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Abstract 

This thesis identifies the research gaps in the field of network intrusion detection and 

network QoS prediction, and proposes novel solutions to address these challenges. Our 

first topic presents a novel network intrusion detection system using a stacking ensemble 

technique using UNSW-15 and CICIDS-2017 datasets. In contrast to earlier research, our 

proposed novel network intrusion detection techniques not only determine if the network 

traffic is benign or normal, but also reveal the type of assault in the flow. Our proposed 

stacking ensemble model provides a more effective detection capability than the existing 

works. Our proposed stacking ensemble technique can detect 90.4% and 98.7% 

cyberattacks with an f1-score of 90.0% and 98.5%, respectively. Our second topic proposes 

a novel QoS prediction model tested in a live 5G network environment. Compared to the 

existing work in this domain, our study is the first approach to conduct a large-scale field 

test in a 5G network to measure and forecast the network QoS metrics. More than 50 days 

of continuous data have been collected, cleaned, and used for training the deep sequence 

models to predict the 5G network QoS metrics such as throughput, latency, jitter, and 

packet loss. Our experiments demonstrate the effectiveness of predicting the QoS metrics 

using LSTM and LSTM Encoder-Decoder models, providing lower prediction errors of 

14.57% and 13.75%, respectively.  

Keywords: Intrusion Detection System, Cybersecurity, 5G, QoS metrics, Time-Series 

analysis, QoS Prediction, Artificial Intelligence. 
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Summary for Lay Audience 

The recent advancement of communication technology, such as 5G, has opened up 

opportunities for next-generation digital services and applications in various sectors such 

as autonomous and connected vehicles, autonomous drones, smart grid, e-health, and many 

other smart-city applications. To ensure the uninterrupted operations of such networks, 

adequate cyber security measures against network intrusions and forecasting network 

health status are important to the Internet Service Provider (ISP) / network operators. In 

this thesis, a novel AI-based cyberattack detection methodology and a network quality of 

service (network health status) prediction framework have been developed and validated. 

These contributions are presented under two related topics:  the first article introduces a 

network intrusion detection system that uses different deep learning models to detect 

cyberattacks. The second topic comprises two parts: the first part proposes a network QoS 

analyzer tool to collect 5G network QoS data, including throughput, latency, jitter, and 

packet loss, from a live 5G network; and the second part presents a novel network QoS 

prediction strategy by utilizing deep sequence models. Our proposed models are expected 

to assist the network planners and operations team in ensuring their committed service level 

agreement (SLA) to their customers. 
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Chapter 1  

Introduction 

Next-generation networks, such as 5G, is intended to provide high throughput, ultra-low 

latency, and high availability to ensure a better service experience for its end users. To 

ensure the uninterrupted operations of such networks, adequate cyber security measures 

against network intrusions; and insight into the current and future network QoS status 

/metrics are essential for the Internet Service Provider (ISP) / network operators as the 

network security and network Quality of Service (QoS) are directly related to the overall 

performance of the network. Recent advancements in Artificial Intelligence (AI) 

techniques and tools can be leveraged to analyze, classify, and detect/predict cyber security 

threats and network QoS status in real-time. In this thesis, a novel AI-based cyberattack 

detection methodology and a network QoS prediction framework have been developed to 

equip the network with such capability. In this regard, we proposed an intelligent network 

intrusion detection system (NIDS) and a QoS prediction system. These contributions are 

presented under two related topics:  the first topic introduces a network intrusion detection 

system that employs a novel stacking ensemble technique comprised of different deep 

learning models to detect cyberattacks, including DoS, DDoS, shellcode, web attacks, etc., 

utilizing two well-known network traffic datasets, namely, UNSW-15 and CICIDS-2017. 

The second topic comprises two parts: the first part proposes a network QoS analyzer tool 

to collect 5G network QoS data, including throughput, latency, jitter, and packet loss, from 

a live 5G network; and the second part presents a novel network QoS prediction framework 

by utilizing deep sequence models Our proposed novel methodologies, techniques, and 

tools directly contributes in network intrusion and QoS prediction. Our developed 

framework is expected to assist the network planners and operations team in ensuring their 

committed service level agreement (SLA) to their customers. 

1.1 Research Contributions 

The overall research contributions are summarized in the following chapters: 
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• Chapter 3: 

1. Proposed a multi-class network intrusion detection system (NIDS) by utilizing 

two network traffic datasets, namely, UNSW-15 and CICIDS-2017; 

2. Employed several data preprocessing strategies, including feature selection and 

data resampling techniques for imbalanced classes; 

3. Employed a stacking ensemble technique comprised of distinct deep learning 

models in both layers of the stacking model; 

4. Evaluate and compare the performance of the proposed stacking ensemble 

technique with other state-of-the-art single deep learning models. 

 

• Chapter 4: 

1. To collect network QoS data from a live 5G network platform, a 5G network 

QoS data collection tool is developed in a controlled environment; 

2. Generated a dataset that contains different QoS metrics of 5G networks, 

including throughput, latency, packet loss, and jitter; 

3. Performed autocorrelation and data windowing techniques to reveal the hidden 

patterns of the data and employed several deep sequence models to predict the 

throughput; 

4. Evaluate the performance of the deep sequence models in different time frames 

in terms of MSE, RMSE, MAE, and WMAPE errors. 
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Chapter 2   

Background 

This section introduces background concepts that are necessary for comprehending the 

various technical concepts in the field of network intrusion detection, 5G network QoS 

prediction and associated AI techniques. 

2.1 Basics of Intrusion Detection in Network Security 

A network intrusion detection system (NIDS) is a form of network protection management 

system that detects potential security breaches in computers, or any devices connected with 

networks. While certain NIDS can respond to security threats once they are identified, 

attackers constantly devise new ways to steal or obliterate data. Moreover, it is essential to 

discover security-related issues before they cause data loss or service disruption.  

2.1.1 How Network Intrusion Detection System (NIDS) Work? 

The Network Intrusion Detection System (NIDS) is responsible for detecting any 

abnormalities that may represent a network threat. An IDS looks for attack signatures or 

deviations from regular network activity by analyzing the forwarded network traffic. Then 

it looks at the attack patterns to determine if there's anything harmful going on. Examining 

traffic patterns can be done in a variety of ways, including address matching, TCP/UDP 

port matching, packet anomaly detection, and so on [1]. Finally, all activities are reviewed 

at the protocol and application layers to assess the presence of an attack. A NIDS is 

different from an Intusion Prevention System (IPS), which diagnoses network traffic flows 

and searches for possible known attacks by comparing traffic flows to its internal signature 

database, dropping adversary packets, and preventing the attacker's IP address or port from 

being exposed.  

2.1.2 History of Cyber-Attacks 

Cyberattacks have a long history and are growing in number and becoming sophisticated 

every day. The first attack was a worm designed by Bob Thomas that infected DEC PD-10 

machines using the Tenex operating system in 1971 when most people didn't even own a 

computer (OS) [2]. In 1988, a graduate student of Cornell University attempted to quantify 
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the scale of the internet users by creating a software that could crawl the web, install itself, 

and report the total number of copies it produced on users' computers. Unfortunately, it 

was installed on the user's computer many times till it crashed [3]. In 1995, a radio station 

called LA KIIS FM hosted a radio contest that was rigged by contestants who used the 

phone network to cheat [4]. In 1996, Panix, a New York-based internet service provider 

(ISP), was the first victim of a Distributed Denial of Service (DDoS) attack that was 

initiated by an SYN flood attack. However, a major cyberattacks occurred in 1999 on a 

university's private network that completely paralyzed the system for over two days with a 

massive UDP flood [5]. The biggest cyberattack ever reported was in 2002, which targeted 

13 Domain Name System (DNS) root servers and all of these servers were the primary 

connection for almost all internet communications [6]. In 2013, Yahoo announced that 1 

million users' profiles had been compromised due to the “state-sponsored” attack [7]. 

During the previous two decades, network intrusion along with many other network 

security concerns has become a more common disruption of the worldwide Internet. With 

some of the most enormous attacks ever reported, especially in Covid-19 lockdown. With 

peak congestion of 2.3 Tbps in June 2020, Amazon Cloud Platforms safeguarded off the 

world's largest-ever Cyberattack in history. 

2.1.3 History of Intrusion Detection System 

The need for IDS increased as business network access created a new issue of granting 

access to the user while monitoring their actions for safe and secure operations. Anomaly 

detection and exploitation detection are two methods for detecting intrusion, where 

anomaly detection inspects users' activities and tries to differentiate them from normal 

behavior, the exploitation detection examines the attack signature to identify the known 

attacks [9]. In 1967, Bernard Peters and Willis Ware of the National Security Agency 

(NSA) and RAND Corporation recognized the necessity for intrusion detection systems 

while dealing with the federal government's classified papers housed in time-sharing 

settings [10]. James Anderson initially proposed the concept of intrusion detection in 1980, 

when he proposed the idea of monitoring user activity and tracking usage [11]. The major 

adaption of intrusion detection systems started in the late 1980s, but they can only alert to 

known attacks; however, scanning and updating the attack signature lists needed a lot of 
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resources. Dr. Dorothy Denning, a scientist at SRI International, proposed the Intrusion 

Detection Expert System or IDES in 1983 as an expert system for detecting intrusion. The 

IDES system's second component was a rule-based method for encoding known attack 

signatures [10]. By the 1990s, her research had paved the ground for the development of a 

real-time, fully functioning intrusion detection system that consisted of four components: 

a Realm Interface, an Anomaly Detector based on a statistical approach, an Anomaly 

Detector with Intelligence, and a graphical user interface [10]. The IDS system gained 

popularity among users from various backgrounds in 1997, and the commercial 

development of the system was launched by the end of that year. Later, researchers used 

statistical methods for detecting intrusions in the network. Nowadays, various machine and 

deep learning techniques are introduced to detect network intrusion on a large scale.  

2.1.4 Types of Network Intrusion Detection systems 

By considering the use case and budget, a NIDS may be classified under four distinct types, 

ranging from security software to a hierarchical system that continually monitors network 

traffic. Furthermore, there are two ways of detecting intrusion detection based on the 

detection strategy. Figure 2.1 depicts the various forms of NIDS based on the data source 

and detection mechanism. 

   Figure 2.1: IDS Taxonomy 

2.1.5 Network-Based Intrusion Detection System (NIDS) 

The most prevalent genre of IDS is the intrusion detection system developed based on the 

network flow, which is implemented at tactical places throughout the network. The basic 



6 

 

task of NIDS is to monitor subnets and compare traffic to discover illegal, restricted, and 

unusual network activities. It works passively while analyzing the incoming traffic and 

uses a network tap, span port, or hub to collect the packets, and when it finds any 

abnormality in the traffic, an alert is sent to the administrator. It passively examines 

incoming traffic and collects packets using a network tap, port span, or hub. If it can detect 

any abnormalities in the traffic, it sends an alert to the administrator. IDS functionality is 

passive, in that it does not immediately restrict network traffic; instead, it maintains track 

of the traffic's analytical data. However, maintaining an IDS is expensive. 

2.1.6 Host-Based Intrusion Detection System (HIDS) 

Host-based intrusion detection systems or HIDS are device-centric, they monitor the 

device's both incoming and outgoing traffic and warn the administrator if any adversary 

packet activity is noticed. HIDS employs a variety of heuristics, rules, and signatures to 

detect unwanted network traffic behaviour. It also keeps an eye on the system log files, 

taking snapshots and comparing them to the prior file system to examine file location. The 

main disadvantage of this system is that it is useless for large businesses since it only 

supports one device and is more susceptible than NIDS.  

2.1.7 Protocol-Based Intrusion Detection System (PIDS) 

The PIDS stands for protocol-based intrusion detection systems, which are configured in 

the server's front end, is used to monitor the HTTPS and HTTP servers. PIDS is responsible 

for supervising and analyzing user-device communications and delivering a secure web 

server. When a PIDS is deployed on a group of servers, it becomes an application-centric 

system that is capable of giving service to a specific set of devices. 

2.1.8 Hybrid Intrusion Detection system 

The hybrid intrusion detection system or HIDS is the combination of multiple IDS, to 

acquire a complete overview of any system's network and its traffic flow, it integrates the 

host or system with network traffic information. Its effectiveness surpasses that of other 

IDS. 
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2.1.9 Signature-Based Intrusion Detection System (SIDS) 

In computer network terminology, a signature is referred to as a pattern or footprint which 

contains information about system activity. SIDS stands for signature-based network 

intrusion detection system, and it searches for signatures, patterns, or any other form of 

identity linked with a certain event. Misuse detection is another term for it. For example, 

to detect an intrusion, it compares network activity to log data and matches the log file for 

any known patterns. It's also known as a knowledge-based system since it draws inferences 

from network traffic data and then takes action based on those decisions [13]. On the other 

hand, the signature-based intrusion detection system can only detect existing attacks; new 

forms of attacks are impossible to detect because no signatures exist for them. 

2.1.10 Anomaly-Based Intrusion Detection System (AIDS) 

AIDS or anomaly-based intrusion detection system detects unknown threats in network 

traffic. Rather than looking for a specific pattern in the malicious packet, it monitors and 

analyses current traffic. The backbone of AIDS is machine learning (ML) and knowledge-

based and statistical techniques, and it works as a baseline for predicting system behaviour 

[14]. ML-based methods performed exceptionally well because these models are trained 

so that, when they find anything that does not reside in the model, they declare it as a 

malicious pattern. AIDS protects the system from traffic and protocol anomalies. In terms 

of reliance, attack detection AIDS is better than SIDS and frequent database update is not 

required. However, managing AIDS is a complex task and the false positive rate is 

significant in this approach.  

Because attack types and scenarios are changed so frequently, detecting attack patterns is 

always a challenge for IDS. Furthermore, IDS is unable to alter attack signatures or develop 

new signatures to predict the new variant. In this scenario, ML and DL-based algorithms 

can be effective in developing IDS; nevertheless, the number of false alarms, low 

recognition rates, imbalanced datasets, and long reaction times pose challenges. 

In this thesis, we attempt to develop a system that focuses on the limitations and flaws of 

existing IDS. To detect anomalies and their signatures, we proposed a model that is 

trained with the most recent network traffic and a variety of attack types in orto Our 
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model will employ new datasets to address flaws such as false-positive rates and low 

detection rates. 

2.2 Cyber-Attacks: What They Are and How They Work 

A cyberattack, in network security terms, is an intentional attempt by a person or 

organization to disable a victim's network and steal data in order to profit from the 

disruption of the victim's network. Cybercriminals are those who engage in cyberattacks. 

They first investigate computer system weaknesses, and if any are identified, they initiate 

cyberattacks for financial or personal benefit. Nowadays, cyber warfare between opposing 

countries is quite widespread, with hackers from one country attempting to damage 

financial, military, and other government functions. More people are using cellular 

networks since the launch of 5G, giving attackers a larger attack surface. According to the 

CSIS (Center for Strategic and International Studies), some of the largest cyberattacks is 

reported in several huge IT companies such as SolarWinds, Amazon, Twitter, and 

Microsoft occurred in recent years [15]. 

2.2.1 Common Types of Cyber-Attacks 

1. DoS (Denial of Service): DoS attacks deplete the resources and bandwidth of 

systems, servers, and networks by sending hundreds of illegitimate requests, 

preventing legitimate users from accessing the servers, and resulting in service 

interruptions. A DoS attack does not result in data theft, and hackers do not demand 

monetary compensation from organizations; instead, it costs time and resources to 

restore service.  DoS attacks can be carried out in two ways: flooding the target 

system or service and exploiting flaws that force the target system or facility to fail. 

ICMP floods, SYN floods, and buffer overflow assaults are all common floods [16]. 

A Distributed Denial of Services (DDoS) assault is related to a DoS attack in that 

it utilizes several compromised devices to launch the attack rather than a single 

device. Proxy servers, firewalls and switches protect a system or server against a 
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small DoS and DDoS attack assault. DDoS attack can have many variations in 

different attack scenarios.  

Figure 2.2: DoS Attack Strategy 

Figure 2.3: DDoS Attack Strategy 

2. Fuzzers: In this attack, attackers put the system under stress by supplying arbitrary 

data as inputs that cause unexpected behaviour, resource leakage, and a variety of 

error codes. Fuzzers are typically used by system development and cyber security 

teams to detect system bugs, but hackers have used them to obtain system 

information, which leads them to retrieve important information from the system 

to do malicious activity [42]. Machine learning is now a popular method for 

cybercriminals to discover vulnerabilities in a system. Dumb fuzzers, smart fuzzers, 

evolutionary fuzzing attacks, and mutation-based fuzzing are the commonly used 

fuzzing attacks deployed by the attacker.  

3. Shellcode: Shellcode uses a collection of commands and delivers them to a remote 

shell to take control of a compromised machine, which is essentially identical to 

exploits. Shellcode uses a collection of commands and delivers them to a remote 

shell to take control of a compromised machine, which is essentially identical to 

exploits [17]. Shellcode attacks can be mitigated with security solutions that have 
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a machine learning method in the back that can learn and predict the behaviour of 

a shell command. 

4. Reconnaissance: The term "reconnaissance" is frequently used in the military to 

describe an assignment to obtain intelligence from a target to help uncover a 

security flaw. It's typically used for penetration tests, but pirates have used it to 

gather data from email or servers, as well as root privileges and user profile 

information from a variety of target sources. Active and passive reconnaissance are 

two popular methods of reconnaissance in which information is gathered using OS 

fingerprinting and Wireshark methodologies [18].  

5. Computer Worms: The terminology "computer worms" was originally used in 

1975 by John Brunner in his novel "The Shockwave Rider," and the very first 

computer worm was "Morris Worm," which was released in 1988 [19]. Computer 

worms affect other computers linked to this system by duplicating themselves or 

spreading across the entire network, rather than infecting the file system. However, 

many worms have payloads planned to rob vital information. It can infect the target 

machine in a variety of ways, such as spam emails or instant messaging with 

attachments; when the user clicks the attachments, the malware is installed without 

the user being notified. Computer worms can be detected and removed with high-

quality anti-virus software. 

6. Port Scanning: It's a typical strategy employed by cybercrooks while looking for 

weak spots in networks. Hackers first scan for target hosts and send packets to an 

open port, then determine whether the port is being utilized by obtaining a response 

[41]. They then collect user and system data such as services, authentication 

systems, and other system-related data. Hackers utilize another method to detect 

vulnerabilities in ports called port mapping. 

7. Brute Force Attack: It's an old but effective method of obtaining users' personal 

information or sometimes, hackers spread malware in the entire system of the users. 

Hackers use all feasible permutations to guess login information and encryption 

keys in an attempt to acquire access to the target system. Brute force cyberattacks 

come in many forms, including dictionary, hybrid, reverse, and credential [41]. 
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In this thesis, we aim to cover practically all types of cyberattacks, and we train and 

evaluate our unique IDS Ensemble stacking model using two large publicly available 

cyber-attack datasets, UNSW-15 and CICIDS2017. 

2.3 Communication Networks 

A computer network is a set of devices such as laptops, servers, smartphones, etc., 

connected through cables, optical fibers, and wireless radio-frequency methods to share 

resources. Moreover, network devices communicate with each other via modem, which 

turns data into signals and allows for a two-way network connection. Since the advent of 

the 5G network, streaming services have grown in popularity, and users are more interested 

in sharing massive multimedia files across many platforms. However, as the number of 

subscribers on cellular networks expands exponentially, ISP providers face a significant 

challenge in guaranteeing the network's Quality of Service (QoS) to its end users. The 

network building blocks and principles used throughout this thesis are briefly discussed in 

the following sections. 

