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Abstract 
 

First carpometacarpal osteoarthritis (CMC1 OA) is one of the most common forms of OA 

and is a significant source of pain and disability for patients. Discrepancies between traditional 

imaging modalities and patient reported outcomes have led  researchers to develop objective 

point of care-based imaging tools for assessing OA progression and treatment response. This 

thesis aims to describe the development and validation of a semi-submerged mechanical three-

dimensional ultrasound device against the current clinical gold standard of magnetic resonance 

imaging (MRI). Additionally, this thesis will explore the relationship between the morphological 

presentation of synovitis, pain, physical function, and various semi-quantitative grading systems 

used in a CMC1 OA patient population.  

Chapter 2 described the validation of the 3D US device which was conducted on a series of 

geometric and volumetric imaging phantoms, as well as a population of ten CMC1 OA patients. 

Images of the ten patients were acquired using a 3.0 Tesla MRI and our 3D US device. Two-

raters manually segmented areas of synovial effusion and membrane hypertrophy during two 

separate sessions to evaluate intra- and inter-rater reliability. The results showed that 3D US had 

a strong concurrent validity with MRI and that it demonstrated excellent rater reliability. This 

indicates that 3D US shows great potential to provide clinicians with a quantitative method for 

monitoring synovitis in the small joints of the hand.  

Chapter 3 presented in this thesis explored the implications of synovitis morphology presented in 

3D US images and investigated synovial tissue volume as a possible predictor of CMC1 OA 

stage as determined by x-ray radiographic grading systems. Eaton-Littler (x-ray) and 

OMERACT (US) semi-quantitative grading systems were used to indicate OA and synovitis 

severity. These values were compared to the Australian Canadian Osteoarthritis Hand Index for 
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patient reported pain and disability, pinch grip force, synovial tissue volume, age and sex to 

determine which would be the most significant indicator patient reported pain.US images of 

CMC1 synovitis were analyzed and three distinct morphologies were identified based on 

location, volume and features of synovial effusion and hypertrophy. This study demonstrated that 

pinch grip was the most significant indicator of pain in CMC1 OA patients.  

 

 

 

Keywords  
Three-dimensional ultrasound, first carpometacarpal osteoarthritis, synovitis, osteoarthritis, two-
dimensional ultrasound, MRI, validation, reliability, patient outcomes. 
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Summary for Lay Audience 
 

The base of the thumb is a common site of osteoarthritis where patients typically 

experience symptoms of pain, stiffness, and weakness. An early indicator of thumb osteoarthritis 

is inflammation of the joint lining, called synovitis, which can be difficult to detect. Currently, x-

ray images are the most common form of imaging used to view changes in the joints of patients 

with thumb osteoarthritis. X-rays are great for imaging bones; however, they are unable to show 

doctors information about the other joint structures that are affected by arthritis. These include 

your muscles, joint lining, and joint inflammation. Magnetic resonance imaging is an imaging 

method that is excellent for visualizing the soft tissue structures affected by osteoarthritis, 

however it is very expensive, has long waitlists, and is inaccessible to those individuals living in 

rural areas or cost-constrained healthcare systems. Additionally, neither MRI or x-rays can be 

used at a patient’s bedside and patient positions for these scans can be uncomfortable maintain 

for long periods of time. In light of this, there is a serious unmet clinical need for inexpensive, 

rapid and safe imaging devices that can assess inflammation volumes at a patient’s bedside. 

Very little information is available on how synovitis volume, shape and location relate to patient 

reported outcomes such as pain and functional disability. In this thesis, we describe our novel 3D 

US device for the hands and how well it performs when compared to more established imaging 

methods. Additionally, we use 3D US to assess the relationship between different OA imaging 

grading scales and pain in a group of patients with osteoarthritis at the base of their thumb.  

The results of these studies show that 3D US is able to provide accurate and precise 

measurements of inflammation when compared to MRI. We also showed that the relationship 

between pain and inflammation in thumb OA patients is not simple and that it may need to be 

considered within the context of which stage of disease a patient is presenting. 
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Chapter 1 
 

1     Introduction  
 

Over the last century, medical imaging has experienced dramatic advancements since the 

discovery of x-rays in 1895. Today, medical professionals and researchers can view the body in 

fantastic detail with the use of various imaging modalities such as x-ray radiography, ultrasound 

(US), computed tomography (CT), positron emission tomography (PET), and magnetic 

resonance imaging (MRI). The field of medical imaging has had a significant impact on medical 

diagnostic, monitoring, and treatment methods. However, the human body is comprised of 

extremely complex anatomy and physiological systems, which often cause challenges in 

acquiring images. As our knowledge of imaging technology increases, new imaging devices and 

methods are being developed to help overcome the limitations associated with visualizing the 

body and its various pathologies. However, with increased development and use of medical 

imaging, concern over radiation exposure, patient accessibility, high associated operating costs 

and resulting cascades of care have significantly intensified1.  

Imaging of musculoskeletal pathology for diagnostic and monitoring purposes are 

currently acquired using x-ray radiography, MRI, and US. These methods are associated with 

limitations in contrast, accuracy, and sensitivity when assessing whole joint pathology such as 

arthritis, due to the multifactorial nature of these diseases2. Osteoarthritis (OA) has soft tissue, 

bone, and metabolic characteristics that are difficult to image using only one of the of imaging 

modalities previously mentioned.  Three-dimensional (3D) ultrasound imaging is a relatively 

new imaging modality within the field of musculoskeletal imaging, which can provide a method 

for overcoming some of the limitations associated with x-rays, MRI, and two-dimensional (2D) 

ultrasound. 3D US has previously been validated for use in healthy knee patients, gynecological, 
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vascular, neonatal, liver, and prostate oncology applications3–5. However, 3DUS has not been 

validated for monitoring osteoarthritis in the more complex joints of the hand and thumb, where 

small anatomical structures and physiological changes mean significant changes in joint health 

and disease progression.   

This thesis will explore the application of a submerged mechanical 3D US device as a 

point of care imaging modality to provide clinicians with a method for monitoring osteoarthritis 

disease progression and treatment response. Specifically, this thesis will investigate the 

application of this 3D US device for monitoring synovial volume as an indicator of osteoarthritis 

pathogenesis in the first carpometacarpal (CMC1) joint of the thumb. Validation of this imaging 

method may potentially impact workflow for primary care, rheumatology, orthopedic, and sports 

medicine clinics by providing a method for acquiring 3D images at the patient’s bedside. The 

remainder of this chapter provides background information on CMC1 OA diagnosis, treatment, 

and monitoring, as well as principles of 3D US and other medical imaging modalities. It will also 

describe the underlying unmet clinical needs, hypothesis, and objectives of this thesis.  

 

1.1 First Carpometacarpal Osteoarthritis 

Osteoarthritis is the second most common chronic disease in the world and the most 

prevalent form of arthritis6. Traditionally OA was considered a disease of the articular cartilage 

and bone. However, with recent advances in medical imaging technology, we now understand 

that OA is a whole joint disease. The definition of OA has been updated to describe it as a 

disease that influences the articular cartilage, subchondral bone, vascular structures, and synovial 

membrane function7. OA can affect any joint in the body but those most commonly affected 

include the knees, hips, proximal interphalangeal joint, and the carpometacarpal joint of the 
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thumb. OA patients typically experience pain, functional disability, and decreased overall quality 

of life. Additionally, studies have reported high comorbidity with cardiovascular disease, 

diabetes, anxiety, and depression8–10.  

Knee osteoarthritis has been studied extensively over the past few decades due to its high 

prevalence and associated disability however, investigation into OA of smaller non-weight 

bearing joints still requires exploration. With the increase in the average age of the world’s 

population, we are experiencing a rise in the prevalence of OA. The prevalence of CMC1 OA 

has been reported to be as high as 33% in some study populations (the Rotterdam Study) and is 

higher in post-menopausal women11,12. As such, it is imperative for studies to examine avenues 

for earlier detection and treatment of OA.  

1.1.1 Hand and First Carpometacarpal Joint Anatomy 

The human hand is comprised of 3 sections, the wrist, palm, and fingers which include 27 

bones. The osseous anatomy of the hands consists of the distal heads of the radius and ulna, eight 

carpal bones, five metacarpal bones, five proximal phalangeal, five middle phalangeal, and five 

distal phalangeal bones (Fig. 1.1.1.1.1).  

Articulations between the radius, ulna, carpal, and metacarpal bones constitute the wrist 

joint. The proximal row of carpal bones consisting of the scaphoid, lunate, triquetrum, and 

pisiform articulate with the distal ends of the radius and ulna. The distal row of carpal bones 

(trapezium, trapezoid, capitate, and hamate) articulate with the five metacarpal bones to form the 

palm of the hand. Each of the five metacarpal bones connects to a phalange via the 

metacarpophalangeal joint. Each finger in the hand is made up of 3 phalanges except for the 

thumb, which is only comprised of 2. It is the complexity and the large number of bone 

articulations that allow for a wide range of movements in the hands13.  
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1.1.1.1 First Carpometacarpal Joint  

The 1st carpometacarpal joint is a biconcave-convex saddle synovial joint that is 

responsible for all thumb movements. The joint contains the proximal first metacarpal, trapezium, 

hyaline cartilage, ligaments, muscles, and a synovial membrane. Thumb motion is controlled by 

extrinsic flexors, extensors, abductors, and intrinsic muscles. Extensor pollicis brevis and abductor 

pollicis longus are the two main muscles that move the CMC joint through extension and abduction 

motions. Extensor pollicis brevis inserts on the proximal phalanx and runs along the radial aspect 

of the anatomic snuff box, while abductor pollicis longus inserts at the base of the first metacarpal. 

The intrinsic muscles of the thumb consist of adductor pollicis and the thenar muscles on the 

ventral side of the hand. The thenar group of muscles consists of abductor pollicis brevis, flexor 

pollicis brevis, and opponens pollicis. These muscles are responsible for flexion, abduction, and 

opposition of the thumb. Adductor pollicis inserts at the base of the proximal phalanx and is 

responsible for adduction and opposition14. 
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Figure 1.1.1.1.1: Anatomical diagram depicting the hand osseous anatomy. This figure 
includes the distal, middle, and proximal phalangeal bones, metacarpals, and carpal bones. 
Emphasis is added to the metacarpal and trapezium carpal bone which make up the first 
carpometacarpal joint of the thumb.  
 

1.1.1.2 The Synovium   

The synovium is the soft tissue lining of diarthrodial joints, tendons, and bursae containing 

hyaluronic acid, referred to as synovial fluid. The synovial membrane has two layers of cells, the 

first is the intima, and the second is the underlying tissue, called the subintima. The intima is 

mainly composed of macrophages and fibroblasts, cells that function as immune defense and 

maintain the structural framework, respectively. The subintima contains blood and lymphatic 

vessels, fibroblast, and other infiltrating cells which are contained in a collagenous extracellular 

matrix15. Typically, the normal synovial membrane is only about 25-45mm thick cross-sectionally.  
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However, in patients with rheumatoid and osteoarthritis, this thickness increases dramatically due 

to increases in macrophages16. This infiltration is reported to be associated with stromal edema 

and proliferation of the blood vessels.  

1.1.2   Risk Factors  

Risk factors for osteoarthritis can be separated into three major categories, including 

systemic, local joint, and extrinsic factors that act on joints17. Figure 1.2 highlights these risk 

factors and how they can interact.  Systemic risk factors increase the overall susceptibility of the 

individual to joint pathology and local joint biomechanical factors that have a significant impact 

on the optimal functioning of a joint. Factors categorized into the systemic group include age, 

gender, ethnicity, generics, bone density, nutritional factors, and inflammation.  Age and female 

sex are the most well-known risk factors for CMC1 OA11,18. Female sex has been an undisputed 

risk factor for CMC1 OA as it amplifies the age-related increase in risk for OA in the hands, 

knees, and multiple joints. Many studies have consistently demonstrated that females have a 

higher prevalence of CMC1 OA than males, according to biological sex11,12,19. The prevalence of 

OA also increases in certain racial and ethnic groups. OA is more prevalent in Western societies 

such as Europe and North America, and targets African-American women more than Caucasian 

or Asian women20. 
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Figure 1.1.2.1: Risk factors of OA. Diagram depicting the different types of OA risk factors 
and how they interact to put individuals at risk for developing OA. 
 

