 

1.3 Hip Arthroplasty 

Hip arthroplasty refers to surgery where part of or all of the hip joint is replaced by an 

artificial implant. Hemiarthroplasty refers to the replacement of half of the hip joint, where 

the femoral component is replaced with an artificial implant while natural hip socket 

remains. Total hip arthroplasty (THA) refers to the replacement of both the femoral and 

acetabular articulating surfaces with an artificial implant (Figure 1). This is most used as a 

treatment for end-stage degenerative arthritis (primarily osteoarthritis), but other reasons 

include trauma and hip dysplasia [8]. The goals of hip arthroplasty are to remove the 

diseased or defective joint and replace it to be as anatomically similar to the patient’s 

original joint as possible [7].  
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In Canada, hip arthroplasty procedures have seen an upward trend- increasing 20.1% 

between 2015 and 2019, with a total of 62,016 surgeries reported in 2018 [9]. 81.3% of 

primary hip replacements performed in 2017 – 2018 were performed because of 

degenerative arthritis. It is expected that hip arthroplasty procedures will continue to 

increase, especially as osteoarthritis cases increase in Canada.   

1.4 Device Design  

1.4.1 History of Device Design  

The earliest reported attempts at hip replacements occurred in Germany in 1891, but 

modern total hip arthroplasty as we know it today is associated with orthopaedic surgeon 

Sir John Charnley of the United Kingdom, with the first surgery completed in 1962. It 

consisted of three parts: a metal femoral stem, a polyethylene acetabular component, and 

an acrylic bone cement, a sketch of the device is shown in Figure 2 [10].   

 

Figure 2: Sketch of the Charnley implant 
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This design is largely similar in concept to the total hip arthroplasty devices used today. 

Major design changes include advances in materials design and usage, geometry of the 

implants, segmentation of the stem into modular components, and the inclusion of the 

acetabular cup in the pelvis.  

1.4.2 Modern Device Design  

Today, most devices are now modular (stem and ball are separate pieces), with a metal-on-

polyethylene design (Figure 3) being the most common in Canada [9]. According to the 

Canadian Agency for Drugs and Technologies in Health, these implants are considered the 

“gold standard” in total hip prosthesis [11].  

 

Figure 3: Modern Total Hip Arthroplasty Design, showing a modular stem and a 

metal-on-polyethylene bearing surface. 
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In THA, matching the patient anatomy as closely as possible to the original configuration 

allows for the best outcome in surgery. Different sizes and variations to match patient 

anatomy are available.  

1.4.3 The Acetabular Component 

Present in total hip arthroplasty, the acetabular component is comprised of the acetabular 

cup and the liner. Most modern cups are made from titanium or tantalum metals [12]. 

Liners may be made of polyurethane, ceramic, or metal, however polyethene is the most 

commonly used material. The liners come in varying thicknesses to accommodate the size 

of the head used and there are different design types to help accommodate patient anatomy 

and to prevent dislocation [13].  

1.4.4 The Femoral Component  

In modular implants, the femoral component consists of the stem and the head. Stems are 

typically manufactured from stainless steel, cobalt-chromium alloys, or titanium alloys. 

There are two main versions of the stem, modular and dual modular. Modular refers to the 

stem and ball being separate components whereas dual modular typically refers to the ball, 

neck, and stem being separate components (Figure 4). Modularity can exist in other 

locations, but their use is typically reserved for implants in revision cases.  

Figure 4: Modular stem (left) beside a dual modular stem (right) showing 

modularity at the base of the neck. 
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There is no one perfect stem design, as patient factors such as anatomy, bone quality and 

structure, and stature, all widely vary. There are two major places for variation: the distal 

stem design and the trunnion/taper design. Figure 5 shows just a few of the widely available 

stem models from different major manufacturers.  

Taper geometry and design can widely vary even within manufactures, although most 

companies try to limit the taper geometries produced and sold simultaneously. Figure 6 

shows variation in the taper design with popular implants. Taper design may change when 

the distal stem design has not, most notably when a company acquires a device from 

another company. An example of this is the Exeter stem which has had the same distal stem 

design since 1988 but saw a change in its taper geometry in 2000 after the stem was 

acquired by Stryker [14]. Taper design has been considered a significant factor for implant 

wear [15]. Machining lines (also called microgroove finish), parallel lines on the trunnion 

surface, are present on some taper designs, but this specific design factor has not been 

Figure 5: A variety of available stems, showcasing major design differences in the 

distal stem component of the device. 
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found to be a significant factor for implant wear [16]. Figure 6 shows variation in taper 

designs, including machining lines.   

 

Figure 6: a) Zimmer Biomet Type-1, b) DePuy 12/14, c) Stryker PCA, d) Stryker C-

taper, e) Stryker V40, f) Zimmer Biomet 12/14 

Beyond the specific stem and taper design, there is a wide variety of different versions of 

the same stem with different sizes and offsets. Figure 7 shows the same stem model and 

two of its possible offset (distance from the center of the rotation of the femoral head to a 

line bisecting the long axis of the femur) offerings. Generally, the same stems are used for 

both hemi- and total hip arthroplasty, with a select number of stems being more common 

for usage in hemiarthroplasty.  

The head is typically made of chromium cobalt or ceramic and all designs are spherical, 

but similar to the stem, there is variance in ball height and diameter, as well as trunnion 

designs. Similarly, they are available in different outer diameter sizes (Figure 8) and have 

an offset to match the stem selection.  
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Figure 8: Different head sizes, from left to right: 22mm, 26mm, 28mm, 32mm, 36mm. 

 

Figure 7: Exeter stems showcasing two different offsets. 
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Total hip arthroplasty devices have the head fit into the acetabular component, while 

hemiarthroplasty devices make use of a larger head or a head within a larger head (Figure 

9) with a liner between them and placed into the natural acetabulum.  

1.5 Revision, Wear, and Damage 

1.5.1 Revision  

Revision surgeries refer to an additional surgery that is done to correct the primary implant, 

often resulting in removal of part, or the entire implant. They account for 7.3% of all joint 

replacement surgeries done in Canada in 2018. Typically, these surgeries are 80% more 

costly than primary surgery due to the increased complexity as well as extended hospital 

stays for the patient [9]. Common reasons for revision include joint infection, aseptic 

loosening, and instability. The retrieved implant can hold insight into the in vivo implant 

behaviour, particularly when damage to the implant is observed.  

Figure 9: (left) Hemiarthroplasty device utilising a large head, (right) 

hemiarthroplasty device utilizing a head within a head with a polyethylene liner 

between. 
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1.5.2 Wear and Corrosion 

Wear may be defined as a cumulative surface damage phenomena in which material is 

removed from a body in the form of small particles, primarily by mechanical processes 

[17]. Previously, mechanical wear of the polyethylene component was a major cause for 

implant revision, but with the introduction of cross-lined polyethylene (XLPE) this is 

widely considered a “solved problem.” Fretting is a specific type of wear that occurs as a 

result of small oscillatory motions between two surfaces. The modular head and trunnion 

create a space for this type of wear to occur. Another type of damage, corrosion, has also 

been of concern. Corrosion of the trunnion, trunnionosis, has been identified as a growing 

cause of THA failure [18]. Corrosion also creates wear debris that can trigger adverse soft-

tissue reactions. Adverse tissue reactions are well documented in metal-on-metal hip 

replacements and had led to their mass revision and phasing out of their usage. There is an 

argument that corrosion-related soft-tissue reactions may be overlooked and misdiagnosed 

as recurrent instability or infection, which may lead to inadequate treatment of the issue 

[19].   

Some examples of the damages commonly found on retrieved implants are: pitting and 

crevice corrosion, tribocorrosion, intergranular corrosion, and inflammatory cell-induced 

corrosion. Pitting and crevice corrosion refer to corrosion where the surface oxide is locally 

damaged leading to either pitts or crevices on the material surface [20]. Tribocorrosion is 

when both corrosion and wear occur simultaneously; which has been reported for the 

trunnion [21]. Intergranular corrosion refers to corrosion that occurs at grain sites of the 

material. This is commonly seen in alloys, where materials have been combined [22]. 

Inflammatory cell-induced corrosion refers to a biological corrosion that is caused by 

inflammatory cells adhered to the metal surface [23]. Corrosion is observed visually as 

surface discolouration and more advanced forms are able to be visually observed, but not 

necessarily able to be distinguished from each other (with the exception of crevice and 

pitting)[24]. Knowing the mechanism of corrosion is important to identify the cause of the 

corrosion and employ appropriate methods to prevent it, however distinguishing between 

the mechanisms is difficult to do visually and often requires advanced analysis techniques. 
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These techniques are time consuming and cost-prohibitive, thus there is a need to screen 

for the presence of corrosion before employing these methods.  

