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Abstract

My thesis consists of three chapters studying the impact of health insurance design and
public health policy on consumers’ health and health care utilization, welfare, and costs.

Chapter 2 studies an overlooked dynamic incentive that encourages health care utilization,
which I term dynamic moral hazard. Typical health plans feature high deductibles and caps on
consumers’ out-of-pocket spending, which generate nonlinear pricing. These nonlinearities,
coupled with the uncertainty intrinsic to future health care demand, encourage consumers to
increase spending since current utilization lowers future expected prices. Standard models
study health care utilization decisions through the lens of annual models, which abstract from
the dynamic incentives throughout the year induced by nonlinear pricing. To understand the
implications of dynamic moral hazard on insurance design, I develop and estimate a dynamic,
within-year model of health care demand that allows for rich, flexibly-correlated unobserved
heterogeneity. I use this model to study alternative contract designs in the context of employer-
sponsored health insurance. My results show that the presence of dynamic moral hazard can
severely dampen the welfare gains associated with higher cost-sharing and plays a crucial role,
distinct from static moral hazard, in determining optimal insurance contract design.

Motivated by the substantial unobserved heterogeneity found in Chapter 2, Chapter 3 stud-
ies the evidence for and sources of selection, both adverse and advantageous. I first propose
a new method to recover family-specific distributions of multidimensional unobserved het-
erogeneity conditional on their health care utilization decisions and the estimated population
distribution of types. Using insurance choice survey data and the model from Chapter 2, I re-
cover family-specific measures of risk aversion. Finally, I examine the correlation between risk
aversion and the other dimensions of unobserved heterogeneity to unmask potential sources of
advantageous selection. I find a new source of advantageous selection: preferences for going to
the doctor, which suggests advantageous selection on number of visits instead of health. These
findings have implications for the plan portfolio choice problem and suggest that models with
richer unobserved heterogeneity might capture the gains from offering plan choice.

The first two chapters focus on studying health care demand for insured people. However,
an important fraction of the population does not have health insurance and relies on the health
care safety net to get needed care. Chapter 4 estimates the causal impact of a maternity condi-
tional cash transfer program on the choice between abortion and childbirth in a context where
abortion is illegal. We leverage several sources of social security administrative micro-data
matched to longitudinal hospital records to estimate the effect of participating in the Argen-
tinean Asignación por Embarazo para Protección Social, a conditional cash transfer program
implemented in 2011 and targeted at pregnant women who are unemployed or working in the
informal sector. We exploit the substantial amount of inflation in Argentina to instrument for
endogenous participation in the program. We estimate that participation in the program led to
a sizable reduction in the probability of abortion and in the incidence of normal birthweight.
These findings are consistent with a change in composition effect, in which mothers whose
abortion decision is affected have a higher risk of low birthweight children.

Keywords: Nonlinear health insurance, dynamic moral hazard, advantageous selection,
conditional cash transfer programs, abortion and birthweight
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Summary for Lay Audience

My thesis consists of three chapters studying the impact of health insurance design and public
health policy on consumers’ health and health care utilization, welfare, and costs.

Chapter 2 studies an overlooked dynamic incentive that encourages health care utilization,
which I term dynamic moral hazard. Typical health plans feature high deductibles and caps on
consumers’ out-of-pocket spending, which generate nonlinear pricing. These nonlinearities,
coupled with the uncertainty intrinsic to future health care demand, encourage consumers to
increase spending since current utilization lowers future expected prices. Standard models
study health care utilization decisions through the lens of annual models, which abstract from
the dynamic incentives throughout the year induced by nonlinear pricing. To understand the
implications of dynamic moral hazard on insurance design, I develop and estimate a dynamic,
within-year model of health care demand that allows for rich, flexibly-correlated unobserved
heterogeneity. I use this model to study alternative contract designs in the context of employer-
sponsored health insurance. My results show that the presence of dynamic moral hazard can
severely dampen the welfare gains associated with higher cost-sharing and plays a crucial role,
distinct from static moral hazard, in determining optimal insurance contract design.

Motivated by the substantial unobserved heterogeneity found in Chapter 2, Chapter 3 stud-
ies the evidence for and sources of selection, both adverse and advantageous. I first propose
a new method to recover family-specific distributions of multidimensional unobserved het-
erogeneity conditional on their health care utilization decisions and the estimated population
distribution of types. Using insurance choice survey data and the model from Chapter 2, I re-
cover family-specific measures of risk aversion. Finally, I examine the correlation between risk
aversion and the other dimensions of unobserved heterogeneity to unmask potential sources of
advantageous selection. I find a new source of advantageous selection: preferences for going to
the doctor, which suggests advantageous selection on number of visits instead of health. These
findings have implications for the plan portfolio choice problem and suggest that models with
richer unobserved heterogeneity might capture the gains from offering plan choice.

The first two chapters focus on studying health care demand for insured people. However,
an important fraction of the population does not have health insurance and relies on the health
care safety net to get needed care. Chapter 4 estimates the causal impact of a maternity condi-
tional cash transfer program on the choice between abortion and childbirth in a context where
abortion is illegal. We leverage several sources of social security administrative micro-data
matched to longitudinal hospital records to estimate the effect of participating in the Argen-
tinean Asignación por Embarazo para Protección Social, a conditional cash transfer program
implemented in 2011 and targeted at pregnant women who are unemployed or working in the
informal sector. We exploit the substantial amount of inflation in Argentina to instrument for
endogenous participation in the program. We estimate that participation in the program led to
a sizable reduction in the probability of abortion and in the incidence of normal birthweight.
These findings are consistent with a change in composition effect, in which mothers whose
abortion decision is affected have a higher risk of low birthweight children.
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Chapter 1

Introduction

My thesis consists of three chapters studying the impact of health insurance design and public
health policy on consumers’ health and health care utilization, welfare, and costs.

Chapter 2 studies an overlooked dynamic incentive that encourages health care utilization,
which I term dynamic moral hazard. Typical health plans feature high deductibles and caps
on consumers’ out-of-pocket spending, which generate nonlinear pricing. These nonlineari-
ties, coupled with the uncertainty intrinsic to future health care demand, encourage consumers
to increase spending since current utilization lowers future expected prices. Standard mod-
els study health care utilization decisions through the lens of annual models, which by design
abstract from the dynamic incentives throughout the year induced by nonlinear pricing. To un-
derstand the implications of dynamic moral hazard on insurance design, I develop and estimate
a dynamic, within-year model of health care demand that allows for rich, flexibly-correlated
unobserved heterogeneity. I use this model to study alternative contract designs in the con-
text of employer-sponsored health insurance. My results show that the presence of dynamic
moral hazard can severely dampen the welfare gains associated with higher cost-sharing and
plays a crucial role, distinct from static moral hazard, in determining optimal insurance con-
tract design. In particular, I find two main takeaways: (1) the gap between the deductible
and the cap is important, and (2) more frequent resetting times for deductibles and caps are
welfare-increasing.

In Chapter 2, I study optimal contract design in the context of employer-sponsored health
insurance, where the employer offers only one plan and everyone takes that plan. A natural ex-
tension involves optimal menu design: whether and how the employer should offer plan choice.
The study of the plan portfolio choice problem by the firm is highly impacted by the degree and
nature of selection. Motivated by the substantial amount of unobserved heterogeneity found in
the previous chapter, Chapter 3 studies the evidence for and sources of selection, both adverse
and advantageous. I first propose a new method to recover family-specific distributions of mul-
tidimensional unobserved heterogeneity conditional on their health care utilization decisions
and the estimated population distribution of types. I complement the health care utilization
data with survey data on families’ responses to hypothetical offers to purchase supplementary
insurance coverage. Using these insurance choice data and the dynamic structural model from
the previous chapter, I recover family-specific measures of risk aversion. Finally, I examine

1
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the correlation between risk aversion and the other dimensions of unobserved heterogeneity
to unmask potential sources of advantageous selection. According to my results, more risk-
averse people are not particularly healthy. Moreover, I find evidence of a new potential source
of advantageous selection: preferences for visiting the doctor. These two findings together
would suggest that advantageous selection works through fewer doctor visits as opposed to
better health. I also document substantial selection on moral hazard, suggesting people choose
plans in part based on their anticipated response to more generous insurance. My results have
important implications for thinking about optimal plan portfolio choice and suggest that inad-
equately measuring the extent and correlation between multidimensional private information
might lead to optimal menus that feature a single plan.

Chapters 2 and 3 focus on studying health care demand for insured people. However, an im-
portant fraction of the population does not have health insurance and relies on the health care
safety net to get needed care. This scenario is even more prevalent in developing countries,
where the safety net is comprised of basic and usually poorly-run public hospitals. Chapter
4, written in co-authorship with Timothy G. Conley, estimates the causal impact of a ma-
ternity conditional cash transfer program on the choice between abortion and childbirth in a
context where abortion is illegal. We leverage several sources of social security administrative
micro-data matched to longitudinal hospital records to estimate the effect of participating in
the Argentinean Asignación por Embarazo para Protección Social, a conditional cash transfer
program implemented in 2011 and targeted to pregnant women who are unemployed or work-
ing in the informal sector. The main objective of the program is to reduce maternal, perinatal,
neonatal, and infant mortality rates that are associated with problems in access to timely health
services. We exploit the substantial amount of inflation in Argentina to instrument for the en-
dogenous participation in the program. We estimate that participation in the program led to
a sizable reduction in the incidence of abortion while increasing the probability of low birth-
weight. Our findings are consistent with a change in composition effect, in which poorer and
more disadvantaged women who would have aborted in the absence of the program, decide
now to continue their pregnancy but exhibit worse health outcomes.



Chapter 2

Dynamic Moral Hazard in Nonlinear
Health Insurance Contracts

2.1 Introduction

Typical health insurance contracts increasingly include sizable annual deductibles and caps on
consumers’ out-of-pocket expenditures. In the context of employer-sponsored health insurance
in the United States, 83 percent of covered workers had a deductible in 2020 and all had a
plan with a cap on out-of-pocket expenditures.1 The presence of deductibles and caps give
rise to nonlinear health insurance contracts, where the out-of-pocket price decreases as the
cumulative use of health care (over the covered year) increases. In a typical nonlinear contract,
families pay the full price of care below the deductible. After the deductible is exhausted,
families pay only a portion of the bill equal to the coinsurance rate, and, once they reach the
cap, they face no cost-sharing and have complete insurance coverage for the remainder of the
year. These nonlinear benefit structures, coupled with the uncertainty surrounding future health
care demand, create dynamic incentives for consumers because current health care utilization
reduces future expected prices.

Standard analyses of insurance contracts study the trade-off between the welfare gains from
risk protection and the welfare losses when consumers do not face the full cost of their care
(Arrow, 1963; Pauly, 1968). In the health insurance literature, the term “moral hazard”, which
I relabel as static moral hazard, is used to capture the notion that insurance coverage may
increase health care use by lowering the out-of-pocket price of care to the individual (Einav
and Finkelstein, 2018).2 In this paper, I study a new source of moral hazard, dynamic moral

1These numbers are up from 70 percent and 82 percent a decade ago, respectively. Source: Employer Health
Benefits Survey 2020, Kaiser Family Foundation.

2As emphasized by Einav and Finkelstein (2018), the use of the term “moral hazard” is an abuse of the

3



2.1. Introduction 4

hazard, which I define as the extra health care utilization when individuals internalize that
the more they consume today, the closer they move towards the deductible and the cap, and the
higher the probability they enjoy lower prices for the remainder of the year. Thus, an additional
benefit of health care utilization today is lower future expected out-of-pocket prices.

The presence of dynamic moral hazard has implications for the standard analysis of moral
hazard. For example, a standard approach to reducing moral hazard is to increase consumer
cost sharing. But, if individuals anticipate a lower future price, they respond to a shadow price
lower than the spot price in the range below the deductible. Thus, much of the savings thought-
to-be-achieved in this range will not actually be realized. Given the concern about the size and
rapid growth of the health care sector, there is considerable academic and public policy interest
in a better understanding of moral hazard and the ways to mitigate its impact on social welfare.
Dynamic moral hazard is particularly relevant in this context, because nonlinear contracts are
widely popular not only in private health insurance but also, increasingly, in public health
insurance programs, such as Medicare Part D.

Recognition of the possibility of dynamic moral hazard highlights potentially important
limitations of standard models of health insurance that have traditionally overlooked these
dynamic incentives and their implications in health insurance.3 Most empirical papers study
health care utilization decisions through the lens of annual models, which aggregate health
care decisions up to the annual level (see e.g., Einav, Finkelstein, Ryan, Schrimpf, and Cullen
(2013), Kowalski (2015), Ho and Lee (2020), and Marone and Sabety (2022)). In these models,
individuals make a one-shot decision under full certainty about the complete sequence of health
shocks within the year. If future health care demand could be predicted with certainty, the
sequential decision problem would be the same as in the one-period case. When uncertainty
is present, any health care utilization in the range below the cap has the additional benefit
of reducing the remaining cap and, hence, reducing the expected costs of future health care.
Annual models thus abstract, by design, from the uncertainty intrinsic to health care demand
and the dynamic incentives induced by the nonlinearities of the contracts, which could have
important implications in health insurance design. This limitation is not unique to annual
models of health care utilization.4

“hidden action” origin of the term. In the health insurance literature, the “action”, i.e., the agent’s health care
utilization decision, is observed and contractible. The asymmetric information problem may be more accurately
described as a problem of “hidden information” regarding the agent’s health risk.

3Two exceptions are the early theoretical works of Keeler, Newhouse, and Phelps (1977) and Ellis (1986).
Empirically, Cronin (2019) allows the nonlinearities of the contract to affect the number of monthly health care
visits, but not the dollar amount consumed. Similarly, in Einav, Finkelstein, and Schrimpf (2015) individuals
decide weekly whether to fill a prescription drug, internalizing the impact on expected future prices. None of
these papers quantifies dynamic moral hazard and its implications for the design of health insurance contracts.

4More broadly, the dynamic pricing incentives are neglected whenever the frequency of the consumer’s de-
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In this paper, I begin by providing compelling evidence showing that consumers respond
to the dynamic incentives of nonlinear contracts and I explore the nature of this response. I
then use my findings to develop a tractable, within-year model of health care demand that
incorporates the dynamic pricing effects via the nonlinearities of the contract. I estimate the
model primitives using a state-of-the-art technique that allows for multidimensional, flexibly-
correlated unobserved heterogeneity in health risks, preferences for doctor visits, and price sen-
sitivity. Finally, I use my model and estimates to study the implications of dynamic moral haz-
ard for the optimal design of nonlinear contracts in the context of employer-sponsored health
insurance. To do so, I explore the interplay between four contract features: (1) the deductible
size, (2) the coinsurance rate after the deductible, (3) the cap on out-of-pocket expenditures,
and (4) the resetting time for deductibles and caps. While the first three features are standard in
the literature, the optimal resetting time for deductibles and caps has not been studied before.5

I use rich, individual, line-item records from the RAND Health Insurance Experiment
(Newhouse and The Insurance Experiment Group, 1993). The RAND experiment is a large
randomized field trial of alternative insurance plans offered to approximately 2,500 families
representing the non-elderly U.S. population. The experiment randomly assigned families to
one of 14 different fee-for-service insurance plans that varied along two principal dimensions:
the coinsurance rate and the annual cap on out-of-pocket expenditures. By leveraging the ran-
dom assignment of families to plans, I can focus on the problem of moral hazard, avoiding the
typically confounding adverse selection present in insurance markets (Akerlof, 1970).6

To provide evidence of whether consumers internalize the dynamic incentives induced by
typical health insurance contracts, I first derive four testable implications within a linear re-
gression of weekly health care utilization on cumulative utilization (over the coverage year),
contract week, and their interaction. Using family fixed effects, I exploit the within-family
variation in the shadow price of care that comes from two different sources: the distance to the
cap on out-of-pocket expenditures and the number of weeks left in the contract before the price

cision in the model coincides with the length of the contract or when the individuals’ behavior is assumed to
respond only to the spot price of care.

5I recently became aware of the concurrent work of Hong and Mommaerts (2021), which explores the im-
plications of deductibles that reset over 6 months versus 12 months. There is also a parallel between the early
theoretical work of Keeler, Relles, and Rolph (1977) analyzing individual versus family deductibles has a par-
allel with the optimal resetting time for deductibles. A separate literature studies the optimal contract length
(and therefore the optimal frequency of open enrollment), holding the timespan over which deductibles and OOP
limits aggregate to be annual. See e.g., Darmouni and Zeltzer (2017) in health care, Ghili, Handel, Hendel, and
Whinston (2020) and Atal, Fang, Karlsson, and Ziebarth (2020) in long-term care, and Cabral (2016) in dental
care.

6Because of their nonlinear cost-sharing features, the RAND plans anticipated the design of modern health
insurance plans and still receive much theoretical and empirical attention (see e.g., Lin and Sacks (2019), Aron-
Dine, Einav, Finkelstein, and Cullen (2015), and Vera-Hernandez (2003)).
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schedule resets. I also leverage the staggered enrollment dates from the experimental design to
separate seasonal variation in health care demand from the dynamics of my model. Intuitively,
the first two implications capture that the further away from the cap and the closer to the end
of the contract, the lower is the likelihood of reaching the cap before the contract resets, which
increases the shadow price and discourages current utilization. The last two implications check
that none of the first two effects survive once families exceed their cap. Using two measures of
health care utilization, I show that the implications hold, suggesting that the observed behav-
ior is consistent with forward-looking families who internalize the dynamic pricing effects by
updating their expected future prices over the course of the year.

Informed by this evidence, I build a single-agent, finite-horizon, dynamic, stochastic model
of health care utilization at the family level combining elements of the annual model of health
care demand from Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) and the within-year
model of internet demand from Nevo, Turner, and Williams (2016). I model families’ health
care utilization decisions at the weekly level where they respond to the shadow (or effective)
price of health care, rather than the spot price or the realized end-of-year price.7 Thus, families
in my model act as though they face a shadow price lower than the spot price in the range below
the cap. In line with my regression estimates, the model implies that the shadow price of care
is weakly decreasing in the proportion of the cap consumed and in the number of weeks left
before the contract resets. In this way the model accounts for the fact that decisions are made
sequentially throughout the year and information is obtained gradually as health shocks arrive
and families move along their nonlinear budget set.

I then estimate my model by adapting the approach proposed by Ackerberg (2009), Bajari,
Fox, and Ryan (2007), Fox, Kim, Ryan, and Bajari (2011), and Fox, Kim, and Yang (2016); and
recently applied by Nevo, Turner, and Williams (2016) in the context of demand for residential
broadband and Blundell, Gowrisankaran, and Langer (2020) in firms’ investment decisions in
pollution abatement technologies. This approach allows me to incorporate flexibly-correlated
unobserved heterogeneity in four dimensions related to family health risk (two dimensions),
preferences for visiting the doctor, and price sensitivity, and a fifth partially-observed dimen-
sion that captures family income. The existence of multiple dimensions of individuals’ private
information is well documented in the literature (see e.g., Finkelstein and McGarry (2006)
in the long-term care insurance market and Fang, Keane, and Silverman (2008) in the Medi-

7In general, nonlinear cost-sharing features of health insurance contracts imply that the out-of-pocket price
of health care declines as total utilization accumulates. Thus, at any point in time, the shadow price of a unit
of health care is the marginal (or spot) price minus the bonus for moving closer to the next kink in the budget
set, past which cost-sharing by the individual falls or is even eliminated. There are some exceptions. In the case
of Medicare Part D, where the coinsurance rates faced by the patients are not monotonically decreasing as total
health care utilization accumulates, the shadow price can potentially exceed the spot price of care.
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gap insurance market). Nevertheless, previous literature has been constrained regarding the
amount of heterogeneity they could allow for and their correlation structure, mainly due to
computational reasons. I overcome these constraints by using the computationally advanta-
geous estimator of Fox, Kim, Ryan, and Bajari (2011).

The estimator recovers the nonparametric distribution of unobserved heterogeneity using
inequality constrained least squares on a fixed grid. While applying the method of Fox, Kim,
Ryan, and Bajari (2011) helps reducing the computational burden, there is still a curse of
dimensionality as the number of dimensions in the grid increases. I determine the grid of
family types by adapting the method of good lattice points (glp) introduced in economics by
Judd (1998) in the context of integration and simulation. Good lattice point sets have better
space-filling properties than standard tensor product point grids or random sequences and can
produce more accurate approximations. As far as I know, this paper is the first to apply this
method to dynamic programming problems. Results from a Monte Carlo exercise suggest that
it improves computational efficiency by more than a factor of ten. Fox, Kim, Ryan, and Bajari
(2011) approach together with the glp method enables me to introduce considerable unobserved
heterogeneity in health care demand.

In order to decompose static moral hazard from dynamic moral hazard, I simulate a version
of my model in which families are myopic, and thus do not respond to the dynamic price in-
centives. In this model, families respond only to the current spot price of care. I document that
40 percent of total moral hazard is attributed to the dynamic moral hazard component, whereas
the rest is standard moral hazard. Moreover, I find that certain contract features exacerbate the
impact of dynamic moral hazard on utilization. This highlights the importance of accounting
for the dynamic pricing effect when thinking about the optimal cost-sharing features in health
insurance.

To analyze the impact of dynamic moral hazard on welfare, I extend the welfare decom-
position of Azevedo and Gottlieb (2017) and Marone and Sabety (2022) and provide a novel
decomposition in three terms: the value of risk protection, the social cost of static moral haz-
ard, and the social cost of dynamic moral hazard. Using full insurance as a benchmark, I study
the impact of dynamic moral hazard on welfare under alternative contract designs not observed
in the data. First, I find that for low caps dynamic moral hazard is particularly strong. So
while welfare losses from higher caps due to risk protection are also increasing with the cap,
the presence of dynamic moral hazard implies larger optimal caps than would be predicted
otherwise. Second, zero deductibles are optimal for low caps, but high deductibles are welfare-
maximizing for high caps. In other words, what matters is the distance between the deductible
and the cap. So while a high deductible increases the gains due to static moral hazard, a de-
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ductible too close to the cap exacerbates the losses due to dynamic moral hazard. This implies,
for example, that pure stop-loss contracts in which the deductible and the cap coincide are
never optimal. Finally, I find that longer resetting times increase the probability of hitting the
cap at some point during the coverage period, so resetting times shorter than twelve months are
welfare-maximizing.

Beyond the work noted above, my paper relates to several strands of literature. First, it
adds to the sparse literature that test whether individuals respond to the within-year dynamic
incentives induced by nonlinear health insurance contracts.8 The closest to my paper is Aron-
Dine, Einav, Finkelstein, and Cullen (2015) which exploits quasi-experimental variation due to
timing of new hires enrolling in employer-provided health insurance plans. The focus on dy-
namic incentives relates more generally to empirical tests of forward-looking behavior, which
plays a key role in many economic problems. Outside the context of health insurance, two
works related to mine are Nevo, Turner, and Williams (2016) who analyze the effect of nonlin-
ear pricing schedules in the context of residential broadband use, and Chevalier and Goolsbee
(2009) who investigate whether durable goods consumers are forward looking in their demand
for college textbooks.

Second, my paper is one of the very few empirical papers which considers health care
utilization decisions for periods shorter than the standard contract length of twelve months.
By doing so, I incorporate the uncertainty intrinsic to the nature of health care demand and
the dynamic incentives throughout the year induced by the nonlinear pricing of typical health
insurance contracts. I also model explicitly how health care utilization decisions change with
the number of periods left until the contract resets. Thus, I leverage my structural model to
explore contracts with shorter resetting times for deductibles and caps, their impact on welfare,
and the unique role played by dynamic moral hazard.

My paper also relates to the literature that studies optimal design of health insurance con-
tracts emphasizing the trade-off between welfare gains from risk protection and welfare losses
from moral hazard. My paper is closest in spirit to the work of Kowalski (2015), Ho and Lee
(2020), and Marone and Sabety (2022), which propose a coherent and unified framework to
evaluate risk protection and moral hazard simultaneously. However, none of these papers study
the dynamic moral hazard component and its policy implications. Finally, my paper adds to
the methodological literature for estimating demand under rich and flexibly-correlated multidi-
mensional unobserved heterogeneity by adapting the methodology from Fox, Kim, Ryan, and
Bajari (2011) and Nevo, Turner, and Williams (2016), combined with the use of good lattice

8See e.g., Aron-Dine, Einav, Finkelstein, and Cullen (2015), Einav, Finkelstein, and Schrimpf (2015), Keeler
and Rolph (1988), and Guo and Zhang (2019).
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points.

The remainder of the paper proceeds as follows. Section 2.2 describes the data and Section
2.3 presents descriptive evidence of responses to the shadow price variation. Section 2.4 details
the dynamic model of weekly health care utilization. In Section 2.5, I present the econometric
specification of my model and describe its estimation and identification. Section 2.6 presents
the main results. Section 2.7 examines optimal contract design within the setting of employer-
sponsored health insurance. The last section concludes.

2.2 Data and Sample

I use rich, individual, line-item records from the RAND Health Insurance Experiment (here-
after, HIE). The RAND HIE is a randomized field trial of alternative insurance plans offered to
approximately 2,500 non-elderly families in the U.S. Each line-item record contains informa-
tion on the total line-item cost, out-of-pocket expenses, insurance payment, date and place of
service, and procedure codes. The data are particularly suitable for the study of moral hazard
because insurance plans were randomly assigned to families. This forestalls the possibility that
less-healthy people, anticipating large health care expenditures, buy more generous insurance
coverage (Akerlof, 1970). Specifically, these data are ideal for studying dynamic moral haz-
ard given the unique cross-randomization design of nonlinear cost-sharing features. In what
follows I describe the experimental design and the analysis sample.