1.1.3   Clinical Presentation and Symptoms 

CMC1 OA is diagnosed clinically by a physician to evaluate the severity of patient 

symptoms. Symptoms include localized pain, inflammation, instability, weakness, and loss of 

pinch grip strength. As OA progresses to more severe stages of pathology, the CMC1 joint 

becomes stiff and forced into adduction, resulting in joint subluxation, first metacarpophalangeal 

joint hyperextension, and proximal migration of the first metacarpal 21,22.  The primary goals of 

treatment interventions are to prevent further disease progression and to alleviate symptoms. 

Clinical examinations of CMC1 OA are typically supplemented with medical imaging to 

determine disease severity and treatment progression7. Traditionally, standard posterior-anterior, 

lateral, and oblique views are acquired using plain x-ray radiographs. These views may also be 

supplemented with CMC1 joint stress views, which are acquired by asking the patient to press 

their thumbs together. This view allows for increased visualization of the joint articulations and 
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makes assessment of joint subluxation easier23–25. Medical imaging is helpful to evaluate disease 

severity or monitoring progression however, it is rarely required to confirm the diagnosis of 

CMC1 OA26. Semi-quantitative grading systems, such as the Eaton-Littler (EL) grading system, 

have provided set guidelines for defining the presence of CMC1 OA. Osteophyte presence and 

size, degree of joint subluxation, and severity of sclerosis are all characteristics that indicate 

disease severity. The EL grading scale defines OA severity in four grades (1-4, Subtle CMC1 

joint space widening to arthritic changes in the CMC1 joint with scaphotrapezial arthritis)27.  

1.1.4   Disease Progression and Treatment Options  

OA is not traditionally considered an inflammatory arthropathy. This is due to the relative 

lack of neutrophils found in the synovial fluid of OA patients and the lack of systemic 

manifestations of inflammation seen in comparison to rheumatoid arthritis. Despite this, OA 

symptoms regularly include swelling, stiffness, and pain in the affected joint, suggesting an 

inflammatory response28. It is now recognized that inflammation has an important role in OA 

pathogenesis and disease progression. Several studies have demonstrated that there are several 

key changes present in the synovium of patients with OA knees29,30. These changes included 

thickening of the synovial lining layer, increased vascularity, and inflammatory cell infiltration31. 

Although these changes are more pronounced in more advanced stages of OA, they are present 

from the earliest stages of the OA disease process. The classical OA spectrum ranges from 

significant synovial effusion and hyperplasia of the lining layer, including cellular infiltrate 

composed of lymphocytes and monocytes, through to a synovial membrane that has thickened 

due to fibrosis of the tissues involved29,32. Benito et al. reported that early knee OA patients have 

higher levels of macrophage infiltration and more blood vessel proliferation markers than those 

individuals who have advanced OA31. They also demonstrated that early knee OA patients 
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expressed higher levels of inflammatory mediators such as interleukin-1 and tumor necrosis 

factor-alpha than those at later stages of OA. These pro-inflammatory cytokines have been 

proven to be involved in the initiation and progression of articular cartilage degeneration in 

OA33.  

There is currently still no cure of OA however, several treatment methods focus on 

alleviation of patient symptoms. Expert organizations such as Osteoarthritis Research Society 

International (OARSI), the European League Against Rheumatism (EULAR), and the American 

College of Rheumatology have published several guidelines for managing OA at various joints, 

including the hands, hips, and knees34–39. For symptomatic CMC1 OA patients, treatment 

guidelines recommend combining hand therapy and orthosis with pharmaceutical interventions. 

Although the CMC1 joint is not a weight-bearing joint, physical activity can improve overall 

health, and joint-specific exercises can increase the strength and flexibility of the muscles that 

act as the dynamic stabilizers of the thumb. The combination of these physical therapy 

interventions has demonstrated considerable variation in patient outcomes where some patients 

report substantial improvement in pain relief and physical function whereas others experience no 

improvement40.  

Pharmaceutical therapies are commonly included in the treatment plans of OA patients. 

Clinicians commonly prescribe medications such as paracetamol, non-steroidal anti-

inflammatory drugs, and corticosteroids. Paracetamol is commonly prescribed due to its cost-

effectiveness and safety. However, systematic reviews have shown either conflicting results or 

low efficacy for its use in pain management for OA41. A meta-analysis by Zhang et al. directly 

comparing paracetamol and NSAIDS, demonstrated that NSAIDS provided better pain relief. 

However, it is important to note that there is high variability in patient responses to these drugs42.  
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When more conservative treatments for CMC1 OA fail to relieve patient symptoms, intra-

articular injections such as corticosteroids and hyaluronic acid can be the next step in treatment 

options43,44. These intra-articular injections aim to relieve pain and reduce inflammation 

however, effectiveness is not well reported and the available literature on the topic has 

significant limitations45,46.  

Early surgical interventions for CMC1 OA include ligament reconstruction with or 

without tendon interposition. Later surgical interventions include arthroplasty, where all or part 

of the damaged thumb joint is removed and replaces with an artificial implant. Arthrodesis, 

fusion of the bones, is done to fuse the first metacarpal and the trapezium. This procedure has a 

high complication rate and causes loss of mobility in the CMC joint, including the ability to lay 

the palm flat and put the fingers and thumb into a cone shape.  

1.2     First Carpometacarpal Osteoarthritis Imaging 

1.2.1 X-ray Radiography  

X-ray radiography is currently the most commonly used imaging modality in the 

assessment of OA. This is due to the cost-effectiveness and availability associated with this 

modality. In 1973 Eaton and Littler first described a four-stage radiographic grading system, 

which was then adopted as the standard method for assessing radiographic evidence of CMC1 

OA47. In 1987, the scale was upgraded to include scaphotrapezial arthritis in the fourth stage. 

Radiography is widely accessible, has short acquisition times, and is associated with less 

discomfort than what is reported with other imaging modalities such as MRI. Joint space 

narrowing, sclerosis, subchondral cysts, and osteophytes are all imaging features associated with 

OA disease and progression (Fig.1.3). Radiography has several limitations to consider when 

using it as an imaging modality for osteoarthritis. Most prominently, the lack of soft-tissue 
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contrast associated with radiography excludes essential information about the cartilage, 

synovium, and other structures surrounding the CMC1 joint. Similar to what has been reported in 

the knee OA literature, changes in the position of the thumb in radiographic images can change 

critical values such as joint space width and the number of osteophytes observed48,49. 

Additionally, the features of interest in these radiographic grading systems are typically 

indicative of more advanced stages of OA, potentially leading to a delay in appropriate 

treatment.  

 

 Figure 1.2.1.1: Radiograph of a patient with Eaton- Littler stage 4 CMC1 OA . This image 
shows a decrease in carpometacarpal joint space, subchordal sclerosis, subluxation of the CMC1 
joint and arthritic involvement of the scaphotrapezial joint.  
 
 
 

 
 

B 
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1.2.2 Magnetic Resonance Imaging  
 

Magnetic resonance imaging is an imaging modality that is excellent for overcoming the 

limitations associated with radiography. MRI provides excellent soft tissue-contrast, enabling 

better assessments for joint structures such as articular cartilage and the synovium. When 

examining the CMC1 joint clinicians are able to visualize the synovium, anterior oblique 

ligament, posterior oblique ligament, radial collateral ligament, and the surround muscles 

(abductor pollicis longus, extensor carpi radialis longus). The health and integrity of these 

structures play a very important role in joint stabilization and are the targets for early 

manifestations of OA. MRI is the current reference standard for imaging OA due its high spatial 

resolution, three-dimensional (3D) imaging capabilities and excellent soft tissue contrast50. The 

3D nature of MRI also allows for quantitative measurements of key OA factors such as synovial 

tissue volume. These measurements can be applied to disease monitoring protocols and can be 

used to assess treatment effectiveness. The OMERACT Hand and Osteoarthritis Magnetic 

Resonance Scoring System (HOAMRIS) is an example of a semi-quantitative measurement tool 

specifically for use in MR imaging of the hand51.  

Despite the advantage of excellent soft-tissue contrast associated with MRI for 

monitoring CMC1 OA, it is also associated with many limitations. MRI is associated with long 

waiting lists, high manufacturing, and operating costs, which includes the requirement of 

installing specialized MRI facilities and the machines themselves. These added costs make MRI 

largely inaccessible in cost constrained healthcare systems and in rural communities resulting in 

patients having to travel and only increases to cost-burden on those most vulnerable. The limited 

amount of MRI facilities available across the world results in longer waitlists and potentially 

further delays treatment planning. A study conducted by Ogbole et al. highlighted the extent of 
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this inaccessibility in 16 Western African countries as found that there were only eighty-four 

MRI units to serve a combined population of 372,551,411 people. Additionally, these units were 

not equally spread across these countries, with Nigeria accounting for 58% of the available 

units52.  In addition to these limitations, acquiring MR images of the CMC1 joint is a long and 

uncomfortable experience for most patients. Patients are asked to lay prone in the core with their 

hand extended above their head. They are also required to stay still for the duration of the scan, 

which usually takes about thirty minutes. When we take into consideration who our patient 

population is, we can see that these patients typically have other common musculoskeletal 

impairments, such as shoulder impingement, that makes staying still in the required position very 

uncomfortable.  
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Figure 1.2.2.1: MRI of a CMC1 patient. This figure includes arrows highlighting the joint.  

 
1.2.3 Conventional Ultrasound 
 

Two-dimensional (2D) US imaging is a widely accessible imaging modality that uses 

high-frequency acoustic sound waves transmitted through a water-based coupling agent and 

received by a transducer. Ultrasound images are acquired in real-time, meaning that the images 

are continually acquired as the transducer is manipulated across the area of interest. This allows 
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operators to assess the movement kinetics of internal structures such as ligaments, muscles, and 

tendons. Ultrasound can also be used to assess fluid movement using applications such as 

Doppler imaging. The transducers can be manipulated into several different views and 

orientations to acquire images that would typically be unattainable using radiography. Synovial 

effusion appears hypoechoic on US images while synovial membrane hypertrophy is slightly less 

hypoechoic. This is due to the difference in water content in the structures and is regularly used 

to determine progression of OA in clinics.  2D US has increasingly been integrated into 

orthopedic and rheumatology clinics due to its portable point of care nature and its image 

resolution. US is very accessible to all patients as images can be acquired at bedside with very 

minimal discomfort for the patient. This overcomes some of the limitations associated with MRI 

and patient physical accessibility and discomfort. Multiple studies have examined the use of 2D 

US for osteoarthritis monitoring with focus on articular cartilage thickness, synovitis, cysts, and 

abnormal osteochondral growths53,54,55,56. In 2016, the European League Against Rheumatisms 

(EULAR) and the Outcomes Measures in Rheumatology (OMERACT) US Working Group 

developed a semi-quantitative US scoring system for hand OA57.   

