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Abstract 

 

Honey bee workers deactivate their ovaries and are functionally sterile when a queen is present 

in the colony. I adopt a bioinformatics approach to up-date a model transcriptional regulatory 

network (TRN) to study gene-regulatory processes that regulate fecundity in workers. On 

splitting the network, I obtained nine clusters and each cluster conformed to properties associated 

with real-world networks. Two of the nine clusters are enriched for 'sterility genes' and contained 

single well-connected hub genes (GB44769, ftz-f1). The genes in the two clusters were 

functionally enriched for nucleic acid binding (GO:0003676) and nucleotide binding 

(GO:0000166). I identified homologous genes for my two clusters of interest and constructed 

corresponding gene regulatory networks for D. melanogaster. In these clusters, I found genes 

enriched for properties like embryo development in D. melanogaster such as arm, kay and r-l 

whose homologues in A. mellifera could be tested for their role in honey bee reproduction. 
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Summary for Lay Audience 

 

Honey bees have an estimated total contribution of $2.57 billion in direct additional harvest 

value to the Canadian economy according to Agriculture and Agri-food Canada. Moreover, bees 

play a vital role in pollinating various plants that serve as a source of food to many species both 

large and small. Hence, the importance of bees cannot be disputed and is the subject of multiple 

research projects each year. An area of interest is the differences in behaviour displayed by the 

caste members of a bee colony. The queen is the most reproductive member of the colony 

influencing the behaviour of both the workers and drones. One behaviour change that has been 

noticed is the deactivation of worker ovaries in the presence of queen pheromones. These 

workers forgo their egg laying capabilities and take care of other duties around the hive like 

caring for the young, foraging and guarding the hive, etc. Social insect researchers have 

identified the suite of genes that may play a role in worker ovary de-activation in response to 

pheromone. However, a full understanding of how these genes interact to regulate the 

reproductive division of labor in colonies could be clarified. Over the last couple of decades, 

researchers have begun to realise that visualizing and studying a collection of genes in the form 

of a network – that is, a graph showing how individual genes interact with each other – makes it 

easier to identify key genes and their functionality, which is in part dependant on their position in 

the network. The Thompson lab has previously utilized network analysis to identify key genes 

involved in the pathway that regulates honey bee worker sterility. My thesis study attempts to 

advance this work by taking advantage of new information to up-date and re-analyze earlier 

work. Through this project, I aim to solidify our knowledge of the genes involved in the 

reproductive pathway of honey bees and provide an avenue for future research. 
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1. Introduction 

 

1.1 Eusociality and the evolution of altruism 

Eusocial species are characterized by several key features such as an overlap of multiple adult 

generations, cooperative brood care, and a clear-cut division of labour between reproductive and 

non-reproductive helper castes (Batra 1966; Michener 1974; Wilson 1971). In eusocial insect 

colonies, the reproductive and non-reproductive castes are physically and functionally 

specialized in their roles. For example, queens typically activate their ovaries and lay large 

numbers of eggs. Workers, by contrast, are normally rendered reproductively altruistic and will 

de-activate their ovaries and specialize on alloparental care (Plowes 2010). In this manner, non-

reproductive workers, despite having few or no offsprings of their own, can nonetheless gain 

indirect fitness, which would be greater than the fitness that they would have gained from 

making their own offspring (Queller and Strassmann 1998). If the indirect fitness gain to workers 

is sufficient, then altruism can evolve, as predicted by Hamilton's rule (1964). Moreover, the 

reproductive division of labour between a queen and her workers can remain evolutionarily 

stable, provided caste interests are aligned or, if not, that reproductive conflicts are somehow 

resolved into a compromise (Ratnieks et al. 2006). 

Though the concept of indirect selection is widely accepted as an explanation for the evolution of 

reproductive altruism (Abbott et al. 2011; Bourke 2011; West & Gardner 2013), it depends on 

certain assumptions regarding the nature of genes that regulate its expression. Consider, for 

example, a gene causing altruism in its carrier. If this gene were constitutively expressed in all 

carriers, there would be no gene-carrying beneficiaries and the gene would quickly go extinct 

(Crozier and Pamilo 1996). As such, genes underlying the evolution and expression of altruism 
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must be conditionally expressed such that some carriers express altruism (i.e., workers) while 

others do not (i.e., queens) (Charlesworth 1978; Parker 1989; Queller and Strassmann 1998; 

Seger 1981; Thompson 2013;). Altruism evolves when reproductive beneficiaries pass-on 

unexpressed copies of the altruist's genes. The conditional expression of genes underlying 

altruism can be investigated as a means of capturing them via gene expression technologies, for 

example, microrarrays or RNAseq (Thompson et al. 2006).  

1.2 Different castes in honey bees 

The European honey bee (Apis mellifera) colonies typically consist of three castes of bees, 

namely, queens, workers and drones. Workers are the most populous caste handling everyday 

functions around the hive like nursing the young, guarding the hive, foraging for pollen and 

nectar, clearing out dead bees, among other non-reproductive tasks (Moore et al. 1987). The 

second most populous caste is the drone caste, who’s main function is to mate with a receptive 

queen from anther hive (Ruttner 1966). A typical hive will only consist of one egg-laying queen. 

A hive without a queen usually doesn’t survive for long (Winston et al. 1991). The queen can be 

identified visually by her large abdomen that contains well developed ovaries and a sperm 

storage organ (a spermatheca).  

1.3 The regulatory control of worker reproduction in honey bees 

Honey bee workers typically de-activate their ovaries in the presence of a fertile queen (Butler 

1957; Oldroyd and Osborne 1999). However, workers are not obligately sterile; they can activate 

their small ovaries and lay unfertilized (haploid) eggs that can develop into males (Bell 1982). 

Although exceedingly rare in queenright colonies, ovary-active workers are more common in 

queen-less colonies (Ratnieks and Visscher 1989). Egg-laying workers are also known from 
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some mutant honey bee lines, including the 'anarchy' line (Oldroyd et al. 1994), in which 

workers appear to ignore the queen signal and lay eggs, even in her presence (Barron and 

Oldroyd 2001). Worker reproductive success is therefore a combination of direct and indirect 

fitness, depending on the social circumstance. The mechanism by which individual workers can 

respond to the presence or absence of queen pheromone and switch their ovaries 'OFF' or 'ON' is 

not fully understood, but presumably evolved as a genetic pathway that is triggered by 

environmental – namely, pheromonal – cues (Barron and Oldroyd 2001; Ronai et al. 2016; Tan 

et al. 2015; Thompson et al. 2006). If so, there is merit in discovering the components of this 

pathway.  

Apis mellifera queen pheromones have multiple roles to play in a colony, including the inhibition 

of worker egg-laying, the formation of a worker retinue around the queen and attracting drones 

to mating congregation areas (Keeling et al. 2003). Queen mandibular pheromone (QMP) is 

considered a key signal emitted by queens with both long term (e.g., worker ovary inactivation) 

and short-term (e.g., worker retinue formation) effects (Winston et al. 1991). The phromoen has 

multiple components, which are: (R)- and (S)-(E)-9-hydroxy-2-decenoic acid (9HDA), 10- 

hydroxy-2 (E)-decenoic acid (10HDA), methyl p-hydroxybenzoate (HOB) and 4-hydroxy-3-

methoxyphenylethanol (HVA) and 9-oxo-2-(E)-decenoic acid (9-ODA), which function with 

some redundancy (Maisonnasse et al. 2010). One component that has long been understood to 

inhibit worker ovaries is 9-ODA (Butler and Fairey 1963); a function that may be evolutionarily 

conserved (Van Oystaeyen et al. 2014), as evidenced by similar ovary-inhibiting effects of QMP 

on other species and sub-species. For example, queen pheromone from subspecies Apis mellifera 

scutellata can de-activate worker ovaries in A. mellifera capensis (Mumoki et al. 2018). Further, 

QMP can inhibit ovary activation in a totally un-related and non-social insect, Drosophila 



4 

 

melanogaster. Camiletti et al. (2013) found that virgin female flies had fewer, smaller eggs when 

compared to untreated control flies that were not exposed to bee pheromone. This bizarre cross-

species effect is apparently transferable to more than one species of fly (Nayar et al. 1963), as 

well as to termites (Müller et al. 1959) and ants (Carlisle et al. 1956). Each of these studies are 

quite different in how they sampled, treated and measured their samples, but together they 

provide some disparate evidence that genes involved in reproductive regulation may be 

conserved beyond the Hymenoptera (Croft et al. 2017).  

Two different approaches have been used to identify genes that could potentially regulate ovary 

activity in A. mellifera. One approach takes advantage of caste differences to compare ovary-

active queens with ovary-inactive workers (Evans and Wheeler 1999; Lago et al. 2016). These 

studies have revealed widespread differences in expression between castes. One experimental 

confound of these inter-caste comparisons is, however, that the resultant gene lists are only 

partially associated with ovary activation per se. The lists are likewise enriched for genes 

associated in their expression with any caste differences, of which there would be many related 

to size, physiology, behaviour and anatomy (Evans and Wheeler 1999; Lattorff and Moritz 

2013). An alternative approach is to focus on a single caste and directly compare ovary-active 

with de-active workers. By comparing ovary-active and in-active workers in queenright colonies 

of the 'anarchist' strain, Thompson et al. (2006) found few genes differentially expressed between 

reproductive and non-reproductive workers, but these genes were highly relevant to reproduction 

(e.g., major royal jelly proteins, vitellogenin). This more-focussed approach potentially 

circumvents the confounds associated with inter-caste comparisons. Similarly, other studies have 

identified genes implicated in the regulation of worker sterility (e.g., Cardoen et al. 2011; 

Grozinger et al. 2007). Based on the importance of these discoveries, further effort must be made 
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to test how single genes from these lists interact with each other or within a broader regulatory 

context.  