2.3.1 5G Network Basics 

5G stands for 5th generation mobile cellular network that is significantly faster compared 

to its predecessor, 4G/LTE, and the commercial deployment of 5G started in 2020. The 

need for high-speed connectivity is growing every second as the world's mobile data traffic 

doubles every 18 months. 5G was created to effectively supply tremendous data expansion 

to meet this need. According to Global System for Mobile Communications Associations 

(GSMA) 25% of the world population will be connected to 5G within 2025 [21]. Along 

with multi-Gbps data speed 5G also provides massive network capacity, ultra-low latency, 

more availability, and high reliability. Another 5G feature is network slicing, which allows 

each connected service to have a separate, unique portion of the network that is guaranteed 

for use only for that reason. By 2025 the number of IoT devices globally will be increased 

to 30.9 billion and only 5G can fulfill the staggering network bandwidth demand to connect 

all the devices [22].  
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2.3.2 5G Network History 

There are no specific organizations or person is working behind to bring 5G into the market 

instead, it is a collaboration of several telecom consortiums and companies within the 

mobile ecosystem. The term "Internet of Things" (IoT), proposed by Kevin Ashton in 1990, 

is closely associated with the idea of high-speed internet [23]. IoT is a concept of 

connecting billions of devices to share real-time information from home appliances across 

the globe. To share data, users need high-speed Internet connections. By early 2004 

developers concluded that it was impossible to connect billions of devices for real-time 

responses by 4G or 3G with a latency of 40ms or higher. 

NASA initiated the official development of 5G in 2008, when NASA funded a company 

named Machine-to-Machine Intelligence (M2Mi) to develop IoT and M2M technology and 

the development of 5G technology to support the IoT devices. Meanwhile, South Korea 

started an IT R&D program that same year to design a beam-division multiple access-based 

5G mobile communication system. While the University of Surrey obtained funding from 

the British government for a 5G research center where they partnered with Telefonica 

Europe, Huawei, Fujitsu Laboratories, and Aircom International, New York University 

established a research facility titled NYU WIRELESS in 2012 for 5G research. A 5G 

research project called Mobile and Wireless Communications Enablers for the Twenty-

Twenty Information Society was introduced by the European Union (EU) later in 2012 

[26]. Moreover, European Union (EU) also established a public-private partnership to 

accelerate research and innovation on 5G in 2013.  

South Korea became the first nation to deploy 5G in 2019 following several stages of 

development carried out by various research laboratories. South Korean telecoms firms SK 

Telecom, LG Uplus, and KT serve as the key contributors to the debut of 5G. Later Verizon 

from the United States rolled out its first 5G services publicly by connecting a few 

thousands of customers. Moreover, at the beginning of 2020, the number of live 5G 

network providers increased significantly in Europe. In 2020, Rogers, Bell, TELUS 

launched 5G networks in some major cities in Canada. For using 5G the main requirements 

have a 5G support phone. 
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2.3.3 How 5G Network Works 

All 5G compatible devices in a cell are connected to the Internet by radio waves through a 

local antenna located in the cell, and 5G services are separated into these tiny geographic 

regions known as cells. 5G utilized the radio frequencies to send and receive data like other 

available cellular networks. 5G also provides a different band of the spectrum – low band, 

high band, and mid band, where low band is for long distance coverage, but not fast, high 

band can carry a large amount of data with less delay, but coverage area is limited, and the 

mid band is also known as C band provides faster Internet with wider coverage area.  

To fulfill the customer needs, the architecture of 5G is conjugated with Radio Access 

Networks (RANs) like Orthogonal Frequency Division Multiplexing (OFDM) based wave 

signals, frame technology and multiple access technologies [24]. OFDM is very popular 

system for transmitting signals over wireless channels, it was also broadly used in Wi-Fi 

and 4G LTE. OFDM is completely different from its predecessor, Frequency Division 

Multiplexing (FDM) where it modulates the digital signals received from different 

channels to reduce the inference. 5G utilized a 5G-New-Radio (5G-NR) air interface along 

with OFDM technologies [24]. The advantages of using OFDM are it has low noise, wider 

spectral efficiency by utilizing Multi-Input and Multi-Output (MIMO) technology, and 

data transmission efficiency. However, for heterogenous network traffic MIMO and 

OFDM is not well enough because of their fixed transmission time interval (TTI) during 

transmission. To overcome this issue, 5G incorporated multiple access technology to 

achieve both downward or upward expansion of different TTI with constant frequency, and 

it helps 5G reduce the latency. Integrating TDD frame technology is another approach for 

reducing delay in 5G where a single frame is a combination of transmitted data along with 

acknowledgement. 

2.3.4 Quality of Service (QoS) Metrics of the Networks 

The measurement of service quality that the network providers offer to the users is known 

as Quality of Service (QoS) [27]. Measurement of QoS metrics can be used to justify the 

impacts of 5G internet traffic on network performance. The following are descriptions of 

several QoS parameters: 
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Packet Loss: A packet is a compact bit of data that is routed between a source and a 

destination through a network protocol. A packet loss happens when a delivered packet 

fails to reach its intended destination. It is measured as a proportion of lost packets 

compared to total messages delivered. The main reasons behind packet loss are weak 

network signal at the destination, system noise, network congestion, bounded memory at 

nodes, etc. Eq. 2.1 shows how Packet loss is formulated. 

 
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =  

𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 –  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 × 100 

(2.1) 

Latency: The term latency is used to define the delays in network communication. Latency 

is the total proportion of transmission time taken by a packet to reach from source to 

destination. When transmission time is small it is referred as low latency and higher 

transmission time is referred as high latency. Eq. 2.2 shows how the latency is calculated. 

 
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  

𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑖𝑧𝑒

𝐿𝑖𝑛𝑘 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 

(2.2) 

The following are the four main factors that influence the network latency: 

a) Propagation Delay: A packet's propagation delay is the time it takes for it 

to travel via a transmission channel like copper, coax, or fiber optics from 

source to destination. 

b) Queuing Delay: It happens when one packet is waiting for the transmission 

to the destination while another is using the router's services. 

c) Transmission Delay: The duration of time it takes to transfer all the bits in 

a packet from the host to the transmission medium is also known as 

packetization delay. 

d) Processing Delay: It is the time takes for a router to examine all incoming 

packets based on their packet header and routing table to identify which node 

to forward the packet to next. 
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Jitter: When a packet is sent from one source to another, it is sent in regular intervals over 

a set period of time. Eq. 2.3 depicts the calculation of jitter. When there is a variation in 

time delay in sending packets, it is called jitter. The main causes of jitter are network 

congestion and route changes. 

 
𝐽𝑖𝑡𝑡𝑒𝑟 =  

𝑠𝑢𝑚 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦

𝑠𝑢𝑚 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 

(2.3) 

Throughput: The amount of data transported from a source to a destination in a unit of 

time is referred to as throughput. Bits per second, or bps, is a common unit of measurement 

for throughput. Throughput is determined by the available bandwidth, which resembles a 

network's maximum capacity at any one time. Throughput increases as bandwidth 

increases. The formulation of throughput is given in Eq. 2.4. 

 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑡

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒
 

(2.4) 

2.4 Impact of 5G on QoS 

5G networks significantly outperform its predecessor 4G in terms of Quality of Service 

(QoS). MIMO, mm waves, and OFDM technology were employed in 5G to enhance the 

number of clients served. Additionally, compared to 4G, 5G can deliver higher throughput, 

expanded capacity, lower latency, reliability, availability, and dynamic bandwidth 

distribution. The main features of 5G are briefly discussed below: 

a) eMBB (Enhanced Mobile Broadband): Since the network is being densified day 

by day, to solve this, 5G is delivering seamless coverage with higher data speeds 

and dynamically distributing bandwidth. Video streaming, virtual reality, 

augmented reality, and other services benefit from high throughputs. 

b) mMTC (Massive Machine Type Communication): To deliver various services, 

many heterogeneous embedded sensors are connected. This huge network might be 

accommodated through 5G by scaling down data rates, power, and mobility to 

connect one million devices per square kilometre. 
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c) uRLLC (ultra-reliable and low-latency communications): Machine-to-machine 

(M2M) connections, such as robotic manufacturing, remote surgery, and expensive 

simulation, require a network with low latency, high reliability, and high 

availability. When the network state changes, 5G provides ultra-reliable, low-

latency services that will not disrupt any services. 

A class identifier (QCI) technique known as 5QI is employed in 5G to measure quality-of-

service. The improvement of overall QoS with 5G is given below: 

I. The throughput of 5G is up to 20 Gbps in downlink peak data rates. 

II. The average latency is reduced to 1 to 10 milliseconds for 5G which 

was 50 milliseconds for 4G.  

III. In 5G, the block error ratio, a network reliability benchmark, is 

expected to be 0.00001 in 1 millisecond, down from 0.01 in 4G. 

IV. The availability of 5G is expected to be 100%. 

V. Jitter was reduced to 10–100 microseconds which is less than 4G 

LTE. 

2.5 Machine Learning Concepts 

For the past two decades, researchers have attempted to automate intrusion detection in 

various contexts. Additionally, they attempt to use machine learning approaches to solve 

drawbacks in earlier methodologies such as false-negative rates and detection accuracy. 

Earlier machine learning systems relied on trial and error, with models attempting to 

discover the pattern of attacks and then making predictions based on the matched pattern 

information. Later, signature-based detection was used, in which ML models compared 

normal and attacked traffic and identified an attack if the signature fell below a particular 

threshold value. Instead of detecting a specific attack, researchers can only distinguish 

between attack traffic and regular traffic using this method. Machine learning methods get 

more powerful in computing over time, providing better results in managing normal and 

abnormal data in a variety of real-world scenarios. Researchers combined machine learning 

approaches to produce an IDS that is generalizable enough to identify attack victim’s 

variants and unique attacks. Moreover, machine learning models are not domain-specific; 
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rather, to develop a basic IDS model, it combines various statistical techniques with a 

mathematical analysis. 

2.5.1 What is Machine Learning and How Does it Work? 

Machine Learning (ML) is an application of Artificial Intelligence (AI) that attempts to 

emulate the human brain by achieving knowledge from a given dataset and learning from 

it to increase the accuracy. According to Jordan and Mitchell, machine learning (ML) 

tackles two interconnected research questions: firstly, how a system can use its knowledge 

to continuously achieve a better performance, and secondly, to achieve that knowledge, 

what should be the core learning system for constructing a model [20]. Data is the most 

important part of building an ML model, and data can take numerous forms, including text, 

image, video, audio, time series, and many more. In its learning process, an ML model 

usually goes through three steps: it gives a pattern based on input data in the decision‐

making process, it uses an error function to compare the model to known instances, and 

finally, it updates its weight values to minimize the error gap between known examples 

and model estimation for optimization. ML model data is divided into two parts during the 

learning process: Training and Testing set. Figure 2.4 shows the learning process of 

machine learning. 

              Figure 2.4: Learning Process of Machine Learning 

1. Training Set: This portion of the data is typically utilized to train the machine 

learning model, and data from the training sample is excluded from the test sample 

and total percentage of training data is higher than the percentage of testing data, 

which is between 70% and 80%. The data in the training set sometimes have labels, 

therefore during learning ML algorithm can correlate data with the label. 
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2. Testing Set: A chunk of data that is not used in the training process. After training 

the model with a train dataset, the test set is used to validate our model and observer 

how the model is performing for unseen data. Test set needs labels to calculate the 

different metrics to evaluate the performance of the models. 

Aside from the train and test sets, a component of data called the validation set is employed 

during training by dividing the training set, which is used to estimate the performance of 

our model.  

There are mainly three different kinds of ML classifiers: supervised ML, unsupervised ML, 

and reinforcement machine learning. We will briefly discuss supervised machine learning 

and its various algorithms in the following section because it is a crucial component of this 

thesis. We'll aim to cover a variety of supervised learning algorithms, from the most basic 

to the most advanced, such as deep learning.  

2.5.2 Supervised Machine Learning Algorithms 

Supervised ML strategies try to create a model which learns about the characteristics of 

previous data with class labels and can make predictions about new data without labels 

[20]. The algorithms learned through training data can be thought of as a supervisor, 

monitoring the learning approach until it discovers sequences and input label and out labels 

are linked together. 

Supervised learning algorithm maps from input 𝑥 to output 𝑦, where the learning phase of 

the algorithm starts with a dataset 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … . . , (𝑥𝑛, 𝑦𝑛)}. Here, 𝑥𝑖 is input 

vector or matrix, which are also referred as features and 𝑦𝑖 is the label we will predict and 

it could predict one or more than one thing. All of these data are from an unidentified 

distribution M, so (𝑥𝑖, 𝑦𝑖) ~ M, where (𝑥𝑖, 𝑦𝑖) are independent. The formula of supervised 

learning is presented in Eq. 2.5. 

 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … . . , (𝑥𝑛, 𝑦𝑛)}⸦ =  𝑁𝑑𝑥 𝐿  (2.5) 

Here, 𝑛 is the dataset size, 𝑁𝑑 is the feature space with 𝑑-dimension and 𝐿 is the labels of 

the data. Labels 𝐿 can be binary, where label space lies between {0, 1}, for example for 

IDS dataset binary label can be attack traffic and normal traffic. For multi-class 



19 

 

classification problem, we need to specify multiple class, like 𝐿 = {1 = DoS, 2 = DDoS, 3 

= Worm, etc.}. 

Classification and Regression are two types of problems handled by Supervised ML 

algorithms. Models for regression problems attempt to predict numerical representation 

between the input and output data. Classification algorithms use input data to try to find 

patterns and relationships among different categories and classes. Binary classifiers are 

used to predict whether network traffic is being attacked or not and multi-classifiers can 

predict different cyberattack variants. In the following few sections, we will briefly 

describe some important types of classification-based supervised ML algorithms that are 

related to this thesis. Figures 2.5 shows the taxonomy of supervised machine learning. 

         Figure 2.5: Taxonomy of Supervised Machine Learning 

2.5.3 Linear Regression 

The most commonly used supervised learning approach is linear regression, which 

analyses the strength and link between two or more variables and depicts the relationship 

with a straight line. When two variables are compared, one is termed the independent 

variable, while more than others could be use as dependent variable, also known as the 

goal. The linear regression is formulated in Eq. 2.6. 

 𝑦 =  𝛽0 +  𝛽1𝑋 +  𝜀 (2.6) 
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Where, the predicted value of the dependent variable is 𝑦,  𝛽0 is considered as the intercept 

of 𝑦, 𝛽1 is the coefficient of regression, 𝑋 is the independent variable and the error rate is 

𝜀. Three sorts of relationships that can exist in a regression line: no relationship, positive 

relationship, and negative relationship. The coefficients are generated to reduce the error 

rate between the real data and the predictive model to acquire the best predictive model. 

The error might be positive or negative, and the mean squared error (MSE) is determined 

as the sum of the squared distance between model predictions and actual data [43]. 

 𝑀𝑆𝐸 = 𝑠𝑢𝑚((𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)2) (2.7) 

The key benefit of linear regression is that it is easy to use and less difficult than other 

techniques. Furthermore, regularization and dimensionality reduction keep the linear 

regression model from overfitting. Linear regression, on the other hand, can only handle 

single dependent and independent variables. 

2.5.4 Decision Tree 

A Decision tree, or DT, is a ML classifier with a tree structure that learns decision rules 

from features to forecast a target. It can contain three nodes: parent, child, and leaf nodes. 

The decision tree's learning process begins at the root node, which holds the complete 

dataset, and proceeds along the tree, answering yes or false questions until it reaches the 

leaf node, where it obtains knowledge about a particular sample. The decision tree provides 

final predictions for a given data point by taking the average value of the dependent 

variable from the leaf node. Pruning is used to overcome an overfitting problem that might 

occur with a deep decision tree design.  

A decision tree is simple to understand, uses little processing power, and requires less data. 

Its overall performance is unaffected by pretreatment non-linearity. However, when only a 

tiny percentage of the data changes, the decision tree becomes unstable. 

2.5.5 Random Forest 

Random Forest was created to address the decision tree's shortcomings and is used for non-

linear regression. It is also known as an ensemble decision tree since it is a mix of numerous 

decision trees. The training data is sent through numerous decision trees, and after 
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processing, various outputs from all of the trees are combined to provide outputs that are 

either majority voted or averaged. 

Random forest overcomes the overfitting problem of the decision tree and provides more 

accurate results than the decision tree. In a decision tree, only one tree structure is used 

while a random forest is a combination of multiple decision trees. That is why its 

computation complexity and memory requirements are higher compared to the decision 

tree.  

2.5.6 Support Vector Machine 

Support vector machine or SVM, attempts to categorize data points in N-dimensional 

feature space by locating a hyperplane or decision border. Hyperplanes are decision 

boundaries that separate data, with data points on opposite sides classified as belonging to 

distinct classes [30]. The primary purpose is to identify the highest margin that produces a 

distance between two classes, with a greater margin distance indicating the best SVM 

model. 

                                            Figure 2.6: Support Vector Machine [30] 

Figure 2.6 depicts an SVM with a maximum margin hyperplane, with a solid black line 

representing the maximum margin between two separate classes; moreover, positive as 

well as negative hyperplanes separate the classes, and decision boundaries called 

hyperplanes are utilized to predict the classes as output. 
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2.5.7 Neural Networks 

In machine learning concepts, a neural network is a mathematical model that can simulate 

the capabilities of neurons in the human brain. A neural network's basic structure is a 

mathematical model, often referred to as a function, used to address computational 

problems. The three sets of laws in a neural network are multiplication, summation, and 

addition, where each input value in the network is multiplied by a weight. Every weighted 

input is summed with a bias, and finally, weighted input and bias are pass-through 

functions called activation functions [20].  

The most common form of the neural network is the perceptron, which consists of input 

and output layers, with the input layer containing many inputs 𝑥𝑛 multiplied by a weight 

𝑤𝑖 and output after summing them. Fig 2.7 shows the basic architecture of the neural 

network. 

Figure 2.7: Perceptron Architecture 

The perceptron's activation function can only be used with linearly separable classes; 

otherwise, it will not classify properly. Moreover, because of their binary label transfer 

function, the activation function can only provide two outputs (0 or 1). Perceptrons are also 

incapable of learning from the logical function "XOR". Because of the aforementioned 

reason, the perceptron has no real-world utility. However, the hidden layers, are added to 

the perceptron, it becomes a multilayered perceptron capable of solving complicated 

problems and non-linear activation function is used to achieve the non-linearity. 
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2.5.8 Multi-layered Perceptron 

A multilayer perceptron (MLP) is a perceptron that has more than one one-liner layer, also 

referred to as a hidden layer. It's also used interchangeably as the feed-forward neural 

network because the outputs of one layer become the inputs of the next layer, and each 

layer is connected to the next layers, resulting in a fully connected layer. Input units, output 

units, and one or more hidden layer units are the major MLP layers. The depth of the MLP 

is defined as the number of layers, while the width is defined as the number of units. The 

input layer extracts feature from input data, forwards them to the hidden units, and 

performs computation before passing them on to the output units [20]. Fig 2.8 shows a 

multilayer perceptron comprised of one input layer, one hidden layer and one output layer. 

      Figure 2.8: Multi Layered Perceptron Architecture 

The input layer has 𝑥𝑛 units, associated with different weights and same bias. Because the 

network is fully connected, the output of the input layers is forwarded as inputs to the 

hidden units. The units of the hidden layer are denoted as ℎ𝑖 and Eq. 2.8 and 2.9 is used to 

calculate the hidden layer. 