2.2.1 Experimental design and randomization

The RAND HIE is a large social experiment conducted between 1974 and 1982 in four urban
and two rural sites, chosen to be broadly representative of the nonelderly U.S. population.9

Families offered enrollment in the experiment represent a random sample from each site, sub-
ject to certain eligibility criteria. The criteria excluded those whose health care delivery sys-
tems differed from options available to the general population.10 At a given site and enrollment
date, families were randomly assigned to one of 14 different fee-for-service insurance plans or

9The sites were: Dayton, Ohio; Seattle, Washington; Fitchbury-Leominster and Franklin County, Mas-
sachusetts; and Charleston and Georgetown County, South Carolina.

10The experiment excluded people age 62 or over at the time of enrollment since they were or would become
eligible for Medicare during the experiment or people under age 62 who were eligible for the Medicare program;
those with family incomes greater than $25,000 (in 1973 dollars); those who were institutionalized (jail or long-
term hospital); those in the military and their dependents; and veterans with service-connected disabilities.
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to a prepaid group practice.11 In addition, each family was randomly assigned to either three
or five years of participation. Families were enrolled in the experiment as a unit, with only
eligible family members participating.12

The fee-for-service plans varied along two principal features: (1) the coinsurance rate,
which is the fraction of billed charges paid by the participant, and (2) the maximum dollar
expenditure (MDE), which is the cap on family out-of-pocket expenditures. The coinsurance
rates were set at either 0 (free care), 25, 50, or 95 percent. Except for the free care plan,
each plan had a MDE of 5, 10, or 15 percent of family income in the previous year (hereafter,
PY).13 To further limit participants’ financial exposure, the MDE was capped at $1,000 in 1973
dollars, unadjusted for inflation.14 Beyond the MDE, the insurance plan paid all covered health
care utilization in full for the remainder of the contract year. Associated with the MDE, it will
become useful to introduce the concept of a Total Annual Threshold (hereafter, TAT), defined
as the ceiling placed on accumulated health care utilization during the coverage period above
which health care is free to the family members. The TAT differs from the MDE because the
former includes both the portion paid by the insurance and the portion paid out-of-pocket by
the patient, while the latter only includes the patient’s portion.

All experimental plans feature a zero-dollar deductible, a coverage length of 12 months,
and no premiums. Every plan covered inpatient and outpatient health care, as well as vision,
prescription drugs, medical supplies, and mental and dental health.15 A contract year was
defined as the 12-month period following each anniversary of the enrollment date, which was
not always January 1. New families were enrolled over several start dates, but all members of

11The RAND HIE assigned families to treatments using the Finite Selection Model (Morris et al., 1979), which
explicitly balanced a subset of observable characteristics across plans. Potential selection bias can be introduced
if there is differential refusal or attrition across plans. To reduce refusals, families were given a Participation
Incentive (PI) if their experimental plans provided less coverage than their existing health insurance policies. For
details about the PI payments see Appendix A of Codebook 203 (Newhouse, 1999). A Completion Bonus was
offered to reduce withdrawal from the experiment subsequent to enrollment.

12After the enrollment date, families could not incorporate new members into the insurance plan. The only
exceptions were newborns and adopted children under one year of age. Families who either lost or acquired mem-
bers during a given contract year were given a new identifier in the following contract year to reflect their change
in composition. Hence, a RAND HIE participant might belong to different families throughout the experiment.

13There was a group of mixed plans, in which the coinsurance rate differed between medical services and
dental or outpatient psychiatric services. Regarding the MDE, one plan limited the out-of-pocket expenditure to
either $150 (individual) or $450 (family). These plans are not analyzed in the present study. Since the MDE is
tied to the family’s previous year’s income, it varied from year to year. Families with zero income in the previous
year received de facto free care, regardless of the plan.

14An MDE of $1,000 in 1973 dollars would correspond to about $6,000 in 2020 dollars, based on the U.S.
Consumer Price Index (CPI-U). Source: U.S. Bureau of Labor Statistics.

15The following services were excluded: non-preventive orthodontic services, cosmetic surgery for pre-
existing conditions, and outpatient mental health visits exceeding 52 per contract year. See Appendix D of
Codebook 203 (Newhouse, 1999) for a thorough list of possible reasons for noncoverage of a service by the
RAND HIE.
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a given family shared the same enrollment date, even those added later.16

Figure 2.1 shows an example of a health insurance plan offered by the RAND HIE. The
total dollar amount of annual health care utilization is summarized on the horizontal axis, as
the sum of both insurer payments and out-of-pocket payments by the beneficiary family. The
vertical axis indicates how this particular insurance contract translates total utilization into
out-of-pocket spending. The figure illustrates the case of a family assigned to a 25 percent
coinsurance rate plan with a MDE equals to 10 percent of PY income. Since family income
in the previous year is greater than $10,000, the MDE is capped at $1,000 (the horizontal red
dashed line). In this case, the family would pay 25 percent of the first $4,000 in health care
utilization, and $0 beyond that for the current contract year. Hence, a 25 percent coinsurance
rate coupled with a MDE of $1,000 has an associated TAT of $4,000 (the vertical blue dotted
line).

Figure 2.1: Health insurance plan with 25 percent coinsurance rate and MDE=min{0.10 ×
income, $1, 000} for a family with PY income greater than $10,000

Except for the absence of a deductible, Figure 2.1 shows a stylized example of a typical
health insurance contract in the U.S. This example shows a concave, piece-wise linear schedule
with two “arms.” First, the “coinsurance” arm, where the family faces a price of 25 percent
for every dollar of health care utilization, and second, the “catastrophic” arm that provides full
coverage. While the plans in my data do not include deductibles, the same forces that govern
health care utilization behavior below the cap also apply to the deductibles, and allow me to
use my estimated model to study behavior under plans with deductibles (see Section 2.7).

16Table A.1 in the Appendix shows enrollment dates by site.
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2.2.2 Sample

For the purpose of studying family behavior within a contract year, I aggregate health care
utilization to the family-week-year level.17 The variable date of service defines whether a line-
item claim belongs to one week or another.18 In addition to the claims data, I use the eligibility

file to record coverage and family structure, and the episodes of care file to recover the family
MDE by year. The weekly consumption totals represent only the health care utilization that
was covered by the RAND HIE and for which claims were submitted. The weekly covered
health care utilization used for the analysis includes both the portion paid out-of-pocket by the
family and the portion paid by the insurer. If no family member used covered health care ser-
vices during a given week-year pair, the utilization value for that family-week-year observation
equals zero. Note that observations with zero utilization are kept in the sample.

I make five restrictions to create my baseline sample. First, I exclude fee-for-service plans
with different coinsurance rates for different providers (i.e., the so-called mixed plans) and
the prepaid group practice.19 Second, I exclude the first contract year from Dayton, Ohio.20

Third, I exclude family-year observations in which no member enjoyed coverage for the whole
contract year. Fourth, for families reassigned to a different plan after a relocation, I exclude the
year of the move as well as the following years. Finally, I exclude family-year observations
with missing MDE information.21 After these exclusions, my baseline sample consists of 2,145
families and 4,763 family-years. Table 2.1 provides details about the remaining sample size
after sequentially applying each exclusion criterion.

Table 2.2 provides summary statistics by plan type for the baseline sample. I group the
insurance plans into four categories based on the coinsurance rate. In the first panel, I explain
the features of the plans. In the second panel, I provide statistics at the annual level as well as a
break down by category of expenditure. Finally, in the third panel I present statistics regarding
the behavior above the cap. Between 17 and 36 percent of families in the cost-sharing plans hit
the TAT in a given year. This is important, as my identification strategy relies on having enough
families with a positive probability of exceeding the TAT during the contract year. Families in
the less generous plans are more likely to hit the TAT due to the higher cost sharing, but

17A week refers to a contract week, as opposed to a calendar week. The same applies to a year.
18Each claim has multiple dates, including the admission and discharge dates in case of hospitalization, the

date of service and the date filed.
19My model does not distinguish between providers of service (e.g., physician versus dentist) or whether the

provider belongs to a prepaid group network.
20Dental and mental health services were treated differently in the first year of the experiment in Dayton, Ohio.

Dental services for adults were covered only on the free-care plan (dental services for children were covered on
all plans). Outpatient mental services were not covered.

21For details about each exclusion step, see Appendix A.8.
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Table 2.1: Analysis sample derivation

Row Description Sample Size Percent

1 Family-years (end-of-experiment point of view) 9,388
2 and not in mixed-plans or HMO (after exclusion 1) 5,279 56.23% of row 1
3 and not first year in Dayton (after exclusions 1-2) 4,891 92.65% of row 2
4 and full year participation (after exclusions 1-3) 4,790 90.74% of row 2
5 and plan change (after exclusions 1-4) 4,767 90.30% of row 2
6 and complete MDE data (after exclusions 1-5) 4,763 90.23% of row 2

7 Family-years in analysis sample 4,763

end-of-year prices are increasing with the coinsurance rate of the plan. The reported average
realized end-of-year price per dollar of health care consumption is the coinsurance rate times
the fraction of family-years who do not hit the TAT by the end of the coverage year. It varies
between 0 in the free-care plan and 0.61 in the 95 percent coinsurance rate plans.

These differences in plan generosity translate into differences in average annual health care
utilization. An average family in the free-care plan consumes $1,851 in health care services
during a contract year. At the other extreme, an average family in the 95 percent coinsurance
rate plan consumes $1,160 in health care services during a contract year. This implies that
average health care utilization in the most generous plan is about 60 percent higher than that
in the least generous plan. Table 2.2 also shows a steady increase of the percentage of family-
years with zero annual health care utilization as the coinsurance rate increases. On average, the
zero annual utilization rate is almost 3 times higher in the 95 percent coinsurance rate plans
versus the free-care plan.

2.3 Evidence of Response to the Shadow Price of Care

Under standard nonlinear health insurance plans, an additional benefit of health care utilization
today is lower future expected prices within the coverage period (typically one year). This
section examines whether families’ health care utilization decisions within the year respond
to these dynamic pricing incentives. To do so, I derive a set of four testable implications for
families who face a nonlinear pricing scheme coupled with uncertainty regarding future health
care demand. The implications derived have only one key unobserved mechanism at play: the
change in the shadow price of care within the year. Specifically, the higher the cumulative
consumption and the more weeks left in the coverage period, the stronger are these incentives,
i.e., the lower the shadow price of consumption. However, this is only true while families
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Table 2.2: Plan characteristics and descriptive statistics of annual health care utilization

Coinsurance rate 0 percent 25 percent 50 percent 95 percent

Number of family-years 2,393 832 499 1,248

Plan features
Premium ($) 0.00 0.00 0.00 0.00
Deductible ($) 0.00 0.00 0.00 0.00
Contract length (in years) 1.00 1.00 1.00 1.00
Coinsurance rate below TAT 0.00 0.25 0.50 0.95
Mean Total Annual Threshold ($) 0.00 2557.45 1560.65 744.54

Family total annual consumption
Percentage with zero claims 4.47 6.13 8.22 12.74
Mean annual consumption ($) 1851.01 1284.92 1303.34 1159.95
Median annual consumption ($) 1022.35 598.37 436.57 329.305
Mean realized end-of-year OOP price 0.00 0.21 0.40 0.61
Mean outpatient share 0.34 0.37 0.40 0.35
Mean inpatient share 0.15 0.13 0.12 0.13
Mean dental share 0.30 0.27 0.235 0.25
Mean drug and supply share 0.14 0.15 0.15 0.13
Mean mental share 0.02 0.02 0.01 0.01

Family total annual consumption above TAT
Proportion of family-years over TAT 1.00 0.1683 0.2084 0.3566
Mean share of TAT used 1.00 0.9559 1.8100 4.0620
Median share of TAT used 1.00 0.2468 0.2851 0.4917
Family-years over TAT | any inpatient 1.00 0.5150 0.6484 0.9040
Mean consumption above TAT ($) 1851.01 2428.09 3260.28 2219.70
Median consumption above TAT ($) 1022.35 1120.715 1130.375 1246.49

Notes: All expenditures are in dollars and cents for the year of service, unadjusted for inflation.

are below the cap. After they hit the cap they enjoy free care, and these dynamic incentives
disappear.

In order to test these implications, I estimate linear regressions of the following form, where
the dependent variable, y jtq, is a measure of family j’s health care utilization in contract week
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t of experimental year q:

y jtq = NonLastYear jq

∑
s=below cap,

above cap

[
βs

0 + β
s
1 (T − t + 1) + βs

2

Cum jtq

T AT jq
+ βs

3 (T − t + 1)
Cum jtq

T AT jq

]

+ LastYear jq α
above cap + Family j + γ x jtq + ϵ jtq.

(2.1)

The variable (T − t + 1) is the number of weeks left in the coverage period and the variable
Cum jtq is family j’s cumulative health care utilization up to the beginning of week t of ex-
perimental year q. The variable LastYear jq is an indicator variable that equals 1 if q is the
last year of participation in the experiment for family j and 0 otherwise (the opposite is true
for NonLastYear jq). As defined in the previous section, the variable T AT jq stands for “Total
Annual Threshold” and captures the family- and year-specific level of cumulative health care
utilization above which the family enjoys free care for the remainder of the year. I also include
family fixed effects, Family j, to remove persistent heterogeneity across families, and dummy
variables for calendar month, x jtq. By leveraging the experimental design, I can separate sea-
sonality in health care demand from the dynamics of my model, since families have staggered
enrollment dates.22

The key coefficients of interest are βs
1, βs

2, and βs
3, which capture the response of weekly

health care demand to the variation of the shadow price of care. Using equation (2.1), I derive
four testable implications to evaluate whether families are sensitive to the dynamic incentives
generated via the nonlinearities of health insurance plans.23 The first two implications examine
the behavior when families are below the cap on OOP spending, where the spot price is fixed
but the shadow price varies. Focusing on the behavior after families exceed the cap, the last
two implications address potential threats to identification of the response to the shadow price

22This is a unique feature since standard health insurance coverage begins and ends on the same date for almost
all individuals (unless it is terminated due to job separation or death).

23The implications are tailored to the specific cost-sharing features and nature of the RAND HIE, in that they
assume zero-dollar deductibles and exclude the last experimental year to avoid the end-of-experiment effect. They
can easily be adapted to more general nonlinear contracts and insurance settings.
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captured by the first two implications.

∂E
[
y jtq

∣∣∣Cum jtq < T AT jq, NonLastYear jq = 1
]

∂(T − t + 1)
= β

below cap
1 + β

below cap
3

Cum jtq

T AT jq
> 0, (2.2a)

∂E
[
y jtq

∣∣∣Cum jtq < T AT jq, NonLastYear jq = 1
]

∂(Cum jtq/T AT jq)
= β

below cap
2 + β

below cap
3 (T − t + 1) > 0, (2.2b)

∂E
[
y jtq

∣∣∣Cum jtq ≥ T AT jq, NonLastYear jq = 1
]

∂(T − t + 1)
= β

above cap
1 + β

above cap
3

Cum jtq

T AT jq
= 0, (2.2c)

∂E
[
y jtq

∣∣∣Cum jtq ≥ T AT jq, NonLastYear jq = 1
]

∂(Cum jtq/T AT jq)
= β

above cap
2 + β

above cap
3 (T − t + 1) = 0. (2.2d)

Implication (2.2a) states that a forward-looking family, whose accumulated health care uti-
lization is held fixed at some level below the cap, should increase its utilization as the number
of weeks left in the contract increases. This is because the family has more remaining oppor-
tunities to consume within the current contract, and, therefore, a higher probability of hitting
the cap on OOP spending and enjoying free care for the remainder of the contract, all else
equal. This situation drives the shadow price of care down and, therefore, encourages current
utilization. An empirical test for Implication (2.2a) amounts to a test on the sign of the coeffi-
cients βbelow cap

1 and βbelow cap
3 . This is because the ratio Cum jtq/T AT jq is always between 0 and

1. Therefore, a sufficient condition for Implication (2.2a) to hold is that βbelow cap
1 and βbelow cap

3

be jointly positive.

Implication (2.2b) states that, as the share of the cap consumed moves closer to 1, current
health care utilization should increase holding the contract week fixed. The rate at which it
increases depends on the number of weeks left in the contract. This response is driven by a
decrease in the shadow price of care by taking into account the benefits of moving closer to
the cap and potentially enjoying free care for the remainder of the contract. An empirical test
for Implication (2.2b) accords naturally to a test on the sign of the coefficients βbelow cap

2 and
β

below cap
3 . Notice that the variable (T − t + 1) varies between 1 and 52. Therefore, a sufficient

condition for Implication (2.2b) to hold is that βbelow cap
2 and βbelow cap

3 be jointly positive.

Up to this point, the key identifying assumption that allows me to interpret the estimates of
Implication (2.2a) and (2.2b) as evidence of dynamic response to the shadow price of care is
that there are no confounding effects on health care demand as the family approaches the end
of the coverage horizon and the cap on OOP spending, conditional on being below the cap.
In other words, any differential patterns of weekly health care demand that I observe across
contracts weeks and proportion of the cap consumed are caused by differences in the shadow
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price. However, this identifying assumption might not be correct if health care shocks are
correlated across time (even after controlling for persistent heterogeneity at the family level) or
if families increase health care utilization toward the end of the experiment in anticipation of
being enrolled in a less generous plan after the experiment ends. The first scenario will bias my
estimate of Implication (2.2b) away from 0, while the second scenario will bias my estimate
of Implication (2.2a) toward 0. To investigate the validity of the identifying assumption, next
I discuss the last two implications using families’ health care utilization behavior once they
exceed the cap on OOP spending.

Conditional on being above the cap, having more remaining opportunities to consume
within the contract year should not impact current behavior. In other words, there are no
further dynamics coming from the nonlinearities of the contract once above the cap, so weekly
utilization should remain constant. An empirical test for Implication (2.2c) amounts to a joint
test of the coefficients βabove cap

1 = 0 and β
above cap
3 = 0. This could fail in the presence of an

end-of-experiment effect, for example, which I document in Appendix A.2, and constitutes the
reason why I condition on non-last experimental years.24 Implication (2.2c) could also fail if
seasonality in health care demand cannot be separated from the dynamics via the nonlinear
pricing (e.g., seasonal flu). To overcome this, I exploit the experimental design and use the
variation in families’ enrollment month to isolate seasonal demand.

After hitting the cap, families enjoy free care for the remainder of the contract year. Since
current utilization does not affect within-the-year future prices, an increase in the share of the
cap consumed should not impact current behavior. An empirical test for Implication (2.2d)
amounts to a joint test of the coefficients βabove cap

2 = 0 and βabove cap
3 = 0. This could fail in the

presence of correlated health shocks across time, even after removing persistent heterogene-
ity.25 In order to capture this potential week-to-week correlation, I include family fixed effects
in equation (2.1). The correlation I fail to capture with family fixed effects will show up in Im-
plication (2.2d), and this is why this implication is central to my identification strategy. Since
there is no shadow price variation left to exploit after exceeding the cap, any effect captured by
β

above cap
2 points to week-to-week correlation in health shocks.

Table 2.3 displays the results of equation (2.1) using two measures of health care demand:
an indicator for whether the family had any claim over the week and the level of health care

24Families participating in the RAND HIE knew that the experiment would end either after 3 or 5 years
(randomly assigned before enrollment). This might induce an increase in health care utilization toward the end of
the experiment if families anticipate being enrolled in less generous coverage plans after the experiment ends.

25Consider the situation of a family member who undergoes a hip replacement surgery at some point during
the year. This situation most probably creates demand for further care (e.g., follow-up visits or further tests),
which could generate positive serial correlation. This would contaminate the estimate of βbelow cap

2 because I
would attribute to a shadow price response a merely week-to-week correlation in health shocks.
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utilization (in dollars) over the week. The first three rows show the estimates related with be-
havior below the cap on OOP spending, and the subsequent three rows show their counterpart
once families exceed the cap. As predicted, families increased their weekly health care utiliza-
tion level the further they were from the end of the contract year and the closer they were to
the cap on OOP spending, conditional on being below the cap. This is consistent with families
facing uncertainty about future health care demand, updating their probability of exceeding
the cap over the course of the contract year, and having a positive discount factor. Once fami-
lies exceed the cap, I find no statistically significant relationship between health care demand
and weeks left or share of the cap consumed. I interpret this as supportive of the identifying
assumption. Table 2.3 also confirms that the four testable implications hold as shown by the
p-values from the joint F-tests.

To further delineate the dynamic response to the shadow price variation, I evaluate Impli-
cation (2.2a) at the mean level of the ratio Cum jtq/T AT jq in the middle of the contract year
(i.e., at the beginning of week t = 27). I estimate that moving one month farther away from
the end of the contract year is associated with a 1 percentage point increase in the probability
of any weekly claim and a 2.8 percent increase in weekly family health care utilization, on
average.26 This estimate is in line with Aron-Dine, Einav, Finkelstein, and Cullen (2015) who
find that enrollment a month earlier (and thus having one month more to reach the unadjusted
deductible) is associated with a 1 percentage point increase in the probability of any claim and
a 2.2 to 7.5 percent increase in health care utilization in the first three contract months.

Regarding Implication (2.2b), a 10 percentage point increase in the ratio Cum jtq/T AT jq is
associated with a 1 percentage point increase in the probability of any weekly claim and a 5.9
percent increase in weekly family health care utilization, on average, when evaluated at the
beginning of week t = 27.27 To my knowledge, these are the first estimates of the relationship
between within-year health care demand and proportion of the cap consumed using variation
in the shadow price of care. These effects are exacerbated the further the family is from the
end of the contract year or, in other words, when families have more opportunities remaining
to consume. For example, when there are 11 months remaining, a 10 percentage point increase
in the ratio Cum jtq/T AT jq is associated with a 2 percentage point increase in the probability of
any weekly claim and a 10.9 percent increase in weekly health care utilization, on average.

Collectively, my results provide support for the hypothesis that families internalize the non-
linear nature of the incentive scheme and are responsive, in an statistically and economically
meaningful way, to variation in the shadow price of care within the coverage period. While

26%∆y ≈ 100 × 52
12 ×

[
β

below cap
1 + β

below cap
3 ×

Cum j(27)q

T AT jq

]
, with Cum j(27)q

T AT jq
= 0.1778.

27%∆y ≈ 100 × 0.10 × [βbelow cap
2 + β

below cap
3 × (T − 27 + 1)], with T = 52.
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Table 2.3: Weekly response to the variation in the shadow price of care

(1) (2)
Share

with any
utilization

Utilization
in 2019 $
(in logs)

β
below cap
1 : weeks left, non-last year 0.001∗∗∗ 0.003∗∗∗

(0.000) (0.001)
β

below cap
2 : cum to TAT ratio, non-last year 0.017 0.023

(0.020) (0.100)
β

below cap
3 : interaction, non-last year 0.004∗∗∗ 0.021∗∗∗

(0.001) (0.004)
β

above cap
1 : weeks left, non-last year 0.000 -0.002

(0.001) (0.004)
β

above cap
2 : cum to TAT ratio, non-last year 0.000 0.003

(0.000) (0.002)
β

above cap
3 : interaction, non-last year 0.000 -0.000

(0.000) (0.000)

Cost Sharing Plans Y Y
Free Care Plan N N
Family fe Y Y
Clustered se Y Y
Families 1791 1791
Family-weeks 160784 160784
Adjusted R2 0.23 0.22

p-value Implication 1: βbelow cap
1 = 0 and βbelow cap

3 = 0 0.000 0.000
p-value Implication 2: βbelow cap

2 = 0 and βbelow cap
3 = 0 0.000 0.000

p-value Implication 3: βabove cap
1 = 0 and βabove cap

3 = 0 0.898 0.675
p-value Implication 4: βabove cap

2 = 0 and βabove cap
3 = 0 0.638 0.279

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table reports selected least-squares coefficients estimates from equation (2.1). Log
variables are defined as log(var + 1) to accommodate zero values. I inflate health care utilization
to 2019 prices using the monthly CPI-U. Standard errors clustered at the family level are in paren-
theses below the coefficients.

these regression models are useful for showing associations between variables, they are less
useful for predicting how behavior may change in response to exogenous changes in policy.
Estimation of the structural parameters of the explicit optimization problem provides for a bet-
ter understanding of factors affecting health care demand and for the evaluation of alternative
health insurance contracts. Informed by these findings, in the next section I develop a dynamic
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model of weekly health care utilization decisions at the family level.

2.4 Model

My model is built around the problem of a forward-looking family who is enrolled in a general
nonlinear health insurance plan for a given contract length. The nonlinearity of the plan arises
from deductibles, coinsurance rates, and maximum out-of-pocket expenditures. In order to
study the family’s problem, I develop a single-agent, finite-horizon, dynamic, stochastic model
of health care utilization at the family level combining elements of the annual model of health
care demand from Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) and the within-year
model of internet demand from Nevo, Turner, and Williams (2016). An important feature
of my model is that it explicitly incorporates the possibility of zero health care utilization as
the optimal choice for a given period. Moreover, the generosity of insurance coverage can
potentially affect the decision of whether or not to consume any health care.28

A period in my model is a contract week. After observing its realized health state, an
expected-utility-maximizing family makes an optimal health care utilization decision every
period. Since families are forward-looking, they form expectations on future health care uti-
lization and internalize the dynamic pricing effect induced by the nonlinearities of the plan.
This way, the model incorporates the fact that utilization decisions are made throughout the
coverage period, before the uncertainty about subsequent health states is fully resolved.

2.4.1 Preliminaries

Families in my model are heterogeneous along several dimensions, which are unobserved to the
econometrician and potentially correlated. For clarity of exposition, I omit the family subscript
for now, and then in Section 2.5, I describe how families vary.

At the time of each weekly utilization choice, a family is characterized by its current health
state realization ν, the beliefs about its subsequent health realizations Fν(.), and its price sensi-
tivity ω. The random variable ν captures the uncertain aspect of demand for health care, with
higher ν representing sicker family members who demand greater health care utilization. The
parameter ω determines how responsive health care utilization decisions are to insurance cov-
erage. In other words, ω affects the family’s price elasticity of demand for health care. Families

28The proportion of zeros is not a prominent feature in annual models of health care demand, so the literature
has traditionally avoided corner solutions or defined a plan-invariant proportion of zeros.
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with higher ω increase their utilization more sharply in response to more generous insurance
coverage.

