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Abstract 

Unmanned aerial vehicles (UAVs) can provide automated approaches to 

remote data collection, inspection, and exploration. When doing so, these tasks 

are accompanied by commercial gains and safety benefits. While UAVs can 

automate these tasks in some environments today, their size, resource 

requirements, and communication dependencies prevent them from exploring 

many other types of environments. These barriers are especially prevalent in 

areas that deny wireless communication and are too small for larger-bodied 

UAVs. In this work we present a novel exploration planner capable of 

overcoming these barriers and operating in otherwise inaccessible 

environments. To achieve this, we present a new approach to frontier detection 

and mapping which enables exploration and scales to nano sized UAVs. We 

prove the viability of this solution through real-world experimentation at WING 

research labs. This exploration software accommodates the extreme resource 

constraints of the small UAVs required to fly in confined spaces. The presented 

strategy is truly autonomous with no dependency on communication with 

external systems and no prior knowledge of the exploration space. To the best 

of our knowledge, the presented prototype can explore the smallest spaces that 

have yet to be reached by connectionless and autonomous UAVS. This claim 

is supported by the demonstration of real-world testing as our prototype 

achieved full exploration of several challenging environments. 
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Summary for Lay Audience 

Autonomous Unmanned Aerial Vehicles (UAVs) are a rapidly developing 

technology that is influencing many fields today. An exciting and commercially 

viable application of this technology is autonomous exploration and inspection of 

spaces that are inaccessible to humans. These spaces come in a variety of forms 

presenting varying constraints and affordances to the flight of drones. In some of the 

most constrained environments, we observe the denial of wireless communication 

between a drone and external systems. If access to the environment is not available 

before a mission, the UAV is required to make complicated navigational decisions 

onboard during flight. Such an environment can also feature narrow passages placing 

restrictions on the physical size of the drone. This in turn limits the computing power, 

battery size, and payload capacity available. The lighter weight also makes the drone 

less stable in windy conditions or when propellers cause gusts of air to reflect off 

nearby obstacles and back towards the drone. The ability to inspect small spaces 

despite these factors will provide new business opportunities while promoting health 

and safety. In eliminating the need for expensive human inspection, companies can 

automate inspection tasks. In doing so, they also eliminate human exposure to 

potentially hazardous working conditions.  

In this work, we introduce strengths and weaknesses of various types of UAVs. We 

then examine components that enable autonomous navigation in previously unknown 

environments, from low level flight dynamics to path planning for exploration. By 

reviewing existing solutions for autonomous exploration, we distinguish the barriers 

preventing existing approaches from moving to smaller connectionless spaces. With 

our motivation to overcome these barriers, we present a novel exploration strategy 

that enables small-bodied UAVs to explore previously unknown, confined, and 

connectionless environments. To operate in this environment, we present a novel 

frontier-based exploration method capable of navigating in spaces less than 50cms 

wide. We demonstrate our design onboard a commercially available nano-sized 

UAV. We evaluate this prototype on multiple real world test beds imitating different 

types of environments. To the best of our knowledge, this prototype explores more 

confined environments than any other fully autonomous solution existing today.  
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Chapter 1  

1 Introduction and Motivation 

Unmanned Aerial Vehicles (UAVs) will continue to change how we conduct business 

across many sectors and countless applications in the coming years. These systems, 

commonly referred to as drones, are becoming more accessible as advancements in their 

technology have uncovered more opportunities while driving their cost down. With this, it 

is expected that over 800 000 commercial drones will be registered by 2024 in the United 

States alone [1]. Many of these drones will be used for data collection, remote inspection, 

and surveillance. These applications have already become widespread across industries 

like agriculture, civil development and maintenance, defense, mining, entertainment, and 

many more. In the next decade, many new applications will arise as we find ways to bring 

UAVS to previously inaccessible spaces like cluttered smart cities or confined underground 

areas. In these areas, automated UAV flight is not currently possible as they deny the 

environmental affordances that drones depend on today. When we find solutions to these 

limitations, drones will be capable of reaching more remote areas where human traversal 

is not feasible. Aside from the commercial opportunities from the automation that such 

solutions will provide, they will also eliminate the health and safety concerns in data 

collection tasks that expose humans to hazardous environments.  

1.1 Applications of Drones 

To help understand the significance of drones today, we present several prevalent 

applications that leverage this technology. Despite first being a strictly military tool, UAVs 

have now been adopted by many civil sectors. In agriculture, we see their use in crop 

management by automating the monitoring of things like disease or invasive species. Crops 

can be maintained with automated chemical sprays and by watering with intelligent UAV 

systems. Soil samples can be quickly gathered to better understand their composition. 

Sensors embedded within the ground can collect data which is then transmitted to a drone 

during a flyover [2]. In the transportation industry, we see leaders like Amazon and DHL 

create new delivery strategies for small packages [3] and postal services trialing new 
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delivery techniques with UAVs [4]. Ambulance drones have also been used for medicine 

and blood sample transportation [2]. Military use is still prevalent today as drones continue 

to carry out reconnaissance missions with a focus on target acquisition and surveillance 

[5]. They are also heavily used in both ground combat and counter-aircraft tactics [6]. 

Drones used to assist in infrastructure development have become widespread and are 

expected to dominate the market value of UAV services at $45 billion (USD) [2]. In other 

applications, drones are used for the inspection of construction zones and can help to 

identify hazardous materials or safety violations. They can be used to inspect hard-to-reach 

areas like under bridges or near traffic [7]. Not only can they collect data for later 

inspection, but they can also employ vision-based methods to inspect these structures on 

the fly [8]. In search and rescue operations, drones become a tool to rapidly cover search 

areas and, in the presence of a disaster, can provide safe transportation of survival gear and 

medicine [5]. By deploying connected drones overhead, UAVs provide a mobile signal 

node to help ground crews [2]. In the mining industry, ariel data collection is used for safety 

assessments, planning, and inventory management. Deep underground mining shafts can 

be explored and mapped remotely while technicians wait safely on the surface [9]. 

Though this list is not exhaustive, it provides a snapshot of the many uses of drones for 

remote data collection that are already being done today. While keeping in mind that these 

applications are limited to environments and conditions that the current UAV systems can 

support, enabling UAVs to operate in even more environments, under more constraining 

conditions, will bring new opportunities and impact many industries. 

1.2 Limitations of Drones 

UAVs have limitations that must be considered in any mission or application. Aside from 

legislation that may limit where a drone can operate or how it must be piloted, hardware-

related constraints should be considered in the design of any application.  

The ability to have powerful hardware onboard a drone scales with its physical size. The 

larger the drone, the larger and heavier processors can be. In many cases, a small form 

factor is required where processors and memory must be physically small enough to fit 

onboard. This is a limiting condition as drones use memory and processing resources to 
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make decisions about where to travel next and to build representations of their 

surroundings. Furthermore, putting energy-demanding processors onboard a small UAV 

will greatly reduce flight time. If communication channels are available, it is often more 

suitable to offload processing to an external system. There are many cases where a UAV 

must communicate with either a pilot, base station, another drone, or a sensor. In all these 

cases, the environment must have the capacity to allow for a high bandwidth 

communication channel to pass through unaltered.  

A UAV is constantly drawing energy from a battery to remain in flight and carry out all 

operations. Complicated missions require time to complete, and some surveillance 

operations require continuous flight. Drone flight time is still limited to less than 30 

minutes in many types of drones. Increasing battery capacity can extend flight time but has 

a diminishing return as the battery gets heavier [10]. When operating in cold environments, 

batteries are less efficient and flight time is reduced even further [11]. Energy consumption 

increases with the number of orientation and position changes as the motors need to change 

the velocity of propellers. In some cases, wireless charging or quickly swapping batteries 

can be a solution but when this is not possible, flight planning, scheduling, and optimization 

can help. 

These restrictions have an immediate impact on the drone’s performance and capabilities. 

Research has addressed many ways to deal with these limitations, but there are still 

environments that are not conducive to flight.  

1.3 Thesis Contribution 

Many UAV based applications have use in environments that are presently unreachable 

with today’s UAV technology. Specifically, the advantages of autonomous inspection, data 

collection, and surveillance can be extended to areas that have not been reachable before. 

In this work, we study the extension of autonomous flight into extremely restrictive and 

constraining environments. We will look at the critical components of autonomous flight 

to gain an understanding of where and how it is limited. With this background, we will 

then explore the current solutions and where their capabilities end. We use this background 

knowledge to inform our design of a new, alternative approach to autonomous exploration. 
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We then take the next step in drone autonomy by presenting a solution for autonomous 

flight in extremely constrained spaces and proving its viability through real world testing 

on a small drone. The contributions are listed as follows: 

• From a grounded robot to an autonomous ariel agent, the algorithms and 

components enabling autonomous flight are reviewed. As these are presented, we 

address how flight environments can restrict the resources available to these 

components. 

• With the review complete, we study the prevailing research and commercial 

solutions that bring us to the edge of what is possible using UAVs for autonomous 

exploration in connectionless, confined spaces. Here, we identify the key barriers 

that are preventing these solutions from being capable of moving to more 

constrained spaces. 

• We present a novel solution to explore extremely confined spaces with a UAV that 

has no dependencies on communication, can be run onboard a resource-constrained 

UAV, and can explore previously unknown environments. To the best of our 

knowledge, when compared to existing our prototype can explore more confined 

and environmentally constrained spaces. This makes it the first viable option for 

many new types of exploration environments previously inaccessible to UAVs. 

• To prove the functionality of our new exploration planner, we implement it on a 

real UAV and test it on several real-world testbeds with varying types of 

environments and obstacles. 

1.4 Thesis Blueprint 

The chapters are organized as follows: after a brief review and classification of available 

UAV systems, Chapter 2 will serve as an end-to-end review of autonomous exploration 

with UAVs. We start from low levels of quadcopter dynamics and end up at the high-level 

algorithms running on board which enable autonomous navigation decisions. We conclude 

with exploration strategies seen in literature and practice today. In Chapter 3 we review the 

work and solutions related to autonomous flight specifically in conditions where traditional 

localization, mapping, and navigation techniques are not feasible. Using this review as a 

guide, we identify our contribution amongst the landscape of other autonomous exploration 
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techniques. Chapter 4 presents a new solution to autonomous flight, which allows a drone 

to explore in resource constrained settings. In this design we overcome the current barriers 

to autonomous flight in confined, connectionless, and unknown environments. In Chapter 

5 we prove the functionality of our design by implementing it on a real-world platform 

testing it against multiple real-world testbeds. To conclude, in Chapter 6 we summarize 

our results and suggest further work which can allow our design to become even more 

robust with the ambition to expand its use to even more spaces. 
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Chapter 2  

2 Background 

In designing a system capable of autonomous exploration, it is helpful to first understand 

the hardware and software modules on which the later examined exploration algorithms 

can function. Reviewing these underlying components will provide a better understanding 

of how our prototype functions and the design choices that went into building it. First, we 

will take a broad look at drones and their various forms. Before developing any software, 

an appropriate platform must be identified based on the intended application of the system. 

We base this choice on the factors specified in the following section to isolate a class of 

UAVS that will perform well in our targeted environment. We then pick one configuration 

from this class and focus our attention on the components and algorithms suitable for this 

configuration. 

2.1 Drone Types and Classifications 

Drones can range from large UAVs capable of travelling thousands of kilometers in a 

single flight to small bio-inspired systems weighing less than 5g [12].  The classification 

of a drone is typically determined by weight, size, flight range, and application type. In 

literature there are inconsistencies in the specific values of these variables that distinguish 

classes form each other. Despite this, classification systems generally include the following 

five classes listed from largest to smallest: 1) Large Unmanned Ariel Vehicle 2) Small 

Unmanned Ariel Vehicles (uUAV) 3) Micro Ariel Vehicle (MAV) 4) Nano Ariel Vehicle 

(NAV) 5) Pico Ariel Vehicle (PAV) and 6) Smart Dust (SD). Figure 1 shows the division 

of these classes according to wingspan and weight [12]. Regardless of these divisions and 

their associated name, any such Fixed Wing vehicle is often simply referred to as a UAV 

and classification details are present when necessary.  