 ℎ1 =  Ф1 (𝑤1𝑥 + 𝑏1)  (2.8) 

 ℎ2 =  Ф2 (𝑤2ℎ1 + 𝑏2) (2.9) 

The function Ф represents the activation function, we provide two activation functions 

since the activation functions of different levels differ. The bias value is denoted by 𝑏, 

while the weights are represented by 𝑤. The weights 𝑤 influence the strength of 
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connections between neurons. The weight vector 𝑤𝑖𝑗
 which is a combination of 𝑖𝑡ℎ input 

layer and 𝑗𝑡ℎ hidden layer combined into a single matrix called 𝑤 by using dot product 

multiplication. The result of the hidden unit then becomes the input data of the output unit, 

which is denoted by 𝑧. Eq. 2.10 shows the formulation of the multilayer perceptron.  

 𝑧 =  Ф1 (𝑤3) ℎ2 + 𝑏3  (2.10) 

We must normalize the output vector, which comprises real number values, in order to 

forecast the class labels. To estimate the class labels, we'll encode to a probability 

distribution y and use the SoftMax function to normalize the output layer in neural 

networks and the calculation is given in Eq. 2.11. 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =  
exp(𝑧𝑖)

∑ exp(𝑧𝑗)𝑗
  (2.11) 

The SoftMax function translates the raw outcomes of a function into probability 

distributions, with a range of 0 to 1. For multi-class classification problems, SoftMax 

functions are sometimes employed as the activation function in the output layer of a neural 

network, where it displays the probability of each class. It probabilistically maps the output 

so that the total sum of the output classes equals 1. 

The multilayer perceptron (MLP), which has numerous input layers, hidden layers, and 

output layers, is sometimes referred to as an artificial neural network (ANN). A deep neural 

network (DNN) is a type of artificial neural network that contains several hidden layers in 

between the input and output layers and a specific degree of complexity. It can handle both 

linear and non-linear connections and performs complex mathematical operations. Data 

goes from the input to the output layer without looping back in this feedforward network. 

DNN multiplies and adds weights with an input value and outputs a value between 0 and 

1, and it also modifies the weights if the method doesn't work correctly. 

Neural networks can extract features from imperfect or complex data to identify solutions 

that are too difficult and time-demanding for the human brain to solve. They can also be 

considered a collection of algorithms for detecting hidden patterns and storing them for 

future use once they learn the patterns. When the relationships between the inputs and 
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outputs are nonlinear and difficult to interpret, Neural networks draw assumptions and 

generalizations, as well as expose relationships and generate predictions. Neural networks 

outperform other machine learning models when it comes to making predictions from 

unknown data. In this part, we covered a simple version of a neural network with one 

hidden layer, often known as shallow neural networks. We will look at several deep neural 

networks with multiple hidden layers in the sections ahead. 

2.6 Deep Learning Concepts 

In this section, we'll go through the various deep learning (DL) models that are relevant to 

our thesis. DL is a subset of ML which allows multilayer mathematical models to learn 

data representation by emulating the behaviour of the human brain. DL can evaluate data 

in a way that imitates the functions of human brain, and this structure is referred to as an 

ANN (Artificial Neural Network). When compared to ML, the structure of DL is more 

complicated, and it requires less human interaction because of its sophisticated design, 

which allows it to learn characteristics autonomously. Compared to traditional ML, DL 

takes more data to develop a model, and its sophisticated multi-layered structure learns 

diverse aspects from data while eliminating data fluctuations. Although DL systems take 

longer to train, they may produce results almost instantly. There are many different neural 

network topologies, and we'll go through Convolution Neural Network (CNN), Long 

Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). 

2.6.1 Convolution Neural Network 

Convolution neural network (CNN) also known as ConvNet designed to process grid-like 

topological data such image. The first CNN was developed by Yann LeCun, where he 

proposed LeNet-5 which was able to recognize handwritten characters like postal code 

[28]. CNN consists of multiple layers where earlier layers are responsible to extract 

features and later layers combines the features and make predictions. Figure 2.9 shows that 

a CNN model consists of various types of layers where convolution and pooling are used 

for feature extraction and fully connected layers are responsible for classifying the results. 
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Figure 2.9: Convolution Neural Network [31] 

1. Convolution Layer: It is the computational load-bearing building component of 

the CNN model. A filter or kernel slides across the input picture using stride and 

combines the filter values with original pixel values using dot product 

multiplication to form a new dimensional activation map, and the input of a 

convolution layer is reshaped to an ideal size. We add padding to the image's outer 

frame to provide additional space for the filter to cover the image, and it enables a 

more accurate image analysis by CNN. If we have a CNN input shape 𝑖 × 𝑖 × 𝑑 , 

where 𝑖 is the input size with 𝑑 dimension Convolution layers works as follows: 

 𝑖𝑜𝑢𝑡 =  
𝑖−𝑓+2𝑝

𝑠
+ 1  (2.12) 

Where, 𝑓 is the kernel size, 𝑠 is stride, 𝑝 is padding, 𝑖 is the input, d is the dimension 

and 𝑖𝑜𝑢𝑡 is the output of convolution layer. 

2. Pooling Layer: Several pooling layers can be piled with convolution layers one 

after the other in a CNN architecture. Max pooling is the most used pooling layer. 

By sweeping a 2-D filter across the feature map, down sampling it, and aggregating 

the maximum output from the feature map, max-pooling minimizes the spatial size 

of the image. If we have a feature map of 𝑖 × 𝑖 × 𝑑, a kernel size of 𝑓, and stride 𝑠 

the output of max pooling can be:  

 𝑖𝑜𝑢𝑡 =  
𝑖−𝑓

𝑠
+ 1  (2.13) 

Where, 𝑓 is the kernel size, 𝑠 is stride, 𝑖 is the input. 
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3. Fully Connected Layer: Fully connected layers, also known as Dense layers, are 

made up of neurons, biases, and weights, and they interconnect the neurons 

between two layers. Before forwarding the input images from the previous layers 

to the fully connected layer, they must be flattened. Dropout layers are provided in 

between the fully connected layers to protect the model from overfitting. Finally, 

several activation functions such as the sigmoid or SoftMax activation function are 

used to derive class label predictions from fully linked layers. 

2.6.2 Recurrent Neural Network 

A recurrent neural network (RNN) is an artificial neural network (ANN) that works well 

with a sequence of data or time-series data. Furthermore, ordinal or temporal issues are 

frequently addressed using it. The RNN has at least one feedback link to allow activations 

to circulate in a loop, allowing the RNN to learn data sequences. When making future 

predictions, RNN has the capacity to recall the connection between the current input and 

the inputs that have already been used. RNN, however, is only capable of taking a little 

stride backward [36]. Figure 2.10 shows the basic architecture of RNN.  

Figure 2.10: Basic Architecture of RNN [36] 

It simply implies that the network's layer structure is repeated by the architecture 

throughout the entire period. Here, 𝑋𝑡 is the vector of size N at timestamp 𝑡. A is the hidden 

state at time step 𝑡, and it is considered as the memory of the network. The calculation of 

the memory state is based on previous hidden state and the input at the current time step. 

The calculation is shown in Eq. 2.14.  

 𝐴𝑡 = 𝑓 (𝑊𝑋𝑡  +  𝑈𝐴𝑡−1 )  (2.14) 
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Where, 𝑊 is the input weights and 𝑈 are is a weight of previous state. 𝑓 is a non-linearity 

used to generate final cell state. 

Theoretically, RNN can manage long-term dependencies and is effective for time series 

forecasting. It can handle input of any length, and even if the input size grows, the model 

size stays the same. The weights are constant across time and give historical data weight. 

RNN computations move more slowly, and training might be challenging. It struggles with 

exploding and gradient disappearing. 

2.6.3 Long Short-Term Memory 

Hochreiter and Schmidhuber initially proposed the Long Short-Term Memory (LSTM) as 

an advanced variant of RNN in 1997, to address the problem of exploding and disappearing 

gradients [29]. The only objective of LSTM is to avoid long-term reliance issues, and it is 

capable of automatically remembering information for lengthy periods of time. Figure 2.11 

shows that the LSTM is made up of three cells, also known as gates: 

Figure 2.11: Long-Short Term Memory [31] 

1. Forget Gate: This LSTM cell decides whether the cells need to keep information 

gained from the previous cell or forget it. A sigmoid function is utilized and it looks 

at the hidden state of the previous timestamp ℎ𝑡−1 and current timestamp and give 

a number between 0 and 1 as output, where 1 represents storing the state and 0 

represents removing the state. Eq. 2.15 represents the calculation of forget gate. 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)    (2.15) 

2. Input Gate: The input gate, also known as the store gate, is in control of storing 

and quantifying new information. The first layer incorporates a sigmoid function to 
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determine which values in the cell need to be updated, while the second layer 

obtains the new data and applies the tanh activation function, which translates the 

new data between -1 and 1. After that both two parts are combined and updated the 

state.  

 𝑖𝑡 =  𝜎 (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.16) 

 �̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑐) (2.17) 

The formulation input gate is presented in Eq. 2.18. 

 𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗ �̂�𝑡 (2.18) 

3. Output Gate: A sigmoid function is utilized in the output layer to determine which 

elements of the cell state will be the output. The cell state is sent through the 

activation function tanh, which outputs values ranging between -1 to 1. 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.19) 

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (2.20) 

2.6.4 Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is another short-term memory solution, and its essential 

principle is virtually identical to that of the LSTM. GRU used a hidden state to transport 

information instead of a cell state, and its design consists of two hidden states: the reset 

gate and the update gate. GRU's architecture is shown in Figure 2.12. 

Figure 2.12: Gated Recurrent Unit [32] 
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2.7 Stacking Ensemble Architecture 

Ensemble methods are strategies that are made up of numerous models that are then 

combined to improve classification and regression accuracy. When compared to a single 

model, a collection of models provides higher accuracy. 

In a classification problem, we could use the hypothesis value 𝐻 to categorize the new 

samples residing in the training data. The principal purpose of the hypothesis is to translate 

the features of the training data into relevant labels or classes that need to be predicted. 

Furthermore, it should reduce the generalization error by closely approaching the genuine 

unknown functions. To construct hypothesis H in the supervised learning technique, known 

data labels must be given in the training data instances. In the DL model, the purpose of 

producing hypothesis 𝐻 is to predict unknown labels from test data. Additionally, 

incorporating predictions from several models can increase overall performance, and this 

combination of different models is referred to as ensemble learning or ensemble model. 

Several types of ensemble techniques developed such as voting and averaging based and 

stacking based ensemble methods. In our thesis, we are using stacking-based ensemble 

methods because it uses a second label learner also known as meta learner through which 

it can define which classifiers are appropriate and which are not. While bagging and 

boosting employ homogeneous weak learners, ensemble uses heterogeneous weak learners 

to train them in parallel and aggregate them. One drawback of this method is that each 

model's contribution to ensemble forecasts can occasionally be the same. Figure 2.13 

shows the basic architecture of stacking ensemble technique. 

Figure 2.13: Stacking Ensemble Model Architecture 

The idea of stacking was initially presented by David H Wolpert in 1992 when he divided 

the dataset into 𝐽 equal pieces and utilized 𝐽𝑡ℎ fold cross-validation during training while 



31 

 

the remaining samples were used for the testing purpose [33]. He later trained numerous 

models using the training test pairs as input for the meta-model using the training test pairs. 

Deep Convex Net (DCN) was proposed in 2011, and it was made up of many approaches 

layered together, including a linear input layer, non-linear hidden units, and a second layer 

containing target classes [34]. The output from lower modules is passed as the input of 

adjacent higher modules, and all the modules are connected to each other. Combining 

model-based approach along with hill climbing approaches, a data-driven framework for 

selecting parameters and models in a deep-stacked neural network was suggested in 2016 

[35]. Parameter estimates, model selection, and hyperparameter tuning are all part of the 

stacking framework. An ensemble model uses the predictions of the previous layers models 

and combine them together and takes them as input to build a new model, and the 

calculation is presented in Eq. 2.21.  

  𝑓(𝑦|𝑥)  =  ∑ 𝑤𝑚𝑓𝑚(𝑦|𝑥)

𝑚𝜀𝑀

 
(2.21) 

Where, 𝑓_𝑚 is the 𝑚’th base model.  

2.8 Time Series Forecasting 

A time series is a group of observations or a set of data points that monitors samples across 

time. The time series' data points are used to depict changes over time. They have often 

repeated observations of various data measures from comparable sources. These 

observations are generally done on a minute-by-minute, hour-by-hour, daily, weekly, bi-

weekly, monthly, and annual basis. Because so many enterprises across a wide range 

strongly rely on time series to disclose the patterns changes over time, it is becoming more 

and more important in our day and age. Additionally, we must carry out time series analysis 

in order to estimate the future behavior and patterns of the time dependent data. Time series 

are generally two types a) additive time series, and b) multiplicative time series [37].  

Time series forecasting is currently widely utilized and has a variety of uses in different 

sorts of organizations. There are several uses for it, some of which are listed below: 

1. Weather forecasting 
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2. Stock Price predictions. 

3. Climate forecasting 

4. Economic forecasting 

5. ISP traffic predictions. 

6. Network QoS Predictions 

7. Healthcare predictions 

2.8.1 Types of Time Series Data 

There are mainly three types of time series data, and they are trend, seasonality, and cyclic. 

An overview of that data is given below: 

a) Trend:  A time series' trend shows how patterns change over a long period of time, 

either upward or downward. When there is an increase or decrease in behaviour 

over time, it is overserved rather than repeated over time. A general trend may be 

upward or downward trending. Some techniques for eradicating trends from time-

series data include log transformation, smoothing, and linear regression. 

b) Seasonality:  When some observations in a time series are impacted by seasonal 

elements that recur throughout time, a seasonal pattern is formed. Seasonality can 

occur at a certain time of the week, month, or year. Additionally, seasonality can 

be seen at various points throughout the day. For instance, power usage peaks 

during the day and troughs early in the day, or online sales rise during Christmas 

before declining once more. We need to eliminate seasonality, a process known as 

deseasonalizing, to construct a better forecasting model. Some techniques for 

eliminating seasonality include average de-trended values and temporal 

differencing. 

c) Cyclic: When the frequency of data is not fixed and rises and falls in the data are 

very frequent, then a cycle occurs. If the fluctuations are not fixed period, then the 

time series is cyclic. Generally, the average length of a seasonal pattern is shorter 

than the cyclic pattern. 
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d) Random: Time series data occasionally exhibit a random pattern, which is 

characterized by irregularity and has no discernible pattern. It is also known as 

white noise and white noise is not predictable. 

Figure 2.14: Different patterns of Time Series [38] 

Figure 2.14 depicts the different patterns of time series data, in which the top left plot shows 

the monthly house sales where it shows strong seasonality every year with strong cyclic 

behaviour. The top right and bottom left plots do not show strong seasonality but downward 

and upward trend. Finally, the bottom right plot does not have trend, seasonality, or cyclic 

patterns rather it has random fluctuations over time. 

2.8.2 Basics Steps in Time Series Forecasting 

At the very first step of time series forecasting it is necessary to convert the date column 

into datetime datatype. Plotting the data is thus crucial to examining the time series data. 

The data's behaviour, including patterns, unexpected observations, missing values, trends, 

seasonality, changes in patterns through time, and correlations between variables, may well 

be understood using the time plot. We go through some of the fundamental procedures for 

forecasting from any time series data in the sections below. 

a) Stationarity: A time series is considered stationary when its observations are 

independent of time. Additionally, seasonality and trends are time-dependent. 

Time series with trends and seasonality are not stationary because of this. A 
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cyclic time series will always be stationary. Moreover, a time series that 

contains random data or white noise is likewise stationary. 

The fundamental prerequisite for defining time series data as stationary is that 

it will not vary over time and that its general pattern should not change. 

Furthermore, the predictions perform poorly when fitted with non-stationary 

data. The non-stationary data must thus be converted into a stationary format. 

The two most often employed transformation methods are the Difference 

transform and the Logarithmic transform. 

The Augmented Dicky-Fuller test, or ADF test, is the approach that is most 

frequently used to determine whether a time series is stationary or not. An ADF 

is a unit root test that verifies the existence of a unit root under the null 

hypothesis. 

If it is present, then 𝑝 > 0 , the process is not stationary, otherwise 

If 𝑝 ≤ 0 , the null hypothesis is not accepted, and the process is stationary. 

b) Autocorrelation: A time series' degree of resemblance to a lag version of itself 

over a subsequent period is defined by autocorrelation. The lagged versions of 

two variables, such as 𝑥𝑡 and 𝑥𝑡−1
, have a linear connection. It is employed to 

find trends and patterns in time series data. Serial correlation, which mimics the 

entire correlation of the time series, is another name for autocorrelation. 

Partial correlation is a conditional correlation where the linear dependence of 

one observation is measured after removing the effect of other observations. 

Partial autocorrelation often declines rapidly. Due to its effectiveness in 

identifying and elucidating the internal connection between various variables in 

time series data, autocorrelation, and partial autocorrelation are both crucial 

components of time series. Additionally, it aids in determining the internal 

connection at a specific period. 

c) Data Windowing: The supervised learning model requires that time series data 

be prepared in a certain way. The time series data reformatting will easily fit 

into the deep learning and machine learning algorithms, both linear and non-
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linear. We can reconstruct a sequence of time-series data so that it resembles a 

supervised learning problem if we already know the data. To achieve that, we 

may use data from earlier timestamps as input and the result of the subsequent 

phase as output. Data windowing is the process of using the prior timestamp as 

input and the subsequent timestamp as output [39]. The terms "window width" 

or "the number of lags" both refer to the quantity of preceding timestamps. The 

sliding window can be used in both univariate and multivariate time series 

analysis.  

Figure 2.15: Data Windowing Technique 

When a sliding window is used to forecast the next step, it is known as one-step 

forecasting, and when multiple timestamps are forecasted, it is known as multi-

step forecasting. Figure 2.15 shows the data windowing technique in time series 

data. 

d) Outlier Detection: An observation must meet requirements before being 

labelled an outlier. Time-series observations are considered outliers when there 

is a sudden peak and a quick decline in the data. Moreover, when any time-

series observations differ significantly from the pattern of other data, the 

observations are considered as outliers. Researchers may establish certain 

standards or metrics for how they will treat outliers. The Rolling Statistical 

Bound-based method, Isolation Forest, and K-means There are three ways to 

identify outliers in time series data [40]. 
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Chapter 3  

AI-Based Network Intrusion Detection System 

3.1 Introduction 

Since its inception, the internet has evolved into a very effective platform for almost all 

human activities. Moreover, when the Covid-19 outbreak began two years ago, the internet 

became a lifeline for people in practically every industry. According to the Pew Research 

Center, 90% of Americans regarded the internet as a vital part of their daily life during the 

coronavirus pandemic, with the majority of them using it for business, video meetings, 

academic, and communication purposes [1]. As per Datareportal, a total of 4.94 billion 

individuals, or 62.4 percent of the world's people, use the Internet [2]. Besides that, the 

deployment of 5G and its advanced features is expected to boost the number of 5G users 

to 1.02 billion in the coming year [3]. As the number of internet users grows and the 

network infrastructure becomes more complicated, safeguarding the network from various 

internet threats is becoming more complex. Cyberattacks on both network and host levels 

have increased in recent years, disrupting a broad range of business and government 

domains. According to Check Point Research, the weekly incidence of cyberattacks soared 

to 50% during the Covid-19 pandemic, with education and research being the most afflicted 

sectors [4]. Meanwhile, attackers are adopting novel strategies to bolster 5G networks. It 

is critical to develop a system like an Intrusion Detection System (IDS) that can detect the 

vulnerabilities of a network effectively and efficiently to protect against cyberattacks. 