2.4.2 Utility Function

From the family’s point of view, insurance coverage, denoted by k, is taken as given, and its
health care utilization decision maximizes a trade-off between health and money. Following
Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013), the family’s per-period utility is sepa-
rable in health and money and can be written as follows:

u(ct; νt, ω, k) =
[
(ct − νt) −

1
2ω

(ct − νt)2
]

︸                           ︷︷                           ︸
b(ct−νt;ω)

+

[
yt − premiumtk − OOP(ct,Ct−1; k)

]
︸                                         ︷︷                                         ︸

x(ct)

, (2.3)

where ct ≥ 0 represents the dollar consumption of covered health care goods and services for
contract week t, including both the portion paid out-of-pocket by the family (if any) and the
part paid by the insurance company; νt is the monetized health realization; and Ct−1 represents
accumulated health care utilization entering week t. I explicitly write the per-period residual
income, x(ct), as the initial period-income yt minus the per-period premium associated with
coverage k and the out-of-pocket expenditure OOP(ct,Ct−1; k) associated with utilization ct

under coverage k.29 Naturally, x(ct) is (weakly) decreasing in ct at a rate that depends on
coverage k.30

The first term b(ct − νt;ω) is quadratic in its first argument, with ω affecting its curvature.
It is increasing for low levels of utilization, when treatment improves health, and is decreasing
eventually, when there is only marginal health benefit from treatment and time costs dominate.
Thus, the marginal benefit from incremental utilization is decreasing. Using this formulation,
the underlying health realization νt plays the role of shifting the level of optimal health care
utilization, c⋆t . Since ω is constrained to be strictly positive, period utility is increasing in ω.

To facilitate intuition, I consider here optimal utilization under a linear coverage contract
where the OOP price remains constant throughout the year irrespective of past cumulative
utilization. Thus, OOP(c, .; k) = coinsk × c, where coinsk represents the constant coinsurance

29I denote the remaining consumption before the TAT is reached as Ct = Ct(Ct−1; k) ≡ max{TATk − Ct−1, 0}.
Then, under zero-deductible contracts, I can define OOP(ct,Ct−1; k) ≡ coinsk ×min{ct,Ct}.

30This structure assumes that a family consumes all per-period income by the end of each contract week, as
saving decisions are not observed in the data. This is a standard assumption in this literature.
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rate of coverage k, coinsk ∈ [0, 1]. Per-period optimal health care utilization is given by

c⋆(ν, ω; k) = max
[
0, ν + ω × (1 − coinsk)

]
. (2.4)

Abstracting from the potential truncation of utilization at zero, the family optimally chooses
c⋆ = ν under no insurance, i.e., when coinsk = 1, and c⋆ = ν + ω under full insurance, i.e.,
when coinsk = 0. Thus, ω can be thought of as the incremental utilization attributed to the
change in coverage from no insurance to full insurance or, in other words, the full scope of
moral hazard (per period).

As can be seen from equation (2.3), families enrolled in a general nonlinear health insur-
ance plan do not always pay the total price of health care because of the plan’s cost-sharing
arrangement. Rather, a family pays a dollar amount out-of-pocket that is determined by the to-
tal price of health care, insurance plan characteristics, and accumulated health care utilization
during the coverage period. As a consequence, the family faces a nonlinear budget set. The
out-of-pocket expenditure function, OOP(.), contains these nonlinearities.

Consider the case of a family enrolled in a plan with no deductible, a 25 percent coinsur-
ance rate, and maximum out-of-pocket expenditure of $750. Entering a given week with $0
accumulated health care consumption, this family is charged $1,000 for a medical visit. In
this case, the family pays $250 out of pocket (i.e., min[0.25 × 1, 000, 750]). However, if the
same family were to have accumulated $2,500 in health care utilization prior to the visit, in-
cluding both the portion paid out-of-pocket and the part paid by the insurance company, then it
would pay only $125, which is the minimum between $250 and what is left to hit the family’s
maximum out-of-pocket expenditure of $750.31

The timing of the model is as follows. At the beginning of contract week t, families learn
their realization of the period-t health state, νt. Taking into account the plan characteristics,
the accumulated health care utilization, and the expected future health risk, families choose the
optimal level of health care utilization for period t. By the end of contract week t, families
update their accumulated health care utilization level, which under a general nonlinear contract
determines the price of health care for the subsequent contract week.

Utility from covered health care services is assumed to be additively separable over all
weeks in the coverage period. For any given health insurance plan k, denote the number of
weeks in the coverage period by Tk. Conditional on being enrolled in insurance plan k, the

31A family enrolled in a zero-deductible plan, with a 25 percent coinsurance rate, and maximum out-of-pocket
expenditure of $750 has an associated TAT of $750/0.25 = $3000. Following the notation of equation (2.3),
OOP(1000, 2500; k) = 0.25 ×min[1000, (3000 − 2500)] = $125.
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family’s problem is as follows:

max
{c1,...,cTk }∈R

Tk
+

Tk∑
t=1

δt−1
E[u(ct; νt, ω, k)], s.t.

OOP(CTk , 0; k) + YTk + premiumk ≤ I ,

CTk =
∑Tk

t=1 ct, YTk =
∑Tk

t=1 yt ,
(2.5)

where δ represents the weekly discount rate. From a period-t point of view, the expectation
is taken with respect to the uncertainty involving the future health realizations νm, m = {t +

1, . . . ,Tk}. I assume that wealth, I, is large enough so that it does not constrain covered health
care utilization decisions.32

2.4.3 The Dynamic Optimization Problem

The family’s objective is to maximize the expected discounted future utility by selecting the
optimal sequence of health care utilization, ct, for t = 1, . . . ,Tk. In this subsection, I describe
the family’s dynamic optimization problem that captures the health care utilization decisions
made repeatedly over the course of a coverage period, taking into account the uncertainty about
subsequent health states.

In the last contract week of the coverage period, Tk, the model becomes static: cumulative
health care utilization resets to zero at the beginning of the following coverage period despite
the period-Tk decision. Denote the period-Tk optimal level of covered health care utilization by
the function c⋆Tk

= c⋆Tk
(CTk−1, νTk ; k). The family’s utility in the terminal period is then given by

VTk(CTk−1, νTk ; k) = (c⋆Tk
− νTk) −

1
2ω

(c⋆Tk
− νTk)

2 + x(c⋆Tk
) . (2.6)

For any other week t < Tk, covered health care utilization counts toward the family’s TAT
and affects the next period’s state, so the optimal policy function for a family incorporates this.
I therefore solve for the optimal health care utilization decision recursively. Then the family’s
optimal decision in period t satisfies

c⋆t (Ct−1, νt; k) = max
[
0, νt + ω

(
1 −

∂OOP(ct,Ct−1; k)
∂ct

+ δ
∂E

[
Vt+1(Ct−1 + ct, νt+1; k)

]
∂ct

)]
, (2.7)

where the term ∂OOP(.)/∂ct represents the spot price of care and the term ∂E
[
Vt+1(.)

]
/∂ct

captures the reduction in future expected prices via the nonlinearities of the contract.

32This is a reasonable assumption in the context of my data since the RAND HIE features low caps relative to
income.
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In each decision period t, the state is defined by three components. First, the contract
week t which determines the number of weeks left until the end of the coverage period, Tk −

t + 1. Second, the accumulated health care utilization up until period t, Ct−1. And third, the
stochastic health state νt which is known to the family at the beginning of period t. So the
vector (t,Ct−1, νt) provides a complete description of the state at time t. For brevity, I describe
the state vector as (Ct−1, νt) and index the policy and value functions by t.

The value function for each ordered pair (Ct−1, νt) and for any t < Tk is given by

Vt(Ct−1, νt; k) = max
ct

[
u
(
ct; νt, ω, k) + δE

[
Vt+1(Ct, νt+1; k)

]]
, (2.8)

where ct ≥ 0 and Ct = Ct−1 + ct.

To provide a clear understanding of the dynamic pricing effect, abstract for a moment from
the discontinuous nature of the nonlinear price structure and the potential truncation of uti-
lization at zero. Then, the solution to equation (2.8) would be characterized by the following
first-order condition:

∂u
∂ct
+
∂u
∂xt

∂xt

∂ct
+ δE

[
∂Vt+1

∂Ct

]
= 0 . (2.9)

The first term reflects the consumption value of health care. The second term reflects the direct
monetary cost of that consumption, expressed in utility terms. Finally, the third term reflects
the effect of current health care utilization on future expected prices. It is this last effect that is
of central interest in this paper.

2.4.4 The Shadow Price of Health Care

The shadow price of health care is a combination of the spot price and the option value asso-
ciated with lower future expected prices. In a multi-period model with uncertain future health
needs and a nonlinear price schedule, any health care expenditure below the TAT reduces the
remaining distance to the TAT and, hence, the future expected prices. I define the shadow price

of covered health care as

s̃pt(ct,Ct−1; k) =


∂OOP(ct,Ct−1; k)

∂ct
− δ

∂E
[
Vt+1(Ct−1 + ct, νt+1; k)

]
∂ct

, if Ct−1 + ct < T ATk

0 , if Ct−1 + ct ≥ T ATk

,

(2.10)

where the first part of equation (2.10) represents the shadow price for families who have
not reached their caps on OOP spending yet, while the second part shows the shadow price
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once they hit the cap. The shadow price of care is equal to the marginal out-of-pocket price,
∂OOP(.)/∂ct, minus the marginal value of reducing the remaining distance to hit the cap. This
latter value is the rate a family would pay (ex ante) to exchange the current insurance policy
for one with the TAT reduced by one dollar.

The presence of the term ∂E
[
Vt+1(.)

]
/∂ct is the crucial distinction between my model and

annual models or multi-period, static models of health care demand. In annual models, the
shadow price of care always coincides with the end-of-year price. This is because families
make a one-shot decision regarding their total annual health care utilization, which place them
either below the deductible, between the deductible and the cap, or above the cap with certainty.
In other words, annual models remove the uncertainty about future health care needs, so that
families have perfect foresight about their end-of-year price and adjust their annual health care
utilization decision accordingly. Multi-period static models assume that families are myopic
and respond only to the out-of-pocket price of the period they are taking the decision. So in
these models, the shadow price always coincides with the spot price of health care.

Figure 2.2 provides a graphical illustration of the properties of the shadow price for a family
with a zero-deductible plan, a 95 percent coinsurance rate, and a $1,000 cap on OOP spending.
In order to compute the option value component of the shadow price I need to specify values for
the distribution of health shocks Fν and the price sensitivity ω, although the patterns displayed
in the figure hold generally. In panel 2.2(a) I use values corresponding to a low mean of Fν and
in panel 2.2(b) a high mean. There are three main properties to highlight. First, the shadow
price ranges from 0 (once the cap is hit) to the coinsurance rate of 0.95. Second, as cumulative
expenditures increase and the TAT remaining falls, the shadow price also falls. Third, the rate
at which it falls is increasing in the amount of time left. These last two properties capture
the mechanisms I document using data from the RAND Health Insurance Experiment (see
Implications (2.2a) and (2.2b) in Section 2.3).

The shadow price of care also depends on expected future health care needs. Intuitively, the
marginal value of reducing the remaining distance to hit the cap is lower for relatively healthy
people, whose probability of becoming sick in the future is low, compared to people with poor
health, ceteris paribus. Figure 2.2(b) shows the shadow price for a family sicker than the one
considered in Figure 2.2(a), in that it has a higher mean of the health shocks distribution. As
can be seen, the shadow price curves shift inwards, implying that the shadow price falls as the
mean health risk increases. It can also be shown that if the variance of the shocks rises, given
a constant mean, the shadow price curves become less steep (see Appendix A.3).
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Figure 2.2: Model properties of the shadow price of care

(a) Shadow price, low mean of Fν (b) Shadow price, high mean of Fν

2.5 Econometric Specification

I estimate the model developed in Section 2.4 by extending the approach proposed by Acker-
berg (2009), Bajari, Fox, and Ryan (2007), Fox, Kim, Ryan, and Bajari (2011), and Fox, Kim,
and Yang (2016); and recently applied by Nevo, Turner, and Williams (2016) in the context of
demand for residential broadband and Blundell, Gowrisankaran, and Langer (2020) in firms’
investment decisions in pollution abatement technologies. This framework allows me to in-
corporate flexibly-correlated unobserved heterogeneity in several dimensions related to family
health risk, preferences for visiting a doctor, and price sensitivity, without requiring parametric
assumptions. The structural estimation of the model proceeds by combining a method-of-
moments approach with a simple nonparametric estimator for the distribution of the correlated
random coefficients. This section presents the estimation approach and discusses identification.

2.5.1 Parameterization

Families in my model are defined by their beliefs about their subsequent health status Fν(.),
their price sensitivity parameter ω, and their previous year (PY) income. I allow all these
objects to flexible vary across families, but assume they remain constant within a contract year.
Yet the family type can change across experimental years to capture cross-year differences in
family composition that may affect health care demand.

The health state νth is a time-varying and type-specific health shock, which represents the
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period-t shock to the family’s health capital stock.33 Health realizations νth are assumed to be
independently and identically distributed and drawn from a (shifted) log-normal distribution
with support (κh,∞). The assumption of no cross-week correlation in health shocks after con-
ditioning on family type is in line with my estimates of implication (2.2d) in Section 2.3 and
the findings in previous literature.34

Before the uncertainty is resolved, families believe that

log(νth − κh) ∼ N(µh, σ
2
h) , (2.11)

and these beliefs are correct. Assuming a log-normal distribution for ν is natural, as the distri-
bution of weekly health care utilization is highly skewed. The additional parameter κh is used to
capture the significant fraction of families who have zero health care utilization within a week.
When κh is negative, the support of the implied distribution of νth is expanded, allowing for
νth to obtain negative values, which may lead to zero health care demand. Therefore, expected
health care needs for a week are given by

ν̄(µ, σ, κ) = exp(µ + 0.5σ2) + κ . (2.12)

Finally, I include PY income as a component of the family type to capture the variability of
the cap on out-of-pocket expenditures within each experimental plan.35

2.5.2 Estimation

I estimate the joint distribution of unobserved heterogeneity using a method-of-moments ap-
proach similar to the two-step algorithms proposed by Ackerberg (2009), Bajari, Fox, and Ryan
(2007), and Fox, Kim, Ryan, and Bajari (2011); and first applied by Nevo, Turner, and Williams
(2016). This estimator is flexible, easy to program, and computationally advantageous com-
pared to alternative estimators for random coefficient models. For complex structural dynamic
models, one does not need to nest a solution to the economic model during optimization. The
estimator uses a finite and fixed grid of random coefficient vectors as mixture components

33νth captures the composite shock from illnesses at period t plus health capital depreciation from period t − 1
to period t.

34See e.g., Einav, Finkelstein, and Schrimpf (2015) in the context of Medicare Part D, who find that conditional
on allowing for unobserved heterogeneity across individuals in their permanent health state, the remaining week-
to-week correlation is not very important.

35Income is the only dimension of family heterogeneity in the model that is observable to the econometrician,
although only partially. The income distribution is censored from above, because I can only recover income from
those families with MDEs strictly smaller than $1,000.
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to construct the distribution from the estimated probability weight of every component. The
methodology exploits a re-parametrization of the underlying model so that the new parameters
of interest (the weights on each type) enter linearly. Because of this linearity, the model can
be estimated using inequality constrained least squares (ICLS). The ICLS minimization prob-
lem is convex, so a standard least squares algorithm will find a global optimum. By reducing
the computational burden, the methodology allows me to relax several strong assumptions fre-
quently imposed on the joint distribution of random coefficients. I do not need to assume that
the random coefficients are mutually independent or that they are symmetrically distributed.
The statistical and shape properties of the distributions are learned directly from the data once
the parameters are estimated.

These advantages of the Fox, Kim, Ryan, and Bajari (2011) estimator are in contrast to
previous approaches in the literature, which are highly nonlinear and computationally expen-
sive. Researchers have tended to specify a parametric distribution and estimate its parameters.
Estimation usually proceeds by simulation: maximum likelihood or the method of moments.
These methods are computational demanding, specially for high-dimensional vectors of ran-
dom coefficients (Bajari, Fox, and Ryan, 2007). Moreover, the specified distributions usually
feature undesired properties.36 Nonparametric methods offer the possibility of not being as
constrained by distributional assumptions. The most common frequentist, mixtures estimator
is nonparametric maximum likelihood (Heckman and Singer, 1984). Often the expectation-
maximization (EM) algorithm is used for computation, which is sensitive to its starting values
and is not guaranteed to converge to a global optimum. Moreover, the number of support points
allowed is generally small, often only two or three, and can take the wrong sign if estimation
is not constrained. Hierarchical Bayesian estimation is an alternative (Rossi, McCulloch, and
Allenby, 1996). For example, Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) employ a
Bayesian hierarchical model to approximate the random coefficients’ distribution. The estima-
tor uses a Markov Chain Monte Carlo Gibbs sampling, which requires training and monitoring
by the user. Moreover, the procedure usually involves evaluating the objective function many
times, which is computational demanding specially in complex dynamic models.

I overcome these limitations by using the methodology of Fox, Kim, Ryan, and Bajari
(2011), which consists of two steps: a computational step and an estimation step. For the
computational step, I fix a large but finite grid of H types in the five-dimensional space, where
a family type is characterized by the vector βh = (µh, σh, κh, ωh, PYincomeh). Then, for each

36The normal distribution is probably the most widely used; however, its support on both sides of zero makes it
problematic for coefficients that are necessarily signed. Lognormal distributions are usually used to avoid wrong
signs. Yet they have relatively thick tails extending without bound, which implies that a share of the population
has implausibly large values for the relevant coefficients (Train, 2008).
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plan k and family type h, I solve the finite-horizon dynamic programming problem described
in Section 2.4 recursively, starting from the last period Tk, and solving backwards period-by-
period until the first contract week, and collecting the sequence of decision rules in each t. This
way I construct the optimal policy given initial condition C0 = 0 and any realization of {νt}

Tk
t=1.

Because a family does not know the realization of the health demand shock νt prior to period
t, I integrate over its support. The solution to the dynamic programming problem for each plan
and family type can be characterized by the expected value functions, E[Vt(Ct−1; k, h)], and
expected policy functions, E[c⋆t (Ct−1; k, h)]. The solution to the dynamic program implies a
distribution for the number of weeks spent in particular states (t,Ct−1) over a coverage period.

In the second stage, I estimate the weight associated with each family type, θkh, to match
the weighted average of the behavior predicted by the model to moments from the data using
inequality constrained least squares. Each moment G j(θk) can be written as the difference
between some moment in the data and the weighted average of the type moments predicted by
the model:37

G j(θk) = mdata
k j − mmodel

k j (θk) = mdata
k j −

H∑
h=1

θkh × mmodel
k jh (βh). (2.13)

The key insight from equation (2.13) is that the new parameters of interest θk enter linearly, ir-
respective of the highly nonlinear model used to compute the type-specific moments mmodel

k jh (βh).
Formally, for each plan k, the methodology chooses weights θ̂k to satisfy

θ̂k = argminθkG
′(θk)G(θk) subject to


θkh ≥ 0 ∀h∑H

h=1 θkh = 1∑H
h=1 θkh × 1[MDEkh ∈ binr] = πdata

kr

(2.14)

The first two sets of constraints in equation (2.14) restrict the weights to be non-negative and to
sum up to 1 for each plan. The last set of constraints uses the plan-specific empirical distribu-
tion of OOP limits to partition the type distribution according to the type-specific PY income.38

For each plan k, the number of unknown parameters is the number of types, dim(θk) = H. Then,

37Following Bajari, Fox, and Ryan (2007), the second term of equation (2.13) is a series estimator that approx-
imates an unknown function m̃model

k j with the approximation m̃model
k j ≈

∑H
h=1 θkh × mmodel

k jh (βh). The basis functions
are not the flexible mathematical functions from traditional series estimators, but the predictions of a single-agent,
finite-horizon, dynamic, stochastic model of health care demand for a family of type h enrolled in health insur-
ance plan k. The unknown frequencies θkh are structural objects, not just the approximation weights from series
estimation.

38For each plan, I partition the empirical distribution of OOP limits in 11 bins. The first ten bins correspond
to the deciles of the distribution. The last bin collects all types with caps equal to $1,000.
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I construct the estimated cumulative distribution function for the random coefficients as

F̂(β; k) =
H∑

h=1

θ̂k × 1[βh ≤ β] , (2.15)

where 1[βh ≤ β] = 1 when βh ≤ β. Thus, this method provides a structural estimator for the
distribution of random parameters for each plan k. This estimator is consistent under standard
regularity conditions.39

Following Nevo, Turner, and Williams (2016), I choose the following moments because
they have a clean connection to weekly and cumulative utilization. For each plan k, I match
three sets of moments. The first set of moments is related to the mass of families at a particular
state (Ct−1, t) or, in other words, the fraction of observations at each state. These moments
capture the distribution of cumulative utilization at the end of each contract week. For example,
the end-of-year distribution of cumulative utilization, which reflects the distribution of annual
utilization, is a subset of moments in this set. Formally, moments in this set are given by

mmodel
k jh,set 1(βh) =

H∑
h=1

γk jh(Ct−1 = Cs), (2.16)

where j indexes combinations of time t and thresholds s, and γk jh(Ct−1 = Cs) represents the
probability that a family of type h enrolled in plan k reaches contract week t with Cs dollars in
accumulated health care utilization within the coverage period.

For the second set of moments, I use the mean health care utilization at each state (Ct−1, t),
which captures the weekly utilization level and how it varies with the cap remaining and the
weeks left:

mmodel
k jh,set 2(βh) =

H∑
h=1

γk jh(Ct−1 = Cs) ×E
[
c⋆kht|Ct−1 = Cs

]
, (2.17)

where E
[
c⋆kht|Ct−1 = Cs

]
is the mean weekly utilization in contract week t for a family of type

h enrolled in plan k, conditional on past accumulated utilization level Ct−1 = Cs.

Finally, the third set of moments is the mean probability of zero utilization at each state
(Ct−1, t). These moments are different from Nevo, Turner, and Williams (2016). Unlike internet
usage and annual health care demand, zeros are a much more prominent feature in my weekly

39See Andrews (2002) who show that consistency is not affected by linear inequality constraints.
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health care utilization data. Formally,

mmodel
k jh,set 3(βh) =

H∑
h=1

γk jh(Ct−1 = Cs) × Pr
[
c⋆kht = 0|Ct−1 = Cs

]
, (2.18)

where Pr
[
c⋆kht = 0|Ct−1 = Cs

]
is the probability that a family of type h enrolled in plan k does

not consume covered health care services in contract week t, conditional on past accumulated
utilization level Ct−1 = Cs. Note that in all three sets of moments, the average is taken across
all types of families in the plan, not just those that arrive at the particular state (Ct−1, t) with
positive probability. This keeps the moments linear in the parameters θk, which is particularly
attractive from the perspective of computational ease. Appendix A.4 provides additional details
regarding how I construct the data counterparts of these three sets of moments.

Similar to Nevo, Turner, and Williams (2016) and Blundell, Gowrisankaran, and Langer
(2020), I use a nonparametric block-resampling procedure to obtain standard errors for my
structural parameters estimates, θk. Specifically, I sample the original data by family-year with
replacement, keeping all 52 weeks for each of the family-years drawn. For each of 1,000 boot-
strap samples, I recalculate the three sets of moments and then re-estimate the weights sepa-
rately for each plan. I calculate confidence intervals for subsequent statistics and counterfactual
analyses by repeating the calculation using the 1,000 different estimates of the weights.40

2.5.3 Choice of Grid Points

As mentioned earlier in this section, the methodology treats the grid of random coefficients as
known and fixed. Thus, it requires the ex-ante specification of parameter grid values. In order
to choose the points for the discrete five-dimensional family-type space, I follow the method
of good lattice points (hereafter, glp). This approach has been proposed in economics by Judd
(1998) in the context of integration and simulation, but to the best of my knowledge has not
been applied to the estimation of dynamic programming problems. The glp method generates
a finite set of “quasi-random” points with the property of low discrepancy.41 The discrepancy
of a set is a measure of how dispersed a collection of points is. Essentially, it measures the
deviations from uniformity of different sets of points and provides a formal way to rank them.42

40A step-by-step description of the bootstrap procedure is provided in Appendix A.4.4.
41Blundell, Gowrisankaran, and Langer (2020) choose their grid values by using co-prime Halton sequences,

an alternative method to generate quasi-random numbers.
42Roughly speaking, the discrepancy of a collection of points in the interval [0, 1] is low if the proportion of

points in the set falling into an arbitrary subinterval [a, b], 0 ≤ a ≤ b ≤ 1, is proportional to the length of that
interval. For a more formal treatment of low-discrepancy methods, see Section 9.2 of Judd (1998).
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A small discrepancy says that the collection of points evenly fills up the hypercube Id, where d

is the dimension of the grid. More details about the glp method can be found in Appendix A.5.

A more common approach for the choice of grid points is the one followed by Nevo, Turner,
and Williams (2016), which I call the method of tensor product points (hereafter, tpp). This
standard approach consists of choosing the support points in each dimension separately, and
then building the grid with all the possible combinations of them. For example, Nevo, Turner,
and Williams (2016) choose seven points of support for each of their five dimensions of un-
observed heterogeneity and build a grid with 75 = 16, 807 types. The tpp approach generates
a lot of overlap between the points. I find that the tpp approach needs at least 50 times more
points than the glp approach to achieve the same fit. Results of this Monte Carlo exercise are
presented in Appendix A.6.