Amongst each of these classes, further categorization can separate drones by their 

configurations of wing/rotor type, the number of rotors, take-off and landing direction, as 

well as lift style. It is important to note that these categories of drones can be seen across 

multiple classes (sizes) of drones. For example, a single rotor Vertical Take Off and 
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Landing (VTOL) helicopter weighing over 1000kg can be classified as a UAV while a 

smaller helicopter weighing just 4kg can be classified as a MAV. Despite being in different 

classes, both have a similar configuration and can be categorized as helicopters. Each 

configuration has distinct advantages over the others and should be chosen to reflect the 

needs of an application. Here we will review the most common ones. 

2.1.1 Fixed Wing 

Fixed wing drones generate lift using rigid wing structures with an accompanying rotor. 

Like airplanes these drones have horizontal take-off and landing (HTOL) capabilities. 

These drones have the capability to quickly travel long distances with large payloads in a 

single flight before having to find a new energy source [13]. These advantages make this 

category of aircraft ideal for long surveillance or other data collection applications. Despite 

the advantages, kinematic and dynamic constraints of these systems limit their usage in 

any environment requiring tight turns or limited take-off and landing space. Fixed wing 

aircrafts are also more likely to experience the effects of air turbulence when compared to 

multi-rotor drones. Their inability to hover can also limit the amount of attention which 

can be given to a specific view during flight [13]. Some of these drawbacks are remedied 

in the hybrid category: Fixed-Wing Hybrid VTOL. This category combines the advantages 

of fast, long flights, with the ability to hover and take off in a vertical fashion. Despite these 

capabilities, Fixed Wing Hybrid VTOL crafts do not excel in forward flight to the degree 

that regular Fixed-Wing drones do, nor do they have the steady hovering capabilities of 

multi-Rotor drones. An example of a large, fixed wing drone can be seen in Figure 2. 

Figure 1 Drone class spectrum based on length of wingspan and weight [12] 
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2.1.2 Rotary Wing 

Rotary wing drones use rotating blades to generate upward thrust. This can be a single 

blade with an accompanying system (propeller, turning wing, etc.) to change the drone’s 

orientation, but they are more commonly configured with at least four separate rotors. One 

such example is seen in Figure 2. By controlling the angular velocity of these rotors, the 

drone can rapidly change its orientation and translational direction. Multi-rotor UAVs offer 

the ability to fly in every direction and the dynamics of flight are well established. These 

advantages are accompanied by the ability to carry a moderate payload and set of sensors 

offering favorable conditions for shorter term transportation applications. Given their 

VTOL ability, they are easy to deploy and require very little space to take off. Flight times 

are limited by battery capacity and the slow speed relative to fixed wing drones.  

2.1.3 Flapping Wing 

Taking inspiration from nature, Flapping Wing UAVs mimic animal and insect flight 

where thrust and lift are generated by flapping various arrangements of wings [14].  Wings 

can be arranged as a single pair (monoplane), two offset pairs of wings (tandem), or two 

pairs overlapping each other (biplane) [12]. In particular, the translational and rotational 

motions of hummingbirds and dragonflies have been the subject of research to develop 

flapping wing UAVs [14]. These systems introduce new complexities due to the 

aerodynamics of the light and flexible wings compared to other types of drones [12]. This 

category shows promise for an increase in efficiency if the low turbulent aerodynamics 

observed in insects can be exploited [15]. This advantage is also accompanied by 

maneuverability and rapid transition between a hover state and forward flight [16]. 

However, wide scale use in real world applications has not yet been observed given that 

commercial availability remains limited. An example of a small flapping wing drone can 

be seen in Figure 2. 
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2.2 Quadcopter Dynamics 

Multirotor NAVs present a class and configuration that are most suitable for exploration in 

confined areas given their agility, size, and commercial availability. For the remainder of 

this study, we concentrate our work on these NAVs as they show the most promise in 

overcoming environmental barriers. In such an arrangement a drone consists of four 

propellers mounted on motors which attach to the body of the drone. Each adjacent 

propeller spins in opposite directions. These four propellers generate a thrust force which 

is combined to accelerate the drone. To change the orientation of the drone, propellers will 

spin at different speeds. When discussing the dynamics and/or state of a drone two 

reference frames with three perpendicular axes (x ,y, z) are used. In the World/Inertial 

Frame gravity dictates the direction of the z axis while the x and y axis are perpendicular 

to it. The Body Frame has its origin at the center of mass of the drone with the z axis being 

the direction of the propeller’s axis of rotation. The x and y axes run along the arms of the 

drone normal to the z axis. The two reference frames are shown in Figure 3. If the two 

frames are aligned at takeoff, the conversion of a vector from the body frame to another is 

accomplished by multiplying it with a rotation matrix R and translating the result. The 

rotation matrix is constructed as a sequence of three rotations about each of the x, y and z 

axes. 

Figure 2 Three examples of drone configurations. A) A monoplane flapping wing drone. [64] B) A rotary 

wing UAV. C) A Fixed wing UAV [65].  
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The four propellers are responsible for producing an upward thrust and a moment in the 

opposite direction of rotation. Upward thrust from one propeller is quadratic in the angular 

velocity of the propellor is given by: 

𝐹𝑖 = 𝑘𝑓ω𝑖
2 

Where 𝐹𝑖 is the upward force generated by a single propellor and 𝑘𝑓 is a constant which is 

typically found through experimentation and is dependent on factors like air density, a 

Figure 4 World and Body frames of reference 

Figure 3 Visual representation of Moments and Thrust forces for each propeller i = {1, 2, 

3, 4}. Here omega represents the angular velocity for a propeller. 
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motor’s torque proportionality constant, and the area covered by the propeller, the upward 

thrust is then the sum of thrust from each propellor in the body frame given here as a vector. 

𝑡𝐵 =

[
 
 
 
 

0
0

∑𝐹𝑖

3

𝑖=0 ]
 
 
 
 

 

The force which causes a propeller to rotate, is accompanied by an equal and opposite 

reaction force. This creates a moment M in the opposite direction of propeller rotation 

about the z axis of the body frame.  

𝑀𝑖 = (−1)𝑖 𝑘𝑚ω𝑖
2 

Where again 𝑘𝑚 is a constant and i is the rotor number from 0 to 3 and identifies the 

direction of rotation. Here (−1)𝑖 dictates whether the moment will be clockwise or 

counterclockwise as adjacent propellors must rotate in opposite directions. Both the 

moment M and the upward thrust F are shown in Figure 4 as a function of the angular 

velocity of each propeller. The torque about the z axis in the body frame is then given by: 

𝑘𝑚(𝜔0
2 − 𝜔1

2 + 𝜔3
2 − 𝜔0

2) 

Torque about x and y (roll and pitch), can be derived as:  

τ = 𝐿(𝑘ω𝑖
2 − ω𝑗

2) 

Where ω𝑖𝑎𝑛𝑑ω𝑗 are the angular velocity of propellers opposite of each other and 𝐿 is the 

distance between the center of a propeller and the center of mass of the quadcopter. Putting 

these together we have the vector of torques in the body frame τ𝐵: 

τ𝐵 = [

𝐿(𝑘ω1
2 − ω3

2)

𝐿(𝑘ω0
2 − ω2

2)

𝑘𝑚(ω0
2 − ω1

2 + ω3
2 − ω0

2)

] 

The rotation about each axis in the body frame is shown Figure 5. We now have a simplified 

model of forces which can be used with linear and rotational equations of motion. When 



12 

 

the propellers begin to spin, the drone will accelerate in some direction. Newton’s Second 

Law suggests that the quadcopters mass multiplied by its acceleration is equal to the sum 

of all forces acting on it which is shown in the following equation. 

𝑚𝑥̈ = [
0
0

−𝑚𝑔
] + 𝑅𝑡𝐵 + 𝐹𝐷 

Where 𝑥 is the position vector of the drone we use R to convert the previously defined 

thrust vector from the body to the world frame. 𝐹𝐷 is the force due to drag, and the first 

addend is the force due to gravity. The Rotational motion is described in the body frame 

using Euler’s equations for rigid body dynamics: 

𝐼ω̇ + ω × (𝐼ω) = τ𝐵 

Here, ω is the angular velocity vector of the body, 𝐼 is the inertial matrix and τ𝐵 is the 

vector of torques in the body frame.  

These two equations provide a foundation to model the quadcopter's motion using the 

angular velocity of the four propellers and the rotation matrix. Using these parameters and 

equations, state estimation algorithms predict the location, velocity, and orientation of the 

body. Further details on the derivation of these equations are found in [17].  

Figure 5 Rotation in the body frame where omega is the angular velocity, L is the length between two 

propellers, k is a constant accounting for propeller characteristics, air viscosity, etc. 
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2.2.1 Localization 

To enable autonomous agents to make navigational decisions, they require knowledge 

about their current state within an environment. The process of determining a robot's 

location and orientation is referred to as localization. In this section we examine several of 

the most prominent positioning tools which help to enable localization. In practice, more 

than one of these strategies are used together where noisy data from many sources is 

combined in a process called state estimation.   

2.2.2 External Positioning Tools 

Global Navigation satellite systems (GNSS) are some of the most popular positioning tools 

for UAVs today. They are often recognized for their widespread use in Global Positioning 

System (GPS). These systems operate by communicating with satellites and measuring the 

strength and time of arrival (TOA) of signals to infer positioning. For UAVs this may be 

an appropriate approach in some flight environments, but line of site is required for a 

reliable signal. Techniques have been developed to help overcome these barriers by 

extending the technology, as seen in differential GPS or real-time kinematics-GPS, and by 

developing mm Wave communication channels. In environments that lend themselves to 

quality GNSS signals, accuracy is within a few centimeters [18]. With the advent of 5G it 

is expected that a fusion of GNSS and 5G signals can manage decimeter accuracy in dense 

urban areas where GNSS estimates alone are not viable [19]. 

When moving indoors, ultra-wideband (UWB) sensor nodes can be deployed in the 

environment as low power stationary anchors that a robot can communicate with. Again, 

by using TOA or time of flight data, an agent can determine its position [20]. This implies 

the availability to access the environment ahead of time to deploy such sensors. For this 

reason, it may not be ideal for indoor exploration tasks where the environment may be 

unreachable or unknown ahead of time. 

Visible light communication (VLC) offers an alternative localization strategy which 

employs light emitting diodes (LEDs) and photodiodes (PDs). This low-cost option has the 

capability to determine distances between an optical sensor and an LED. In [21] existing 

light sources act as anchors and with a trilateration process, the position of a camera is 
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determined. Like UWB methods, access to the environment ahead of time is ideal. This 

allows the communication channel to be modelled ahead of time for robust localization 

[22]. 

2.2.3 On-board Positioning Tools 

Autonomous agents can also be equipped with on board sensors like inertial measurement 

units (IMUs) to help localization. By measuring acceleration, altitude, and orientation over 

time, the current position of a drone can be determined. This works well over a short 

distance but measurements from these sensors tend to accumulate errors over time [23]. 

This can cause the state estimation to drift even after a matter of seconds and some 

correction step is needed [18]. 

UAVs equipped with optical sensors can also perform localization using vision-based 

algorithms for positioning. In [24] a survey of vision-based navigation separates the subject 

into indirect and direct methods. Indirect method extracts feature from images to use as 

inputs to a localization algorithm. These features should be static relative to the robot’s 

state. Such a vision based optical flow algorithm is deployed on many commercial 

quadcopters using a downward facing optical camera to detect the flow of the ground 

beneath. This leverages the Lucas-Kanade (LK) gradient method [25] which assumes that 

the intensity value of a pixel representing a (x, y) coordinate on the ground below should 

be invariant to time defined by the following equation: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + δ𝑥, 𝑦 + δ𝑦, 𝑡 + δ𝑡) 

Where 𝐼 is a function returning the intensity of the image at position (𝑥, 𝑦) at time 𝑡. 𝛿𝑥, 

𝛿𝑦, are the shifts of 𝑥, 𝑦 between two frames and 𝛿𝑡 is the change in time between two 

frames. An example of (LK) is shown in Figure 6. In [26] this was further extended to 

include depth information and help locate the camera in the z direction. Indirect methods 

like edge detection using the gradient of an image can be used to find features but require 

some variation throughout an image. This might not be ideal for tunnel environments with 

smooth colourless surfaces. To overcome these limitations, direct methods make dense 

reconstructions of environments to help with localization. By optimizing geometric 

parameters with intensity data, the camera position and pose can be derived. This is a 
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computationally expensive task but shows promise for high bandwidth connected 

environments such as smart cities where 5g enables the computation to be offloaded to the 

edge [27].  