Because of the dynamic nature of diverse cyber-attack patterns, AI-based technologies like 

machine learning (ML) and deep learning (DL) can become viable alternatives for 

constructing NIDS. 

A cyberattack is an offensive activity directed toward different systems including, targeted 

government information systems, private network infrastructures, or personal computer 

devices, to access or modify valuable data, install malicious software, or disrupt regular 

services without the permission of the administrator, to gain financial benefits or as a form 

of cyber-warfare. A cyberattack can be targeted or untargeted, with targeted attacks 

attempting to infiltrate specific businesses to disrupt their services or get access to sensitive 
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data, and untargeted attacks trying to break as many systems or devices as possible to 

disrupt the victim's services. Targeted cyberattacks include phishing, ransomware, and 

scanning, while untargeted assaults include building a botnet and spear-phishing. 

According to Cyber Kill Chain, most cyber-attacks begin with four basic steps: survey, 

delivery, breach, and affect [5].  

Nowadays, a cyberattack is widespread, and attackers take many different approaches and 

methods to initiate an attack. Malware, Phishing, DoS, DDoS, Reconnaissance, Backdoors 

etc. are some common techniques of cyberattacks. In 2021 a large-scale cyber-attack 

hampered around nine US government agencies, where attackers deployed untraceable 

backdoors in Microsoft Exchange and compromised the access of the server to gain all 

information residing inside the server [6]. According to CSIS (Center for Strategic and 

International Studies), a Russian hackers group launched an "information attack" in 

February 2022 to obtain access to two of Ukraine's financial institutions, causing service 

outages [7]. Throughout the first half of 2021, 5,591 network layer DDoS attacks were 

reported, according to the "2021 DDoS Threat Landscape Report," and the attack technique 

is changing in dimension, volume, regularity, and complexity [8].  

In order to detect and prevent cyberattacks on the networks, firewalls are used as the 

primary defence mechanism, and a network intrusion detection system, or NIDS, is 

employed as an advanced security mechanism. NIDS is mainly a security application that 

can analyze network traffic, detect security threats, and take measures when an anomaly is 

detected. Based on Peng et al. [9] IDSs should consist of three main steps: first, IDS needs 

to collect and track the network flow data. After that, IDS needs to reformat and reshape 

the network data by cleaning the raw data, processing them, and making them feasible in 

the next step. Finally, using the processed data as input, a model will determine if network 

traffic is normal or possesses any abnormalities. Developing an effective and efficient 

model is the most important part of building a NIDS. Models developed by integrating ML 

and DL can learn the attack signatures from which it can create the attack pattern. However, 

DL techniques outperform traditional machine learning-based approaches when the dataset 

is too large and complex. DL has the capability to handle high-dimensional imbalanced 
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data [9, 10]. Based on the above context, to build an effective IDS model, in this thesis, we 

employed DL approach and used Ensemble techniques. 

Many previous studies have used UNSW-15 and CICIDS-2017 to detect network 

abnormalities, however, those works used either binary classification or shallow ML and 

DL approaches. To address the previous challenges, this thesis proposes a DL-based 

stacking ensemble technique to build an efficient and dynamic IDS which can detect a wide 

range of cyberattacks. In this context, the main contributions of this thesis are as follows:  

• Our suggested model uses two publicly available large-scale datasets 

containing eleven different types of cyberattacks, ensuring that it is robust 

enough to be used in real-world circumstances. 

• We performed a sampling technique using SMOTEENN to under-sample the 

majority class and oversample the minority attack types. 

• Our research proposes a multi-classifier for network intrusion detection that 

uses a hybrid deep learning model to accurately classify various cyberattack 

types. 

• Our ensemble stacking deep learning model outperforms any single deep 

learning model or a shallow machine learning model in terms of accuracy and 

error rate. 

The rest of the thesis is organized as follows: An overview of the current literature is 

provided in section 3.2. The suggested system model and technique are then discussed in 

section 3.3. Following that, the system design and evaluation metrics are presented in 

section 3.4 and section 3.5, respectively. Section 3.6 discusses the performance comparison 

of different deep learning models, followed by concluding remarks in section 3.7. 

3.2 Relevant Work 

This chapter will review the related literature of previous works in the network intrusion 

detection system, or NIDS, field as well as pinpoint the shortcomings of existing studies, 

which is the motivation for this research. This section discusses three distinctive phases of 

developing a NIDS: statistical based approach, machine learning based approach and deep 

learning based approach. 
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3.2.1 Statistical Based Approach 

In 1988, Stephen E. Smaha introduced "Haystack," an intrusion detection strategy that 

could notify any unusual events in a multiuser computer system [15]. Haystack was 

designed to detect any inappropriate user behaviour as an infiltration that could 

compromise an organization's security and administrative policies. Haystack was inspired 

by a previous study proposed by Jim Anderson in 1980, in which the system scanned a 

computer's daily operations data to uncover usage trends [16]. Both Haystack and Jim's 

work used the statistical approach, relying on massive trail files compiled from all of the 

business’s computers. Some big IT-based companies began using IDSs to safeguard their 

networks around the beginning of 1990. IDES was used as a basis model by AT&T Bell 

Labs while developing its IDS. Nong Ye proposed a multivariate statistical analysis to 

detect host-based intrusion in 2002, where he recorded the normal activities for a long time 

and utilized it to detect abnormal activities [17]. To analyze the normal activities and 

determine the anomalies, this work used 𝑇2  test proposed by Hotelling’s and compared 

the performance with the Chi-squared distance test. In 2007, Sathish Kumar and other 

researchers provided a methodology for analyzing raw network data in which thresholds 

are set using the six-sigma technique and these thresholds are used to identify the network's 

normal, uncertain, and anomalous states. [18]. The lack of real-time network traffic 

resources made developing an IDS difficult in the early stage. However, developing an 

efficient IDS system requires a well-labeled dataset, and the University of California's 

publication of the KDD-99 intrusion detection dataset paved the way for researchers to 

detect network intrusion in a more sophisticated manner using data mining and machine 

learning techniques. 

3.2.2 Machine Learning Based Approach 

In 1999, Chris Sinclair used machine learning algorithm based expert system to 

automatically classify a network connection by utilizing network patterns [19]. They 

employed genetic algorithm and decision tress algorithm to develop the IDS to detect “low 

and slow” attacks which may contain intrusion behaviour. Zheng et al. presented a 

Hierarchy-based Network Intrusion Detection System (HIDE) using a hybrid model 

comprised of perceptrons and backpropagation to distinguish normal, as well as abnormal 
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traffic, flows [21]. The HIDE model is composed of three tiers and each tier has multiple 

agents to detect network intrusion. Tier-1 preprocesses the network traffic collected by 

probe and sends periodic report about the traffic into Tier 2. Tier 2 observes the LAN to 

check network status and finally Tier 3 receives data from both Tier 1 and Tier 2. After 

preprocessing, all data are sent to the statistical processor to convert them into stimulus 

vectors and feed them to the perceptron and backpropagation processor to classify traffic. 

Maheshkumar et al. employed an ML-based approach in the KDD-99 datasets to detect 

cyber-attacks launched from user-to-root as well as remote-to-local [20]. Their research 

focused on comparing the effectiveness of different machine learning methods in detecting 

various forms of cyber-threats, and they concluded that their four distinct classification 

algorithms perform better in detecting four different attack types. 

A network intrusion detection technique using unsupervised machine learning (ML) was 

first presented by Eskin et al. in 2002. It includes clustering algorithms, a support vector 

machine (SVM), and the K-Nearest Neighbor algorithm [22]. This research introduces a 

geometrical paradigm for unsupervised anomaly detection that maps typical metadata into 

a feature space. Chih-Fong Tsai and his research team reviewed 55 machine learning-

related intrusion detection systems developed between 2000 to 2007 [23]. They divided the 

system into the single, hybrid, and multi-classifier and compared them based on datasets 

used, classification method, and experimental setup. Their findings conclude that K-NN 

and SVM are more popular single classifiers, integrated-hybrid classifiers are the most 

used hybrid classifiers and ensemble techniques did not receive much attention. Phurivit et 

al. [24] developed a real-time IDS named RT-IDS, which could distinguish between 

normal traffic and anomalies. Authors identify 12 essential features from network traffic 

that are important for detecting network anomalies, and several ML algorithms such as DT 

(Decision Tree), Neural Network with back-propagation are used, where DT with rippler 

rule outperforms all other algorithms. A. Haque et al. [25] proposed a hybrid NIDS by 

incorporating random forest algorithm-based machine learning methodologies to detect 

misuse and anomaly in the network. For misuse detection, they used random forests to 

identify patterns from intrusions and compare network activities with patterns to identify 

intrusions. The authors used an unsupervised learning technique to train the anomaly 

detection components to detect anomalies and outliers in network traffic flow. Finally, this 
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work combines misuse detection with anomaly detection, allowing anomaly detection to 

detect novel threats while misuse detection filters out known intrusions. P. Mishra et al. 

compared and analyzed ML techniques to detect different types of cyberattacks [26]. 

Authors mentioned ML techniques have drawbacks during multi-class attack detection 

such as low attack detection rates, algorithmic failure during learning patterns, and high 

computational cost. 

3.2.3 Deep Learning Based Approach 

A research team from the University of Toronto led by Geoffrey Hinton proposed 

ImageNet and addressed that deep learning can outperform any machine learning 

algorithms in image classification tasks [27]. In the LSVRC-2010 contest, they trained 1.2 

million images using Convolutions neural networks (CNN) with thousand features and 

achieved low error rate than any other advanced machine learning model and in ILSVRC 

-2012 contest, they achieved only 15.3% error rate in the test data which outperforms every 

other model. In 2015 Yann et al. addressed traditional machine learning cannot process 

raw forms of natural data like pixel values of images, matching news items, user interests 

in a particular product and many more [28]. However, deep learning makes up multiple 

levels of representation layers, which takes raw input in one representation layer and 

transforms it into a higher layer that helps them learn complex functions more abstractly. 

In 2016 Niyaz et al. proposed a DL-based strategy named STL (self-taught learning) to 

detect network anomalies using NSL-KDD dataset [29]. Their self-taught learning 

approach can learn about features from different network sources. These obtained 

preprocessed features are passed through the auto-encoder and regression with the SoftMax 

function to classify normal and attack traffics. Their experiments outperform some other 

research works conducted using deep learning techniques. Ana et al. [30] made a 

comparison between DL along with ML-based methods in order to identify cyberattacks 

on the networks using CICIDS-2018 and CICIDS-2017 dataset.  Authors used KDD Cup 

1999 dataset for their IDS by using DL based method named deep neural network (DNN) 

and ML based method named support vector machine (SVM), where the accuracy of DNN 

is 15% higher than SVM. Before 2016 most of the researchers used KDD98, KDDCUP99, 

and NSLKDD dataset for their IDS which are decade-old and don’t match the current 
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network scenario. This dataset crisis was solved when in 2015 Moustafa et al. published 

the UNSW-15 Network flow datasets, which have both normal as well as anomalies 

network traffic [31]. The UNSW-15 network dataset is more useful than previous datasets 

to evaluate NIDS perfection because it represents contemporary network traffic contexts. 

Hanif et al. utilized Artificial Neural Network (ANN) on detecting network intrusion in 

Internet of Things (IoT) devices, and in their experiment, they used UNSW-15 dataset [32]. 

In their experiment, instead of predicting different types of network attacks, they only 

detect the normal attribute of the traffic. In order to build an IDS for Internet of Things 

network traffic characteristics in 2018, Moustafa et al. utilized the UNSW-15 dataset where 

the authors used AdaBoost ensemble algorithms to discern between normal and abnormal 

traffic [33]. To construct the NIDS dedicated to identifying attacks in IoT networks, this 

framework focuses on DNS, HTTP protocols together with MQTT and associated flows. 

They merged three techniques in their framework: ANN, Naive Bayes, and Decision Trees, 

and then passed them through AdaBoost ensemble methods. The deep learning-based 

NIDS got more attention to the research community when the Canadian Institute of 

Cybersecurity (CIC) published two large network traffic datasets, namely CICIDS-2017 

[34] and CICIDS-2018 [35]. 

In 2021 Aleesa et al. [36] UNSW-15 datasets and proposed a deep learning technique for 

both two levels for network intrusion detection [36]. The authors’ suggested framework 

had two levels: level 1 could determine if traffic was normal or abnormal, and level 2 could 

classify the many forms of assaults when abnormal traffic was discovered.  In this work, 

instead of incorporating any deep neural networks, shallow machine learning models are 

used. In order to evaluate deep learning and machine learning-based methods for detecting 

network anomalies, Liu et al. presented a taxonomy for NIDS [37]. The proposed 

taxonomy in this work can answer several questions about feature selection, data type 

selection to predict certain types of attacks as well as ML and DL model selection based 

on the type of network data available. Injadat et al. [38] introduced a multi-level optimum 

ML approach for network anomaly detection. Their strategy showed a 99 percent detection 

accuracy and reduced the number of false positives by 1–2 percent using the CICIDS-2017 

and UNSW-15 datasets. Faker et al. employed Big Data as well as DL methods and used 
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UNSW-15 and CICIDS-2017 datasets to evaluate the model performance [39]. They 

incorporated Deep Feed-Forward Neural Network (DNN), Random Forest and Gradient 

Boosting Tree (GBT) where DNN shows better performance in both datasets for multiclass 

classification and GBT shows better performance in CICIDS-2017 during binary 

classification compared to DNN. 

Unlike the above-mentioned research efforts, we used two different recent network traffic 

datasets, UNSW-15 released by the University New South Wales [11] and CICIDS-2017 

published by the Canadian Institute of Cybersecurity (CIC) [12], to train our DL-based 

stacking ensemble model and analyze how it performs in different attack scenarios. Many 

researchers proposed ML and DL-based techniques to detect and predict network 

anomalies. Moreover, some researchers proposed DL-based methods, but most of them are 

focused on binary classification and used shallow ML and DL methods. Moreover, some 

researchers used an out-of-date dataset where traffic patterns no longer resemble today’s 

diverse network traffic [13 ,14]. In our proposed approach, we used data resampling 

technique to balance the imbalanced data samples and employed stacking ensemble 

technique composed of different DL models to detect the different kinds of cyberattacks.  

3.3 Proposed Model and Methodology 

In this section, we will explore our proposed models along with approaches directed toward 

developing a unique multi-classifier-based NIDS system. The various deep learning 

architectures demonstrated in this thesis will be described in Section 3.3.1. The stacking 

ensemble methodologies will be discussed in Section 3.3.2 to ensure that our IDS system 

achieves optimal accuracy in the real-world context.  
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3.3.1 Deep Learning Architecture 

In this thesis, we employed the stacking ensemble technique, which is comprised of 

different deep learning models. Our overall stacking ensemble architecture is comprised of 

two layers, in the first layer we employed three different DL based architectures for our 

IDS system, which consists of Convolution Neural Nets (CNN), Gated Recurrent Unit 

(GRU), Long Short-Term Memory (LSTM). In the second layer, we used Deep Neural 

Network (DNN) which takes prediction results from the previous three DL models. Each 

of the DL architectures has its input layers, hidden layers, fully connected layers, and 

output layers for multi-classification.  

Figure 3.1 represents the comprehensive architecture of DL models utilized in our NIDS 

system, proposed DL models first take the preprocessed input data and feed them into the 

deep learning models. We employed both CNN and RNN in our IDS Model. The CNN 

model combines the extracted features with different size of kernels and pass it to the 

pooling layers. Finally, from the pooling layers all the information fit to the hidden layer 

which can apply weights to input and utilize activation function as the output. The hidden 

layers section comprises densely linked layers where every neuron receives the output of 

the previous layer as their input. Various terms and building blocks are explained below 

for a better understanding of the models. 

RNN takes the output of a particular layer and feed them back to the input to predict the 

output of a particular layer. The input layer i takes input, process it and pass it to the hidden 

layer h and output layer o generates the results. In any time period t, the input combination 

Figure 3.1: IDS Deep Learning Model 
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is current timesteps i(t) and and previous timesteps i(t-1), and to improve the performance, 

the output is again fetched back to the network. 

Activation Function: By using the activation function, the output of a neural network can 

be either yes or no. The output values are ranged from 0 to 1 or from -1 to 1. For neural 

networks, an activation function is necessary so that the model can understand relevant 

features and noise. Every layer of LSTM as well as CNN is composed of an activation 

function named Rectified Linear Unit or ReLU, which is by default incorporated in CNN. 

It also aids the CNN model in learning faster and performing better, as well as overcoming 

the problem of disappearing gradients. The key rationale for using ReLU for CNN and 

LSTM is that it has a simple computation complexity because it merely compares input 

data to the value 0. It also has a result of 0 or 1, depending on whether the input is positive 

or negative. This feature aids the model during backpropagation and prevents it from 

growing exponentially.  

A differentiable hyperbolic tangent activation function (Tanh) is dealt with by each layer 

of GRU. Tanh reduces the range of real numbers between -1 to +1. Despite being a system 

with non-linear functionalities, it provides zero centric output, different from the sigmoid 

function. Because of their symmetry around the origin, this is the case. As a result, they 

produce outputs that are close to zero. The Outputs that are closed to zero are considered 

the best output because, during model optimization, the rate of weight swing is fewer, 

which provides faster model convergence. 

The Dropout Layer: Any DL model has a dropout layer, which is a frequent feature. The 

Dropout layer is a mask that removes some neurons' contributions to the following layer 

while leaving all others unchanged. It can be used to negate some neurons from hidden 

layers in either the input layers or the hidden layer. Another key function of the dropout 

layer is to prevent the training dataset from becoming overfit. For hidden layers, the ideal 

dropout value is between 0.5 and 0.8, whereas for the input layer, it is 0.8. In our DL 

models, we used different settings of the dropout layer in both the dense and input layer. 

The SoftMax Activation Function: A model's output layer is created using a SoftMax 

activation function, which combines multiple sigmoids. The model's fundamental purpose, 
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which is classed in a multiclass environment, is related to the function's selection. The 

SoftMax function returns an array containing the highest probability values, which may be 

considered the sample's most precise probabilistic label.  

In our experiments, we will construct a unique stacking ensemble-based DL model for our 

Network Intrusion Detection System using a structured method. We applied various DL 

strategies to adopt the best prototype for our NIDS. We then evaluated every model’s 

performance and combined them in the first layer of our stacking ensemble model. The 

first layer of our proposed model is comprised of CNN, LSTM, and GRU. CNN model 

generally takes an image as input. We reshaped the train and test dataset to (5, 5, 1) 

dimensions for the UNSW-15 dataset where the model is taking 5×5 matrix and 

ImageDataGenerator from Keras library generating an image type data. For CICIDS-2017 

train and test reshape is (7, 7, 1) dimensions. In our CNN model of the first layer, we used 

six two-dimensional filters with the kernel size of (2 × 2) for the UNSW-15 dataset and 

kernel size of (3 × 3) for the CICIDS-2017 dataset. The input samples have the shape of 

(5,5,1) UNSW-15 dataset and (7,7,1) for the CICIDS-2017 dataset. Every layer of CNN 

deals with a ReLU activation function.  After every two convolution layers, we set one 

two-dimensional max-pooling layer with different pool sizes.  

