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Abstract

The elliptic curve cryptography is an important branch in public-key cryptography.

In this thesis, we consider the elliptic curve cryptography over binary extension �elds

from two di�erent points of view. First, we investigate the underlying arithmetic

operations in the elliptic curve cryptography. The main arithmetic operation is the

scalar multiplication. This operation is based on two elliptic curve operations, known

as the point addition and point doubling. Implementing these two elliptic curve oper-

ations requires �nite �eld arithmetic, speci�cally, �nite �eld addition, multiplication,

squaring, and inversion. We focus on two �nite �eld operations, namely �nite �eld

multiplication and squaring. For the �nite �eld multiplication, we consider Mont-

gomery multiplication algorithm and shifted polynomial basis to design bit-serial,

digit-serial, bit-parallel, semi-systolic and systolic multipliers. In case of �nite �eld

squaring, we use the Montgomery multiplication algorithm for squaring using special

type of irreducible pentanomials. We also investigate the �nite �eld multiplication

from the concurrent error detection point of view. This is due the fact that fault

attacks have become a serious concern in cryptographic applications. In this regard,

we design concurrent error detection schemes for di�erent Montgomery multipliers.

Our comparison results show that our proposed arithmetic units and concurrent error

detection scheme provide improvements over their existing counterparts.

Keywords: Finite �eld multiplication, squaring, systolic-arrays, concurrent error

detection, elliptic curve cryptography
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Chapter 1

Introduction and Preliminaries

T
HE elliptic curve cryptography is proposed independently in [36] and [58] for

public-key cryptography and has gained signi�cant attention in the literature.

The most important operation in elliptic curve cryptography is multiplying a point

on the curve by an integer. This operation is known as the scalar multiplication or

the point multiplication.

Finite �eld arithmetic plays an important role in elliptic curve cryptography. All

the low-level operations are carried out in �nite �elds. The most common �nite �eld

operations used in elliptic curve cryptography are addition, multiplication, squar-

ing, and inversion. In hardware implementations of the �nite �eld arithmetic units,

di�erent issues are considered. Mainly, they include the representation basis (e.g.,

polynomial basis [54], normal basis [53], shifted polynomial basis [13], etc.), the hard-

ware structure (e.g., bit-serial [6], digit-serial [79], bit-parallel [54], and pipelined

structures [87]), and the irreducible polynomials (e.g., irreducible trinomials [82] and

pentanomials [69]).

1.1 Binary Extension Field Arithmetic

GF (2m) is a �nite �eld [51] that contains 2m di�erent elements. This �nite �eld is

an extension of GF (2) which contains 0 and 1. The extended binary �eld, GF (2m),

is associated with an irreducible polynomial of degree m over GF (2), i.e.,

F (z) = fmz
m + fm−1z

m−1 + · · ·+ f1z + f0, (1.1)

where fi ∈ GF (2) and f0 = fm = 1.
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1.1.1 Representation Basis

The �eld elements in GF (2m) can be represented using di�erent representation bases.

Here, we brie�y explain some of the important ones that are used in this thesis.

Polynomials Basis

Assuming x is a root of F (z) , i.e., F (x) = 0, each element of GF (2m) can be

represented as a polynomial of degree up to m− 1 over GF (2), i.e.,

A =
m−1∑
i=0

aix
i, B =

m−1∑
i=0

bix
i, (1.2)

where ai, bi ∈ {0, 1}, i ∈ [0,m− 1].

This representation is called the polynomial basis (PB) representation. In this

case, the addition of any two elements is easily performed by the exclusive-or (XOR)

operation. However, the multiplication and squaring operations are complicated as

the intermediate product needs further reduction by F (x).

Shifted Polynomial Basis

Assuming v is an integer, 0 < v ≤ m − 1, and the set {1, x, x2, . . . , xm−1} is a

polynomial basis for GF (2m), the Shifted Polynomial Basis (SPB) for GF (2m) is

de�ned as the set {x−v, x−v+1, . . . , xm−v−1} [13]. Similar to the polynomial basis, it

is possible to represent each �eld element using the SPB. For example, if A and B

are two elements of GF (2m), one can write

A =
m−1∑
i=0

aix
i−v, B =

m−1∑
i=0

bix
i−v, (1.3)

where ai, bi ∈ {0, 1} for i = 0 to m− 1.

The addition of two �eld elements, represented in the SPB, is carried out by the

XOR operation. However, the multiplication of two �eld elements is complicated and

requires more resources.

Normal Basis

It is shown that there exists a normal basis for the binary extension �eld GF (2m) for

all positive integers m. The normal basis is constructed by �nding a �eld element β,
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where {β, β2, · · · , β2m−1} is a basis for GF (2m). In this case, if A ∈ GF (2m), then it

can be represented as

A =
m−1∑
i=0

aiβ
2i ,

where ai ∈ GF (2) for i = 0 to m− 1.

1.1.2 Operations

In this section, we explain the main operations in binary extension �elds.

Addition

Let A and B be two �eld elements in GF (2m) represented by (am−1, · · · , a1, a0) and
(bm−1, · · · , b1, b0), respectively. Now, C = A+B can be obtained by pair-wise addition

of the coordinates of A and B over GF (2) (i.e., modulo 2 addition), that is

ci = ai + bi,

for i = 0 to m − 1, where + represents the bit-wise XOR operation. Note that the

representation basis can be the polynomial basis [54], shifted polynomial basis [13],

or the normal basis [81].

Multiplication

The multiplication over GF (2m) is much more complicated than addition. This op-

eration has been considered by researchers from di�erent points of view. The most

common approaches are based on the polynomial basis [6, 30, 40, 69], normal basis

[37, 81], dual basis [71, 86], the Montgomery multiplication [38, 3, 28], and the shifted

polynomial basis [13, 14] algorithms. Each of these categories o�ers di�erent time and

area complexities and has its own advantages and disadvantages.

Assuming A and B are two �eld elements, the multiplication using the polynomial

basis and the shifted polynomial basis is formulated as

C = A ·B mod F (x).

The multiplication using the normal basis is formulated as C = A · B, where C
is represented using {β, β2, · · · , β2m−1}. The Montgomery multiplication algorithm

has been proposed in [60] for fast modular integer multiplication. In [38], Koç and
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Acar have introduced a class of algorithms for Montgomery multiplication over binary

extension �elds. De�ning r as a polynomial satisfying gcd(r, F (x)) = 1, the general

case of the Montgomery multiplication over GF (2m) is formulated as

C = A ·B · r−1 mod F (x), (1.4)

where

r · r−1 mod F (x) = 1.

Squaring

Squaring over GF (2m) is a special case of multiplication and as a result, requires less

resources. The normal basis o�ers the best squaring operation which is performed by

a circular left shift. The squaring in polynomial basis and shifted polynomial basis

is more complicated and the complexity depends on the irreducible polynomial F (z).

The Montgomery multiplication can also be used for squaring and is based on (1.4).

Inversion

Inversion over binary extension �elds is considered an expensive operation. Assuming

A ∈ GF (2m), the objective is to �nd a �eld element A−1, where A · A−1 = 1. For

hardware implementations, the algorithm proposed by Itoh and Tsuji [31] is widely

used for inversion [1]. This algorithms is based on the fact that A2m−2 = A−1. In order

to obtain A2m−2, (m−1) squarings and blog2(m− 1)c+H(m−1)−1 multiplications

are required, where H(m−1) represents the Hamming weight of (m−1). For further

information, one can refer to [31].

1.2 Elliptic Curve Arithmetic

We consider the elliptic curves de�ned over GF (2m). Let E be an elliptic curve

de�ned as

y2 + xy = x3 + ax2 + b. (1.5)

where a, b ∈ GF (2m), and b 6= 0. A pair (x, y) is a point on the elliptic curve E if it

satis�es (1.5).
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Let P1 and P2 be two points on the elliptic curve E represented by the a�ne

coordinates (x1, y1) and (x2, y2), respectively. Also, let P3 = (x3, y3) = P1 + P2 and

P4 = (x4, y4) = 2P . The coordinates of P3 and P4 can be obtained using [11]x3 =
(
y2+y1
x2+x1

)2
+ y2+y1

x2+x1
+ x1 + x2 + a

y3 =
(
y2+y1
x2+x1

)
(x1 + x3) + x3 + y1,

(1.6)

and x4 = x21 + b
x21

y4 = x21 +
(
x1 + y1

x1

)
x4 + x4.

(1.7)

Note that obtaining P3 and P4 are known as point addition and point doubling,

respectively.

By inspecting (1.6) and (1.7), one can notice that �nite �eld inversion is required

to obtain P3 and P4. As mentioned before, it is known that inversion is an expen-

sive operation in �nite �elds and as a result, some alternative approaches have been

considered as well. The projective-coordinate approach proposed by Lopez and Da-

hab in [52] is one of the high performance approaches. In this method, the points

P1 and P2 are represented as (X1, Y1, Z1) and (X2, Y2, Z2). Note that in this repre-

sentation, (X1, Y1, Z1) represents the a�ne point (X1/Z1, X1/Z
2
1) when Z1 6= 0 and

P∞ = (1, 0, 0) otherwise.