2D US has several significant limitations. The first limitation is that 2D US acquires 2D 

images of inherently 3D anatomy. Traditionally, during a conventional ultrasound examination, 

the operator is required to mentally transform a series of 2D images into a subjective impression 

of the 3D anatomy. Thus, the accuracy and precision of measurements and discissions made for 

treatment are heavily reliant on operator skill and expertise. Diagnosis, treatment, and 

monitoring of osteoarthritis often requires accurate estimation of cartilage thickness and synovial 

tissue volume. With conventional US, volume calculation utilizes simple measurements such as 

height, width, and length in only two orthogonal views. Usually, the operator also must assume 
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idealized shape which is very rarely the case when investigating synovial effusion and membrane 

tissue volume in the CMC1 joint. This practice is both inaccurate, highly operator dependent and 

has high variability. Additionally, 2D US imaging may not be appropriate for acquiring 

volumetric data for longitudinal studies, due to the challenges associated with standardizing 

patient and transducer position during consecutive scanning sessions58. Finally, the field of view 

in 2D US is limited to the length of the transducer, meaning that it is challenging to examine the 

entire joint and tissues of interest with one 2D image. Therefore, multiple images are often 

required, resulting in increased scanning session times, increased difficulty in interpretation with 

changes in the surrounding anatomy.  
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Figure 1.2.1 :2D US images of the CMC1 joint. This figure shows a healthy volunteer (A) and 
in a patient with OA (B). Images were acquired with an Aplio i800 US machine (Canon Medical 
Systems Corporation, Otawara, Tochigi, Japan). This system was equipped with a 14L5 linear 
transducer with an operating frequency of 10 MHz.  

A 

B 

First Metacarpal  Trapezium  

CMC1 Joint  

First Metacarpal  Trapezium  CMC1 Joint  

Synovitis  
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1.3    3D Ultrasound Imaging  
3D US imaging has the potential to overcome many of the limitations associated with 

conventional US imaging. 3D US imaging follows the same physical principles as 2D US in that 

acoustic wave are produced and received by piezoelectric crystals within the ultrasound 

transducer. The most significant difference between 2D and 3D US imaging is that 3D US 

provides the operator with an interactive 3D reconstruction of the anatomy, effectively removing 

the need for mental transformation of the images58.  

Currently, there are three different methods for acquiring 3D US images. These include 

free hand, 2D array transducers and mechanical transfer. The first method, free-hand scanning 

requires the operator to manually move a 2D transducer across the area of interest while the 

position and movement of the transducer is recorded by an optical tracking system.  In order to 

optimally track the position of the transducer, a minimum of three markers are required to cover 

all degrees of freedom. The tracking system uses infrared cameras to track these passive markers. 

This method is similar to other methods used to track motion and limb movement in 

biomechanical studies. The second approach requires a specialized US transducer that contains a 

matrix of 2D array elements. The matrix elements allow the transducer to acquire images in two 

different planes simultaneously, however the increased amount of required elements increases 

the manufacturing cost of these transducers59,60. Additionally, a complicated file transferring 

processes is required to export these images from the US machine, which is required for any 

post-acquisition processing needed. The third acquisition method uses a motorized drive 

mechanism to translate, tilt or rotate the 2D US transducer across the area of interest while an 

encoder and computer records the position. As the transducer is translated, hundreds of 2D US 

images are acquired and the exact orientation and position of each image is known because the 

speed, distance and frame rate of each image is known61. The 2D US images are then added 
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together using software to create the 3D reconstruction, similar to adding together slices of bread 

to form a loaf58.  

  

Figure 1.3.1: 3D US image of a CMC1 OA joint. This figure shows the CMC1 joint of a 
patient with OA indicating the anechoic section of synovial effusion and labeled acquisition and 
reconstruction planes.  

 

In this thesis, we have chosen to use a linear mechanical acquisition method as images 

are acquired at set spatial intervals that produce a rectangular geometry after acquisition (Fig. 

1.6). As we are focusing on the small CMC1 joint of the thumb, the field of view of the 

transducer is not a significant concern for this project. However, expansion of this imaging 

method to other, larger joints would benefit from the increased field of view as shallower depths 

associated with the linear scanning approach.  
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Once a 3D US image is formed, it contains multiple image planes. The orientation in 

which the original 2D US images were acquired is referred to as the acquisition plane and is the 

plane with the highest spatial resolution (Fig.1.6). This plane has the same spatial resolution as 

the 2D US transducer. The plane perpendicular to the acquisition plane is referred to as the 

reconstruction plane (Fig.1.6). The spatial resolution for the reconstruction plane is equal to that 

of the elevational resolution of the transducer. Spatial resolution is directly dependent on the 

depth setting and the frequency of the 2D US machine. When acquiring 3D US images, the 

translational speed of the transducer needs to be matched to the sampling rate of the US machine. 

Changes made to the scan distance or translation speed will affect the 3D US acquisition time. A 

typical 3D US scan takes approximately less than 20 seconds. These fast acquisition times, in 

addition to the customizability of the transducer holders and the decrease in operator dependency 

makes 3D US scanning an attractive method for quantitatively measuring synovial tissue 

volumes. This application could potentially be critical for the diagnosis and monitoring protocols 

for CMC1 OA.  

 

1.4     Current Challenges of Image-Based CMC1 OA Monitoring  

1.4.1 Unmet Clinical Need and Previous Work Completed     

There is an unmet clinical need for point-of-care imaging devices that can provide 

quantitative methods for characterizing and monitoring synovitis in the CMC1 joint. We believe 

that 3D US may provide a potential method to satisfy this need. However, the development of 

new imaging devices requires rigorous testing to determine validity, reliability, and feasibility 

before implementation can be considered. Therefore, evaluation of current and possible new 

clinical workflow is essential when considering the design and adoption protocols for new 
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imaging devices. Studies previously conducted in our lab have evaluated the accuracy and 

precision of the mechanical linear translation method using geometric imaging phantoms and in 

the knees of healthy volunteers62,63. These studies have shown that the linear scanning technique 

can produce volumetric measurements with less than 2% error compared to known phantom 

dimensions. Therefore, studies examining the measurement capabilities and clinical feasibility of 

using 3D US imaging are needed for the small joints of the hand. Additionally, more work is 

needed to understand the pathogenesis of synovitis in the context of CMC1 OA, how it presents 

morphologically in US and how this is related to patient-reported outcomes. 

 

1.4.2   Hypothesis   

The overall objective of this thesis is to advance the use of MSK 3DUS and identify 

sonographic features associated with osteoarthritis. As an initial clinical application, this thesis 

examines synovitis and inflammatory features associated with CMC1OA (base of the thumb 

osteoarthritis). 

 

1.4.3   Objectives    

There are three primary objectives for this work:  

1. To assess the linear and volumetric measurements capabilities of the proposed 3D US 

machine using imaging phantoms (Chapter 2). 

2. To validate and measure the precision of 3DUS-based measures of synovial tissue volume 

using gold standard MRI-based measurements in CM1 OA (Chapter 2). 

3. To evaluate the intra- and inter-rater reliability of our manual synovial tissue volume 

measurements.  
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4. To examine sonographic features associated with CMC1 OA in a cohort of patients.  

Sonographic features include synovial tissue volume and effusion morphology (Chapter 

3). 

5. To determine if synovial tissue volume is a predictor of patient-reported arthritic pain 

(Chapter 3). 

 

In response to the above objectives, the hypotheses for this work are: 

 

1. Linear and volumetric measurements capabilities will be less than 2% ground truth. 

2. 3DUS will be valid (within 5%) and reliable for measuring synovial tissue volume. 

3. 3DUS-based measure of synovial tissue volume will be reliable within and between raters.  

4. 3DUS will be a valuable tool to visualize sonographic features associated with CMC1 OA 

while providing sufficient image resolution and distinct morphological features of effusion  

(margin and geometry) vs. hypertrophy that will be useful to categorize phenotypes that 

may be associated with stages of early to advanced CMC1 OA. 

5. Synovial tissue volume will be a significant predictor of patient-reported arthritis pain.  

1.5   Thesis Outline 

This thesis will address the objectives previously stated in two manuscripts (Chapter 2 

and Chapter 3). 

 

 
Chapter 2: Three-Dimensional Ultrasound to Investigate Synovitis in the 
Hand and Wrist 
 

Chapter 2 describes the development and validation of a semi-submerged mechanical 3D 

US device that is intended for monitoring synovitis and the progression of CMC1 OA. The 

application of this point-of-care system to the small joints of the hand will improve clinical 
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workflow and potentially provide clinicians with more effective methods for quantitatively 

monitoring the effect of synovitis on CMC1 OA progression. In addition, this device could be 

beneficial in research settings by providing a tool for assessing OA longitudinally and 

monitoring intervention response.  

 

 

 

Chapter 3: Evaluation of Three-Dimensional Ultrasound as a Tool to Examine 
Synovitis Volume and Morphology in Relation to Patient-Reported Outcomes       
 

Chapter 3 describes the application of 3D US to a CMC1 patient population to evaluate 

how synovial tissue volumes could relate to patient-reported pain and disability scores on the 

AUSCAN. Additionally, we describe the various synovitis morphological features observed in 

US in our study population and examine how these differences could influence how the 

relationship between ratings on the AUSCAN relate to synovial tissue volume and other image-

based methods OA staging.  

 

Chapter 4: Conclusions and Future Directions  
 

This chapter provides an overview of the previous two chapters and aims to discuss the 

limitations and future directions required to further our understanding of 3D US as a tool for 

monitoring OA in non-weight-bearing joints.  
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Chapter 2 

2       Three-Dimensional Ultrasound to Investigate Synovitis in the Hand and 
Wrist 
 
The purpose of Chapter 2 is to present the validation and rater reliability of a semi-

submerged mechanical 3D US scanning device for measuring CMC1 synovial tissue volume 

compared to the gold standard of MRI. In this chapter, we discuss the linear and volumetric 

validation of the device and examine its validity and reliability compared to the clinical gold 

standard of MRI using 10 CMC1 OA patients.  

  

The contents of this chapter have been submitted to the journal of Medical Physics and is currently 

under review for publication. 
 

2.1       Introduction 

As stated in Chapter 1, Osteoarthritis (OA) is now considered a progressive joint disease 

characterized by inflammation of the synovium, degradation of the articular cartilage, and 

abnormal changes to the subchondral bone1.  OA is considered the most common form of 

arthritis, affecting 1 in 7 North American adults, and its prevalence is projected to continue to 

rise with the increasing trend in population age and body mass index (BMI).2,3 Hand 

osteoarthritis (HOA) is the cause of considerable pain and disability, leading to the inability to 

perform activities of daily living and ultimately decreasing the quality of life for many 

individuals.4,5 Epidemiological studies of elderly populations have estimated that the prevalence 

of HOA ranges from 44% to as high as 92% and is more commonly seen in women than men6,7,8. 

One of the most common sites for HOA is the carpometacarpal joint of the thumb, causing 

considerable disability as proper thumb motion is required for almost all activities of daily living. 

Despite the considerable impact of HOA on patients’ lives, there are fewer studies conducted on 
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the hands compared to larger joints such as the knee, and most of these studies focused on 

radiographic OA instead of symptomatic OA.9 Although radiographs are the most common 

imaging modality used to diagnose and monitor OA, multiple studies have reported 

discrepancies between radiographic severity and patient symptoms, as some patients display no 

radiographic damage but still present with symptoms such as pain.10,11 This is due to radiographs 

inability to capture subtle changes in early-stage OA due to the lack of soft-tissue contrast.12 

Over the last two decades, interest has increased in understanding the role of soft tissue 

structures in symptomatic OA. Studies have demonstrated that chronically elevated levels of the 

inflammatory mediators associated with synovitis can lead to cartilage degradation and 

breakdown of underlying subchondral bone.14 Although the degree of inflammation observed in 

OA is not as extensive as rheumatoid arthritis (RA), synovial effusions and membrane 

hypertrophy are now more frequently associated with OA due to the use of more sensitive 

imaging modalities such as magnetic resonance imaging (MRI) and two-dimensional ultrasound 

imaging (2-D US).14 As mentioned in Chapter 1, MRI has been shown to have adequate 

sensitivity for characterizing tissue damage and degeneration but is associated with many 

significant limitations including cost, time efficiency, and accessibility. Additionally, to provide 

a comprehensive assessment of inflammatory activity, contrast-enhanced MRI is recommended, 

which carries the additional risk of gadolinium toxicity and nephrogenic systemic fibrosis.13 

Two-dimensional musculoskeletal ultrasound (2-D US) has been reported as a reliable 

method of imaging synovial tissue changes in patients with OA and RA.16 Additionally, US 

imaging systems are inexpensive, readily available, and exams can be conducted at the patient’s 

bedside. Studies have examined the relationship of US findings with symptoms and functions in 

hand OA and other joints such as the hip and knee.17,18,19 However, 2-D US presents significant 
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limitations, as discussed in detail in Chapter 1 of this thesis. The need for operators to mentally 

transform 2-D images to 3-D impressions of the anatomy and the dependency on transducer 

position and location are two limitations that make musculoskeletal US imaging challenging. 