Figure 3.2: CNN Model Architecture 

 



51 

 

The output is then delivered to fully connected layers, where it is used to train 

representations of higher-order features that may be used to classify the output into distinct 

class labels. Figure 3.2 shows the configuration of the CNN model used in the first layer 

of the proposed hybrid model. 

The LSTM model of the first layer of our proposed stacking ensemble model consists of 

two LSTM layers, one dense layer, followed by one dropout layer. Like the CNN model, 

every layer in the LSTM model interacts with a corrected ReLU activation function. The 

LSTM model's loss function is categorical cross-entropy, and an Adam optimizer with a 

learning rate of 0.001 was employed for optimization. The LSTM model's configuration, 

which is employed in the first layer of the proposed hybrid model, is shown in Figure 3.3. 

Figure 3.3: LSTM Model Architecture 

The input data for an RNN (LSTM/GRU) should have three dimensions: (batch size, 

sequence length or timesteps, and input dimensions or features). Instead of combining the 

input and prior hidden state, the LSTM cell's four internal neural networks receive both 

before applying distinct weight matrices to them. The four matrices are referred to as the 

kernel when they are multiplied by the input and as the recurrent kernel when they are 

multiplied by the prior hidden state. When an LSTM cell is defined it has hidden units size, 

activation, and input shape.  For LSTM, the input shape is (batch, timestamps, features), 

and here batch size means the number of samples we send to the model at a time. For 

UNSW-15, the timesteps are 5, features are 25 and the input shape is (5, 25); for CICIDS-



52 

 

2017, it is (5, 49). In figure 3.3, we have the output shape of (None, 5, 128), where none 

means the batch size, 5 represents the number of timesteps and 128 represents the output 

features. 

GRU is used as the last model in the first layer of the proposed stacking ensemble model. 

The GRU model of the first layer of the proposed hybrid model consisted of three GRU 

layers with 32, 64, and 128 filters, one dropout layer, and two dense layers. Tangen's 

hyperbolic activation function (Tanh), as opposed to CNN and LSTM models, is employed 

with the GRU model. With a learning rate of 0.001, Adam was utilized as the optimizer in 

this model, while categorical cross-entropy was used as the loss function. Figure 3.4 depicts 

the GRU model's configuration. 

Figure 3.4: GRU Model Architecture 

GRU also takes an input of a 3D tensor, with shape (batch size, timesteps, features), here 

batch size means the number of samples we send to the model at a time. In USNW-15, we 

take 5 timesteps, and 25 features and the input shape become (5, 25); for CICIDS-2017 we 

take 5 timesteps and 49 features and the input shape becomes (5, 49). In the model 

architecture of GRU (figure 3.4), we have output shape of (None, 5, 32), where none means 

the batch size, 5 reprsents the number of timesteps and 32 represents the output features. 
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3.3.2 Proposed Stacking Ensemble Architecture 

In our proposed hybrid deep learning model called the stacking ensemble model, the meta 

learner layer is composed of a Deep Neural Network (DNN), and all the results obtained  

Figure 3.5: Stacked Ensemble Model 

from the first three DL models in the first layer are concatenated and delivered to the DNN 

model. Figure 3.5 is our proposed stacking ensemble technique.        

The weights of the prior models used in the first layer will not be changed while the 

new model is being trained since all the models from the previous layer are loaded as a list 

and are tagged as being untrainable. This new model uses the output from the prior three 

models as a separate input head. Using a single concatenation merge, which creates a single 

vector of 21 components from seven class probabilities, the output of each model is 

combined. Three distinct DL models, each with seven class labels, were used to build this 

vector of 21 elements. The meta learner will then use these two hidden layers to analyze 

the input, and an output layer will use this information to forecast the probability 

distributions. The training dataset can be directly fitted to the model after it has been 

defined. The new stacking model is used to predict the new data once the model has been 

fitted. 

In order to create predictions based on the new data, we may finally employ the layered 

model. Adam worked as the DNN model's optimizer with a learning rate of 0.001, while 

categorical cross-entropy functioned as the loss function. The suggested stacking ensemble 

model's architecture is depicted in Figure 3.6. 
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Figure 3.6: Stacking Ensemble System Architecture 

3.4 System Architecture 

This section will present the proposed Network Intrusion Detection System's (NIDS) 

architecture. The design of this NIDS system is shown in Figure 3.7, which incorporates 

stacking ensemble methods made up of different deep learning models to find network 

anomalies. 

   Figure 3.7: IDS System Architecture 
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3.4.1 Dataset Description 

The stacking ensemble-based IDS system was built using two up-to-date datasets, UNSW-

15 and CICIDS-2017. The UNSW-15 dataset captures raw packets with the IXIA 

PerfectStorm program. The Australian Centre for Cyber Security (ACCS) made this 

network flow data available for public use, which includes both regular and aberrant traffic. 

Backdoor, Analysis, Worms, Generic, Exploits, Fuzzers, Reconnaissance, DoS, and 

Shellcode are among the nine categories of network attacks classified as anomalous traffic. 

In our experiments, we worked with Worms, Generic, Fuzzers, Reconnaissance, DoS and 

Shellcode. ACCS used three networks with 45 different IP addresses to create the dataset, 

which took 31 hours to collect. The UNSW-15 dataset is divided into four CSV files and 

comprises 2.5 million records with 49 features. They also supply a 257,673 normal and 

abnormal records training and testing subset of the dataset. In our experiment, we used 

70% data for training and 30% data for validating and testing the model. The attack 

distributions in the UNSW-15 dataset are similar to Figure 3.8. 

Figure 3.8: UNSW-15 Attack Distribution 

The Canadian Institute of Cybersecurity (CIC) published the CICIDS-2017 network traffic 

data, which contains eight separate CSV files containing five days of regular and aberrant 

activity. They build an attack-network with a router and a switch for the testbed, and a 

victim-network with a firewall, router, and switches. They produced normal and anomalous 

traffic using CICFlowMeter software, and 79 features were collected from traffic-

generated pcap files. The Heartbleed attack, Infiltration attack, Brute Force assault, DDoS 

attack, DoS attack, Web attack, and Botnet are among the cyber-attacks covered in 
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CICIDS-2017. There are various forms of DoS attacks, including DoS Slowhttp, DoS 

Hulk, DoS Slow loris, and DoS GoldenEye, and we merged all of them into DoS in our 

implementation. CICIDS-2017 comprises 209417 records, of which we used 70% in 

training and 30% is used to validate and test the model. The attack distributions in the 

CICIDS-2017 dataset are like Figure 3.9.  

Figure 3.9: CICIDS-2017 Attack Distribution 

3.4.2 Data Pre-Processing 

We will exclude various features from both datasets that have little impact on normal or 

abnormal traffic in the initial round of our data pre-processing phase. Time-based features 

('stime' and 'ltime') are removed from the UNSW-15 dataset since they are redundant with 

switch-related information like 'sport', 'srcip', 'dstip', and 'dsport'. Additionally, categorical 

features such as 'proto' and 'service' have a wide range of values, thus we employ the label-

encoder approach, which generates new, unique numerical values for each category. We 

also eradicate features like 'ct ftp cmd,"is ftp login,' and 'ct flw http method,' which have a 

large number of null values. 

Less relevant features such as 'timestamps' and 'IP addresses' were eliminated from the 

CICIDS-2017 dataset. As the network flow of this dataset is created using CICFlowMeter, 

it collects some network related redundant features such as ‘Bwd PSH Flags’, ‘Bwd Avg 

Bytes/Bulk’, ‘Bwd Avg Packets/Bulk’, ‘Bwd Avg Packets/Bulk’, ‘Bwd URG Flags’, ‘Fwd 

Avg Bytes/Bulk’, ‘Fwd Avg Packets/Bulk’, ‘Fwd Avg Bulk Rate’. These features are 
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removed from the dataset because they only contain null values. The 'Fwd Header Length' 

feature is also excluded as it is existing twice in the dataset. 

3.4.3 Feature Selection 

Selecting important features is critical for developing a better IDS, as it allows us to exclude 

less significant aspects from the dataset. We used two very large datasets with many 

features. We used Random Forest (RF), a supervised machine learning method which 

employs both the bagging method and decision trees, to identify the optimal features for 

our IDS model. To calculate the soft voting for classification, RF takes the original 

columns, fits them into decision trees, and then mixes them. We may also calculate the 

feature importance using the random forest by increasing the purity of the child nodes. 

When the purity of its related child nodes is improved, one feature gains relevance. Each 

tree estimates the importance of each feature, which is then averaged to obtain the total 

feature importance. We perform feature selection using Random Feature Elimination 

(RFE) after determining the relevance of all features. RFE performs k-fold cross-

validation, removing characteristics that are less significant for the model with each cross-

validation. The process continues until RFE has read all of the features from the dataset 

and only keeps those that improve cross-validation performance overall. Random Feature 

Elimination with Cross-Validation (RFECV) is a time-consuming method for selecting 

features, yet it yields the best results. The feature importance of 15 best features of the 

UNSW-15 and CICIDS-2017 datasets is shown in Figures 3.10 and 3.11. 

Figure 3.10: Feature Importance of UNSW-15 
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Figure 3.11: Feature Importance of CICIDS-2017 

We selected 25 features from UNSW-15 and 49 features from CICIDS-2017 employing 

the feature selection technique using RFECV with Random Forest. 

3.4.4 Data Normalization 

Data normalization, also known as scaling the features, is a data pre-processing strategy 

where all the data transforms into the same scale. In deep learning normalization is a 

process to transform data within a range between 0 and 1. Moreover, normalization is a 

good approach when we do not know about the data distribution.  Moreover, when we do 

not know about the data distribution then normalization is a good approach. If we do not 

normalize our data that are measured in different scales, they will not contribute during 

model training. Scaling the data equalizes all features, which also assists the algorithm to 

converge faster, along with optimizing with the gradient descent algorithm. Data 

distribution is different in both UNSW-15 and CICIDS-2017 dataset, and to fit the data 

appropriately into the model to get a better accuracy we need to normalize our data. In our 

model, we employed a data normalization technique named min-max scaler where, it scales 

the data from minimum range 0 to maximum range 1. Eq. 3.1 is the mathematical 

formulation for min-max scaler. 

 

𝑚𝑖𝑛 − 𝑚𝑎𝑥 =  
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

(3.1) 
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3.4.5 Sampling 

In a machine learning-based approach, imbalanced data is a classification problem. All the 

classes are not distributed equally in imbalanced data, meaning that the dataset is biased 

towards one or more classes, with only a few samples for others. As a result, while training 

a model using imbalanced data, the model was biased towards one or two classes. The 

majority class is balanced using the under-sampling technique, while the minority class is 

balanced using the over-sampling technique. To overcome the imbalanced class problems 

Synthetic Minority Oversampling Technique (SMOTE) is used [42] [43]. The less frequent 

samples were oversampled using SMOTE, whereas the more frequent samples were under 

sampled using Edited Nearest Neighbors (ENN). Imbalanced learn, imported as imblearn 

relying on scikit-learn library, is a widely known machine learning library that deals with 

imbalanced classes [44]. Both of our datasets are highly skewed. Worms and shellcode 

traffic have only 130 and 1133 samples in the UNSW-15 dataset, which is relatively low 

when compared to normal and generic traffic, which includes 56,000 and 40,000 samples, 

respectively. On the other hand, only 1% of samples in the CICIDS-2017 dataset belong to 

Web-attack and Bot attack traffic, while Benign, DoS, and DDoS attack traffic each include 

26%, 24% and 22% samples, respectively.  

SMOTE takes many steps to oversample the minority class: 

I. It calculates the distance between each sample using Euclidean distance and 

then modifies these samples using k-nearest neighbor. 

II. Then they take n samples and calculate the imbalance ratio from them, as 

well as the number of samples that need to be made from the samples. 

                                   𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑟𝑎𝑡𝑖𝑜) − 1 (3.2) 

 
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑟𝑎𝑡𝑖𝑜 =  

𝑆𝑚𝑎𝑥

𝑆𝑚𝑖𝑛
 

(3.3) 

III. Finally, the set of produced samples y is taken from the k-nearest neighbor, 

and new synthetic samples are constructed from those neighbors. 
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In order to under-sample, the majority class was chosen. The majority of their k-nearest 

neighbor's sample is removed by ENN. If one sample is owned by a most frequent class 

also if the classification of the original class is disputed by its three nearest neighbors, it is 

deleted from the samples; otherwise, it belongs to the minority class. Figure 3.12 depicts 

the attack distribution of the UNSW-15 dataset before and after data resampling using 

SMOTEENN and figure 3.13 depicts the attack distribution of the CICIDS-2017 dataset 

before and after data resampling using SMOTEENN. 

3.4.6 Development Environment 

We used a Windows 10 PC with an AMD Ryzen 9 5900HX with built-in AMD Radeon 

graphics to create the stacking ensemble-based IDS model. Our central processing unit has 

16 logical processors, 16 GB of RAM, and 512 GB of a solid-state drive (SSD) and runs 

at 3.30 GHz (SSD). Our IDS model creation is easier and faster now that we have 4GB of 

NVIDIA GeForce RTX 3050 graphics processing unit (GPU). Throughout the construction 

of our model, we used a Jupyter notebook and the Visual Studio Code IDE. Python 3.7 is 

Figure 3.12: a) Before SMOTEENN, b) After SMOTEENN in UNSW-15 

Figure 3.13: a) Before SMOTEENN, b) After SMOTEENN in CICIDS-2017 
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the primary programming language for IDS development, with deep learning framework 

TensorFlow 2.8.0 [40] and Keras [41] in the backend. We utilized the Pandas package for 

data analysis, NumPy for numerical analysis, and Matplotlib and seaborn to construct 

graphs for the experiment results. Furthermore, we employ the Sci-Kit learn machine 

learning library. 

3.5 Evaluation Measures 

The evaluation metrics for our suggested IDS stacking ensemble deep learning models will 

be covered in this section. 

3.5.1 Classification Accuracy 

In order to evaluate the performance of classification models the term Classification 

accuracy is interchangeably used with term accuracy. It is the ratio of all correctly predicted 

values to all input samples that the model has drawn. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
× 100 

(3.4) 

The formula converts the classification accuracy of the model into a percentile number that 

may be used to evaluate how well the model was applied. However, classification accuracy 

does not always correspond to the model's real performance, especially when the 

misclassification rate for minor classes is high. It also ignores the problem of class 

imbalance in a dataset, which occurs when the number of positive and negative levels is 

vastly different. As a result, various performance evaluation indicators must be considered 

to achieve actual model performance. 

3.5.2 Confusion Matrix  

A confusion matrix is a graphical depiction of a classification problem's performance that 

gives the output a matrix format. A confusion matrix is made up of four separate actual and 

expected values arranged in a matrix. A classification model's outcomes can be 

characterized as follows using a confusion matrix: 
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1. True Positive: These values are predicted and labelled as positive. For example, if 

traffic is forecasted as a DoS assault in our IDS system and it is indeed a DoS attack, 

we can conclude that the IDS made an accurate prediction. A higher true positive 

number denotes better model performance. 

2. True Negative: These are the values labeled as negative and also predicted as 

negative and correct. For instance, in IDS model, if traffic is predicted not as a DoS 

attack and it was not a DoS attack then the model correctly predicted the traffic. 

Again, higher true negative rates are the indicator of a good model. 

3. False Positive: This occurs when a model predicts a positive value for a class, but 

the actual value is negative. For example, if our IDS model predicted a DoS assault 

but it turned out to be typical traffic, we'd have a false-positive result. False alarms 

are generated by a high false-negative rate, which lowers model performance. For 

a better-performing model, a lower false-positive rate is preferable. 

4. False Negative: This is used to describe results that were anticipated to be negative 

but ended up being positive. The model projected the packet to be regular traffic in 

the NIDS. However, the traffic was actually a DoS attack. Higher false-negative 

numbers indicate a defective model, and for NIDS false positive is the most 

important metrics to evaluate system's performance.  

Figure 3.14 shows a perceptible representation of a binary classification confusion matrix. 

The confusion matrix for multi-class classification will be the same size as the number of 

classes the model must predict.  

Figure 3.14: Confusion Matrix 
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From the confusion matrix, we can calculate three other important performance metrics 

namely Recall, Precision and F1-score. 

Precision: It's determined by dividing true positives predicted to belong to a specific class 

by the total number of positive outcomes predicted by the classifier. 

 

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(3.5) 

Recall: It's a metric that measures how well our model detects true positives. It is calculated 

by dividing the total number of positive values by the number of real positive findings. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3.6) 

F1-Score: It's a metric for determining how well our model detects genuine positives. It's 

calculated by dividing the number of real positive results by the total number of positive 

values. 

 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

(3.7) 

3.6 Experimental Results 

In addition to evaluating the efficacy of the suggested strategy utilized in NIDS, findings 

from individual models and stacking ensemble models will also be examined in this 

section. The performance of the stacking ensemble model on the UNSW-15 dataset is 

covered in Section 3.6.1. The effectiveness of the suggested model in assessing the 

CICIDS-2017 dataset is discussed in Section 3.6.2. In section 3.6.3, we will finally talk 

about the general findings and outcomes. 

As mentioned, deep learning models have the ability to do feature engineering on their own 

and extract crucial features. Additionally, deep learning algorithms' intricate network 

designs enable them to construct and learn deeper representations. DL algorithms are self-
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adjusting, in contrast to ML algorithms, which may need human involvement to be 

programmed toward an appropriate result. They can be hardcoded the traits for better 

performance without explicit human interaction. We mainly used three DL algorithms in 

the first layer of stacking ensemble model and used Deep Neural Network (DNN) in the 

second layer of the stacking ensemble model as a meta learner. 

We will use the two preprocessed partitions of the training and validation dataset as 

mentioned in section 3.4.1 for training and validating our model. In our experiments, during 

training the DL models, we used 30 epochs for UNSW-15 dataset and 50 epochs for 

CICIDS-2017 dataset. 

3.6.1 Experimental Results of UNSW-15 

In the first layer of the proposed method, the first model we deployed is CNN. During 

training, we found training accuracy of 91.7% and validation accuracy of 91.0%. As the  

Figure 3.16: Training and validation loss of CNN 

model training proceeds, both training and validation loss decrease significantly. The loss 

and accuracy curves of the CNN model during training are shown in Figures 3.15 and 3.16. 

Figure 3.15: Training and validation accuracy of CNN 
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After a predetermined number of epochs, the model training gives the same result for 

validation accuracy and loss, we stop training CNN in order to avoid our model from 

overfitting. As the number of epochs rises, the CNN model loses its ability to accurately 

generalize new data, and we stop training our CNN model at that point.       

Our experiments showed that CNN demonstrated 89.1% classification accuracy in test 

data. The model exhibits the best performance for detecting Generic and Normal traffic, 

only 2% and 6% detected wrongly. More than 85% of DoS, Shellcode, and Worms assaults 

can be identified using this methodology. However, this model confounded reconnaissance 

attack with dos attack and fuzzers attack with normal traffic. The confusion matrix for the 

CNN model is displayed in Figure 3.17, with the true label acting as the x-axis and the 

predicted label acting as the y-axis. 