1.4 Genes for honey bee worker altruism: a network analysis 

Gene action within individuals is often coordinated across loci, as evidenced by a generation of 

microarray, RNA-seq and other expression-based screens that typically reveal an abundance of 

of gene co-regulation. One common output of genome-wide expression screens is the ubiquitous 

'gene list' – that is, the tally of gene names or accession numbers that often accompany -omics 

papers. A survey of three leading journals in the field of genomics, BMC Genomics (BioMed 

Central), Genome Biology and Evolution (Oxford University Press) and Genome Research (Cold 

Spring Harbor Press), for example, reveals that ~15% of recent (2014-2018) papers feature at 

least one gene list, which are often long (100s or even 1000s of entries), sorted by order of 

implied importance, and sometimes relegated to supplementary material (Figure 1). This tabular 

approach to deciphering gene function is a necessary first step in functional genomic studies but, 

in my view, is unsatisfying as an end-point because the gene ID information is static and does 

not in itself explain how individual genes on a list might interact with each other, or how these 

interactions change in real-time with social or environmental circumstances.  
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Figure 1 Survey of journals for the number of gene lists from 2014-2018. Survey of three -

omics journals revealed that between 9 - 21% of recent (2014 – 2018) papers feature at least one 

gene list (including in associated supplementary files, and regardless of whether the list was from 

genetic or genomic study). Over this five year period, BMC Genomics had a total of 5578 

published articles while Genome Biology and Evolution and Genome Research had a total of 

1374 and 909 published articles respectively, for a total 7861 papers. I visually checked to see if 

the publications had any gene lists associated with them.  
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A gene function is often determined by examining when and where it is expressed in a cell or an 

organism. However, experimentally deducing the function of each gene individually is a time-

consuming process. Here, I adopt a view that is common in systems biology in which gene lists 

are converted into or transposed onto a gene-regulatory framework (e.g., Chouvardas et al. 2016; 

Segal et al. 2003; Verfaillie et al. 2014). This is done through the prioritization of genes based on 

their interactions with each other. A gene regulatory network can be best defined as a set of 

genes that interact with each other to fulfill a specific cell function. One approach to developing 

a gene-regulatory context within which to infer the coordinated function of otherwise-unknown 

genes is to construct gene co-expression networks (Schlitt et al. 2003). Using gene-expression 

information it may be possible to build a gene network and from it test to its overall function, for 

example, through gene enrichment analysis (Brazhnik et al. 2002; Davidson and Levin 2005).  

Pathway information of each gene can also be inferred through network analysis. Hence, I 

predict that A. mellifera genes with a role to play in fertility will display similar network 

properties and be situated near each other on the network. By situating prior listed genes onto a 

network topology, we can potentially re-prioritize individual genes based on their connectivity, 

as opposed to their stand-alone expression value (Ramsahai et al. 2017; Rapaport et al. 2007). 

Further, by situating individual genes within a multi-gene environment we can better interpret 

their functional roles, as might be revealed, for example, by multi-gene regulatory modules, 

motifs and clusters.  

Among insects, some of the earliest comparative genomic studies helped transform gene lists 

into gene networks for D. melanogaster (Costello et al. 2009; Haye et al. 2014). Early network 

comparison studies between sterile and fertile castes involved research on ants where a group of 

genes were found to be differentially expressed between winged (fertile) and sterile (wingless) 
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castes (Abouheif and Wray 2002). For honey bees, gene network studies have been used in 

multiple instances, like comparing the aggressive behaviour between different species (Alaux et 

al. 2009), analyzing gene expression differences in knockout studies (Ament et al. 2012) and 

caste comparison (Barchuk et al. 2007).  

The Thompson lab has contributed to identifying genes responsible for fecundity in A. mellifera 

with a study done by Mullen et al. (2014) identifying nine small networks enriched for genes 

involved in reproductive functions. More recently, a study by Sobotka et al. (2016) helped to 

position sterility genes on the honey bee gene regulatory network for A. mellifera, which was 

computationally predicted in a previous study (Chandrasekaran et al. 2011). Here, 'sterility' is 

short hand for a suite of behavioural, physiological and anatomical changes to worker 

reproduction upon exposure to queen pheromone (Ronai et al. 2016). This reproductive trait 

likely evolved under indirect selection (Thompson et al. 2013) and is commonly measured as a 

function of ovary de-activation (Backx et al. 2012). A 'sterility gene' – or, a gene for sterility – is 

a term that I and others use to describe any genetic difference that explains phenotypic 

differences in egg-laying behavior observed among worker honey bees within a colony. The 

genetic effect may be due to a difference in nucleotide sequence – for example, a mutation or 

polymorphism – or it may be due to a difference in gene expression, however realized. In my 

case, I use the term to describe genes that co-vary in their expression with ovary activation. My 

working hypothesis is that worker ovary activation is regulated in response to genetic and 

environmental cues and, if so, I should be able to reconstruct this network from a list of genes 

that I know to be co-expressed with worker ovaries. That, in fact, is the main goal of my thesis, 

to reconstruct the gene network regulating worker sterility and to examine its properties. 
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Sobotka et al. (2016) used the GLay clustering algorithm of Su et al. (2010) to first divide the 

network into clusters of well-connected nodes, of which there are two types: genes and 

transcription factors. A gene cluster is a group of interacting or potentially interacting genes that 

function in concert to regulate the expression of a trait. A cluster is a network but when the latter 

has subcomponents (or subnetworks) that are themselves interacting, then we refer to those 

subnetworks as gene clusters. One criterion for recognizing clusters is via the high degree of 

interconnectedness: clusters, by definition, have more inward (within-cluster) connections than 

outward (between cluster) connections, as typically inferred by optimizing algorithms 

implemented by network analysis software. Further, gene clusters often contain one or more so-

called hub genes that have accumulated an exceptionally large number of inward connections 

and are thus presumably very important to the subnetwork's function.   

Their best-fit clustering model used by Slobotka et al. (2016) revealed that the honey bee TRN 

(transcriptional regulatory network) is composed of as few as eight sub-networks. Sobotka et al. 

(2016) then tested the distribution of published sterility gene sets across the sub-networks. They 

reasoned that if subsets of genes co-regulate worker sterility, then the genes should form 

interconnected modules within the honey bee TRN. They found that most gene sets examined (3 

of 4) did tend to cluster into a particular region of the 2,382-gene network, which Sobotka et al. 

(2016) dubbed 'Cluster 3', the third-largest cluster of the TRN. Furthermore, in this study, two 

genes that were identified as potentially having a key role to play in the pheromonal regulation of 

worker reproduction were fushi-tarazu factor-1 (ftz-f1) and fruitless (fru). These two genes were 

centrally located in the network and the ftz-f1 gene has previously been found to have a role in 

honey bee maturation (Cardoen et al. 2011).  The genes fru, meanwhile, was found to be 

downregulated in workers in the presence of a queen (Grozinger et al. 2003). 
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The discovery of this subnetwork, apparently associated with the expression of worker sterility, 

would not have been possible from an analysis of the individual gene lists. Their network 

analysis revealed, for the first time, that the candidate genes for sterility identified from 

microarrays, are functionally connected to each other. Studying this and other subnetworks 

within the honey bee TRN could, therefore, potentially reveal how changes to a worker's social 

environment – i.e., the presence or absence of queen pheromone (Backx et al. 2012) – can alter 

the state of the network to de-activate worker ovaries and render them sterile.  

1.5 Objectives 

The overall goal of my research effort is two-fold: I will use bioinformatic tools to update the 

edge list and network developed by Chandrasekharan et al. (2011) and use this new construct to 

up-date the cluster analysis performed by Sobotka et al. (2016) to infer the of functional 

organization of the network as it relates to honey bee worker sterility. I elaborate on both 

objectives immediately below. 

1.5.1 Update the TRN and draw structural and functional inferences  

The gene set used by Chandrasekaran et al. (2011) for the computational prediction of the A. 

mellifera network was outdated, because they used an older Gene set v1.0 (Honeybee Genome 

Sequencing Consortium 2006). There is now a newer Gene Set v3.2 (Elsik et al. 2014) available 

for A. mellifera genes, which would contain information on newly discovered genes, have up-

dated annotation information of previously identified genes as well as deleted erroneously 

identified genes included in the previous gene set. The up-dated TRN (after removal of obsolete 

genes) provides an opportunity to re-analyze the structure of the network, particularly with 

reference to any clusters that might be enriched for sterility genes. Since Sobotka et al. (2016) 
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inferred that the original TRN constructed by Chandrasekaran was not random based on its 

structured and highly interconnected nature, I reasoned that the updated TRN should also display 

similar properties. Specifically, I test if the honey bee model TRN and its sub-networks show a 

typical scale-free degree distribution in which a plot of the frequency distribution of node 

degrees reveals one or a few 'hub' genes are disproportionately connected to the remaining 

majority of genes with relatively few connections (Liseron-Monfils and Ware 2015). I also 

estimate the eigenvector centrality of each node (a measure of node connectedness in a network) 

in each subnetwork. I look for other measures of adaptive complexity in the form of logical 

patterns or 'motifs' (to reveal the pattern or arrangement of interconnections, like feed-forward 

loops, etc.) that are not expected of random or otherwise non-evolved biological networks 

(McDonnell et al. 2014). Finally, I use homology-based enrichment analyses (Jonsson et al. 