In order to assess the discrepancy of the sets produced by these two methods, I apply a
simple discrepancy test.43 I generate 1,000 random hypercubes of dimension five, check their
discrepancy, and report the maximum discrepancy as the desired statistic. It is relevant to em-
phasize that, the smaller the discrepancy, the more uniformly distributed the points are inside
the hypercube, and the more accurate mass points can be captured. I calculate the discrepancy
for 1,000 sets of 1,069 glp and 1,000 sets of 16,807 tpp coming from seven uniformly dis-
tributed points on [0,1] in each of the 5 dimensions. The maximum discrepancies are 0.0135
and 0.3996, respectively. Therefore, the glp’s measure is 30 times smaller than the tpp’s mea-
sure. This means that in the worst scenario, the glp method produces points that are 30 times
more uniformly distributed than the ones generated by the tpp method. From a statistical
standpoint, a collection of points with the smaller discrepancy captures the joint distribution of
random coefficients more accurately.

2.5.4 Identification

Conditional on the model described in Section 2.4, the objective is to identify the joint distri-
bution of the parameters governing the health risk distribution, Fν(.), the price sensitivity, ω,
and the PY income. Following Fox, Kim, Ryan, and Bajari (2011), I use a nonparametric finite
mixture model by fixing a large but finite grid of five-dimensional points. This way, the support
points of the multivariate distribution, {βh}

H
h=1 = {(µh, σh, κh, ωh,PY incomeh)}Hh=1, are treated

as known, and the parameters to identify are the weights, {θkh}
H
h=1, on the support points. Since

equation (2.14) accords to a linear regression subject to inequality constraints, the weights are
identified as long as the matrix of model moments has full rank. In other words, the weights

43I thank Ken Judd for suggesting this empirical test.
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are identified as long as the behavior predicted by different types is not collinear over all the
moments and all states used in estimation. Next I discuss how each parameter in the type vector
βh = (µh, σh, κh, ωh,PY incomeh) impacts the variation in predicted behavior across moments
and states.

The intuition works similarly to Nevo, Turner, and Williams (2016), although I adapt and
extend it to my context.44 In Nevo, Turner, and Williams (2016), all dimensions of the space of
types are unobserved by the econometrician. In my context, four out of the five dimensions are
unobserved, while family’s PY income is censored from above. As a consequence, my identifi-
cation strategy differs according to the observability of the source of permanent heterogeneity.
In what follows, I first discuss the identification of the distribution of each unobserved dimen-
sion and then explain how I can provide additional identification by exploiting the variation
of PY income. The identification of unobserved dimensions relies on matching the moments
related to the timing and the level of weekly health care consumption observed in the data with
their counterpart moments predicted by the model. The identification of the income dimension
comes through the constraints imposed on the weights.

Fixing σh and κh, a higher value of µh generates a higher value of the weekly health shock
νh, which in turns induces a (weakly) higher average weekly health care consumption.45 Here,
the panel dimension of my data emerges as an important determinant for identification. By
modeling weekly decisions, I can identify the persistence in health care consumption that
comes through the time-invariant health risk distribution of the family.

Fixing µh and κh, a change in σh impacts the variance of weekly consumption and therefore
the likelihood of reaching certain states. This is because the lower the variance, the lower the
likelihood of reaching extreme states (i.e., cumulative consumption states far apart from what
the mean consumption would dictate).

The parameter κ governs the shift of the log-normal distribution of weekly health shocks.
When κ is negative, the weekly shocks can take negative values, which can lead to zero con-
sumption. Hence, κ affects primarily the extensive margin of weekly health care consumption.
In particular, the set of moments related to the probability of zero consumption in each state
aids in the identification of the distribution of κ.

Identification of the price sensitivity parameter ω exploits the nonlinearity of the contracts
induced by the presence of the cap on annual out-of-pocket expenditures. Within plan and
fixing ω, changes in the shadow price of care generate variation in the consumption level that

44The logic behind the identification follows closely the formal argument in Kasahara and Shimotsu (2009).
45Since log(νh − κh) ∼ N(µh, σ

2
h), the average health shock not only depends on µh but also σh as well as κh.

For the exact formula, see equation (2.12).
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aids in the identification of ω. Hence, how likely and early a family hits the cap provides a
dynamic source of identification for ω. Table 2.2 in Section 2.2 showed that between 17 and
36 percent of family-years on plans with nonlinear pricing exceed their cap. This is important,
as one source of variation needed to identify the distribution of ω relies on having enough
families with a positive probability of exceeding the TAT during the contract year.

On top of the four unobserved dimensions of the type space, each type has one observed
component: the family’s PY income, which impacts behavior only through the cap on out-of-
pocket expenditures. Hence, even though the distribution of income is censored from above in
the data, the distribution of MDE is fully observed. I divide the possible MDE values in eleven
groups, in an attempt to balance the trade-off between adding more sources of identification
versus putting more pressure on the fit. The share of family-years in each MDE bin provides
information on the type distribution. In the model, each type belongs to one and only one MDE
bin. So family’s PY income and plan characteristics split the type space into distinct groups. In
other words, they put a weight on each group of types equal to the share of family-years who
belong to each MDE bin.

2.6 Results

This section begins with a discussion of the estimated type distribution, implied quantities,
and model fit. I then provide estimates of the impact that moral hazard has on health care
consumption and compare these estimates to the literature.

2.6.1 Type Distribution

I estimate a weight greater than 0.01 percent (i.e., θh > 0.0001) for 134 types out of 1,069
considered. The first feature I find is substantial heterogeneity in the distribution of weights.
The most common type accounts for 13.3 percent of the total mass, the top 5 types account for
45 percent, the top 10 for 60.4 percent, and the top 20 for 75.8 percent. Figure 2.3 shows the
cumulative distribution of weights ordered from the most to least common type.

The second feature I find is that this heterogeneity drives a wide variety of health care uti-
lization behavior. To get an idea of what the results imply, Table 2.4 presents selected statistics
for the top 5 types with the highest estimated mass. The most frequent type (h = 1) is the
healthiest, but likes going to the doctor the most. Indeed, there is only 1 percent probability
that this type ends the year with zero accumulated health care demand, despite being particu-
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Figure 2.3: Estimated distribution of types

larly healthy (i.e., low mean of the shock ν). The second most common type is the sickest and
the poorest, which results in a lower TAT, so it exceeds the cap with probability close to one
even in the least generous plan. The third and fourth most common types are relatively healthy
and have a strong distaste for going to the doctor, so they rarely have positive annual health
care demand. The fifth type has the largest variance of the health shocks distribution, which
implies a large dispersion in the distribution of annual health care demand.

Table 2.4: Estimates of type weights

Top 5 types
h = 1 h = 2 h = 3 h = 4 h = 5

Mean of the shock, with λ ∼ LN(µh, σh) 11.24 66.73 22.85 61.22 54.28
Standard deviation of the shock 20.4 162.4 24.4 11.0 376.2
κh: shift of the LN distribution -20.9 -132.8 -177.8 -203.0 -172.0
ωh: static moral hazard 17.7 72.4 121.0 140.0 141.9
annual incomeh 10,945 1,459 16,558 11,646 2,862

Free care plan E[annual utilization]: free 457 2,168 131 187 2,583

Least generous plan

E[annual utilization] 231 2,161 1 0 2,509
TAT: Total Annual Threshold 1,053 230 1,053 1,053 452
P[hit TAT]: <0.001 0.995 <0.001 <0.001 0.742
P[annual utilization = 0]: 0.012 <0.001 0.989 1 0.061
θh: type weight 0.13 0.10 0.10 0.06 0.05

Characteristics
healthiest sickest lowest κ highest SD
highest κ poorest wealthiest highest ω

In Figure 2.4, I present the estimated marginal distributions of unobserved heterogeneity.
Overall, the estimates imply an average health riskE(νt) of $26.33 per family-week. I estimate
an average price sensitivity parameter ω of $26.89. I estimate large heterogeneity in both
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health risk and price sensitivity. One standard deviation of expected health risk E(νt) is equal
to $32.74, or a coefficient of variation of 1.24. Price sensitivity ω is also estimated to be highly
heterogeneous, with a standard deviation across families of $15.82, or a coefficient of variation
of 0.59.

Figure 2.4: Estimated marginal distributions of unobserved type heterogeneity

(a) Marginal distribution of µ (b) Marginal distribution of σ

(c) Marginal distribution of κ (d) Marginal distribution of ω

I also find that allowing for flexible-correlated heterogeneity is important. As an illustra-
tion, in Figure 2.5 I plot the price sensitivity ω separately for families with a low versus high
preference for doctor visits (κ). First, there is a big range in terms of how price sensitive fami-
lies are. Families increase their weekly health care utilization between 0 and 180 dollars when
moved from no insurance to full insurance. Second, there is a strong negative correlation be-
tween price sensitivity and preference for doctor visits. Families who like to go to the doctor
are less likely to increase spending due to moral hazard.

In Table 2.5, I report the unconditional correlations implied by the estimated type distri-
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Figure 2.5: Price sensitivity ω, by preference for doctor visits κ

Price sensitivity ω, by preference for doctor visits κ

bution. As shown in Figure 2.5, the unconditional correlation between ω and κ is -0.41. I
also find that the unconditional correlation between µ and σ is negative and sizeable (-0.45).
This implies that the health shocks of sicker individuals are less volatile and more concentrated
around the mean. However, this is only part of the picture. The correlation between µ and κ is
also negative and important (-0.33). Thus, higher means of the normal distribution of log(ν+κ)
are also associated with higher shifts towards the left.

µ σ κ ω income

µ 1.00 -0.45 -0.33 -0.26 0.31
σ -0.45 1.00 0.08 0.30 -0.03
κ -0.33 0.08 1.00 -0.41 -0.10
ω -0.26 0.30 -0.41 1.00 -0.09

income 0.31 -0.03 -0.10 -0.09 1.00

Table 2.5: Unconditional correlations

2.6.2 Model Fit

Figure 2.6 reports the actual and predicted distributions of annual health care utilization for
the overall sample. This measure includes both the portion paid out-of-pocket by the family
(if any) and the portion covered by the insurance company. Overall, the fit is quite good. For
example, actual average annual health care utilization is $1,188, while the estimate from the
model is $1,217, a difference of 2 percent. The fraction of families who have zero annual health
care demand is also tightly fitted, 0.066 in the data versus 0.063 in the model. This is a very
nice feature of the model, since previous papers either abstract from the corner solution at zero
or display poor fit on this dimension.
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Figure 2.6: Observed and Estimated Distribution of Annual Health Care Utilization

Notes: Observed (light) and estimated (dark) annual health care utilization in dollars. This
figure uses a log scale: each bin k = 1, . . . , 26 corresponds to utilization in the range exp(0.4×
(k − 1)) − exp(0.4 × k), with all utilization above exp(0.4 × 26) ≈ 22K contained in last bin.
The labels on the x-axis show the corresponding dollar amounts for each bin.
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Figure 2.7(a) shows the observed and estimated proportion of families with zero accumu-
lated health care demand as a function of weeks left until the end of the contract. Assessing
whether the model is able to accurately replicate these proportions is key for studying the op-
timal resetting time for deductibles and caps, which I do in the following section. As can be
seen, the model fits these proportions remarkably well. Figure 2.7(b) reports the observed and
predicted probabilities of hitting the annual OOP limit by the beginning of each contract week
for the overall sample. These moments are not targeted in the estimation procedure. The model
fits these probabilities remarkably well.

Figure 2.7: Model Fit

(a) Proportion of families starting each contract
week with zero accumulated health care consump-
tion

(b) Proportion of families starting each contract
week above the annual cap on OOP spending

2.6.3 Dynamic Moral Hazard Estimates

In my model, ω captures the full scope of moral hazard per week. The estimated average of
ωh is about $77, which induces a 45 percent increase in annual utilization from no insurance to
full insurance, relative to full insurance. However, knowing the full scope of moral hazard is
not very useful for policy makers and contract designers given the wide popularity of nonlinear
health insurance contracts. Under a typical nonlinear contract, forward-looking families inter-
nalize that current health care utilization reduces future expected prices. As a consequence, the
distribution of ω does not provide a complete picture of moral hazard.

At the core of this paper is the concept of dynamic moral hazard. To disentangle the con-
tribution of dynamic moral hazard to total moral hazard, I simulate the weekly health care
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utilization behavior using my estimated model but assuming families behave myopically.46

Under this assumption, families respond only to the current spot price of care, thus shutting
down dynamic moral hazard.

The additional health care utilization due to the presence of dynamic moral hazard comes
from two sources: (1) the difference in weekly utilization between myopic and forward-looking
families in weeks in which both are below the cap, and (2) the difference in the number of
weeks spent above the cap between myopic and forward-looking families. Equation (2.19)
below shows these two sources, and a third scenario where dynamic moral hazard is zero
because both the myopic family and its forward-looking counterpart are above the cap.

Dynamic MHt =



ωδ
∂E[Vt+1(Ct−1 + ct, νt+1; k)]

∂ct
, if Cmyopic

t < T ATk and Ct < T ATk

ω
∂OOP(cmyopic

t ,Cmyopic
t−1 ; k)

∂cmyopic
t

, if Cmyopic
t < T ATk and Ct ≥ T ATk

0 , if Cmyopic
t ≥ T ATk and Ct ≥ T ATk

(2.19)

Using the estimated distribution of types in the overall sample, I simulate the behavior
of forward-looking and myopic families. I decompose annual moral hazard in the portion
explained by static moral hazard and the portion explained by dynamic moral hazard. As is
standard in the literature, moral hazard is defined as the change in annual health care utilization
in dollars relative to no insurance. To see the impact of different contract features on the
importance of dynamic moral hazard, I perform this decomposition for each of the nonlinear
experimental plans studied here.

Figure 2.8 shows the difference in average annual health care utilization comparing no in-
surance to one of the nonlinear experimental plans. Light-blue bars correspond to the estimates
for myopic families while green bars correspond to forward-looking families. I list the plan
features below the horizontal axis and the estimated contribution of dynamic moral hazard to
total moral hazard in the last row. According to my estimates, dynamic moral hazard explains
between 8 and 50 percent of total moral hazard, depending on the plan, and 40 percent on
average across plans. Dynamic moral hazard is more important when [1] the coinsurance rate
is higher, and [2] the cap on out-of-pocket spending is smaller. This is because lower caps are
more likely to be reached and higher coinsurance rates increase OOP spending relative to total

46I randomly draw 20,000 sequences of 52 health shocks for each family type with estimated weight greater
than or equal to 0.01 percent, i.e., θ̂h ≥ 0.0001. I simulate the two models forward for each type and nonlinear
plan in the sample. Then I average across the 20,000 simulations to compute annual health care utilization for
myopic and forward-looking families for each type and plan.
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utilization, which increase the likelihood of hitting the cap. This analysis highlights that health
care utilization under plans with high coinsurance rates and/or low caps is particularly affected
by the dynamic moral hazard. Abstracting away from these dynamic pricing incentives under-
estimates the cost from moral hazard, and may likely lead towards socially inefficient levels
of coverage. In the next section I examine the impact of each contract feature thoroughly and
study the mechanisms at play.

Figure 2.8: Dynamic Moral Hazard by Experimental Plan

2.7 Optimal Design of Employer-Sponsored Health Insur-
ance

I now use my model and estimates to explore the impact of dynamic incentives and the asso-
ciated dynamic moral hazard on welfare and optimal health insurance design. I do so in the
context of employer-sponsored health insurance, in which a hypothetical employer offers a sin-
gle plan in which all employees are enrolled. This allows me to focus on the welfare trade-off
between risk protection and (static and dynamic) moral hazard across different plan structures,
abstracting away from questions related to competition across plans. Moreover, this setting
also describes a reasonable proportion of 43 percent in the U.S. population47 and is consistent
with recent papers finding that the optimal menu to offer features a single plan.48 In the interest
of exploring broader questions related to the current discussion about insurance market, the
counterfactual analysis considers the impact of dynamic moral hazard outside the scope of the

47Proportion of employees in private-sector establishments offered only one health insurance option through
their employer. Source: Agency for Healthcare Research and Quality, Medical Expenditure Panel Survey (MEPS)
Insurance Component National-Level Summary Tables, 2020.

48See Ho and Lee (2020) and Marone and Sabety (2022).
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plans offered in the RAND HIE. The contracts I study in this section vary across four features:
(1) the size of the deductible, (2) the coinsurance rate after the deductible, (3) the cap on OOP
spending, and (4) the resetting time for deductibles and caps.49

In order to rank alternative contracts, I follow the recent literature and use a measure of
welfare that incorporates the benefits of risk protection and the social costs of utilization in-
duced by insurance in a consistent framework.50 In particular, I use the welfare metric from
Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) and extend the welfare decomposition
in Marone and Sabety (2022) by incorporating the impact of dynamic moral hazard separate
from traditional (i.e., static) moral hazard.

2.7.1 Measuring Welfare

Following Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013), I assume that families have
constant absolute risk aversion (CARA) preferences and measure welfare using a certainty
equivalent approach. This approach equates the expected utility for each health plan with a
certain monetary payment at the beginning of the coverage year. Formally, for a family defined
by the type vector βh = (Fν(.; h), ωh,PY incomeh), the certainty equivalent to a plan j, eh j, is
determined by solving

− exp(−ψ eh j) = −
∫

exp(−ψ u⋆(ν;βh, j))dFν(ν), (2.20)

where ψ is the annual coefficient of absolute risk aversion and u⋆(.) is the maximum annual
utility for a given sequence of realized health shocks ν.51 The assumption of CARA preferences
over the annual utility implies that (1) risk preferences only impact plan utilities but not within-
the-year health care utilization decisions, and (2) family income does not impact relative plan

49Even though all plans in the RAND HIE feature zero deductibles, the 95 percent coinsurance plans in the
study closely resemble the high-deductible catastrophic plans offered today (Brook, Keeler, Lohr, Newhouse,
Ware, Rogers, Davies, Sherbourne, Goldberg, Camp, et al., 2006). Regarding the variation needed to study shorter
resetting times for deductibles and caps, I leverage my within-year dynamic model of health care utilization, in
which demand is affected by the number of weeks left in the contract, among other things. The key identifying
variation comes from the variation in the proportion of families in the data that starts each contract week with
zero accumulated health care utilization. For example, a family with zero accumulated health care demand at the
beginning of contract week 27 is de facto facing a resetting time of six months.

50See e.g., Kowalski (2015), Ho and Lee (2020), and Marone and Sabety (2022).
51The risk aversion parameter is difficult to identify in the absence of insurance plan choice data. Hence, for

the counterfactuals, I borrow from Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) the estimate of the
average coefficient of absolute risk aversion, ψ = 0.0019. This value implies that to make families indifferent
between (i) a payoff of zero and (ii) an equal-odds gamble between gaining $100 and losing $X, the mean value
of $X is $84.0.
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utilities. Hence, the certainty equivalent for a type-h family and plan j can be written as:52

eh j(βh) = −
1
ψ

ln
[ ∫

exp(−ψ ũ⋆(ν;βh, j))dFν(ν)
]
+(Yh−premium j) ≡ ẽh j(βh)+(Yh−premium j),

(2.21)

where ẽh j(βh) captures the family’s welfare from coverage, and residual income, Yh−premium j,
enters additively.53 Using this notation, differences in ẽh(.) across contracts with different cov-
erages capture the willingness to pay for coverage. For example, a type-h family is willing to
pay at most ẽhk(βh) − ẽh j(βh) in order to increase its coverage from j to k.

I further assume that insurance providers are risk neutral. Thus, the provider’s welfare
when a type-h family is enrolled in contract j is given by his expected profits, or

πh j(βh) = premium j − Eν
[
k j

(
C⋆

T (ν;βh, j)
)]
, (2.22)

where C⋆
T (.) represents the optimal annual health care utilization and the function k j(.) maps

this dollar amount to the portion covered by the provider under the rules of contract j.

Finally, the social welfare generated by allocating a type-h family to contract j is the sum
of family and provider welfare. To define a measure of social welfare that does not depend
on family income, I follow the literature (see e.g., Ho and Lee (2020) and Marone and Sabety
(2022)) and measure social welfare relative to full insurance, which can be expressed as the
difference between willingness to pay and expected insurer cost:54

RS S h j(βh) = WT Ph j(βh) − Eν
[
k j

(
C⋆

T (ν;βh, j)
)
−C⋆

T (ν;βh, full)
]
. (2.23)

To aggregate the welfare measure across all families according to a utilitarian social welfare
function, I define the average relative social welfare across all families for contract j:

RS S j(β, θ) =
H∑

h=1

θh × RS S h j(βh). (2.24)

Decomposition of Relative Social Welfare. I extend the discussion in Azevedo and Gottlieb
(2017) and the generalization in Marone and Sabety (2022) and show that relative social wel-

52ũ⋆(ν;βh, j) =
∑T

t=1((c⋆t − νt) − 1
2ω (c⋆t − νt)2 − OOP(c⋆t ,Ct−1; j)).

53Equation (2.21) highlights that in this setup, the design of an optimal employer-sponsored insurance plan
and the choice of how much to contribute towards employee premiums are separable problems for the employer,
as long as employer contributions take the form of a fixed dollar amount.

54Note that because of the CARA assumption, premiums are transfers that do not affect social welfare.
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fare, RS S h j(βh), can be decomposed in three terms: (1) the value of risk protection, (2) the
social cost of static moral hazard, and (3) the social cost of dynamic moral hazard. This last
component is novel to the literature and captures that a potentially important part of the welfare
gains thought to be achieved by moving families away from full insurance are not actually re-
alized because families anticipate reaching the deductible and/or the cap and adjust utilization
accordingly.

The social welfare generated by allocating a type-h family to contract j (relative to allocat-
ing the same family to the free-care contract) can also be written as:

RS S h j(βh) = Ψ( j,βh)︸   ︷︷   ︸
Relative value of
risk protection

−

[
Eν

[ T∑
t=1

ωh

2
p⋆th j

(
p⋆th j − 2

)]
︸                          ︷︷                          ︸

Relative social cost of
static moral hazard

+Eν
[ T∑

t=1

ωh

2

(
(s̃p⋆th j − 1)2 − (p⋆th j − 1)2

)]
︸                                            ︷︷                                            ︸

Relative social cost of
dynamic moral hazard

]
,

(2.25)

where p⋆th j represents the spot price of care and s̃p⋆th j is the shadow price of care from equation
(2.10), evaluated at the optimal health care utilization level.55

Premium Setting. As in Ho and Lee (2020), I require that insurance premiums cover families’
total expected health care utilization, net of out-of-pocket payments that they make in the form
of deductibles or coinsurance.56

Following the welfare decomposition in equation (2.25), three forces shape the design of
health insurance contracts. Two of them are standard in the literature: risk protection and static
moral hazard. In general, these forces go in opposite directions: more generous contracts pro-
vide higher protection against health risks but at the same time induce consumers to purchase
additional care that they would not have bought had they faced the full cost. The third force
is dynamic moral hazard, which is new to the discussion of how to manage the spending cov-
erage trade-off. As the probability of exceeding the deductible/OOP limit increases, families
internalize this and purchase more health care than they otherwise would. As I illustrate below,
the presence of dynamic moral hazard can severely dampen the welfare gains associated with
higher cost-sharing and plays a crucial role, distinct from static moral hazard, in determining
optimal insurance contract design. In what follows, I analyze the deductible, coinsurance rate,
OOP limit, and resetting time (for deductibles and OOP limits) that maximize average welfare
when the employer only offers a single plan. I define the annual deductible in $250 increments

55In Appendix A.7, I provide details about how to arrive from the definition of relative social welfare in
equation (2.23) to the decomposition in equation (2.25).

56These premiums are before loading costs. When loading costs are passed on to consumers, they are just
transfers from the agents to the insurer. Therefore, loading costs do not affect average welfare.
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between $0 and $2000, the level of coinsurance to vary from 0-100 percent in 10 percent in-
crements, annual OOP maximum ranges from $0 (full insurance) to $2000 in $250 increments,
and resetting times at either 3, 6, or 12 months. All dollar amounts are expressed in 1973
dollars.57

2.7.2 The determinants of the optimal deductible size

High deductible health plans have become increasingly common. In 2020, 31 percent of work-
ers in the U.S. with employer-sponsored insurance were in such plans (Kaiser Family Foun-
dation). To better understand the role played by the deductible, I fix the resetting time at the
standard twelve-months level and study the optimal deductible size for different caps on OOP
spending. I analyze two levels of OOP limits: a low-cap scenario, where I set the annual cap at
$750, and a high-cap scenario, where I set the cap at $1500. In Figure 2.9, I plot the average so-
cial welfare from low-cap (left panel) and high-cap (right panel) plans with different deductible
sizes as a function of the coinsurance rate, relative to full insurance. I find that under a low-cap
plan, a zero-dollar deductible would be optimal, paired with a 40 percent coinsurance rate after
the deductible. However, under a high-cap contract, a $750 deductible would be optimal, also
paired with a 40 percent coinsurance rate after the deductible.

Figure 2.9: Change in Average Social Welfare, Relative to Full Insurance

(a) Low cap on OOP spending (b) High cap on OOP spending

To assess the role that each welfare component plays behind these findings, I fix the coin-
57I refer to deductibles and OOP limits corresponding to those in the metal-tiered plans (i.e., Gold, Silver,

Bronze) offered on Affordable Care Act exchanges as “low”, “middle”, and “high”, respectively. The deductibles,
coinsurance rates, and out-of-pocket maximums in 2016 were $1,169, 21%, $2,564 for Gold; $3,060, 34%, $4,872
for Silver; and $5,771, 48%, $7,436 for Bronze. In 1973 dollars, the deductibles and out-of-pocket maximums
are $210, $461 for Gold; $550, $876 for Silver; and $1,038, $1,337 for Bronze.



2.7. Optimal Design of Employer-Sponsored Health Insurance 46

surance rate at 40 percent and take advantage of the welfare decomposition in equation (2.25).
Figure 2.10(a) shows each welfare component as a function of the deductible size under the
low-cap scenario. Clear bars represent the average welfare due to static moral hazard, relative
to full insurance. Since full insurance is the most generous plan, this component is always
non-negative. As one would expect, the gains from static moral hazard are increasing in the
deductible as families bear a higher portion of the bill.