1.5.3 The Bearing Surface   

The surface between the acetabular and femoral component, made up of the liner and the 

head, is the bearing surface. In total hip arthroplasty and hemiarthroplasty that uses a liner, 

this surface is susceptible to mechanical wear. There are four types of bearings that are 

studied and applied in THA: metal-on-polyethylene (MoP), metal-on-metal (MoM), 

ceramic-on-ceramic, and ceramic-on-polyethylene [25],[26]. Conventionally, the first 

material listed is with regards to the head and the second is the liner. Reported in vitro wear 

rates for popular materials of each bearing combination are included in Table 1.  

Table 1: Reported wear rates for bearing surfaces. 

Bearing Combination Specific Material Reported wear rate (mm3/Mc) 

Metal-on-metal CoCr-CoCr 0.60±0.18[27] 

Metal-on-polyethylene  CoCr-XLPE  6.71±1.03[28]  

Ceramic-on-polyethylene CoCr-XLPE 4.09±0.64[29] 

Alumina-XLPE 3.35±0.29[30] 

Ceramic-on-ceramic Alumina-Alumina 0.74±1.73[31], 0.03[32] 

Zirconia-Zirconia 0.024[32], 0.06±0.004[31] 

Although ceramic-on-ceramic and ceramic-on-polyethylene have the lowest wear rates, 

these bearing combinations have not been shown to be meaningfully better performing 

when looking at mid-term results of patients. The lack of evidence that they perform 

significantly better in patient context, and the increased cost of these combinations have 

prevented their widespread usage [33,34].  Metal-on-metal, a once popular bearing 

combination due to its cost effectiveness and low wear rate, has been associated with 
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adverse tissue reactions and metal ion release into the bloodstream [35]. Metal-on-

polyethylene is the most widely used and it is considered the gold-standard in Canada. This 

bearing combination is both cost effective and has a low wear rate [11].  

1.6 Implant Retrieval Studies  

Analyzing implants retrieved gives insight into the behaviour of the implants in vivo that 

may have not been considered during clinical trial testing and can inform design 

considerations for improved implants and surgical techniques [19,25]. Implant retrieval 

analysis can also help identify models that are experiencing catastrophic failure in vivo 

despite medical device approval [36]. Furthermore, connection of implant damage with 

patient records allows for an understanding of conditions that may contribute to a more 

damaging environment and higher rates of implant failure.  

1.6.1 Scoring of Implant Damage  

The Goldberg damage scoring method is the industry standard for analysis of retrieved hip 

replacements focusing on the trunnion. The damage scoring process is separated into two 

categories, fretting and corrosion, and they are each given a score between 1-4. The criteria 

is summarized in Table 2 and Table 3 [37]. 

Table 2: Goldberg Corrosion scoring criteria 

Severity of 

Corrosion 

Score Criteria  Example 

None 1 No visible corrosion observed  
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Mild 2 <30% of taper surface 

discoloured or dull 

 

Moderate 3 >30% of surface discoloured 

or dull, or, <10% of taper 

surface containing black 

debris, pits, or etch marks 

 

Severe 4 >10% of taper surface 

containing black debris, pits, 

or etch marks 
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Table 3: Goldberg Fretting Criteria 

Severity of 

Fretting 

Score Criteria  

None 1 No visible sign of fretting observes 

Mild 2 Single band or bands of fretting scars involving three or fewer 

machine lines on taper surface  

Moderate 3 Several bands of fretting scars or a single band involving more 

than three machining lines 

Severe 4 Several bands of fretting scars involving several adjacent 

machine lines, or flattened areas with nearby fretting scars 

Typically, the scoring is done visually unaided or by observation through a low-power 

microscope with the observer deciding which threshold the implant meets in the criteria. 

This leads to an unintended qualitative nature of the scoring and possible interobserver 

variation of score. As a result, for reliable damage scoring, multiple parties with expertise 

are required to score the implants, leading to a large labour requirement. When conducting 

studies on retrieved implants that include damage scoring, the sample size is often <100 to 

account for this increased labour. This is considered underpowered, as the original criteria 

recommended at least 200 implants be scored to achieve appropriate power to detect small 

differences between groups. To try to mitigate this, single models of implants will often be 

selected. Goldberg scoring is a key method to observe and determine implant corrosion 

and fretting, however the labour requirement has prevented large-scale (>500 implants) 

studies from being undertaken.  

1.7 Machine Learning  

Artificial intelligence as a field emerged in the 1950’s. Machine learning is arguably the 

most popular subset of this field and it refers to algorithms that can update themselves 

using statistics to self-optimize [38]. The topic of machine learning is broad but its 
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applications can generally be sorted into two categories, supervised and unsupervised 

learning. Unsupervised is when an unlabelled collection of data is given to the algorithm, 

and it finds patterns and makes assumptions from the given data. Supervised is when a set 

of labelled data is given to train the algorithm, after which it is able to perform a task based 

on how it has been trained from the labelled images [39]. Both unsupervised and supervised 

machine learning have been used for biomedical applications and the decision regarding 

which one is implemented is based on the research question being investigated. Image 

classification, such as classifying the damage score of an object using a predetermined 

criterion, is considered a supervised machine learning problem.  

1.7.1 Convolutional Neural Networks 

Convolutional neural networks (CNN) are a member of a subset of machine learning called 

deep learning. The theory for them was meaningfully developed in the 1980’s by Kunihiko 

Fukushima, but they are extremely computationally intensive and could not reasonably be 

used in application until the development of graphics processing units in the 2000s.  

Convolutional neural networks for image classification contain both a feature extractor and 

a classifier. In a supervised problem, the network is fed labelled information (typically 

images) that belong to a series of classes. The model then trains itself by moving filters 

over the images to create feature maps. The values of the maps are then associated with 

different features of the images, then the results are summarized and passed to the next 

layer. The final stage of the network is the classification, where it takes all the information 

gathered from the feature maps associated with different classes and statistically calculates 

the probability of it being in each class. It then labels the image with the class that had the 

highest probability, and it checks its answer against the true label. If the label is correct, 

the network accepts its summaries of the feature maps as accurate and does not update. If 

the label is incorrect, the network updates its summaries of the feature maps to correct the 

network classification [40]. This is done through calculating the loss function and 

penalizing the network for incorrect classifications and feeding this back through the 

network layers (a concept called “back-propagation”). A visual example of a CNN for 

classifying an object is shown in Figure 10.  
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Figure 10: Example of a CNN for classifying a trunnion. The first two blocks extract 

features that can be used to identify different features (shapes, colour, brightness, 

etc.) and how they can be associated with the different classes. The knowledge from 

the last block moves forward to the next, then all the information is gathered 

together, and the system makes a statistical guess of the class. Image adapted from 

[40]. 

The data used to train the convolutional neural network is termed the training data. The 

data held and used during training to spot check the network and tune hyperparameters in 

the network is called validation data. The testing data refers to a set of data that the network 

does not see during training or validation. This is used to test the network and determine 

its accuracy and effectiveness.   

CNNs are common in a variety of biomedical applications, and their use in classification 

tasks has been second only to segmentation [38]. An example in arthroplasty includes 

identifying hip arthroplasty designs from an x-ray [41]. Obstacles to using CNNs can 

include sufficient data (typically >1000 images required for training). Cases where data is 

not sufficient may be remedied through data augmentation which includes varying your 

images (rotation, brightness, colour, etc.) to create what the system will perceive as unique 

images. However, care must be taken to unsure the augmentation still represents the images 

input and over-augmentation can affect generalizability of the network [42,43]. 

Ronneberger et al. demonstrated with U-Net that training a convolutional neural network 

for segmentation with limited data was possible if the architecture was well designed [44]. 

It can reasonably be inferred that for a classification task this should also be possible. 
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1.7.2 Previous Attempts to Automate Goldberg Scoring 

A previous attempt to automate Goldberg corrosion damage scoring of the trunnion was 

using a different machine learning method called support vector machine learning [45]. 

The key difference between support vector machine learning and convolutional neural 

networks is that a support vector machine maps the inputted data while a convolutional 

neural network extracts features before mapping the data. This means that support vector 

machines require significant image preprocessing as the image features must be extracted 

prior to using the algorithm. They also do not provide class probabilities [46].  