Using the Lopez-Dahab approach, the coordinate of P3 = (X3, Y3, Z3) and P4 =

(X4, Y4, Z4) are obtained asZ3 = (X1 · Z2 +X2 · Z1)
2

X3 = x · Z3 + (X1 · Z2) · (X2 · Z1) ,
(1.8)

and X4 = X4
1 + b · Z4

1

Z4 = Z2
1 ·X2

1 .
(1.9)

It can be noticed that (1.8) and (1.9) do not require any inversions.

The main operation in the elliptic curve cryptography is the scalar multiplication,

also known as the point multiplication. This operation is de�ned as
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Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k

.

where P and Q are two points on E and k is an integer. There are di�erent algorithms

available to compute Q. One of the e�cient algorithms is knows as the Montgomery

ladder scalar multiplication. The corresponding algorithm is shown in Algorithm

1.1 [52] using Lopez and Dahab coordinates. Note that the main operations in this

algorithm are point addition and point doubling denoted as subroutines ADD and

DBL, respectively [52]. The last step of Algorithm 1.1, denoted as Mxy, converts the

Lopez-Dahab coordinates to a�ne ones and it is the only operation in this algorithm

which requires inversion.

Algorithm 1.1 Lopez-Dahab Scalar Multiplication [52]

Inputs: An integer k ≥ 0 and P = (x, y) ∈ E
Output: Q = kP
Step 1: if k = 0 or x = 0 then output(0, 0) and stop.
Step 2: k := (kl−1 · · · k1k0)2
Step 3: X1 := x, Z1 := 1, X2 := x4 + b, Z2 := x2

Step 4: For i := l − 2 down to 0
if ki = 1 then

Step 5: ADD(X1, Z1, X2, Z2), DBL(X2, Z2)
else

Step 6: ADD(X2, Z2, X1, Z1), DBL(X1, Z1)
Step 7: return Q = Mxy(X1, Z1, X2, Z2)

1.3 Application

Security is a crucial need in modern applications to protect important data and pri-

vacy. Today, due to rapid developments in Internet and wireless technologies, individ-

ual and organizational data are more exposed to threats. Cryptographic algorithms

are used to ensure the security requirements in many applications. These applica-

tion can be normal daily tasks such as checking emails, paying bills online, using a

cellphone or critical applications in military.

Elliptic curve cryptography can be used to satisfy the mentioned needs. This

public-key cryptography based approach can be used in applications such as hand-

held devices and Radio Frequency Identi�cation (RFID) tags as well. The results
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of this thesis can be used to implement elliptic curve cryptography more e�ciently,

especially in time-critical applications.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we will review some of

the existing works in the literature. In Chapter 3, we will present new bit-serial and

bit-parallel Montgomery multipliers. Also, we will present a Montgomery squarer for

a special class of irreducible pentanomials. In Chapter 4, we will consider �nite �eld

multiplication in shifted polynomial basis and propose digit-serial algorithms and

architectures. In Chapter 5, we will propose semi-systolic and systolic multipliers

using the shifted polynomial basis. In Chapter 6, we will present concurrent error

detection schemes for di�erent classes of Montgomery multipliers. Finally in Chapter

7, we will summarize our contributions.
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Chapter 2

Literature Review

In this chapter, we will review some of the major works available in the literature on

�nite �eld multiplication/squaring and concurrent error detection schemes proposed

for �nite �eld operations.

2.1 Finite Field Multiplication

Finite �eld multiplication operation has gained lots of attention in the literature which

makes it unpractical to review all of them in this section. However, we review some

of the key papers which have considered di�erent aspects of the �nite �eld multi-

plication. Considering the structure of the multiplication algorithm in terms of the

number of bits processed at each step, the multipliers over binary extension �elds can

be classi�ed into three main categories, namely, bit-serial, digit-serial, and bit-parallel

multipliers. In bit-serial multipliers, only one bit of the operand is processed in any

cycle. This results in reducing the required hardware for implementing the multipli-

cation algorithm. However, bit-serial multipliers are generally slow. Therefore, this

type of multiplication algorithms is suitable for the applications where the low-area

complexity is preferred over the time complexity. On the other hand, bit-parallel mul-

tipliers have opposite properties. In this type of multipliers, the coordinates of the

operands are processed in parallel, which results in a good time complexity; however

they require much more area than the bit-serial multipliers do. Digit-serial multipli-

ers are alternatives for bit-serial and bit-parallel multipliers depending on the amount

of the resources available. In this type of multipliers, one can trade o� between the

speed and the area of the multipliers by choosing di�erent digit sizes. In general,

greater digit sizes result in faster multipliers with more area.

The �nite �led multiplication can be performed using di�erent representation
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bases. We begin with the polynomial basis multiplication. The bit-serial polynomial

basis multipliers proposed in [6] are the classic bit-serial multipliers which yet have

practical merit. Systolic array implementation of the polynomial basis multiplication

has started in [87] and [83] and continued in recent papers including [43] and [56]. For

digit-serial implementation of the polynomial basis multiplication, one can refer to [79]

which outlines two important digit-serial multiplication algorithms. The optimization

of these multipliers can be found in [40]. An important work on bit-parallel polynomial

basis multiplication is presented in [54]. More bit-parallel polynomial basis multipliers

can be found in [69] for di�erent irreducible polynomials.

Most of the available papers on normal basis multiplication are mainly based on

the work presented in [53]. To study di�erent normal basis multipliers, one can refer

to [81], [68], and [62], to name a few.

In [14], bit-parallel multipliers are designed based on the shifted polynomial basis

for irreducible trinomials and type-II pentanomials, which are faster than the best

known polynomial basis and dual basis multipliers. Using the this basis, a new

approach for designing subquadratic area complexity parallel multipliers is outlined

in [15], where the reported multipliers are better than the other similar ones in terms

of area and time complexities. Also using the shifted polynomial basis, di�erent bit-

parallel multipliers are designed for irreducible pentanomials and trinomials in [64]

and [63], respectively.

In [38], Koç and Acar have introduced a class of algorithms for bit-serial, digit-

serial, and, bit-parallel Montgomery multiplication over binary extension �elds. They

have proposed that by choosing the Montgomery factor r = xm, the multiplication can

be e�ciently implemented in hardware and software. The Montgomery multiplica-

tion is used to design an Elliptic Curve Cryptography (ECC) based crypto-processor

in [72]. Also, it is implemented with a semi-systolic array structure in [57]. In [9],

another semi-systolic array structure is designed for the Montgomery multiplication

which uses r = xm. A digit-serial Montgomery multiplication algorithm is proposed

in [3] which is based on the algorithm proposed in [38] and the polynomial basis

multiplication. Also in the literature, some scalable architectures are proposed for

the Montgomery multiplication over �nite �elds, e.g., [76], [27], and [18]. In [28],

the Montgomery multiplication is implemented using systolic arrays for all-one poly-

nomials and trinomials. A new Montgomery factor has been considered by Wu in

[85] for the Montgomery multiplication. His design is based on the method proposed

in [38] and he has shown that choosing the middle term of the irreducible trinomial

F (z) = zm + zk + 1 as the Montgomery factor, i.e., r = xk, results in more e�-
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cient bit-parallel multipliers and squarers. Although the Montgomery multiplication

is suitable for designing scalable and versatile multipliers, according to [38] and [85]

the important advantage of the Montgomery multiplication over GF (2m) is its low

time complexity.

Semi-systolic array structures provide low latency in comparison to systolic array

implementations and require fewer latches. Also, they can be pipelined to increase the

throughput of the system. In the literature, semi-systolic array implementations have

been presented for the �nite �eld multiplication, see for example [42], [32], [9], [3], and

[55]. In the case of the PB, a classic multiplication structure is proposed in [42] which

is studied in [32] comprehensively. In the case of the Montgomery multiplication, [9]

introduces a semi-systolic array structure. Also, [3] and [55] introduce low-latency

semi-systolic Montgomery multipliers.

In systolic array structures, the global lines are avoided and the connections are

limited to local ones. This results in more e�cient VLSI implementations. In case

of the PB multiplication, [87] and [83] outline two structures for general irreducible

polynomials, respectively. In [44] and [41], optimized structures are proposed for the

PB multiplication using general irreducible polynomials and irreducible trinomials.

A low latency bit-parallel systolic structure is proposed in [47] for all-one and equally

spaced polynomials. Moreover, digit-serial systolic PB multipliers are proposed in

[21], [34], and [35] for general irreducible polynomials. A systolic implementation of

the PB multiplication is proposed in [43] for irreducible trinomials with a low latency.

In case of the Montgomery multiplication, [46] proposes very low latency systolic

multipliers for special irreducible polynomials including irreducible trinomials. Also,

two scalable structures are proposed in [45] and [8].

2.1.1 Polynomial Basis Multipliers

PB multipliers form a popular category of �nite �eld multipliers. In the literature

there are di�erent designs for this category, see for example [79], [30], [82], and [69].