Three-dimensional US (3-D US) technology is an attractive alternative to 2-D US for 

quantifying and monitoring changes in OA as it can overcome many of the limitations associated 

with 2-D US imaging.20 Currently, there are three main methods for 3D US image acquisition, 

each of which has its own advantages and limitations for use in imaging of HOA. The first 

approach uses 2-D array transducers, which generate an acoustic beam in both the elevational 

and azimuth dimensions, allowing it to obtain a three-dimensional image. 2-D array transducers 

have been used extensively in abdominal and obstetrical imaging, but musculoskeletal purposes 

such as soft-tissue and nerve functioning have been few.21,22,23 However, the frequency of 

standard commercial 2-D array transducers is 8.5MHz, which is much lower than transducers 

commonly used for musculoskeletal imaging (8-18 MHz). Additionally, commercial systems 

with 2-D arrays generally do not provide an easy method to export the 3D US image to be used 

for further analysis. An alternative 3D US imaging method uses freehand scanning, in which the 

conventional transducer’s position and orientation are tracked using an optical or 

electromagnetic sensor as it is moved over the anatomy.20 The advantage of this method is that it 

allows clinicians to manipulate the transducer in the normal manner. However, it relies on the 

operator’s skill, and the approach requires somewhat costly tracking hardware that may be 

limited due to environmental factors (ferromagnetic materials and optical line of sight). Most 

importantly, it does not guarantee that the region of the anatomy is in the same position at a later 

session if the region is mobile (e.g., hand and thumb).  The third method consists of translating a 

conventional 2-D US transducer using a motorized drive mechanism, allowing integration of any 
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manufacturer’s transducer into a drive mechanism that is simple and inexpensive. This method 

has been used in various studies examining the feasibility of using 3D US to investigate cardiac, 

oncological, and pediatric pathologies,25,26,27  There have only been a few studies that reported 

the use of 3D US for musculoskeletal imaging, and even fewer that focus on HOA and 

characterization of synovial volume.28,29,30,32,33 Chauvin and Doria suggested the use of a 

mechanically translated 3D US device to examine synovial inflammation in juvenile idiopathic 

arthritis; however, no results of this proposed study have been published to date.29 Papernick et 

al., used a similar mechanically translated scanning approach to acquire images of healthy knee 

cartilage. This handheld device with a 10 MHz linear transducer worked well for large and flat 

regions of the anatomy, such as the knee.28 However, this approach suffers from signal loss due 

to inadequate coupling of the US transducer to the anatomy in complex surfaces such as the hand 

and thumb. Therefore, the development and validation of a 3D US device for smaller joints and 

with complex surfaces such as those found in the hand and wrist is needed to provide an 

inexpensive and rapid method to solve this unmet clinical need. 

 In this chapter, we describe a new system for generating 3D US images of the hand and 

wrist. This system includes a custom motorized US transducer mover, 3D US reconstruction 

software, and a positioning device designed specifically to standardize the hand position between 

subsequent scanning sessions and modalities. The objectives of this chapter are to (1) assess the 

linear and volumetric measurements capabilities of the proposed 3D US machine using imaging 

phantoms, (2) validate and measure the precision of 3D US-based measures of synovial tissue 

volume using gold standard MRI-based measurements in CM1 OA, and (3) to evaluate the intra- 

and inter-rater reliability of our manual synovial tissue volume measurements.  
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2.2 Methods  

2.2.1 3-Dimensional Ultrasound System 

The mechanical 3D US acquisition device was developed to allow imaging of the hands 

and wrists, which have complex surfaces, and to provide a method to position the hand and 

wrists in the same position and orientation in subsequent imaging sessions. Our device makes 

use of a motorized submerged transducer moving assembly (mover) designed specifically for use 

inside a wrist positioning container, which consists of an 11-liter tank filled with a 7.25% 

isopropyl alcohol solution to match the speed of sound of tissue (1540 m/s)34 (Fig. 2.2.1.1). This 

mover is compatible with any commercially available 2-D US machine and linear US transducer 

and housed in a custom 3-D printed attachment, but for this study, a Canon Aplio i700 US 

machine (Canon Medical Systems, Tustin, California, US) and a 14L-5 linear transducer with a 

10 MHz operating frequency (3.8MHz – 10.0MHz) and 58 mm footprint. To obtain a 3D US 

image, the transducer can be translated up to 30 cm linearly within the submersion tank by a 

Micromo Rotary Coreless DC 1331T 006 SR motor (MicroMo Electronics, Clearwater, FL, 

USA) with an integrated electromagnetic encoder, which records the rotational position of the 

motor. This motor is powered by a 12V DC power supply, which is controlled by a Micromo 

MCDC 3006S motor controller linked to a desktop workstation through a USB connection. An 

Epiphan DVI2USB3.0 video frame grabber (Epiphan Systems Inc., Ottawa, ON, Canada) 

connected to the digital visual interface port of the 2-D US machine transmits the images to a 

computer workstation. The system acquires a series of 2-D images at 0.166 mm spatial intervals 

at a 20.3 Hz rate, and the acquired 2D US images are reconstructed into a 3D US image (0.114 x 

0.114 x 0.333 mm3 voxel size) as 324 2D US images are acquired. Typically, the scan length and 

time were 8.12 cm and 16 sec for imaging the thumb. 



 34 

 

 

Figure 2.2.1.1: Schematics of the 3D US hand imaging device. This figure shows (A) side 
view of the 3D US scanning device showing hand placement, 14L-5 linear US probe, motor unit, 
and 7.25% isopropyl alcohol solution. (B) Top view of the submerged mechanical 3D US 
scanning device. (C) Side view of the mechanical components of the 3D US device. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35 

2.2.2 Wrist Positioning Device: 

A wrist positioning device was fabricated to allow standardizing of the hand position 

between imaging modalities (i.e., 3D US and MRI) and subsequent scanning sessions. The 

positioning device is composed of polycarbonate two plates, attached at a 120° angle as seen in 

Fig. 2.2.2.2. Each patient’s hand was locked in place by a series of Delrin pegs that allowed for 

consistent hand positioning between the MR and 3D US imaging sessions. The configuration of 

the pegs was recorded and was specific to the patient’s hand size. 

Figure 2.2.1.2: Wrist positioning device. This device was used for standardizing patient 
position in 3D US and MRI. The image includes two polycarbonate plates, Delrin positioning 
pegs, and the scanning position for the CMC1 patients. A grid of small holes in the 
polycarbonate plates was used to assist in stabilizing the hand position.  
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2.2.3 Linear Validation of Image Reconstruction 

To evaluate the accuracy of the reconstructed 3D US geometry, a multilayer 

monofilament string-grid phantom (Fig. 2.3.1.1) (10 mm square grid) was scanned in a 7.25% 

isopropyl alcohol (Sigma Aldrich, Co., St. Louis, MO, USA) solution to provide the correct 

speed-of-sound of soft tissues (1540 m/s). The string layers of this phantom were offset to 

prevent shadowing, which resulted in diagonal distances between strings of 10.3 mm and 12.5 

mm. The distances between the intersections of the strings in each coordinate plane of the 

reconstructed images were then measured manually using image visualization and processing 

software (3D Slicer 4.11.0 Preview Release). The mean measurement [N= 36, 36, 32 for the x-

direction, y-direction, z-direction] for each coordinate plane was then compared to the physical 

known distances (i.e., 10.0 mm, 10.3 mm, and 12.5 mm).  

2.2.4 Volume Validation: 

To validate the volumetric measurement capabilities of the system, a simulated synovial 

tissue phantom with an embedded synovial effusion was fabricated and imaged using the 3D US 

device. The phantom was developed to represent an anatomically correct CMC1 joint. The 

simulated synovium phantom was comprised of agar and 3-D printed nylon bones. The simulated 

synovial membrane and effusion were constructed using the tip of a surgical glove, filled with 

1300 mm3 of tissue-mimicking agar (200 mL water, 16 mL glycerol, 7 g agar powder, 3g 

sigmacell cellulose) (Sigma Aldrich, Co., St. Louis, MO, USA). The tips of the glove were 

sealed with hot melting adhesive. Previously acquired CT images of a first metacarpal and 

trapezium were used as the models to 3-D print the bone components.  The simulated effusion 

and the 3-D printed bones were placed in the anatomically correct positions and then covered in 

background tissue-simulating agar containing sigmacell cellulose scattering agent (35 g agar 
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powder, 1000 ml distilled water, 80 ml glycerol, 15 g sigmacell cellulose). This was done to 

mimic soft-tissue scatter in the US images and provide contrast between the background and 

synovial effusions mimics.  

To test the inter- and intra-rater variability of the segmented volumes, the phantom was 

scanned, and then the 3-D images were repeatedly segmented by two raters ten times with a 24-

hour washout period. The 3D US images were analyzed using 3-D Slicer (3D Slicer 4.11.0 

Preview Release) by manually segmenting the simulated effusion observed in individual 3-D 

image slices. To establish segmentation boundaries, the two raters identified the most medial and 

lateral edges of the embedded object and segmented all visible areas of the simulated effusion 

using every second slice. These slices were spaced 0.33 mm apart in the in-plane (transverse) 

image.  These individual slices were then interpolated using 3D Slicer software to form a 3-D 

model of the embedded simulated effusion. The known physical volume of the simulated 

effusion (1300 mm3) was obtained using the water displacement method. Measurements were 

repeated three times, and the mean volume was used in our comparisons to the image-based 

volume measurements.  

2.2.5 Clinical Validation 

The imaging protocol for this study was approved by the Research Ethics Board at 

Western University (Ontario, Canada) and all patients provided written informed consent prior to 

taking part in this study. We imaged ten CMC1 OA patients to determine the utility of our 3D 

US system for measuring joint synovium volumes. Patients were diagnosed as having CMC1 OA 

by a hand surgeon at the Roth | McFarlane Hand and Upper Limb Center (London, Canada). 3D 

US images were acquired of the CMC1 OA patients on the ventral side of the hand, with the 

thenar eminence facing the transducer. Since MRI is the current clinical gold standard, 
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complimentary MR images were acquired with a GE Discovery MR750 3.0T whole-body system 

(General Electric Healthcare, Milwaukee, WI, USA) using Photon Density Fast-Spin Echo with 

Fat Saturation sequence for comparison. A 32-channel carotid coil (NeoCoil, Pewaukee, WI, 

USA) was used while patients were positioned on the MRI bed in the full-body prone and full 

shoulder flexion position with their affected hand placed in the bore of the MRI machine. The 

hand was fixed in the previously described hand positioning device (Fig. 2.2.1.2) to standardize 

hand positioning between the 3D US device and MRI.  

  The two raters involved in this study had extensive backgrounds in anatomy and 

physiology and had received specialized training in MSK US. Additionally, rater 2 was a 

sonographer certified by Sonography Canada. The synovium was identified in each set of 

images, and the raters established segmentation boundaries as the most lateral and medial edges 

of the first metacarpal and trapezium bones. The volumes of the synovium observed in these 

regions were manually segmented using 0.33 mm distances between 3D image slices and all 

areas that exhibit hypoechoic character or hyperplasia of the membrane. To assess 3-D US- and 

MRI-based volume measurement reliability and accuracy, the images were segmented by two 

different trained raters using the methods previously described, and the measured volumes were 

compared. The average segmentation time was approximately 10 min once boundaries were 

established. 