2006) whereby I use sequence similarity to genes with known function to infer the most likely 

biological function of each subnetwork.  

1.5.2 Infer the function of genes in subnetworks via homology analysis 

With most of the genes in A. mellifera being uncharacterized (of unknown function), I decided to 

examine the function of these genes by finding their homologues in better studied organisms. 

Rather than simply conducting a gene ontology analysis of the homologous genes to find 

functional enrichment, I also decided to view these genes in a gene regulatory context to identify 

key genes (based on degree) from among a group participating in a similar function. I reasoned 

that there could be some related biological pathways involving reproduction between A. 

mellifera and D. melanogaster based on evidence from multiple research studies about similar 

effects of ovary inhibition found in D. melanogaster from exposure to queen pheromones 

(Camiletti and Thompson 2016; Camiletti et al. 2013; Croft et al. 2017). This would also allow 
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me to test the hypothesis that social reproduction in A. mellifera is derived from gene pathways 

that once regulated individual reproduction in solitary ancestors, as represented by the fly. 

Specifically, I will identify the subnetworks in the A. mellifera transcriptional regulatory network 

that are enriched for sterility genes (if any) and construct their corresponding networks for 

Drosophila.  

For identifying clusters in the A. mellifera network I used the same set of sterility genes 

compiled by Sobotka et al. (2016) based on a literature survey of differentially expressed A. 

mellifera genes (Table 1). Sobotka's list of genes is compiled from comparable studies, which 

used QMP for deactivating the ovary and gene expression analysis from microarray studies 

between ovary active and inactive A. mellifera workers (Cardoen et al. 2011; Grozinger et al 

2003; Grozinger et. al 2007). These older-generation transcriptome screens either sampled brain 

tissue, abdomen tissue, or both, or whole body tissue (Table 1). There is no certain 'best practice' 

and each study has its own merits, discoveries and limitations. For my thesis, I take it as a given 

that these studies produced valid gene lists (they are published) and I regard my analyses as a 

type of meta-analysis whereby I use the output from other studies as input for my own.  

Since one or more of the subnetworks I would be using are potentially enriched for sterility 

genes, I expected the ontology analysis of the Drosophila homologues to likewise be enriched 

for functions related to reproduction. I predicted that genes involved in the reproductive 

functions of Drosophila, which is a solitary insect, could potentially be performing a similar 

function in A. mellifera. Through this methodology, I hope to identify well connected genes 

lying along key reproductive functional pathways of A. meliifera, which could serve as novel 

targets for future gene silencing or knockdown studies in A. mellifera with verifiable changes in 
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the morphological and genetical changes of reproductive and non-reproductive A. mellifera 

workers. 

 

 

 

Table 1 Microarray datasets that I assembled from the literature. Table shows the number 

of differentially expressed genes (DEGs) reported for each study, together with a very brief 

description of the experimental design and tissue sampled. This same meta-dataset was used by 

Sobotka et al. (2016) and I here use them again to test the if they cluster together on a honey bee 

transcriptional gene regulatory network. 

Study Experimental Design Tissue Type Total number 

of DEGs 

Grozinger et al. 

(2003) 

QMP‐treated versus untreated workers in 

cages  

Brain 1607 

Thompson et al. 

(2006) 

Wild‐type versus anarchist workers in 

colonies 

Brain 

Abdomen 

20 

20 

  

Grozinger et al. 

(2007) 

QMP‐treated versus untreated workers in 

cages  

Brain 94 

Thompson et al. 

(2008) 

Wild‐type versus anarchist workers in 

colonies 

Brain 

Abdomen 

7 

5 

  

Cardoen et al. 

(2011) 

Ovary‐active versus ovary‐inactive 

workers in colonies 

Whole Body 1292 
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2. Methods  

2.1 Re-constructing the regulatory network and its sub-networks 

The honey bee transcriptional regulatory network was constructed computationally in the Hood-

Price lab and is available publicly for download in an Excel format (https://hood-

price.systemsbiology.org/research/honeybee-transcriptional-regulatory-network/). The network 

is based upon the transcription profiles of 853 individual honey bees exhibiting 48 distinct 

behavioural phenotypes, as described in detail in Chandrasekaran et al. (2011). The bee brain 

transcriptional network was created using an Algorithm for the Reconstruction of Gene 

Regulatory Networks (ARACNE) and consists of transcription factors (n = 205) and their target 

genes (n = 2176). Since the gene data used for the TRN construction is based on the first 

sequencing project (Honeybee Genome Sequencing Consortium 2006) and first official gene set 

(amel_OGSv1.0), the edge list needed to be up-dated to accommodate changes associated with 

the most recent sequencing up-grade (Elsik et al. 2014) and new official gene set 

(amel_OGSv3.2). A previous study (Molodtsova et al. 2014) mapped (using Blastn v. 2.2.28+) 

the original TRN's oligonucleotide probe IDs to the new gene set. I used their cross-referenced 

information that I obtained from the corresponding author to establish an up-dated edge list of 

my own that was consistent with the latest assembly. I used this up-dated edge list in all my 

subsequent analyses. 

 

To reveal any underlying substructure to the network, I first imported the TRN into the network 

visualization software package CYTOSCAPE (Version 3.6.0; Shannon et al. 2003). I tested 

different clustering algorithms (Affinity Propagation Clustering Algorithm, Markov Clustering 

Algorithm, Fuzzy C-means Clustering Algorithm and the GLay Clustering Algorithm) and, for 
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each, varied the number of clusters tested. I had no a priori expectation for how any of these 

algorithms might partition my data set so I did 'sample then', so to speak, to see if they generated 

any big differences. I used the ‘modularity score’ of Peterman et al. (2016) to gauge best fit 

between any one model and, simultaneously, between different parameters (i.e., no. of clusters) 

for a given model. Specifically, I interpreted a high modularity score to signify a dense 

connectivity between nodes present in a sub-network and weak connectivity between nodes 

belonging to different sub-networks. I selected the GLay clustering algorithm, which utilizes the 

Girvan-Newman fast-greedy algorithm for my partitions because it 1 – allowed the sharing of 

nodes between clusters so as to prevent the potential breaking up of larger clusters into smaller 

ones, 2 – did not ask the user to predict the number of clusters and, 3 – has a higher modularity 

score when compared to the other clustering algorithms.  

2.2 Estimating the structural parameters of each network 

Networks present in the real world, be it social, technological, biological or information 

networks, are typically scale-free i.e., the number of connections to each node (theirs 'degree') is 

highly heterogenous and follows a power law frequency distribution. So, I decided to test if each 

sub-cluster of my updated A. mellifera network was also scale free. In scale free networks, the 

probability distribution of the number of nodes and their corresponding degrees follows the 

condition P(X) = C.X −α where C is a constant, α is the rate of decay or the slope of the 

distribution, X is a degree and P(X) is the number of nodes with the degree X (Newman 2005). 

The coefficient of determination (R2) is defined as the square of the correlation coefficient 

between log(P(X)) and log(X) (Zhang and Horvath 2005). I computed the R2 values for each 

cluster to test if the slope was between a value of 2-3, which is consistent with a scale-free 

distribution (Albert 2005).  
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I used a two-sample Kolmogorov-Smirnov test (KS test) to compare my observed degree 

distributions to those of Erdos–Renyi random networks (Erdös and Rényi 1959). The KS test 

determines whether the observed real-world distribution is different from the null (random) 

distribution. I used the IGRAPH package in R to generate the Erdos–Renyi random networks for 

each cluster, holding the number of edges and nodes constant. 

I plotted the degree distribution of each sub-network and identified the genes with highest 

degree. I calculated the mean degree of each network and, following Sporns et al. (2007), I 

considered nodes with a degree of more than one standard deviation above the mean degree as a 

'hub'. I also computed the eigen centrality score (Tang et al. 2015) for each gene. This measures 

the influence of a node in the network by assigning a high score to a node when connected to 

high degree nodes and a low score when connected to low degree nodes. This provides an 

indication of how connected a node is in the network through its first- and second-degree 

neighbours.  

2.3 Motif Analysis 

I examined the distribution of two types of three-node motifs that could be found in a bipartite 

network. The first motif, which is termed the Single Input Module (SIM; Domedel-Puig et al. 

2010), consists of a TF regulating two genes - 'one into two'. The second type of motif termed 

the Dense Overlapping Regulons (DOR) is where more than one regulator influences a gene - 

'two into one'. I calculated the number of three-node motifs in each cluster using the G-tries 

algorithm (Ribeiro and Silva 2010), as implemented in CYTOSCAPE under the application name 

Motif Discovery to find the number of three node motifs in each sub-cluster. To test if the 

observed number of motifs in my clusters was different from random expectation, I first 

generated a population of 500 Erdos–Renyi random subnetworks in which the number of nodes 
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and edges are held constant but the connections are shuffled (using IGRAPH package in R; Csardi 

and Nepusz 2006). I then used a one sample t-test to compare observed versus expected number 

of motifs.  