In this section, we show the general architecture of bit-serial and bit-parallel PB mul-

tipliers [6], [54]. Assuming A and B are two polynomials over GF (2m), the objective

is to do the multiplication C = A · BmodF (x). We know that A and B can be

represented in the PB as

A = (am−1x
m−1 + · · ·+ a1x+ a0) =

m−1∑
i=0

aix
i, (2.1)
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B = (bm−1x
m−1 + · · ·+ b1x+ b0) =

m−1∑
i=0

bix
i. (2.2)

Then, C can be represented in the PB as

C =
m−1∑
i=0

cix
i = A · (bm−1xm−1 + · · ·+ b1x+ b0) modF (x). (2.3)

2.1.1.1 Bit-Serial PB Multiplication

Based on the way the bits are processed, there are two kinds of bit-serial polyno-

mial basis multipliers. They are called the LSB-�rst and the MSB-�rst bit-serial

polynomial basis multipliers [6]. In this section, we study these bit-serial multipliers.

LSB-�rst bit-serial polynomial basis multiplier

In the LSB-�rst bit-serial algorithm, the bits are processed by starting from the LSB.

To obtain the LSB-�rst bit-serial PB multiplier, one can rewrite (2.3) as

C = bm−1Ax
m−1 + · · ·+ b1Ax+ Ab0 modF (x). (2.4)

or

C = bm−1
(
Axm−1 modF (x)

)
+ · · ·+ b1 (AxmodF (x)) + Ab0 modF (x).

Fig. 2.1a shows the LSB-�rst polynomial basis multiplication algorithm. Let A(i)

and C(i) denote the content of A′ and C ′ at the i-th iteration of Algorithm 1. Now,

we can write the following for step 4 of Algorithm 1

A(i+1) = A(i) · x1 modF (x),

= (a
(i)
m−1x

m + · · ·+ a
(i)
1 x

2 + a
(i)
0 x) modF (x).

(2.5)

We know that x is a root of the irreducible polynomial F (z) which results in

fmx
m + fm−1x

m−1 + · · ·+ f1x+ f0 = 0. (2.6)

Also, we know that for any irreducible polynomial f0 = 1 and fm = 1. As a result,

(2.6) can be written as
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xm = fm−1x
m−1 + · · ·+ f1x+ 1. (2.7)

By replacing (2.7) in (2.5), one can obtain

A(i+1) =(a
(i)
m−2 + a

(i)
m−1fm−1)x

m−1 + (a
(i)
m−3 + a

(i)
m−1fm−2)x

m−2 + · · ·
+ (a

(i)
0 + a

(i)
m−1f1)x

1 + a
(i)
m−1.

(2.8)

Fig. 2.1b shows the architecture of the LSB-�rst bit-serial polynomial basis mul-

tiplication algorithm, where the LSB of the coordinates of B, i.e., b0, is processed

�rst. The architecture of the x-module is depicted in Fig. 2.2 for general irreducible

polynomials, which implements(2.7). In other words, this module multiplies A(i) by

x and reduces the results by F (x). In this �gure, A′ and C ′ are two m-bit latches,

which store values of A(i) and C(i), respectively. There are two main loops in Fig.

2.1b. The right loop calculates the value of C ′ in Step 3 of Algorithm 1 and includes

m two-input XOR gates. The left loop calculates the value of A′ in Step 4 Algorithm

5 using the x-module. It is clear that if F (x) is an ω-nomial, i.e., ω non-zero terms in

(2.6), then we will need ω − 2 two-input XOR gates to obtain A(i+1) in (2.8). So, for

general irreducible polynomials of degree m, it includes at most (m − 1) two-input

AND gates, as well as (m−1) two-input XOR gates to realize (2.8). Besides this mod-

ule, we need m two-input AND gates to compute biA
′ in Step 3 of Algorithm 5. As a

result, the LSB-�rst bit-serial polynomial basis multiplier requires (2m−1) two-input

AND gates and (2m− 1) two-input XOR gates for general irreducible polynomials of

degree m.

Now, we obtain the critical path delay and latency of the LSB-�rst bit-serial

polynomial basis. It is clear from Fig. 2.1b that two loops can be computed in parallel.

Thus, a cycle of the multiplication algorithm requires the delay of TA + TX , where

TA and TX represent the delays of a two-input AND gate and a two-input XOR gate,

respectively. Also, the latency of the LSB-�rst bit-serial polynomial basis multiplier

equals m clock cycles. The following summarizes the area and time complexities of

the proposed multiplier.

The MSB-�rst bit-serial polynomial basis multiplier

The other bit-serial polynomial basis multiplier is the MSB-�rst bit-serial multiplier.

To design this bit-serial multiplier, one can use the Horner's rule to rewrite (2.4) as
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Algorithm 1 The LSB-first bit-serial PBM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B modF (x)
Step 1:A′ := A, Y := 0
Step 2: For i := 0 to m− 1
Step 3: Y := biA

′ + Y
Step 4: A′ := A′ · xmodF (x)
Step 5:C := Y

(a)

AND

1 2 1 0m m
b b b b

  
 

x A! Y

( )i
A

( 1)i
A

"

C

XOR

(b)

Figure 2.1: The LSB-�rst bit-serial polynomial basis multiplication (PBM) [6]: (a)
algorithm, (b) architecture.
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Figure 2.2: The architecture of the x-module for general irreducible polynomials.
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Algorithm 2 The MSB-first bit-serial PBM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B modF (x)
Step 1:A′ := 0
Step 2: For i := m− 1 downto 0
Step 3: A′ := A′ · xmodF (x) + bi ·A
Step 4:C := A′

(a)

A

x A!

1 2 1 0m m
b b b b

  
 

C

AND

XOR

(b)

Figure 2.3: The MSB-�rst bit-serial PBM [6]: (a) algorithm, (b) architecture.

C =(· · · (bm−1AxmodF (x) + bm−2A)xmodF (x)+

· · ·+ b1A)xmodF (x) + b0A.
(2.9)

In this multiplication algorithm, as shown in Fig. 2.3a, the bits are processed by

starting from the MSB (Most Signi�cant Bit) of B, i.e.,bm−1. The multiplication of

A′ by x followed by the reduction by F (z) is the same as (2.8). The architecture

of this multiplier is depicted in Fig. 2.3b. In this case, we need two m-bit latches

to hold the value of A and A′. Also, we need m two-input AND gates as well as m

two-input XOR gates as labeled with AND and XOR in Fig. 2.3b. The x-module in

Fig. 2.3b is the same as introduced for Algorithm 1 in Fig. 2.2. This architecture

requires (2m − 1) two-input AND gates, (2m − 1) two-input XOR gates, and two

m-bit latches. The critical path delay of this multiplier equals TA + 2TX as there are

one multiplication and two additions in the critical path. Finally,the latency of the

MSB-�rst polynomial basis multiplication algorithm is m clock cycles.
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2.1.1.2 Digit-Serial Polynomial Basis Multiplication

Digit-serial multiplication algorithms provide a �exible area and time complexity.

Using this type of algorithms, it is possible to trade o� between the speed and the

amount of required resources by choosing di�erent digit size. By increasing the digit

size, the algorithm becomes faster but requires more hardware resources.

We de�ne D ≥ 2 to be the digit size, which means each digit has D bits. We start

from the LSB of the operand B, i.e., b0, and group D consecutive bits as a digit. This

results in having n = dm/De digits in operand B. Consequently, we obtain

B =
n−1∑
i=0

Bix
iD, (2.10)

where

Bi =


D−1∑
j=0

bDi+jx
j, 0 ≤ i ≤ n− 2

m−1−D(n−1)∑
j=0

bDi+jx
j, i = n− 1

(2.11)

Using (2.10) and (2.11), one can write the polynomial basis multiplication as

C = A.
n−1∑
i=0

Bix
iD modF (x).

= ABn−1x
(n−1)D + · · ·+ AB1x

D + AB0 modF (x)

(2.12)

In this case, it is possible to derive two digit-serial polynomials basis. We study

them in the following subsections.

LSD-�rst digit-serial polynomial basis multiplication

The �rst digit-serial polynomial basis multiplication algorithm is based on processing

the Least Signi�cant Digit (LSD) �rst and is called the LSD-�rst digit-serial polyno-

mial basis multiplication. It is possible to write (2.12) as

C = Bn−1
(
Ax(n−1)D modF (x)

)
+ · · ·+B1

(
AxD modF (x)

)
+B0AmodF (x) (2.13)

Based on (2.13), the LSD-�rst digit-serial polynomial basis multiplication is shown

in Algorithm 2.1.
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Algorithm 2.1 The LSD-�rst digit-serial polynomial basis multiplication [79]

Inputs: A, B, F (x), n = dm/De
Output:C = A ·BmodF (x)
Step 1: A′ := A, C ′ := 0
Step 2: For i := 0 to n− 1
Step 3: C ′ := BiA

′ + C ′

Step 4: A′ := A′ · xDmodF (x)
Step 5: C := C ′modF (x)

× XORA C  
D
x

0 1 2 2 1n n
B B B B B

! !
 

m

m m

D

m+D-1

m+D-1 m+D-1

mod  

( )F x
m

C

( )i
C  

( 1)i
C

" 
( )i

A ( 1)i
A

" 

Figure 2.4: The LSD-�rst digit-serial polynomial basis multiplier.

The structure of this algorithm is shown in Fig. 2.4 which includes two loops. The

right and the left loops implement Step 3 and Step 4 of Algorithm 2.1, respectively.

The xD-module multiplies A′ by xD and reduces the result by F (x). The �nal result,

which is a polynomial of degree m− 1, is stored in A′ using an m-bit latch.