Figure 2.10: Welfare Decomposition Relative to Full Insurance

(a) Low cap on OOP spending (b) High cap on OOP spending

Gray bars represent the average welfare due to dynamic moral hazard, relative to full in-
surance. This component is always non-positive under typical health insurance contracts, as
consuming more today reduces future expected prices. It has the biggest gradient with respect
to the deductible due to two mechanisms that reinforce each other. Higher deductibles increase
OOP spending relative to total utilization, which increases the likelihood of hitting the cap.
Forward-looking families respond by increasing utilization. In turn, both of these forces in-
crease the expected number of periods spent above the deductible/cap which in turn increases
utilization due to the lower prices faced after exceeding the deductible/cap. Therefore, a zero-
dollar deductible, which minimizes these forces, achieves the minimum welfare loss due to
dynamic moral hazard.

Lastly, black bars represent the average welfare due to risk protection, relative to full in-
surance. Since full insurance provides full protection against risks, this component is always
non-positive. The loss due to decreased risk protection is small and roughly constant across
deductible sizes because most of the risk protection comes from the low cap.

Combining the three welfare components, the dashed line represents average relative social
welfare as a function of the deductible size. The big losses from dynamic moral hazard more
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than offset the gains from static moral hazard as the deductible increases, which makes zero-
dollar deductibles optimal under low-cap contracts. Average social welfare increases $237
per year relative to full insurance, which represents 16 percent of the annual premium in full
insurance, and average annual health care utilization decreases 20 percent compared to full
insurance. To further highlight that dynamic moral hazard plays a key role in making zero de-
ductibles optimal under a low-cap scenario, I shut down dynamics and re-rank plans according
to welfare. I find that a zero-dollar deductible is no longer optimal. The optimal deductible
is $250, and even a $500 deductible achieves higher welfare than a zero deductible (absent
dynamic moral hazard).

In contrast, for high caps on OOP spending, the optimal deductible size is no longer zero.
Figure 2.10(b) presents the welfare decomposition for the high-cap scenario as a function of
the deductible size. The main difference with the low-cap scenario is that under the high cap,
the likelihood of hitting the cap is significantly smaller. This reduces the difference between
the spot price and the shadow price, thus lowering the losses due to dynamic moral hazard,
which were penalizing higher deductibles in the low-cap scenario. The losses from dynamic
moral hazard are still increasing in the deductible, but smaller. The losses from decreased risk
protection are more important now, and even bigger than the losses from dynamic moral hazard.
As a result, the static moral hazard gains from higher deductibles drive the optimal deductible
to $750. Social welfare is $312 higher and annual health care utilization is 33 percent lower
compared to full insurance.

In summary, I find that zero-dollar deductibles are optimal for low to medium caps, while
for high caps on OOP spending, high deductibles are welfare-maximizing. The first result
coincides with the findings in Ho and Lee (2020), who focus on fairly generous (low) OOP
maximums. The second result highlights that the optimal deductible size depends importantly
on the cap on OOP spending, precisely due to the presence of dynamic moral hazard.

2.7.3 The determinants of the optimal coinsurance rate

To study how average welfare changes with the coinsurance rate, I continue to fix the resetting
time at twelve months and set the cap at the high level ($1,500). Figure 2.11 depicts the welfare
decomposition from equation (2.25) as a function of the coinsurance rate, under a zero-dollar
deductible (left panel) and a high deductible ($750, right panel).

Under a zero-dollar deductible (Figure 2.11(a)), the gains from static moral hazard are
increasing in the coinsurance rate because consumers’ cost-sharing is increasing. The welfare
losses from dynamic moral hazard are also increasing in the coinsurance rate, because higher
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Figure 2.11: Welfare Decomposition Relative to Full Insurance

(a) Zero deductible (b) High deductible

coinsurance rates allow forward-looking families to approach the cap at a faster rate. However,
their magnitude is small due to the combination of zero deductible and high cap, and thus static
moral hazard plays the dominant role. The losses due to decreased risk protection increase
with the coinsurance rate as families pay a higher proportion out-of-pocket, but the magnitudes
are also small relative to static moral hazard. Thus, static moral hazard drives the optimal
coinsurance rate, which is 80 percent.

For the high-deductible scenario (Figure 2.11(b)), the picture is quite different. First, the
gains from static moral hazard are significantly flatter across coinsurance rates, compared to
the zero-deductible scenario. The reason is that the high deductible discourages health care
demand, so even very low coinsurance rates after the deductible accrue big gains from static
moral hazard. The loss in risk protection is increasing in the coinsurance rate, which pushes
the optimal coinsurance rate down. However, for very low coinsurance rates, the losses due
to dynamic moral hazard are now sizable. This is because now the dynamic moral hazard
effect operates through two thresholds, the deductible and the cap, as opposed to just the cap in
Figure 2.11(a). Under this new mechanism, low coinsurance rates make hitting the deductible
very appealing. As a consequence, the shadow price decreases and utilization increases. The
optimal coinsurance rate is 40 percent.

In summary, there are two main takeaways from this section. First, the optimal coinsurance
rate and deductible are negatively related, as they are substitutes in providing the incentives
to achieve welfare gains from static moral hazard, relative to full insurance. Second, under
typical health insurance contracts that feature a deductible and a cap, dynamic moral hazard
operates distinctively through these two thresholds. As a consequence, very low and very high
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coinsurance rates exacerbate the losses from dynamic moral hazard.

2.7.4 The determinants of the optimal cap on OOP spending

I now turn to the determinants of the optimal cap on OOP spending again fixing the resetting
time at twelve months. I only focus on the high-deductible ($750) scenario, but the results
for other deductibles are similar both qualitatively and quantitatively. In Figure 2.12(a), I plot
the average social welfare from high-deductible plans with different caps on OOP spending as
a function of the coinsurance rate, relative to full insurance. The first takeaway is that pure
stop-loss contracts58 are never optimal, irrespective of the coinsurance rate (and the deductible
size, not shown). This can be seen by comparing the welfare level of the straight horizontal
line, with the other curves in the plot. The second takeaway is that the optimal cap on OOP
spending lies within the range of high caps for all coinsurance rates, but not very high (below
$1750). The optimum across coinsurance rates occurs at a cap of $1500.

Figure 2.12: Change in Average Social Welfare Relative to Full Insurance

(a) High deductible (b) High deductible - 40 percent coinsurance rate

To unpack the contribution of each welfare component, I fix again the coinsurance rate
at 40 percent, and present in Figure 2.12(b) the welfare decomposition as a function of the
cap on OOP spending. The losses due to decreased risk protection are increasing in the cap
since large caps leave families more exposed to health risks. Welfare gains from static moral
hazard are also increasing in the cap because consumers’ cost-sharing is increasing. Finally,
the losses due to dynamic moral hazard are decreasing in the cap, as higher caps are less likely
to be reached, thus decreasing the incentives to increase spending. Interestingly, the cap on

58Pure stop-loss contracts have no insurance up to a point, and full insurance thereafter, so that the deductible
and the cap on OOP spending coincide.
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OOP spending is the only contract feature for which the impact of static and dynamic moral
hazard on welfare go in the same direction. This is why pure stop-loss contracts, in which the
deductible and the cap coincide, are never optimal. Ultimately, the trade-off between net moral
hazard and risk protection determines the optimal cap, achieved at $1500 (classified as high)
under the high-deductible scenario.

So far I have studied the three popular cost-sharing features while fixing the resetting time
at the standard twelve-months level. The overall optimal plan features a high deductible, 40
percent coinsurance rate after the deductible, and a high cap on OOP spending (equal to twice
the deductible).59 Under this optimal plan, average social welfare increases $312 per year rela-
tive to full insurance, which represents 21 percent of the annual premium under full insurance.
Moreover, annual health care utilization is 33 percent lower compared to full insurance, on
average.

2.7.5 Optimal resetting time for deductibles and OOP limits

Finally, I examine the impact of varying the timespan over which deductibles and OOP limits
reset (six versus twelve months) holding fixed the contract length at the annual level. When
I compare welfare between these policies, I adjust the deductible and cap proportionally to
the resetting time. For instance, if I fix the standard deductible at $1000, I compare welfare
between a $500 deductible that resets every six months and a $1000 deductible that resets every
twelve months.

Shorter resetting times provide more risk protection through smaller caps. The consumers’
financial losses from medium to severe health shocks are more likely to be capped under shorter
resetting times.60

Different time aggregations of deductibles and caps may exacerbate or hinder the effect of
static moral hazard. To understand the intuition, fix the deductible at zero and consider a plan
with a six-months resetting cap of X dollars versus a plan with a standard cap of 2X dollars.
During the first six months under both plans, a family in the resetting policy consumes (weakly)
more health care due to static moral hazard than in the standard policy. This is mechanically
driven by the smaller size of the resetting cap. However, during the second half of the contract
year, this comparison is ambiguous. The resetting cap exacerbates the effect of static moral

59The optimal deductible size is consistent with the average family deductible in the so-called High-Deductible
Health Plans (HDHP) in employer-sponsored settings in 2020, which was $4552 in 2020 dollars (or $752 in 1973
dollars). Source: Employer Health Benefits, 2020 Survey, Kaiser Family Foundation.

60In general, the financial losses from severe health shocks are equally likely to be capped under shorter or
standard resetting times.
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hazard in the second half of the year for relatively healthy families, while the opposite is true
for relatively sick families. In total, which policy generates more overconsumption due to static
moral hazard depends on the empirical joint distribution of health shocks.

Once we let families respond to the dynamic incentives, the effect of dynamic moral hazard
can more than undo the negative difference in utilization between the resetting and standard
policies during the first six months of the contract. This is driven by two mechanisms that re-
inforce each other. First, longer resetting times provide more opportunities to receive a health
shock and consume health care that counts towards the cap. And second, the longer the reset-
ting time for the cap, the more appealing it is to reach it soon because the family will enjoy free
care for more periods.61 As expected, these two mechanisms are more valuable to families who
are relatively sick and/or more price sensitive (i.e., higher ω). As a consequence, this group
of the population consumes more health care due to dynamic moral hazard under the standard
policy.

At the aggregate level, I find that the six-months resetting deductible policy is welfare-
maximizing because it limits the escalation of dynamic moral hazard. Figure 2.13(a) shows
the average welfare for pure-deductible plans as a function of the deductible size, relative to
full insurance. The figure shows that the six-months deductible achieves higher welfare for all
deductible sizes, on average. In Figure 2.13(b) I fix the annual deductible at $500 (medium
size) and plot the welfare decomposition from equation (2.25) for the two resetting policies.
In this case, the gains from static moral hazard (clear bars) and the losses from risk protection
(black bars) are similar between the two policies. However, the gray bars show that the twelve-
months deductible is associated with bigger losses due to dynamic moral hazard, so the six-
months deductible achieves higher welfare. In general, the gains from static moral hazard
increase in the resetting time, while both the losses from dynamic moral hazard and the losses
from risk protection worsen with the resetting time. This trade-off assures an interior solution
for the optimal resetting time.

Longer resetting times induce bigger welfare losses due to dynamic moral hazard because
families enjoy more periods above the deductible per year, on average. The longer the resetting
time for the deductible, the more appealing it is to reach it soon because the family will enjoy
the benefits of being above the deductible for more periods.62 As a consequence, in the standard
deductible policy, families spend more in health care when they are under the deductible, which
puts them above the deductible proportionally earlier than in the six-months resetting policy,

61Abstracting from truncation at zero, the utility function in equation (2.3) implies that for every period above
the cap, a family enjoys positive utility equal to ω/2.

62Abstracting from truncation at zero, the utility function in equation (2.3) implies that for every period above
the cap, a family enjoys positive utility equal to ω/2.
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Figure 2.13: Welfare under deductibles that reset after six versus twelve months

(a) High deductible, high cap on OOP spending (b) High deductible, high cap on OOP spending

enjoying more periods in free care. For example, families enjoy 10.4 weeks above the $500
deductible in the standard policy, and only 9.1 weeks above the $250 deductibles in total in
the two consecutive six-months resetting policies. This behavior leads to bigger welfare losses
from dynamic moral hazard in the twelve-months resetting deductible policy.

To summarize, I find that the optimal resetting time is heterogeneous across the distribution
of health risks and that shorter-than-standard resetting times are associated with higher welfare
precisely due to their smaller welfare losses from dynamic moral hazard. This last finding sug-
gests that abstracting from dynamic moral hazard would favor longer resetting times, which
may help reconcile why deductibles and OOP limits at shorter frequencies are not offered.
Finally, whether or not different resetting times might coexist in the market would be an inter-
esting avenue for further research.

2.8 Conclusion

In this paper, I study a new source of moral hazard that has been overlooked in most of the
prior literature, mainly due to the use of annual models to study health care utilization deci-
sions. I label this source as dynamic moral hazard to contrast with the traditional moral hazard
present in static and annual models of health care demand. Under the typical nonlinear pricing
scheme generated by the presence of deductibles and consumers’ out-of-pocket limits in health
insurance contracts, current health care utilization lowers future expected prices. Using data
from the RAND Health Insurance Experiment, I show that families respond to these dynamic
pricing incentives through two mechanisms: distance to the cap and time left until the contract
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resets. I then build and estimate a dynamic model of health care demand that incorporates con-
sumer heterogeneity along multiple and flexible-correlated dimensions. Using my model and
estimates, I document that 40 percent of total moral hazard can be attributed to the dynamic
moral hazard component.

Finally, I explore the impact of these dynamic incentives and the associated dynamic moral
hazard on welfare and optimal health insurance design in the context of employer-sponsored
health insurance. I show that the presence and significance of dynamic moral hazard have im-
portant implications, distinct from static moral hazard, for health care demand, optimal health
insurance design, and costs of the health care sector. For example, a standard approach to
curbing the social cost of moral hazard is to increase consumer cost sharing. Following this
rationale, there is a recent trend towards offering high deductible plans. My results imply that
introducing high deductibles is an efficient measure of cost containment only if the caps on
consumers’ out-of-pocket spending are not too close to the deductibles. Otherwise, dynamic
moral hazard severely dampens the savings thought-to-be-achieved due to static moral hazard.
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Chapter 3

Multidimensional Unobserved
Heterogeneity and Advantageous
Selection in Health Insurance Markets

3.1 Introduction

Standard models of asymmetric information assume that potential insurance buyers have one-
dimensional private information regarding their risk type. These models predict a positive
correlation between insurance coverage and ex post realizations of loss. However, in some mar-
kets, such as life insurance (Cawley and Philipson, 1999), long-term-care insurance (Finkel-
stein and McGarry, 2006) and “Medigap” insurance (Fang, Keane, and Silverman, 2008), there
is no empirical evidence of the positive correlation property. These findings point towards the
existence of more than one dimension of unobserved heterogeneity and to the existence of at
least one source of private information that is positively correlated with insurance coverage and
at the same time negatively correlated with risk, which leads to “advantageous selection.”1

In this paper, I study the evidence for and sources of advantageous selection in the context
of health insurance for a general non-elderly population. I first propose a new method based
on Revelt and Train (2001) to recover a family-specific distribution of multidimensional un-
observed heterogeneity conditional on their health care utilization decisions and the estimated
population distribution of types. The conditioning for individual families is important to differ-
entiate potential insurance buyers effectively for pricing and/or marketing purposes and to im-

1The first description of this phenomenon in the economics literature dates back to Hemenway (1990), which
used the term “propitious selection.”
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prove the predictions in new contract situations. I apply this method to rich data on within-year
health care utilization decisions from The RAND Health Insurance Experiment, and quantify
the fraction of unobserved heterogeneity that can be explained by observables typically used
for pricing purposes and those related to health status. This provides an input to analyze se-
lection and the plan portfolio design problem of employers, health insurance companies, and
policymakers.

In tandem with these health care utilization data, I use the survey data on families’ re-
sponses to hypothetical offers to purchase supplementary insurance coverage, also from The
RAND Experiment. Using these insurance choice data and the dynamic structural model of
Diaz-Campo (2021) to estimate within-year health care demand under different plan features,
I recover a family-specific measure of risk aversion. Intuitively, a family’s decision to choose a
more (less) generous plan provides a lower (upper) bound for their coefficient of absolute risk
aversion. With the risk aversion measure in hand, I examine the correlation between risk aver-
sion and other dimensions of unobserved heterogeneity recovered from Diaz-Campo (2021)
(e.g., health risk, propensity for moral hazard) to unmask potential sources of advantageous
selection in health insurance markets.

Of considerable interest is the correlation between risk aversion and risk. On the theoretical
side, De Meza and Webb (2001) propose that individuals have two dimensions of private
information: their risk aversion and their risk type. Selection on risk aversion is advantageous
if those who are more risk averse both buy more generous insurance and have lower risks.
On the empirical side, there have been mixed results. For example, Cohen and Einav (2007)
find that risk aversion has a strong positive correlation with risk in the auto insurance market,
an appealing finding from a theoretical point of view as it retains a single crossing property,
but contrary to what is required for risk aversion to be a source of advantageous selection.
However, Cawley and Philipson (1999) find that the mortality rate of US males purchasing life
insurance is below that of the uninsured and Finkelstein and McGarry (2006) find a negative
correlation between risk aversion and health risk for the long-term care insurance market. More
in line with Fang, Keane, and Silverman (2008), my results suggest that those who are more
risk averse are not particularly healthy.

My analysis points to another potential source of advantageous selection: preferences for
visiting the doctor. I find that higher preferences for going to the doctor, which would induce
higher expected claims, are negatively correlated with risk aversion and, therefore, risk cover-
age. My results also provide evidence of “selection on moral hazard” in the spirit of Einav,
Finkelstein, Ryan, Schrimpf, and Cullen (2013) or “selection on unobserved anticipated ef-

fort” from Karlan and Zinman (2009). In this sense, I find a strong positive correlation be-
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tween risk aversion and propensity for moral hazard, suggesting that families would select
insurance coverage in part based on their anticipated behavioral response to more generous in-
surance. Finally, I find that family income is negatively associated with absolute risk aversion,
consistent with the findings of Cohen and Einav (2007) in auto insurance markets. This seems
reasonable since high-income families can potentially self-insure against most health risks.

The remainder of this chapter is organized as follows. Section 3.2 describes the data and
analysis sample. Section 3.3 outlines the methodology for recovering family-specific distribu-
tions of unobserved heterogeneity and risk aversion. Section 3.4 presents the main results and
discusses the sources of advantageous selection. The last section concludes.

3.2 Data and Sample

I use rich, individual, line-item records as well as individual-level survey data from The RAND
Health Insurance Experiment (hereafter, HIE). The RAND HIE is a randomized controlled trial
to evaluate the effects of varying the generosity of insurance coverage. Details of the design of
the study and the sample selection procedure have been given elsewhere (Diaz-Campo, 2021).
Here I will note only a few of the central features of the study design and focus on the insurance
choice data.

Families participating in the study were randomly assigned to an experimental insurance
plan. The plans varied on two dimensions: the coinsurance rate (the share of the bill the family
paid), and an upper limit on annual out-of-pocket expenditure. The coinsurance rates were 0
(or free care), 25, 50, or 95 percent. The maximum out-of-pocket expenditure, also called the
Maximum Dollar Expenditure (MDE), was either 5, 10, or 15 percent of the family’s income,
and could not exceed $1,000. About 70 percent of families participated for three years, the rest
for five years.

Because The RAND HIE randomly assigned families to insurance plans, I cannot recover
risk aversion from plan enrollment. Instead, I use survey data on participating families’ re-
sponses to hypothetical offers to purchase supplementary insurance coverage.2 At the end of
their participation, each family was presented with hypothetical offers to reduce the amount
of its MDE. The offers stipulated a premium the family would have to pay for the supplemen-
tary insurance, and the family was asked whether it would buy the supplementary plan at the
quoted premium. Each family received hypothetical offers to reduce the MDE by one-third, by

2Insurance preference questionnaires were given to all insured families, except those enrolled in the free-care
plan and those who were terminated or attrited.
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two-thirds, and by 100 percent (full coverage), with correspondingly higher premiums.

The offers were worded as follows:

Suppose you were enrolled in a national health insurance plan just like the Fam-
ily Health Protection Plan, and you had the same maximum dollar expenditure
(MDE), which is $ per year for your family. If you could lower the MDE to
$ by paying a fee of $ per year, would you do it or not?

1. Yes, I certainly would

2. I probably would

3. I probably would not

4. No, I certainly would not

The premiums quoted for each offer were randomly generated using an algorithm designed
to produce premium quotes ranging from 10 percent of the change in MDE to almost 100
percent of the change.3 Out of the 1,335 families presented with hypothetical offers, only
1,084 families pass the sample inclusion criteria and are the subject of the insurance choice
analysis here.4 Table 3.1 characterizes the sample by plan, questionnaire completeness status,
and responses to the three hypothetical offers.

3.3 Methodology

In this section, I first introduce the methodology to recover family-specific distributions of
health status, preferences for going to the doctor, and propensity for moral hazard by extending
the “conditioning of individual taste” method from Revelt and Train (2001). Second, I explain
how to use the structural model from Diaz-Campo (2021) and the health insurance choice data
from The RAND HIE to recover a family-specific measure of risk aversion.

3.3.1 Recovering family-specific distributions of unobserved heterogene-
ity

The goal of the main estimation is to recover the distribution of types. There are two ways to
view this distribution. The first is to assume each family belongs to exactly one type and that

3Premium computation is described in Appendix B of Marquis and Phelps (1985).
4The 251 families excluded belong to the so-called mixed plans, which have different coinsurance rates for

different types of services.
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Table 3.1: Sample for the analysis of insurance choice

Health insurance choice

Families Observations
Panel A: Plan
25% coinsurance rate 336 992
50% coinsurance rate 204 597
95% coinsurance rate 544 1,557

Panel B: Questionnaire status
All 3 scenarios completed 1,038 3,114
Only 2 scenarios completed 4 8
Only 1 scenario completed 24 24
No scenario completed 18 0

Panel C: Insurance choice
“No” to all non-missing scenarios 490 1,452
At least one “Yes” and one “No” 338 1,012
“Yes” to all non-missing scenarios 238 682
Missing all 3 scenarios 18 0

Total 1,084 3,146

with enough data this type will be revealed. Alternatively, we could assume that each family
is itself a mixture of types, either because the family consists of several members or because
a given individual’s behavior is best described as a mixture of types. In this case, even with
unlimited data, the distribution of types for each family will not be degenerate. Nevo, Turner,
and Williams (2016) does not take a stand on which is the correct view since ultimately only
the aggregate distribution of types is of their interest. However, when the focus is on recovering
family-specific types, distinguishing between these two views is important. I assume here the
first view is the correct, so that each family belongs to exactly one type and with unlimited data
this type would be revealed.

Let the vector β = {µ, σ, κ, ω, py income} collect the dimensions of unobserved hetero-
geneity. The first three elements govern the mean, standard deviation, and shift of the log-
normal distribution of weekly health shocks, respectively. The fourth element, ω, represents
the weekly propensity for moral hazard. The last element, py income, describes the family’s
previous year income, which affects the family-specific MDE. Let the density g(β|θ̂) describes
the estimated distribution of types in the population, hereafter “the prior.” The vector θ̂ collects
the estimated weight of family type h characterized by the vector of unobserved heterogeneity
βh, with h = 1, . . . ,H. I want to determine where each family’s β lies in this distribution. I
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infer information about each family’s β by conditioning on the family’s observed outcomes
(plan enrollment, k, and sequence of health care utilization choices, c). Let h(β|k, c, θ̂) denote
the density of β conditional on the family’s observed outcomes in addition to the estimated
distribution of types in the population, hereafter “the posterior.” Using the “conditioning of in-
dividual tastes” method from Revelt and Train (2001), I recover families’ posterior distribution
of β by Bayes’ rule:

h(β|k, c, θ̂) =
Prob(c|k,β) · g(β|θ̂)

Prob(c|k, θ̂)
. (3.1)

Let ct denote the family’s health care utilization choice in period t, and let c = (c1, . . . , cT ; k)
denote the family’s sequence of health care utilization choices within a contract year indexed
by the family’s health insurance plan k. The probability of the family’s observed outcomes,
conditional on β, is the product of likelihoods:

Prob(c|k,β) = LL(c1; k|C0,β) · . . . · LL(ct; k|Ct−1,β) · . . . · LL(cT ; k|CT−1,β), (3.2)

where LL(ct; k|Ct−1,β) is the probability that the family chooses ct when enrolled in health
insurance plan k conditional on accumulated health care utilization Ct−1 and type character-
ized by the vector β. The within-year dynamic model of health care utilization choices from
Diaz-Campo (2021) predicts that upon realizing their health state νt, families choose period-t
health care utilization ct by trading off the (current and future) benefits of health care utiliza-
tion with its current out-of-pocket cost. Specifically, accounting for the fact that negative health
states may imply zero health care utilization, the model predicts optimal health care utilization
c⋆t (νt,Ct−1;β, k) = max[0, νt + ω · (1 − s̃pt(c⋆t ,Ct−1;β, k))] for a family characterized by β en-
rolled in plan k, where s̃pt(·) is the shadow price of care. Inverting the expression, the health
state realization νtkr(β) that would have given rise to observed utilization ct under unobserved
heterogeneity β is given by

νtkr(β) :

νtkr ≤ −ω · (1 − s̃pt(c⋆t ,Ct−1;β, k)) ct = 0

νtkr = ct − ω · (1 − s̃pt(c⋆t ,Ct−1;β, k)) ct > 0.

Family health state is distributed according to

log(νt − κ) ∼ N(µ, σ2).