2.4 Testing for the distribution of sterility genes 

Since the study by Sobotka et. al (2016) concluded that a significant number of sterility genes 

(compiled from sterility genes reported in the literature) fell on a specific cluster, we tested 

whether the up-dated TRN likewise supported a single cluster enriched for sterility genes. I 

conducted a chi-square test for independence to test if the distribution of sterility genes over the 

clusters was biased – that is, I tested if a significant number of the genes mapped onto any 

specific cluster, while controlling for cluster size. I also used a custom-made Python script to 

conduct a randomization test to test which specific clusters have a significant higher number of 

sterility genes mapping onto them. I also mapped genes from each cluster obtained by Sobotka et 

al. (2016) during her study onto my current clustering arrangement. 

2.5 Gene Ontology Analysis 

To determine any predominantly expressed functions by a group of genes in each cluster, I 

obtained the Gene Ontology (GO) terms associated with each gene ID (if available) using the 

Ensembl Metazoa database, which contains genomic data of different metazoan species 

including A. mellifera (Kersey et al. 2017). To test for enrichment of GO terms in each cluster, I 

performed a GO analysis using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) platform (Huang et al. 2007). I set the GO parameters in DAVID to yield 

gene enrichment pathways specific to A. mellifera, but otherwise used default search criteria (i.e., 

enrichment score P-values less than 0.1 with a minimum of three genes per GO category). I used 
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Ensembl BioMart to individually check for the functional information of each gene present in 

each cluster. 

2.6 Analysis using homologous D. melanogaster genes. 

I used the data dissemination search tool in BioMart (Kinsella et al. 2011) to mine for 

homologous FlyBase IDs of D. melanogaster for the genes in the A. mellifera clusters of interest. 

Homologues in Ensembl are inferred through the construction of gene trees designed to predict 

the evolutionary history of a family of genes. For this part of the analysis, I used the FlyBase IDs 

as an input on the STRING database (database containing gene and protein interaction 

information) to build a network based on gene interaction information present in the database. 

The gene interaction information contained in the STRING database includes computational 

predictions, indirect and direct physical interactions as well as interaction information contained 

in different databases (Szklarczyk et al. 2016). I used a CYTOSCAPE application named ClueGO 

(Bindea et al. 2009) to functionally annotate the D. melanogaster clusters. I set the network 

specificity option in ClueGO to 'global', which enables the most general annotations. I optimized 

ClueGO to detect any gene ontology terms (biological process, cellular component and 

molecular function) that have been detected experimentally in previous studies rather than 

computationally predict the function of a gene. Finally, I set the rest of the parameters in ClueGO 

to their default values for the analysis.  

 

3. Results  

A total of 1,839 of the 2,382 nodes in the network had corresponding gene identification 

numbers in the new honey bee gene set. Only three genes were 'orphaned' and thus did not have 
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any connections (i.e., were not attached to any other gene). An additional two genes were 

connected only to each other and thus disconnected from the rest of the network. After removing 

these five nodes, the modified version of the honey bee TRN consisted of 1,834 nodes (195 TFs 

and 1639 genes) and 5,085 connections. The number of connections I inferred for the up-dated 

TRN is smaller than the original TRN (with 6,756 connections), but presumably this number is 

more accurate (Figure 2). Upon clustering the up-dated network, the GLay clustering algorithm 

fit our network the best with nine clusters and a modularity score of 0.609. The total number of 

transcription factors, the genes they regulate and the number of edges in each cluster is 

summarised in Table 2. 

3.1 Degree Distribution of the clusters 

The coefficient of determination values (R2) were positive for all nine clusters. The correlation 

coefficient values for the clusters ranged from 0.475 to 0.949. The slope of clusters ranged from 

0.87 (Cluster 8) to 1.37 (Cluster 1). The degree distributions of each cluster were significantly 

different from the degree distribution of their random counterparts with a P-value of less than 

0.001 in each case (Table 3).   
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Figure 2 Honey bee brain transcriptional regulatory network, as visualized using the 

software GEPHI. The best score was obtained when the network was partitioned into nine clusters 

using its in-build Louvain method of community detection. Each colour represents a different 

partition or subcluster and they are numbered from largest to smallest. The two smallest clusters 

are difficult to see.
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Table 2 The total number of nodes along with the number of transcription factors and genes in each cluster. The number of 

transcription factors (TFs) and genes in each sub-network arranged from the largest to the smallest cluster in terms of the total number 

of nodes. By comparing the total number of TFs and genes for each cluster, the largest cluster has an average of four genes per TF 

while Cluster 6 has an average of more than 10 genes per TF.  

Cluster Number Total Number of nodes Number of TFs Number of Genes Number of Edges Ratio of Genes/TFs 

1 305 62 243 630 3.91 
2 261 32 229 550 7.15 
3 252 32 220 466 6.87 
4 212 14 198 374 14.14 
5 209 16 193 349 12.06 
6 179 11 168 215 15.27 
7 173 14 159 245 11.35 
8 153 6 147 191 24.5 
9 90 8 82 109 10.25 
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Table 3 The degree distribution study done on each cluster. The correlation coefficient values 

and R2 for each cluster obtained using the Network Analyzer tool in CYTOSCAPE. The 

Kolmogorov-Smirnov D value calculated for each cluster is provided along with the KS test 

result (all P-values less than 0.001). 

Cluster 
Number 

Correlation 
coefficient 

Coefficient of 
determination 

(R2) 

Slope 
Measurement 

Kolmogorov 
Smirnov D 

Significantly 
different distribution 

from a random 
distribution? 

Cluster 1 0.518 0.782 1.372 0.1180 Yes 
Cluster 2 0.475 0.607 0.978 0.2069 Yes 
Cluster 3 0.66 0.754 1.221 0.1667 Yes 
Cluster 4 0.827 0.632 0.978 0.1321 Yes 
Cluster 5 0.839 0.606 1.007 0.1388 Yes 
Cluster 6 0.923 0.698 0.939 0.2067 Yes 
Cluster 7 0.963 0.684 1.086 0.1734 Yes 
Cluster 8 0.942 0.532 0.877 0.2353 Yes 
Cluster 9 0.949 0.621 0.99 0.1889 Yes 

 

3.2 Hubs of the network.  

Figure 3 shows the degree for each TF and target gene within each cluster. The size of the cluster 

ranged from 305 nodes in the largest to just 90 nodes in the smallest cluster. The average degree 

for all the nodes of each cluster varied from 4.22 in Cluster 2 to 2.42 in Cluster 9. Each cluster 

had at least one transcription factor with a degree of 1 except Clusters 7 and 8. Table 4 has the 

list of all the hub nodes (node with the highest degree and eigenvector centrality value). The 

node with the highest degrees also had the highest eigenvector centrality values in each cluster. 

Myb, CG9932, ftz-f1 and CG17912 were also found to be nodes with the highest degrees in 

different clusters (clusters numbering 1, 2, 3 and 6) in the study done by Sobotka et. al (2016). 

The largest hub node of each cluster along with its first and second step neighbours have been 
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marked in Figure 4. From a visual examination, it is evident that the hubs and their neighbours in 

each cluster encompass most nodes in each cluster except for the largest cluster which is Cluster 

1.  

3.3 Motifs 

Figure 5A shows the relationship between the SIM (single input module) motifs in the random 

networks against the total number of such motifs generated by the nine clusters. A t-test 

comparison between the number of motifs in each cluster and their random counterparts 

provided evidence that each cluster had significantly more SIM motifs. When each cluster was 

checked for the number of DOR (dense overlapping regulons) motifs, I could not find evidence 

for there being more DOR motifs present when compared to corresponding random networks. 

Figure 5B provides a comparison of the number of SIM motifs in each cluster. 

 

3.4 Distribution of sterility genes 

Sterility genes were not distributed randomly among clusters (χ 2 = 28.39, df = 8, P-value < 

0.001). A custom-made Python script was used to compare the actual distribution of sterility 

genes over all the clusters with what the distribution of sterility genes would be over similarly 

sized random clusters for a total of 104 iterations. From this comparison, it was discovered that 

significantly more number of sterility genes mapped onto Cluster 1 (P-value < 0.001) and 

Cluster 3 (P-value < 0.001). On mapping genes from the clusters found by Sobotka et al. (2016) 

onto our clustering arrangement, the majority of genes from Cluster 3 (sterility cluster), fall onto 

our current Cluster 3 and Cluster 1 (Figure 6). 
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Figure 3 Degrees of transcription factors and genes in each cluster. Red indicates transcription 

factors and black indicates the genes they potentially regulate. Y-axis depicts the node degrees 

with the smallest value of '1' and the highest observed degree being 117 (Cluster 5). Note: there 

are no values for degree below '1' but I have created my graph from 0.1 on a log scale for better 

visualization). 
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Table 4 Hub nodes in each cluster. The hub nodes in each cluster arranged from the smallest to 

the largest cluster. The most significant node has been selected based on its degree being more 

than one standard deviation above the mean degree of each cluster and eigen centrality values. 