Milionfared et al. achieved Goldberg scoring of the trunnions with a cross-validated 

accuracy of 85% [45]. However, they only observed 138 modular stems, and it is unclear 

how many were of each class and which models of stems were used. Without this 

information and effort to ensure presence of the lesser common classes in each validation 

run, it is difficult to ensure that the 85% accuracy is not a result of the accidental exclusion 

of less common classes (such as class 3 and 4). Aside from accuracy, there is little 

discussion on other evaluation metrics that better distinguish a methods performance (such 

as sensitivity, specificity). Furthermore, knowing that there are greatly varying taper 

designs available, it is unclear if the modular stems they selected include all models 

currently used in practice, both in Australia where the study was conducted, and in Canada 

and the US, where there is interest to apply it. Notably, none of their example images 

included machining lines and instead all had smooth finishes. In Canada, machining lines 

are present on many of the taper designs currently used and their affect on the trunnion 

surface no longer appearing homogenous in colouring without corrosion may affect the 

feature extraction methods proposed by Milimonfared et al.. Lastly, this method has failed 

to be used in any implant retrieval studies since its publication, calling into question its 

ease of use and effectiveness in a laboratory setting.  

1.8 Thesis Objectives and Hypothesis 

Retrieved implants offer a wealth of information to understand the in vivo behaviour of 

implant devices and to identify potentially problematic implants before widespread 

catastrophic failure occurs. Machine learning, specifically convolutional neural networks, 
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offer a possibility to automate the detection of corrosion from high-quality photos. As a 

result, the objective of this thesis is to 1) perform a large-scale survey of all stems in the 

possession of the IRL laboratory, including mass imaging and Goldberg scoring of the 

implants, and look for possible trends in device and patient characteristics, 2) create a 

convolutional neural network able to discern corrosion severity using the Goldberg scoring 

method. 
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Chapter 2  

2 What patient and implant factors affect trunnionosis 
severity? An implant retrieval study of 664 femoral 
stems 

Anastasia M. Codirenzi1, Brent A. Lanting2, Matthew G. Teeter1,3 
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2. Division of Orthopaedic Surgery, Department of Surgery, Schulich School of 
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Background: Corrosion at the modular head-neck taper interface of total and 

hemiarthroplasty hip implants (trunnionosis) is a cause of implant failure and thus a clinical 

concern. Patient and device factors contributing to the occurrence of trunnionosis have 

been investigated in prior implant retrieval studies, but generally with limited sample sizes 

and a narrow range of models. The purpose of the present investigation was to determine 

which patient and device factors were associated with corrosion damage on the femoral 

stem taper across a large collection of different implant models retrieved following revision 

hip arthroplasty.  

Methods: A retrieval study of 664 hip arthroplasty modular stem components was 

performed. Patient and device information was collected. Trunnions were imaged under 

digital microscopy and scored for corrosion damage using the Goldberg scale. Damage was 

related to patient and device factors using regression analysis.  

Results: Greater duration of implantation (p = 0.005) and larger head size (p < 0.001) were 

associated with an elevated corrosion class. Older age at index surgery (p = 0.035), stainless 

steel stem material (p = 0.022), indication for revision as bone or periprosthetic fracture (p 

= 0.017) and infection (p = 0.018), and certain larger taper geometries were associated with 

a decreased corrosion class.   

Conclusions: Factors identified as contributing to a higher or lower risk of more severe 

corrosion are consistent with most prior smaller retrieval studies. Surgeons should be aware 
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of these risk factors when selecting implants for their patients, and when diagnosing 

trunnionosis in symptomatic hip replacement patients.  

Keyword (max of 6 keywords): Corrosion, trunnionosis, hip arthroplasty  

2.1 Introduction 

Modularity in modern hip arthroplasty implant designs enable surgeons to closely match 

the original anatomy of the patient [1]. Most devices provide modularity at the head-neck 

interface using a Morse taper, where the head and trunnion are attached using an interface 

fit [2]. The disadvantage of modularity is the potential for fretting and corrosion to occur 

due to the biomechanical forces acting at the head-neck taper junction [3]. This can produce 

debris in the form of metal ions, particles, and other corrosion products [4]. The presence 

of this debris can cause adverse local tissue reactions [5]. The corrosion process, termed 

trunnionosis, has been identified as a cause of hip arthroplasty failure and thus a clinical 

concern [6–8]. Corrosion-related soft-tissue reactions may potentially be overlooked and 

misdiagnosed as recurrent instability or infection [9]. Therefore, understanding potential 

risk factors for the development of trunnionosis can assist surgeons in making a proper 

diagnosis. 

Implant retrieval studies have had an important role in identifying a variety of implant and 

patient factors that contribute to trunnionosis, including head material, taper design, 

implantation time, femoral offset, body mass index (BMI), and taper rigidity [10–16]. 

However, such studies have made these observations from a limited number of devices 

sampled from select manufacturers. At most, these studies have included 252 femoral 

heads with 148 femoral tapers, with some studies including as few as 46 implants [13,16]. 

In contrast, large-scale implant retrieval studies examining other device failure modes such 

as polyethylene wear have provided a more rigorous assessment of the variables 

contributing to implant damage [17].  

The purpose of the present investigation was to determine which patient and device factors 

were associated with corrosion damage on the femoral stem taper across different implant 

models retrieved following revision hip arthroplasty.  
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2.2 Methods 

2.2.1 Study Population 

Institutional research ethics board approval was obtained for review of patient charts and 

implant retrieval analysis. All hip implants in our institutional implant retrieval laboratory 

were reviewed for inclusion (Figure 11). Implants included for analysis were designs with 

a modular head-neck taper where the femoral head and stem were retrieved at the time of 

revision surgery. Excluded were implants that were non-modular, cases where the femoral 

stem was not retrieved or had gross taper failure, and when there was fewer than five 

instances of a particular femoral stem model. Patient information including sex, age at 

implantation, hip joint laterality (left or right), reason for revision, and length of stem 

implantation were obtained from chart review. Implant information including taper design, 

stem material, head material, head size, stem model, and manufacturer was collected from 

the institutional implant retrieval laboratory catalogue and analysis of the device.  

 

Figure 11: Study design 
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2.2.2 Visual Scoring 

Each stem was imaged using a digital microscope at 20x magnification (DSX1000, 

Olympus Corporation, Tokyo, Japan). The surface was divided into four areas (medial, 

lateral, posterior and anterior) each represented by one image. The images (Figure 12) were 

then examined and assigned a corrosion score using the method of Goldberg et al., 

described in Table 4 [18]. A single score was assigned to each image and recorded; the 

maximum score observed on the implant from the four sides of the taper was used as the 

score for statistical analysis. All scoring was done by a single observer (A. Codirenzi). 

Figure 12: Representative images of each class (a) class 1, (b) class 2, (c) class 3, (d) 

class 4 
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Table 4: Goldberg scoring criteria [18] 

 Class 1 Class 2 Class 3 Class 4 

Severity 

 

None Mild Moderate Severe 

Criteria No visible 

corrosion 

observed 

<30% of taper 

surface discoloured 

or dull 

>30% of surface 

discoloured or 

dull, or, <10% of 

taper surface 

containing black 

debris, pits, or 

etch marks 

>10% of taper 

surface containing 

black debris, pits, 

or etch marks 

 

2.2.3 Statistical Analysis   

Ordinal logistic regression was used to compare the maximum observed trunnion corrosion 

score with the gathered device and patient factors. Odds ratios (OR) were calculated to by 

exponentiating the parameter estimates of the final ordinal logistic regression model.  

Possible interactions between patient and device factors identified in the ordinal logistic 

regression were further investigated. A Shapiro-Wilk test was used to determine normality. 

Accordingly, the Kruskal-Wallis one-way ANOVA was used to delineate differences in 

the factors with an alpha-value of 0.05. Data analysis was performed using IBM SPSS for 

Windows OS, version 28.0.1.1 and Prism 9 for Windows, version 9.3.1.  
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2.3 Results  

In total, 664 implants were included in the analysis. Mean patient age at original 

implantation was 66 years (range, 23 to 97 years). There was slightly more female patients 

(51.3%, n = 339) and most were right hips (57%, n = 376). The mean length of implantation 

was 5 years (range, <1 to 24 years). Reasons for revision included bone and periprosthetic 

fracture (19.3%, n = 127), implant fracture (2.0%, n = 13), infection (37.9%, n = 249), 

instability (3.7%, n = 24), metal debris reaction (3.0%, n = 20), polyethylene wear, 

osteolysis and aseptic loosening (32.4%, n = 213), and undifferentiated pain (1.7%, n = 

11). Details on the implants included in the analysis are shown in Table 5.  