2.2.6 Statistical Analysis 

Statistical analyses for all data were performed using SPSS (SPSS Statistics v26; IBM, 

Armonk, NJ). Distribution normality was assessed using the Shapiro-Wilk test. The significance 

level was chosen such that the probability of making a type I error was less than 5% (p < 0.05).  

The metrics used to assess the linear measurement capabilities of the system were the mean, 
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standard deviation, coefficient of variation, and percent error.  These metrics were also used to 

compare the volumetric phantom measurements found using 3D US and MRI.  

The accuracy and precision of the patient synovial volume measurements were assessed 

using the mean difference between MRI and 3-D US. In addition, SEM and Minimal Detectible 

Change (MDC at 95% confidence interval) were calculated from the repeated 3D US and MRI 

segmentation values to estimate measurement error and the threshold for true, statistically 

detectable change, respectively.34 SEM and MDC are calculated using Eqs. 1 and 2, respectively. 

 

𝑆𝐸𝑀 = 𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑  ×  √(1 − 𝐼𝐶𝐶) (1) 

 

𝑀𝐷𝐶 = 1.96 ×  𝑆𝐸𝑀 × (√2)  (2) 

           Intra- and inter- rater segmentation reliabilities from 3D US and MRI images of the 

CMC1 patients were assessed for both raters using intraclass correlation coefficients (ICCs Inter-

rater ICCs were based on a single-rating, absolute-agreement, 2-way random-effects model, 

while intra-rater ICCs were based on single-rating, absolute-agreement, 2-way mixed-effects 

model). ICCs were interpreted as poor reliability for less than 0.50, moderate reliability for 

between 0.50 and 0.75, good reliability between 0.75 and 0.90, and excellent reliability for over 

0.9035. Individual two-sample t-tests were used to determine if there were any statistically 

significant differences between the volumetric measurements observed by the two raters as well 

as between the measurements obtained with MRI and 3-D US.  
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We also examined the impact of synovial volume on segmentation variability by plotting 

the difference in repeated segmentation V1 and V2 normalized by the mean of the two volume 

measurements (i.e., relative delta Eq.3) as a function of the mean volume, thus: 

 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑫𝒆𝒍𝒕𝒂 = | 𝑽𝟏− 𝑽𝟐
(𝑽𝟏+ 𝑽𝟐 )/𝟐

|                                                                                         (3) 

2.3 Results 

2.3.1 Linear  Phantom Validation 

Figure 2.3.1.1 shows a photograph of the string phantom and the corresponding 3D US 

image sliced to reveal the intersections of the strings. As shown in Table 1, the mean percent 

error for all measurements in all directions and planes ranged from 0.13% to 1.06% of the 

expected values. The largest percent error was observed in the Z direction of the (X, Z) plane, 

which is the reconstructed plane of the 3D US image. 

Figure 2.3.1.1: Linear Imaging Phantom. A multilayer grid phantom comprised of 
microfilament strings spaced 10.0 mm, 10.3 mm, and 12.5 mm apart and offset diagonally to 
prevent US shadowing (A). 3D US reconstruction, including labeled reconstruction and 
acquisition plane(B).  
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Table 2.3.1.1: Summary of distance measurements made in each coordinate plane of the 3D US 
image of the string phantom.  

 

2.3.2 Volumetric Phantom Validations  

Figure 2.3.2.1 shows the synovial tissue-mimicking phantom and a 3D US image. The 

mean 3D US-based volumetric measurement observed for all the CMC1 phantom segmentations 

was 1323.37 ± 25.13 mm3, which was 1.8% larger than the known physical volume of 1300 mm3. 

A two-sided t-test comparing the two raters and the image-based volume to the known volume 

showed no statistically significant difference between the mean volumes. The coefficient of 

variation for raters 1 and 2 were 0.8% and 2.6%, respectively. The mean Dice similarity coefficient 

(DSC) between the two raters was 88.0% with a mean Hausdorff distance (HD) of 0.34 ± 0.17 

mm. 
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Figure 2.3.2.1:  Anatomical Volumetric Imaging Phantom. (A) The tissue simulating 
volumetric phantom for the CMC1 joint and (B) its reconstructed 3D US image, showing the 
first metacarpal, trapezium, and the embedded synovial effusion. 
 

2.3.3 Clinical Validation  

Table 2.3.3.2 summarizes the patient demographic information and Eaton-Littler Grade 

for the classification of radiographic CMC1 OA of the patients we imaged. Eaton-Littler grades 

were assigned by an experienced orthopedic surgeon at the Roth|McFarlane Hand and Upper 

Limb Centre (London, Ontario). Figure 2.3.3.1 shows 3D US and MRI images of the CMC1 

joint of three patients with mild, medium, and severe synovitis. The mean differences for the 

CMC1 patient volume measurements observed between the two raters were 2.61± 24.71 mm3 

(3D US) and 13.85 ± 9.04 mm3 (MRI). The difference between 3D US and the gold standard 

MRI was 1.78%. A two-sided t-test showed no statistically significant difference in the volume 

measurements found using 3D US and MRI in the CMC1. The correspondence between the 3D 

US and MRI volume measurements can be seen in the linear regression and Bland-Alman plots 

in Fig. 7A and 7B. These plots indicate a high correspondence and a small bias of -5.89 mm3.  

The difference between the two repeated 3D US synovial tissue volume measurements showed 
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an SEM of  11.21 mm3 and an MDC of  31.06 mm3, while the difference between MRI synovial 

tissue volume measurements demonstrated an SEM of  16.82 mm3 and an MDC of  46.63 mm3. 

The relationship between CMC1 patient synovial tissue volume and segmentation 

variation (i.e., relative delta, Eq. 3) for 3D US and MRI are shown Fig. 8A and 8B. These plots 

indicate an increase in segmentation variation when segmenting smaller and larger synovial 

tissue volumes for both 3D US and MRI.  

 

Table 2.3.3.1: Summary of patient demographics and Eaton- Littler Grade 

Age (mean ± SD) 66.25 ± 7.08 

Female/male  4/6 

Eaton-Littler Grade  

     Grade 0 0 

     Grade 1 0 

     Grade 2 3 

     Grade 3 4 

     Grade 4 1 

 

As previously discussed in the section 2.2.6, the ICC values are to be interpreted as <0.5 

equals  poor reliability, between 0.5 and 0.75 as moderate reliability, and between 0.75 and 0.9 

as good reliability. ICC values greater than 0.9 indicate excellent reliability based on guidelines 

provided by Koo and Li35.The inter-rater ICC for the 3D US and MRI CMC1 synovial volumes 

was 0.94 and 0.99, and the intra-rater values were 0.99 and 0.99, respectively. Determining the 

DSC between MRI and 3D US patient segmentations was not feasible as slight differences in 
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patient’s hand movement during the patient moving from the 3D US imaging suite to the MRI 

scanner and compression in the MRI coil led to variation in the structure of the synovial 

membrane and the fluid effusion within, but the volumes were not affected.  

  

Figure 2.3.3.1: MRI and 3D US images of the CMC1 joint of patients with synovitis. 3D US 
(A) and MRI (B) of a patient with mild synovitis (114.10 mm2). 3D US (C) and MRI (D) of a 
patient with medium synovitis (372.57 mm2). 3D US (E) and MRI (F) of a patient with severe 
synovitis (605.99 mm2). In MRI, synovial tissue appears as bright structures extending from the 
joint. In comparison, in US we see synovitis represented in anechoic sections (black) due to the 
way the acoustic waves are bounced back to the transducer. Segmenting MRI is challenging due 
to the increased field of view but decreased spatial resolution. 
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Figure 2.3.3.2: Bland-Altman and Linear Regression plots. Bland-Altman plot assessing the 
relationship between CMC 3DUS and MRI (A). Linear regression plots of MRI segmentation 
volumes used as predictors for 3DUS (B).  

Figure 2.3.3.3: Polynomial regression plots: Polynomial regression plots assessing the 
relationship between synovial tissue volume and the difference between the repeated volume 
measurements normalized by the mean volume (i.e., relative delta) for 3D US (A) and MRI (B), 
respectively.  
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2.4 Discussion 

2.4.1 Linear and Volume System Validation  

The linear measurement accuracy using our 3D US images was confirmed using a 

multilayer microfilament grid phantom, as the largest percentage distance error was 1.06% in the 

reconstruction plane of the 3D US image. This result is consistent with error measurements 

found in previous 3D US phantom studies, which reported error values as high as 3.0%.31,36 

We demonstrated that the system has the ability to accurately measure the volumes of 

irregular anatomy in a CMC1 phantom with  < 2% error from the known physical volume of the 

embedded object. In a previous study, Papernick et al. reported a 0.49% error between knee 

cartilage tissue simulating agar phantom and its known physical volume.28 The Papernick et al. 

study used the same equipment and linear scanning methods as our study; however, their study 

aimed to examine the cartilage volume of the knee, and as such, the volume phantom used for 

their study consisted of a larger-regular shaped object which was less challenging to manually 

segment. Thus, the larger percent error in the assessment of the synovial volume (1.8%) found in 

our study was associated with the irregular shape and small size of the CMC1 phantom, which 

made accurate segmentation more challenging and small segmentation errors causing a larger 

percentage error.   

2.4.2 Clinical Validation 

3D US synovial volume segmentations demonstrated insignificant mean differences 

between raters for the CMC1 synovial volume measurements compared to MRI. The percent 

difference between 3D US and MRI was 1.71%. Manually segmenting the synovial tissue on 

non-contrast MRI was challenging as the effusion boundaries are not always as well defined as 

observed in our 3D US images.  Movement artifact is often easier to overcome in 3D US as we 
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are able to re-acquire images rapidly if needed. However, with MRI, acquiring sequences takes 

time and requires the patient to stay still for long periods of time (30 minutes), often in 

uncomfortable positions. Additionally, there was a difference in slice thickness between the MRI 

and 3D US images. The 2D images that comprised the 3D US reconstruction were spaced 

0.33mm apart, while the MRI slice thickness was 0.5mm. An increase in slice thickness causes a 

decrease in resolution, which could possibly have constributed to the quality of the images and 

the accuracy of the segmentations. However, Papernick et al. used similar methods to examine 

healthy knee tibiofemoral cartilage thickness and found a percent difference of 6.46% between 

volume measurements found using MRI versus 3-D US.25 Healthy knee cartilage is more 

uniform and consistent than the synovial tissue membrane of the CMC1 joint. The knee joint is 

also much larger and is easier to visualize using ultrasound as the joint consists of  larger 

articulating bones and is easily opened for view by bending the knee. In the hand, visualizing the 

joints is typically more challenging due to the small size, irregular shape, and biomechanical 

limitations of the structures.  However, the anatomical shape and small size of the CMC1 joint 

often leads to distinct protrusion of the synovial fluid on the volar side of the joint, which makes 

identification and segmentation easier. This could explain why we found a smaller percent 

difference between our MRI and 3D US values (1.78%) compared to the 6.46% difference in 

femoral articular cartilage volumes reported by Papernick et al. 

The inter- and intra-rater reliability assessment demonstrated excellent reliability for both 

3D US (ICC = 0.94) and MRI (ICC=0.99) based on the Intra-Correlation Coeffient criteria 

previously outlined in this chapter. The SEM for our 3D US volume measurements (11.21 mm3) 

was smaller than the values found for MRI (16.82 mm3), indicating that there was a higher level 

of precision associated with the 3D US measurements than with MRI. The smaller MDC value 
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for 3D US compared to MRI suggests that our 3D US imaging device is more sensitive to 

detecting differences in repeated synovial tissue volume segmentations than MRI. The DSC  

(88.0%) and HD (0.34 ± 0.17 mm) values found for the volumetric phantom were similar to 

values found in the clinical populations of other studies conducted using MRI for automatic and 

semi-automatic segmentations of knee bone and cartilage 28,37., Fripp J et al., reported DSC 

values of 87.0%, 85.0%, and 87.0% for patellar, tibial, and femoral cartilage MRI volume 

segmentations, respectively37. These results suggest that the application of this 3D US device to a 

longitudinal or test-retest study design would allow for an examination of the device’s ability to 

detect the MDC between patient images. This exploration would provide information on 

synovial volume changes over time and give clinicians insight into which magnitude of change 

should be considered significant. Once these values have been established,  3D US may be 

suggested to measure effects in a clinical trial and in monitoring an individual’s progression of 

synovitis in CMC1 OA patients would be better than with the use of MRI.  