Gene names have been provided for the nodes if available from homologous Drosophila genes. 

and, if not, I use the Uniprot ID.  

Cluster No: Probe ID Degree Bee Base ID 
Eigenvector centrality 

values 
Gene name 

1 AM06919 42 GB44769 0.387 CG32121 

2 AM09526 70 GB45259 0.3832 CG9932  

3 AM09450 62 GB42142 0.5643 ftz-f1  

4 AM05115 61 GB44791 0.3654 Myb 

5 AM04747 117 GB51429 0.6381 Lag1 

6 AM08033 66 GB54118 0.525 Rotund 

7 AM04205 61 GB46492 0.5023 CrebB-17A 

8 AM09018 113 GB51757 0.6534 CG17912 

9 AM06097 41 GB55012 0.6707 Dp 
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Figure 4 The hub of each cluster with its first and second step neighbours. Each cluster 

arranged from largest to smallest (1 to 9) with the hub node marked in red, its first neighbour 

nodes marked in black and it’s second neighbour nodes marked in yellow. All the other nodes in 

the network are blue coloured.  
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Figure 5 A comparison of the number of motifs against their corresponding random 

networks. (A) Box and whisker plots showing the range in number of SIM (Single Input 

Module; graphically shown at top) motifs from 500 random networks generated for each cluster. 

Red dot depicts the observed number of SIM motifs from my honey bee gene regulatory clusters. 

(B) Comparison plot between the number of SIM and DOR (Dense Overlapping Regulons) 

motifs in each cluster. 
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Table 5 The number of SIM (Single Input Module) and DOR (Dense Overlapping Regulon) motifs in each cluster. A one 

sample t-test with the mean of the number of SIM motifs in random networks against the number of motifs found in our clusters. The 

number of DOR motifs discovered in each cluster is also noted. 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

Real cluster SIM motif 

number 5846 9312 5892 8555 9876 5315 4437 7740 1229 

Real cluster DOR motif 

number 629 450 337 226 189 56 104 46 32 

Random network SIM 

motif mean 3177.39 4699.51 3370.11 4958 3777.53 2080.24 2119.39 3007.67 727.32 

Discrepancy 2668.61 4612.49 2521.89 3597 6098.47 3234.76 2317.61 4732.33 501.68 

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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3.5 Gene Ontology analysis 

Out of 1,834 genes, a total of 1,526 genes in the whole network were mapped to different D. 

melanogaster Gene Ontology IDs by DAVID. Table 6 contains information on the significantly 

enriched gene ontology terms in each cluster. All the clusters provided evidence of being 

enriched for gene ontology terms except Cluster 5.  

A total of 34 gene ontology enrichment categories are present when all the clusters were 

analyzed using DAVID. The number of enrichment terms between clusters ranged from 0 in 

Cluster 5 to a total of twelve in Cluster 1. An analysis on Ensembl BioMart showed that most of 

the genes in each cluster has corresponding functional information (through both computational 

and experimental studies). However, the majority of genes did not pass the minimum threshold 

in DAVID to be considered enriched for a particular gene ontological function. Several of our 

clusters showed gene ontology terms associated with the molecular function of binding like ATP 

binding (GO:0005524) and nucleotide binding (GO:0000166). Our clusters of interest with a 

statistically significant number of sterility genes mapping onto them, i.e., Cluster 1 and Cluster 3 

were found to have genes enriched for the ontology terms transcription factor binding activity 

(GO:0003700) and nucleotide binding (GO:0000166) respectively. However, functional 

ontology analysis did not give any enrichment terms pertaining specifically to reproduction for 

either cluster. 
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Figure 6. Mapping the arrangement of nodes from the study of Sobotka et al. (2016) onto 

my new clustering arrangement. Each colour shown in legends (1-8) represents a cluster from 

Sobotka et al. (2016) that I mapped onto the nine clusters of the updated transcriptional 

regulatory network (unmatched genes are left out). The new clusters are arranged based on size 

(left to right, top to bottom) from the largest Cluster 1 to the smallest Cluster 9.  

 

 

 

 

 



31 

 

Table 6 Gene ontology analysis data of each cluster. Gene enrichment information obtained 

using homologous D. melanogaster genes in the DAVID (Database for Annotation, 

Visualization, and Integrated Discovery) database for each cluster. The number of genes in each 

cluster with a role to play in each function as well as the P-value which measures the 

significance of the enrichment for each function is provided. The P-values have been corrected 

for multiple tests using Benjamini correction. 

Gene Ontology Process P-Value   Number of Genes 

Cluster 1 

GO:0003700 transcription factor activity, sequence-specific 

DNA binding 0.003 10 

GO:0043565 sequence-specific DNA binding 0.019 10 

GO:0005249 voltage-gated potassium channel activity 0.039 3 

GO:0003676 nucleic acid binding 0.046 16 

GO:0030130 clathrin coat of trans-Golgi network vesicle 0.049 2 

GO:0030132 clathrin coat of coated pit 0.049 2 

GO:0016192 vesicle-mediated transport 0.070 4 

GO:0005634 nucleus 0.075 17 

GO:0006099 tricarboxylic acid cycle 0.075 3 

GO:0006355 regulation of transcription, DNA-templated 0.086 8 

GO:0051287 NAD binding 0.096 3 

GO:0005786 signal recognition particle, endoplasmic 

reticulum targeting 0.096 2 

Cluster 2 

GO:0005737 cytoplasm 9.23E-04 15 

GO:0003700 transcription factor activity, sequence-specific 

DNA binding 0.063 7 

GO:0015991 ATP hydrolysis coupled proton transport 0.070 3 

GO:0009331 glycerol-3-phosphate dehydrogenase complex 0.076 2 

GO:0005524 ATP binding 0.086 20 

Cluster 3 

GO:0000166 nucleotide binding 0.019 8 

GO:0005886 plasma membrane 0.032 7 

Cluster 4 

GO:0005634 nucleus 1.23E-05 20 

GO:0005524 ATP binding 0.002 23 

GO:0003676 nucleic acid binding 0.005 16 

GO:0000166 nucleotide binding 0.080 7 

GO:0016569 covalent chromatin modification 0.081 2 
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GO:0004525 ribonuclease III activity 0.088 2 

Cluster 5 

No significant enrichment of genes 

Cluster 6 

GO:0008270 zinc ion binding 0.047 11 

GO:0019509 L-methionine biosynthetic process from 

methylthioadenosine 0.069 2 

Cluster 7 

GO:0016272 prefoldin complex 0.002 3 

GO:0003899 DNA-directed RNA polymerase activity 0.044 3 

GO:0005885 Arp2/3 protein complex 0.097 2 

GO:0005815 microtubule organizing center 0.097 2 

Cluster 8 

GO:0008168 methyltransferase activity 0.047 3 

Cluster 9 

GO:0016787 hydrolase activity 0.084 3 

 

 

 

3.6 Analysis on Clusters 1 and 3 using D. melanogaster homologues 

Since Cluster 1 and Cluster 3 had a significantly higher number of sterility genes I decided to 

only reconstruct these two clusters with homologous D. melanogaster genes. Of the 305 genes in 

Cluster 1, 216 of them had corresponding homologues for D. melanogaster. The network that I 

reconstructed using STRING included all these genes with a total of 238 edges. A total of 94 genes 

have no connections and I considered them orphans. Furthermore, 12 nodes were found to be 

connected to just one other node and disconnected from the main component of the network. I 

considered all the homologous genes for the functional analysis. Of the 216 nodes in the cluster, 

ClueGO identified 209 genes while 8 genes were not recognized. Only 136 genes out of this list 

were found to have gene ontology terms associated with them. A total of 87 genes were found to 

be associated with 45 gene ontology terms/pathways and pass the parameters I had set for 

functional enrichment on ClueGO, thus being significant. Forty-nine genes were found to be 
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associated with gene ontology terms related to reproduction (14 biological processes in total). 

The top three genes with the highest number of connections are Armadillo (arm), Kayak (kay) 

and Jun-related antigen (Jra) with degrees of 23, 18 and 16 respectively.  

From the 252 nodes present in A. mellifera Cluster 3, only 163 had homologous D. melanogaster 

genes and hence I used only these on STRING for network construction. The constructed network 

had a total of 117 edges with one giant component made up of 67 nodes. A total of 83 nodes 

were orphaned with a further 13 nodes forming smaller connected components among 

themselves. On analyzing with ClueGO, I found a total of 10 ontological terms to be significant 

with 6 terms being related to reproduction. Based on the parameters set, all gene ontological 

terms were broadly clustered into three groups with the first two groups containing terms related 

to different biological processes while the third group consisted of genes enriched for biological 

terms like anatomical structure development (GO:0048856) and multicellular organism 

development (GO:0007275). Seventy-three genes are found to be involved in this broad 

category. The genes with the highest number of connections in Cluster 3 are RE73195p (r-l), 

Actin-C (Act5C) and Something about silencing protein 10 (Sas10) with degrees of 18, 13 and 9 

respectively. 

Through gene ontology analysis using ClueGO, total of 122 of the homologous D. melanogaster 

genes had functional roles closely associated with reproduction/embryo development from both 

the clusters. I found that a total of 45 genes from this list are also present in the sterility gene lists 

of Sobotka et al. (2016). The other 78 genes which do not yet have a known function in A. 

mellifera, provide us with viable targets that could be analyzed through expression studies to 

investigate their effects in the A. mellifera reproductive pathway.  