In practice any one of the above methods may not be sufficient due to their limitations. To 

design a more dependable state estimation, many robots will fuse together position data 

from multiple sources in a process known as Multimodal Sensor Fusion [18]. This allows 

an agent to consider data form external and internal sources by using signal processing-

based filtering algorithms such as the Kalman Filter [28], Extended Kalman Filter, 

Unscented Kalman filter [29] or Monte Carlo approaches like particle filters [30].  

2.3 Environmental Constraints and Affordances 

Having introduced UAV applications, classes of drones, and localization methods, we now 

direct attention to the environments in which drones will operate. We address the impacts 

that an environment can have on a drone and how these considerations can present barriers 

to autonomous flight. We also consider some ways in which assumptions about the 

environment can be leveraged as prior knowledge in some navigation strategies.  

Figure 6 An example of the LK algorithm using two consecutive frames. In the first frame the pixel at 

(4,2) is measured to have intensity i. In the next frame, at time t+1, the same intensity is measured at 

(1,0).  This suggest left to right movement. 
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In the context of autonomous flight, one of the most crucial properties of an environment 

is the allowance of wireless communications. The more reliable this communication is, the 

more effectively a system can off-load the computation required to compute paths, map the 

environment, or localize itself. As a result, many applications depend on a stable 

communication channel with some external system. For example, in many precision 

agriculture applications, it is expected that a GPS signal can be maintained to help a UAV 

position itself above a crop. A reliable, high bandwidth communication channel with a base 

station can also be used to send large amounts of image data to process and inspect the 

crop.  

Contrasting an open-air environment, the example in [31] features a confined tunnel 

environment where a reliable GNSS signal is not feasible. In this case the constraints of 

the environment force any UAV mission to operate with greater levels of autonomy. No 

longer can external systems help to support the drone during the mission. However, this 

work does provide an example of an environmental affordance in that the authors assume 

the tunnel to be a symmetric cylinder. This assumption is used to help a drone orient itself 

at the center axis of the tunnel and avoid collisions. Assumptions can be geometric 

properties of an environment but can also come in other forms. Another such example is 

in [32] where the presence of footpaths in a forest are assumed. This helps the authors 

develop a vision-based obstacle avoidance tool within the forest. Instead of only focusing 

on avoiding trees, the UAV actively searches for footpaths which would indicate a collision 

free path. Prior assumptions like this can be used to improve existing navigation strategies 

but are not dependable alone or in the presence of dynamic obstacles.  

Many localization strategies depend on sensors to help with localization or other aspects 

of a mission. The performance of these sensors can be heavily impacted by an 

environmental variable. In civil applications, such as bridge inspection, an unstable GNSS 

signal will become a barrier to autonomy. For instance, as the UAV passes under the bridge 

the signal may be degraded or lost entirely as mentioned in [33]. Here the authors 

investigated alternative localization strategies, like using optical flow, to step in when the 

flight environment impacts the GNSS quality. These alternatives expose new 

environmental requirements such as the presence of light for passive sensing. In a case 
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where vision-based algorithms are employed for any part of the mission, the entire 

application will depend on the presence of visible light. Even in the case where a drone can 

produce its own energy source it could encounter conditions such as dust or rain which will 

affect sensor readings. 

Another important consideration for an environment is the physical limitations in terms of 

flight space relative to the size of the drone’s collision box. Indoor and underground 

environments often have narrow passages which must be navigated. These factors limit the 

class and configuration of drones that can be used. Large UAVs or those with HTOL 

configurations are not feasible in these environments. This also means there will be trade-

offs between flight time and payload capacity. Cluttered environments also present 

challenges to the stability of a flight as turbulence generated from propellers can deflect 

off nearby surfaces interacting with the drone. This can have significant impacts on the 

stability of a lightweight body [34].  

When designing an autonomous exploration strategy, the constraints of the environment 

may not be known ahead of time. To create practical solutions, applications must address 

and generalize to as many environmental conditions as possible. Knowledge of the 

environment ahead of time can help to reduce navigation complexity but should be used 

with caution in the presence of dynamic obstacles.  

2.4 Autonomous Navigation 

In the previous sections many of the lower-level components which support trajectory 

generation algorithms, or path planning algorithms, were introduced. These higher-level 

algorithms must be able to communicate with the lower-level components and function 

based on the assumption that components like that state estimator or controller modules 

are accurate. In turn, these components will be given commands from a path planning 

algorithm, determine the amount of power to distribute to each propeller, and control the 

drone to move to a certain point. For example, a higher-level navigation algorithm could 

generate a point in 3D space and pass it to the lower-level components through a 

commander interface. The controller subsystem will see these commands and cause the 

drone to respond appropriately and move towards this goal. A state estimation module will 
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provide feedback to the controller so adjustments can be made as necessary. The navigation 

algorithm could consult the state estimator to determine where the drone is, and create a 

new trajectory based on that information. The separation between the high and low levels 

of navigation allows path planners to focus on generating a quality set of points for the 

drone to travel without worrying about how a drone will get to each point. Moving forward 

with the discussion of autonomous navigation it will be assumed that the lower levels of 

navigation are accessible and reliable.  

In many cases autonomous navigation can be split in two parts, short term dynamic obstacle 

avoidance and the longer-term path planning. In short term avoidance, we deal with 

previously unknown obstacles and avoid collisions due to imperfect state estimation. These 

dynamic responses to potential collisions provide collision free movement along a more 

global and long-term path. With many different arrangements of sensors, a wide variety of 

perception techniques are available to detect these obstacles. As [35] points out, short-term 

obstacle avoidance can be viewed as a process of perception and a collision prevention 

maneuver. This process is highly reactive and is therefore also affected when facing 

dynamic obstacles. Global path planning requires more resources as it must search for safe 

paths in a potentially large area. If there is previous knowledge of the environment, its 

obstacles are static, and a drone has near perfect state estimation and controller systems, 

global path planning alone could provide a collision free path.  

2.4.1 Perception and Mapping 

When generating collision free trajectories an accurate mapping of obstacles and free space 

is required. Before discussing mapping techniques, we consider how an agent can perceive 

its environment so that a map can be constructed. Many sensors available in the market 

today can be characterized as either passive or active. Passive sensors will use energy from 

a different source to acquire data. Most often this energy is in the form of visible light used 

by optical cameras, or infrared light for thermal images. For example, when perceiving the 

environment with a camera, light is reflected into the camera, but the camera sensor is not 

responsible for creating the light [35]. A limitation to these types of sensors is their reliance 

on an energy source within the environment. Active sensors will use their own source of 

energy and typically emit something into the environment which it will then measure. One 
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example is Light Detection and Ranging (LiDAR) sensors like the one used in [36] where 

a 940 nm laser is emitted and its reflection off an object is then detected. The time of flight 

of the photons can be measured to determine the distance of the object. This type of sensor 

has the advantage of being more informative in environments lacking external energy 

sources but can require more power to emit its own energy. Both passive and active 

categories include sensors that vary in their range and Field of View (FOV) which both 

have an influence on a mapping techniques performance. Table 1 shows a comparison of 

several sensor types typically found onboard drones. 

When trying to perceive whether space is open or occluded, an effective mapping technique 

is needed to build and store a representation of the environment. This representation can 

then be consulted by path planning algorithms to find safe trajectories through an area. In 

this section some of the popular mapping techniques are presented. We limit most of the 

discussion to mapping techniques that do not make assumptions about the shape or 

geometric properties of obstacles but acknowledge that these assumptions can be leveraged 

to generate effective models. For example, in [31] the environment is assumed to be a 

single axis cylindrical and symmetric pipe. This prior knowledge allows the authors to 

construct a parametric representation of the pipe by dividing it into smaller segments and 

using range data to learn each of the segment’s geometric parameters. They can then be 

combined to represent the entire environment. While approaches like this one can be 

effective for specific structures, we focus on mapping techniques that generalize many 

types of environments. 

Table 1: A comparison of the key properties of several commercially available sensors for UAV 

perceptions [10] 
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Cell-based mapping methods, employ a technique which divides an area into an equally 

spaced grid that discretizes the environment. A cell corresponding to one of the discrete 

spaces will have an associated variable representing whether that space is free, occupied, 

or unknown. As the number of cells used within an area increases, so does the resolution 

of the map. If representing one cell requires the same amount of memory regardless of the 

size of space it represents, this presents a trade-off between the total area mapped, and the 

resolution of the map. In practice, environments will have large sections of occupied or 

unoccupied space. Quadtrees, and their 3D analog Octrees, are structures that adapt regular 

cell-based maps to exploit this property. These maps use a hierarchical tree to represent 

discrete sections of an area. A single tree node can represent a large space. If that space can 

be represented by a single value (free, occupied, or unknown), it does not have to be divided 

further. When representing a two-dimensional map with a quadtree as in Figure 7, the root 

represents the entire space. If the space is all free or all occupied, we assign the appropriate 

value (usually 1 or 0) to the root. However, if the area has both occupied and free space, 

we create four children representing the four quadrants of the space. Each of these children 

is treated as the root of another quadtree representing their quadrant. A tree only grows to 

the resolution necessary to summarize all space within a square, and only grows where 

needed. Using these adaptive structures reduces the memory requirements compared to 

traditional cell-based approaches. The occupancy value of a cell can be retrieved in 

𝑂(𝑙𝑜𝑔(𝑛)) where n is the resolution of the map and techniques are available for constant 

time neighboring cell retrieval [37]. A simplified example of a quadtree mapping and the 

corresponding data structure is seen in Figure 7. 

By using the corners of obstacles in the environment, visibility graphs can map an area by 

assigning nodes to vertices and connecting them with edges. Edges are only added between 

nodes separated by free space. In [38] a visibility graph was used to generate collision free 

shortest paths to a point. Despite their widespread use, visibility graphs are demanding in 

processing and memory requirements when used for 3D mapping. Attempts have been 

made to reduce these limitations by using fewer obstacles seen in [39] [40]. These maps 

are useful only when there is previous knowledge about the environment and may need 

short, additional path planning if the environment is dynamic. An example is seen in Figure 

8. 
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In Figure 8, another alternative approach to mapping the environment is also shown. The 

map is known as a Voronoi diagram and in this technique, an area is represented as 

polygons, each enclosing one obstacle. These polygons are shaped in such a way that 

within any given polygon, the closest obstacle will be the obstacle that is associated with 

the polygon. Paths can be determined by following the lines along which two polygons 

meet. On these lines, objects are equal distances away. Although a path can be generated 

quickly, it may be suboptimal, and like visibility graphs, previous knowledge of the area is 

required.  

One of the most efficient ways of representing an area for navigation is to use a topological 

map. Like maps seen in a subway system, this map is created by connecting nodes with 

edges that represent a path. This map scales well with the size of an environment and can 

be used to efficiently calculate paths between nodes. As this map is simplified, geometric 

properties of obstacles or free space are not fully specified and distances between points 

Figure 7 Adaptive cell-based mapping using a quadtree. a) A 2D view of the environment. b) the cell-

based representation of the space, where white is free and black is occupied. c) The associated tree data 

structure. 



22 

 

may not be preserved in the map. Instead, their usage relies on an agent’s ability to detect 

when they are at a specific node. The efficiency of this mapping technique is met with a 

large dependence on a robot’s ability to know its location within the environment [18] and 

to have robust short-term obstacle avoidance. An example of this map is shown in Figure 

9.  

2.4.2 Obstacle Avoidance and Path Planning 

Autonomous flight is only useful to any mission if it can efficiently plan a route to and 

from the necessary coordinates to carry out a task. With previous knowledge of the 

environment, this process can be done offline. However, any applications involving the 

exploration of unknown environments will require online planning to generate new 

Figure 8 A visibility map (left) and a Voronoi diagram (Right) mapping of a 2d 

environment [67]. 