Figure 3.17: Confusion Matrix of CNN 

The LSTM model of the first layer exhibits slightly lower performance than the CNN 

model, where the training and validation accuracy is almost same, and the training and 

validation loss decreases as the number of epochs increases. Figure 3.18 and 3.19 shows 

the accuracy and loss curves of training and validation of our LSTM model. 
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          Figure 3.18: Training and validation accuracy of LSTM 

Figure 3.19: Training and validation loss of LSTM 

In test data LSTM depicts 89.0% classification accuracy. LSTM performs better in 

detecting DoS attacks and Worms compared to CNN, while the detection rate of Shellcode 

attacks is lower than CNN.  

             Figure 3.20: Confusion Matrix of LSTM 
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Apart from that, the detection rate of CNN and LSTM is almost similar for other types of 

attacks. The confusion matrix of the LSTM in Figure 3.20 displays the distribution of 

different attacks. 

The last model of the first layer is GRU, and its training and validation accuracy is lower 

than CNN and LSTM. There is no significant difference between the training accuracy and 

validating accuracy of GRU. Also in both cases, losses decrease significantly. Figure 3.21 

and 3.22 depicts the loss and accuracy curve of the GRU model during the training process.  

  Figure 3.21: Training and validation accuracy of GRU 

Figure 3.22: Training and validation Loss of GRU 

The overall classification accuracy of GRU is 88.4%, which is lower than LSTM and CNN. 

The GRU model showed better performance than CNN and LSTM in detecting Worms, 

where it can detect all worms’ attacks and it performs better than LSTM in detecting 

Shellcode. But it is unable to improve the detection rate of Fuzzers attacks and 

Reconnaissance attacks.  The confusion matrix of the GRU is shown in Figure 3.23 where 

it represents the distribution of different attacks in UNSW-15 dataset. 
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Figure 3.23: Confusion Matrix for GRU 

Finally, we deployed our proposed stacking ensemble model where we combined the 

output of all the models of the first layer and feed them as input into a DNN model of the 

second layer where DNN is working as a meta learner.  The overall accuracy of the stacking 

ensemble model is 90.4%, which is 1.3, 1.4, and 2.0 percent higher than CNN, LSTM, and 

GRU models respectively. The detection rate of Reconnaissance and Shellcode increases 

significantly. Figure 3.24 shows the confusion matrix of the stacking ensemble model. 

   Figure 3.24: Confusion matrix of Ensemble Model 
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Table 3.1 depicts the accuracy, recall, F1-score, and precision of the three models along 

with the ensemble method, where the ensemble model outperforms other models with 

higher accuracy. 

Table 3.1: Performance Comparison Models for UNSW-15 dataset 

Model Accuracy Recall Precision F1-

score 

Training 

Time (S) 

Testing 

Time (S) 

CNN 89.1 89.1 89.7 89.1 322 7.3 

LSTM 89.0 89.0 89.5 89.0 381 7.8 

GRU 88.4 88.4 89.5 88.2 364 7.8 

ANN [32] 84 - - - - - 

RNN-

LSTM [36] 

85.38 - - - - - 

Proposed 

Ensemble 

90.4 90.5 90.4 90.0 460 6.9 

 

3.6.2 Experiments Results of CICIDS-2017 

In evaluating the CICIDS-2017 dataset the first model we used is CNN. The training and 

validation accuracy are the same, and over the whole training procedure, both the training 

and validation losses progressively reduce. The accuracy and loss curves for the CNN 

model are shown in Figures 3.25 and 3.26. 

          Figure 3.25: Training and validation accuracy of CNN 
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   Figure 3.26: Training and validation loss of CNN 

The overall classification accuracy for CNN is 97.5%, where it can detect all the DoS and 

Port-Scan attacks. Moreover, the detection rate of CNN for all other attacks is more than 

95%, except for Webattacks. Figure 3.27 shows the confusion matrix of CNN. 

Figure 3.27: Confusion matrix of CNN 

There is no significant gap between accuracy in training and validation of the LSTM model. 

Moreover, the loss in training and validation decreases as the number of epochs increases.  

                         Figure 3.28: Training and validation accuracy of LSTM 
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    Figure 3.29: Training and validation loss of LSTM  

Figure 3.28 and 3.29 shows the accuracy and loss curve of the LSTM model. 

     Figure 3.30: Confusion matrix of LSTM 

The LSTM model of the first layer gives 97.2% classification accuracy which is slightly 

lower than CNN. Figure 3.30 shows the confusion matrix of LSTM model, where it shows 

that compared to CNN it misclassified 8% of the Web attacks and classified them as brute 

force attacks. However, LSTM able to detect almost all other attacks perfectly.  

The GRU model of the first layer has almost the same training and validation accuracy as 

LSTM; however, compared to CNN the training accuracy and validation accuracy are 

lower. The training loss and validation loss decrease significantly as the number of epochs 

increases. Figure 3.31 and 3.32 depicts the accuracy and loss curves of GRU model. 
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               Figure 3.31: Training and validation accuracy of GRU 

Figure 3.32: Training and validation loss of GRU 

  Figure 3.33: Confusion matrix of GRU  

The overall classification accuracy of GRU is 96% which is lower compared to CNN and 

LSTM. Like LSTM, it can detect all the Bot attacks and Port scan attacks. However, 
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overall, 10% of the DDoS attacks are misclassified as Benign traffic and 8% of Web attacks 

are misclassified as Brute-force attacks. Figure 3.33 shows the confusion matrix of the 

GRU model. 

Finally, we again deployed our proposed stacking ensemble model where predictions from 

the first layer models were passed to the DNN model of the second layer, where DNN 

performed as meta learner. Cyber-attack detection with the ensemble is highly accurate, 

where it can detect all DDoS and Port scan attacks. Moreover, the ensemble model can 

detect more than 95% of Benign, Bot, Brute-force, and DoS attacks. Though all other 

models in the first layer cannot significantly detect webattack, ensemble outperforms other 

models in detecting webattacks. Figure 3.34 shows the confusion matrix of the ensemble  

Figure 3.34: Confusion matrix of Ensemble model 

model. Table 3.2 shows the accuracy, recall, precision, and F1-score of all the three models 

along with the ensemble method, where the ensemble model outperforms other models 

with higher accuracy. 
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Table 3.2: Performance Comparison models for CICIDS-2017 dataset 

Model Accuracy Recall Precision F1-

score 

Training 

Time (S) 

Testing 

Time (S) 

CNN 97.5 97.5 97.7 97.6 499 8.6 

LSTM 97.2 97.3 97.4 97.2 677 12.7 

GRU 96.0 96.0 96.4 96.0 637 12.3 

RBF-BLS 
[30] 

96.63 - - 96.87 - - 

DNN [39] 97.04 92.7 - - - - 

Proposed 

Ensemble 

98.7 98.7 98.7 98.5 1063 8.6 

In our experiments, LSTM shows better performance than GRU because LSTM performs 

better with large datasets and both datasets have a large number of samples. LSTM consists 

of three gates and is more complex than GRU, which consists of two gates. The GRU 

exposes the entire hidden contents without any control since it lacks internal memory and 

output gates, unlike the LSTM.  LSTM performs better than GRUs because it can 

remember longer sequences. However, GRU has a faster training time and is 

computationally more efficient than LSTM.    

3.6.3 Discussion 

This section discusses the experiments and methodologies we used to develop a real-time, 

reasonably intelligent intrusion detection system that could identify a wide range of 

cyberattack types. A data preprocessing method and a multi-classifier model for identifying 

cyber threats using a stacking ensemble DNN are the key contributions of this thesis. In 

contrast to earlier suggestions based on literature studies, the current model not only 

classifies traffic flow as dangerous or harmless but also identifies the type of attack that 

may be present in the traffic flow. This categorization is crucial when creating security 

policies for deployment in a network that has experienced or is at risk from cyberattacks. 

The final layer obtains a collection of predictions from several other deep learning models 

that improve the final classification, using an ensemble stacking DNN technique is 

proposed. In this instance, additional indicators like the improvements in accuracy are also 

discernible. Figures 3.35 and 3.36 display the metrics that were used to compare each 
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model's performance across the UNSW-15 and CICIDS-2017 datasets. In this instance, 

additional indicators like the improvements in accuracy are also discernible. Figures 3.35 

and 3.36 display the metrics that were used to compare each model's performance across 

the UNSW-15 and CICIDS-2017 datasets. 

Figure 3.35: Comparative performance metrics for UNSW-15 

Figure 3.36: Comparative performance metrics for CICIDS-2017 

3.7 Conclusion 

Driven by the advancement in ultra-high speed network technologies such as 5G, the 

number of connected devices to the Internet is growing rapidly. Hackers/intruders continue 

to use new techniques to launch large-scale cyberattacks, making networks more 

vulnerable. This research suggested a multi-classifier approach for identifying various 

types of cyberattacks. In contrast to earlier research, our proposed novel network intrusion 
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detection techniques not only determine if the network traffic is benign or normal, but also 

the type of assault in the flow. Compared to the existing models, our suggested stacking 

ensemble model provides a more accurate forecast. Overall, Stacking Ensemble DNN, a 

hybrid deep learning approach, and a well-defined data preprocessing technique are 

presented in this study. Two well-known datasets, UNSW-15 and CICIDS-2017, were 

selected for this study because they closely mimic real network traffic flow, which 

improves the efficiency, robustness, and practicality of our approach. 

We select the best suitable features from the network traffic flow and preprocess them 

using different data pre-processing techniques like data imputation, data normalization, 

encoding, and resampling techniques. With the help of the suggested technique, we can 

train various robust and large deep learning models, concatenate their outputs, and then 

pass them to the second layer of the stacking ensemble technique, which consists of a DNN 

model. By retraining the model, we can increase the classification accuracy for identifying 

various cyberattacks. The proposed model aims to simulate the real-world environment 

where we use two well-known datasets, resamples the data, and train them to detect 

cyberattacks. 
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Chapter 4  

Exploring Artificial Intelligence (AI) Techniques for 

Forecasting Network QoS in 5G Network 

4.1 Introduction 

In this era of digital services and applications, one of the challenges for wireless networks 

is to provide even increasing connectivity bandwidth demand. According to global-

newswire, global data traffic would reach 220.8 million terabytes per month by 2026, with 

a single user's data usage expected to exceed 41GB [15]. According to a recent analysis 

from Ericsson Mobility, by 2026, six billion people will be on the Internet, with 

smartphones accounting for 54% of all mobile data, expressing a pressing problem that 

must be addressed [16]. There is significant evidence that there is a link between global 

data traffic increases and the proliferation of new services like Voice over IP (VoIP), high-

definition video on demand, IoT, Machine-to-Machine communication (M2M), and 

several other programs that have elevated the pressure on the spectrum, affecting network 

signal strength. The development of LTE to the most recent 5G technology has resulted in 

a diverse set of commercial entities with widely disparate features and capabilities. In order 

to satisfy the aforementioned requirement, the 5th generation (5G) of cellular networks is 

being developed. It will be able to handle the large increase in capacity demand, the number 

of connections, and the developing use cases of a connected society for 2020 and beyond 

[17]. When compared to 4G LTE, 5G is predicted to give a tenfold increase in bandwidth 

and ultra-low latency of less than one millisecond, which might support a wide range of 

the previously mentioned applications [18].  

As the next-generation wireless technology, 5G is the solution, which overcomes current 

4G/Long-Term Evolution (LTE)'s constraints since the current LTE network cannot keep 

up with consumers' rising demand for ultra-low latency, expanded capacity, and high data 

speeds. As the 5G network becomes available, it is expected that the demand for big 

bandwidth and ultra-low latency along with device connectivity will continue to grow. 

These requirements are expected to be met by the 5G for supporting varieties of next-gen 

digital services and applications. 5G introduced millimeter wave (mm-wave) 



83 

 

communications and network densification to increase the capability [19]. Throughput and 

latency, in particular, are sensitive metrics to use when evaluating a network's overall 

performance with QoS [20]. 5G is expected to offer the followings: a) very high 

throughput, more than 1 Gbps to support Virtual reality and HD video streaming, b) ultra-

low latency, possibly lower than 1 millisecond, c) high availability and reliability, and d) 

low energy consumption. 

Throughput, latency, jitter, and packet loss are common QoS measures [22]. According to 

Chen et al. [23], for assessing the end users experience, throughput and latency is the most 

important metric and throughput has the ability to directly influence productivity of any 

system connected to the network. Moreover, the overall QoS of the network solely depends 

on the throughput as well as latency. In many digital manufacturing applications, for 

example, insufficient throughput may result in the production being totally suspended 

because lack of bandwidth to support video streaming [13]. The next-generation digital 

services and applications that to be supported by 5G networks must guarantee stringent 

QoS to its services, including many mission-critical applications such as autonomous and 

connected vehicles, autonomous drones, remote telehealth etc.  

Recently, Machine Learning (ML)-based approaches have been used to assist the 

autonomous operations of cellular networks in a variety of ways, including resource 

allocation [23], video streaming [24], and energy-efficient networks [25]. Moreover, Both 

ML and AI strategies can predict network QoS in the cellular network. ML models assist 

network planners in predicting network QoS status in both the short and long term. Authors 

in [28] and [14], for example, used historical network QoS metrics to anticipate network 

latency and throughput using User Equipment (UE). Authors in [1] and [13] collected data 

from simulated NSA 5G networks and predicted throughput, and compared it with different 

ML models and Deep Neural Networks (DNN). However, the lack of real-time network 

traffic data, 5G in particular, has always been a challenge to develop an efficient ML model 

to predict 5G cellular network latency and throughput. A key shortcoming of current 

research is the lack of large-scale field tests to measure the QoS considering the seasonality 

behaviour of the traffic.  
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It remains a challenge for the network service providers to guarantee better service as the 

number of network users grows continuously. Additionally, the arrival of 5G networks has 

increased the bandwidth demand, and traffic circumstances are constantly changing. To 

overcome these issues and ensure desired network performance, the ability to forecast the 

network QoS metrics is expected to assist the network service providers in their service 

planning and capacity provisioning. Nowadays, digital services utilizing 5G networks, 

including IoT devices, autonomous vehicles, drone technology, real-time video streaming 

services, e-health, etc., are highly dependent on the QoS of the network, and to ensure 

better services, forecasting the QoS like throughput is a challenge for digital service 

providers [21]. However, limited research is being done in this area due to the lack of a 

live 5G platform available in the public domain and lack of 5G QoS data. In this thesis, we 

addressed the above research gap by conducting the first-ever large-scale field test in a 5G 

network environment. We developed a novel framework to collect 5G network QoS data 

and a QoS forecasting framework to predict the major QoS metrics such as throughput, 

latency, packet loss, and jitter. In this regard, the main contribution of our research is as 

follows: 

• We developed a tool to collect 5G Quality of Service (QoS) metrics in real-time 

where we set up the experimental test bed using a high-performance server, a 5G 

router, and Wi-Fi 6 integrated PCs/laptops. 

• We imitated the real-world 5G use scenarios by uploading and downloading five 

various types of files to and from our server and collecting 5G QoS data 

simultaneously. 

• To avoid biases in the data, we collected data from multiple campus locations and 

our collected QoS metrics are: throughput, latency, jitter, and packet loss. 

• We collected data for almost two months from 8:30 AM to 6:30 PM on the 

weekdays and 10:30 AM to 5:00 PM on the weekends, with three-minute intervals. 

• Finally, we employed a time-series forecasting approach by using various Deep 

Learning (DL) models to forecast throughput during various periods of the 

weekdays or weekend, including morning, evening, and afternoon. 
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The rest of this chapter is organized as follows: Section 4.2 begins with a complete 

overview of related work. In Section 4.3, the experimental setup of our proposed data 

collection strategy is discussed. Next, an AI-based QoS predictions mechanism is presented 

in section 4.4. Section 4.5 depicts the experimental results along with a discussion. Finally, 

concluding remarks are presented in section 4.6. 

4.2 Related Work 

5G is a new technology and it has just begun its rollout that will gradually replace the 

4G/LTE network. The 5G claims to provide high throughput, low latency, high availability, 

and reliability according to the 3GPP standard. However, from a research standpoint, its 

large-scale field test for measuring the QoS in a live public setting is not reported in any 

literature yet. Some limited studies have been conducted to predict the throughput of non-

standalone (NSA) 5G networks using statistical and machine learning (ML) models to 

predict the QoS of 5G. Some prior similar studies are based on 4G and LTE networks using 

popular test applications like Speedtest, OpenSignal and nPerf.  

Verma et al. [1] proposed a ML based methodology to predict the user throughput in LTE 

networks by utilizing different network parameters. In their experiments, they used a 

dataset provided by Nokia Network Pvt. Ltd. which contains information of 50,000 records 

collected from Base Transceiver Sites (BTS) with 135 features. They employed 14,000 

records of Time Division Duplexing (TDD) in their experiments. They categorize their 

dataset into four different categories based on the throughput value. Finally, they predict 

average upload and downlink throughput values from the dataset by implementing three 

ML model namely Support Vector Machine (SVM), Naïve Bayes and K-Nearest 

Neighbors (KNN) where the accuracy of SVM was 96.17% and 96.10% for download and 

upload which is better compared to other two models. Mohammed et al. [2] analyzed 

4G/LTE networks and proposed a ML-based and Network Functions Virtualizations 

(NFV) framework to predict the behaviour of the network. The cells of their model were 

categorized based on criteria such as download throughput and elevation hours. Alho et al. 

[3] proposed ML and DL based model to capture the cells with anomalies. Their model 

analyzes the problematic cells to classify the throughput by monitoring data with low 
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number of labels. In their experiments, they create their own dataset which contains 

information of serving cell of Mobile Networks and User Equipment (UE).  

It is difficult for programmers to track the network resources of a complex network like 

5G because there is a gap between network events and QoS abnormalities. To addresses 

this gap Zhu et al. [4] proposed a supervised ML model which is capable to track the 

network environment and give decisions in dynamic situations. Their model has been 

trained with past QoS-related information and anomalies and developed a relationship 

between current QoS data and abnormalities, and as a result, their model can reliably and 

effectively forecast potential QoS and anomalies in 5G networks. In [5], researchers 

utilized queuing models to evaluate the data transmission speed of 5G networks to clarify 

that the QoS of service of the network is depending on the overall data speed of the 

networks. For their experiments, they used mobile systems and explained how the data 

speed of 5G has an impact on the overall QoS of the 5G networks. 

Mollel et al. [6] focused on Handover (HO) because it is one of the major factors of mobile 

communications which has a greater impact on QoS of the networks, especially on 

throughput and service availability. Because the network is becoming more densified with 

the growing number of base stations (BS) per unit area, as well as the number of 

connections, HO management is very difficult in 5G. To address this challenge, researchers 

proposed intelligent HO management by utilizing ML techniques. In-network data-based 

HO management concentrates on beam selection and BS station selection, whereas ML-

based HO management is divided into two major groups, including visual data-based HO 

management approaches and network-data-based HO management. In [7] published a 

comprehensive and exhaustive assessment in which HO management was discussed for 

both LTE and 5G networks, with contrasting comments. Moreover, Step-by-step HO 

methods in both LTE and 5G were described, and HO types were addressed in depth. 

Although some ML techniques were highlighted while discussing state-of-the-art 

approaches, the spectrum of the article was purely HO management, not ML-based 

solutions to HO management. Mardian et al. [8] suggested some approaches to measure 

the QoS and QoE in the 5G cellular networks where they focused on the importance of 

location, devices, and network scenarios. They also proposed Self Organizing Networks 
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(SON) which consists of three features: reading network status, predicting user behaviour 

and dynamic adjustments of the networks has an impact on the QoS/QoE of the network. 