 

http://go:48856/
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4. Discussion 

In this study, I used a conversion file obtained from Molodtsova et al. (2014) to up-date my copy 

of the adjacency matrix that previously defined the honey bee brain TRN (Chandrasekaran et al. 

2011). Specifically, I updated it to reflect updates that had occurred in the honey bee official 

gene set v1 to v3.2 (Elsik et al. 2014). This updated network was smaller: it had a total of 1,839 

nodes and 5,085 connections, as opposed to 2,382 nodes and 6,756 connections in the original 

network. I used the GLay clustering algorithm to partition the TRN into nine clusters. These nine 

clusters followed properties associated with real world networks like a different degree 

distribution and significantly greater number of motifs when compared with their random 

counterparts. My gene ontology analysis of all the clusters did not provide evidence for any 

specific cluster displaying functions related to reproduction or sterility. However, Cluster 1 and 

Cluster 3 had a significantly greater number of sterility genes (procured and assembled by 

Sobotka et al. 2016) mapping onto them when compared with the remaining seven clusters. I 

found the corresponding homologous genes in D. melanogaster for the A. mellifera genes in 

Clusters 1 and 3 and constructed corresponding D. melanogaster networks. Gene ontology 

analysis of these clusters helped me identify some key genes that may have important roles in the 

reproduction/sterility pathway of D. melanogaster. Their counterparts in the A. mellifera gene set 

might play a similar role and provides an avenue for further analysis and investigation.  

4.1 Structural analysis of the network 

The TRN is bipartite in nature with a set of transcription factors regulating a set of genes. The 

bipartite nature of the network essentially means that there is no interaction (no edges) among 

the transcription factors or among the genes themselves. Studies on bipartite graphs range across 

a wide variety of fields including bacterial complexity (Corel et al. 2016), diseases (Goh et al. 
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2007) and social networks (Borgatti 2009). A network can be constructed to visualize all the 

interactions occurring between different biological units like genes or proteins, which increases 

the complexity and diversity of gene networks making it arduous to analyze the network as a 

whole. It is easier to scrutinize smaller portions of the network (or sub-networks) to better 

understand the underpinning functions and interconnectivity between related genes (D’haeseleer 

et al. 2000). Even-though clustering is not a compulsory mechanism to study a network, it can 

help to see key network features (de Oliveira et al. 2008). Based on the default clustering criteria 

of each clustering algorithm (available on CYTOSCAPE), I obtained a different number of clusters 

for my updated A. mellifera network (2 clusters to 127 clusters). The number of nodes in our 

largest to smallest cluster obtained from our TRN after clustering ranged from 305 to 90 (Figure 

2; Table 2), but the number of transcription factors ranged from 62 in Cluster 1 to just eight in 

Cluster 9 (Figure 3). Transcription factors have many regulatory connections and thus have a 

consistently higher degree when compared to the downstream target genes that they regulate. I 

only obtained one more cluster when compared to Sobotka et al. (2016) using the same 

clustering algorithm, which is not a considerable difference.  

To test if each cluster conformed to properties displayed by real world networks (and not a 

random collection of edges), I decided to test the clusters for specific properties associated with 

real world networks. One feature of real-world networks is the decaying nature of its degree 

distribution graphs due to the presence of nodes with both small and significantly larger degrees 

thus differing from random networks (networks generated by forming connections between 

nodes without considering any node characteristics), which have a low degree heterogeneity 

value (a network with all the nodes having a single degree k is a homogenous network). The 

degree distribution of random networks have a Poisson distribution with a bell curve (Strogatz 
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2001). Some of the properties that characterize real-world networks are, 1- small-world property, 

2 - high clustering co-efficient values and 3- large, connected component (Wadhwa and Bhatia 

2013). Similarly, an oft accepted property of a real-world network is that real-world networks are 

scale-free in nature, which typically means that the degree distribution of the network follows a 

power law with a decay constant between 2 and 3. However, recent research has disproved this 

notion, stating that biological networks are rarely scale free and do not necessarily need to follow 

this rule (Broido and Clauset 2018). The slopes of none of my nine clusters fell between 2 and 3 

(Table 3), however, as stated, this isn’t conclusive evidence to disregard my clusters and state 

that they are random. Hence, I used the KS test to show that there is a difference between the 

degree distribution of my clusters and their random counterparts. 

Another feature of real-world networks is that they have a significantly greater number of motifs 

when compared to their analogous random networks (Song et al. 2005). There are multiple types 

of motifs that can be detected in bipartite networks (Saracco et al. 2016) but I focussed on just 

two types, each with just three nodes: the so-called SIM and DOR motifs (Shen-Orr et al. 2002). 

In each of the nine clusters (Table 5), I found that the number of SIM motifs were much more (in 

some cases even double) than the number of SIM motifs generated by their equivalent random 

counterparts (with a significant P-value of less than 0.0001). The TFs that are part of SIM motifs 

are generally auto-regulated, with a majority of them repressing themselves when a threshold of 

expression is reached (Ali et al. 2020). The TFs also regulate gene expression in these motifs 

based on the activation threshold of the genes that are a part of it (Shen-Orr et al. 2002). This 

gives rise to a cascading effect or the sequential activation on genes. SIM network motifs 

generally show broad biological functions like carbon utilization (Alon 2007). SIM motifs are 
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present in significant numbers in the Escherichia coli and Saccharomyces cerevisiae gene 

networks (Lee et al. 2002; Shen-Orr et al. 2002).  

 

4.2 Comparison with the study conducted by Sobotka et al. (2016) 

In the study conducted by Sobotka et al. (2016), the largest cluster was a total of 431 nodes while 

the smallest cluster was 197 nodes. After updating and re-clustering, the A. mellifera TRN during 

our analysis, we got an additional cluster for a total of nine. All the clusters were comparatively 

smaller, but the reduction in sizes of the clusters is expected due to the removal of obsolete nodes 

in the A. mellifera TRN (more than 500 nodes) that was used by Sobotka et al. (2016) (Figure 6). 

On comparing the hubs in the clusters between both the studies, five hubs from the eight clusters 

found in the Sobotka et. al (2016) study were also found to be hubs in five of the nine clusters in 

my study. The difference in hub genes between some clusters found in the study done by 

Sobotka et. al (2016) and my analysis could be attributed to the decrease in connections between 

genes due to the removal of obsolete genes from the network. Also, Sobotka et. al (2016) had 

one cluster that she defined as the “sterility cluster” while I had two. However, there was close to 

80% overlap between Sobotka’s “sterility cluster” and my two clusters of interest leading to the 

conclusion that my clusters were composed mostly of the same nodes that were present in the 

single Sobotka cluster. Hence, both studies effectively predicted a similar set of genes present in 

the “sterility pathway of A. mellifera with my analysis having the advantage of being more 

streamlined with an updated gene set and the removal of obsolete and redundant genes. 

All the A. mellifera genes that occupied hub positions in the clusters were of unknown function 

(Figure 4), hence their homologous D. melanogaster genes have been used to predict their 

functions. Cluster 1 and Cluster 3 had the hub genes CG32121 and ftz-f1 respectively (Table 4). 
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The first gene of interest CG32121 is in the D. melanogaster geneset, and through sequence 

similarity analysis, its function has been predicted to be sequence specific DNA binding 

(GO:0043565). Nuclear hormone receptor (ftz-f1) is a well-studied gene and works as a co-factor 

to the fushi tarazu (ftz) gene facilitating its binding to DNA. Fushi tarazu is a homeotic protein 

and plays a role in the segmentation of D. melanogaster embryos. A mutation (or its absence) in 

the ftz-f1 gene causes the same defect as a lack of the ftz gene (ftz though present is unable to 

activate its target genes) and could lead to cuticular defects (Yu et al. 1997). 

Ontology analysis of each of the clusters for enriched functional roles of the genes in each cluster 

identified very few genes from each cluster taking part in functional roles, which was expected 

since most genes in each cluster are yet to be identified and functionally classified (Table 6). 

Almost all the clusters showed functional enrichment for biological processes involved in 

binding like DNA binding (GO:0043565), NAD binding (GO:0051287), ATP binding 

(GO:0005524) etc. This leads me to believe that the clusters are not mutually exclusive and some 

of the genes may be part of pathways with the genes present in other clusters. This is to be 

expected since all the clusters are part of the single TRN. Different clusters had genes specific to 

different biological functions (supplementary materials), which could be indicative of the 

localized nature (since the same biological functions were not observed in other clusters) of some 

of the biological processes and molecular functions found enriched in each cluster. Even though 

I observed most genes from the sterility gene list converging onto two specific clusters i.e., 

Cluster 1 and Cluster 3, I did not obtain any significant enrichment for processes related to A. 

mellifera reproduction in these two clusters. I deduce that this is either due to not enough genes 

being present in each individual cluster to give functional enrichment based on DAVID’s 

algorithm or due to the lack of functional information being available on these genes.  
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4.3 An analysis of the D. melanogaster clusters 1 and 3 

Even though the orders containing the species D. melanogaster and A. mellifera diverged ~350 

million years ago (Lovegrove et al. 2020), the potential to use D. melanogaster as a model to 

study social insect behaviour has been explored in different studies (Brenman‐Suttner et al. 2020; 

Camiletti and Thompson 2016; Reaume and Sokolowski 2011). Furthermore, various studies 

have made observations on the tendency of female fruit flies to decrease their ovary activity from 

a treatment of QMP. This suggested the presence of similar genes and pathways regulating the 

process of reproduction in both the species (Croft et al. 2017).  