Figure 9 A topological map showing a crude representation of available paths in a space [69]. 
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trajectories. While a drone is flying along a given trajectory, it may also be at risk of 

colliding with dynamic obstacles which were unknown at the time of mapping. Using 

onboard sensors, shorter term collision avoidance can be introduced. Collision avoidance 

and path planning can be either a reactive or deliberative approach. In reactive planning, a 

loop of data acquisition and reactive control is used to keep the drone a safe distance from 

any obstacles, static or dynamic. With reactive planning, the drone can end up in a local 

minimum where it cycles loops without ultimately reaching its goal. On the other hand, a 

deliberative planning approach will use some form of mapping of the surroundings to 

determine a collision free path. This approach alone cannot accommodate safe flight in 

dynamic environments and if such flight space is demanded by an application, some form 

of a hybrid approach will be needed [36]. Typically, this will involve a path planning 

technique followed by some form of rerouting or replanning if a dynamic obstacle is 

encountered. Here we review some of the most common path planning techniques.  

Geometric path planning approaches consider the geometry of both obstacles and the drone 

ensuring a safe distance between the two. Paths travelling through free space are inferred 

by the geometry of obstacles. By creating geometric models of the obstacles in the 

environment, such as with a Voronoi diagram or Visibility graph, an optimal solution can 

be found using graph-based searching algorithms. Often this involves some cost estimate 

of distance and how aggressive a maneuver may be required to prevent a collision and stay 

on a potential trajectory. These maneuvers are most commonly a change in speed or 

heading of the drone [41] which can be directly calculated from the angle of a turn in a 

path. 

Most planning algorithms rely on randomly sampled points which connect and eventually 

sample a goal region. In [42] Rapidly Exploring Random Trees (RRTs) were first 

introduced. Using this method, a tree is grown within a model of an area by generating 

random points and attempting to grow the tree from an existing node in the tree that is 

closest to a goal. If there are no obstacles between a newly generated point and its nearest 

neighbour in the tree, a new node and edge are created. This tree is rooted at the starting 

coordinates and continues until a goal region is reached. Probabilistic Roadmaps first 

presented in [43] are another tool in which a tree is grown with random samples of the 
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configuration space. In this technique, the randomly generated points become nodes of a 

graph. Each newly generated point is compared to its nearest neighbours in the tree. If a 

certain criterion is met, a new edge and node are added to the graph and the tree has grown. 

Eventually, a dense map of the entire space is created. As new goal regions are needed, 

new paths can be created without regrowing the tree serving well in dynamic spaces. 

Building on RRT, in [44] Rapidly Exploring Random Tree star (RRT*) were introduced. 

This approach optimizes RRT paths by checking all neighbours within a radius and 

choosing to grow only from the most optimal one. Optimal is defined as the shortest path 

to the root and not necessarily the closest node. After a node is added, other nodes in the 

area are checked to see if connecting to the newly added node would provide a more 

optimal path. Figure 10 shows an example of a path found using and RRT. 

Artificial Potential Fields are methods that assign an attractive or repulsive force to 

obstacles and drones to direct the drone away from dangerous areas and towards a goal 

[45]. In constructing an Artificial Potential Fields an attractive force is placed at the goal, 

while repulsive forces are put around obstacles. If a robot comes within a predefined 

distance of an object, the field presents a repulsive force [46]. With optimization-based 

methods a probabilistic search algorithm is optimized to quickly find a trajectory which is 

near optimal and avoids any collisions. These methods usually rely on previous knowledge 

of the obstacles in a space and require additional short-term obstacle avoidance if dynamic 

obstacles may be present. If this knowledge is available paths can be computed efficiently 

but path generation may suffer from becoming stuck in a local minimum in the presence 

of complex or multiple obstacles. Recent work has been conducted to help avoid these 

issues in [46].  

Sense and avoid methods are lightweight techniques in which an individual agent detects 

an obstacle and reacts accordingly [35]. These are short-term methods which react to the 

environment as it is sensed. With this technique, there is no requirement of previous 

knowledge. Geometric algorithms can span into this category when using obstacles to 

follow but are often more sophisticated in that they consult either a global map or share 

information between agents and external systems. In this category, we also see wall-follow 

algorithms such as the collection of bug algorithms in [47]. 
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2.4.3 Exploration 

If an agent’s goal is to explore an area of which there is no previous knowledge, it must 

have a way to develop goal states to travel to. These goal states should motivate the drone 

to move to an area that will expand the amount of explored space while safely travelling 

through the environment. While doing this, important considerations are the time it takes 

to explore an area and the power required to move to new states. If an exploration technique 

requires repeated rapid changes in the robot's pose, it must frequently draw power to 

accelerate the angular velocity of propellers and change its orientation. Algorithms that 

find worthwhile sections of the space to explore can are divided into frontier-based 

exploration [48] or sample-based exploration [49] strategies. 

Frontiers were introduced in [49] as defining the border between explored regions and 

unexplored regions within a space. If the exploration space is discretized into cells, as is 

done in cell-based mapping, a frontier cell would be a free cell that is adjacent to a cell 

Figure 10 Safe path generation with RRT. A tree is randomly grown from the starting point 

(blue) until it reaches the goal area (red). Once the tree intersects this area a path is 

generated(Red line) [66]. 
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whose occupancy is unknown. This approach works by searching for frontier cells at the 

borders between previously explored space and unknown space. Under the assumption that 

open and accessible space is contiguous, any path to unexplored space must cross one of 

these frontier borders. After finding the frontiers, one is chosen as the goal and a path is 

generated. This method depends on the efficiency of detecting frontiers, a process that can 

be computationally expensive depending on the mapping strategy used and the 

dimensionality of the environment.  

Sample based exploration strategies find goal regions by randomly sampling possible 

configurations in the exploration space. This strategy was motivated by early work in [50] 

which sampled viewpoints around a structure to find a Next Best View (NBV) point to help 

map the structure. Newer strategies have extended the sampling strategy to augment a 

random tree to not only path plan, but to find quality views which would increase 

knowledge of the environment. In [51] a random tree is grown in the environment and each 

sampled point added to the tree is also evaluated based on how much unexplored space is 

visible from the point.  

Other explorations strategies have also been proven useful under certain conditions. For 

example, it has been shown in [52] that in a maze-like environment, a wall-following bug 

algorithm can produce better results than a frontier approach. In [53] the use of frontier 

exploration was combined with sampling methods. Frontier exploration was used to 

generate a global path and while the drone was on a path to a global frontier, it sampled 

nearby configurations. If a configuration with high information gain was sampled, the 

algorithm would check if going to that configuration was efficient. If so, the global path 

would be altered to include the sampled area. 
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Chapter 3  

3 Related Work 

With a preliminary study of autonomous drone exploration, we now turn attention to 

notable contributions in the area. The research and strategies discussed in this chapter 

present the current state-of-the-art solutions. These solutions differ in their implementation 

of state estimation, perception, mapping, path planning, and exploration, but all aim to 

develop online trajectories which eventually cover an entire space. We first review 

solutions found in research before turning towards commercial UAV exploration options. 

Many of these solutions expand on leading exploration methods described in Chapter 2 and 

may be generalized to many types of environments. These are not necessarily complete 

solutions in that some may not form a fully autonomous system, but all will help to provide 

a layout of where the current technology lies. 

3.1 Dynamic Exploration Planner (DEP) 

The authors of [54] propose a multi-query dynamic exploration planner (DEP) capable of 

exploring a previously unknown environment while avoiding both static and dynamic 

obstacles. To map the environment, an adaptive cell-based octree is used. A PRM is 

constructed for exploration and an incremental sampling strategy continues to improve 

node coverage of areas already mapped, adding nodes to the PRM. By storing the utility of 

each node, the reconstruction of a path in the presence of dynamic obstacles is possible. 

The entire process is broken down into four stages.  

In stage one, a PRM is created by sampling free space configurations which are close to 

the UAV and then sampling the free space globally. The purpose of sampling nearby areas 

first is to ensure better coverage of recently observed areas which are not yet covered by 

the PRM. If strictly global sampling was used, areas already covered by the PRM would 

become too dense as more nodes were added. This sampling process continues until a 

saturation threshold is met. Sampled points are evaluated for their proximity to existing 

nodes and if they are not too close to a neighbour they are converted into nodes and added 

to the PRM.  
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In stage two, Nodes are evaluated and updated by the number of unknown visible voxels 

which would fall into a sensors FOV when at the location of the node. Unknown voxels 

are categorized as normal voxels, surface voxels, or frontier unknown voxels, depending 

on their neighbours. Each of these categories receive a different weight in the evaluation 

of nodes. Surfaces are weighted the strongest (given that they are the most important), 

followed by frontier unknown voxels, and then normal unknown voxels. The weighted sum 

of these voxels provides the information gain for a node. It would be inefficient to repeat 

this process for every single node in the PRM as many would be unchanged from the 

previous iteration. Rules are applied to determine which nodes to evaluate based on 

Euclidian distance to the drone’s previous trajectory. Those nodes which are very close to 

the previous trajectory are deemed to have very low exploration utility and so their 

information gain values are set to zero and not re-evaluated.  

Stage three is responsible for trajectory generation that minimizes exploration time by 

analyzing the possible trajectories through the PRM and evaluating their information gain 

rate. This is a measurement of the expected information gain over time travelled along the 

trajectory. Trajectories are first found by looking at the node gains and selecting those that 

have high information gain. These nodes are gathered into a set and for each one a path is 

generated using graph search algorithms. These paths make up the set of trajectories to 

evaluate. 

In the final stage, the trajectory is optimized using Euclidian signed difference function 

(ESDF)-based optimization. The objective is to reduce average trajectory execution time 

and distance. During this process, a safety distance from obstacles is also considered and 

the trajectory is altered where necessary.  

The DEP was tested in simulation using a UAV equipped with a camera and intel i7 

7700HQ 2.4 Ghz. To benchmark against other leading exploration methods the exploration 

time, path length, and computational time where evaluated. Receding-Horizon Next Best 

View [51], The frontier approach from [48], and Autonomous Exploration Planner (AEP) 

[55] were also tested in the same simulation environments. Table 2 summarizes the results 

averaged over 10 runs for each planner. 
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3.2 Receding Horizon Next-Best-View Planner 

Expanding on RRT path planning, the authors in [51] combine exploration into the creation 

of the RRT structure. This is achieved by randomly sampling within known free space and 

evaluating whether the sampled point would provide view into unexplored space. When a 

quality view is sampled, the RRT is used to find a path using a graph search algorithm. 

When this path is found, the robot will execute only the first step in the trajectory. After 

travelling along this one edge in the graph the process starts over.  The outcome of doing 

this replanning every iteration is that the horizon of unknown space is typically pushed 

further away from the drone.  

The exploration method relies on an Octree structure for mapping of the environment and 

tracking known free, known occupied, as well as unknown space. Perception is done with 

a stereo camera, but other sensors could be employed. To begin a random tree is grown by 

sampling within free space that is rooted at the drone’s current configuration. A node n is 

assigned a gain value given by the sum of unmapped volume which could be explored at 

nodes along the branch terminating at n. Sampling continues until a predetermined number 

of samples are generated. After sampling is complete, the node with the highest information 

gain is selected as the next trajectory. The branch along this trajectory is saved and used to 

Simulation 
Description 

Planner Exploration 
Time 
Average 
(minutes) 

Total Path Length 
Average (Meters) 

Computational 
Time Average 
(Minutes) 

Café 
Environment 
20x10x3 meters 

DEP [54]  
RH-NBV [51] 
Frontier [48] 
AEP [55] 

4.77 
7.12 
6.44 
5.48 

43.12 
76.80 
56.11 
59.16 

0.17 
0.5 

0.37 
0.37 

Maze 
Environment 
20x20x3 meters 

DEP [54]  
RH-NBV [51] 
Frontier [48] 
AEP [55] 

17.75 
31.44 
34.74 
23.23 

146.44 
271.60 
330.10 
200.65 

1.05 
8.10 
2.01 
2.44 

Office 
Environment 
40x30x3 meters 

DEP [54]  
RH-NBV [51] 
Frontier [48] 
AEP [55] 

31.84 
48.21 
38.14 
37.46 

318.58 
421.8 

253.63 
327.78 

2.45 
12.13 
12.29 
6.64 

Table 2 DEP simulated testing results and comparison to other leading planners [54] 
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reinitialize the random tree in the next iteration. The drone executes the first step along the 

selected trajectory completing one iteration. The tree is regrown, and the process continues 

until samples are no longer providing views with a positive information gain.  

The complexity of this approach is dependent on the volume being explored and the 

resolution of the octree. The computational cost is of the following order. 