The module represented by × multiplies A′ (a polynomial of degree m− 1) by a

digit of B, i.e., Bi (a polynomial of degree D− 1), for i = 0 to n− 1, and as a result,

its output has m + D − 1 bits. The module represented by XOR adds the result of

the ×-module with the current value of C ′ and stores it in C ′ again. In this structure,

C ′ is an (m + D − 1)-bit latch which contains the coordinates of of a polynomial of

degree m+D − 2. The �nal modF (x) module implements Step 5 of Algorithm 2.1,

which is the �nal step and is a reduction of a polynomial of degree (m + D − 2) by

F (x). Note that in Fig. 2.4, A′(i) and C ′(i) show the content of the latches A′ and C ′

at the i-th iteration of Algorithm 2.4, respectively.

The module represented by ×requires the delay of TA to obtain the partial prod-

ucts, and then the delay of dlog2(D + 1)eTX to sum up D rows of partial products

with C ′ using an XOR tree in the general case (see Fig. 4.2a). As a result, it requires

the delay of TA + dlog2(D + 1)eTX . The ×-module and the XOR module together

require D ×m two-input AND gates and D ×m two-input XOR gates.

The xD-module requires D × (m − 1) two-input AND gates and D × (m − 1)

two-input XOR gates, and the mod F (x) operation requires (D − 1) × (m − 1) two-
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input AND gates and (D − 1) × (m − 1) two-input XOR gates for the general case

of irreducible polynomials. This is shown in Fig. 2.5. Also, there are (2m + D − 1)

latches in this architecture. As a result, the LSD-�rst digit-serial polynomial basis

multiplier requires D×(3m−2)−m+1 two-input AND gates and D×(3m−2)−m+1

two-input XOR gates and (2m+D− 1) latches. This multiplier has the critical path

delay of D(TA + TX) and the latency of n+ 1 clock cycles.

MSD-�rst digit-serial polynomial basis multiplication

In the algorithm, we start processing the digits of B from its Most Signi�cant Digit.

To derive this algorithm, we use Honrner's rule and write (2.12) as

C =((Bn−1AmodF (x))xD +Bn−2A) modF (x))xD + · · ·
· · · )xD +B1A) modF (x))xD +B0AmodF (x).

(2.14)

Based on (2.13), the MSD-�rst digit-serial polynomial basis multiplication is pre-

sented in 2.2. The main operation in this algorithm are a multiplication by xD

followed by a reduction and the multiplication of A by a digit of B. In this algorithm,

C ′ is of degree m + D − 1 and so when it is multiplied by xD, it is e�cient to have
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two operations. First, we multiply the coordinates 0 to m − 1 of C ′ by xD without

reduction. Then, the coordinates m to m + D − 1 of C ′ are reduced �rst and then

multiplied by xD. Finally, the two results are added.

The structure of Algorithm 2.2 is shown in Fig. 2.7. The used modules are similar

to those of the LSD-�rst digit-serial polynomial basis algorithm. This algorithms

requires D× (3m− 2) two-input AND gates and D× (3m− 2) two-input XOR gates

and (2m + D − 1) latches. Also, it has the critical path delay of D(TA + TX) + TX

and the latency of n+ 1 clock cycles.

Algorithm 2.2 The MSD-�rst digit-serial polynomial basis [79]

Inputs:A, B, F (x), n = dm/De
Output:C = A ·BmodF (x)

Step 1: A′ := A, C ′ := 0

Step 2: For i := 0 to n− 1

Step 3: C ′ := C ′ · xDmodF (x) +BiA

Step 4: C := C ′modF (x)

XOR
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Figure 2.7: The MSD-�rst digit-serial polynomial basis multiplier.

2.1.1.3 Bit-Parallel Polynomial Basis Multiplication

In bit-parallel multipliers the bits of the operands are processed in parallel. Fig. 2.8

depicts the architecture of the conventional bit-parallel polynomial basis multiplier

which realizes C = b0A + b1Ax + · · · + bm−1Ax
m−1 modF (x). This is composed of

some x-modules which multiply their inputs by x and reduce the results by F (x) [70].

Bit-parallel PB multiplication has been improved in some works (see for exam-

ple [69]) using special cases of irreducible polynomials such as all-one polynomials,

trinomials, and pentanomials.



19

AND

...

...

A

0
b 1

b
2m

b
 1m

b
 

2
b

x x x x

C

ANDAND AND AND

XOR XORXORXOR

Figure 2.8: The bit-parallel PB multiplier.

2.1.2 Montgomery Multiplication over GF (2m)

Let α and β be two elements of GF (2m) to be multiplied, and φ = α · βmodF (x) be

their multiplication product. Also, let A and B be two Montgomery residues de�ned

as

A = α · rmodF (x) =
m−1∑
i=0

aix
i, (2.15)

and

B = β · rmodF (x) =
m−1∑
i=0

bix
i, (2.16)

where, r, a polynomial satisfying gcd(r, F (x))=1, is called the Montgomery factor

and gcd means the greatest common divisor. Then, the Montgomery Multiplication

(MM) algorithm over GF (2m) can be formulated as [38]

C = A ·B · r−1modF (x), (2.17)

where

r · r−1 + F (x) · Ḟ (x) = 1, (2.18)

and r−1 is the inverse of r modulo F (x), i.e., r · r−1 = 1modF (x). Note that Ḟ (x) is

the inverse of F (x) modulo r. Based on [38], the MM over GF (2m) can be carried out

by using Algorithm 3 shown in Fig. 2.9a. The polynomial r plays an important role in

the complexity of the algorithm as we need to do modulo r multiplication and a �nal

division by r. In [38], r is chosen as xm, and this is because the modular operation
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using r = xm only requires ignoring the terms whose powers of x are greater than or

equal to m. Furthermore, dividing a polynomial by r = xm can be easily carried out

by m right shifts. In [38], an LSB-�rst bit-serial MM algorithm is also introduced.

This algorithm is shown in Fig. 2.9b.

Using the de�nition of the Montgomery residue as shown in (2.15) and (2.16), one

can write (2.17) as

C = (α · r) · (β · r) · r−1modF (x) = φ · rmodF (x).

In other words, C is the Montgomery residue of φ. This makes it possible to con-

vert the operands to Montgomery residues once at the beginning and then, do several

consecutive multiplications/squarings, and convert the �nal result to the original rep-

resentation. The �nal conversion is a multiplication by r−1 followed by a reduction by

F (x), i.e., φ = C ·r−1modF (x). The elliptic curve cryptography can be a good exam-

ple. A straightforward implementation of the Montgomery scalar multiplication using

projective coordinates requires up to (m− 1)(6M + 3A+ 5S) + (10M + 7A+ 4S + I)

clock cycles, where M , A, S, and I represent the number of clock cycles for multi-

plication, addition, squaring, and inversion, respectively [1]. Furthermore, inversion

using Itoh-Tsujii algorithm requires blog2(m− 1)c+H(m−1)−1 multiplications and

m−1 squarings, where H(m−1) denotes the Hamming weight of (m−1) [1]. For in-

stance, inversion over GF (2163) requires 9 multiplications and 162 squarings. Hence,

the scalar multiplication requires 991M + 976S + 493A clock cycles for m = 163.

If the designer changes the operands to the original form, it is only enough to do

the conversion once before and once after the scalar multiplication. It is worthwhile

to mention that in the general case, where r = xu, the conversion requires at most

3u XOR gates and has the delay of at most 2TX for irreducible trinomials and pen-

tanomials [64]. Note that multiplication using the shifted polynomial basis requires

the same conversions as well (see [64], Section 2). As a result, using an e�cient Mont-

gomery multiplication/squaring with low delay can reduce the overall time complexity

of the scalar point multiplication and hence, increase the speed of the elliptic curve

processor.

The Montgomery multiplication has been improved in [85] using irreducible tri-

nomials. This has been achieved by changing the Montgomery factor based on the

chosen trinomial. Consequently, a fast squaring architecture has been proposed for

irreducible trinomials.
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Algorithm 3 The MM over GF(2m)
Inputs: A,B ∈ GF (2m), r, F (x), F ′(x)
Output:C = A ·B · r−1 modF (x)
Step 1: t := A ·B
Step 2:u := t · F ′(x)mod r
Step 3:C := (t+ u · F (x))/r

(a)

Algorithm 4 The bit-level MM over GF(2m)
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B · x−m modF (x)
Step 1:C := 0
Step 2: For i := 0 to m− 1
Step 3: C := C + biA
Step 4: C := C + c0F (x)
Step 5: C := C/x

(b)

Figure 2.9: (a) The Montgomery multiplication (MM) over GF (2m) [38], (b) The
bit-serial MM [38].

2.2 Fault Detection

The Cryptographic systems are utilized to ensure the protection of data within an

application or organization. To achieve this objective, a cryptographic system should

satisfy security requirements such as the ones proposed by the National Institute

of Standards and Technology (NIST, FIPS 140-2) which include physical security,

mitigation of attacks, authentication, self-tests, etc. Mitigation of attacks includes

di�erent mechanisms against the various attacks that are common for cryptographic

systems. Fault induction is one of the attacks which has received considerable atten-

tion [19]. In this type of attacks, the attacker manipulates the cryptosystem (through

laser, glitch, magnetic attacks, etc.) and induces errors in cryptographic algorithms.