There are two possibilities to consider. First, if ct is equal to zero, the implied health state
realization νtkr is not only negative but also smaller than the negative value of the extra health
care utilization due to moral hazard. Second, if ct is greater than zero, the implied health state
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realization νtkr is the difference between ct and the extra health care utilization due to moral
hazard. Taken together, the probability density of period-t health care utilization ct conditional
on plan and unobserved heterogeneity β is given by

LL(ct; k|Ct−1,β) =
[
Φ

( log(νtkr − κ) − µ
σ

)]I(ct=0)

·

[
Φ′

( log(νtkr − κ) − µ
σ

)]I(ct>0)

where Φ(·) is the standard normal cumulative distribution function.

Finally, the probability of the family’s observed outcomes conditional only on the estimated
distribution of types in the population is obtained by integrating over all possible values of β
as follows

Prob(c|k, θ̂) =
∫

Prob(c|k,β) · g(β|θ̂) · dβ. (3.3)

3.3.2 Recovering family-specific measures of risk aversion

The expected utility of an observed family of unobserved type h with initial income I for
contract k at premium pk is given by U(k, pk, h), defined as

U(k, pk, h) = Eν
[
− exp

(
− ψ

(
I − pk +

Tk∑
t=1

[
ct − νt −

1
2ω

(ct − νt)2 −OOP(ct,Ct−1; k)
]))]

, (3.4)

where ψ is a coefficient of absolute risk aversion. When a type-h family with initial income I

is faced with the option between a contract k at premium pk and a more generous contract j at
a premium p j, with p j > pk, the family chooses the contract that maximizes expected utility. If
the family chooses the less generous option k, I find an upper bound for the type-specific risk
aversion measure ψ, denoted ψh, since a higher ψ would imply more risk aversion and higher
willingness to purchase the more generous option j. If the family chooses the more generous
option j instead, I find a lower bound for ψ, denoted ψh.

As described in section 3.2, each family was presented with three hypothetical insurance
choice situations. In the ideal case where the family answered at least one “Yes” and one “No”,
I can bound the family-specific measure of risk aversion both from below and above. For this
case, I take the midpoint between ψh and ψh to be the risk aversion. If the family answered “No”
to all hypothetical offers, then I take the midpoint between 0 and ψh to be the risk aversion.
Finally, if the family answered “Yes” to all hypothetical offers, then I define ψh to be the risk
aversion.

In order to compute the expected utility for each family under each choice situation, I
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first re-solve the dynamic model of health care utilization for each family type under each
hypothetical health insurance features as well as under the actual health insurance plan of the
family at the time of exit. Second, I find the risk aversion level that would make each family
type indifferent between the actual plan and each of the three hypothetical plans. Third, I
define whether this risk aversion level of indifference is a lower or an upper bound, based
on the family’s choices. Finally, I use the family-specific posterior distribution h(β|k, c, θ̂) to
weight the contribution of each type and obtain a family-specific measure of risk aversion.

3.4 Empirical Results

3.4.1 Unobserved heterogeneity explained by observables

In order to design and price different plans to different groups of people, ideally insurers would
like to recover the underlying type of potential enrollees using observed variables. In what
follows I show how much of the unobserved heterogeneity can be explained by some observed
variables that are thought to influence health care utilization decisions. In particular, the anal-
ysis will consider separately how the prediction improves when using observed variables that
can be used for pricing purposes versus those that cannot be used for pricing.

As a benchmark, I start by assuming that in the worst case scenario, the insurance company
only has access to a prior distribution of types that does not vary across observed character-
istics. In the best case scenario, the company has access to the family-specific posterior dis-
tribution of types. In order to quantify the distance between the prior and the family-specific
posterior distributions, I use the measure of Squared Euclidean Distance (SED). In particular,
the SED for family i is defined as

S EDprior-post
i =

H∑
h=1

[
g(βh|θ̂) − h(βh|ki, ci, θ̂)

]2 (3.5)

In order to predict the type distribution of a potential enrollee, I propose to regress the
family-specific posterior distribution of types on several observed variables. Then, I predict the
probability that a family with the given observed variables is of a particular type. In particular,
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I propose the following series of linear regressions:

h(β1|ci, θ̂) = α1Xi + ϵ1i, i = 1, . . . ,N

h(β2|ci, θ̂) = α2Xi + ϵ2i, i = 1, . . . ,N
...

h(βH |ci, θ̂) = αHXi + ϵHi, i = 1, . . . ,N

To evaluate how much information we have learned with this prediction, I compute the
SED between the family-specific predicted and posterior distributions as follows

S EDpred-post
i =

H∑
h=1

[
ĥ(βh|ki, ci, θ̂) − h(βh|ki, ci, θ̂)

]2
, (3.6)

and finally compare this measure with the benchmark SED from Equation (3.5) in order to
quantify what fraction of the total distance between prior and posterior can be explained by
observed variables. To measure this explained fraction, I propose two measures, one at the
individual level and one at the aggregate level:

Explainedi = 1 −
S EDpred-post

i

S EDprior-post
i

and Explained = 1 −
∑N

i=1 S EDpred-post
i∑N

i=1 S EDprior-post
i

.

The interpretation of the fraction explained is similar to the R2 of a linear regression. If the
distance between the prior and family-specific posterior distributions is similar to the distance
between the family-specific predicted and posterior distributions, this means that the regressors
included are not providing useful information, so the fraction explained will be close to zero.

Table 3.2 shows the results of this exercise. Focusing on the last column, I find that about
5 percent of the distance between prior and posterior distributions can be explained by ob-
servables typically used for pricing purposes. In particular, I included age, number of family
members and smoking behavior status. In the second row of the table, I added variables related
with the health status of the family: an index of general health, number of disease conditions,
activity limitations, etc. Now I can explain almost 40 percent of the distance between prior
and posterior distributions of type. The main takeaway is that there is a substantial fraction of
unobserved heterogeneity that can potentially be captured by observed variables from an ex-
ante perspective. This information would allow insurers to design different plans for different
groups of people based on observables they can condition on.
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Table 3.2: Fraction of the distance between prior and posterior distributions of types explained
by observables

Families Explained

1 Age, family members, smoking behavior 3,560 0.0495
2 Add variables related to health status 2,371 0.3871

3.4.2 Family-specific risk aversion and advantageous selection

Table 3.3 shows the mean risk aversion by families’ responses to the hypothetical offers.5 Case
1 refers to families who answered “No” to all hypothetical offers, providing only an upper
bound for their risk aversion. In this case, I define the midpoint between zero and this upper
bound to be the measure of risk aversion. Case 2 refers to families who answered at least one
“Yes” and one “No” to the hypothetical offers, providing both lower and upper bounds for their
risk aversion. In this ideal case, I take the midpoint between these two bounds to be their risk
aversion measure. Finally, case 3 refers to families who answered “Yes” to all hypothetical
offers, providing only a lower bound for their risk aversion. For this case, I take this bound
itself as their risk aversion measure. Since these cases are ordered in increasing level of risk
aversion, reasonable values for the mean risk aversion would be increasing from case 1 to 3.
This is what we observe in the last column of the table.

Table 3.3: Mean risk aversion by families’ responses to the hypothetical offers

Case Answers Families Formula for ψ Mean ψ

1 “No” to all non-missing scenarios 490 midpoint in [0, ψ] 0.0021
2 At least one “Yes” and one “No” 338 midpoint in [ψ, ψ] 0.0077
3 “Yes” to all non-missing scenarios 238 ψ 0.0100

Total 1,066 0.0057

My estimates imply an overall mean (median) coefficient of absolute risk aversion of 0.0057
(0.0021). Put differently, to make families indifferent between (i) a payoff of zero and (ii) an
equal-odds gamble between gaining $100 and losing $X, the mean (median) value of $X is
$63.4 ($82.4).6 As emphasized by Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013), the
estimated level of risk aversion is not directly comparable to most existing estimates. In my

5I treat option 1 “Yes, I certainly would” as a “Yes” answer, and all other responses as “No” answers. Similar
results were obtained when I treat responses of “Yes, I certainly would” and “I probably would” as indicating an
intention to purchase. See Appendix B.1.

6A risk-neutral family would have $X equal to $100, and an infinitely risk-averse family would have $X equal
to $0.
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model, realized utility is a function of both health risk and financial risk, while in other papers
that estimate risk aversion from insurance choices (e.g., Cohen and Einav 2007) realized utility
is only over financial risk.

The last step of my analysis is to examine the relationship between a family’s risk aversion
measure and the other dimensions of unobserved heterogeneity: health risk, preferences for
going to the doctor, and propensity for moral hazard. I therefore estimate separate regressions
of each dimension of unobserved heterogeneity on risk aversion. Table 3.4 presents the results
for an indicator variable of risk aversion above the median and Table 3.5 for the risk aversion
measure in levels. The dependent variable in column (1) is HealthRisk, which represents the
expected weekly health care utilization in dollars under no insurance. This measure of health
risk is governed by the mean µ and variance σ2 of the underlying normally-distributed health
shock. It is purged from the impact of moral hazard on health care utilization, as I assume
no insurance to compute it.7 In order to obtain a family-specific measure of health risk, I
compute a weighted average across types using the family-specific posterior distribution of
types. Similarly, the dependent variables in columns (2) to (4) are the family-specific weighted
averages across types of the dimensions of unobserved heterogeneity captured by κ, ω, and
py income, respectively.

Table 3.4: Regression coefficients of each dimension of unobserved heterogeneity on the indi-
cator variable for absolute risk aversion above the median

(1) (2) (3) (4)
HealthRisk Pre f Doctor MoralHazard Income

RiskAversion above median -19.53 -34.01∗∗∗ 52.06∗∗∗ -5480.78∗∗∗

(11.67) (3.02) (1.84) (325.67)

R2 0.00 0.12 0.45 0.23
Number of families 968 968 968 968
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Option 1 (Yes, I certainly would) is classified as a “Yes” answer, and therefore determines a lower
bound for risk aversion. Options 2 (I probably would), 3 (I probably would not), and 4 (No, I certainly would
not) are classified as “No” answers, and therefore determine an upper bound for risk aversion.

According to the results of column (1) in both tables, I find a weak negative correlation to
no correlation between risk aversion and health risk. Column (2) shows a negative correlation
between risk aversion and preferences for visiting the doctor. This implies that people who like
to visit the doctor are less risk averse. This negative relationship points to a potential source of

7Under the assumption that health shocks are log-normally distributed with underlying mean µ and variance
σ2, I define the type-specific measure of health risk under no insurance as HealthRisk = exp(µ + 0.5σ2).
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advantageous selection, since higher preferences for visiting the doctor, which would typically
induce more health care utilization, would be negatively correlated with insurance coverage.
The results in column (3) show a strong positive correlation between risk aversion and the
propensity for moral hazard. This is consistent with the findings from Einav, Finkelstein,
Ryan, Schrimpf, and Cullen (2013) and points to the evidence of “selection on moral hazard.”

Finally, the last column shows a negative correlation between risk aversion and family income.
This is reasonable since high-income families can potentially self-insure against most health
risks, and is consistent with the findings of Cohen and Einav (2007) in the auto insurance
market.

Table 3.5: Regression coefficients of each dimension of unobserved heterogeneity on the con-
tinuous measure of absolute risk aversion

(1) (2) (3) (4)
HealthRisk Pre f Doctor MoralHazard Income

RiskAversion 38.28 -223.24∗ 284.37∗∗∗ -45386.77∗∗∗

(346.99) (95.19) (73.30) (10900.43)

R2 0.00 0.01 0.01 0.02
Number of families 968 968 968 968
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Option 1 (Yes, I certainly would) is classified as a “Yes” answer, and therefore determines a
lower bound for risk aversion. Options 2 (I probably would), 3 (I probably would not), and 4 (No, I
certainly would not) are classified as “No” answers, and therefore determine an upper bound for risk
aversion.

3.5 Conclusion

Recovering rich and flexibly-correlated unobserved heterogeneity in several dimensions allows
me to study the evidence for and potential sources of selection, both adverse and advantageous,
and the scope for selection on moral hazard. In this paper, I propose a method to recover the dis-
tribution of multidimensional unobserved heterogeneity at the family level using the observed
health care utilization decisions and a prior distribution of types in the population. Using survey
data on families’ responses to hypothetical offers to purchase supplementary insurance cover-
age, I recover a family-specific measure of risk aversion and study the correlation between risk
aversion and other dimensions of private information.

According to my results, there is a weak negative correlation between risk aversion and
health risk, that could be exploited as a source of advantageous selection. I also find a second
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potential source of advantageous selection: preferences for going to the doctor. Higher prefer-
ences for visiting the doctor are positively correlated with health care utilization but negatively
correlated with risk aversion and, therefore, risk coverage. Finally, my results provide further
evidence of selection in moral hazard in the spirit of Einav, Finkelstein, Ryan, Schrimpf, and
Cullen (2013).
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Chapter 4

The Effect of Maternity Conditional Cash
Transfers on Abortion Decisions:
Evidence from Argentina

4.1 Introduction

Conditional cash transfer programs (CCTs) shape the current social protection landscape in
Latin America and the Caribbean and are also becoming prominent in other parts of the world,
such as Asia and Africa, and even in higher-income countries such as Turkey and the United
States. Their design and implementation vary across countries, but the programs typically
provide cash transfers to families (usually mothers) in exchange for their engaging in behaviors
that promote investments in child health and education. In an attempt to improve maternal and
neonatal health by encouraging the use of adequate and timely prenatal care, several countries
target their CCTs at pregnant women. While there is some evidence on the effect of these
programs on prenatal health care utilization and birth outcomes, there is as yet no evidence
on their impact on pregnant women’s decisions between abortion and childbirth. The paucity
of evidence is driven by a lack of data, primarily due to the illegal nature of the practice of
abortion in most countries and the stigma associated with this practice in countries where it is
permitted.

This paper estimates the causal impact of the Argentinean CCT Asignación por Embarazo

para Protección Social on abortion decisions and children’s birth outcomes. The program was
implemented in May 2011 and targeted to pregnant women who are unemployed or working
in the informal sector. We exploit the substantial amount of inflation in Argentina to instru-
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ment for the endogenous participation in the program. We estimate that participation in the
program led to a sizable reduction in the probability of abortion and in the incidence of normal
birthweight (i.e., greater than 2,500 grams). These findings are consistent with a change in
composition effect, in which mothers whose abortion decision is affected have a higher risk of
low birthweight children.

A large literature explores the impact of CCTs on children’s education, health, nutrition,
and household-level poverty related outcomes (see Rawlings and Rubio (2005) and Fiszbein
and Schady (2009) for a review). There is a narrower literature studying the impact of CCTs for
pregnant women, focusing mainly on the demand for prenatal care, the probability of skilled
assistance at birth, and birthweight. For example, regarding demand for prenatal care, Dı́az
and Saldarriaga (2019) find that the Peruvian CCT JUNTOS increased prenatal care utiliza-
tion among program-eligible women. With respect to birth outcomes, Amarante, Manacorda,
Miguel, and Vigorito (2016) estimate that participation in a similar program in Uruguay led to
a sizable reduction in the incidence of low birthweight and attribute this finding to improved
maternal nutrition during pregnancy.

Documenting the impact of CCTs for pregnant women on abortion decisions is difficult.
The practice of abortion is illegal in most Latin American countries unless the life of the mother
is at risk. Even in countries in which its practice is legal, there is a substantial stigma attached to
it. Hence, there is a natural barrier to collecting data on the practice of abortion, and even more
to evaluating the impact of maternity CCTs on abortion decisions. We circumvent this difficulty
by using unique internal hospital records from a region with high-abortion rates located in
Argentina, near the border with Bolivia. The hospital keeps track of past abortions to better
predict the risk level of the current pregnancy, but of course does not report this information to
the central government. Data on current abortions are gathered either from abortion cases with
complications which ended up at the hospital, or by subsequent follow-ups to pregnant women
who showed up at the hospital al least once but did not come back for further checkups.

Participation in the Argentinean CCT for pregnant women is endogenous, which adds an-
other difficulty for its impact evaluation. Eligible women choose whether they want to par-
ticipate in the program. We use the substantial inflation in Argentina to instrument for this
endogenous participation decision. Even though the monthly amount has been adjusted at ir-
regular time intervals to shield the purchasing power of the transfer against inflation, between
any two adjustment dates there was a steep loss in purchasing power. We use these differences
in purchasing power to essentially define good and bad months to get pregnant. We believe
this IV strategy is of general interest and could be applied to identify causal effects of many
other CCTs.
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The remainder of this chapter is organized as follows. Section 4.2 provides institutional
information about the program. Section 4.3 describes the data and Section 4.4 discusses the
proposed econometric strategy. Section 4.5 presents the main results and offer robustness anal-
yses. The last section concludes.

4.2 The AUE Program

Asignación por Embarazo para Protección Social (AUE) is a national program launched in Ar-
gentina in May 2011 (decree 446/11) that provides monthly cash transfers to pregnant women
who are unemployed, informal (unregistered) workers, registered domestic workers, or so-
called social single taxpayers with income below the minimum wage. The main objective
of the program is to reduce maternal, perinatal, neonatal, and infant mortality rates that are
associated with problems in access to timely health services. Historically, prenatal and mater-
nity benefits to pregnant women in Argentina were linked to employment in the formal sector,
which excluded a large segment of unregistered workers and unemployed women. The AUE
program was designed to fill this gap. In 2015, the coverage was extended to include small
business owners and self-employed pregnant women with a salary below the minimum wage.

4.2.1 Program Eligibility

To be eligible for the program, a woman must be (1) at least 12-weeks pregnant, (2) Argentinian
citizen (by birth or option) with a valid id, (3) unemployed, working in the informal sector, or
registered as a domestic worker (or as a small taxpayer starting in 2015) with income below
the minimum wage,1 and (4) enrolled in the public health federal program SUMAR (only for
unemployed women and informal workers).2 Unemployed women and informal workers with
health insurance coverage (privately purchased or employer-sponsored coverage for family
members) are excluded from the program. Recipients of the subsidy for women with at least 7
children born alive are also excluded from this program.

1The eligibility condition of income below the minimum wage is difficult to verify for informal workers,
rendering it inconsequential in practice.

2Enrollment into the public health program SUMAR can be done in the local health center or hospital. The
program SUMAR supersedes the AUE program in the sense that all Argentinian women under 64 and children
under 19 without health insurance coverage are eligible for enrollment into the SUMAR program. The program
SUMAR, known as Nacer before August 2012, dates back to 2004.
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4.2.2 Program Components

By May 2011, the monthly transfer was set at AR$ 220, equivalent to US$ 54, 12% of the
Argentinean minimum wage, or 1.15 times the basic food basket per adult between 30 and
59 years old.3 The monthly amount has been adjusted at irregular time intervals to shield the
purchasing power of the transfer against inflation. The nominal monthly transfer has increased
by more than 20% each year, though Figure 4.1 reveals that its purchasing power has had steep
ups and downs.4

The transfer has three components. Eighty percent of the monthly transfer is paid monthly
between gestational weeks 12 and 42, up to a maximum of 6 months.5 This first component
is paid conditional on meeting the eligibility criteria described above and submitting an ap-
plication form with the physician signature that certifies the pregnancy condition. The second
component involves the remaining 20 percent, which is paid as a lump sum upon delivery or
pregnancy interruption. In order to receive the final sum, participants must undergo at least five
prenatal checkups with intervals of at least 1 month, two ultrasounds, blood and urine analy-
sis, and receive vaccinations and information on care during the pregnancy. The last program
component, launched in December 2019, is an electronic food card, whose monthly value was
originally set at AR$ 4,000, equivalent to US$ 63.

As mentioned before, one of the criteria to receive all components of the AUE is the en-
rollment in the public health program SUMAR. Given the design of the plan SUMAR, AUE
takers who are new enrollees to the SUMAR program provide additional financing for their lo-
cal public health centers, which could potentially increase the quantity and/or quality of health
services supplied. With the launch of the AUE in May 2011, 33,125 pregnant women enrolled
into the SUMAR program, which represents a 30% monthly increase relative to the monthly
average of around 25,000 new enrollees during the first quarter of 2011 (January to April).

4.2.3 Program participants

Program take-up increased gradually during its first year, from 5,170 beneficiaries in May 2011
to 68,580 beneficiaries in Dec 2011. Out of the December 2011 recipients, 95.4% were unem-
ployed or working in the informal sector, 3.2% were social single taxpayers, and 1.4% were

3In May 2011, the Argentinean minimum wage was AR$ 1840, equivalent to US$ 460. For the same period,
the basic food and total baskets were AR$ 192 and AR$ 423 per adult 30-59 years old, respectively.

4Given the discrepancies regarding the accuracy of the official CPI index, we follow the literature and use the
CPI index of the Province of San Luis.

5For pregnancies starting in 2021, the government increased the maximum number of months to 9, equalizing
it with the prenatal transfer for formal workers (Law 27,611).
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registered domestic workers. According to the latest available statistics, the AUE program ben-
efited 75,476 pregnant women in 2021 (on average across calendar months), which represents
roughly 14% of all live births of the country in 2021.6 Table 4.1 shows the number of women
participating in the AUE program, classified by age group. In December 2021, pregnant women
between 20 and 29 years old accounted for most of the recipients, representing 60% of the to-
tal beneficiaries with known age. To have an idea of how the coverage of the AUE program
compares to its counterpart for formal pregnant women, in December 2021 there were 82,046
recipients of the former versus 25,903 recipients for the latter. Ten years after its introduction,
the AUE program has benefited almost 2 million pregnant women in Argentina.7

Table 4.1: Total number of AUE participants in the country, by period and age
group

Total number of AUE participants in the country

Period/Age group 15-19 20-24 25-29 30-34 35-39 40+ Total

Jun-13 12,667 19,564 12,523 8,005 3,910 1,077 57,746
Jun-14 13,593 22,153 13,861 8,521 4,172 1,074 63,374
Jun-15 15,840 27,567 17,220 10,268 5,484 1,458 77,837
Jun-16 14,658 26,239 17,478 10,151 5,444 1,407 75,377
Jun-17 14,476 26,931 18,541 10,578 5,834 1,619 77,979
Dec-21 9,426 26,017 23,390 13,897 6,830 2,336 81,896

Note: AUE participants with unknown age are excluded. Source: ANSES.

4.3 Data

Several sources of data were combined to make this study feasible. The primary data source for
this research are the records of the Pregnancy Control Program (PCP) from a public hospital
located in the northwest region of Argentina, near the border with Bolivia. Since early 2008,
the hospital has maintained health records for all pregnant women who attended the hospital at
least once during their pregnancy. At the time of each visit, sociodemographic information of
each pregnant women, as well as data related to their particular health conditions, are recorded.
For those women who delivered at this hospital, vital statistics completed by physicians at
the time of birth are available, containing information on birthweight and sex. The data also

6In 2020, vital statistics from the Ministry of Health reported 533,299 live births with a known place of birth.
The 14% approximation was found by simply dividing these two figures.

71,959,565 pregnant women have received at least one monthly AUE transfer between May 2011 and March
2021. Source: ANSES.
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contain the unique national identification number (DNI) for the pregnant women and allow us
to identify the same woman with different pregnancies during the study period.

This hospital is the only public health center in the city, so its records cover the universe
of pregnant women from 2008 to 2014. This includes a period before the start of AUE (which
took place in May 2011). The treatment variable was not interviewed in the hospital, and
therefore it was not available in these records. One advantage of these data is that the hospital
receives a considerable number of Bolivian pregnant women since it is located geographically
close to that country. Since Bolivian women are not eligible for receiving AUE transfers, their
health outcomes can be helpful for estimating the effect of the program.

The control variables that are available in the data include the age of the pregnant mother,
the neighborhood where she lives, number of previous children, whether she belongs to a
risk group or not, among others. These data also include some information on prenatal care
utilization that is collected as the pregnancy progresses. The recorded outcomes of interest are
mainly those that refer to the number and timeline of prenatal care visits and health indicators
of the newborn babies, such as birthweight.

Finally, individual records from the hospital are matched to social security records from
ANSES using the unique DNI individual number. These data contain monthly information on
formal employment status, health insurance coverage, and all contributory and noncontribu-
tory government transfers, including pensions, unemployment benefits, and social assistance
benefits of the pregnant woman. From this information we created two key variables: eligi-
bility and treatment status. The treatment variable is a dummy that takes the value 1 if the
pregnant woman has received the transfer at least one month during pregnancy, and 0 other-
wise. One particular advantage of these new data is that eligibility condition can be established
from observed covariates, as opposed to several studies that can only identify treatment but not
eligibility status.

As mentioned earlier, 80% of each monthly transfer is paid to all enrolled pregnant women,
while the remaining 20% of each monthly transfer is paid after submission of birth certificate
and only for those beneficiaries who comply with the required prenatal check-ups during the
pregnancy. Since we do not have information on whether each enrolled pregnant woman re-
ceived the remaining 20%, the treatment variable is defined as receiving at least the 80% of the

AUE monthly transfer in at least one month during pregnancy.

Two key variables in the data are the records of whether the current pregnancy ended up
in an abortion and whether (and how many) abortions in the past has the pregnant woman
experienced. To provide context, the National Congress passed the Voluntary Interruption of
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Pregnancy bill in Argentina in December 2020, which entered into force on 24 January 2021
(Law 27,610). According to the new law, any woman can request the procedure at any public
or private health facility in the first 14 weeks of gestation. Prior to 2021, a 1921 law regulated
access to and penalties for abortions. According to the old law, abortion could be performed
legally by a certified doctor only when the pregnant person’s life was at risk or when the
pregnancy was a result of rape. Since abortion was mostly illegal during our sample period
(2008 to 2014), it is hard to find official reports. However, the hospital maintained internal
records of current and past abortions as an input for assessing the risk level of the current
pregnancy and maximizing the health outcomes of the mother and the baby.