2.4.4 Limitations 

While 3D US is an imaging modality with many advantages, such as its non-invasive, 

point-of-care nature, and quantitative measurement capabilities, there are inherent limitations. 

Potential sources of error within our study lie within the positioning of patients, MRI sequences, 

and the post-acquisition process. For the CMC1 population, patients were imaged using 2D and 

3D US in two main positions, dorsal and volar (palmer), scanning through the thenar eminence. 

The CMC1 joint is a saddle-shaped joint, forcing the image to be acquired in positions that allow 

for views into the joint space and to assess joint health.  

Disease-specific factors also affected our ability to measure synovial tissue volume in the 

joint while using 3D US. In CMC1 OA patients, specifically those that are at more advanced 
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stages of the disease, it is very likely that views of the synovial membrane will be obstructed by 

abnormal changes to the skeletal anatomy, such as the development of marginal osteophytes and 

subluxation of the joint (common features in OA). Unlike MRI, high-frequency US is not able to 

penetrate cortical bone, which results in obscuring underlying synovitis in the 3D US images. 

Subluxation of the joint and significant functional disability also causes issues with positioning 

the hand and wrist within the scanning apparatus, which can have deleterious effects on image 

quality. In the future, these barriers may be partially overcome by acquiring multiple 3D US 

images of the joint from varying perspectives/angulations of the US transducer and fusing these 

acquisitions. This approach is a similar concept to compound imaging in that multiple scans of a 

region of interest from different view angles can overcome the limitations of obfuscated anatomy 

and imaging artefacts38. 

In addition to the limitations associated with physical hand position and disease-specific 

factors in imaging, consistency in hand positioning over time and between modalities scans was 

another limitation. To accurately compare and assess synovitis using our 3D US device, we must 

position patients in the same position each time we acquire the images. This process must be 

executed when transferring patients from the 3D US device to the MRI machine. Variation in 

position could influence the volumetric quantity and shape of synovitis and synovial membrane 

observed from the 3D US images, which would result in variation in the observed synovial tissue 

volume. Although our hand positioning device did mitigate some of the positioning variations, 

there was inevitable compression of the joints due to the MRI coil requirements.  
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 2.5 Impact 

The most significant advantage of 3D US is the ability to acquire images safely, quickly, 

and efficiently at the patient’s bedside. The small SEM and MDC values indicate that 3D US can 

detect small changes in synovial tissue volume measurements with more precision and sensitivity 

than MRI. This indicates that 3D US may be an effective tool to consider when investigating 

characteristics of CMC1 OA in longitudinal and test-retest study designs. It also provides a cost-

effective and non-invasive method for assessing and monitoring synovial tissue status earlier in 

the HOA disease process. The simple operation requirements and non-operator dependent nature 

of the device provide clinicians a point-of-care method for use in clinics and practices. With the 

availability of quantitative imaging methods, clinicians will have the tools to potentially screen 

and monitor HOA earlier than the clinical standard today, leading to earlier and inherently less 

invasive treatment options for patients. Future work will assess how the synovial membrane and 

levels of synovitis respond to disease progression over time and what impact treatment options 

such as intra-articular joint injections potentially have on synovial tissue volume. In Chapter 3 of 

this thesis, we aim to evaluate the relationship between patient-related outcomes, 3D US acquired 

synovial tissue volume, and the morphological presentation of CMC1 OA on various medical 

imaging modalities in a larger cohort of patients with CMC1 OA.  

Three-dimensional ultrasound shows promise as a tool for quantitatively characterizing and 

monitoring synovial tissue volume in the hands and wrists. The study results provide the basis to 

show that 3D US can accurately measure synovial tissue volume in patient populations. We have 

demonstrated that 3D US segmentations of volumetric and linear phantoms were associated with 

low acquisition error when compared to known physical volumes. Notably, the low SEM and 
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MDC values make the detection of small changes in synovial tissue volume measurements possible 

when monitoring synovitis in various upper limb OA patients.  
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Chapter 3 
 

3   Evaluation of Three-Dimensional Ultrasound as a Tool to Examine 
Synovitis Volume and Morphology in Relation to Patient Reported Outcomes       
 

3D US imaging has the potential to improve the efficiency of clinical workflow and to 

assist in monitoring disease progression and treatment efficiency in CMC1 OA patients. The 

purpose of Chapter 3 is to present the observed morphological trends in synovitis and examine 

its relationship with patient-reported outcomes of pain and functional disability.  

 

3.1 Introduction  
 

The thumb is critical to hand function, being responsible for precision movements and 

grip, and plays a significant part in nearly all basic activities of daily living1. As stated in Chapter 

1, the biconcave-convex structure of the CMC1 joint and its reliance on muscular and 

ligamentous stabilization increases its susceptibility to osteoarthritis2. Studies have shown that 

over 30% of middle-aged women (fifty years of age) have arthritis in their CMC1 joint3. CMC1 

OA is commonly diagnosed clinically with the aid of x-ray radiography. X-ray serves its primary  

purpose as a diagnostic imaging tool; however, it is also used to estimate prognosis, guide 

treatments, and for post-therapeutic evaluation. Therapeutic treatment options, such as surgery, 

are considered using the presence and extent of radiographic abnormalities4. The two most 

common radiographic indicators of OA are joint space width and the Eaton-Littler scoring 

system. This system has been deemed the gold standard for assessing osteoarthritis and ranges 

from 0 to 4, with grade 0 = no features of joint changes and grade 4 = joint space greatly 

impaired with sclerosis of the subchondral bone5,6. However, studies have reported discrepancies 

between radiographic evidence of OA and patient-reported outcomes such as pain and 
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disability4,7,8.  If we look at the osteoarthritis literature, we can see that most patients with pain do 

not exhibit radiographic changes associated with OA and that less than 50% of individuals who 

have radiographic evidence of OA report pain regardless of the area affected9,10,11,12. These 

discrepancies have been attributed to the lack of soft-tissue contrast associated with radiography 

and the heterogeneous nature of osteoarthritis as a disease.  

Synovitis has been associated with pain and disability and has been proven to be a driver 

of osteoarthritis disease progression, making it an attractive target for disease-modifying 

interventions13,14,15,16 . Non-contrast MRI and 2D US are commonly used tools for assessing 

synovitis in OA patients.  Studies examining synovitis and pain in knee OA patients demonstrate 

that synovitis was present in 55% of patients with no radiographic evidence of OA. The 

Multicenter Osteoarthritis Study (MOST) showed that 80% of the participants who reported 

moderate pain had synovitis upon imaging analysis17. In 2016, the Outcome Measures in 

Rheumatoid Arthritis Clinical Trials Ultrasound group developed definitions and semi-

quantitative grading schemes for synovitis, and subsequent studies have established moderate 

linear relationships between patient-reported outcome scales such as the Knee Osteoarthritis 

Outcome Score and OMERACT grading scores18. However, studies investigating the 

relationship between synovitis (synovial effusion and membrane hypertrophy) and various 

grading scales and patient outcomes have found conflicting results. Hall et al. found that 

although US abnormalities are common in OA, there is only a moderate correlation between 

synovial effusion and hypertrophy and radiographic severity. Additionally, the results indicated 

that the relationship between these imaging features and pain is weak19. In contrast, Naredo et al. 

found that only those with symptomatic OA had joint effusion, meniscal protrusion, and bulging 
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of surrounding ligaments. They demonstrated an increased risk for developing painful OA when 

effusion is present20.  

We believe these discrepancies may be attributed to variable definitions of inflammatory 

features, a lack of sensitive quantitative measures for synovitis, and the possibility of variation in 

pathophysiological contributors within potential CMC1 OA phenotypes. Therefore the objectives 

of our study are: 

1. To examine sonographic features associated with CMC1 OA in a cohort of patients.  

Sonographic features include synovial tissue volume as well as effusion morphology. 

2. To determine if synovial tissue volume is a predictor of patient-reported arthritic pain. 

 
 
3.2 Methods  
 
3.2.1 Participants   
 

Nineteen CMC1 OA patients over the age of 18 were recruited by an experienced hand 

surgeon or rheumatologist at the Roth|McFarlane Hand and Upper Limb Center. In addition, five 

volunteers over the age of 18 without prior history of chronic CMC1 joint pathology were also 

recruited. The study protocol was approved by the Research Ethics Board at Western University, 

Canada, and all participants provided written consent prior to participating in the study 

(Appendix A). Patients were diagnosed with CMC1 OA by a fellowship-trained hand surgeon or 

a rheumatologist based on clinical indicators and radiography studies. Volunteers were deemed 

healthy if they denied experiencing any prior CMC1 pain or injury to the area. Patients with 

CMC1 OA who were scheduled to receive long-acting corticosteroid injections or had received 

an injection within a three-month period were scheduled to join our study only after the three-
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month drug activation period had passed as corticosteroid drugs influence the volume of 

synovitis present in the joint, as well as patient-reported symptoms such as pain and disability66.  

3.2.2 3D US Image Acquisition  

3D US scans were acquired using an Aplio i800 US machine (Canon Medical Systems 

Corporation, Otawara, Tochigi, Japan) and a 14L-5 linear transducer. The transducer has an 

operating frequency of 10 MHz (3.8 MHz – 10.0 MHz) and a 58 mm footprint length. The 2D 

US transducer was connected to our 3D US device using a custom 3D- printed mold. Our 3D US 

device consisted of a semi-submerged motorized drive mechanism that linearly translated the 2D 

transducer over a 7.9 cm length above the patient’s submerged thumb. Images were acquired 

continually at regular spatial intervals. These 319 2D US images were then reconstructed into a 

3D image in real-time while the scan was conducted via computer software created by Dr. 

Fenster’s lab. This scanner was previously validated in 10 CMC1 OA patients and compared to 

MRI as described in Chapter 2.  

3.2.3 2D US Scanning 

In addition to the 3D US images, 2D US images were acquired and graded using the 

Outcome Measures in Rheumatology (OMERACT) (2D US) semi-quantitative grading scales.  

The EULAR- OMERACT grading was based on the grading definitions reported by D’Agostino 

et al.21 ,22. Grade 1 is classified as the absence of hypoechoic synovial hypertrophy, regardless of 

the presence of effusion, and without Power-Doppler signal detected in the synovium. Grade 2 is 

defined as the grey-scale synovitis is hypertrophic regardless of the presence of effusion and any 

grade of Power Doppler signal. Grade 3 is indicated as a positive Power- Doppler signal that 

equals at least one red spot within the hypoechoic synovial hypertrophic region.  
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The Eaton-Littler grading was completed by our team’s hand surgeon, who assessed and 

graded the images using the grading definitions outlined by Eaton and Glickel23,24. The Eaton-

Littler classification system describes the four stages of CMC1 arthrosis. This is based on lateral 

radiographs of the CMC1 joint and includes the sesamoid bones superimposed on one another. 

Stage 1 shows normal radiographs with the absence of joint space narrowing, cyst formation, or 

subchondral bone changes. This stage may have joint space widening attributed to synovitis, 

effusion, or laxity of the surrounding ligamentous structures of the joint. In contrast, stage 2 

features slight joint-space narrowing, sclerosis, and cystic changes with the presence of 

osteophytes smaller than 2 mm in diameter. Stage 3 includes advanced joint space narrowing, 

sclerosis, and cystic changes with osteophytes larger than 2 mm in diameter, and stage 4 includes 

all aspects of stage 3 but extends to scaphotrapezial arthritis.  