Additionally, objective network parameters such as packet loss and delay and subjective 

parameters such as Mean Opinion Score (MOS) are merged to harmonize the QoS/QoE.  

Ye et al. [9] proposed in how the network slicing methodology affects End-to-End (E2E) 

QoS provisioning in both wireless and wired NSA 5G networks. In the wireless network 

environment, dynamic radio resource slicing is used to split the network's bandwidth and 

distribute it among multiple BS in order to maximize network utility. When traffic flows 

in numerous network function virtualization (NFV) nodes, a bottleneck-resource 

generalized processor sharing (Br-GPS) is employed to minimize the latency in the wired 

network. Bui et al. [10] reviewed the most contemporary network performance prediction 

algorithms, emphasizing throughput as critical contextual network information. There are 

two types of throughput prediction methods: active and passive. The previous work 

requires connected user equipment (UEs) to stream packets, whereas the latter generates 

predictions with low or no network intrusion [11]. Furthermore, in-vehicle scenarios, the 

dynamic wireless environment would increase the sampling of active tests, overloading the 

network. 

Pan et al. [12] proposed the very first large-scale comparative study between 5G (NSA) 

and LTE on a high-speed railway route. They used cellular data to cover three major 

carriers in China and a dataset containing throughput, RTT, packet loss rate, signal quality, 

and physical resource utilization. Their findings conclude that 5G gains better throughput 

with a low loss rate and can also tolerate weak channel conditions. They also found that 

5G has a more significant impact on handover management than LTE networks and that 

5G reduces average radio access network (RAN) latency from 40.0 milliseconds to 15.8 

milliseconds when compared to LTE. Minovski et al. [13] proposed an approach to predict 

the throughput of end-users using NSA 5G and compared it with LTE by incorporating 

network slicing strategy. They did their study in four scenarios: urban, sub-urban, rural 

areas as well as in densely crowded areas. Finally, they employed several ML methods to 

train a model combining various lower layer radio environment parameters to predict the 

throughput in both uplink and downlink. Their model was validated in the LTE networks 
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and then applied to NSA 5G networks to predict throughput in different slice. Daengsi et 

al. [14] used three popular network speed test applications such as Speedtest by Ookla, 

OpenSignal and nperf to collect different QoS parameters data such as speed, latency from 

a 5G network. They collect 180 data points per application and use ANOVA and a t-test to 

determine the difference between average upload and download speeds as well as latency, 

with the results revealing that the speeds and latency varied in three applications for the 

same 5G networks. 

Unlike the above-mentioned research efforts, our study is the first approach to conduct the 

large-scale field test of a non-stand-alone (NSA) 5G network to measure the different QoS 

of the networks. Most of the above-mentioned works focused on 4G and LTE networks 

and most of them used different simulation tools or queuing models to predict the 

throughput. A few previous research utilized ML techniques and used real-time datasets to 

predict the QoS of 4G networks, and there is no dataset available for 5G networks. Some 

of the previous studies employed machine learning approaches to predict network QoS, but 

the datasets were generated using simulation tools rather than a large-scale field test. 

Moreover, their proposed strategy did not cover the impact of QoS of the 5G network while 

handling multiple files. Other researchers used the LTE network to anticipate the 

throughput of the NSA 5G network, but these trials are not representative of real-world 5G 

scenarios. In our study, we develop a system through which we continuously upload and 

download different files to and from a server using NSA 5G networks, and from this, we 

measure throughput, latency, packet loss, and jitter by sending and receiving ping. We did 

our test in a controlled environment where the number of people varies from 50 to 1200 in 

different time frames of a day. We gathered all the QoS parameters to generate a dataset in 

which the time frame is divided into weekends and weekdays because network behaviour 

may change on weekdays and weekends. Finally, to validate our dataset, we employed time 

series forecasting strategy using deep sequence models to predict the throughput of the 5G 

networks in the morning, afternoon, and evening of a day. 

4.3 Experimental Setup 

In this section, we will provide a high-level description of the conducted experiments. We 

will briefly describe the tools, development library, and platform that were used to conduct 
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the experiment and collect different QoS metrics of 5G network. All our experiments were 

carried out in the Western University 5G network environment. Figure 4.1 depicts the high-

level experimental setup to conduct the experiment.  

Figure 4.1: Experimental Setup 

4.3.1 Hardware Requirements 

In this section, we will briefly discuss the hardware tools we used to conduct the 

experiments. 

Netgear Router: We connected our devices to a 5G network using a router called 

"NETGEAR Nighthawk M5" in our experiment. The router has Wi-Fi 6 built-in, as well 

as the ability to connect to a 5G network, and it can connect 32 devices at once. This router's 

Wi-Fi 6 capability boosts its speed to 7 Gbps, and it's powered by Qualcomm's Snapdragon 

X55 Mobile platform. The router can also connect to several types of devices, such as 

smartphones, tablets, and laptops, also send out signals with a long-range with a consistent 

coverage. It also includes a long-lasting battery and a touch screen for controlling the 

gadget. We utilized this router to connect our PC to 5G networks throughout our tests 

through Wi-Fi and Ethernet.  
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Server: We employed a high-speed dedicated server in our test to continually upload and 

download various sorts of files to and from the server. The server is running Ubuntu server 

20.04 LTS and linked to a high-speed Internet connection with a maximum throughput of 

1.0 Gbps in our lab [34]. The server's metal frame, often known as the chassis, includes an 

HPE Edgeline EL8000t 2U platform and two C15 - NEMA 6-20P 250V 15Amp Black 

2.5m US Power Cord. One HPE Edgeline EL8000t chassis controller manages the server's 

chassis. The server we're utilizing is a Blade Server, which helps reduce physical space and 

energy use. Furthermore, the Blade server offers improved management features such as 

cooling, minimum wiring, lower power consumption, and a small footprint. An Intel Xeon-

Silver 4210R CPU, 96 GB of RAM, two HPE 120GB SATA M.2 2242 Solid State Drives, 

and an NVIDIA T4 16GB GPU make up our Blade server.  

Personal Computer (PC): In our tests, we used a PC with a Ryzen 9 5000 series processor, 

16 GB of RAM, 4GB of NVIDIA GeForce GPU, and a Wi-Fi 6 module incorporated. Wi-

Fi 6 provides faster speeds even in congested areas, with longer battery life. The PC comes 

with Windows 10 operating system. Our PC serves as a connecting tool as well as a 

controller for the entire experiment. Using the Netgear Router, we were able to connect our 

PC to a 5G network during the tests. Moreover, we're also connected to the server and 

uploading files to it with our custom-built connection tool.  

4.3.2 Development Platform 

We used a variety of software tools to calculate the QoS metrics of the 5G networks in our 

study. We developed our exploratory tools, including a connection tool and a server-side 

scripting tool, to conduct the experiments. Moreover, all the tools were developed with 

Python 3.7 [29] along with different Python libraries. 

Our connection tool is primarily responsible for conducting two operations: file sharing 

and metric calculations. In metrics calculation, we use various functions with different 

computations for each QoS measure to calculate the QoS metrics. We measured 5G internet 

connection performance like throughput for both upload and download using a common 

application called Speedtest CLI [30] API (Application program interface). Furthermore, 

Speedtest CLI is used all over the world to assess network performance such as download 
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and upload speeds, latency, and packet loss. The Python version of the Speedtest CLI is 

used in our script. Moreover, after integrating Speedtest CLI into our system, we tried to 

compare the throughput we are getting in our system with the throughput we are getting at 

"speedtest.net", which is an official website of Speedtest by Ookla to test the current QoS 

metrics of the network. Our system's download and upload throughput are virtually 

identical to "speedtest.net's" performance. Our connection tool also uses PostgreSQL [31], 

commonly known as Postgres, a sophisticated open-source object-relational database 

created by the University of California, Berkeley, to construct a database table where we 

will store the computed QoS metrics of the 5G networks. With automatic updates of views, 

triggers, and stored procedures, PostgreSQL offers all of the ACID (Atomicity, 

Consistency, Integrity, and Durability) features of a relational database. We utilized ping, 

a well-known network software program, to evaluate the network reachability of our host 

server. Ping sends an ICMP echo request to the target host and waits for a response using 

ICMP (Internet Control Message Protocol) packets. It also gives a statistical breakdown of 

packet loss and latency. 

In our research, we tried to present a real-life scenario of 5G use-cases. We employed five 

distinct types of files in our experiments: image, video, audio, text file, and zip file. Our 

connection tools regularly upload and downloads these files to and from the server to 

monitor the performance of QoS metrics. 

During uploading and downloading of the files to and from the server, the server-side 

scripting tool receives ping requests from the connection tool, and as a result, our 

connection tool collects various network QoS parameters. We used docker [32] on the 

server, which is a toolkit for developing, running, and managing containers. Docker is also 

well-known for a variety of advantages, including portability, performance, agility, 

isolation, and scalability. We used Docker to establish numerous virtual users in our 

research. 

4.3.3 Experimental Description 

The high-level infrastructure utilized to perform the research is depicted in Figure 3.1. A 

personal computer (PC) serves as a connecting tool, interacting natively across a non-
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standalone 5G network via the NetGear 5G router. All of our tests were carried out in a 

controlled setup on the Western University campus, which was covered by non-standalone 

5G networks. Furthermore, we conducted our experiments in a variety of places to ensure 

that our data was not skewed by a single site. The primary spot to collect 5G QoS data is 

the D.B. Weldon Library, and we also took the number of users using the network to check 

how the performance of the 5G network differs when the number of users increases.  The 

following are the methodologies we used to calculate 5G QoS data: 

a) The connection tool downloads and uploads distinct types of application files to 

and from the server linked to a high-speed network continuously. The server has 

built-in firewalls that prevent any other incoming requests; nonetheless, a special 

port is available to allow file sharing from outside the campus network.   

b) The connection tool sends multiple ICMP ping requests to the server while 

downloading and uploading the files, and the test scripts on the server receive those 

requests and respond to the connection tool. 

c) Docker generates a virtual environment with multiple containers that have been 

used here as multiple users to create a real time environment. While uploading and 

downloading the files, the server's test script, defines various 5G network 

performance factors which have been declared inside all of the containers in 

Docker. Our tool collects all the network QoS metrics from all the containers 

simultaneously. 

d) When a download and upload cycle is completed, the metric calculations functions 

of the test script calculate the QoS metrics value of the 5G network for the present 

period continuously. 

e) We use the Speedtest API to calculate upload and download throughput and convert 

it to megabits. Ping results are used to calculate latency, jitter, and packet loss. We 

received the packets transmitted by ping after an upload and download cycle was 

completed, and computed the latency, packet loss, and jitter based on that.  

f) Finally, the computed QoS metrics and time records are saved in a PostgreSQL 

database table, which creates a test report and saves the data in CSV (comma 

separated value) file format on the server.  
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g) Apart from the four QoS metrics of the 5G network, we have three other attributes 

in the dataset; they are the number of users, and part of the day. We collect data on 

both weekdays and weekends from D.B. Weldon Library along with the real-time 

user number of the library. The data collection process continues from 8:30 AM to 

6:30 PM every day for almost two months. Moreover, we divided a day into three 

periods. Table 4.1 shows the different parts of the day with their respective time 

ranges. 

Table 4.1: Different day parts with time range 

     

 

 

 

4.3.4 Collected QoS Metrics 

In our studies, we used four network performance indicators as our core QoS metrics for 

the 5G network: upload throughput and download throughput, jitter, latency, and packet 

loss. The above-mentioned four network QoS measures determine the overall performance 

of the network in our daily operations. In this section, we'll go through the four different 

QoS metrics utilized in our studies: 

Throughput: To calculate throughput we utilized the Speedtest API, and it is calculated 

as the proportion of total amount of data transferred to and from connection tool to server 

in a unit of time. Figure 4.2 shows throughput values from our experiments during different 

periods of a day. Eq. 4.1 shows the mathematical formula to calculate the throughput. 

 
            𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑡

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒
 

(4.1) 

Day Part Time Range 

Morning 8:30 AM to 11:59 AM 

Afternoon 12:00 PM to 3:59 PM 

Evening 4:00 PM to 6:30 PM 
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Latency: The term latency is used to define the delays in network communication. Latency 

is the total proportion of transmission time taken by a packet initiated by ping to reach from 

connection tools to server. Figure 4.3 shows the outcome of latency from our experiments 

in different periods of day. The formula for calculating latency is depicted in Eq. 4.2. 

 

        𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  
𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑖𝑧𝑒

𝐿𝑖𝑛𝑘 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 

(4.2) 

 

 

Packet Loss: A packet loss happens when a delivered packet initiated by a ping fails to 

reach its intended destination. It is measured as a proportion of lost packets compared to 

total messages delivered. The packet loss that happened during various periods of our 

experiment is depicted in Figure 4.4. The packet loss is formulated in Eq. 4.3. 

Figure 4.2: Upload and Download Throughput 

Figure 4.3: Latency in different periods of time 
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𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =  
𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 –  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 × 100 

(4.3) 

Figure 4.4: Packet loss in different periods of time 

Jitter: When a packet is sent from one source to another, it is sent in regular intervals over 

a set period. When there is a variation in the time delay in sending packets, it is called jitter. 

Figure 4.5 demonstrates the jitter that occurs throughout various phases of our studies.  

Our proposed 5G QoS data collection tool differs from the previously developed data 

collections mentioned in section 4.2. Most previous works developed a tool to collect QoS 

metrics data from a simulated environment. However, our experimental testbed is based on 

an actual operational NSA 5G network. The network behaviour generated in the simulated 

environment differs from that generated in the real-life setting. Moreover, some previous 

studies collected data using different network speed test applications, but their data 

Figure 4.5: Jitter in different periods of time 
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collection methodology is unknown. To address the shortcomings of the previous strategy, 

we utilized the NSA 5G network to handle different types of files. Additionally, none of 

the previous research did consider changing network behaviours at various times when the 

number of users varies, but our study showed that the bahaviour of the network is not the 

same at different times. For the reasons mentioned above, our developed tool is novel 

where we focus on the real-life use cases of the 5G network; thus, our proposed and 

developed data collection  tool differs from the previous data collection strategies. 

4.4 QoS Prediction Methodology 

This section will discuss our proposed methodology to predict the QoS service of the 5G 

network. Our goal is to develop an Artificial Intelligence (AI) based model to predict the 

throughput of the 5G network for different periods of the day, including weekends and 

weekdays. Figure 4.6 resembles the architecture of QoS prediction of the 5G network, 

where we did time series forecasting by employing various Deep Learning (DL) 

techniques.  

        Figure 4.6: Our Proposed 5G QoS Metrics Model 
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In section 4.4.1, we'll briefly discuss the dataset and pre-processing steps, in section 4.4.2, 

we'll go over the outlier detections of the dataset, and in sections 4.4.3 data normalization 

and windowing techniques quickly to fit data into the DL models. The discussion of 

different DL models is presented in section 4.4.4. Finally, the model evaluations and 

predictions criteria will be discussed in section 4.4.5.  

4.4.1 Data Pre-processing 

As mentioned in section 3, we developed a QoS data collection tool through which we 

collected different QoS service metrics of 5G networks, including throughput, latency, 

packet loss, and jitter. All of our data was collected in a controlled setting and saved in a 

CSV file for subsequent analysis. The data are collected every three minutes at time 

intervals for 50-day time periods. We have a total of 8,386 data samples over 50 days, 

where weekdays have 200 data samples per day and weekends have 140 data samples. 

Among the 8,385 samples, morning, afternoon, and evening have 2,764, 1,728 and 3,893 

data points, respectively. However, there is some missing data in the dataset. We 

considered four QoS metrics, including throughput, latency, jitter, and packet loss, and 

daypart in our experiments. To develop the prediction model, we performed a multi-variate 

time series analysis by utilizing all 50 days of data. The timestamps in the dataset are in 

GMT format. The unit of our throughput data is in Mbps (Megabits per second), and 

latency and jitter are in millisecond format. Figure 4.7 shows the plot of throughput 

download of our collected data from 03/05/2022 to 22/06/2022. 

Figure 4.7: Throughput Download with missing values 
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In this section, we will discuss some of the data pre-processing techniques which are 

important for time series analysis and to fit our data into DL models. 

1) Imputing Missing Values: Due to server-related issues and the library's closure, 

we cannot gather data for 6 days, but it is crucial to fill in the gaps in the next two 

days so that our time series analysis can make accurate forecasts for the future. 

Many methods can be used to close the gap, including backward and forward 

filling, linear and quadratic interpolation, and the mean of seasonal counterparts. 

However, the observations in our dataset depend on various times of the day, 

making typical interpolation algorithms impractical for our experiments. For 

instance, data from the afternoon and evening cannot be used in place of morning 

data. In our experiments, to fill in the data from a missing day, we considered the 

same days' values, calculated three separate means for three different portions of 

the days, and then filled in the missing day's data with those values. For instance, 

if data for one Monday is missing, we take the means of the morning, afternoon, 

and evening data obtained on Monday, considering all other Monday data, and then 

fill in the missing Monday's data with newly generated mean values. However, we 

also consider the traditional imputation techniques mentioned above, but those 

techniques do not perform well in our dataset because we have long sequences of  

Figure 4.8: Throughput Download after missing value imputation 

missing values. Figure 4.8 shows the plot of throughput download after imputing the 

missing values. 
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2) Stationarity of the Dataset: The predictions model is designed to work with 

stationary data and to become stationary, a time series data cannot be dependent on 

time. When a time series data has a trend or seasonality that cannot be stationary, 

it affects the overall time series predictions. The first step of time series forecasting 

is to check whether the data is stationary or non-stationary. In our experiments, we 

used Augmented Dicky Fuller Test (ADF test) to verify whether the dataset is 

stationary or not. In the ADF test, all our attributes in the dataset rejected the null 

hypothesis. The p value is less than 0.05 which is required to be stationary data; 

thus, our process is considered stationary. The p value for attribute 

“throughput_download” is 5.064114362981264e − 13 and the p value for attribute 

“throughput_upload” is 1.2180665142462095e − 12 and in the ADF test the number 

of lags we used is 26. 

3) Autocorrelation Analysis: We employ autocorrelation to reveal the underlying 

patterns in the data. To fit the data into the supervised learning model, we must 

transform our time series features into an array format. We can determine the 

correlation between previous and future data that our future forecast depends on 

using the autocorrelation function (ACF) and partial autocorrelation function 

(PACF). The prior data values, usually referred to as lags, are utilized to identify 

the correlation. Future projections use various characteristics, including the number  

   Figure 4.9: Autocorrelation Analysis for throughput 

of lags that we will utilize in the ACF and PACF. In our tests, we used 60 lags. 

The ACF and PACF plots for the throughput of our time series data are shown in 

Figures 4.9 and 4.10, respectively. 
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 Figure 4.10: Partial Autocorrelation Analysis for throughput                 

We can calculate the number of previous periods necessary to predict future 

observations by examining the ACF and PACF plots. For instance, our PACF 

graphs demonstrate that to foresee the following data points, we require the 

previous 15 data points from lag 0 to lag 15. 

4) Outlier Detection and Mitigation: Data may contain several outliers in 5G 

network traffic, such as sharp peaks or falls in throughput or latency. In time-series 

analysis, outliers are any data points with unusual values that do not follow a pattern 

resembling other data points. There are several standard techniques for finding 

outliers, including the Three Sigma rule and Isolation Forest. However, because of 

server problems, our data occasionally experience dramatic increases or decreases 

in throughput and latency, which are challenging to identify using conventional 

outlier identification techniques. We considered the top and bottom 6% of the data 

points outliers in our experiments and removed them.  For instance, the throughput 

can fluctuate between 500 Mbps and 50 Mbps, which is completely unrealistic 

when compared to other data points. 