The clusters with more sterility genes i.e., Cluster 1 and Cluster 3 provided a total 122 genes that 

could have a potential role to play in the reproduction of D. melanogaster. When elucidating the 

role of these genes in A. mellifera, it was inferred that a significant number of these genes (a total 

of 44) have already been identified in the literature survey conducted by Sobotka et al. (2016) as 

having a role to play in the sterility/reproduction of A. mellifera. However, it is currently 

unknown if the remaining 78 genes have a role to play in the reproduction of A. mellifera and 

could be further investigated. 

The Armadillo segment polarity gene (arm, gene with the highest degree in the homologous D. 

melanogaster Cluster 1) has been identified to have a vital role in the development of the 

nervous system (Loureiro and Peifer 1998). The next two genes with the highest number of 

connections are transcription factors that work in conjunction in specific cells for embryo 

development (Perkins et al. 1990; Zhang et al. 1990). Arm and kay have been identified to be 

differentially expressed in female bees with active and inactive ovaries (Niño 2012). Though 

forager bees have been known to be enriched with the Jra gene (Vannette et al. 2015), its role in 

reproduction is yet to be investigated.  
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The r-l gene identified as the gene with the highest degree (number of connections) in Cluster 3, 

is a gene involved in pyrimidine synthesis activity in D. melanogaster (Eisenberg et al. 1990). 

The same gene covers a similar role in Homo sapiens and its mutation/silencing has been known 

to cause Pyrimidine Metabolic Disorder that causes developmental problems (Nyhan 2005). In 

D. melanogaster, a study of the mutations in different genes involved in the pyrimidine synthesis 

pathway found shortened wings and differences in cuticle pigmentation in the mutants when 

compared to the control (Rawls 2006). The second gene with the highest degree in Cluster 3, 

Act5C, is one of two isoforms of the actin gene found in D. melanogaster. The gene is essential 

for the development of the cytoskeleton and its loss has been shown to be lethal (Wagner et al. 

2002). Sas10 (the gene with the third highest  number of connections in Cluster 3) is involved in 

DNA silencing and has a role to play in development (Peters et al. 2003). In Mus musculus, the 

gene has been found to be essential for brain development (Sakuma et al. 2001).  

4.4 Conclusion and future direction 

Recent advances in genetic studies have focused interest on the construction of gene networks 

from expression arrays (Rapaport et al. 2007). Gene networks have enabled the prediction of 

novel gene functions to progress at a significantly higher rate through the construction of gene 

co-expression networks in which gene relationships may reflect their involvement in common 

biological pathways (Hwang et al. 2011). However, network construction using microarray 

expression information suffers from a defect in that networks constructed off the expression of 

genes in a single time point may not sufficiently demonstrate the inter-connectivity of genes in 

an organism. Even though A. mellifera has a genome of more than 10,000 genes (Honeybee 

Genome Sequencing Consortium 2006), our network was comprised of only 1839 genes, hence, 

the network is incomplete to deduce the complete sterility pathway in A. mellifera. Also, in most 



41 

 

cases, there is only enough information to create fragments of the network (Rapaport et al. 2007). 

The same genes may function differently based on factors like the physical condition, age, 

physiological characteristics, time of the day etc. in the same organism. Utilizing data 

repositories like STRING can significantly diminish this drawback by using gene interaction 

information procured over multiple studies and conditions. Another key feature that needs to be 

well investigated while working on networks is the type of clustering algorithm that is being 

used. There are a multitude of clustering algorithms available, each with its own set of 

advantages and disadvantages (Emmons et al. 2016) providing a different number of clusters for 

the same network. This can affect the results of the same study and hence careful consideration 

needs to be exercised.  

The network studies performed here offer insights into how new network models can be 

analyzed to glean essential information. The network features and the key genes identified in this 

study can be further targeted to check for changes in the A. mellifera phenotype through gene 

knock-out studies. In one previous study, genes playing a role in D. melanogaster segmentation 

were identified and their orthologues knocked down in A. mellifera. Patterning defects were 

noticed, implying that these genes played a role in the segmentation of A. mellifera embryos too 

(Wilson and Dearden 2012). Hence, knocking down orthologous genes in A. mellifera with 

known functions in D. melanogaster is a viable methodology to help pinpoint gene functions. 

For future studies, it would  be more convenient to work with the functional annotation 

information specific to A. mellifera without using D. melanogaster as a homologous model. This 

would minimize errors that could have crept in due to gene conversion using the various 

repositories available.  
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Supplemental Materials 

 

 

Figure S1 Gene Ontology terms identified from homologous D. melanogaster Cluster 1 

using ClueGO. Gene Ontology terms identified from the homologous D. melanogaster cluster 1 

created through STRING. The three colours depict the three groups into which the ontology terms 

have been segregated based on how related the ontology terms are to each other. 
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Figure S2 Gene Ontology terms identified from homologous D. melanogaster Cluster 3 

using ClueGO. Gene ontology terms identified from the D. melanogaster homologous genes for 

cluster 3. There are three groups of ontology terms based on how related each term is to the 

other. The ordering is each group of the ontology terms is based on significance. 
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Table S1 Homologous D. melanogaster genes identified from Cluster 1 enriched for terms 

related to reproduction. Genes of interest found in Cluster 1 with the D. melanogaster 

homologous genes after ontology analysis. The genes have been grouped in the table based on 

their degree in the D. melanogaster clusters. It has been noted on if the A. mellifera genes from 

which the D. melanogaster homologues were derived have previously been implicated in any 

sterility studies. 

Flybase ID Gene Name Beebase ID Degree 

Present in the list of sterility 

genes we compiled? 

FBgn0000117 arm GB54774 23 Yes Grozinger et al. (2003) 

FBgn0001297 kay GB42049 18 No 

FBgn0001291 Jra GB53318 16 Yes Grozinger et al. (2003) 

FBgn0262733 Src64B GB46371 15 Yes Grozinger et al. (2003) 

FBgn0010341 Cdc42 GB45657 13 No 

FBgn0004101 bs GB47234 9 No 

FBgn0000319 Chc GB50357 9 No 

FBgn0001624 dlg1 GB40648 8 No 

FBgn0039227 polybromo GB42921 7 Yes Cardoen et al. (2011b) 

FBgn0011655 Med GB50071 6 No 

FBgn0261885 osa GB44899 6 No 

FBgn0003345 sd GB54841 6 No 

FBgn0086357 Sec61alpha GB41886 4 Yes Grozinger et al. (2003) 

FBgn0000097 aop GB45540 4 No 

FBgn0037555 Ada2b GB52323 4 No 



53 

 

FBgn0020496 CtBP GB43266 4 No 

FBgn0010909 msn GB51134 4 No 

FBgn0004569 aos GB42377 3 Yes Cardoen et al. (2011b) 

FBgn0041111 lilli GB55387 3 No 

FBgn0003870 ttk GB47057 3 No 

FBgn0010470 Fkbp14 GB48497 3 No 

FBgn0020386 Pdk1 GB43004 2 Yes Grozinger et al. (2003) 

FBgn0025879 Timp GB40700 2 Yes Cardoen et al. (2011b) 

FBgn0053193 sav GB48671 2 Yes Cardoen et al. (2011b) 

FBgn0041604 dlp GB42671 2 No 

FBgn0000543 ecd GB42321 2 No 

FBgn0086655 jing GB55576 2 No 

FBgn0034876 wmd GB43989 2 No 

FBgn0260798 Gprk1 GB51749 1 Yes Cardoen et al. (2011b) 

FBgn0259789 vfl GB52047 1 Yes Cardoen et al. (2011b) 

FBgn0035993 Nf-YA GB50732 1 No 

FBgn0261064 Rbsn-5 GB51395 1 No 

FBgn0025571 SF1 GB47816 1 No 

FBgn0039509 bigmax GB55103 1 No 

FBgn0001108 DCTN1-p150 GB50038 1 No 

FBgn0262582 cic GB43462 1 No 

FBgn0004198 ct GB55715 1 No 

FBgn0005558 ey GB50342 1 No 

FBgn0016081 fry GB42489 1 No 

FBgn0027108 Inx2 GB45399 0 Yes Cardoen et al. (2011b) 

FBgn0266756 btsz GB52239 0 Yes Grozinger et al. (2003) 

FBgn0015600 toc GB44180 0 Yes Cardoen et al. (2011b) 

FBgn0010473 tutl GB53012 0 Yes Grozinger et al. (2003) 
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FBgn0010620 CG10939 GB55482 0 No 

FBgn0030174 CG15312 GB55840 0 No 

FBgn0266369 Mtp GB49869 0 No 

FBgn0052529 Hers GB54625 0 No 

FBgn0004449 Ten-m GB48972 0 No 

FBgn0004607 zfh2 GB54030 0 No 

 

Table S2 Homologous D. melanogaster genes identified from Cluster 3 enriched for terms 

related to reproduction. Genes of interest found in Cluster 3 with the D. melanogaster 

homologous genes after ontology analysis. The genes have been grouped in the table based on 

their degree in the D. melanogaster cluster. It has been noted on if the A. mellifera genes from 

which the D. melanogaster homologues were derived have previously been implicated in any 

sterility studies. 