To overcome the problems which might be caused by this type of attacks, di�er-

ent countermeasures are used. In this section, we will study the countermeasure for

the implementations of cryptosystems based on Elliptic Curve Cryptography (ECC).

These countermeasures will be reviewed for the ECC and the underlying �nite �eld

operations. More precisely, we will consider concurrent error detection/correction in

�nite �eld arithmetic operations and then we will brie�y review the countermeasures

based on input randomization, point validation, and concurrent error detection for
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the ECC.

Concurrent error detection is a process used to test the operation of a system while

it is operating normally [59]. Di�erent techniques [39] are used in this regard which

include hardware duplication, parity codes, time redundancy, redundant residue num-

ber system [78], etc. Due to the fact that fault injection and active attacks are used

against cryptosystems (cf. [19], [2]), it is very important to increase the reliability of

the elliptic curve-based cryptosystems, and in particular, its main arithmetic opera-

tion, i.e., multiplication. There are di�erent works available in the literature which

consider concurrent error detection for �nite �eld multiplication. In [16], a parity-

based approach is used to detect errors in bit-serial polynomial and normal basis

multipliers. A similar technique is used in [70] for bit-serial and bit-parallel polyno-

mial basis multipliers. This scheme is extended to a multi-bit parity approach in [4]

for error detection in bit-serial and bit-parallel polynomial basis multipliers. Based

on interlacing parity codes, another approach is proposed in [7] for a bit-parallel poly-

nomial basis multiplier. In addition to the parity based approaches, time redundancy

is also used for error detection in �nite �eld multiplication. This technique is mainly

used for semi-systolic and systolic implementations of the �nite �eld multiplication.

In [5], time-redundancy based error detection techniques are proposed for di�erent

pipelined systolic multipliers. For more time-redundancy based approaches, one can

refer to [10], [48], and [49], to name a few.

Concurrent error detection for the Montgomery multiplication over binary �elds

has been considered in the literature. In [9], a time redundancy based error detec-

tion approach is used for the semi-systolic array implementation of the Montgomery

multiplication [9]. Their approach uses REcomputing with Shifted Operands (RESO)

and alternate data retry.

The work on concurrent error detection in elliptic curve cryptography is not as

extensive as the work on error detection in �nite �eld arithmetic. However, it is

gaining more attention due to the introduction of the fault attacks on the high level

elliptic curve cryptography operations (see for example [17]). The concurrent error

detection approach proposed in [80] is based on time-redundancy and covers the

underlying �nite �eld arithmetic operations. In [12], error-detecting and fault-tolerant

schemes are presented for the elliptic curve scalar multiplication.
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2.2.1 Parity-Code based Fault Detection

In [16], a single-bit parity-code based approach has been proposed to implement on-

line error detection for All-One-Polynomial (AOP) multipliers. The AOP is de�ned

as F (z) = zm + zm−1 + · · ·+ z + 1 and the multiplication is done modulo F (x), i.e.,

C = A ·B mod F (x), where x is a root of F (z). This multiplication is carried out by

the following matrix formulation using the extended PB {1, x, · · · , xm−1, xm}

cm

cm−1
...

c1

c0


=



a0 a1 · · · am

am a0 · · · am−1
...

...
...

...

a2 a3 · · · a1

a1 a2 · · · a0





bm

bm−1
...

b1

b0


, (2.19)

where A =
∑m

i=0 aix
i, B =

∑m
i=0 bix

i, and C =
∑m

i=0 cix
i.

Now, let Â′ and B̂′ be the parities of the operands A and B using the redundant

representation, respectively. It is easy to write the following for the parity of C, i.e.,

Ĉ', based on (2.19)

Ĉ ′ = Â′ ˆ·B′.

Another multiplier has also been considered in [16] which is the modi�ed AOP

multiplier. This is achieved by forcing am = 0 and bm = 0 in (2.19) which results in

the following equation



cm

cm−1
...

c1

c0


=



a1 a2 · · · am−2 am−1 0

a0 · · · am−3 am−2 am−1

0 · · · am−4 am−3 am−2
...

...
...

...
...

...

a3 a4 · · · 0 a0 a1

a2 a3 · · · am−1 0 a0




bm−1
...

b1

b0

 . (2.20)

Using (2.20), one can write the following on parity prediction in this multiplier

Ĉ = ÂB̂ +
m−1∑
i=1

aibm−i,

where Â, B̂, and Ĉ are the parities of A, B, and C using the standard polynomial

basis, respectively.



24

The third multiplier considered in [16] is a bit-serial Massey-Omura multiplier.

This multiplier is de�ned using the normal basis {β, β2, · · · , β2m−1}, where β ∈
GF (2m). The normal basis multiplication is de�ned as C = A · B, where A =∑m−1

i=0 aiβ
2i , B =

∑m−1
i=0 biβ

2i , C =
∑m−1

i=0 ciβ
2i , and ai, bi, ci ∈ GF (2). The Massey-

Omura multiplier is constructed using the function f(a0, a1, · · · , am−1, b0, b1, · · · , bm−1).
To generate the coordinates of C, the inputs of the function f are shifted cyclically

[53]. The following lemma has been presented in [16] to derive the parity prediction

formulation for the Massey-Omura multiplier.

Lemma 2.1. Let A =
∑m−1

i=0 aiβ
2i, B =

∑m−1
i=0 biβ

2i, and C =
∑m−1

i=0 ciβ
2i be �eld

elements of GF (2m), where C = A·B. Also, let Â, B̂, and Ĉ be the parity bits of A, B,

and C, respectively. Now, using a cyclic function H(j) = H(a0+j, a1+j, · · · , am−1+j),
the parity of the multiplication product, Ĉ, can be obtained as follows [16]

Ĉ = ÂB̂ +
m−1∑
i=0

biH
(i),

where the index addition in H is modulo m.

The generation of Ĉ using the function H resembles the generation of the coordi-

nates of C using the function F by shifting the coordinates of A.

In [70], a single-bit parity code is used for fault detection in bit-serial and bit-

parallel PB multipliers. To explain this work, we recall that F (x) = 0, and as a result

one can write

xm = fm−1x
m−1 + · · ·+ f1x+ f0. (2.21)

First, we present the following note to show a property of the irreducible polyno-

mial F (z).

Note 2.1. Since F (z) is an irreducible polynomial, it is not divisible by (x+ 1) and

consequently F (1) = 1. It is also concluded that
∑m−1

i=0 fi = 0 [70].

We start with the LSB-�rst bit-serial PB multiplier which is shown in Fig. 2.10a

using white blocks. This multiplier includes two m-bit registers (X and Y ), the x-

module which does a multiplication by x followed by a reduction modulo F (x). Also,

the AND and XOR blocks perform logical AND and XOR operations, respectively. To

study the fault detection circuit for this multiplier, the following lemma is presented

�rst.



25

Lemma 2.2. Let Q = A ·x mod F (x) and Â =
∑m−1

i=0 ai be the parity bit of A. Then,

the parity bit of Q, i.e., Q̂, is obtained as follows [70]

Q̂ = Â+ am−1,

where am−1 is the most signi�cant coordinate of A de�ned in (1.2).

Proof. Using (1.2) and (2.21), one can write Q as

Q = am−1

m−1∑
i=0

fix
i + am−2x

m−1 + · · ·+ a0x.

Now using Note 2.1, one can notice that the parity of Q is Q̂ = Â+ am−1 and the

proof is complete.

The other two operations in the LSB-�rst PB multiplier are �eld addition and

multiplication by a bit. For these operations, one can de�ne the following properties.

Property 2.1. Let A and B be two �eld elements of GF (2m), and Â and B̂ be their

parity bits, respectively. The parity bit of Q = A+B can be obtained as Q̂ = Â+ B̂.

Property 2.2. Let A be a �eld element of GF (2m) and Â be its parity bit. The

parity bit of Q = b · A can be obtained as Q̂ = b · Â, where b ∈ GF (2).

The fault detections scheme for LSB-�rst bit-serial PB multiplier using a single-bit

parity code can be obtained using Lemma 2.2 and the Properties 2.1 and 2.2. The

fault detection in the x-module is based on Lemma 2.2. The fault detection in the

XOR and AND blocks are based on Properties 2.1 and 2.2, respectively. The �nal

fault detection circuit for the LSB-�rst bit-serial PB multiplier is shown in Fig. 2.10a

using gray blocks.

The other bit-serial PB multiplier is based on an MSB-�rst multiplication algo-

rithm and is shown in Fig. 2.10b. The building blocks of this multiplier are similar

to the ones of the LSB-�rst multiplier. The fault detection circuit of this multiplier

is shown in Fig. 2.10b using gray blocks.

Traditionally, the bit-parallel PB multiplication can be performed based on the

following formulation

C = A ·B mod F (x) =
m−1∑
i=0

bi ·
((
Axi
)

mod F (x)
)
. (2.22)
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Â

x

1

 Module

Parity

Ĉ
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Figure 2.10: (a) The LSB-�rst bit-serial PB multiplier with fault detection, (b) The
MSB-�rst bit-serial PB multiplier with fault detection.
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Figure 2.11: Traditional Bit-Parallel Polynomial Basis Multiplier.