The data are summarized in Table 4.2. The top panel reports averages for the period Jan-
uary 2008 to April 2011 before the start of the program (pre-program period), while the bottom
panel reports information for May 2011 to December 2014 (program period). We report out-
comes for three groups of mothers based on their country of origin: those who were born in
Argentina, those who were born in Bolivia, and those who were undocumented. Regarding the
proportion of current abortions, the data show a clear increase in recorded abortions from the
pre-program period to the program period for all groups of mothers. This is consistent with the
data quality improvement observed year by year reflected in all variables. Conversations with
the hospital manager reveal that there has been periodic employee training and updating of the
data spreadsheet from the beginning of the PCP program to better monitor the interactions of
the mothers with the health care system. As a consequence, there is an organic increase in sev-
eral variables across time (e.g., higher prenatal care visits recorded, more complete description
of the risk causes). Despite this organic trend, the data show a differential increase in current
abortion for Argentinean versus Bolivian women. Argentinean mothers had a 1.3% probability
of abortion before the program compared to a 4.6% probability after the program, an increase
of 3.3 percentage points. However, the probability of abortion for Bolivian mothers increased
5.6 percentage points over the same period.

The fraction of births below 2,500 grams increased slightly between pre- and program pe-
riods, but it was always between 3% and 4%, and Argentinean and Bolivian mothers look
similar in this regard. The birthweight measure reinforces this finding by also showing very
similar average birthweights around 3,400 grams for all groups of mothers and periods. Ar-
gentinean mothers are 3 years younger than Bolivian mothers on average and the same gap can
be noticed before and after the introduction of the AUE program. This is also consistent with
Argentinean mothers having a higher probability of teen pregnancy, though the gap between
Argentinean and Bolivian mothers decreased across time. Argentinean mothers had a 23%
and 26% probability of teen pregnancy in the pre-program and program periods, respectively,
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an increase of 3 percentage points, while their counterpart for Bolivian mothers was 10% and
18%, respectively, an increase of 8 percentage points.

Table 4.2: Descriptive statistics

Argentinean Bolivian Undocumented

Panel A. Pre-program period (January 2008-April 2011)
1. Current abortion .0129 .0091 .0098
2. Past abortion, at least one .0380 .0818 .0343
3. Birthweight (grams) 3,411 3,480 3,443
4. Low birthweight (<2,500 grams) .0351 .0303 .0484
5. Mother age 25.19 27.79 26.19
6. Teen pregnancy (<20 years old) .2294 .1000 .2402

Observations 1,630 110 204

Panel B. Program period (May 2011-December 2014)
1. Current abortion .0458 .0647 .0398
2. Past abortion, at least one .1209 .1223 .0995
3. Birthweight (grams) 3,400 3,462 3,492
4. Low birthweight (<2,500 grams) .0397 .0366 .0240
5. Mother age 25.02 27.96 25.34
6. Teen pregnancy (<20 years old) .2635 .1799 .2985

Observations 1,571 139 201

4.4 Econometric Analysis

We begin with a linear model with pregnancy outcome Yi,t for individual i with pregnancy
beginning at time t. Yi,t will be either an abortion indicator variable or a measure of birthweight.
Our treatment variables of interest are denoted Xi,t, they will be either an estimate of the value
of the cash transfer or an indicator for having received a cash transfer. A vector W(i, t) of
conditioning information assumed to be exogenous completes the usual linear model:

Yi,t = a + bXi,t + cWi,t + ui,t. (4.1)

We utilize instrumental variables methods to identify b, the treatment parameter of interest.
We use two types of instruments, the first Z1(i, t) is simply an indicator variable for Bolivian
nationals. Bolivians are not eligible for cash transfer programs from the Argentine government.



4.4. Econometric Analysis 79

The second type of instrument, denoted Z2(i, t), contains a constructed measure of where
time period f alls relative to upcoming inflation adjustments. The cash transfer payments we
study are occasionally adjusted for the substantial amount of Argentine inflation. This results in
considerable variation over time in the real value of transfers, illustrated in Figure 4.1. Women
whose pregnancy started 4 months before an inflation adjustment will receive on average 14%
more than women whose pregnancy started 6 months later.

Figure 4.1

(a) Real value monthly transfer by calendar
month, in AR$ (base 2009)
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We employ methods from Conley, Hansen, and Rossi (2012) to investigate relaxations of
the exclusion constraint for both of our instruments Z1 and Z2, collected under Z. Specifi-
cally, we modify the outcome equation in our linear model to include these instruments with
coefficients that in effect parameterize the degree of violation of their associated exclusion
restriction:

Yi,t = a + bXi,t +W ′
i,tc + Z′i,tg + ui,t. (4.2)

Our moment condition for estimation is

E[W ′
i,t,Z

′
i,t]
′ui,t = 0. (4.3)

The usual exclusion restriction identifying b in model (4.2) is that g is a vector of zeros. We
characterize departures from this exclusion restriction by considering non-zero values for g

with small violations or ”approximate exogeneity” corresponding to small values for g.

With g non-zero and unknown, moment conditions (4.3) are of course under-identified. If g

were known to equal g0, estimation could proceed by simply transforming the outcome variable
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to remove the error term correlation with Z:

{Yi,t − Z′i,tg0} = a + bXi,t +W ′
i,tc + ui,t. (4.4)

Utilizing {Yi,t − Z′i,tg0} as an outcome variable, b could be estimated via 2SLS using moment
condition (4.3). Rather than assume a particular value for g0 we will conduct inference under
assumptions regarding a set of possible values for g.

Specifically, we construct confidence intervals under the assumption that g is in a set B, for
a variety assumptions of B. For a given B, we grid up this set and estimate (4.4) via 2SLS and
obtain a usual confidence interval for b, for each value of g0 in this grid. Thus for each value
of g0 we obtain a confidence interval CI(g0) that is valid under the assumption that the true
value of g is g0. Finally, we take the union of CI(g0) across all g0 in the grid for B to obtain an
interval estimate of b under the assumption that g ∈ B.

4.5 Empirical Results

Table 4.3 provides IV and OLS estimates of equation (4.1) for the probability of abortion. We
find that participation in the program reduces the probability of abortion by 8.8 percentage
points. Table 4.4 shows the first stage results. Table 4.5 provides IV and OLS estimates for the
incidence of normal birthweight. We find that program participation decreases the incidence
of normal birthweight between 6.8 and 7 percentage points.

Table 4.3: Effect of the AUE on the probability of Abortion: program period only

Abortion indicator

IV OLS IV OLS
(1) (2) (3) (4)

AUE participant -0.0876∗∗ -0.0474∗∗∗

(0.0432) (0.0173)

AUE transfer
(1,000 AR$) -0.0953∗∗ -0.0415∗∗

(0.0450) (0.0174)
neighborhood FE Yes Yes Yes Yes
pre program No No No No
N 673 673 673 673
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.4: First stage results

(1) (2)
AUE participant AUE transfer

Bolivian -0.548∗∗∗ -0.525∗∗∗

(0.0539) (0.0538)

months to peak ≥ 10 -0.212∗∗ -0.216∗∗∗

(0.0825) (0.0824)
N 673 673
F stat excl 60.96 56.74
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In summary, the results show a decrease in the probability of abortion and in the incidence
of normal birthweight (i.e., greater than 2,500 grams). This is consistent with a change in
composition effect, in which poorer and more disadvantaged women who would have aborted
in the absence of the program now decide to continue with their pregnancy but exhibit worse
health outcomes. We do not find any impact on gestational length, so the mechanism could be
poor maternal nutrition during pregnancy being a key driver of worse birthweight.

4.5.1 Robustness: plausibly exogenous instruments

Figure 4.2 displays results of relaxing the exclusion constraint for both of our instruments Z1
and Z2 with priors centered at 0. The left panel corresponds to the binary treatment variable,
while the right panel shows the results for the continuous treatment variable. The figures plot
three sets of confidence intervals indexed by the parameter B1. The narrowest set of solid
lines presents 90% confidence intervals using the union of symmetric g0-specific intervals with
support restrictions of the form g01 ∈ [−B1, B1] and g02 = 0, assuming that Z2 is exogenous.
The set of dashed lines that lie just outside them correspond to the 90% confidence interval
with support restrictions of the form g01 ∈ [−B1, B1] and g02 ∈ [−0.01, 0.01]. Finally, the set
of dotted lines correspond to the 90% confidence interval with support restrictions of the form
g01 ∈ [−B1, B1] and g02 ∈ [−0.02, 0.02].



4.6. Conclusion 82

Table 4.5: Effect of the AUE on the probability of Birthweight ≥ 2, 500 grams: program period
only

Birthweight ≥ 2, 500 grams

IV OLS IV OLS
(1) (2) (3) (4)

AUE participant -0.0711∗ -0.0305∗

(0.0383) (0.0161)

AUE transfer
(1,000 AR$) -0.0744∗ -0.0312∗

(0.0400) (0.0163)
neighborhood FE Yes Yes Yes Yes
pre program No No No No
N 408 408 408 408
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6 Conclusion

This chapter estimates the causal impact of a maternity conditional cash transfer program in
Argentina on the choice between abortion and childbirth in a context where abortion is illegal.
We collect data on individual pregnancies and matched them with administrative records re-
garding women participation in the program. We leverage the substantial amount of inflation
in Argentina to instrument for endogenous program participation. We estimate that participa-
tion in the program led to a sizable reduction in the incidence of abortion while increasing the
probability of low birthweight. Our findings are consistent with a change in composition effect,
in which poorer and more disadvantaged women enter the pool of women who decide to have
their babies.
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Appendix A

Appendices to Chapter 2

A.1 Experimental enrollment dates by site

The RAND HIE defined a contract year as the 12-month period following each anniversary of
the enrollment date. The staggered enrollment dates provide the variation needed to separate
the effect of time trends and seasonal demand shocks on the timing of health care utilization
decisions.

Table A.1: Enrollment dates

Dayton Seattle Massachusetts South Carolina

11-01-74 01-01-76 07-01-76 11-01-76 (5 yr.)
12-01-74 02-01-76 08-01-76 12-01-76 (5 yr.)
01-01-75 03-01-76 09-01-76 12-31-76 (5 yr.)
02-01-75 04-01-76 10-01-76 01-31-77 (5 yr.)

05-01-76 11-01-78 (3 yr.)
06-01-76 12-01-78 (3 yr.)
07-01-76 01-01-79 (3 yr.)
08-01-76 02-01-79 (3 yr.)
09-01-76

Note: The three-year and five-year groups enrolled at the
same times in the locations above, and thus exited two years
apart. In South Carolina, the three-year and five-year groups
enrolled two years apart and exited at the same time.
Source: Table 4, Codebook 208, Newhouse (1999).
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A.2 Beginning- and end-of-experiment effects

Families enrolled in the RAND HIE were informed before they agree to participate that the
experiment would end after either 3 or 5 years (randomly assigned before the start of the ex-
periment). This might induce an increase in utilization during the last year of the experiment.
Once the experiment is over, enrolled families would most probably return to the insurance
plans they had before. Families assigned to full insurance during the experiment would be
weakly worse off after the experiment ends, since their experimental plan was probably the
most generous plan available in the market. For those enrolled in cost-sharing plans, there is
some probability that their before-the-experiment plans were less generous compared to their
experimental plan, so they would potentially be worse off once the experiment ends. Similar
reasoning applies to the first year of the experiment.

The presence of transitory effects on the demand of health care is not unique to RCTs.
Using data from a large self-insured firm, Brot-Goldberg, Chandra, Handel, and Kolstad (2017)
find that consumer health care utilization ramps up at the end of the year after which a required
plan shift from full insurance to a less generous plan took place. They use the term anticipatory

spending to describe the extra health care utilization by consumers before the required plan
switch actually occurred, when health care was cheaper. In the context of the RAND HIE,
the presence of transitory effects has been overlooked until recently. To my knowledge, Lin
and Sacks (2019) is the first to document graphically that health care utilization in the RAND
HIE free-care plan ramps up over the last months of the experiment. In a concurrent work,
Devereux, Balesh Abadi, and Omran (2019) use the term deadline effect to describe a spike in
health care utilization in the final year of the RAND HIE.

In my context, identifying the presence of beginning- and end-of-experiment effects is im-
portant for obtaining a true impact of dynamic moral hazard in health insurance contracts.
Without recognizing the presence of an end-of-experiment effect, for example, my estimates
of how weekly utilization changes as the end of the contract nears could potentially be posi-
tive, contradicting the implication from my model of forward-looking families, on average and
ceteris paribus. To uncover the presence of these transitory effects, I introduce first and last
contract year fixed effects to the empirical specification of Aron-Dine, Einav, and Finkelstein
(2013).

As a baseline, first consider their empirical framework:

yiq = λp + τt + αlm + ϵiq, (A.1)
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which estimates a set of HIE plan p effects given by λp on several measures of health care
utilization y for individual i in contract year q. Because plan assignment was only random
conditional on location and enrollment month, the specification includes a full set of location l

by start month m interactions, αlm. Calendar year fixed effects, τt, account for any underlying
time trend in the cost of health care. Because plans were assigned at the family rather than
individual level, all regression results cluster the standard errors on the family.

Now define by Termi the enrollment term for individual i, with Termi ∈ {3, 5}. I introduce
two dummy variables to capture the beginning- and end-of-experiment effects in the first and
last contract year, respectively, in the following equation:

yiq = λp + ι × 1(q = 1) + δ × 1(q = Termi) + τt + αlm + ϵiq, (A.2)

where the parameters ι and δ capture the additional health care utilization in the first and last
year of the experiment, respectively, compared to middle years. I limit the sample to non-
attriters and exclude infants born during the experiment, who enter the experiment as part of
the family unit. This ensures a balanced panel. I also exclude the first contract year from
Dayton, Ohio, because some health services were treated differently.

Table A.2 reports the results based on estimating equation (A.2) for various measures of
health care utilization. In column 1, the dependent variable is the amount of annual health care
utilization (in 2011 dollars). I fail to detect any transitory effect in health care utilization when I
aggregate all health care categories. This is consistent with some early technical reports by the
original RAND investigators. I find that it is necessary to disaggregate utilization by inpatient
versus outpatient health care services in order to uncover a significant end-of-experiment effect.
Column 3 shows that individuals increase outpatient health care utilization by $203 in their last
year of the experiment, relative to middle years, on average. For this reason, I exclude from
the estimation sample the last contract year.

A.3 Model properties of the shadow price of care

A.4 Econometric Details

A.4.1 Step 1: Solving the Model

As I describe in Section 2.5 of the main text, in the first step of the estimation algorithm,
I solve the dynamic problem for a large number of types, once for each type, and store the
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Figure A.1: Model properties of the shadow price of care

(a) Shadow price, low variance of Fν, low ω

(b) Expected future demand, low variance of Fν,
low ω

(c) Shadow price, high variance of Fν (d) Expected future demand, high variance of Fν

(e) Shadow price, high ω (f) Expected future demand, high ω
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Table A.2: Beginning- and end-of-experiment effects

(1) (2) (3)
Total

utilization
in

2011 $

Inpatient
utilization

in
2011 $

Outpatient
utilization

in
2011 $

First Contract Year -71.14 -159.12 87.03
(150.60) (127.80) (69.68)

Last Contract Year 189.70 -13.38 203.27∗∗∗

(130.87) (108.17) (55.59)

Adjusted R2 0.011 0.004 0.030
Site x enrol. Y Y Y
Cal. years fe Y Y Y
Family fe N N N
Clustered se Y Y Y
Families 2076 2076 2076
N 12535 12535 12535
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table A.2 reports selected least-squares coefficients esti-
mates from equation (A.2). Standard errors, clustered on family,
are in parentheses below the coefficients. All spending variables
are inflation adjusted to 2011 dollars (adjusted using the CPI-U).
Site by start month and calendar year dummy variables are de-
meaned so that the coefficients reflect estimates for the “average”
site-month-year mix.

optimal policy.

For a plan, k, and family type, h, I solve the finite-horizon dynamic program recursively.
To do so, I discretize the Ct state to a grid of 1,000 points with spacing of size ∆c dollars.
Time is naturally discrete (t = 1, 2, . . . , 52 over a contract year with T = 52 weeks) for my
weekly data. These discretizations leave νt as the only continuous state variable. Because
the family does not know νt prior to period t, I can integrate it out and the solution to the
dynamic programming problem for each type of family can be characterized by the expected
value functions, E[Vhkt(Ct−1)], and policy functions, E[c⋆hkt(Ct−1)]. To perform the numerical
integration over the bounded support of νt, [0, ν], I use adaptive Simpson quadrature.

Having solved the dynamic program for a family of type h, I generate the transition process
for the state vector implied by the solution. The transition probabilities between the 52,000
possible states (1000 x 52) are implicitly defined by threshold values for νt. For example,
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consider a family of type h on plan k, that has consumed Ct−1 prior to period t. The threshold,
νt(z), is defined as the value of νt that makes a family indifferent between consuming z units
of size ∆c dollars and z + 1 units, such that the marginal utility (net of any out-of-pocket
expenditures) of an additional unit of consumption

uh
(
(z + 1)∆c, yt, νt(z); k

)
− uh

(
z∆c, yt, νt(z); k

)
is equated to the loss in the net present value of future utility

E
[
Vhk(t+1)

(
Ct−1 + (z + 1)∆c

)]
− E

[
Vhk(t+1)

(
Ct−1 + z∆c

)]
.

These thresholds, along with all families’ initial condition (C0 = 0), define the transition pro-
cess between states. For each family type h and plan k, I characterize this transition process by
the CDF of cumulative health care consumption that it generates,

Γhkt(C) = Prob(Ct−1 < C),

the proportion of families that have consumed less than C through period t of the contract year.
Due to the discretized state space, Γhkt(C) is a step function.

A.4.2 Step 2: Estimation

The second step of my estimation approach matches empirical moments I recover from the
data to those predicted by my model by choosing weights for each family type.

As I describe in Section 2.5 in the main text, my estimates of the weights are chosen to
maximize the objective function. I set the weighting matrix V̂−1 equal to the identity matrix.

To recover the cumulative distribution of Ct−1 for each contract week t and plan k, I use a
smooth version of a simple Kaplan-Meier estimator,

Γ̂kt(C) =
1

Nk

Nk∑
i=1

1[Ci(t−1) < C],

where Nk denotes the number of family-years in plan k and C represents each of the points
of the discretized state Ct−1. I estimate these moments for each k and t, considering values
of C such that Γ̂kt(C) ∈ [0, 1], ensuring that I fit the tails of the annual health care utilization
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distribution.

I recover the moments of health care utilization at each state by estimating a smooth surface
using a nearest-neighbor approach. Consider a point in the state space, (Ct−1, t). A neighbor is
an observation in the data for which the family is t weeks into the contract year and cumulative
health care utilization up until contract week t is within five percent of Ct−1. Denote the number
of neighbors by Nkt(Ct−1). Then, I estimate the conditional (on reaching the state) mean at
(Ct−1, t) using

Ê[c⋆kt(Ct−1)] =
1

Nkt(Ct−1)

Nkt(Ct−1)∑
i=1

ci,

where i ∈ {1, . . . ,Nkt(Ct−1)} indexes the set of nearest neighbors. If Nkt(Ct−1) > 500, I use those
500 neighbors nearest to Ct−1. Note that this gives me the average expenditure conditional on
a family arriving at the state. To recover the unconditional mean, I multiply Ê[c⋆kt(Ct−1)] by
the probability of observing a family at state (Ct−1, t), recovered from the estimated CDF of
cumulative expenditure.

I estimate both moments at the same set of state space points used when numerically solving
the dynamic programming problem for each family type. This results in 104,000 moments for
each plan of the 10 plans, or 10 x 104,000 = 1,040,000 moments in total.

A.4.3 The choice of moments

Following Nevo, Turner, and Williams (2016), I recover the first set of moments at each state
by estimating a smooth surface using a nearest-neighbor approach. Consider a point in the state
space, (Ct−1, t). A neighbor is an observation in the data for which the family is t weeks into
the contract year and cumulative health care consumption up until week t is within five percent
of Ct−1. Denote the number of neighbors by NNkt(Ct−1). Then, I estimate the unconditional (on
reaching the state) mean at (Ct−1, t) using

m̂dat
k,1(C, t) =

Prob
(
Chk(t−1) = C, t

)
N
(
Cdat

k(t−1) = C, t
) N

(
Cdat

k(t−1)=C,t
)∑

i=1

cdat
ikt .
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A.4.4 Bootstrap Procedure for Inference

As described in Lahiri (2003), the basic idea behind the bootstrap method is to recreate the
relation between the population and the sample using the sample itself. For dependent data,
the most common approach to this problem is to resample “blocks” of observations instead of
single observations, which preserves the dependence structure of the underlying process within

the resampled blocks.

My block-bootstrap estimator proceeds with the following repeated procedure:

1. I first draw an alternative dataset sampling with replacement at the family-year level.
Specifically, I sample the data by family-year with replacement, keeping all 52 weeks
for each family-year drawn. The new dataset has the same number of family-years as the
original data.

2. I then use this new dataset to recalculate the proportion of family-years in each plan.
These plan weights will be useful for recovering the overall distribution of heterogeneity.

3. For each plan k = 1, . . . , 10 separately, I recalculate the inputs to the moments, mdat
k , and

then re-estimate the structural parameters of my model, i.e., the plan-specific weights θ̂k.

4. Finally, I calculate the overall type distribution by weighting each θ̂k with the corre-
sponding proportion of family-years in plan k and summing across plans.

For a given type h, the bootstrap confidence interval with 1−α coverage can be constructed
as

CI(1−α)% =

[̂
θh − q⋆h

(
1 −

α

2

)
, θ̂h − q⋆h

(
α

2

)]
, (A.3)

where q⋆h is the quantile function of θ̂⋆h − θ̂h.

I report results from 1,000 bootstrap draws.

A.5 Details about the construction of the grid of family types

I use the method of good lattice points to generate a finite collection of points in the five-
dimensional space of type heterogeneity. This method was proposed by Korobov (1959) for
numerical evaluation of multivariate integrals. The basic idea of a quasi-Monte Carlo method
is to replace random samples in a Monte Carlo method by well-chosen deterministic points.
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The criterion for the choice of deterministic points depends on the numerical problem at hand.
For the important problem of numerical integration, the selection criterion is easy to find and
leads to the concepts of uniformly distributed sequence and discrepancy. The discrepancy can
be viewed as a quantitative measure for the deviation from uniform distribution.

A.5.1 Discrepancy

The concept of discrepancy provides a measure of how dispersed a collection of points is. Let
x j ∈ I ≡ [0, 1], j = 1, . . . ,N, be a sequence of scalars. If S ⊂ I, define the cardinality of a set
X in a set S , card(S ∩ X), to be the number of elements of X which are also in S . Following
Judd (1998), I define a notion of discrepancy for finite sets.

Definition A.1 (Niederreiter, 1992) The star discrepancy D⋆
N of the set X ≡ {x1, x2, . . . , xN} ⊂

[0, 1] is

D⋆
N(X) = sup

0≤t≤1

∣∣∣∣∣card([0, t) ∩ X)
N

− t
∣∣∣∣∣.

Note that 0 ≤ D⋆
N(X) ≤ 1 always. This definition allow us to measure the deviations from

uniformity of sets. Even though a continuum of intervals is used in the definition, we need
only to check open intervals of the form (0, xl), 1 ≤ l ≤ N. In the one-dimensional case, a
simple explicit formula for D⋆

N(X) can be given.

Theorem A.1 (Niederreiter, 1992) If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1, then

D⋆
N(X) =

1
2N
+ max

1≤n≤N

∣∣∣∣∣xn −
2n − 1

2N

∣∣∣∣∣.
Proof. See Theorem 2.6 in Niederreiter (1992).

It follows from the theorem that we always have D⋆
N(X) ≥ 1/(2N), and equality holds if xn =

(2n−1)/(2N) for 1 ≤ n ≤ N. This implies that in the one-dimensional case, the minimum of the
star discrepancy D⋆

N(X) is 1/(2N) and the classical N-panel midpoint rule for the interval [0, 1]
achieves this bound. Thus, for low-discrepancy sets in the one-dimensional case, quasi-Monte
Carlo methods are not so important. Below I consider the concept of star discrepancy in the
multidimensional case.

Definition A.2 (Niederreiter, 1992) The star discrepancy D⋆
N of the set X ≡ {x1, x2, . . . , xN} ⊂

Id is

D⋆
N(X) = sup

0≤t1,...,td≤1

∣∣∣∣∣card([0, t1) × · · · × [0, td) ∩ X)
N

−

d∏
j=1

t j

∣∣∣∣∣,
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where Id is the closed d-dimensional unit cube.

A small discrepancy says that the set evenly fills up the hypercube Id. A set of points X

consisting of N elements of Id is called a low-discrepancy set if D⋆
N(X) is small.

A.5.2 The method of good lattice points

The good lattice point method was proposed by Korobov (1959) for numerical evaluation of
multivariate integrals. The method of good lattice points begins with an integer N and a vector
of good lattice points g ∈ {0, 1, . . . ,N − 1}d, forms the finite collection of points

xl =

{ l
N

g
}
, l = 1, . . . ,N, (A.4)

and computes the quasi-Monte Carlo approximation

∫
Id

f (x)dx =̇
1
N

N∑
l=1

f (xl), (A.5)

where the expression {z} denotes the fractional part of z.1 The task is to find combinations of
N and g such that the approximation in equation (A.5) is good. In other words, we want to
minimize the error in the approximation of equation (A.5), which can be written as

R =
∣∣∣∣∣ ∫

Id
f (x)dx −

1
N

N∑
l=1

f (xl)
∣∣∣∣∣

The value of R is closely related to the star discrepancy D⋆
N(X), if F(x) satisfies certain condi-

tions. The error analysis for quasi-Monte Carlo integration in Niederreiter (1992) has demon-
strated that small errors are guaranteed if sets with small star discrepancy are used. From the
view point of numerical analysis, we demand not only the star discrepancy of X should be low
but also the set of points X should be convenient for computation.