(NT log(NT) + NT/NT log(V/r3) + NT(dmax
planner

/r)
4
log(V/r3)) 

Where 𝑁𝑇 is the number of nodes in a tree, r is the resolution of the octree, V is the volume 

of space being explored, and 𝑑max
planner

 is the sensor range. The full derivation of this equation 

is found in [51].  

This algorithm was tested in three environments, two simulated and one real world. Under 

the simulated environments, an AscTec Firefly hexacopter MAV is used with a stereo 

camera. The environments include an apartment space and a space containing a bridge. The 

results of total exploration time, and computation time were compared with the frontier 

approach from [56] adapted to the same environments. This comparison showed an 

increase in exploration rate across both simulated environments. The frontier method failed 

to explore the space in the larger bridge environment due to the computation time required 

for detecting frontiers. In the real world testing a closed room with scaffolding against one 

wall was used. Again, an AscTec Firefly Hexacopter MAV was chosen to perform the task. 

This drone was equipped with Visual-Inertial sensor providing stereo imagery coupled with 

IMU data. Results of the experiments are summarized in Table 3. 

3.3 LiDAR-Based Stabilization, Navigation and Localization 

In [57] the limitations of vision-based localization in GNSS denied spaces were addressed 

by developing a pose estimation system using 2D LiDAR scans. Instead of depending on 

heavy 3D scans, this solution is suitable for small MAVs with lower payload capacities. 

By building a robust localization system for MAVs autonomous exploration in cluttered 

environments can be achieved. Results from this work show  
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promise as the ability to reduce state estimation drift was evident in the piloted exploration 

of confined indoor environments.  

Equipped with a LiDAR sensor, this solution is presented as a pipeline architecture starting 

with the LiDAR data at each timestep and flowing into a Kalman filter for final state 

estimation. The incoming data is fed into two modules. In the first stage, two sequential 

LiDAR scans are aligned to find the rate of change of the state vector. Separately, the 

LiDAR scan is also sent to a global matching module where scans are matched against a 

global map. This map is implemented as an octree. To avoid performing the expensive 

matching process over the entire map, only a small region around the current location is 

used. 

Results show that the state estimation functioned well both indoors and outside where 

fewer obstacles lead to a smaller number of data points on LiDAR each scan. Testing 

indoors with a roughly 4m by 6m rectangular trajectory revealed the drift in the trajectory 

to be limited to less than 40cms. This was achieved without any loop closing methodology 

to reaffirm previous state estimates in past states.  

Environment Exploration 
Method 

Total 
computation time 
(minutes)  

Exploration time 
(minutes) 

Notes 

Simulate 
Space 
containing 
bridge: 
50x26x14 
meters 

RH-NBV [51] 
Frontier [56] 

9.4  
1670.1 (aborted) 

43.8 
1660.4 (aborted) 

Frontier 
approach 

did not 
complete 

exploration 
task. 

Simulated 
Apartment 
Space: 
20x10x3 
meters 

RH-NBV [51] 
Frontier [56] 

0.25 
1.39 

 

8.37 
7.83 

Frontier 
based had 
lower total 

area 
explored 

Real world 
room with 
scaffolding: 
9x7x2 meters 

RH-NBV [51] 0.19 4.22 Frontier 
comparison 
unavailable 

Table 3 RH-NBV planner testing results in two simulated environments and one real world experiment. 
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3.4 History-Aware Autonomous Exploration 

In [58] a History-Aware Autonomous Exploration planner was tested on an MAV equipped 

with a visual inertial sensor for depth perception and localization. This solution uses a 

record of previous states that the robot has been in to seed a RRT in a multistep fashion. 

By leveraging this history of this planner, a UAV can first locally optimize the robot’s 

orientation with respect to the unexplored space.  

First, the agent generates samples in its immediate vicinity. These samples are treated as 

potential NBVs but if no quality views are found, the sampling continues from a state in 

the agent’s history log. This state is recognized as one that still has potentially valuable 

configurations in its near vicinity. If sampling fails again, the entire space is sampled. For 

each sample, N discrete orientations of the drone are used at that position to evaluate the 

information gain. When a quality view is found the RRT is used to generate a path. 

Trajectory optimization is performed to limit the number of orientation changes and length 

of path. Testing was carried out on a small and large maze in simulation with an Intel i7-

4700MQ 2.4Ghz. When compared against RHNBV approach it showed faster exploration 

time in both scenarios. Testing was also performed in a real-world environment in a semi-

autonomous fashion. First a safety pilot would map some of the space before allowing the 

UAV to take over. A supervisor also approved trajectories as they were generated. 

3.5 Industry Solutions 

Commercial UAV exploration solutions are growing in popularity as companies develop 

systems that can explore more constraining environments. For example, the Autonomous 

Control Systems Laboratory (ACSL) provides an inspection solution for infrastructure in 

GPS denied areas by combining visual and LiDAR data to localize a UAV and safely 

navigate moderately confined spaces [59]. The Elios 2 by FlyAbility uses a spherical cage 

around the drone to prevent collisions. With powerful lighting and sensors, it can be piloted 

through GPS denied indoor environments [60]. Exyn Technologies have equipped their 

own product, an Exyn Aero drone, with various vision and LiDAR sensors to perform 

remote inspection in GPS denied environments [61]. 
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3.6 Research Gap 

After a consideration of the related work, Table 4 provides a summary to help identify the 

deficiencies which prevent the available solutions from moving into more confined, 

connectionless spaces. A review of this table shows that there has been significant progress 

in the ability to explore connectionless, dark, constrained environments but each solution 

has some characteristic preventing its flight in our target environment. This discussion 

brings us to the edge of autonomous capabilities and helps to define what is required to 

push UAVs to operate in more environments. After looking at the related work, we observe 

a trade of the capabilities and size of the drone. Physically larger drones have been able to 

combine all the necessary components of autonomous flight as their higher carrying 

capacity can accommodate the necessary hardware. These solutions have yet to be 

presented on NAVs with small physical dimensions with limited resources. On the other 

hand, the smallest UAVs still have environmental dependencies or are not yet fully 

autonomous, and thus still require connection to a piloting operator/system. 

When considering work in the area, we outline two available options that will help to 

overcome the barriers of autonomous flight that are prohibiting existing solutions from 

moving to more confined and connectionless spaces. First, the development of more 

efficient mapping, localization, and/or explorations techniques. If scalable maps that can 

be managed on smaller processors become available, these can be leveraged for 

localization and exploration using the existing algorithms in place today. Another approach 

is to reduce the coupling between mapping, localization, and exploration. Exploration may 

then be carried out without requiring such informative maps or localization. This would 

eliminate the need for detailed and computationally expensive mapping, giving a higher 

tolerance to imperfect sensor data or state estimation which may perform poorly in certain 

conditions. Another way to bring UAVs to more confined spaces, could be to find new 

solutions that enable a high bandwidth connection between a base station and a drone as it 

travels through otherwise connection-denied areas. If a solution can be found, the 

expensive localization and mapping can still be offloaded to a device with more resources. 

The navigation commands can then be generated and sent back to the UAV to be carried 

out. 
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Method Testing Autonomy UAV Size 
(mm) 

Mapping 
Type 

Scalable to 
Connectionless 
NAVs 

DEP [54] Simulated Autonomous 400x400x300 
Octree 
20cm 
resolution 

No 

RH-NBV [49] Real 
World Autonomous 500x500x500 

Octree 
20cm 
Resolution 

No 

History 
Aware 
Autonomous 
Exploration 
[55] 

Real 
World 

Semi-
Autonomous 500x500x500 undisclosed No 

Lidar 
Localization 
[58] 

Real 
World Piloted undisclosed 

Octree 
20cm 
Resolution 

No 

ACSL [59] Real 
World Autonomous 654x1173x1067 Undisclosed No 

Elios 2[60] Real 
World Piloted 400 (sphere) Undisclosed No 

Exyn 
Aero[61] 

Real 
World Autonomous 883x886x520 Undisclosed Unknown 

Presented 
Approach 

Real 
World Autonomous 100x100x40 Topological Yes 

Table 4 A comparison of related research and commercially available navigation and/or exploration 

strategies. Each cell is colored according to the attributes ability to scale to small UAVS operating in 

confined, connectionless spaces. Red shows that an attribute is preventing the solution from scaling, yellow 

is used for unavailable data, and green shows an attribute that does scale. The proposed solution presented 

in chapter 4 is along the bottom. 

3.6.1 Novelty of Proposed Solution 

To enable our design to reach new environments, we focused on reducing the dependence 

of a detailed, cell-based map found in most other solutions. To accomplish this, we 

designed an alternative approach to exploration which leverages the concept of frontiers 

but does not require searching over discrete sections of the exploration space running in 

constant time, regardless of how large the flight space is. This allows our solution to operate 

on extremely limited hardware resources. In eliminating the computational costs of 

inserting, deleting, and storing data in a cell-based map, resources are preserved for other 
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tasks like stabilization, control or for higher level applications like infrastructure 

inspection. In the absence of a detailed map, we provide robust obstacle avoidance 

supported by reactive short term obstacle avoidance as well as globally planned paths 

through free space. These paths are easily generated from the computationally inexpensive, 

graph-based map. By leveraging these key attributes, our exploration technique can operate 

fully autonomously in environments yet to be reached by other state of the art solutions. 

As table 4 shows, our solution is the first to meet all the following requirements: 

1. Full autonomy will all decisions being made on board the UAV 

2. Small frame UAV less than 15x15x10 Centimeters 

3. Scalable Mapping techniques capable of operating on resource depleted systems 

4. Zero connectivity with external systems  

5. Proof of functionality in real world test cases 

As proven in Chapter 5, the presented approach has overcome the existing barriers and 

introduced a new way for UAVS to explore previously unknown environments. Upon 

reviewing the existing literature and commercial options we believe this design has enabled 

our prototype to be capable of systematically exploring the smallest, connectionless 

environments yet to be reached by autonomous UAVs. 
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Chapter 4  

4 Methodology 

We now present our novel approach to the exploration of a connectionless, previously 

unknown, and confined space by using a frontier exploration method without relying on a 

detailed global map for path planning. This exploration strategy is designed for extremely 

resource constrained systems where computation and decisions are done on board. With 

no dependence on a feature map, this solution is highly scalable. In our approach, the 

exploration space is covered by continuously detecting and moving towards unexplored 

areas like other frontier-based methods. Unlike existing frontier-based algorithms this 

strategy finds new frontiers in constant time on the fly while it completes trajectories set 

by a path-planner in a previous step. Our work is tested using a drone with six lightweight 

LiDAR sensors for environmental perception. Localization is done by fusing IMU data 

with optical flow from a downward facing camera. Furthermore, by assuring that the 

heading of the drone is facing the direction of travel this solution can be extended to collect 

data with other types of sensors where the field of view may be limited to a single direction. 

After the exploration is complete, or the power resource is depleted, our system will plan 

a path back to area that it was deployed. The outer loop of the presented algorithm iterates 

until no frontiers are left to explore. In the following sections the major components of 

each iteration are discussed. 

4.1 LiDAR Based Frontier Detection 

The discovery of new regions to explore is centered around a frontier detection approach. 

As we aim to create a system that can explore confined spaces, we need to consider the 

limited memory available to the small-bodied drones needed to explore small spaces. A 

cell-based map is typically used in exploration strategies but using this mapping technique 

causes a restriction on scalability. If we wish to explore variable sized space with a cell-

based map, it must accommodate any size of space reachable to the drone and would have 

to dynamically grow during the mission. The memory required to do this, even with 

adaptive cell-based maps, quickly outgrows the available memory of NAVs, especially 

when extending to 3D. To avoid depending on existing exploration solutions that leverage 
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maps with these constraints, we propose an alternative approach to detecting frontiers. By 

doing this, we no longer require a detailed cell-based map and can use alternative and more 

memory efficient approaches.  

To change our approach from finding frontiers using the traditional cell-based map search, 

we introduce the idea of a Visibility Volume (VV). A VV is a region of space where every 

point within that region has straight line visibility to every other region. If we consider all 

the reachable space in an environment, we can be confident that it is in at least one of these 

volumes of space. Now if we add the condition that no two visibility volumes overlap, we 

can divide up the space into discrete volumes. For example, in Figure 11 we have divided 

the space into 5 of these volumes using the red dotted lines. These divisions are of course 

arbitrary and could have been divided in many other ways. With the entire exploration 

space divided into VVs which do not overlap, we can rephrase the exploration problem as 

two smaller subproblems. First, when the UAV is in one VV how can it be sure to detect 

and move to all adjacent volumes. Second, how can we fully explore the VV that the drone 

is presently in. With these two problems solved, we can start at any volume and eventually 

visit all reachable space. This is the motivation for our frontier detection algorithm and in 

the coming paragraphs we will see how this algorithm tackles both subproblems.  