Assuming A(i) = x · A(i−1) mod F (x) for 1 ≤ i ≤ m− 1, and A(0) = A, (2.22) can

be written as follows

C =
m−1∑
i=0

bi · A(i). (2.23)

The structure of the traditional bit-parallel PB multiplier is shown in Fig. 2.11

based on (2.23). The main components of this multiplier are the same as the ones

discussed for bit-serial PB multipliers and consequently, the fault detection circuits

for this multiplier can be designed similarly.

Another approach for fault detection in bit-parallel PB multiplication has been

proposed in [7]. This approach is based on using multiple interlacing parity bits.

Using this method, the parity bits for the operand A can be de�ned as follows
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Âi =


∑s−1

k=0 akr+i m− sr ≤ i < r∑s
k=0 akr+i 0 ≤ i < m− sr,

where r is the number of parity bits and s = bm/rc is the minimum number of the

coordinates of A represented by a parity bit. Note that if m = sr each parity bit

covers s coordinates of A. Otherwise (which is the common case in ECC), some parity

bits cover s bits and the rest cover s+ 1 bits.

Predicting the parity of the �nal multiplication product C is done in two steps.

First, the parity prediction is performed for the �rst network shown in Fig. 2.11

which includes the x-modules. The following lemma addresses the parity prediction

in the x-modules.

Lemma 2.3. Assuming A(i−1) and Â(i−1) are the input of the x-module and its parity,

respectively, the parity of the x-module's output A(i) can be obtained as follows [7]

Â
(i)
j =

a
(i−1)
m−1 (F̂j + 1) + Â

(i−1)
(j−1) mod r j = m− sr

a
(i−1)
m−1 F̂j + Â

(i−1)
(j−1) mod r 0 ≤ j < r, j 6= m− sr,

where F̂j is the jth parity bit of F (z).

The formulation above can be used in each x-module to predict the parity. The

second network of the bit-parallel PB multiplier shown in Fig. 2.11 is based on (2.23)

and consists of AND operations with the coordinates of B and the �nal sum using

XOR gates. The parity prediction formulation for this network is as follows

Ĉj =
m−1∑
i=0

biÂ
(i)
j , 0 ≤ j < r.

The parity based approach used in [70] to design fault detection circuits for the

PB multipliers has been extended in [4] using the multiple-bit parity codes. The

multipliers considered in [4] include the LSB-�rst bit-serial PB multiplier (shown in

Fig. 2.10a using white blocks) and the traditional bit-parallel PB multiplier (shown

in Fig. 2.11).

Assuming A =
∑m−1

i=0 aix
i is a �eld element of GF (2m) and ai ∈ GF (2), the

multiple-bit parity of A is de�ned by dividing A into k parts. Assuming m is divisible

by k (for simplicity), the jth part of A is de�ned as

Aj = xjk
l−1∑
i=0

ajk+ix
i,
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where 0 ≤ j < k and l = m/k. Now, the parity bit is computed for each part, i.e., Aj,

and denoted as Âj. Also, the parity is de�ned for the irreducible polynomial F (x) by

excluding the term xm and the jth parity bit is denoted as F̂j, 0 ≤ j < k.

The x-module is the main building block in both the bit-serial and bit-parallel PB

multipliers. The following lemma can be presented to obtain the parity prediction

formulation for this module using the multiple-bit parity code.

Lemma 2.4. Let A and Â be the input of the x-module and its k-bit parity, respec-

tively. The parity of the output of the x-module, i.e., A′ = A ·x mod F (x), is obtained

as follows [4]

Â′j = ajl−1 + Âj + a(j+1)l−1 + am−1F̂j.

The remaining blocks of the bit-serial and bit-parallel PB multipliers are the XOR

and AND blocks. Similar to the single-bit parity approach, the parity prediction in

these blocks are performed using Properties 2.1 and 2.2, respectively.

An alternative approach is proposed in [4] to partition A and F (x) which in fact

results in an interlacing parity code and is similar to the approach proposed in [7].

In [74], a modi�ed multiple-bit parity-code based approach has been proposed

which uses the parities of both operands A and B. In this approach, the partitioning

of the operands is similar to the one explained for [4], i.e., the operands are divided

into k l-bit slices. The parity prediction in the x-module is the same as the one

outlined in Lemma 2.4. However, the parity prediction in the XOR and AND blocks

should be modi�ed to incorporate the parity of the operand B. In [74], it has been

shown that using multiple-bit parity for both operands increases the fault detection

capability in comparison to the approach used in [4]. However, this approach also has

a greater area overhead in comparison to the one proposed in [4].

In [75], a fault detection approach has been presented for bit-serial (shown in Fig.

2.10a using white blocks) and bit-parallel (shown in Fig. 2.11) PB multipliers using

(n,m) linear codes. The codeword is de�ned as V = (v0, v1, · · · , vn−1) and the code

polynomial is a polynomial whose coe�cients are the components of V . A polynomial

of degree n−m is used to generate the code polynomials of degree n− 1 or less and

is de�ned as follows

G(x) = xn−m + gn−m−1x
n−m−1 + · · ·+ g2x

2 + g1x+ 1,

where G(x) is known as the generator polynomial and gi ∈ GF (2) for 1 ≤ i < n−m.

Let A, B, and Q be the �eld elements of GF (2m), and b ∈ GF (2). Also, assume Â,
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B̂, and Q̂ be the encoding of A, B, and Q, respectively. Now, the following properties

can be de�ned [75].

Property 2.3. If Q = b · A, then Q̂ = b · Â since Q̂ = Q ·G(x) = b · A.G(x) = b · Â.

Property 2.4. If Q = A+B, then Q̂ = Â+ B̂ since Q̂ = Q ·G(x) = (A+B) ·G(x) =

Â+ B̂.

The fault detection in the AND and XOR blocks of the bit-serial and bit-parallel

PB multipliers can be implemented using Properties 2.3 and 2.4, respectively. Now,

the main remaining block in these multipliers is the x-module. The following lemma

can be presented to implement the fault detection circuit in this module [75].

Lemma 2.5. Let A =
∑m−1

i=0 aix
i and Â =

∑n−1
i=0 âix

i be the input of the x-module

and its encoding, respectively. The encoded output of the x-module, i.e., Â′, can be

obtained as follows

Â′ = xÂ+ ân−1F̂ (x),

where A′ = A · x mod F (x) and F̂ (x) is the encoding of F (x).

Lemma 2.5 and Properties 2.3 and 2.4 are enough to implement the fault detection

circuit for the bit-serial and bit-parallel PB multipliers using linear codes.

2.2.2 Time Redundancy

The second common approach for fault detection in �nite �eld arithmetic operations

is based on time-redundancy and has been used in many works such as [9], [10],

[48], [49], and [5] to name a few. This approach is e�cient for pipelined multipliers

including systolic and semi-systolic array multipliers. The time redundancy based

approach takes advantage of some well-known techniques such as recomputing with

shifted operands (RESO) [66], [65] or alternate-data retry [77]. In this section, we

study some of the existing works for fault detection in �nite �eld arithmetic using

time-redundancy.

In [49], an RESO based approach has been proposed for fault detection in a

semi-systolic implementation of the PB multiplication. In this approach �rst the

multiplication is performed using the main inputs A,B ∈ GF (2m) which results in

C = A · B mod F (x). In the second round, A and B are represented using the

basis {1, x, x2, · · · , xm−1, xm} and the �nal result is converted to the main basis, i.e.,

{1, x, x2, · · · , xm−1} and compared with C.
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A time redundancy based approach is proposed in [9] for semi-systolic imple-

mentation of the Montgomery multiplication. The �rst set of the inputs used in

this approach are A and B ∈ GF (2m) and the multiplication result is C = A ·
B mod F (x). The second set of the inputs are the Montgomery residues de�ned as

Ā = A · xm mod F (x) and B = B · xm mod F (x). The output of this operation is

C = A · B · x−m mod F (x). After completing both multiplication, one can compute

C · xm mod F (x) and compare it with C to detect the errors. To increase the fault

detection capability, the operation is repeated by shifting the operands A and A as

well.

The approach proposed in [9] has been modi�ed in [23] to reduce the overheads.

The di�erence between [9] and [23] is that the latter uses a multiplication by x−1

modulo F (x) for the inputs and a multiplication by x modulo F (x) for the output

which results in lower time and area overheads.

In [5], time redundancy based techniques are proposed for polynomial basis, dual

basis, and normal basis �nite �eld arithmetic units. Here, we brie�y study the tech-

niques without considering the architecture of the arithmetic unit which is a pipelined

architecture.

In the case of polynomial basis multiplication, four �nite �eld arithmetic opera-

tions have been considered in [5] and the fault detection techniques can be summarized

as follows:

� Addition: The main inputs are A, B ∈ GF (2m) and the main output is obtained

as C = A + B. The second set of inputs are A′ = A · x mod F (x), B′ =

B · x mod F (x) ∈ GF (2m) and therefore, the second output is obtained as

C ′ = A′ +B′. Now, compute C ′ · x−1 mod F (x) and compare it with C.