Stem material Titanium  47% (n = 312) 

Cobalt-chromium 45.8% (n = 304) 

Stainless steel 7.2% (n = 48)  

Head material  Cobalt-chromium 93.0% (n = 618) 

Stainless steel 2.5% (n = 17) 

Ceramic 2.8% (n = 19) 

Oxinium 1.2% (n = 8)  

Zirconia  0.3% (n =2)  

Head size 22 mm  0.8% (n = 5) 

26 mm 2.9% (n = 19) 

28 mm  39.9% (n = 265) 

32 mm  26.1% (n = 173) 

36 mm  25.9% (n = 172) 
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38 mm 0.2% (n = 1)  

40 mm 2.1% (n = 14) 

>40 mm  2.2% (n = 15) 

Taper design B Type 1 2.6% (n = 17) 

 C-taper 9.3% (n = 62)  

D 11/13 1.4% (n = 9) 

D 12/14 19.3% (n = 128) 

D 14/16 1.2% (n = 8)  

PCA taper 6.6% (n = 44) 

S 10/12 0.2% (n = 1) 

S 12/14 24.7% (n = 164) 

S 14/16 0.3% (n = 2)  

V40 19.4% (n = 129) 

W 12/14 1.4% (n = 9) 

Z 12/14 12.2% (n = 81) 

Z 6 degree 1.5% (n = 10) 

Table 5: Implant characteristics. B Type 1: Mallory (n = 9), Taperloc (n = 6), 

Integral (n = 2) from Zimmer-Biomet (Warsaw, IN). C-taper: ODC (n = 1), Omnifit 

(n = 43), Restoration (n = 2), Secur-fit (n = 16) ) from Stryker (Mahwah, NJ). D 

11/13: S-ROM (n = 9) from DePuy Synthes (Raynham, MA). D 12/14: AML (n = 16), 

Corail (n = 42), Endurance (n = 19), Prodigy (n = 2), Reclaim (n = 7), Response (n = 

1), Solution (n = 12), Summit (n = 29) from DePuy Synthes (Raynham, MA). D 



32 

 

14/16: Solution (n = 5), AML (n = 2), CML (n = 1), from DePuy Synthes (Raynham, 

MA). PCA Taper: PCA (n = 40), Precision (n = 3), Strata (n = 1), from Stryker 

(Mahwah, NJ). S 10/12: Richards Modular (n = 1) from Smith & Nephew 

(Memphis, TN). S 12/14: Anthology (n = 4), Conquest (n = 13). CPCS (n = 7), 

Echelon (n = 24), Polarstem (n = 8), Redapt (n = 4), SL plus (n = 1), SMF (n = 2), 

Spectron (n = 32), Synergy (n = 70) from Smith & Nephew (Memphis, TN). S 14/16: 

Biofit (n = 1), TriWedge (n = 1) from Smith & Nephew (Memphis, TN). V40: ABG 

(n = 3), Accolade (n = 26), Definition PM (n = 1), Exeter (n = 47), GRMS (n = 1), 

Precision (n = 3), Rejuvenate (n = 32), Restoration (n = 14) from Stryker (Mahwah, 

NJ). W 12/14: Profemur (n = 7), Gladiator (n = 2) from Stryker (Mahwah, NJ). Z 

12/14: Advocate (n = 1), Apollo (n = 1), CLS (n = 1), CPT (n = 1), M/L taper (n = 

31), MS30 (n = 1), Versys (n = 44) from Zimmer-Biomet (Warsaw, IN). Z 6 degree: 

Harris (n = 8), Versys (n =2) from Zimmer-Biomet (Warsaw, IN). This table reflects 

modern ownership of the taper designs and companies.  

The ordinal logistic regression revealed length of implantation, age at implantation, 

reason for revision, head size, stem material, and taper design to be significant factors 

associated with the severity of corrosion class summarized in Table 6.  

Table 6: Ordinal logistic regression results 

Variable Estimate  95% CI OR P-value 

Implantation time 0.048 [0.015, 

0.081] 

1.049 0.005 

Age at implant -0.015 [-0.029, -

0.001]  

0.985 0.035 

Head size 0.092 [0.050, 

0.134] 

1.096 <0.001 

Sex -0.133 [-0.448, 

0.181] 

0.875 0.406 

Side -0.095 [-0.401, 

0.212] 

0.910 0.545 
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Primary or repeat revision 0.167 [-0.216, 

0.551] 

1.182 0.392 

Reason for 

revision 

Bone and 

periprosthetic 

fracture  

-1.470 [-2.682, -

0.257] 

0.230 0.017 

 Implant fracture -0.800 [-2.416, 

0.816] 

0.449 0.332 

 Infection -1.437 [-2.631, -

0.243] 

0.238 0.018 

 Instability -1.326 [-2.759, 

0.108] 

0.266 0.070 

 Metal debris 

reaction 

0.162 [-1.233, 

1.557] 

1.176 0.820 

 Polyethylene wear, 

osteolysis, and 

aseptic loosening 

-1.115 [-2.313, 

0.083] 

0.328 0.068 

 Undifferentiated 

pain 

0     

Taper 

geometry 

B Type 1 -0.835 [-2.341, 

0.671] 

0.434 0.277 

 C-taper  -0.738 [-2.025, 

0.550] 

0.478 0.261 
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 D11/13 -1.108 [-2.947, 

0.731] 

 

0.330 0.238 

 D12/14 -2.214 [-3.387, -

0.861] 

0.120 0.001 

 D14/16 -2.792 [-4.641, -

0.943] 

0.061 0.003 

 PCA -3.144 [-4.497, -

1.790] 

0.043 <0.001 

 S10/12 -2.259 [-6.446, 

1.928] 

0.104 0.290 

 S12/14 -1.371 [2.612, -

0.129] 

0.254 0.030 

 S14/16 -0.648 [-3.524, 

2.227] 

0.523 0.659 

 V40 -0.698 [-1.990, 

0.593] 

0.497 0.289 

 W 12/14 -0.585 [-2.363, 

1.193] 

0.557 0.519 

 Z 12/14 -1.299 [-2.570. -

0.029] 

0.273 0.045 

 Z 6 Degree 0      
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Stem 

Material 

Chromium Cobalt -0.325 [-0.704, 

0.055] 

0.723 0.094 

 Stainless Steel -1.016 [-1.885, -

0.146] 

0.362 0.022 

 Titanium 0      

Head 

Material 

Ceramic 0.422 [-2.561, 

3.405] 

1.525 0.781 

 Chromium Cobalt -0.268 [-3.122, 

2.587] 

0.765 0.854 

 Oxinium -0.017 [-3.159, 

3.125] 

0.983 0.992 

 Stainless Steel 0.548 [-2.547, 

3.643] 

1.730 0.729 

 Zirconia 0      

For patient factors, increasing length of implantation was associated with a greater 

probability of elevated corrosion class (OR 1.049, p = 0.005), while increasing patient age 

at implantation was associated with a lower probability of elevated corrosion class (OR 

0.985, p = 0.035). Two reasons for revision were associated with a lower probability of 

elevated corrosion class: bone or periprosthetic fracture (OR 0.230, p = 0.017) and 

infection (OR = 0.238, p = 0.018). 

For device factors, increasing head size was associated with a greater probability of 

elevated corrosion class (OR = 1.096, p < 0.001). Stainless steel stem material was 

associated with a lower probability of elevated corrosion class (OR = 0.362, p = 0.022). 

Five taper geometries were associated with a lower probability of elevated corrosion class: 
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D12/14 (OR = 0.120, p = 0.001), D14/16 (OR = 0.061, p = 0.003), PCA (OR = 0.043, p < 

0.001), S12/14 (OR = 0.254, p = 0.030), and Z12/14 (OR = 0.273, p = 0.045). 

There were two interactions between patient and device factors. Length of implantation 

varied between reasons for revision (p < 0.001) with median implantation times of 1.1 

years for infection, 1.1 years for instability, 3.2 years for bone and periprosthetic fracture, 

5.2 years for undifferentiated pain, 5.3 years for metal debris reactions, 6.1 years for 

implant fracture, and 7.1 years for wear/osteolysis/loosening. Head size varied between 

stem material (p < 0.001) with median head size of 28 mm for the cobalt-chromium and 

stainless-steel stems, and 32 mm for the titanium stems.  