Flybase ID Gene Name Beebase ID Degree 

Present in the list of sterility 

genes we compiled? 

FBgn0003257 r-l GB54166 18 No 

FBgn0000042 Act5C GB44311 13 Yes Cardoen et al. (2011b) 

FBgn0029755 Sas10 GB54371 9 No 

FBgn0038235 CG8461 GB42039 8 No 

FBgn0031050 Arp10 GB44879 8 No 

FBgn0041210 HDAC4 GB43234 7 Yes Grozinger et al. (2003) 

FBgn0038275 CG3817 GB50375 7 No 

FBgn0003429 slo GB47138 5 Yes Cardoen et al. (2011b) 

FBgn0264607 CaMKII GB49535 4 No 

FBgn0003744 trc GB53582 4 No 

FBgn0004516 Gad1 GB40118 3 Yes Cardoen et al. (2011b) 
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FBgn0266411 sima GB44532 3 Yes Grozinger et al. (2003) 

FBgn0053051 CG33051 GB47465 3 No 

FBgn0004837 Su(H) GB45655 3 No 

FBgn0000289 cg GB44656 3 No 

FBgn0263239 dar1 GB45841 3 No 

FBgn0004656 fs(1)h GB49193 3 No 

FBgn0004168 5-HT1A GB48005 2 Yes Grozinger et al. (2003) 

FBgn0040508 ACXC GB48102 2 Yes Cardoen et al. (2011b) 

FBgn0002921 Atpalpha GB42054 2 Yes Cardoen et al. (2011b) 

FBgn0025352 Thiolase GB53132 2 Yes Grozinger et al. (2003) 

FBgn0043364 cbt GB45040 2 Yes Cardoen et al. (2011b) 

FBgn0261873 sdt GB43138 2 Yes Cardoen et al. (2011b) 

FBgn0264075 tgo GB44259 2 Yes Grozinger et al. (2003) 

FBgn0046114 Gclm GB40955 2 No 

FBgn0016977 spen GB47009 2 No 

FBgn0031762 CG9098 GB45036 1 Yes Grozinger et al. (2003) 

FBgn0015609 CadN GB45972 1 Yes Grozinger et al. (2003) 

FBgn0000568 Eip75B GB47224 1 Yes Grozinger et al. (2003) 

FBgn0266084 Fhos GB43054 1 Yes Grozinger et al. (2003) 

FBgn0003380 Sh GB43660 1 No 

FBgn0001078 ftz-f1 GB42142 1 Yes Cardoen et al. (2011b) 

FBgn0013755 Bro GB45157 1 No 

FBgn0023143 Uba1 GB55847 1 No 

FBgn0000536 eas GB48085 1 No 

FBgn0266465 GckIII GB50672 1 No 

FBgn0041781 SCAR GB47014 1 No 

FBgn0040285 Scamp GB40151 1 No 

FBgn0004652 fru GB44836 1 No 
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FBgn0266672 Sec8 GB44781 1 No 

FBgn0002524 lace GB42666 1 No 

FBgn0035272 mRpL46 GB46986 1 No 

FBgn0003435 sm GB51622 1 No 

FBgn0261238 Alh GB41753 0 Yes Cardoen et al. (2011b) 

FBgn0051140 CG31140 GB50415 0 Yes Grozinger et al. (2003) 

FBgn0031081 Nep3 GB41659 0 Yes Cardoen et al. (2011b) 

FBgn0034070 SP2353 GB40908 0 Yes Grozinger et al. (2003) 

FBgn0011481 Ssdp GB45216 0 Yes Grozinger et al. (2003) 

FBgn0263352 Unr GB44291 0 Yes Cardoen et al. (2011b) 

FBgn0033015 d4 GB40564 0 Yes Cardoen et al. (2011b) 

FBgn0016794 dos GB55584 0 Yes Cardoen et al. (2011b) 

FBgn0000611 exd GB51904 0 Yes Cardoen et al. (2011b) 

FBgn0260499 qvr GB47508 0 Yes Cardoen et al. (2011b) 

FBgn0041723 rho-5 GB49046 0 Yes Cardoen et al. (2011b) 

FBgn0261041 stj GB44648 0 Yes Grozinger et al. (2003) 

FBgn0030406 CG1463 GB51911 0 No 

FBgn0050069 CG30069 GB55591 0 No 

FBgn0052698 CG32698 GB42541 0 No 

FBgn0031068 Alr GB42690 0 No 

FBgn0038037 Cyp9f2 GB43728 0 No 

FBgn0001079 fu GB54742 0 No 

FBgn0031381 Npc2a GB42887 0 No 

FBgn0016970 l(2)k10201 GB46387 0 No 

FBgn0265296 Dscam2 GB45774 0 No 

FBgn0038402 Fer2 GB40407 0 No 

FBgn0024963 GluClalpha GB43543 0 No 

FBgn0028688 Rpn7 GB55528 0 No 
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FBgn0013334 Sap47 GB52438 0 No 

FBgn0000449 dib GB47901 0 No 

FBgn0010877 l(3)05822 GB54950 0 No 

FBgn0263594 lost GB48933 0 No 

FBgn0033476 oys GB51188 0 No 

FBgn0266848 wap GB54449 0 No 
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Code S1: Python Algorithm to identify Sterility Clusters. Custom Python script used to 

identify the clusters with most number of sterility genes mapping onto them. 

 

import numpy 

import scipy 

import pandas 

import sklearn.preprocessing 

import networkx 

import copy 

 

 

# Preserve cluster size 

def resample_clusters(clustcols): 

clust_size=[261,252,212,209,179,173,153,90] 

  

flat=[] 

for i,c in enumerate(clust_size): 

flat+=(clustcols[:,i][:c].tolist()) 

flat=numpy.random.permutation(numpy.array(flat)) 

   

rs = numpy.zeros_like(clustcols) 

offset=0 

for i,c in enumerate(clust_size): 

rs[:c,i]=flat[offset:offset+c] 

offset+=c 

  

return rs 

   

# Return a list with one entry each gene in 'genelist', telling us which column (cluster) 

# it appears in in 'clustcols' 

def find_clusters(genelist,clustcols): 

gene_is_in_cluster=[] 

for g in genelist: 

#print g 

try: 

gene_is_in_cluster.append(numpy.where(clustcols==g[:7])[1][0]+1) 

except: 

#print g, 'NOT FOUND!' 

pass 

return numpy.array(gene_is_in_cluster) 

  

# Load clusters 

xl_file=pandas.ExcelFile('cluster_ids3.xlsx') 

dfs = {sheet_name: xl_file.parse(sheet_name)  

for sheet_name in xl_file.sheet_names} 
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TBIdf = dfs['Sheet1'] 

 

clustcols=TBIdf.values 

 

# Load sterility list 

filelist=['Cardoen Sterility Genes .xlsx','Baxck Sterility Genes.xls','Emma Hub Genes 

.xlsx','Grozinger 2003 Sterility Genes .xlsx','Grozinger 2007 Sterility Genes .xlsx'] 

#,'Baxck Sterility Genes.xls','Emma Hub Genes .xlsx','Grozinger 2003 Sterility Genes 

.xlsx','Grozinger 2007 Sterility Genes .xlsx' 

 

for f in filelist: 

xl_file=pandas.ExcelFile(f) 

dfs = {sheet_name: xl_file.parse(sheet_name)  

for sheet_name in xl_file.sheet_names} 

try: 

sheet=dfs['Sheet1'].values 

except: 

sheet=dfs['Bakc.csv'].values 

try: 

cardoen = numpy.vstack([cardoen,sheet]) 

except: 

cardoen = sheet 

   

# This would store the clusters from the file 

#cardoen_clust=cardoen[:,1].astype(int) 

#% hist(cardoen_clust) 

 

 

 

# Find which clusters genes belong to in the raw (observed) data 

cardoen_clust=find_clusters(cardoen[:,0],clustcols) 

observed_dist=numpy.bincount(cardoen_clust) 

observed_max=numpy.max(observed_dist) 

 

print (observed_dist) 

# Now let's resample the clustcols 

null_dist = [] # Full null 

max_dist=[] # Distribution of 'largest number of sterility genes found in one cluster 

ns=10 # How many times to resample 

for i in range(ns): 

  

 

resampcols = resample_clusters(clustcols)  

reclust = find_clusters(cardoen[:,0],resampcols) 

null_dist.append(numpy.bincount(reclust)) 
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max_dist.append( numpy.max(numpy.bincount(reclust))) 

null_dist=numpy.array(null_dist) 

max_dist=numpy.array(max_dist) 

print(null_dist) 

print ("This is a break") 

print (max_dist) 

print (max_dist.shape[0]) 

print ("This is a break") 

print (observed_max) 

 

#hist(max_dist) 

 

p = max_dist[max_dist>=observed_max].shape[0]/float(max_dist.shape[0]) 

print(max_dist.shape[0]) 

print (filelist) 

print (p) 
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