� Multiplication: The main inputs are A, B ∈ GF (2m) and the main output

is obtained as C = A · B mod F (x). The second set of inputs are A′ = A ·
x mod F (x), B′ = B · x mod F (x) ∈ GF (2m) and therefore, the second output

is obtained as C ′ = A′ · B′ mod F (x). Now, compute C ′ · x−2 mod F (x) and

compare it with C.

� Inversion: The main input is A ∈ GF (2m) and the main output is obtained

as A−1 = 1/A mod F (x). The second input is A′ = A · x mod F (x) and the

second output is A′−1 = 1/A′ mod F (x). Now, compute A′−1 · x mod F (x) and

compare it with A−1.

� Division: The main inputs are A, B ∈ GF (2m) and the main output is obtained
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as C = A/B. The second set of inputs are A′ = A · x mod F (x), B′ = B ·
x−1 mod F (x) ∈ GF (2m) and the corresponding output is C ′ = A′/B′. Now,

compute C ′ · x−2 and compare it with C.

Fault detection in the dual basis arithmetic operations presented in [5] is similar to

the one explained above for the polynomial basis operations.

In the case of normal basis, it is well-known that the squaring and taking the

square root operations are performed by a circular left-shift and a circular right-shift,

respectively at no cost. Therefore, the following techniques are used for fault detection

in normal basis arithmetic units [5].

� Addition: The main inputs are A, B ∈ GF (2m) and the main output is obtained

as C = A+ B. The second set of inputs are A′ = A2, B′ = B2 and the output

is C ′ = A′ +B′. Now, take the square root of C ′ and compare it with C.

� Multiplication: The main inputs are A, B ∈ GF (2m) and the main output is

obtained as C = A ·B. The second set of inputs are A′ = A2, B′ = B2 and the

output is C ′ = A′ ·B′. Now, take the square root of C ′ and compare it with C.

� Inversion: The main input and output are A ∈ GF (2m) and A−1 = 1/A,

respectively. The second input is A′ = 1/A2 and the corresponding output is

C ′ = A′−1. Now, take the square root of C ′ and compare it with C.

� Division: The main inputs are A, B ∈ GF (2m) and the main output is obtained

as C = A/B. The second inputs are A′ = A2, B′ = B2 and the output is

C ′ = A′/B′. Now, take the square root of C ′ and compare it with C.
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Chapter 3

Bit-Serial and Bit-Parallel

Montgomery Multiplication and

Squaring over GF (2m)

O
UR objective in this chapter is to reduce the time complexity of Montgomery

multipliers and squarers to accelerate scalar multiplication in ECC. The ECC

is included in the recent standards such as FIPS 186-2, ANSI X9.62, and IEEE 1363-

2000. To achieve this, we use a di�erent approach to formulate the Montgomery

multiplication and then, we study di�erent Montgomery factor to �nd the most e�-

cient ones. We begin by presenting two new bit-serial algorithms and their hardware

architectures and then, by unfolding one of the algorithms, we design a new general

bit-parallel multiplication architecture which is di�erent from the architecture pro-

posed in [38] and [85]. Due to the popularity of irreducible trinomials and pentanomi-

als in cryptography, we optimize our general architecture using e�cient Montgomery

factors for faster implementation. Finally, we design an e�cient squarer for a family

of irreducible pentanomials. Note that ECC is typically implemented with a �xed

�eld size (e.g., [1], [50], and [73]) using the recommendations by NIST [67] for Elliptic

Curve Digital Signature Algorithm (ECDSA). Therefore, to avoid any area, time, or,

power overheads, we design our multipliers assuming that the �eld size is �xed.

In this chapter, we propose two bit-serial Montgomery multipliers and study

two classes of irreducible polynomials. The �rst class is the irreducible trinomials

(F (z) = zm + zk + 1). For this class, we prove that two Montgomery factors result

in an e�cient hardware implementation, where their complexity results match the

best results reported in the literature for di�erent bit-parallel �nite �eld multipliers

including [14], [30], [69], and [85]. Also, we consider the irreducible pentanomials
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and we show that type-II irreducible pentanomials de�ned in [71] are very suitable

for our general bit-parallel architecture. In this regard, we propose two Montgomery

factors which result in very e�cient implementations. Then, we propose two di�er-

ent bit-parallel Montgomery multipliers for this class of irreducible polynomials and

compare their complexities with the ones of recent bit-parallel multipliers. We show

that our results outperform the existing Montgomery multipliers in the literature. Fi-

nally, we consider squaring over GF (2m) and present a squarer for type-II irreducible

pentanomials. The proposed squarer has the constant delay of two XOR gates which

is the lowest reported delay for squaring using pentanomials. The result presented in

this chapter can be found in [25].

The rest of the chapter is organized as follows. In Section 3.1, we introduce

two new bit-serial algorithms as well as a new Montgomery factor. In Section 3.2,

we consider a new general formulation of bit-parallel Montgomery multipliers and we

study it for two special cases of irreducible polynomials, namely, irreducible trinomials

and irreducible pentanomials in Section 3.3 and Section 3.4, respectively. In Section

3.5, we consider squaring over binary extension �elds. Finally in Section 3.6, we

present our comparison results.

3.1 New Bit-Serial Montgomery Multipliers

Using r = xu, 1 ≤ u ≤ m, as the general Montgomery factor, the Montgomery

multiplication over GF (2m) can be formulated as

C = A ·B · x−umodF (x). (3.1)

Using (2.16), one can rewrite (3.1) as

C = b0Ax
−u + b1Ax

−u+1 + · · ·+ bm−1Ax
m−u−1 modF (x). (3.2)

We know that x is a root of the polynomial F (z), F (x) = 0, and using (1.1) one

can write

fmx
m + fm−1x

m−1 + · · ·+ f1x+ f0 = 0. (3.3)

For any irreducible polynomial, we have f0 = 1 and fm = 1. Thus, using this fact,

multiplying both sides of (3.3) by x−1, and rearranging the terms, one can obtain

x−1 modF (x)=xm−1 + · · ·+ f2x+ f1. (3.4)
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Algorithm 5 The MSB-first bit-serial MM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B · x−u modF (x)
Step 1:A(0) := Axm−u−1 modF (x), C(0) := 0
Step 2: For i := 0 to m− 1
Step 3: C(i+1) := bm−i−1A

(i) + C(i)

Step 4: A(i+1) := A(i) · x−1 modF (x)
Step 5:C := C(m)
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Figure 3.1: The proposed MSB-�rst bit-serial Montgomery multiplication (MM) using
r = xu: (a) algorithm, (b) architecture.

In [9], (3.4) is used to design a semi-systolic array structure for the MM using

r = xm. In the following sections, we use (3.4) to develop two di�erent bit-serial

multiplication algorithms based on (3.2) using r = xu, 1 ≤ u ≤ m. Then, we show

that the e�cient Montgomery factor for such bit-serial structures is r = xm−1.

3.1.1 MSB-First Bit-Serial MM

In an MSB-�rst bit-serial MM algorithm, the operand B is processed from its MSB,

i.e., bm−1, and one bit at each cycle is considered. By rewriting (3.2) and changing

the order of addition, one can obtain

C = bm−1Ax
m−u−1 + · · ·+ b1Ax

−u+1 + b0Ax
−u modF (x). (3.5)

Now, we introduce Algorithm 5 based on (3.5) using the general Montgomery

factor r = xu in Fig. 3.1a, where A(i) and C(i) denote the intermediate results

at the i-th iteration. It is clear from (3.5) that �rst, we need to pre-compute

A(0) = Axm−u−1 modF (x) as it is shown in Step 1 of this algorithm. As a result,

the complexity of the MSB-�rst bit-serial MM depends on the complexity of Step 1
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Figure 3.2: The architecture of the x−1-module for general irreducible polynomials.

and the complexity of the main multiplication in Steps 2 to 5. First, we consider Step

4 in this algorithm as

A(i+1) = A(i) · x−1 modF (x),

= (a
(i)
m−1x

m−2 + · · ·+ a
(i)
1 + a

(i)
0 x
−1) modF (x).

(3.6)

Now similar to [9], we substitute (3.4) in (3.6) and write the result as

A(i+1) =a
(i)
0 x

m−1 + (a
(i)
m−1 + a

(i)
0 fm−1)x

m−2 + · · ·
+ (a

(i)
2 + a

(i)
0 f2)x

1 + (a
(i)
1 + a

(i)
0 f1).

(3.7)

Consequently, the architecture of Algorithm 5 is depicted in Fig. 3.1b. In this �g-

ure, A′ and C ′ are two m-bit registers, which store values of A(i) and C(i), respectively.

We assume A′ is loaded with A(0) = Axm−u−1 modF (x) at the beginning. There are

two main loops in Fig. 3.1b. The right loop calculates the value of C(i+1) in Step

3 of Algorithm 5 and includes m two-input XOR gates. The left loop calculates the

value of A(i+1) in Step 4 Algorithm 5 using the x−1-module. This module multiplies

A(i) by x−1 and reduces the results by F (x). The architecture of the x−1-module,

which is obtained from (3.7), is depicted in Fig. 3.2. It is clear that if F (x) is an

ω-nomial, i.e., ω non-zero terms in (1.1), then we will need ω − 2 two-input XOR

gates to obtain A(i+1) in (3.7). So, for general irreducible polynomials of degree m in

(1.1), it includes at most (m− 1) two-input AND gates, as well as (m− 1) two-input

XOR gates to realize (3.7). Besides this module, we require m two-input AND gates

to compute bm−i−1A
(i) in Step 3 of Algorithm 5. As a result, Steps 2 to 5 of the

MSB-�rst bit-serial Montgomery multiplier require (2m − 1) two-input AND gates

and (2m− 1) two-input XOR gates for general irreducible polynomials of degree m.