2.4 Discussion  

Trunnionosis and the potential for adverse local tissue reactions remains an area of concern 

for modular hip arthroplasty devices. Although prior implant retrieval studies have 

identified a number of risk factors associated with trunnionosis (Table 7), these studies 

have generally examined only specific models of devices with low population numbers 

(typically below 150 implants). The purpose of this study was to determine which patient 

and device factors were associated with corrosion damage on the femoral stem taper across 

different implant models retrieved following revision hip arthroplasty. With 664 femoral 

stems examined for corrosion severity, this is the largest implant retrieval study of its kind.  

Table 7: Previous implant retrieval studies 

Study Study Population Factors associated 

with corrosion 

Factors not 

associated with 

corrosion  

El Zein et al. (2021) 

[1] 

Eight cohorts 

defined from 157 

retrieved THA 

based on femoral 

head composition 

Head material, taper 

geometry 

Head size 
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and taper 

geometry 

Hampton et al. 

(2019)[2] 

Cohort matched: 

28mm Oxinium 

heads with 28mm 

CoCr heads 

Head material N/A 

Silijander et al. 

(2018)[3] 

92 femoral stems 

and heads 

Head size, age at 

implant 

Gender, alloy 

combination 

Lange et al. (2018) 

[4] 

56 CoCr designs 

from a single 

manufacturer, 

two trunnion 

designs, mated 

with ceramic or 

CoCr heads 

Length of 

implantation 

Head size, neck 

length 

Del Balso et al. 

(2018)[5] 

Single taper 

design, single 

manufacturer, 

matched Bipolar 

and THA   

Implantation time  Bipolar 

hemiarthroplasty 

versus total hip 

arthroplasty 

Triantafyllopoulos 

et al. (2016)[6] 

154 femoral stem 

and heads, single 

modular neck 

Taper design, alloy 

combinations, 

implantation time 

Head size 

Tan et al. (2016)[7] Cohort matched, 

two cohorts: 52 

Ceramic, Cobalt 

Head material, taper 

design, implantation 

time 

Age, gender, body 

mass index 
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heads and 8 

oxinimum, CoCr  

Higgs et al. (2016) 

[8] 

252 CoCr femoral 

heads, 148 

femoral tapers, C-

taper and V-40 

Head offset, 

implantation time, 

weight, flexural 

rigidity 

Taper design 

Del Balso et al. 

(2016) [9] 

Cohort matched, 

23 femoral heads, 

32 mm and 28 

mm, single 

manufacture and 

23 femoral stems, 

10 28mm and 13 

32mm  

Implantation time Stem offset, stem 

type, stem fixation 

method 

Tan et al. (2015) 

[10] 

44 implants with 6 

taper designs, 

from four 

manufacturers, 

28+0mm heads  

Taper design  N/A 

Brock et al. 

(2015)[11] 

104 heads and 11 

stem trunnions 

from a single 

manufacturer, 

grounded by stem 

model (Corail and 

S-ROM) 

Taper design, 

threading/machining 

lines 

N/A 
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Kurtz et al. (2013) 

[12] 

100 femoral head-

stem pairs, 50 

ceramics matched 

with 50 CoCr 

based on 

implantation, 

lateral offset, 

stem design, 

flexural rigidity  

Head material, stem 

alloy, stem flexural 

rigidity 

N/A 

Dyrkacz et al. 

(2013)[13] 

74 implants with 

28mm and 36mm 

heads, 12/14 mm 

taper, CoCr heads 

and stems, two 

manufactures 

Head size N/A 

Longer Implantation Time 

Longer implantation duration (time in vivo) was associated with higher corrosion scores. 

This finding is consistent with prior literature [11,13–16,27]. With increased time 

implanted, there is increased time for corrosion to occur. This is furthered by shear stresses 

and mechanically assisted wear, such as crevice corrosion, that has been associated with 

repeated load cycling [28].  

Age at Time of Implantation and Stem Material  

Greater age at the time of implantation was associated with lower corrosion scores. This 

finding is inconsistent with prior studies by Tan et al. and Hothi et al [11,14].  Younger 

patients would potentially have had an implant for a longer time before revision and may 

be more active than older patients, increasing stress on the modular head-neck taper 

junction. Younger patients would also be more likely to receive a cementless cobalt-
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chromium or titanium femoral stem than a cemented stainless-steel stem, where stainless 

steel material was also associated with lower corrosion scores in the present study.  

Indication for Revision 

Infection and bone and periprosthetic fracture as the reason for revision were associated 

with lower corrosion scores. Prior studies have not reported on reason for revision as being 

associated with corrosion. Stems within the infection and bone and periprosthetic fracture 

groups had some of the lowest durations of implantation in the study, and length of 

implantation was associated with corrosion severity. However, instability also had a low 

implantation time, but was not significantly associated with lower corrosion scores. 

Instability may affect the stresses at the head-neck taper junction causing increased 

mechanical wear and contributing to a higher corrosion score even with less time 

implanted. Conversely, corrosion and local debris could cause the soft tissue damage and 

subsequent dislocation.  

Head Size, Trunnion Design, and Head Material 

Larger head sizes were associated with higher corrosion scores. This finding is consistent 

with prior literature [12]. This has previously been attributed to larger heads having a 

greater torque acting along the taper junction during daily activity, leading to more 

micromotion and increased deterioration of the passive oxide film.  

Certain taper designs were associated with lower corrosion scores. Prior studies have found 

a difference in corrosion severity between taper designs, with smaller tapers having greater 

corrosion than larger tapers (e.g. 11/13 versus 12/14 tapers, where the numbers refer to the 

proximal and distal diameter of the trunnion, respectively) but this finding has been 

inconsistent, with Brock et al. claiming the opposite on a single-manufacture study 

[10,23,25,27,29]. In the current study, 12/14 tapers from several manufacturers were 

associated with lower corrosion scores. Although all are labelled as 12/14 tapers, it is 

important to note that the cone angle and trunnion length differ between them. Two 

additional taper deigns, both larger than the 12/14 tapers, were also associated with lower 
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corrosion scores. Having a smaller taper geometry with a smaller contact surface may 

increase the stress concentrations within the head-neck taper junction. 

Previous studies have identified head material as a significant contributing factor to 

corrosion, but that factor was not found to be significant in this study [11,19,26]. 93% of 

heads in this study were cobalt-chromium, which may have affected the model as there was 

little representation of other head materials. Weight has previously been reported as a 

significant factor in increased corrosion by Higgs et al., but Tan et al. has reported that 

BMI is not [11,13]. As height, weight, and BMI data was missing for a large portion of the 

retrieved stems, these variables were not examined in the present study. 

A limitation of this study is that we were unable to include head offset due to lack of 

information in implant database systems and inconsistent presence of offset printed on the 

physical components. This factor has been identified as contributing to greater corrosion 

scores [13]. Similarly, we did not examine flexural rigidity [30].  We scored only corrosion 

and not fretting, but the two scores are related. Although with 664 femoral stems examined 

this is a large study including many different implant models and manufacturers, it reflects 

a single institution and does not include every device available on the market. A subset of 

the implants examined were also included in previously published retrieval studies by our 

group, although we have included a discussion of literature from multiple institutions. We 

assessed damage visually with the common Goldberg score and did not directly measure 

volumetric changes to the stem tapers, which might yield different results [31].  Finally, all 

implant retrieval studies examine failed implants and may not be entirely representative of 

well-performing devices that have not been revised.  

2.5 Conclusion 

In this large-scale study, the first of its size for retrieved hip arthroplasty devices, length of 

implantation time, age at implantation, reason for revision, head size, and taper design were 

found to have a significant effect on corrosion score. These findings are generally 

supportive of prior implant retrieval studies that examined fewer implants. Surgeons should 

be aware of these risk factors when choosing femoral stems and heads for their patients, 

and in diagnosing trunnionosis in patients presenting with complaints after surgery. 
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Chapter 3  

3 A convolutional neural network for high throughput 
screening of trunnion corrosion 

Anastasia M. Codirenzi1, Brent A. Lanting2, Matthew G. Teeter1,3 

1. School of Biomedical Engineering, Western University, London, Ontario, Canada 

2. Division of Orthopaedic Surgery, Department of Surgery, Schulich School of 

Medicine & Dentistry, Western University, London, Ontario, Canada 

3. Department of Medical Biophysics, Schulich School of Medicine & Dentistry, 

Western University, London, Ontario, Canada 

Background: Corrosion at the modular head-neck taper interface of total and 

hemiarthroplasty hip implants (trunnionosis) is a cause of implant failure and clinical 

concern. The Goldberg corrosion scoring method is considered the gold standard for 

observing trunnionosis, but it is labour-intensive and often requires multiple observers. 

This limit the quantity of implants trunnionosis studies typically study. Machine learning, 

particularly convolutional neural networks, have been used in various medical imaging 

applications and corrosion detection applications to help reduce repetitive and tedious 

image identification tasks.  