Good choices of N and g are difficult to compute (Judd, 1998). A strategy pursued by
Korobov and others is to examine lattice points that are simply generated and evaluate their
performance in integrating certain test functions with known integrals. One test function that

1The fractional part of z is formally defined by {z} ≡ z −max{k ∈ Z|k ≤ z}.
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is particularly valuable is

F(x) =
d∏

j=1

(
1 −

π2

6
+
π2

2
(1 − 2{x j})2

)
,

which is defined on Id and integrate to 1. Note that F is the function in the class of functions
having Fourier series in Id whose Fourier coefficients converge at the slowest possible rate.
Korobov (1959) proposes an algorithm for finding lattice points by minimizing R for the func-
tion F(x). Keast (1973) extends this algorithm and proves that the lattice points obtained are
optimal in Korobov’s sense. He first chooses J distinct primes, p j, j = 1, . . . , J, and lets their
product p be the sample size N in equation (A.4). He then chooses a sequence of integers a j,
j = 1, . . . , J. First, a1 is chosen to minimize

H1(a) ≡
3d

p1

p1∑
k=1

d∏
j=1

(
1 − 2

{
k

a j−1

p

})2

over a ∈ {1, . . . , p1 − 1}. More generally, for l = 1, . . . , J, al minimizes

Hl(a) ≡
3d

p1 . . . pl

p1...pl∑
k=1

d∏
j=1

(
1 − 2

{
k
(a j−1

1

p1
+ · · · +

a j−1
l−1

pl−1
+

a j−1

p

)})2

for a ∈ {1, . . . , pl − 1}. The Keast good lattice point g is then defined to be

g j =

J∑
l=1

p
pl

a j−1
l , j = 1, . . . , d.

As pointed out in Judd (1998), there is no assurance that the approximations are monotonically
better as we increase p, the number of points. Therefore, in constructing a sequence of lattice
formulas, one should keep only those formulas that do better in integrating F(x) than formulas
with fewer points. HJ(g) serves as a performance index to rank various lattice point rules. For-
tunately, there exist tables of good lattice points, g, for specific sample sizes N and dimensions
d. The good lattice points have the form gd = (1, gd

2, . . . , g
d
d) ∈ Rd.2

2See e.g., Table 9.4 in Judd (1998), Tables 1 and 2 in Bourdeau and Pitre (1985), and Hua and Wang (2012).
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A.5.3 Implementation

I use the method of good lattice points to generate a finite collection of points in the five-
dimensional space of type heterogeneity. Following Table 9.4 in Judd (1998) which was made
according to Keast’s method, I fix N = 1, 069 and d = 5, and find the vector of good lattice
points g = (1, 63, 762, 970, 177). Using equation (A.4), I then construct the grid of 1,069
points within the [0, 1) hypercube of dimension five. The last step is to redefine the bounds of
the [0, 1) hypercube to capture the support of each dimension of heterogeneity.

A.6 glp method versus tpp method: Monte Carlo Evidence

Up until now I have only highlighted one of the main advantages of the glp method: better
coverage of the parameter space. However, there is another benefit of using glp versus tpp:
computational efficiency. Next, I perform a small Monte Carlo exercise to illustrate the gains
in computational time, without any loss in precision. To do that, I compare the performance
of the good-lattice-points grid versus the tensor-product-points grid within the context of this
paper. I fix the number of family-years to 300, and use M = 100 replications. I generate data
using two alternative distributions F(β) for the random coefficients. In the first design, the true
distribution has the first three characteristics (i.e., µ, σ and κ) heterogeneous across types but
correlated within type, and the remaining two components of the type-space are homogeneous
across all types. In the second design, all five characteristics of the true distribution are hetero-
geneous across types and uncorrelated within type. In both designs the underlying true CDF
has continuous support.

I use health care consumption data at the family-week-year level, where the true data gener-
ating process is the dynamic stochastic model in Section 2.4. For each fake data set, I compute
the moments in Section 2.5.2 and estimate a type distribution F̂(β) by matching the moments
I recover from the data to the weighted average of the behavior predicted by the model. For
each run, after I compute the estimate F̂(β), I evaluate its squared difference from the true
distribution function F0(β) at S = 10, 000 points uniformly spaced. I use root mean integrated
squared error (RMISE) to assess performance of both estimators. My definition of RMISE for
an estimator F̂ is

√√
1
M

M∑
m=1

[
1
S

S∑
s=1

(
F̂m(βs) − F0(βs)

)2
]
, (A.6)

where I use M = 100 replications, each with a new fake data set. I also report the integrated
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absolute error (IAE), which for a given replication m is

1
S

S∑
s=1

∣∣∣∣∣F̂m(βs) − F0(βs)
∣∣∣∣∣ . (A.7)

This is a measure of the mean absolute value of the estimation error, taken across the points of
evaluation for a given replication. I compute the mean, minimum, and maximum IAE’s across
the M replications.

The results are given in Table A.3. The first column reports the sample size N, which
refers to the number of family-years used for the simulation. The second column describes the
method used to populate the grid of types. Whenever the tpp method is used, column 2 also
provides details about how many points in each dimension were used. The third column reports
the number H of types (or basis points) used in the estimation. The next column reports the
RMISE of the estimated distribution functions. The following three columns report the mean,
minimum, and maximum of the IAE. The final three columns report the mean, minimum, and
maximum of the number of types that have positive weight.3

While performance of the tpp method generally increases with the number of types, it is
worth noting that the fit can decrease with increases in H, as the tpp grids do not necessarily
nest each other for marginal increases in H. In the case where one tpp grid is nested inside
another one, the RMISE measure should decrease with the number of types R. One example
of this can be noted in the first design (i.e., 3D correlated), where the tpp grid with 5 points per
dimension is nested inside the tpp grid with 9 points per dimension.

In the context of correlated random coefficients, the glp method provides more flexibility
to pick the grid points, as opposed to the tpp method. This appealing feature should help in
capturing the true underlying distribution more accurately. The results in Panel A of Table A.3
suggest that the glp grid exhibits much better performance than the tpp grid, even with 10 times
less points in the grid. By and large, RMISE and IAE are lower in the glp design than in the
tpp designs. The RMISE of the glp grid with 101 points is 0.1066, while the RMISE of the tpp

grid with 1000 points is 22 percent higher. With only 42.8 grid points with positive mass (on
average), the glp grid does an excellent job compared to the 170.87 grid points with positive
mass (on average) of the tpp grid with 10 points per dimension.

3A type is considered to have a positive weight if the estimated weight is greater than or equal to 0.01 percent.
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Table A.3: Monte Carlo results: 3D correlated and 5D uncorrelated

Integrated Absolute Error No. of Positive Weights

N Method R RMISE Mean Min Max Mean Min Max

Panel A: 3D correlated

300

glp 101 0.1066 0.0538 0.0354 0.0681 42.80 33 53
tpp 53 =125 0.1414 0.0723 0.0586 0.0877 47.11 17 66
tpp 63 =216 0.1292 0.0657 0.0487 0.0868 71.90 21 98
tpp 73 =343 0.1277 0.0655 0.0427 0.0880 89.22 18 147
tpp 83 =512 0.1347 0.0694 0.0409 0.0888 121.83 21 208
tpp 93 =729 0.1338 0.0676 0.0427 0.0954 135.91 21 276
tpp 103 =1000 0.1299 0.0661 0.0441 0.0948 170.87 20 352
tpp 113 =1331 0.1301 0.0655 0.0416 0.0950 203.20 20 455
tpp 123 =1728 0.1303 0.0661 0.0421 0.0910 240.53 21 582
tpp 133 =2197 0.1307 0.0652 0.0423 0.0937 283.48 21 729
tpp 143 =2744 0.1311 0.0653 0.0469 0.0899 309.30 19 649
tpp 153 =3375 0.1264 0.0635 0.0385 0.0939 409.96 21 785
tpp 163 =4096 0.1253 0.0638 0.0461 0.0895 454.66 21 849
tpp 173 =4913 0.1236 0.0629 0.0433 0.0901 560.74 23 1093
tpp 183 =5832 0.1164 0.0587 0.0393 0.0890 601.30 22 1264
tpp 193 =6859 0.1225 0.0628 0.0383 0.0896 725.76 18 1496
tpp 203 =8000 0.1186 0.0605 0.0439 0.0884 871.84 26 1765
tpp 213 =9261 0.1201 0.0611 0.0400 0.0897 898.19 23 1855
tpp 223 =10648 0.1193 0.0607 0.0400 0.0898 1001.6 21 2246
tpp 233 =12167 0.1260 0.0640 0.0422 0.0916 1101.8 25 2434
tpp 243 =13824 0.1206 0.0621 0.0439 0.0867 1031.1 25 2670

Panel B: 5D uncorrelated

300

glp 1069 0.0866 0.0400 0.0285 0.0651 119.77 16 323
tpp 55 =3125 0.0919 0.0484 0.0351 0.0877 329.74 35 567
tpp 65 =7776 0.0849 0.0442 0.0273 0.0761 715.57 41 1227
tpp 75 =16807 0.0873 0.0462 0.0313 0.0915 1143.70 69 2472

A.7 Decomposition of Relative Social Surplus

The certainty equivalent to a contract j at premium premium j for a type-h family with initial
income Y is given by eh j(βh), as defined in equation (2.21) and repeated here:

eh j(βh) ≡ −
1
ψ

ln
[ ∫

exp(−ψ ũ⋆(ν,βh, j))dFν(ν)
]
+ (Y − premium j).
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The certainty equivalent can also be expressed as

eh j(βh) = EV( j, h) −
1
ψ

ln
[ ∫

exp(−ψ ũ⋆(ν,βh, j))dFν(ν)
]
+ (Y − premium j) − EV( j, h)

= EV( j, h) + Y − premium j − RP( j, h),

where EV( j, h)+ Y − premium j is the expected payoff and RP( j, h) is the risk premium associ-
ated with the lottery. In particular,

EV( j, h) = Eν
[ T j∑

t=1

((c⋆t − νt) −
1

2ω
(c⋆t − νt)2 − O(c⋆t ,Ct−1; j))

]
, and

RP( j, h) = EV( j, h) +
1
ψ

ln
[ ∫

exp(−ψ ũ⋆(ν,βh, j))dFν(ν)
] (A.8)

The corresponding insurance provider’s welfare for a type-h family enrolled in contract j

is given by his expected profits, as defined in equation (2.22) and repeated here:

πh j(βh) ≡ premium j − Eν
[
k j

(
C⋆

T j
(ν,βh, j)

)]
,

where k j(.) is the function that maps family’s total health care utilization to the portion covered
by the provider under the price scheme of contract j.

The social surplus generated by allocating a type-h family to contract j is given by

S S h j(βh) = eh j(βh) + πh j(βh)

Finally, the relative social surplus generated by allocating a type-h family to contract j (relative
to allocating the same family to the free-care contract) is given by RS S h j, as defined in equation
(2.23) and repeated here:

RS S h j(βh) ≡ S S h j(βh) − S S h,free(βh)
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The relative social surplus can also be expressed as

RS S h j(βh) = ẽh j(βh) − ẽh,free(βh) − Eν[k j
(
C⋆

T j
(ν,βh, j)

)
−C⋆

T j
(ν,βh, free)]

= [EV( j, h) − RP( j, h)] − [EV(free, h) − RP(free, h)] − Eν[k j
(
C⋆

T j
(ν,βh, j)

)
−C⋆

T j
(ν,βh, free)] . . .

+
[
EVmyopic( j, h) − Eν[k j

(
C⋆,myopic

T j
(ν,βh, j)

)]
. . .

−
[
EVmyopic( j, h) − Eν[k j

(
C⋆,myopic

T j
(ν,βh, j)

)
]
]

= Ψ( j, h)︸ ︷︷ ︸
Relative value of
risk protection

−
[
Σ( j, h)︸︷︷︸

Relative social cost of
static moral hazard

+ ∆( j, h)︸ ︷︷ ︸
Relative social cost of
dynamic moral hazard

]
,

where

Ψ( j, h) = RP(free, h) − RP( j, h) ≤ 0,

Σ( j, h) =
[
− EVmyopic( j, h) + Eν[k j

(
C⋆,myopic

T j
(ν,βh, j)

)
]
]
+

[
EV(free, h) − Eν[C⋆

T j
(ν,βh, free)]

]
≤ 0,

∆( j, h) =
[
− EV( j, h) + Eν[k j

(
C⋆

T j
(ν,βh, j)

)
]
]
+

[
EVmyopic( j, h) − Eν[k j

(
C⋆,myopic

T j
(ν,βh, j)

)
]
]

≥ 0.

The (relative) value of risk protection, Ψ( j, h), is non-positive because any contract j provides
a weakly riskier distribution of payoffs than the free-care contract.

A.8 Details about the RAND HIE design and the construction of the analysis sample

Approximately 2,500 nonelderly families (or 7,700 individuals) were assigned to one of 14
fee-for-service (FFS) insurance plans or to a prepaid group practice. The fee-for-service plans
varied along two principal dimensions: the coinsurance rate (the fraction of billed charges
paid by the participant) and the maximum dollar expenditure (MDE), a cap on family out-of-
pocket expenditures during a 12-month accounting period. The design used four coinsurance
percentages (0, 25, 50, and 95) and three levels of MDE (5, 10, or 15 percent of family income,
up to a maximum of $1,000). In one exceptional plan the MDE was set at $150 per person or
$450 per family. These various coinsurance and MDE rates were combined as follows:

• FFS plan 1: one plan with zero coinsurance (free care).

• FFS plans 2 to 4: three plans with 25 percent coinsurance and MDEs of 5, 10, or 15
percent of family income or $1,000, whichever was less.

• FFS plans 5 to 7: three plans with 50 percent coinsurance and MDEs of 5, 10, or 15
percent of family income or $1,000, whichever was less.
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• FFS plans 8 to 10: three plans with 50 percent coinsurance and MDEs of 5, 10, or 15
percent of family income or $1,000, whichever was less.

• FFS mixed plans 11 to 13: three plans with 25 percent coinsurance for all services
except outpatient mental health and dental, which were subject to 50 percent coinsurance;
and MDEs of 5, 10, or 15 percent of family income or $1,000, whichever was less.

• FFS mixed plan 14: one plan with 95 percent coinsurance for outpatient services and
0 percent coinsurance (free care) for inpatient services and a MDE of $150 per person,
subject to a maximum of $450 per family.

• Prepaid group practice plan 15: one plan with 0 percent coinsurance (free care) if
care was received at a Seattle Health Maintainance Organization (HMO), Group Health
Cooperative of Puget Sound; 95 percent coinsurance if care was received outside the
HMO.

I make four restrictions to create my baseline sample.

1. My model does not distinguish between providers of service (e.g., physician versus den-
tist) or whether the provider belongs to the prepaid group network.

2. Dental and mental health services were treated differently in the first year of the experi-
ment in Dayton, Ohio. Dental services for adults were covered only on the free-care plan
(dental services for children were covered on all plans). Outpatient mental services were
not covered.

3. For any family-year observation in the free-care plan with missing MDE, I imputed a
MDE equal to zero.

The number of families at enrollment does not necessarily coincide with the number of families
that completed the experiment, even in the absence of attrition (see Footnote 12). Indeed,
absent attrition, the number of families at enrollment is the lower bound for the number of
families that completed the experiment.
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Appendix B

Appendices to Chapter 3

B.1 Alternative measure of risk aversion

Table B.1: Mean risk aversion by families’ responses to the hypothetical offers

Case Answers Families Formula for ψ Mean ψ

1 “No” to all non-missing scenarios 148 midpoint in [0, ψ] 0.0022
2 At least one “Yes” and one “No” 438 midpoint in [ψ, ψ] 0.0062
3 “Yes” to all non-missing scenarios 480 ψ 0.0122

Total 1,066 0.0084

Table B.2: Regression coefficients of each dimension of unobserved heterogeneity on the indi-
cator variable for absolute risk aversion above the median

(1) (2) (3) (4)
HealthRisk Pre f Doctor MoralHazard Income

RiskAversion above median -19.04 -30.54∗∗∗ 50.23∗∗∗ -5174.67∗∗∗

(11.67) (3.06) (1.89) (330.82)

R2 0.00 0.09 0.42 0.20
Number of families 968 968 968 968
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Options 1 (Yes, I certainly would) and 2 (I probably would) are classified as “Yes” answers, and
therefore determine a lower bound for risk aversion. Options 3 (I probably would not) and 4 (No, I certainly
would not) are classified as “No” answers, and therefore determine an upper bound for risk aversion.
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Table B.3: Regression coefficients of each dimension of unobserved heterogeneity on the con-
tinuous measure of absolute risk aversion

(1) (2) (3) (4)
HealthRisk Pre f Doctor MoralHazard Income

RiskAversion -96.06 -86.59 118.02∗∗ -19153.29∗∗

(195.63) (53.75) (41.48) (6170.45)

R2 0.00 0.00 0.01 0.01
Number of families 968 968 968 968
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Options 1 (Yes, I certainly would) and 2 (I probably would) are classified as “Yes” answers,
and therefore determine a lower bound for risk aversion. Options 3 (I probably would not) and 4
(No, I certainly would not) are classified as “No” answers, and therefore determine an upper bound
for risk aversion.
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Appendices to Chapter 4

C.1 The AUE Program Form
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Form.
PS.2.67

Ministerio de Trabajo, 
Empleo y Seguridad Social

 nóicpece
R ed aicnatsno

C

Form.
PS.2.67

Solicitud Asignación por Embarazo 
para Protección Social

Frente

CUIL 

Trámite Nº  Código Dependencia UDAI

Rubro 1 - Datos del Titular

Datos del Representante Legal/Natural del Titular

Nº de Documento

Apellido/s y Nombre/s

US
O E

XC
LU

SIV
O A

NS
ES

Correo Electrónico

Rubro 4 -  Recepción  (Para Uso Exclusivo de ANSES)

Uso Exclusivo ANSES

Fecha y Sello de Recepción 

Solicitud

Ministerio de Trabajo, 
Empleo y Seguridad Social

CUIL 

Teléfono de Contacto

CUIL Nº de Documento

Apellido/s y Nombre/s

Rubro 3 - Acreditación de Requisitos Médicos del Embarazo

Rubro 2 - Constancia Médica para la Solicitud de la Asignación por Embarazo para Protección Social
Aclaración de FirmaFirma del Titular / Representante o Impresión Dígito Pulgar Derecho

Acreditación Aceptada Rechazada

SiPosee cobertura de Obra Social: No

Si Consigna “SI”.  Indique Situación: Monotributista Social Servicio Doméstico Trabajo de Temporada

Si Consigna "No".  Presenta Inscripción al Plan Nacer 

Declaro bajo juramento que mi grupo familiar cumple con los requisitos establecidos en el Decreto 
Nº 1602/09 y sus normas reglamentariaspara el cobro de esta Asignación por Embarazo para Protección 
Social y no estamos alcanzados por las incompatibilidades del Artículo 9º del mencionado decreto. 

Fecha: Semanas de Gestación (entre 12 y 42 semanas): Fecha Probable de Parto:

Matrícula Nº: Nacional Provincial

Apellido/s y Nombre/s del Profesional:
La cumplimentación de este rubro acredita que la Titular se encuentra embarazada.

Lugar________________________________
Firma y Sello del Profesional Certificante

Indique lo que Corresponda Nacimiento Interrupción del Embarazo Fallecimiento Fecha:

Control Integral del Embarazo (Controles Prenatales, Laboratorio, Ecografías, Inmunizaciones, Consejería)

Matrícula Nº: Nacional Provincial

Apellido/s y Nombre/s del Profesional:

Lugar y Fecha________________________________, ____/____/_______
Firma y Sello del Profesional Certificante

Presenta la Inscripción al Plan Nacer del recién nacido (Uso exclusivo de ANSES)

Firma, Aclaración y Legajo del Agente Interviniente

Solicitud Asignación por Embarazo 
para Protección Social

Versión 1.2

Apellido/s y  Nombre/s

Firma, Aclaración y Legajo del Agente Interviniente Fecha y Sello de Recepción 

Aceptada
Trámite Nº  

RechazadaSolicitud Acreditación

Nº de Documento

Declaración Jurada de Datos Consignados

Solo cumplimentar en el caso de que el Titular sea Menor de 18 Años



 

Form. PS.2.67 (Dorso)

En este rubro se deberán consignar los datos de la mujer embarazada y si cuenta o no con cobertura de obra social.
En caso de que se consigne que posee cobertura de obra social, sólo podrá solicitar esta Asignación en la medida que su situación sea Monotributo  
Social, Servicio Doméstico o Trabajo de Temporada.
Documentación a Presentar: (en caso de no poseer cobertura de Obra Social):
- Constancia de Inscripción de la Titular al Plan Nacer (debiendo el operador de ANSES cumplimentar con una tilde el campo correspondiente).

Instrucciones para la Cumplimentación

ESTE FORMULARIO REVISTE  CARÁCTER DE DECLARACIÓN JURADA, DEBE SER CUMPLIMENTADO EN LETRA  IMPRENTA 
SIN OMITIR, ENMENDAR NI FALSEAR NINGÚN DATO, SUJETANDO A LOS INFRACTORES A LAS PENALIDADES PREVISTAS 
EN LOS ARTS. 172, 292, 293 Y 298 DEL CÓDIGO PENAL PARA LOS DELITOS DE ESTAFA Y FALSIFICACIÓN DE DOCUMENTO 
PÚBLICO.

EL PAGO DE LA ASIGNACIÓN POR EMBARAZO PARA PROTECCIÓN SOCIAL SOLICITADA QUEDA CONDICIONADO AL 
CUMPLIMIENTO DE LOS REQUISITOS ESTABLECIDOS EN LAS NORMAS VIGENTES Y SIEMPRE QUE NO EXCEDAN DE 6 
(SEIS) MENSUALIDADES.

Rubro 1 - Datos de la Titular

Rubro 2 - Constancia Médica para la Solicitud de la Asignación por Embarazo
En este rubro el profesional certificante deberá cumplimentar los campos y acreditar que la Titular se encuentra embarazada.
El tiempo de gestación consignado por el profesional certificante no podrá ser inferior a 12 semanas ni superior a 42 semanas.
Rubro 3 - Acreditación de Requisitos Médicos del Embarazo
Una vez finalizado el estado de embarazo, en este rubro el profesional certificante deberá consignar si se produjo el nacimiento y/o fallecimiento del 
niño ó la interrupción del embarazo y la fecha en la que sucedió lo indicado.
El profesional certificante deberá consignar con una tilde que a la titular se le efectuó el Control Integral del Embarazo.
Documentación a Presentar:
En caso de Nacimiento:          
- Original y copia de la Partida o del Certificado de Nacimiento
- Constancia de Inscripción del recién nacido al Plan Nacer (debiendo el operador de ANSES cumplimentar con una tilde el campo correspondiente)
- Original y copia del Documento Nacional de Identidad del recién nacido (opcional)
en Caso de Fallecimiento:
- Original y copia del Certificado de Defunción
En caso de Interrupción del Embarazo:
- La cumplimentación de este rubro es requisito suficiente para su acreditación
Rubro 4 - Recepción
El operador de ANSES deberá firmar, fechar y sellar la recepción del formulario.
Información Importante
Profesional Certificante:
En caso de Nacimiento un médico (tocoginécologico, generalista, de familia) y/u obstétrica deberá acreditar el cumplimiento del control integral del 
embarazo. En caso de Interrupción del Embarazo o Fallecimiento del recién nacido deberá ser acreditado por un profesional médico.
"El Control Integral del Embarazo" debe incluir al menos las siguientes prestaciones:

Carnet Perinatal: guía que debe utilizar la embarazada para constatar el control y cuidado de su embarazo el que le será entregado por el profesional 
médico u obstétrico.
Calendario de controles prenatales completos: 5 controles prenatales con intervalos de al menos 1 mes.
Consejería integral en salud sexual y en el cuidado de la salud y la de su hijo/a.
2 ecografías.
En el segundo y anteúltimo control prenatal: datos de serología (VDRL, Hepatitis B, HIV, Chagas y Toxoplasmosis) y Hematocrito y Hemoglobina 
(anemia).

El Esquema de Vacunación en el embarazo incluye:
Vacuna antigripal: deberá darse a todas las embarazadas en cualquier trimestre de gestación.
Doble Adulto: de no contar con el esquema completo, o sea, si no se tiene una dosis registrada en los últimos 10 años, se debe dar una dosis.

El Esquema de Vacunación en el puerperio incluye:
Vacuna antigripal: si no la recibió en el embarazo.
Doble adulto: de no contar con el esquema completo, o sea, si no se tiene una dosis registrada en los últimos 10 años, se debe dar una dosis.
Doble Viral o Triple Viral (en el post-parto): si no tiene registro de al menos 2 dosis de la vacuna después del año de edad o una dosis en la última 
campaña, deberá darse cualquiera de estas vacunas.

El Esquema de Vacunación para el Recién Nacido incluye:
BCG antes del alta de la maternidad.
Hepatitis B antes de las 12 horas de vida.

EL PAGO DE LA ASIGNACIÓN POR EMBARAZO PARA PROTECCIÓN SOCIAL SOLICITADA QUEDA CONDICIONADO AL 
CUMPLIMIENTO DE LOS REQUISITOS ESTABLECIDOS EN LAS NORMAS VIGENTES Y SIEMPRE QUE NO EXCEDAN DE 6 
(SEIS) MENSUALIDADES.

ESTE FORMULARIO REVISTE  CARÁCTER DE DECLARACIÓN JURADA, DEBE SER CUMPLIMENTADO EN LETRA  IMPRENTA 
SIN OMITIR, ENMENDAR NI FALSEAR NINGÚN DATO, SUJETANDO A LOS INFRACTORES A LAS PENALIDADES PREVISTAS 
EN LOS ARTS. 172, 292, 293 Y 298 DEL CÓDIGO PENAL PARA LOS DELITOS DE ESTAFA Y FALSIFICACIÓN DE DOCUMENTO 
PÚBLICO.
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