3.2.4 Patient-Reported Outcomes   

The primary outcome measure in this study was pain and disability, quantified using the 

Australian Canadian Hand Osteoarthritis Index (AUSCAN). The AUSCAN questionnaire is a 

self-administered pain interference scale that assesses the dimensions of pain, disability, and 

joint stiffness in hand osteoarthritis using fifteen questions. The fifteen questions assessing pain 

and disability were scaled on a 100 mm Visual Analog scale, where one end of the line 

represented no pain, and the other represented the worst possible pain ever experienced. Patients 

were asked to fill out the questionnaire while thinking about how their CMC1 joint felt on the 

day of the appointment. The two-point pinch grip test was conducted by one researcher using a 

Jamar pinch gauge dynamometer (0-45 pounds) (Patterson Medical Holdings Inc., Greensboro, 

North Carolina, US). Participants were instructed to apply force to the dynamometer until they 

started to feel pain and slowly release the device to try and mitigate further exacerbation of pain 
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potentially caused by a quick-release motion. Three trials were completed on each hand, and the 

mean force was calculated and recorded.  

3.2.5 Analysis 

A descriptive analysis was used to describe how synovial tissue volume changes in 

morphology and pathology as the grade of radiographic findings differs, how these changes are 

related to outcomes of pain and functional strength, and the role of 3D US analysis in defining 

these. The second aim of this study was to determine if synovial tissue volume is a predictor of 

patient-reported arthritic pain, stiffness, and disability. Therefore, a forward stepwise linear 

regression was conducted to investigate the association between OMERACT grade, Eaton-Littler 

grade, pinch grip force (predictor variables) and AUSCAN score (dependent variable). Each 

independent variable was added to the model separately. After each entry, all candidate variables 

were checked to assess if their significance has been reduced below the specified significance 

level. Predictor variables were retained if the change in the p-value for additional variance 

explained was less than 0.05 when each entry was made.  

 
3.3 Results  
 

Table 3.3.2 shows a summary of the characteristics of the healthy participant cohort. The 

mean age for the healthy volunteer group was 38.3 years, and 60% of the volunteers were 

female. The average OMERACT score was 0.2, and the mean synovial tissue volume was 35.4 

mm3 for the healthy cohort. The healthy volunteers reported an average AUSCAN score and 

pinch grip force of 1.2% and 19.4 KgF, respectively.  

Table 3.3.1 shows the patient demographics of the 19 participants enrolled in this study. 

The mean age of the patient group was 66.1 (SD = 6.5) years, and 63% of the patients were 

female. The mean Eaton-Littler grade was 2.8 (SD = 0.6), while the mean OMERACT score was 
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2.1 (SD = 0.8). The average synovial tissue volume found using 3D US was 243.63 mm3 (SD = 

200.2), while patients reported an average AUSCAN score of 50.7% (SD = 23.9) and a mean 

pinch grip force of 10.6 KgF. The stepwise linear regression reported that pinch grip force 

predicted 28.4% of the variability in the AUSCAN scores (adjusted R2 value 0.284) (p<0.001) 

(Table. 3.3.1). Synovial tissue volume, OMERACT score, and Eaton-Littler grade did not 

significantly increase the variance explained within the model and were not retained.  

 

Table 3.3.1: Model summary of patient characteristics and differences between AUSCAN 

scores. 

 

Table 3.3.2: Summary of demographic characteristics for healthy volunteers.  

 
 
 
 
 
 
 
 

        
    Healthy Participants    
  Sex (% Female) 60%   
  Age ± SD 38.3 ± 16.0   
  Average      
  OMERACT Score  0.2 ± 0.4   
  Synovial Tissue Volume (mm³) 35.4 ± 24.9   
  AUSCAN (%) 1.2 ± 2.2   
  Pinch Grip (KgF) 19.4 ± 9.9   
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Figure 3.3.1: Healthy Participants Summary. A chart demonstrating the imaging features, 
clinical, and demographic characteristics of healthy CMC1 participants. The healthy synovium in 
the 2D US shows a classical pattern of closely forming around the joint with almost no visible 
anechoic sonographic features between the bones.   
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Within our patient population, we observed three distinct morphological presentations of 

synovitis: 

Phenotype 1: Synovial Effusion Dominant  

Phenotype 2: Diffuse Synovial Effusion and Hypertrophy 

Phenotype 3: Osteochondral Dominant 

These phenotypes were distinguished by synovial tissue margin properties, synovial 

tissue volume, and pathophysiological (effusion vs. hypertrophy). Table 3.3.3 summarizes the 

mean imaging grades, synovial tissue volume, demographics, AUSCAN scores and pinch grip 

strength for each phenotype. 

Table 3.3.3: Patient demographics summary for each synovial tissue phenotype.  

        

  
Synovial Effusion 

Dominant  
Diffuse Synovial Effusion 

and Hypertrophy   
Osteochondral 

Dominant  

Sex (% Female) 20% 71% 100% 

Age ± SD 63.6 ± 7.1 65. 43 ± 6.1 70.5 ± 4.0 
        

Averages        

Eaton-Littler Score  2.6 ± 0.5 2.6 ± 0.5 3.5 ± 0.5 

OMERACT Score  2.8 ± 0.4 2.1 ± 0.6 1.8 ± 0.8 
Synovial Tissue 
Volume (mm³) 436.8 ± 195.8 287.7 ± 133.4 29.4 ± 18.2 

AUSCAN (%) 49.6 ± 28.5 36.6 ± 21.3 69.3 ± 5.7 

Pinch Grip (KgF) 11.84 ± 5.5 13.1 ± 4.2 8.33 ± 2.3 
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3.3.1 Phenotype 1: Synovial Effusion Dominant  
 

The first morphology is described as concave extrusion of the synovial fluid, and in some 

cases, synovial hypertrophy was observed in addition to this presentation. Fig. 1 shows the 

radiographs, 2D US, 3D US, AUSCAN score, pinch grip strength, sex, and age of each patients 

allocated to the synovial effusion dominant phenotype group. Patients with this morphology had 

moderate volumes of synovitis compared to the other two groups and tended to have more 

anechoic signal present in the ultrasound images. These patients also demonstrated mild to 

moderate synovial membrane hypertrophy as indicated by regions of hypoechoic tissue 

surrounding the joint. Compared to the other two phenotypes observed, these patients had the 

lowest average amount of pain interference as indicated by the AUSCAN scores and the highest 

physical function measured by the pinch grip test.  

Eaton-Littler grades for radiographic evidence of OA were typically classified as stage 2 

and 3 for this sub-group and stayed consistent between subgroups with the exception of the low-

synovitis, high osteochondral involvement phenotype, which includes two patients with stage 4 

radiographic evidence of OA. 
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Figure 1 Phenotype 1: Synovial Effusion Dominant. A chart demonstrating the imaging 
features, clinical and demographic characteristics of patients allocated to the synovial effusion 
dominant phenotype.  
 
 
Phenotype 2 Diffuse Synovial Effusion and Hypertrophy 
 

The second presentation is described as diffused synovial effusion and hypertrophy that 

spreads out of the joint line and over the proximal end of the trapezium and towards the distal 

end of the first metacarpal (Fig.2). Patients in this sub-group presented with the highest synovial 

tissue volumes and a moderate amount of pain interference in comparison to the other two sub-

groups. These patients presented with predominantly areas of hypoechoic signal, indicating that 

the tissue is primarily composed of hypertrophic synovial membrane instead of fluid effusion. 
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An increased presence of osteophytes was also observed in the images of patients allocated to 

this group. Functionally, these patients performed worse on the pinch grip test than those in the 

effusion dominant group, as indicated by lower average pinch grip forces.  

 

 
Figure 2 Phenotype 2: Diffuse Synovial Effusion and Hypertrophy. A chart demonstrating 
the imaging features, clinical and demographic characteristics of patients allocated to the diffuse 
synovial effusion and hypertrophy phenotype.  
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Phenotype 3: Osteochondral Dominant 
 

The final presentation observed were the patients with very little synovitis and synovial 

hypertrophy but advanced osteophyte growth and joint space narrowing. Two of the four patients 

with this morphology were assigned an Eaton-Littler grade of 4/4, indicating that they had 

decreased trapeziometacarpal joint space narrowing, subchondral sclerosis, osteophytes, 

trapeziometacarpal joint subluxation, and involvement of the scaphotrapezial joint. On our 3D 

US images we observed minimal anechoic and hypoechoic signals indicating low amounts of 

synovial fluid with minimal amounts of synovial membrane hypertrophy. These patients on 

average had the highest pain interference ratings on the AUSCAN scale and the lowest average 

pinch grip strength. Figure 3 highlights a case study from this subgroup.  

Figure 3 Phenotype 3: Osteochondral Dominant. A chart demonstrating the imaging features, 
clinical and demographic characteristics of patients allocated to the osteochondral dominant 
phenotype.  
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3.4 Discussion  
 
What Information Can Be Gained from Assessing 3D US CMC1 OA Patient Effusion 
Morphology that Enhances Our Understanding of OA?  
 
This study investigated the clinical application of 3D US acquired synovial tissue volumes as a 

new marker for OA progression in the CMC1 joint. Our results indicate that three fundamental 

phenotypes can be seen at varying stages of OA. These phenotypes are distinguished by:  

1. Synovial tissue margin properties  

2. Synovial tissue volume  

3. Histological features (effusion vs. hypertrophy)  

The morphological differences between signs of synovitis indicate that the relationship 

between disease progression, patient-related outcomes, and image-based evidence of OA in the 

CMC1 joint is complex. The structures involved change not only as we progress to more severe 

stages of disease, as indicated by radiographs, but also between bouts of inflammation (flare-ups) 

and between patients. We have observed that the individuals in our study who have moderate 

synovial tissue volumes comprised predominately of synovial effusion have the lowest average 

pain interference scores and highest functional scores. We have also observed that these patients 

predominantly present with uniform concave morphology of their joint effusion. In comparison, 

our second sub-group of patients presented with more diffuse effusion morphology with 

increased hypertrophic tissue. These patients also had increased pain interference scores and 

decreased pinch grip values.  Our last sub-group had mostly osteochondral pathology with 

increased osteophyte presentation, decreased joint space, and decreased synovial tissue volumes. 

The trends observed in this pilot study follow histological trends described in multiple knee OA 

(KOA) studies25,26,27. Ene et al. state that inflammation seems to be the dominant characteristic 

and driver of disease progression in earlier stages of KOA. They also state that at earlier stages 
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of inflammation, effusion seems to be localized to the affected chondral areas but then diffuses 

as there is an increase in fibrosis of the synovial tissue28. Wenham et al. agreed with Ene et al. 

that there is an over-expression of pro-inflammatory mediators in earlier stages of OA compared 

to later stages27. Since most patients with CMC1 OA do not seek medical assistance until 

symptoms start impacting activities of daily living, we are limited to investigating patients who 

tend to have had OA for an extended period. This limits our ability to definitively characterize 

the early stages of OA as we simply do not see these individuals in clinics.  However, even if 

these patients seek medical assistance earlier, primary care clinicians are less likely to seek 

advanced imaging or consider using advanced imaging techniques in this early stage of their 

care.  Furthermore, musculoskeletal ultrasound (MSK US) techniques are not emphasized in 

medical school and are a relatively new addition to sonography programs across Canada. In light 

of the recent interest in MSK US, professional development courses such as the Canadian 

Rheumatology Ultrasound Society Basic MSK US course are available for clinicians to broaden 

their knowledge of diagnostic imaging. However, not all clinicians are interested in participating. 

The patients in our study were all determined to have Eaton Littler stage 2 or higher radiographic 

findings of OA, indicating more advanced OA as we see varying degrees of osteochondral 

pathology.  

 

Does an Increase in Synovial Tissue Volume Correlate to Increased Patient-Reported 

Outcomes?  