Methods: 725 modular femoral stem arthroplasty devices had their trunnion imaged in 

four positions and scored by an observer. A convolutional neural network was designed 

and trained from scratch using the images  

Results: The convolutional neural network was able to distinguish no and mild corrosion 

from moderate and severe corrosion with an accuracy of 98.32%, a class 1 and 2 sensitivity 

of 0.9881, a class 3 and 4 sensitivity of 0.9556 and an area under the curve of 0.9740.  

Conclusions: This convolutional neural network may be used as a screening tool to 

identify retrieved modular hip arthroplasty device trunnions for further study and the 

presence of moderate and severe corrosion with high reliability, reducing the burden on 

skilled observers in early stages of a study.  

Keywords: machine learning, arthroplasty, trunnionosis, corrosion  
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3.1 Introduction 

Trunnionosis refers to the fretting and corrosion of modular hip arthroplasty devices at the 

head-neck taper junction. This process can cause debris that has been shown to cause 

adverse tissue reactions and it has been of clinical concern because of its identification as 

a cause of hip arthroplasty failure [1–4]. Trunnionosis is believed to be underreported [1]. 

The presence of corrosion and fretting on explanted hip arthroplasty devices can be 

quantified using the Goldberg scoring method during implant retrieval studies [5]. Implant 

retrieval studies have helped identify areas for advancement in implant design, 

manufacturing, and installation, and they are of importance to identify specific device 

issues that may have been previously unknown [3,4,6–17]. Large-scale retrieved studies in 

knee arthroplasty have given new insight to drivers of wear, but similar studies for hip 

arthroplasty have yet to be completed on the same scale [12]. 

The Goldberg scoring method requires a trained observer to classify the corrosion and 

fretting class on the head and the taper typically under low-power microscopy. This method 

is time consuming and prohibits large scale study of retrieved arthroplasty devices. Studies 

that have looked at trunnionosis generally observe less than 150 implants, and often less 

than 100 [3,4,6–8,14,15,18,19]. Centers that do not have a research space must ship their 

implants to centers that do. This is logistically intensive and leads to infrequent 

collaboration between centers and limitations in the ability of centers to participate in 

implant orthopaedic research without an already established program.  

Automation of corrosion detection would allow centers to collect data on explanted 

implants and identify implants that may require further analysis. It would reduce the 

labour-intensive aspect of Goldberg scoring and allow for more careful use of shipping 

implants and logistics. Machine learning has been successfully used in several imaging and 

corrosion detection classifications, and this may be extended to use for wear detection on 

medical devices [20–25]. Milimonfared et al. described an automated corrosion scoring 

approach with 85% accuracy, however, their method required substantial image pre-

processing, and was trained using few trunnions of a specific design [25].  
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The purpose of the present investigation is to create a novel machine learning pipeline 

using a convolutional neural network that can rapidly identify implants that should be 

selected for further study using images of the implant trunnion.  

3.2 Methods  

3.2.1 Implant Imaging and Visual Scoring  

All hip arthroplasty implants in our institutional implant retrieval laboratory were reviewed 

for inclusion (Figure 14). Implants included for imaging were designs with a modular head-

neck taper where the femoral stem was retrieved at the time of revision surgery. Excluded 

were implants that were non-modular, and cases that had gross taper failure (“bird-

beaking”). Each stem was imaged using a digital microscope at 20x magnification 

(DSX1000, Olympus Cooperation, Tokyo, Japan) at 1200x1200 and in RGB colour. The 

surface was divided into four areas, with each area represented by one image. Images were 

taken with the aid of an image diffuser when possible, as this minimized the amount of 

metallic glare. The images (Figure 2) were then examined and assigned a corrosion score 

using the method of Goldberg et al, described in Table 9. A single score was assigned to 

each image and recorded. Images were scored independently of other images in the 

trunnion set. Images were excluded if they were not of sufficient quality (unfocused, glare 

that obstructed view of 30% or more of the surface). A subset of 100 images from the test 

set was provided to a secondary observer to check for reliability of scoring between 

observers and calculated using the interclass correlation coefficient with a 95% confidence 

level.  

Figure 13: Study design for implant inclusion 
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Figure 14: Representative images of each class (a) class 1, (b) class 2, (c) 

class 3, (d) class 4 
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Table 8: Goldberg scoring criteria [5] 

 
Class 1 Class 2 Class 3 Class 4 

Severity 

 

None Mild Moderate Severe 

Criteria No visible 

corrosion 

observed 

<30% of taper 

surface discoloured 

or dull 

>30% of surface 

discoloured or 

dull, or, <10% of 

taper surface 

containing black 

debris, pits, or 

etch marks 

>10% of taper 

surface containing 

black debris, pits, 

or etch marks 

 

3.2.2 Data Curation 

Images were sorted into classes based on their Goldberg score by a single observer (A. 

Codirenzi). 10% of the full dataset was separated out to create a testing set, keeping the 

proportion to their representation within the class. A subset of 100 images from the testing 

set were provided to a secondary observer to check the interclass correlation coefficient. 

Keeping in line with the best practice guidelines for machine learning for medical devices, 

this testing set was maintained separately from the training/validation set [26]. The data 

was organized into three datasets each with a training/validation set and an associated test 

set (Table 9). Each set included the same images in their training/validation and testing 

sets, but organized in a different manner.   
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Table 9: Description of the different datasets 

Dataset Dataset description 

1. All classes (C1 vs C2 vs C3 vs 

C4) 
All images included in their respective 

Goldberg corrosion class (class 1, class 2, class 

3, class 4) 

2. No corrosion/Corrosion (C1 vs 

C2, C3, C4) 
All images included, separated into two 

classes, no corrosion and corrosion. No 

corrosion is comprised of class 1 images and 

corrosion is comprised of class 2, 3, and 4 

images. 

3. No corrosion and mild 

corrosion/moderate and 

severe corrosion (C1, C2 vs C3, 

C4) 

No/mild corrosion class comprised of class 1 

and 2 images and moderate/severe corrosion 

class comprised of class 3 and 4 images. 

 

3.2.3 Neural Network Architecture  

A convolutional neural network was designed and trained from scratch using MATLAB’s 

DeepNetworkDesigner application (MATLAB for Windows, version 2021b). The network 

architecture was based off the concept of starting with a small network and expanding 

outward using a trial-and-error method, first using extreme cases (ie. Class 1 versus Class 

4) and then including intermediate cases. A network diagram for the network used in this 

study is shown in Figure 15. It utilizes a single convolutional layer for feature learning. 

The same network architecture and training parameters were used for all datasets. 
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Figure 15: Convolutional neural network architecture. The neural network is 

comprised of an input of 900x900 images with RGB colouring. It then has a 

convolutional layer with a filter size of 3x3x32. Batch normalization was then 

employed. Then had a rectified linear unit activation function. That led to a max 

pooling layer with a filter size of 2x2 and a stride of 1,1. Then it had the fully 

connected layer, SoftMax function, and the output layer. 

Three regularization techniques were used: batch normalization, L2 regularization, and 

early-stopping. Batch normalization normalizes along a mini-batch of the data across all 

observations for each colour channel independently. L2 regularization works by adding a 

term to the error function which prevents overfitting. Early stopping refers to ending the 

training before the determined number of epochs to prevent overfitting and generally an 

early stop is used when stagnation in the loss is observed during training [27].  
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3.2.4 Network Training and Testing 

The same network architecture was trained separately using each of the three curated 

datasets. 10% of all images were split to create the holdout testing set. The 

training/validation set had 15% randomly split in order to create the validation set, with the 

remainder being used as the training set. The training set was used during training to which 

was used during training to spot-check the network and to aid in hyperparameter tuning of 

the network. The test set was used to evaluate the fully trained network. The convolutional 

neural network was trained separately using each dataset using the version with all images. 

The training parameters included using an ADAM optimizer with a learning rate of 0.003. 

All networks were given 14 epochs to train and the images were shuffled every epoch. The 

images were read in with a mini-batch size of 15 images and validation was done every 25 

iterations. An L2 regularization of 0.001 was used.  

Each trained network was tested using both versions of its associated test dataset, one with 

all images and one with images only taken with an image diffuser. Accuracy and sensitivity 

were computed. Accuracy refers to the overall proportion of the images that were correctly 

classified. Sensitivity refers to the proportion of images the network classified correctly for 

each class [27]. Confusion matrices were used to show the classifications made in each 

class, both correctly and incorrectly. The reliability of the neural network was evaluated 

by plotting the receiver operating characteristic curve (ROC) and determining the area 

under the curve (AUC). An area under the curve of 0.7 to 0.8 is considered acceptable, 0.8 

to 0.9 is considered excellent, and more than 0.9 is considered outstanding [28].  

