

Integrated Raman Lidar and Microwave Radiometer Retrieval of Atmospheric Water Vapor

J. VanKerkhove¹, R. J. Sica¹, A. Haefele^{2,1}

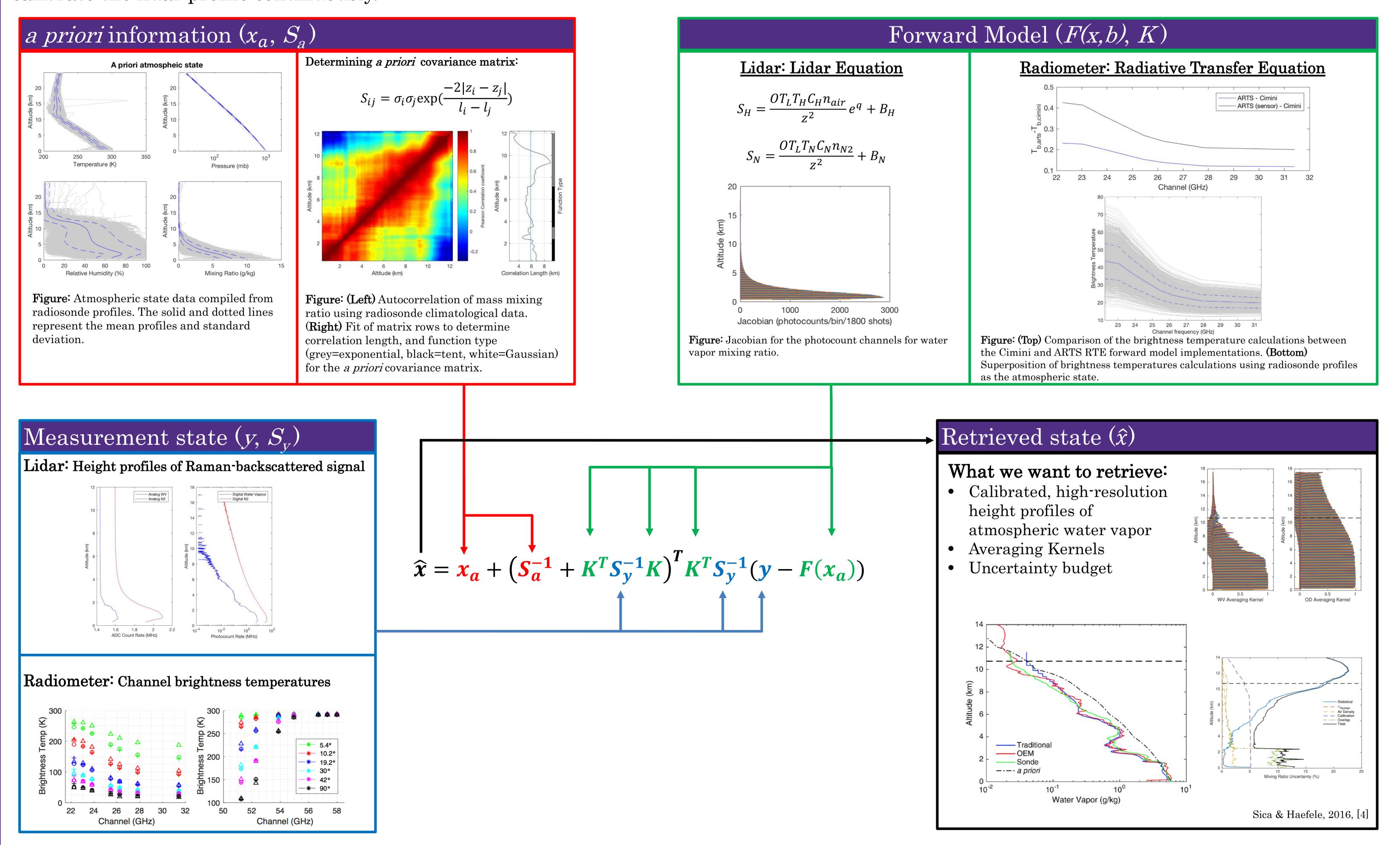
¹Department of Physics and Astronomy, The University of Western Ontario, London, ON, Canada ²Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland

Instruments we use to measure water vapor

Instrument	Advantages	Disadvantages
Radiosonde (weather balloon)	 Widely used at meteorological stations globally (GCOS Upper-Air Network) Launched during any weather 	 Limited observation period (launched 2 times/day) Corrections needed for low temperatures (<-40°C) and humidity (<5% RH)
Cryogenic Frostpoint Hygrometer	• Doesn't require low temperature/humidity correction	 More expensive than radiosonde (even more limited observation period) Minor wet bias Does not work well in cloudy skies
Raman Lidar	 Very good height (m/km)/temporal (min/hours) resolution for remote sensing instrument Very high precision at lower altitudes 	 Observes only during clear weather External calibration needed (usually based on radiosonde)
Microwave Radiometer	 Operates all the time (except during precipitation) Absolute calibration (hot/cold load) 	• Poor height resolution (>10km)

Take-home point: No single instrument can be used for a comprehensive analysis of

atmospheric water vapor!


RALMO (Raman Lidar for Meteorological Observation)

RPG-HATPRO (Humidity And Temperature PROfiler)

Windows assembly support assembly support assembly support assembly support and the second support and second support support and second support sup

Optimal Estimation Method Retrieval

Goal: To develop a single forward model that includes lidar and radiometer information, which uses the radiometer's total water measurement to calibrate the lidar profile continuously.

Contact Info:

Jeff VanKerkhove
Purple Crow LIDAR
Department of Physics & Astronomy
University of Western Ontario
London, ON, N6A 2K7
jvankerk@uwo.ca

Sponsored by:

References:

- 1. Dinoev, Simeonov, & Arshshinov. Atmos. Meas. Tech., 6,1329, 2013.
- 2. Kampfer, N., editor. *Monitoring Water Vapour: Ground-based Remote Sensing and In-Situ Methods*, volume 10. Springer Science, 2013.
- 3. Rodgers, C., Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing, London, 2000.
- 4. Sica, R. & Haefele, A. Appl. Opt., 55(4), 763, 2016.

 Technical Instrument Manual Padiameter Physics
 - Technical Instrument Manual. Radiometer Physics, RPG-MWR-STD-TM, 2013.

 "Upper Troposphere and Lower Stratosphere (UTLS)". Atmospheric Chemistry Observat
- 6. "Upper Troposphere and Lower Stratosphere (UTLS)", *Atmospheric Chemistry Observations and Modeling*, National Center for Atmospheric Research, acom.ucar.edu/utls