Our results indicated that there was not a clear linear relationship between synovial tissue 

volume and patient-reported outcomes on the AUSCAN survey. When completing a stepwise 

linear regression analysis, we found that pinch grip was the most significant indicator of pain 
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interference in CMC1 OA patients (R2= 0.3). This indicates that approximately 70% of the 

variance in AUSCAN score was not explained by our model. We believe this is due to the nature 

of osteoarthritis, where pain may be attributed to different pathological involvements at different 

stages of disease progression. In knee osteoarthritis, patients have exhibited a trend where in 

earlier stages, as characterized by radiographic features, patients tend to have increased synovial 

effusion. This effusion then decreases or changes to synovial membrane hypertrophy and 

eventually leads to the development of abnormal bone growths called osteophytes in later stages 

of KOA. We believe we are observing the same trends at the CMC1 joint.  

The importance of OA in non-weight bearing joints, such as the small joints of the hand, 

was not truly understood or emphasized until very recently. As such, there is a distinct lack of 

outcome measures that focus specifically on those joints. The AUSCAN scale used in this study 

is considered a global hand OA pain assessment and is therefore not directly focused on thumb 

motion, pain, stiffness and disability. However, as mentioned before, the AUSCAN scale is 

currently the most appropriate available scale.  This may have had an influence on the 

discrepancy we observed between our ultrasound measures and the patient-related outcomes.  

The first limitation of this study is the small sample size. Although this study was 

calculated to be significantly powered at 17 patients, we believe this population does not provide 

adequate variation in OA pathology and stages to generalize our findings to a larger population. 

We also believe that increasing the diversity of our patient population would potentially see more 

robust relationships between STV and patient-reported outcomes when those patients are 

allocated into phenotype sub-groups. Our second limitation is that confounding variables such as 

administration of non-prescription medication and participation in CMC1 joint aggravating 

activities before assessments were not controlled. These factors could potentially have a 
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significant impact on patient-reported outcomes and the STV observed in 3D and 2D US. 

Finally, although we attempted to control for the effect of corticosteroid injections by waiting 

three months between the injection date and the study baseline assessment, as indicated by the 

activation period of long-acting corticosteroid drugs, some patients tend to experience symptom 

relief and decreased synovitis for longer than that time period.  

 
3.5 Conclusion: 
 

In summary, we observed three distinct morphological CMC1 OA imaging phenotypes, 

classified as (1) effusion dominant, (2) diffuse effusion and synovial hypertrophy, and (3) 

osteochondral dominant. Three different imaging techniques, demographic data, and patient 

outcome measures (AUSCAN score and pinch grip force) were used to describe patients 

allocated to each of these groups. Stratifying our patients into three phenotypes potentially 

provides insight into how sonographic features could be used as a method to indicate pain and 

disease progression. These features may be useful to consider when developing cohorts for 

clinical trials and for understanding what elements to look for when monitoring CMC1 OA in 

clinics.  
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Chapter 4 

4   Conclusions and Future Directions  

This chapter summarizes the original aims of this thesis and the findings from Chapters 2 

and 3. Additionally, Chapter 4 will explore the limitations associated with this work, present 

potential solutions, and recommend directions for future research.  

 
4.1   Overview and Research Objectives 

CMC1 OA is one of the most common forms of osteoarthritis observed in the hands and 

wrist, leading to debilitating pain, functional disability, and decreased quality of life1. 

Radiography and MRI are the current gold standards for diagnosing and monitoring CMC1 

OA progression. However, studies have reported significant discrepancies between 

radiographic evidence of OA and patient-reported outcomes such as pain and disability2-5. This 

discordance has been attributed to the lack of soft-tissue contrast associated with x-ray 

imaging, limiting its ability to visualize synovial effusion and hypertrophy. MRI is an excellent 

tool for visualizing synovial tissue but is not feasible for frequent long-term monitoring of 

CMC1 OA due to its high operating costs and limited accessibility. While conventional 2D US 

is an attractive alternative to overcome the limitations of MRI and x-ray imaging, it is 

associated with several limitations. Firstly, operators are required to mentally transform a 

series of 2D US images into the required 3D anatomy, increasing variability. Secondly, 

synovial tissue volume measurements acquired using 2D US are highly variable and dependent 

on operator skill. 3D US imaging techniques present a novel method for overcoming the 

limitations associated with the previously mentioned imaging modalities. 3D US techniques 
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include translating the US transducer while continuously acquiring images that are then 

reconstructed by software to form 3D images of the anatomy6.    

The purpose of this work was to evaluate the use of a novel 3D US imaging device for 

measuring synovial tissue volumes and investigate the relationship between synovitis 

phenotypes and pain in patients with CMC1 OA. The central hypothesis of this thesis was that 

3D US would be able to quantify synovial tissue volumes as accurately and precisely as the 

current gold standard of MRI. Additionally, we hypothesized that these 3D US acquired 

volumes would potentially be a new imaging biomarker for the progression of CMC 1 OA.  

 
4.2   Summary  
 

In Chapter 2, we aimed to demonstrate the validity and reliability of our 3D US imaging 

device for measuring synovial tissue volumes in the CMC1 joint and compared these 

quantifications against MRI. The linear and volumetric measurement capabilities of the 3D US 

device were tested on various imaging phantoms and in a CMC1 OA patient population.  The 

results of Chapter 2 indicate that 3D US and MRI are associated with strong concurrent validity 

and reliability when measuring synovial tissue volume in the CMC1 joint. Our rater-reliability 

results show that multiple trained raters can make segmentations over multiple trials while still 

providing excellent reliability (ICC>0.9). 3D US has been proven to be precise and accurate 

when measuring synovial tissue volumes in the CMC1 joint. We believe that it can be used to 

provide clinicians with visual features depicting what is happening pathologically in the joint. 

As the performance capabilities of the described 3D US device have been tested in a 

musculoskeletal population, the next step was to examine the sonographic features associated 

with these 3D US images. Using these images, we assessed what information could be 

observed and how it could potentially be useful for clinical practice and health research.  
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In Chapter 3, the aim was to apply the validation findings of 3D US in a CMC1 patient 

population to better understand how synovial tissue volume relates to patient-reported 

outcomes such as pain, stiffness and disability. The second goal of this chapter was to describe 

the different synovitis phenotypes observed in US  within this population to evaluate how 

different morphology may influence patient outcomes.  3D US, 2D US, and plain x-ray 

radiographic images of 19 CMC1 OA patients were acquired. Additionally, these patients were 

asked to complete an AUSCAN survey and a pinch grip test. To test the relationship between 

the various imaging grading systems and patient-outcomes, a stepwise linear regression was 

conducted. 

The second study (Chapter 3) demonstrated three distinct morphological presentations of 

synovitis. These consisted of synovial effusion dominant features, diffuse effusion and 

increased hypertrophic features, and osteochondral dominant features. These phenotypes were 

distinguished by synovial tissue margin properties, synovial tissue volume, and histological 

features of synovitis (effusion vs. hypertrophy). The trends observed in this pilot study may 

follow histological trends described in multiple OA studies, where synovitis is a dominant 

feature in earlier stages of OA, but osteochondral involvement increases as the disease 

progresses 7-10. The use of sonographic features in clinical practice is important as it could 

provide additional information on OA pathology and patient-specific factors such as 

predisposition, pathological mechanisms, and treatment response. Identifying sonographic 

phenotypes is important as many pathological features associated with early OA could be 

missed with our current methods of imaging OA patients in the clinic (x-rays).  There is still 

much we do not know about the initial stages of OA development. Patients may vary in that 

their OA progression and symptoms may be mechanically or inflammatory driven and as such, 
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would require different imaging analysis and treatment approaches. A combination of x-ray 

and US imaging may provide the base for a composite scoring that could identify the 

underlying mechanisms of disease progression for each patient and provide better direction for 

clinical trials and treatment programs in the future. 3D US is a rapid and easy method for 

monitoring changes in joint and soft tissue structure which may be better suited for acquiring 

images on OA over long periods of time, as is the case with longitudinal monitoring. 3D US 

has the potential to improve clinical and research workflow while quantitatively describing 

synovial tissue volumes in CMC1 OA patients; however we suggest that more work is required 

to investigate how sonographic features of CMC1 OA are useful in OA research and in a 

clinical setting. 

 
     4.3   Limitations 

 
It is important to note that there were several limitations associated with this work. Firstly, 

the CMC1 OA patient who participated in this study were recruited by a hand surgeon 

indicating that they are at a stage in OA progression where surgical intervention is an option. 

The majority of patients in this study had stage 3 radiographic evidence of OA based on the 

EL scale. Thus, we were missing information about individuals who are in the early stages of 

OA development and therefore cannot make conclusions on how accurate 3D US would be 

when distinguishing between healthy individuals and those with early OA. Additionally, as we 

are only seeing patients who have consulted clinicians about their thumb pain, we are 

potentially missing those patients who may be showing signs of OA but have not deemed it 

necessary to consult a physician. Future research studies should consider recruiting patients 

from primary care or rheumatology clinics as there may be a larger variation in patients.  
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Secondly, although we were able to control for the effects of intra-articular corticosteroid 

injections by waiting for the activation period of the drugs to pass, we were not able to control 

for the administration of non-prescription pain medication. This could potentially have 

influenced patient-reported outcomes such as pain and physical dysfunction. Additionally, the 

AUSCAN survey is intended for the measurement of global hand pain and is not specifically 

designed for the CMC1 joint. This influenced patient’s answers on the survey as many of the 

items did not relate to actions that would elicit pain in the CMC1 joint. However, at the time 

of this study, the AUSCAN was deemed the most appropriate survey for evaluating 

pain,stiffness and disability in CMC 1 OA patients.  

Thirdly, since this work followed a cross-sectional study design, we were not able to 

observe how changes in synovial tissue volume and morphology impact patient outcomes over 

time. A longitudinal study design could potentially provide information about how the joint 

changes long term and whether features such as flare-ups have a significant impact on metrics 

of synovial tissue volume, AUSCAN score, grip strength, and imaging grading. Finally, the 

acquired images in this work were only of the volar side of the joint as imaging through the 

thenar eminence provided superior visualization of the joint. However, synovitis is not always 

isolated to one area of the joint, and unfortunately, due to the nature of ultrasound and its 

inability to penetrate bone, we are missing information about the amount of inflammation 

inside the joint. We are also missing information about the dorsal side of the joint where 

synovitis can also be observed in some patients. In light of these limitations, more work is 

needed before the clinical implementation of 3D US for CMC1 OA can be considered.  
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4.4   Future Directions 
 

The results of these studies highlight the potential for 3D US for quantitatively 

characterizing synovitis and assessing CMC1 OA disease status, progression, and treatment. 

In Chapter 3, we discussed the morphological features of the CMC1 OA joint in US and 

compared synovial tissue volume to measures of pain. This study was cross-sectional, but we 

believe that a longitudinal study would be better suited to investigate how synovitis changes 

over time and how these changes correlate to patient-reported outcomes. We also believe that 

the inclusion of histology with 3D US imaging studies would be a valuable method for 

confirming the changes we are observing in the tissues as the disease progresses.  

Future studies will investigate methods for combining multiple 3D US images to increase 

the field of view and potentially view all angles of the CMC1 joint. This would allow for more 

complete visualization of the joint, which would give clinicians an accurate assessment of 

synovial tissue volume. Additionally, to address concerns about manual segmentation 

variability and efficiency, future studies aim to integrate deep learning algorithms into our 3D 

US system. The efficacy of convoluted neural networks has been assessed in MRI for lesion 

detection and segmentation creation and has shown promising results11,12.  

 
4.5   Conclusion  
 

In conclusion, this thesis investigates the development and application of a mechanical 3D 

US imaging device for monitoring synovitis in CMC1 OA patients. The studies described in 

this thesis demonstrate that 3D US is able to be used for measuring synovial tissue volume 

with strong concurrent validity with MRI and with excellent rater reliability. Furthermore, 3D 
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US is an alternative imaging method, which has the ability to provide volumetric visualization 

of the desired region without the need for costly equipment or a time-consuming procedure. 
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