To address the first subproblem we use the assumption that we will be exploring a confined 

space. We therefore expect that many obstacles will fall into a sensor's FOV at any given 

time. In other words, the UAV will never be too far from a wall, ceiling, floor, or other 

Figure 11 The division of a 2d space into Visibility Volumes that do not overlap. From within any volume, 

a drone must be able to detect adjacent volumes, and be able to fully explore the volume it is in. 
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structure in the environment. This assumption is reasonable for our work as more open 

spaces would accommodate a wireless signal to and from a base station for which more 

resource demanding solutions already exist. This assumption affords our system the ability 

to have reliable depth information in multiple directions from six LiDAR sensors.  

In the same way that a human could extend their arms and feel around in the dark to avoid 

obstacles, our UAV uses its sensors to navigate. Instead of arms, a UAV can use laser 

sensors which function well even in dark spaces and can detect obstacles that are up to four 

meters away. We can then track the readings from each of these sensors over a short period 

of time, recording the most recent readings. By finding the gradient of these readings, we 

can detect when a sudden change occurs. This sudden change reflects an edge of some 

structure in the environment. Moving back to the analogy of a human navigating in the 

dark, if one were to run their hand along a wall while walking, this individual would 

perceive the wall to be a certain distance away. If they continue and suddenly the wall ends, 

their hand will slip off the corner. This would suggest that an opening exists in the direction 

of their arm and that a new passage exists. On a UAV we can sense in many directions at 

once with small sensors readily available today. In each direction, we employ this edge-

detection-like method to find new passages to explore. The algorithm in Figure 12 

describes the process for one sensor in the first part of the if statement. In this simple 

Figure 12 Frontier Detection in a single direction at one timestep. 
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implementation of our proposed frontier detection method, only the last two samples are 

needed from a sensor. The threshold for selecting a frontier is used to determine what 

degree of change would indicate a new frontier. A small change could simply point to a 

variation in a structure that does not expose a new region to explore. To keep exploration 

efficient, this threshold variable should be large enough such that minor changes in an 

obstacle are not detected as edges. We use the absolute value of the change to cover the 

case where the distance of a sensor reading suddenly drops or increases as both cases could 

signal a new region to explore. Figure 13 shows an example of both scenarios. Returning 

to the first subproblem of exploration, we now have a way to detect an adjacent visibility 

volume from within the volume the drone is presently occupying. 

While an abrupt difference in sensor range will detect many frontiers, it has limitations and 

would not be able to generate frontiers without some sort of structural variation. An 

example of this limitation is if the drone found itself in a large open area or along a narrow 

corridor. This is where the subproblem of exploring the entirety of the volume of space the 

drone is presently in. To address this second subproblem, the second part of the presented 

algorithm checks to see if the sensor reading shows that there is open space extending far 

enough away to warrant exploration in that direction. For example, if the sensor is reaching 

its maximum range, it means there could be unexplored space beyond it. Even if a reading 

is not at the sensor's maximum range, it might still be worth travelling to as there could be 

Figure 13 Frontier detection in two scenarios.  The UAV is moving in the direction of the white arrow. 

The drone can be seen at two subsequent timesteps. At each timestep the dashed line shows the sensor 

reading. A yellow cloud shows the frontier which is found. 
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a new region to explore that is only detectable from that point. This case can be seen in the 

first diagram of Figure 14. The frontier detection in open regions is covered in the second 

half of the algorithm shown in Figure 12. When detecting frontiers, the unique 

characteristics combined with sensor readings are used to place the frontier at a safe 

distance from detected obstacles so that travelling to a frontier will not result in collision. 

The frontiers are then passed to a topological map building module described in the next 

section. This frontier finding algorithm is not resource demanding and runs in constant 

time. It can be applied to multiple sensors at each timestep to cover every direction. It is 

also important to note that this method will find candidate frontiers and they are first tested 

for proximity to other existing frontiers before being added to the map. As discussed in the 

coming sections, it is the responsibility of the graph-based map to manage the criteria for 

a candidate frontier to be added. By approaching frontier detection this way, the line of site 

between the drone’s current position, and a newly detected frontier also implies that the 

frontier is likely reachable. If it was not reachable the LiDAR sensor would have detected 

the obstacle standing in the way and the frontier would not exist. 

4.2 Graph Based Mapping and Path Planning 

The backbone of our path planning strategy is a growing graph 𝐺 = (𝑉, 𝐸) where V is a 

set of vertices (or nodes) with an associated coordinate to represent their location in the 

configuration space. Vertices are also labelled as either a regular node or frontier node. If 

Figure 14 Examples of frontiers found by the second part of the proposed algorithm where open space is 

encountered. In both images the sensor reading is beyond the predefined max range and a new frontier is 

generated. This max range parameter controls the density 
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a vertex is a regular node, it is strictly used for navigation and has a degree greater than 

one unless it is the last node in a dead-end section of the exploration space. If the edge is a 

frontier node, it represents a region which must still be explored. The members of set E are 

edges which connect two vertices together. An edge informs of a free space path between 

two nodes. This free space is assumed to be a straight line. Initially G is empty but upon 

takeoff, it creates a node at its starting position and new nodes are added as new frontiers 

are detected. An example of this map is shown in Figure 15. 

While flying, the state estimator of the UAV is used to determine the location of nodes and 

the drone’s position relative to them. Paths are planned as a series of edges through the 

graph connecting the drone’s current location to a frontier. When planning is done, the 

agent will necessarily be at the location of a regular node. This node is used as the root of 

a breadth-First search (BFS) of G to determine the lowest cost path to a frontier node. Cost 

is defined as the sum of the Euclidian distances between nodes along a path. This serves 

two purposes. First, the closest frontiers will be the quickest to find in the graph making 

searching quicker. Second, this encourages the drone to finish exploring an area in its 

immediate surroundings before having to backtrack to a different frontier region preventing 

unnecessary power consumption from going back and forth between regions. This graph 

has the added benefit of always maintaining a way to get back to the starting position. 

When no frontiers are left to explore, a search through the graph for the starting node is 

carried out, thus providing a collision free route back to a user. 

To store the graph, an adjacency list is used. This list can grow along with the size of the 

space while minimizing the memory requirements. Storing the list requires 𝑂(𝑉 + 𝐸) 

where V is the number of nodes and E is the number of edges. Finding a path in the graph 

is also 𝑂(𝑉 + 𝐸), in a case where no path can be found. This indicates that the reachable 

areas have been explored and a path home can be generated. 

When the frontier detection module finds a potential frontier, it is responsible for 

converting the frontier from the body frame to the world frame and providing the 

coordinates to the mapping module. With these coordinates we introduce two new nodes 

to the map. First, a regular node is inserted at the drone’s current location. Since the drone 



42 

 

will most likely be travelling along an edge, this edge is split into two and each connects 

to the newly generated node. From this regular node, another new edge is introduced 

extending to a new frontier node created at the coordinates that were passed from the 

frontier detection algorithm. This process is shown in Figure 16 and demonstrates the 

update of the map being carried out for one frontier.  

4.3 Graph Pruning 

During each iteration of the outermost exploration loop, the graph is also maintained to 

optimize future paths by eliminating unnecessary nodes. This is done by checking the 

positions of the closet nodes and determining if they are no longer needed. This can occur 

if the drone has explored an area featuring a loop, or if two paths in the exploration space 

combine into one. In Figure 17 we see an example of this occurring where the drone has 

explored part of the space, but where redundant frontiers now exist. In this figure, node 5 

Figure 15 Graph based topological map used to find paths to frontiers in the exploration space. 

Each node is connected by edges that represent free space. 
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is a redundant frontier node and visiting this node will not contribute to overall exploration. 

Planning and executing a path to this node will consume resources that could otherwise be 

used to continue exploring. To avoid these circumstances, at each iteration we check for 

redundant frontier nodes and use the following pruning scheme.  

As the UAV is traveling to a destination frontier node, it may pass by a nearby node. By 

consulting the graph for other nodes in the proximity, a pruning technique is used to 

eliminate potentially redundant frontiers that would be of no use to exploration. To remove 

a node, it must meet the following criteria. First it must be within a set distance of the 

drone. This is a parameter which can be changed as desired. Next, the node must come 

within a sensor’s FOV. This assures that the node is not behind a wall where more 

exploration space could exist. Third, the node must have a degree of one and must only be 

connected to the graph by one edge. If this is not the case, eliminating the node could result 

in a subgraph being disconnected from the regular graph. This connection may be useful 

for navigating to another frontier or traveling back to the starting point. 

Figure 16 Map update process where the coordinates of the new frontier are generated by 

the frontier detection module. A new regular node, frontier node, three new edges are 

needed for this process. 
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Removing nodes comes at no cost to exploration. If a node is removed because it is too 

close, but would have still been useful for exploration, then it will immediately be replaced 

by another frontier. This is done by the frontier detection algorithm which will detect this 

area as a frontier region and create a new frontier that is placed further away from the 

drone. This can improve overall exploration efficiency. One such example is seen in Figure 

18 where a frontier is removed after falling within a sensors FOV. It was replaced into a 

section of unexplored space as a new frontier.  

4.4 Obstacle Avoidance 

On top of the planned trajectories, an extra layer of obstacle avoidance is added. Though 

the graph can provide the connections between spaces, this alone is not enough to provide 

Figure 17 A case where pruning can help to optimize exploration time at no cost to overall 

exploration. Node 5 is redundant and provides no additional information about the space. It is 

pruned as the UAV travels from node 7 to 8. 
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collision-free travel between nodes for the following reasons. First, the collision box of the 

drone is not considered in the generation of nodes. A straight line between two nodes may 

come too close to an obstacle with which the UAV may collide. Second, without the 

advantages of an external positioning tool like GNSS or UWB sensors, the uncertainty of 

the localization increases. By introducing on the fly obstacle avoidance, the error in 

localization estimates from the state estimator is less concerning if the drift in the estimate 

is not too large. Our solution is extendable in this regard as any sense and avoid methods 

described in earlier chapters can be used. In our implementation, we use two strategies. 

The first is to adjust a frontier to a safer position when an obstacle is seen near a node. This 

step only occurs before traversing the final edge of a trajectory. While positioned at the last 

vertex, and before reaching the frontier, the drone orients itself so that its heading is aligned 

with the edge of the graph. From this position, the UAV uses its forward-facing sensor to 

observe the area around the frontier with a sweeping motion. This maneuver informs the 

UAV of any obstructions close to the frontier. For example, when observing the frontier, 

if it is determined that an obstacle is too close on the left, the frontier is moved slightly to 

the right. This only happens if the observation maneuver reveals free and open space to the 

right. Moving the frontier in this way also has the effect of removing unnecessary path 

length. If a frontier is close to a wall, it will be relocated away from it. As we often observed 

in experimentation, this meant making zigzag trajectories much straighter. This maneuver 

is not done when travelling to regular nodes. Changing their location could disrupt a future 

Figure 18 Graph pruning. A node is deleted but then added back in a more optimal location. 
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path to another frontier that depends on that node. An example of this is shown in Figure 

19 where the drone is at node 1 and travelling to the frontier node 2. Here, two potential 

trajectories are shown where the brighter one uses the obstacle avoidance technique, and 

the lighter one does not. The bright trajectory had a straighter path through the space and 

is therefore more optimal. This path was created as the original frontier was adjusted and 

moved away from the wall. In this instance, there was not enough space on the left to create 

another open space frontier. For this reason, the only frontier created was in the open space 

ahead of the drone at node 3. On the other hand, the lighter node 2 shows what would 

happen if the adjustment was not made. Now the UAV has much more open space to the 

left of the node and so a frontier is generated. The drone would travel to this frontier, 

without adjusting it, and the same process would occur (this time with node 4). This 

ultimately leads to a back-and-forth trajectory which increases the overall exploration time.  