3.3 Results  

3.3.1 Imaging and corrosion scoring 

In total, 725 stems were imaged in four positions for a total of n=2890 images, with n=10 

excluded due to poor image quality. The images were assigned a Goldberg corrosion score 

of class 1 (n=1228), class 2 (n=1225), class 3 (n=335), and class 4 (n=102). The test set 

was split off, comprising of 10% of the images (n=298), with n=2592 remaining in the 

training/validation set. The interclass correlation coefficient was reported to be 0.60 (+/- 

0.13), rating as moderately reliable.  
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The testing images were further organized into two versions of the three datasets, one with 

all images and one with images that were taken without the diffuser adapter removed. Table 

10 summarizes the content of each dataset.  

Table 10: Datasets and images included 

Dataset 
All images Images taken with an image diffuser 

Training/Validation Testing Testing 

1 Class 1 (n=1100) 

Class 2 (n=1101) 

Class 3 (n=301) 

Class 4 (n=90) 

Class 1 (n=128) 

Class 2 (n=125)  

Class 3 (n=34) 

Class 4 (n=12) 

Class 1 (n=93) 

Class 2 (n=95)  

Class 3 (n=27) 

Class 4 (n=9) 

2 Class 1 (n=1100) 

Class 2, 3, 4 

(n=1492) 

Class 1 (n=128) 

Class 2, 3, 4 (n=170) 

Class 1 (n=93) 

Class 2, 3, 4 (n=131) 

3 Class 1, 2 (n=2201) 

Class 3,4 (n= 391) 

Class 1, 2 (n=252) 

Class 3,4 (n= 46) 

Class 1,2 (n=188) 

Class 3,4 (n=36) 

3.3.2 Neural Network Training and Evaluation 

The confusion matrices are shown in Figures 16-18. Figure 16 shows the confusion 

matrices for dataset 1 (C1 vs C2 vs C3 vs C4). In both cases, the network failed to classify 

any test images as class 4 and the most common misclassification was classifying as class 

2 when the true image class was class 1. Class 1 never misclassified an image on the other 

end of the spectrum from it (ie class 4 images were never misclassified as class 1, and class 

1 images were never misclassified as class 3). Figure 17 shows the confusion matrices for 

dataset 2 (class 1 versus class 2, 3, 4). There were similar amounts of misclassifications for 

both classes. 
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Figure 16: Confusion matrix for dataset 1 (class 1 versus class 2 versus class 3 

versus class 4). Left is all images, right is with glare removed. The blue diagonal 

shows correct classifications (predicted class matches the true class) while the 

orange off-diagonal shows misclassifications. Intensity of colour is based off count in 

each category. 

 

Figure 17: Confusion matrix for dataset 2, class 1 versus class 2,3,4. Right is all 

images, left is with glare removed. The blue diagonal shows correct classifications 

(predicted class matches the true class) while the orange off-diagonal shows 

misclassifications. Intensity of colour is based off count in each category.  
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Figure 18 shows the confusion matrices for dataset 3 (class 1 and 2 versus 3 and 4). This 

dataset had the fewest number of misclassifications, with little difference between if 

images with glare were included or not. 

Figure 18: Confusion matrix for dataset 3, C12 versus C34. Right is all images, left 

is images with glare removed. The blue diagonal shows correct classifications 

(predicted class matches the true class) while the orange off-diagonal shows 

misclassifications. Intensity of colour is based off count in each category.  

The receiver operating characteristic was plotted and the plots for all datasets with all 

images are shown in Figure 19. Classes 1 and 2 versus 3 and 4 (dataset 3) show the highest 

area under the curve and has the fewest individual points, showing that the network made 

guesses with similar probabilities for many of the images. Class 1 versus 2, 3 and 4 (dataset 

2) had a much lower area under the curve, but showed many more points, showing a range 

in the probabilities for different guesses. Class 1 versus 2 versus 3 versus 4 (dataset 1), had 

the lowest area under the curve and showed a number or probabilities guessed, but 

significantly fewer outside the center of the graph.  
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Figure 19: ROC for all datasets, with all images included 

The accuracy, sensitivity for each class, and area under the curve were computed for each 

dataset and for both versions of the testing set. Table 11 shows a summary of these metrics.  
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Table 11: Computed error metrics for each dataset 

Dataset Sensitivity Accuracy Area under the 
curve (AUC) 

1. All classes 

All images C1 0.5667 48.21% 0.5941 

C2 0.4444 

C3 0.3636 

C4 0 

Glare removed C1 0.5714 48.21% 0.6116 

C2 0.4500 

C3 0.5333 

C4 0 

2. C1 versus C234 

All images C1 0.5957 66.11% 0.6875 

C234 0.7197 

Glare removed C1 0.5869 65.63% 0.6661 

C234 0.7045 

3. C12 versus C34 

All images C12 0.9881 98.32% 0.9740 

C34 0.9556 

Glare removed C12 0.9842 98.31% 0.9693 

C34 0.9706 

Dataset 3, class 1 and 2 versus class 3 and 4, showed the highest sensitivity, accuracy and 

area under the curve for each class. The inability of the network to classify any images as 
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class 4 for dataset one is reflected in the 0 sensitivity for class 4 in both versions of the 

testing set.  

3.4 Discussion  

The ability to rapidly identify trunnions for further study is an important aspect in being 

able to achieve large-scale trunnion implant studies with reduced labour. In this study, a 

convolutional neural network was developed that could discriminate no and mild corrosion 

(Goldberg corrosion class 1 and 2) from moderate and severe corrosion (Goldberg 

corrosion class 3 and 4) with 98.32% accuracy.  

Dataset one, which has the network classify the images into each Goldberg corrosion class 

separately, had the poorest performance. This dataset gives insight into the behaviour of 

the network. Of note, the network failed to classify any images (correctly or incorrectly) as 

class 4 during testing. There was significantly fewer class 4 images available than any other 

class. This is unsurprising, as class 4 corrosion is the rare occurrence of severe corrosion 

that has >10% of taper surface containing black debris, pits, or etch marks [5]. Although 

the network is trained with all available images, there was less opportunity for the network 

to learn from the class 4 images because they were so few in frequency. The images that 

were available for training may not have generalized well to the test set or there was so few 

that the network was never able to distinguish a high probability of class 4 for images. The 

confusion matrix also showed that there was a number of images that were classified as 

class 2 when their true class was class 1. When class 1 and class 2 images were combined 

in dataset 3, the network was able to perform with excellent accuracy, specificity, and a 

high area under the curve that showed excellent discrimination between the two classes. 

Class 1 versus classes 2, 3, and 4 showed a marginal improvement in its sensitivity for 

detecting class 1 images, but the area under the curve remained similar to dataset 1 (class 

1 versus class 2 versus class 3 versus class 4). The accuracies here are less meaningful as 

we compare between a multiclass and binary case, although the accuracy is significantly 

higher, the area under the curve still is poor.  
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The difficulty in discriminating between class 1 and class 2 Goldberg corrosion scoring 

could be due to the semi-quantitative nature of the Goldberg scale. Class 2 has the largest 

range of corrosion information- with any discolouration up to 30% of the surface being 

considered. Small patches of discolouration or corrosion may be difficult to distinguish on 

the network and may point to segmentation being necessary to distinguish these. The 

results of dataset three supports this, as when we combined class 1 and 2 versus 3 and 4, 

the network was able to distinguish with a high accuracy and very well. Segmentation is 

commonly used in other corrosion detection applications and in other applications before 

classification is done, but it was excluded here due to its intensity of requiring an observer 

to manually segment the training images [29,30]. 

It was anticipated that the glare on images taken without the diffusion adapter would likely 

affect the network’s ability to discriminate the corrosion score. However, for all cases, 

there was little difference in the error metrics between having all the images and only 

images without glare. This is believed to be because the image scoring was done from the 

same photos as the network was given and the network was trained using images with glare 

as well. It was noted during the secondary observing of the images that some were difficult 

to score because of the glare. Best practice would be to take all images with a diffusion 

adapter; however incorporation of less-than-perfect images improves the generalizability 

of the results. There was no trend seen amongst different trunnion designs and 

misclassification of images, thus the network generalizes well across the difference designs 

present in the data. The interclass correlation coefficient of the test set that was scored was 

considered moderately reliable, which is consistent with a previous study determining the 

reliability of scoring [31].  