4.4.2 Data Windowing Technique 

To incorporate our time series data into the supervised learning models, we must format it 

correctly. We need to consider eight variables every time in the current formatting of our 

multi-variate time-series data. The time-series data's structure consists of a number of 

tuples (date, throughput, latency, jitter, packet loss, and day part), which the deep learning 
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models are unable to accommodate. Therefore, we use a sliding window technique to 

reformat the time-series data, which forecasts the following observation based on the data 

from the past 15 observations. 

4.4.3 Data Normalization 

Data normalization, also known as feature scaling, is a pre-processing data strategy in 

which all data is transformed to the same scale. If our data has variable scales and the 

algorithm is unable to make assumptions about the data, normalization is necessary. 

Furthermore, normalization is a suitable strategy when we don't know the data distribution. 

Furthermore, data variables measured on disparate scales will not contribute to model 

training if they are not normalized. Scaling the data equalizes all features, allowing the 

algorithm to converge faster and optimize with the gradient descent approach, which is far 

more pleasant. Process data is changed from 0 to 1 in the normalization process. We used 

a min-max scaler to normalize our 5G networks QoS metrics dataset, which comprises 

throughput, latency, jitter, packet loss, and user number numbers from various ranges. Eq. 

4.4 shows the formula to calculate min-max scaler. 

 
𝑚𝑖𝑛 − 𝑚𝑎𝑥 =  

𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

(4.4) 

4.4.4 Deep Learning Models 

We selected a variety of approaches for DL model types that are typically used for time-

series analysis. We will employ five different deep learning algorithms, which are well 

known for time-series forecasting. In all of our DL models, we used an Adam optimizer 

with a learning rate of 0.0001. The overview of DL models is given below: 

1) Artificial Neural Network (ANN): The input units, also known as receptors, and 

output units, also known as effectors, are interconnected by the layers that make up 

an artificial neural network. In our research, we employed a simple ANN with two 

hidden layers, each with 16 units. We employed the linear activation function in 

the output layer and the ReLU (rectified linear unit) activation function in the 

hidden layer. 
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2) Recurrent Neural Network (RNN): RNN only considers the current input and is 

designed to deal with sequential data, such as time-series analysis, language 

modeling, etc. In order to predict the output of that layer, it retains the output of 

that layer and sends it back to the input layer. In our experiments, we employed the 

ReLU activation function, two RNN layers, one dense layer, and one dropout layer 

and the output layer came up with a linear activation function. 

3) Long Short-Term Memory (LSTM): LSTM is very well known for processing 

sequential patterns like time-series data. It overcomes the vanishing gradient 

problem of RNN and has memory cells that can store information for longer 

periods, which makes it superior to RNN. Our experiments used two LSTM layers 

with two 64 units, one hidden layer and one dropout layer. Both LSTM layers and 

dense layers come up with a ReLU activation function. 

4) Gated Recurrent Unit (GRU): GRU is substantially the same as LSTM, although 

it is less complicated. The reset and update gates make up the two gates that make 

up GRU. However, LSTM contains three gates: an input gate, an output gate, and 

a forget gate. The gates are in charge of handling the information flow. In our 

experiments, we used two GRU layers with a tanh activation function and one 

hidden layer with a ReLU activation function. The output layer has a linear 

activation function. 

5) LSTM Encoder-Decoder (LSTM En_De): It is also known as sequence-to-

sequence modeling, designed to solve complex sequence-related problems. The 

most common architecture to build a sequence-to-sequence model is the encoder-

decoder architecture, where the encoder is responsible for reading the input 

sequences, converting the information into internal state vectors, and passing it to 

the decoder. The decoder takes the internal state vector and output from the 

previous time step as input and returns a sequence of output. In our experiments, 

the encoder consists of one LSTM layer followed by one RepeatVector layer and 

the output of the encoder is passed to the decoder which is also an LSTM layer. We 

used the linear activation in the output layer. 
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4.4.5 Model Evaluation 

Model evaluation is important to assess the performance of the model in both train data 

and test data. The popular model evaluation techniques for regression are discussed below:  

1. Mean Absolute Error (MAE): It is used to calculate the difference between actual 

values and predicted values. It takes the sum of all actual value errors and divides 

them by the total number of observations. It is calculated as follows:  

 
                      𝑀𝐴𝐸 =  

1

𝑁
 ∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 | 

(4.5) 

Where, N is the total number of observations. 

2. Mean Squared Error (MSE): It is almost the same as the MAE but instead of 

taking the absolute difference between actual and predicted values, it takes the 

squared difference between actual and predicted values. The formula to calculate 

MSE is shown in Eq. 4.6. 

 
                     𝑀𝑆𝐸 =  

1

𝑁
 ∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )2 

(4.6) 

3. Root Mean Squared Error (RMSE): RMSE is the simple square root of MSE. 

The formula of RMSE is given below:  

 

            𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )2 

(4.7) 

MAE, MSE, RMSE are calculated using the scikit-learn library [35]. 

4. Weighted Mean Absolute Percentage Error (WMAPE): One of the most 

popular techniques to evaluate forecast accuracy is through WMAPE. Since time 

series include zero values, we do not employ Mean Absolute Percentage Error 

(MAPE), which yields infinite values. Additionally, MAPE does not take into 

account the amount of time or any variances in priority between the items. 
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However, WMAPE prioritizes quickly moving goods and provides a solution for 

dividing by zero problems [36]. Eq. 4.8 shows the formula of WMAPE. 

 
                            𝑊𝑀𝐴𝑃𝐸 =  

∑ (𝑤𝑡|𝐴𝑡 − 𝐹𝑡|)𝑛
𝑡=1

∑ (𝑤𝑡|𝐴𝑡|)𝑛
𝑡=1

 × 100 % 
(4.8) 

Here, 𝐴𝑡 is the real value and 𝐹𝑡 is the predicted value. 

To calculate the accuracy from WMAPE we can follow the below equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑊𝑀𝐴𝑃𝐸 

When compared to MSE or RMSE, MAE provides a direct depiction of the total of 

error components. By squaring the actual and forecasted values, MSE is 

differentiable and offers a bigger penalization error. MAE, on the other hand, treats 

all errors equally. WMAPE evaluates the error across all data points before 

averaging them. It is the weight of absolute error normalized over every data points. 

Additionally, WMAPE can detect more errors and outliers than MAE and RMSE. 

In our experiments, all the error results and accuracy of different deep sequence 

models are compared using WMAPE. 

4.4.6 Development Platform 

We used a Windows 10 PC with an AMD Ryzen 9 5900HX with built-in AMD Radeon 

graphics to create the stacking ensemble-based IDS model. Our central processing unit has 

16 logical processors, 16 GB of RAM, and 512 GB of a solid-state drive (SSD) and runs 

at 3.30 GHz (SSD). Our IDS model creation is easier and faster now that we have 4GB of 

NVIDIA GeForce RTX 3050 graphics processing unit (GPU). Throughout the construction 

of our model, we used a Jupyter notebook and the Visual Studio Code IDE. Python 3.7 is 

the primary programming language for 5G networks QoS prediction. For data processing, 

we used the Pandas package, NumPy for numerical analysis, and Matplotlib and seaborn 

for graphing the experiment results. In addition, the Sci-Kit learn machine learning package 

is used. 
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4.5 Experiment Results and Discussion 

We used the 5G QoS data to foresee throughput after gathering data from a controlled live 

5G environment. 50 days of 5G QoS data were utilized in our studies; the first 43 days of 

data were used to train our deep learning models, and the final seven days of data were 

used to assess the effectiveness of our deep learning models. The four stages of our 

experiments are as follows: I. data preparation; II. outlier detection and mitigation; III. data 

normalization; and IV. model deployment and forecasting. We initially impute the missing 

data values during the preprocessing stage. The Augmented Dicky-Fuller test (ADF test) 

is then used to examine a number of traffic parameters, including trend, seasonality, and 

stationarity. The number of prior observations needed to forecast the future observation is 

calculated using the ACF and PACF plots in figures 4.11 and 4.12. The data windowing 

approach was then used, which is necessary to fit our data into the deep learning models. 

To improve our deep learning models' capacity for learning and prediction, we eliminated 

the outliers from the 5G QoS data in the second stage of our experiments. After that, we 

use a min-max scaler to normalize our data before fitting it into deep learning models. 

Finally, in stage four, we deployed five different deep learning models, such as ANN, RNN 

and its three variants, including GRU, LSTM and LSTM En_De. The models were trained 

once, and three different periods of the day including morning, afternoon and evening were 

predicted.  We predicted the throughput of the last seven days from 16-06-2022 to 22-02-

2022. The model architecture is unique for each model and each model is trained with 100 

epochs with a batch size of 16. The performance evaluation metrics for all models are 

presented in Table 4.2. The performance is measured in MSE, RMSE, MAE, and WMAPE, 

through which we calculated the error and from WMAPE we calculated the prediction 

accuracy of the models.  

Table 4.2: Performance of all models 

Model MSE RMSE MAE WMAPE Accuracy 

ANN 1.54 12.40 8.90 18.69 81.31 

RNN 1.28 11.32 8.46 16.82 83.18 

LSTM 0.99 9.96 7.34 14.57 85.43 

GRU 1.01 10.05 7.49 15.89 84.11 

LSTM En_De 0.89 9.46 6.92 13.75 86.24 
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Our findings demonstrate that the LSTM Encoder-Decoder outperforms all other models, 

with an average prediction error of approximately 13.75% between real and anticipated 5G 

QoS metrics. The RMSE and MAE error rate is also lower in the LSTM En_De compared 

to other models. In comparison to GRU models, which have an average error rate between 

actual and predicted 5G QoS of 15.89%, LSTM models had an average prediction error 

between actual and predicted 5G QoS of around 14.57%. There is no significant difference 

between LSTM and GRU in terms of RMSE and MAE error rate. Additionally, the error 

rate for the simple RNN model is 16.82%. But compared to other models, ANN's average 

error rate between real and forecasted traffic is greater at 18.69%. We observed significant 

RMSE and MAE error rate in ANN model. Overall, the LSTM Encoder Decoder achieved 

86.24% accuracy in predicting the throughput. On the other hand, LSTM achieved 85.43% 

accuracy. Figure 4.11 illustrates the comparative performance of different deep learning 

models.  

Figure 4.11: Comparative performance of sequence models 

Table 4.3 shows the comparative graphical depiction of actual and predicted throughput in 

the morning using LSTM and LSTM Encoder-Decoder models.  

Table 4.3: LSTM and LSTM En-De performance in the Morning 
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Models Daypart: Morning 

LSTM 

 
LSTM 

En_De 

 
 

Table 4.4 shows the comparative graphical depiction of actual and predicted throughput in 

the afternoon using LSTM and LSTM Encoder-Decoder models. 

Table 4.4: LSTM and LSTM En-De Performance in the Afternoon 

Models Daypart: Afternoon 

LSTM 
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LSTM 

En_De 

 

Table 4.5: LSTM and LSTM En-De Performance in the evening 

Models Daypart: Evening 

LSTM 

 
LSTM 

En_De 

 
 

Table 4.5 shows the comparative graphical depiction of actual and predicted throughput in 

the evening using LSTM and LSTM Encoder-Decoder models.  
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Our studies illustrate how well artificial intelligence methods perform when forecasting the 

throughput of 5G networks. However, a network's QoS is influenced by a variety of internal 

and external circumstances. Moreover, modifications in network behaviour, particularly in 

the 5G network, significantly influence the network's overall QoS. Training a deep learning 

model with abnormal QoS data of 5G will affect the performance of the model during 

prediction. In order for the model to learn the best possible features, it is crucial to analyze 

the data points in an appropriate way. Exploring the series' pattern and handling the missing 

values correctly is crucial for time series analysis. Moreover, detecting outliers and 

mitigating them before fitting the data into the model will increase the overall performance 

of the models; otherwise, there is a chance of learning from abnormal traffic, which will 

affect the performance of the model. Finally, the selection of models is essential because 

all deep learning models do not perform well with sequential data. 

4.5.1 Applications of QoS Forecasting Tool 

QoS forecasting based on time series data is a newer concept. Since the advent of 5G, it is 

becoming very popular as the number of users is increasing significantly, and internet 

service providers are facing challenges in supporting an increasing number of consumers. 

To overcome the challenges, our proposed QoS forecasting tool will assist both network 

service providers and end users in the following areas: 

1) It will give predictions based on user mobility and service requirements. 

2) By utilizing this tool, network service providers can decide the necessary 

deployment of network resources to support future traffic demand. 

3) Service providers can automatically optimize and fine-tune the network 

service parameters based on the prediction results. 

4) Digital service providers, such as autonomous cars, drone technologies, etc., 

rely heavily on the network's QoS. To ensure the uninterrupted operations 

of their services, digital service providers will need an effective and 

accurate QoS forecasting tool. 
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4.6 Conclusion 

Predicting the QoS of 5G networks is critical for network planning and provisioning. 5G 

is reshaping next-generation digital services, infrastructure, and applications, including 

industrial-scale Internet of Things (IoT), autonomous transportation, mission-critical 

communications, and industrial automation. The stringent QoS requirement of a 5G 

network is critical for supporting the above-mentioned digital service sectors. This thesis 

contributes to developing a framework for collecting QoS metrics in a controlled 5G 

network environment and proposed AI techniques for predicting QoS patterns. 

Our proposed 5G QoS metrics data collection tool is developed in a way that can mimic 

the real-life usage of a network, like uploading and downloading various types of files by 

a variety of users to and from a fixed server by utilizing a non-standalone (NSA) 5G 

network. In the process of collecting 5G QoS data, we considered four important QoS 

metrics of the network, including download throughput, upload throughput, latency, jitter, 

and packet loss. Additionally, factors like the number of network users, the days of the 

week, and different times of day like the morning, afternoon, and evening are taken into 

account.   The data collection process accumulates 8385 data points over the course of 50 

days during specific time periods, with a three-minute interval between each data point. 

However, several internal and external circumstances, such as server failure, the library's 

closing, etc., influence this procedure. 

Time series analysis is a popular approach for analyzing sequential data collected over 

time. We preprocessed the collected 5G QoS metrics data, including missing value 

imputation and outlier mitigation, and fitted them into the deep learning models, including 

RNN, LSTM, GRU, and LSTM encoder-decoder, which are well known for analyzing 

time-series data. Our experiments demonstrate the effectiveness of predicting the QoS 

metrics for LSTM and LSTM Encoder-Decoder models. 
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Chapter 5  

Conclusion and Future Directions 

This thesis proposed two AI-based approaches to protect the network against cyber attacks 

and predict the network quality of service (QoS) for efficient network planning and 

provisioning. The two interrelated studies presented innovative approaches, methods, and 

findings in their respective domains. The first study proposed a novel network intrusion 

detection system that utilized two popular network traffic datasets, UNSW-15 and 

CICIDS-2017, and employed the stacking ensemble technique to detect cyberattacks. The 

best possible traffic flow features are selected using random feature elimination with cross-

validation (RFECV) and the SMOTEENN technique is employed to resample the 

imbalance classes. Finally, three different deep learning models are employed in the first 

layer of the proposed stacking ensemble model, then the output of the first layer is 

concatenated and passed to the second layer of the stacking ensemble model, which is a 

deep neural network model. The network anomaly detection accuracy is higher for stacking 

ensemble techniques compared to the single deep learning models used in the first layer of 

the proposed model. The second study developed a 5G network QoS prediction framework 

based on our collected 5G network data. Various data preparation techniques were 

employed, such as missing value imputation and outlier detection, while autocorrelation 

and data windowing techniques were used to uncover the underlying data patterns. The 

preprocessed QoS data are utilized through five different deep sequence models to forecast 

the throughput of the 5G network at various times of the day, including the morning, 

afternoon, and evening. The five different deep sequence models were compared, and 

LSTM Encoder-Decoder and LSTM demonstrated their accuracy in predicting throughput. 

Some of the limitations of our study and future directions of this research are discussed in 

the following sections. 

5.1 AI-based Intrusion Detection system 

Although deep learning and stacking ensemble approaches have the potential to be used to 

design data-driven intrusion detection systems, there may be certain restrictions and 

difficulties when implementing the systems in real-world production settings. One 
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limitation of the proposed method is that it can't detect new attacks before they are detected 

since it is constrained by the labels used in the training phase. If an attack is a part of a 

traffic flow designated for evaluation by the model, it will detect it as malicious but report 

the wrong type of assault. Additionally, if an intrusion detection system acquires new 

traffic and cannot distinguish it from legitimate traffic or other types of intrusions, the 

performance of the stacking ensemble may deteriorate. However, this may be prevented by 

using the right feature engineering and data preprocessing techniques. 

Future research in this field will focus on the following areas: 

1. Deploy the hybrid model proposed in this thesis to live network traffic, so that 

the model can analyze the traffic flow of networks and distinguish between 

normal and malicious traffic. 

2. The IDS system may be installed on any edge devices that are linked to 

networks. Additionally, by using various feature selection and dimensionality 

reduction approaches in the pre-processing phases, the IDS model will be able 

to identify low-frequency assaults as well as intrusions with regularly changing 

traffic patterns. 

3. Employed the transfer learning technique for our models so that we can assess 

how well they function on unknown network traffic. The capacity to understand 

data is crucial for practical intrusion detection systems and future research on 

intrusion detection systems may focus significantly on the interpretability of 

models. 

5.2 5G QoS Data Collection and Predictions 

Network data collection can be impacted by some internal and external factors, including 

hardware and service availability-related issues. Our proposed data collection mechanism 

utilized a high performance server, a wi-fi 6-enabled router, and NSA 5G networks. 

Though we collected 5G QoS data continuously within a fixed period, our process 

sometimes terminated unexpectedly due to server unavailability and Docker container-

related issues. The behavior of the network is unpredictable, such as sometimes we face a 

sharp drop in throughput or a sudden increase in throughput, which results in creating 
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unrealistic data points for 5G networks. The sharp increase or decrease in throughput and 

other QoS metrics creates significant random fluctuations in data patterns, and it is difficult 

for deep learning models to learn those patterns during predictions. 

This research introduced a method for collecting data on 5G QoS measures from a large-

scale field test and a mechanism for predicting the throughput of 5G networks using deep 

sequence models. Our data collection tools gathered four major 5G QoS metrics, including 

throughput, latency, jitter, and packet loss, and deep learning models forecasted the 

network's throughput. Nevertheless, several internal and external network elements have 

an influence on the process as a whole. The following items are expected to be part of our 

upcoming research: 

1. Further improvement in the automation of the data gathering process will make it 

easier to monitor server utilization, network availability, and network anomalies in 

real-time, and it will also resume the entire process when a process terminates. 

2. In this research we used NSA 5G networks. However, in the future, we can collect 

5G QoS metrics using stand-alone (SA) 5G networks and make a comparison of 

how the performance of the two networks fluctuates. 

3. In predicting the throughput of the 5G network, the efficient data preprocessing 

mechanism, including feature selection, dimensionality reduction, and outliers’ 

detection, will increase the prediction accuracy. The proposed deep learning models 

performed well, and in the future, we would like to use statistical analysis and 

attention mechanisms in single-step and multi-step throughput predictions. 

4. The development of a hybrid model to gather data on 5G QoS metrics from diverse 

user groups, evaluate the data, and suggest end users' and service providers' real-

time predictions of the network's QoS. 
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