The second step in obstacle avoidance is to maintain a safety radius around the UAV using 

all available onboard sensors. If an object is detected within this safety radius, the drone 

responds by moving in the opposite direction. The sensor readings in all directions are 

considered when doing this maneuver so a movement away from one obstacle does not risk 

Figure 19 An example of the frontier adjustment technique used to keep the UAV at a safe distance 

from obstacles when travelling down a narrow corridor. The trajectories are shown when this 

technique is used vs when it is absent. 
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a collision with another one. For example, an obstacle is within the radius on the left but 

moving to the right would cause the drone to get too close to an obstacle on the right. In 

this case, both obstacles are considered, and the UAV is centered between them. If an object 

in front of the drone is detected to be within this radius, the drone cannot get any closer to 

its current goal and so it must stop. The node it was attempting to travel to will be moved 

to the UAVs current position.  

4.5 Exploration Loop 

By combining the above components our exploration method runs a continuous loop of 

frontier detection, mapping, obstacle avoidance, and when needed, path planning. This 

loop is shown in Figure 20 and is described in this section. The lower levels of the system 

such as state estimation and control are not discussed further in this section. Instead, the 

focus remains on our exploration strategy which is platform independent and can be run on 

various UAV platforms.  

At the beginning of each loop, the current sensor information from all available LiDAR 

sensors is retrieved and temporarily stored for access throughout the rest of the loop. The 

same applies for state estimation where the current coordinates of the drone are stored 

alongside the heading. Sensor readings from the previous iteration are also stored and 

accessible. This position information is in the world frame of reference and converted to 

the body frame when needed using a rotation matrix. In the first iteration after taking off, 

the sensor data from the previous iteration does not yet exist but the values are initialized 

to zero. After retrieving the current data, the frontier detection algorithm is run on four of 

six sensor readings excluding the upward and downward facing LiDAR sensors. The 

results of the frontier detection are then passed to the graph/map module which will update 

the topological map as needed. If no frontiers are present, or the candidate frontiers do not 

meet the criteria to be inserted into the map, no updates to the map are made. Immediately 

following this, the short-term obstacle avoidance technique informs of any collision risks. 

If no collisions are imminent, we skip to graph pruning. If an obstacle is too close to the 

drone, an obstacle avoidance maneuver is performed to move the drone to a safer position 

(while not moving so far that it is unable continue its current trajectory). If this occurs, the 

sensor readings and current location are updated for use during the rest of the loop. Now 
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that frontiers have been detected, and the drone is in a safe position, the graph is pruned to 

eliminate any redundant nodes nearby. This is done as per the process described in section 

4.3. Next, the current destination node’s position information is accessed. The destination 

node refers to the vertex in the graph at the end of the edge that the drone is presently 

traversing. In the case that the drone has just taken off, the goal node is created and set to 

the current position of the drone so that it is necessarily reached on the first iteration. If the 

drone has not yet reached the destination node, we move directly to the final step of the 

iteration. If the UAV has reached the location of the destination node, the node is checked 

to see if it was a frontier node or a regular node. If we have just reached a frontier node, 

the trajectory is complete, and the node is changed from a frontier node to a regular node 

to be used for further path planning in later iterations. Path planning is then done to locate 

a path through the graph to a new frontier. The next edge of the path is then retrieved and 

the node on the opposite end of the edge is set as the current destination node. As the final 

step, the sensor readings from this iteration overwrite the sensor readings from the past 

iteration. These will be needed for frontier detection in the next cycle of the loop. The loop 

then starts over and will continuously run until no more frontiers are available for 

exploration.  

There are several events that can trigger the system to search for a path back to the starting 

node rather than a frontier. The first has been mentioned and occurs when all frontiers have 

been reached and no others exist in the map. In our implementation we also consider current 

battery capacity to make sure that there will be enough power to come back to the starting 

point. If the battery is too low, exploration stops, and a path is planned back to the starting 

node. 
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Figure 20 Outer loop of the exploration technique showing the timing and use of the various components 

of the solution 
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Chapter 5  

5 Experimental Results and Analysis 

To test our exploration strategy, we ran it as an application onboard a commercially 

available NAV equipped with a downward facing optical flow sensor and six LiDAR range 

sensors. Testing was performed on multiple real-world beds each set up in the Western 

Information and Networking Group (WING) lab. Three unique environments were 

assembled with various features and different obstacle types. In each case, the accessible 

space was explored as each region fell into a sensor's FOV at some point during 

exploration. In this section we present the platform, testing environments, and results of 

our experiments. 

5.1 UAV Platform 

Our selection of UAV had to meet certain criteria to properly deploy a prototype suitable 

for exploration using our novel planner. In selecting the platform on which to build, we 

considered the class of drone as well as availability for rapid prototyping. As our frontier 

detection method requires multi-direction perception, we required a solution that provided 

an array of sensors. As we are primarily concerned with the functionality of our exploration 

planner, we focused on finding a platform with established underlying components that 

were ready to use and exposed for interaction. This includes state estimation alongside a 

Figure 21 Image of Crazyflie 2.1 with 6 mounted LIDAR sensors and a downward facing 

optical flow sensor 
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controller, commander, and a power distribution module. For these reasons, the CrazyFlie 

2.1 nano quadcopter [62] was selected as the open-source platform meeting all our needs.  

5.1.1 Hardware Environment 

The CrazyFlie 2.1 is a 27-gram 92x92x29mm UAV with two onboard Micro Controller 

Units (MCUs), a STM32F405 for main applications and a nRF51822 for radio and power 

management. The STM32405 is 4 by 4.2 mm which provides suitable performance in a 

small formfactor. This MCU features a cortex-M processor with a built-in floating-point 

unit (FPU), integrated Digital Signal Processing (DSP) and Single Instruction/Multiple 

Data as well as multiply-accumulate instructions. At 168Mhz this processor achieves 210 

Dhrystone Million Instructions per Second (DMIPS) and 566 CoreMark running from 1Mb 

of available flash memory and 192kb of Static RAM (SRAM). The nRF51822 MCU 

features a cortex-M0, at 32Mhz with 16kb of SRAM and 128kb of flash memory. Use of 

the 2.4Ghz radio was limited to firmware uploads prior to testing and not used to offload 

any navigational operations during flights.  

Many sensors are available to use with the crazyflie platform, but due to the nature of our 

exploration task offboard sensors were not suitable for this work. Onboard, we mounted 

the BitCraze MultiRanger deck, providing 5 LiDAR sensors pointing to the front, back, 

left, right, and upwards. We also mounted the BitCraze Flowdeck v2, a downward facing 

optical flow sensor, with a LiDAR sensor. All LiDAR range sensors have can measure 

obstacles up to 4 meters with an accuracy of 4mm. The crazyflie also carries a three-axis 

accelerometer and gyroscope coupled with a pressure sensor in the IMU. The specifications 

of the drone are outlined in table 5 and an image of the drone can be seen in Figure 21. 

5.1.2 Software Environment 

The Crazyflie 2.1 platform provides open-source firmware with many of the necessary 

software modules to support flight. At the core of this software is the stabilizer loop 

featuring the following submodules: sensor data acquisition, state estimator, state 

controller, a commander, and power distribution. These, and all other processes, are 

managed through the real-time operating system (RTOS) FreeRTOS. Using this  
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Table 5 Properties of the Crazyflie 2.1 [62] 

operating system, the software components are assigned as tasks with priority values in 

place to determine hardware resource control. The firmware exposes the data from these 

modules to an application layer, running as another tasks, by subscribing to logging data 

sent out from the underlying components. In this App layer, our exploration planner was 

implemented by sending/receiving data to/from the commander and state estimator, as well 

as consuming data provided by the tasks for the Multiranger and Flowdeck V2.  

In the stabilizer loop, the data is first acquired from all available sensors discussed in the 

hardware environment section. The data collected is sent to the state estimation module 

where and extended Kalman filter is implemented and provides an estimate for the attitude 

(roll, pitch, yaw), position (x, y, z), and velocity (x, y, z). These values are available for 

reading in the app layer. The controller was implemented as a proportional integral 

derivative (PID) controller taking instructions from the commander coming in the form of 

either velocity or position setpoints. In the case of our prototype these setpoints originate 

in the app layer based on the decisions made by our implemented planner. Finally, the 

power distribution module takes the information from the controller and determines how 

each motor should respond to achieve the desired orientation [63]. 

Feature Details 

Weight 27grams 

MCU 1 STM32F405 Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash 

MCU 2 nRF51822 (Cortex-M0, 32Mhz, 16kb SRAM, 128kb flash) 

IMU  -Three axis accelerometer / gyroscope (BMI088) 

-High precision pressure sensor (BMP388) 

Flight time 7 Minutes per charge 

Payload  15grams 

Downward Optical 

Sensor 

PMW3901 optical flow sensor 

 

Range sensors x6 VL53L1x TOF sensor, 4000mm range, 4mm accuracy 
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5.1.3 Extra Modifications 

In our implementation, we made some small changes to the firmware to cater to our specific 

application. For example, the battery is constantly monitored and once it falls below a 

certain capacity, the drone pre-empts any trajectory and creates a new one to come back to 

the starting position. A small change was made to the PID controller to force the drone to 

travel in a straight line when moving from one setpoint to another. This was done to ensure 

the drone stays along the straight edges connecting nodes in the graph. Since these edges 

represent a free space path the drone cannot stray from them too far without risking a 

collision. In our experiments we varied the frontier detection parameters to observe the 

impact on exploration and collision avoidance. As seen in the presented results, these 

parameters can be tuned to respond differently to different environmental circumstances or 

to compensate for uncertainty in localization. Parameters for graph pruning were also 

changed to observe the consequence of increasing or decreasing the number of nodes 

pruned. 

5.2 Testing In a Combination of Environment Types 

The first testing environment features a mixture of obstacle types constructed in a 700cm 

by 350cm section of the lab. It is largely centered around a cylindrical pipe structure with 

an opening at either end. This pipe is made from a large and flexible ducting hose which is 

traditionally used for construction ventilation. This product is both lightweight and 

collapsible making it suitable for testing inside a lab. The pipe is 100cms in diameter, 

800cms in length, and features a 90-degree turn. A picture from inside the pipe is see in 

Figure 22. At either end of the pipe, boxes are used to challenge the drone’s navigation 

capabilities with obstacles and narrow passages. These sections of the test bed are seen in 

Figures 24 and 25. With these boxes, passages that are 70cms wide are created to force the 

drone to find paths in confined spaces. At the exit of the pipe a more open area exists to 

test frontier detection and exploration when nearby obstacles are not present. This also 

challenges the system to transition between multiple types of environments and not just a 

pipe or maze of boxes.  
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Using the combined environment test bed, three experiments were run to test our 

exploration planner. While testing the viability in terms of collision-free exploration of 

small spaces, we also wanted to gather some data on the response to changing parameters 

of the frontier detection, pruning, and obstacle avoidance. The details of the specific 

parameters used, their description, and their impact on exploration are summarized in Table 

6. Several figures (25, 26, 27, 29, 30) within this chapter show the path and map of an 

experiment in further detail. These images are created using the position information, 

combined with the LiDAR readings of the drone. The LiDAR readings are converted to 

the world frame and then represented with a red dot in the left part of each figure. The 

green lines represent free space between the drone and the detected obstacle. Each node 

that is created by the frontier detection and graphing modules are numbered. Nodes that 

were later pruned are still included in the image but do not exist in the graph and are never 

travelled to. Pruned nodes can be recognized because the blue path line in these figures 

does not come close to them. Sudden breaks in the blue path line are due to obstacle 

avoidance maneuvers. The path continues after the maneuver has been completed. 

Figure 22 Pipe testing environment. The entrance to the pipe as seen from inside and outside of the pipe. 

The diameter of the pipe is 100cm and the length is 700cms. A 90-degree bend occurs 600cms into the Pipe 
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In our first experiment on this testing environment, we use a wide obstacle avoidance radius 

with modest graph pruning and frontier detection thresholds. Using these parameters, the 

drone found a safe and efficient path through the entire course. With zero knowledge about 

the space before deployment, Figure 25 shows the path taken and frontier nodes used to 

explore the space. Notably, with the graph pruning parameter set to prune visible nodes 

that fall within 30cms of the drone location, we avoid back and forth movements within a 

region of the space. These images also show the scalability of our system as the entire 

testbed was explored using only 25 nodes. The map adapts to the shape of the environment 

and can extend in any direction while preserving the distance between nodes. The path 

Figure 23 The Beginning section of the combined test bed. On the left the space where the drone is 

deployed. The right image shows the entrance into the pipe. 