A previous attempt to automate damage scoring of trunnions was done by Milimonfared et 

al with a reported accuracy of 85% and the ability to distinguish across the four classes 

using support vector machine learning [25]. They imaged 138 stems, with a total of eight 

images per stem. A description of the image population in each class was not shared. 

Accuracy was reported but additional metrics such as sensitivity, confusion matrices, and 

area under the curve were not reported. Furthermore, it does not appear they ensured every 

class was present in their testing set. Although their method had high reported accuracy, 
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without knowing information such as the sensitivity per class, it is difficult to determine if 

this pipeline could be used to reliably score implants. Polce et al. have pointed out that 

underreporting of models and network evaluation is a common theme in machine learning 

studies in total joint arthroplasty and has called for more reliable reporting, including 

adequate reporting of results beyond accuracy [32]. In contrast, our network can distinguish 

between class 1 and 2 versus class 3 and 4 with a higher accuracy than Milimonfared et al 

but it is unable to distinguish between the four classes effectively. We also had an increased 

number of trunnions available- including 725 trunnions in our study as opposed to 

Milimonfared’s 138. The increased reporting, including class population descriptions, 

confusion matrices and class sensitivity characterize the network performance to better 

understand the reliability of the network and where it may fail. This network can be reliably 

used as a screening tool to select implants for further study but in its current state cannot 

be used to classify across the full scale. This tool is effective as a screening tool to identify 

implants for further research, especially implants that show a class 3 or 4 corrosion score.  

Limitations of this study include an unbalanced dataset for testing and training. There was 

significantly more class 1 and 2 images available than class 3 and 4, ideally a balanced 

dataset is best practice for neural network training. This network also does not represent a 

full automation of damage scoring across the Goldberg scores, which is sought after to 

further reduce labour barriers to large-scale studies and the need for skilled observers. The 

images were largely scored by a single observer and intrareliability was not quantized. 

Furthermore, the images that this network was trained and tested on were taken using a 

high-quality digital microscope. This microscope is unlikely to be found in a center that 

does not have a strong research focus and limits the accessibility of this network to be used 

at smaller centers. Further studies should look to incorporate images acquired using various 

acquisition systems, such as a smartphone, to improve accessibility of this network. They 

should also involve a measure of intrareliability and a secondary scorer for the entire 

training dataset to ensure the network is being trained with the best possible quality of data. 

3.5 Conclusions 

In this study, a convolutional neural network was developed that could discriminate no and 

mild corrosion (Goldberg class 1 and 2) from moderate and severe corrosion (Goldberg 
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class 3 and 4) with 98.32% accuracy, and a class 1 and 2 sensitivity of 0.9881 and class 3 

and 4 sensitivity of 0.9556. This network is suitable for use as a screening tool to 

discriminate class 1 and 2 implants from class 3 and 4, to help rapidly identify implants 

that should be considered for further study. Future work should include an expansion of 

the network to do full corrosion scoring and for images from a smartphone to be used in 

the network.  
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Chapter 4  

4 General Discussions and Conclusions 

4.1 Overview of Objectives 

This thesis sought to explore large-scale studies within retrieved hip arthroplasty device 

analysis. First, a large-scale study of hip arthroplasty devices and patient factors and their 

relationship to trunnionosis was explored through a statistical analysis of the factors. 

Secondly, an attempt to automate the corrosion detection of devices to identify implants 

more rapidly for corrosion using a convolutional neural network was explored to help 

reduce the labour requirement for large-scale trunnionosis studies. Together, these 

objectives illustrate the value of large-scale studies and showing that “big data” is relevant 

to hip arthroplasty, as well as the need to simplify data collection of these devices.    

4.2 Summary of Results  

Chapter 2 included the large-scale analysis of hip arthroplasty devices saw 664 modular 

femoral stem components analysed, collecting both patient and device characteristics and 

relating them to the presence and severity of trunnonisis. It was found that greater duration 

of implantation and larger head size were associated with elevated corrosion class. Older 

age at surgery, a stainless-steel stem material, and indication for revision a bone or 

periprosthetic fracture and infection, and certain larger taper geometries were associated 

with a decreased corrosion class. This large-scale study of retrieved hip arthroplasty 

trunnions is the first of its kind.  

 

Chapter 3 explored automation of damage scoring on the Goldberg scale using a 

convolutional neural network. 725 implants were imaged, the largest imaging undertaking 

of trunnions to date, and a convolutional neural network was designed and trained from 

scratch to be able to classify the trunnion images. The study was successful in creating a 

convolutional neural network with the ability to distinguish between no to mild corrosion 

versus moderate to severe corrosion with high accuracy and reliability. This tool is suitable 

for use in a research environment to screen for moderate/severely corroded implants to 

identify for further study.  



70 

 

4.3 Limitations 

Both the studies in this thesis were limited to the implants present in the implant retrieval 

laboratory, which reflects the implants used in Southwestern Ontario and may not be 

reflective of overall implant usage in Canada or globally. Similarly, the implants are 

explanted when they have failed, well-functioning implants are absent from both analysis 

because of the lack of a cadaver retrieval program as is present in some other regions.  

The large-scale study relating trunnion corrosion to device and patient factors was further 

limited by the availability of device information. The registration of orthopaedic devices 

as they are installed through databases such as Ortech allow for comprehensive device 

information to be available and quickly accessed for large-scale studies. Retrieved implants 

can be assessed to determine some device factors, but this can be unreliable as information 

such as material and offset are not printed on the physical device by every manufacturer. 

Furthermore, it adds significant labour and in the case of this study, led to the exclusion of 

implants and device information (such as offset). Similarly, the retrieved implants were 

overwhelmingly with one head material, chromium cobalt. Ceramic and oxinium heads 

have previously been identified as having lower trunnion corrosion than chromium cobalt 

heads, but there was not a significant enough presence of these heads in the study and a 

relationship was not identified.  

The study that created a convolutional neural network to distinguish between no/mild 

corrosion and moderate/severe corrosion was limited by the availability of images in 

Goldberg corrosion classes 1-4. Class 1 and 2 had about equal representation of instances, 

but class 3 and 4 had significantly less images available (class 3 had about 1/3rd the 

available images when compared to class 1 and 2, while class 4 had 1/10th). The few 

instances of class 4 specifically led to having to combine class 3 and 4 images to train the 

network. This study also did not explore the use of aggressive augmentation in images to 

try to limit the class imbalances seen in the images. Transfer learning was also not 

considered due to the image size but may be useful in a segmentation application to create 

masks that show corrosion before attempting to place them into their Goldberg class.  
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4.4 Applications and Future Directions 

The results from the large-scale study show that there are patient and device factors that 

generalize across different models of stems. Previously studies have focused strongly on 

specific models and manufacturers which has limited the ability to generalize factors that 

influence implant failure. This study shows the importance of large-scale data collection 

and the need for more centers to utilize systems like Ortech to allow for mass studies to 

occur with reduced labour. Moving forward, additional patient and device factors may be 

studied using these methods to allow for a more general understanding of what factors 

affect trunnionosis and early device failure.  

The convolutional neural network for rapid identification of no/mild and moderate/severe 

corrosion may be used as a screening tool in centers that perform arthroplasty retrieval. In 

its current state, it requires a similar imaging setup, but future work should include the 

ability to use images from various sources (ex. iPhone, point-and-shoot camera), and even 

live identification. By including more images, there also is an ability to further train the 

network, especially with more class 3 and 4 images to eventually achieve the goal of full 

Goldberg classification of the images. The implementation of a segmentation pipeline 

before the classification pipeline may also help distinguish better between class 1 and 2, 

which did have equal images present, but the broadness of the Goldberg scale for class 2 

made it difficult for the network to identify and distinguish class 1 and 2 effectively.  

Achieving this would contribute a strong research tool that could even be used to observed 

in situ stems during revision surgeries, allowing us to have a better understanding of the 

true prevalence of trunnionosis and the factors that contribute to is.  

4.5 Conclusions 

In conclusion, this Master’s thesis has shown the importance of large-scale studies in hip 

arthroplasty as it related to trunnionosis, and it has developed a tool to help aid in rapid 

identification of moderate/severe corrosion to help identify implants for further study. As 

the subject of ‘big-data’ grows within healthcare, it is important that orthopaedics and 

arthroplasty engage in big-data research. This thesis offers a path forward for both rapid 
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identification of implants required for further research and shows the value of collecting 

patient and device information gradually and in a format that allows for big-data methods 

to be explored.  
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Appendices 

Appendix A: Study Approvals 
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