Figure 24 Exit of Pipe featuring open space to test frontier detection and exploration in the absence of close 

obstacles. 
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generated through this environment allowed the UAV to fully explore the region in under 

1.5 minutes. The trajectories taken were optimal in terms of moving the UAV to previously 

unexplored space. In some cases, collision avoidance caused the UAV to repeatedly move 

away from a nearby obstacle. Overall, most trajectories were executed without these extra 

maneuvers.  

In our second experiment, we generated more frontiers to explore the space. This was done 

by decreasing the frontier detection threshold and the number of nodes created in open 

space. Nodes could also be closer together and still be accepted as frontiers by the graphing 

module. To eliminate redundancy, we also increased the graph pruning in each iteration by 

pruning any redundant node within 500mm of the UAV instead of the regular 300mm. As 

a result, the number of nodes generated increased from 25 to 32. During this experiment, 

some unnecessary nodes were generated, and pruning was not able to prevent the system 

from travelling back and forth in a region that was already explored. This is seen in Figure 

26 where the drone backtracked from node 21 to 20 near the turn in the pipe. This also 

occurred before entering the pipe at nodes 8 and 9. Overall exploration was incomplete in 

this image due to a large state estimation variance triggering the underlying state estimation 

system to reset. This exposes an area for improvement which is addressed in chapter 6. In 

any case, this test also shows the cost of backtracking in terms of overall exploration time. 

Figure 25 LiDAR readings (left) and path generated (right) for the first experiment on the combined 

testbed. 
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The extra backtracking resulted in nearly 20 seconds of unnecessary planning and path 

execution. This highlighted the need for proper parameters to be set when deploying this 

system such that unnecessary nodes are not created due to a small Max Range parameter 

setting. 

In our third experiment on testbed, we tuned the parameters to use less obstacle avoidance 

and enabled the drone to come back to its starting position after exploration was complete. 

Figure 27 shows the exploration path going through the environment and back again. While 

the drone did avoid major collisions, it came too close to obstacles and the propellers 

brushed up against obstacles in several places around the exit of the pipe. These can be 

seen circled in Figure 27. Looking at the path generated in this figure, we see straighter 

paths through the long sections of the tunnel without extra maneuvers being used to stay 

further away from obstacles. While the overall exploration was equivalent to that of the 

first experiment, by reducing the safety radius the UAV was able to get closer to obstacles 

and could potentially enter smaller spaces. In its current state, reducing the safety radius 

this far cannot guarantee collision free flight and so it is safer to keep this parameter to a 

higher value. We believe that with a more robust state estimation that has less uncertainty, 

the safety radius parameter could be reduced further.  

Figure 26 Lidar readings(right) and path generated (left for the second experiment on the combined 

testbed. 
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5.3 Looping Testbed with Narrow Passages 

In our next test we arranged dozens of boxes into a large loop structure. Aside from the 

challenge of completing a loop, narrow passages with an opening as small as 50cms are 

included along with multiple corners and obstacles coming away from the wall. The entire 

testbed is 400cm by 300cm. As with the combined environment tests, our prototype 

successfully explored all accessible spaces while avoiding collisions. This test proves the 

ability of our exploration technique to adapt to very small, cluttered spaces where it can 

find a safe trajectory and return with a map of the free space in the environment. Figure 28 

shows two views from within the testing environment.  

Parameters for testing in this environment were set to allow the drone to move through the 

tight spaces. To do this we adjusted the obstacle avoidance radius to 25cms while setting 

graph pruning and frontier detection parameters to values that were most effective in the 

Figure 27 The path and lidar readings from the third experiment on the combined testing environment. In 

this experiment the drone travelled back to its starting position. 



59 

 

previous experiments. The pruning and frontier detection thresholds were set to 30cms. 

The minimum distance that a new frontier could be from an existing one was set to 60cms. 

If a LiDAR reading was greater than 100cms, a free space frontier was detected. The result 

of this experiment can be seen in Figure 29. Some backtracking was present around nodes 

16 to 19 as the path overlapped itself. In the narrowest portion of the environment, between 

nodes 16 and 9, the obstacle avoidance caused the drone to continuously recenter itself 

between obstacles resulting in a back-and-forth saw-like pattern. While costly in terms of 

time, this technique prevented the drone from colliding or brushing up against any 

Figure 28 view from inside loop test bed including narrow 50cm corridor 

Figure 29 The path and lidar readings from the second testing environment. This testbed features very 

narrow passages and a large loop. 
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obstacles. With the smaller safety radius being used, the system did not have to reject 

traveling to any frontier for safety reasons. Much of the space is explored with straight, 

near optimal paths resulting in an overall exploration time of 176 seconds.  

5.4 Indoor Hallway Testing 

In our final experiment we tested the performance of our prototype in a hallway 

environment. This test was done in a 650cm by 300cm space featuring a long central hall 

with a smaller, 75cm wide hallway branching off. At the end of the main hallway there is 

a doorway to a small room which is also reachable. Additional obstacles include garbage 

and recycling bins, and areas where the hallway narrows. The exploration of this space is 

seen in Figure 30. A path from the starting position to each section of the environment was 

found before the drone returned to the starting position. Some redundancy is seen but 

overall, the entire area was explored using just 18 nodes while all obstacles were 

successfully avoided. In Figure 30 there is some evidence of state estimation drift causing 

some obstacles to appear as though they have a double wall in the figure. This occurs 

because the state estimation is becoming more inaccurate over time. When the drone passes 

an obstacle for the first time it uses the state estimation combined with the LiDAR sensor 

information to determine where the obstacle is. The drone continues exploring but 

Figure 30 The lidar and trajectory record of the third test space. Green shows open space, red shows a lidar 

reading, and the blue line shows the trajectory through the course 



61 

 

eventually returns to the same point. This time the state estimation has accumulated error 

and so the calculation of the obstacles position is affected. 

5.5 Summary of Results 

The following table shows a summary of all tests presented in this section. Along the top 

of the table are parameter titles for the experiment. Obstacle Avoidance Radius (OAR) 

refers to the required open space around the drone in every direction. If an obstacle is closer 

than this distance, an avoidance maneuver is performed. For frontier detection parameters, 

the threshold represents the amount of change needed between two subsequent LiDAR 

readings to be considered an edge of an obstacle. The distance from frontiers is the value 

used to determine if a newly found frontier is too close to an already existing frontier. If 

this is the case, the frontier is not included in the map. The Max Range parameter is used 

to find open space frontiers. It determines how much open space can exist before having 

to add a new frontier. If a LiDAR reading is greater than this value, a frontier is created at 

the max range value in the direction of the LiDAR’s heading. The pruning parameter is 

used to determine how close a node must be to the drone’s current location for it to be 

pruned from the map. The node will have to fall into the sensors FOV and be within this 

range to be pruned. Further details for these parameters can be found in Chapter 4. 

Highlights for each test are included in the summary column. These testbeds support the 

viability of our exploration planner by running it in real world environments. With this 

design, the planner can be ported to any system which can provide data form the underlying 

modules and the ability to mount LiDAR sensors.  
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Test Bed OAR  

Frontier detection and 

Mapping: 

Pruning 
Time 

(seconds) 
Summary 

Threshold 

Distance 

from 

Frontiers 

Max 

Range 

Combined 

300 300 600 1000 300 129 

-safe traversal with 

full exploration of 

the testing 

environment. 

- all redundant nodes 

pruned creating an 

efficient flight path 

through the 

environment 

Combined 

300 200 400 500 500 147 

-more nodes created 

compared to other 

parameter settings 

- increased pruning 

alleviated much of 

the redundancy 

-some back tracking 

still exists 

Combined 

200 300 600 1000 300 284 

- lower safety radius 

- enable feature to 

bring drone back to 

deployment location 

- unsafe flight in 

several places where 

drone brushed an 

obstacle 

Box Loop 

250 300 600 1000 300 176 

- very tight corridor 

(50cms wide) was 

safely explored 

- full loop explored 

with no collisions 

Hallway 

250 300 600 1000 300 324 

- hallway fully 

explored and drone 

came back to 

starting position 

- tight 50cm die 

corridor explored 

- extra obstacles 

included 

garbage\recycling 

bins and doorways 

Table 6  Summary of experiments in various testing environments using the specified parameters for the 

presented exploration prototype 
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Chapter 6 

6 Conclusion 

Remote data collection and exploration provide economic opportunities, health and safety 

benefits, and is being used to further research across many fields. To extend all these uses, 

UAVs will need to be used in more restrictive environments helping to gather information 

in areas that are not accessible at present. Solutions to help break through the current 

barriers facing autonomous exploration will allow us to reach these areas. In this thesis, we 

have presented our design and testing of a novel approach to help drones reach these 

inaccessible spaces.  

6.1 Limitations and Future Contributions 

We have demonstrated that this solution has many applications today, but we feel that 

future work will be able to extend these possibilities. First, with a focus on specific data 

collection applications which can be run onboard this system, the sensors required to do 

other types of data collection could be optimized for use in frontier detection. While our 

system does assure that the heading of the drone will be in the direction of exploration, we 

have not explored the use of sensors other than LiDAR ranger finders and small cameras. 

Collecting data from other sensors may require unique compression strategies to store this 

data such that it can fit in onboard storage but also such that processing does not impact 

other system modules.  

One of the most desirable future contributions is to improve and extend the state estimation 

used in the prototype. There are several reasons for this. First, as outlined in chapter 2, 

NAVs operating in confined spaces are impacted by the turbulence from propellors 

reflected of nearby structures. If this can be counteracted through a more robust flight 

controller and state estimator, the collision safety radius can be reduced. As seen in the first 

experiment this will increase performance of the system allowing it to reach even smaller 

spaces. Second, the state estimation used in our prototype has a large dependency on the 

optical flow sensor which requires light as well as detectable variations on the ground to 

determine the UAVs direction of motion. What this means is that dark areas, or those where 
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the floor is all the same colour, cannot provide high quality motion data. While on board 

lighting is available, we feel that another supplementary motion estimate such as the one 

presented in [57] would help to explore dark and smooth floored environments. We also 

see an opportunity to reduce any drift in the state estimation, by leveraging a loop closure 

technique. This technique could operate by associating features in environment with a 

node. This would allow the robot to check for the features (and their relative position) again 

on subsequent visits to the node. Position could be corrected by using the drone’s position 

relative to the feature and fused with the other state estimation data. With better localization 

the collision avoidance, radius can be decreased further as there is less uncertainty as to 

how close the drone is to an obstacle.  

The presented solution has been tested indoors operating in mostly 2D testbeds. However, 

this work is intended to scale to more complex 3D environments and welcomes use in 

environments where external positioning information is available. In future work both 

areas should be tested, specifically the exploration of indoor 3D environments can be tested 

by perceiving the environment in more directions to detect frontiers above and below the 

UAV. Fortunately, the addition of these sensors will be easily integrated into the frontier 

detection algorithm which has no directional requirement. To bring this solution outdoors, 

the use of GPS or other external positioning could be added in place of the optical flow 

sensor to provide a better state estimate even in the presence of environmental conditions 

like limited light or high winds.  

6.2 Closing Remarks 

In this thesis, we investigated autonomous drones for the purpose of exploration in 

constraining environments. The behaviors of different drone configurations, environmental 

restrictions, localization, mapping, path planning, and exploration were studied as the 

building blocks of developing a fully autonomous system. This background allowed us to 

identify the areas of autonomous flight that must be improved to push drones into smaller 

spaces without support from external devices. After recognizing the constraints of such a 

system, we developed a highly scalable exploration planner with no dependence on 

powerful hardware or outside communication. This solution leverages a lightweight 

topological mapping technique and discovers exploration frontiers on the fly. Our system 
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can navigate through a previously unexplored space with an extra layer of sense-and-avoid 

obstacle avoidance. We tested this solution by prototyping our algorithms onboard a NAV 

in several real-world environments. Our results have proven that exploration can be 

accomplished in very confined spaces while still having the resources to run extra tasks on 

board. We are excited to continue designing, developing, and testing our work to help open 

the door to even more use cases. 
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