It is clear from Fig. 3.1b that two loops can be computed in parallel. Thus, a

cycle of the multiplication algorithm requires the delay of TA +TX , where TA and TX
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represent the delays of a two-input AND gate and a two-input XOR gate, respectively.

Also, the latency of the MSB-�rst bit-serial Montgomery multiplier equals m clock

cycles.

Now, we consider the complexity of Axm−u−1 modF (x). For u < m−1, this oper-

ation requires multiplications by positive powers of x followed by a reduction by F (x).

Implementing this operation with minimum hardware requires one multiplication by

x followed by a reduction by F (x) in a cycle, which has the time complexity of TA+TX

[6]. Consequently, Axm−u−1 modF (x) is obtained with the linear time complexity of

(m − u − 1)(TA + TX). Note that a multiplication by x results in including extra

hardware. If u = m, we need to pre-compute Ax−1 modF (x) which requires the time

complexity of TA + TX using an x−1-module as explained above.

It is clear that simplifying Step 1 of Algorithm 5 results in better time and area

complexities. Here, the Montgomery factor plays an important role in simplifying

this operation. The ideal case is Axm−u−1 = A or xm−u−1 = 1. This results in

u = m − 1, which suggests r = xm−1 as a new e�cient Montgomery factor. In this

case, Step 1 is just a load operation of the coordinates of A into the register A′. The

following summarizes the area and time complexities of the proposed multiplier using

the Montgomery factor r = xm−1.

Proposition 3.1. Using the new Montgomery factor r = xm−1 for a general irre-

ducible polynomial of degree m, the proposed MSB-�rst bit-serial MM over GF (2m)

can be realized by using (2m−1) two-input AND gates, (2m−1) two-input XOR gates

and two m-bit registers. The critical path delay and the latency of this multiplier are

TA + TX and m clock cycles, respectively.

Remark 3.1. The proposed MSB-�rst bit-serial multiplier is as e�cient as the best

bit-serial PB multiplier (LSB-�rst). One can use such a multiplier to improve the

multiplication algorithm proposed in [3], which splits the multiplication into two

concurrent multiplications: one PB and one MM. It is noted that the Montgomery

multiplier of [3], which is used in [72] to design an ECC processor, is based on the

algorithm proposed in [38] and has the critical path delay of 2(TA+TX). By replacing

their Montgomery multiplier with our MSB-�rst multiplier and using the LSB-�rst

bit-serial PB algorithm, the critical path delay can be reduced from 2(TA + TX) to

TA + TX with the same latency as
⌈
m
2

⌉
.

Finally, note that the MSB-�rst bit-serial Montgomery multiplier using r = xm

can be obtained by modifying Fig. 3.1b with adding a zero to the MSB of the operand
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Algorithm 6 The LSB-first bit-serial MM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B · x−u modF (x)
Step 1:T (0) := 0,A(0) = Axm−u−1 modF (x)
Step 2: For i := 0 to m− 1
Step 3: T (i+1) := T (i) · x−1 modF (x) + bi ·A(0)

Step 4:C := T (m)
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Figure 3.3: The proposed LSB-�rst bit-serial MM using r = xu: (a) algorithm, (b)
architecture.

B (i.e., 0bm−1 · · · b1b0). Therefore, the latency of the MSB-�rst bit-serial MM using

r = xm is increased to m+ 1 clock cycles. Note that A′ is loaded with A.

3.1.2 LSB-First Bit-Serial MM

To design the LSB-�rst bit-serial MM, we rewrite (3.5) by using Horner's rule and

A(0) = Axm−u−1 modF (x) to obtain

C =(· · · (b0A(0)x−1 modF (x) + b1A
(0))x−1 modF (x)+

· · ·+ bm−2A
(0))x−1 modF (x) + bm−1A

(0).
(3.8)

Similar formulation has previously been outlined in [9] using u = m to design a

semi-systolic array structure for the MM. Based on (3.8), we can propose Algorithm 6

(Fig. 3.3a) for the MM algorithm over GF (2m) using the general Montgomery factor

r = xu. In this algorithm, we begin processing the operand B from its LSB and again,

we only process one bit at each cycle.
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Similar to the discussion for the MSB-�rst bit-serial MM, in this case again we are

interested in A(0) = Axm−u−1 modF (x) = A to simplify the multiplication process.

This results in u = m− 1 or r = xm−1 as the new e�cient Montgomery factor.

The hardware architecture of Algorithm 6 using r = xm−1 can be obtained by

similar means to that of Algorithm 5. This is shown in Fig. 3.3b. In this case, we

require two m-bit registers to hold the value of T (i) and A. Also, we require m two-

input AND gates as well as m two-input XOR gates as labeled with AND and XOR

in Fig. 3.3b. The x−1-module in Fig. 3.3b is the same as introduced for Algorithm 5

in Fig. 3.2. We summarize the complexity results by the following proposition.

Proposition 3.2. Let r = xm−1 be the Montgomery factor. Then, the proposed LSB-

�rst bit-serial Montgomery multiplier over GF (2m) requires (2m− 1) two-input AND

gates, (2m−1) two-input XOR gates, and two m-bit registers. The critical path delay

of this multiplier equals TA + 2TX and its latency is m clock cycles.

Similar to the MSB-�rst bit-serial MM algorithm, we can present the following

remark for the LSB-�rst bit-serial MM algorithm.

Remark 3.2. Assuming r = xm is the Montgomery factor, the LSB-�rst bit-serial

MM over GF (2m) has the latency of m + 1 clock cycles. In this case, Fig. 3.3b is

modi�ed by adding a zero to the MSB of the operand B (i.e., 0bm−1 · · · b1b0).

Finally, we present the following remark.

Remark 3.3. It is interesting to note that using our proposed Montgomery factor

r = xm−1, one can simplify the semi-systolic array structure proposed in [9]. As a

result, its latency is reduced from m + 1 to m clock cycles. Also, the number of the

required cells is reduced from m× (m+ 1) to m×m.

3.2 Bit-Parallel Montgomery Multiplication

Based on the formulation used in the previous sections, we present a new bit-parallel

Montgomery multiplier over GF (2m) in this section. As shown in (2.17), the MM in

general can be formulated as C = A · B · r−1modF (x), where r can be chosen as

r = xu, 0 < u ≤ m. The algorithm proposed in [38] uses u = m and generates (3.1)

which can be rewritten as (3.2). Fig. 3.4 depicts a new architecture of the bit-parallel

Montgomery multiplier for u = m. This architecture is also obtained by unfolding the

loop in Algorithm 6. In this architecture, the AND modules multiply a �eld element

by a bit, whereas the XOR modules add two �eld elements. The architecture shown in
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Figure 3.4: The architecture of the bit-parallel Montgomery multiplier over GF (2m)
with r = xm.

Fig. 3.4 is very similar to the architecture of the conventional bit-parallel polynomial

basis multiplier. However in the latter, instead of x−1-modules, x-modules are used

which perform a multiplication by x followed by a reduction modulo F (x). Also, the

order of processing the coordinates of B is reverse. Note that the x−1-module in Fig.

3.4 is shown in Fig. 3.2 for general irreducible polynomials.

By choosing u in the range of [1,m − 1], we can rewrite the Montgomery multi-

plication as

C =b0Ax
−u + b1Ax

−u+1 + · · ·+ bu−1Ax
−1 + buA

+ bu+1Ax+ · · ·+ bm−1Ax
m−u−1 modF (x).

(3.9)

In this case, the main di�erence is that we multiply A by negative and positive

powers of x to calculate the terms in (3.9). We can rewrite (3.9) as C = C1 + C2,

where C1 = b0Ax
−u + b1Ax

−u+1 + · · ·+ bu−1Ax
−1 modF (x) and C2 = buA+ bu+1Ax+

· · ·+ bm−1Ax
m−u−1 modF (x). Now, we can design the new architecture of the general

case of the MM with r = xu as depicted in Fig. 3.5a. Note that for 1 ≤ u ≤ m− 1,

the number of the x and x−1-modules is m− 1, as buA is obtained directly from A.

Based on the architecture depicted in Fig. 3.5a, the �rst step of the multiplication

is to compute the terms AximodF (x), for i ∈ [−u,m − u − 1]. In this chapter, we

use A′(i) to represent Ax
imodF (x). This can be done by using the matrix M, whose

columns show the PB representation of A′(i) for i ∈ [−u,m − u − 1]. So, the matrix

M has m rows and m columns. Then, the MM over GF (2m) can be formulated as

[c0, c1, · · · , cm−1]T = M · [b0, b1, · · · , bm−1]T . (3.10)

Note that this formulation is similar to the Mastrovito multiplication [54]. We
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Algorithm 7 Bit-parallel MM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B · x−u modF (x)
Step 1: Generate the matrix M for the given irreducible polynomial

F (x) using general u
Step 2: Find an efficient u to minimize the number of terms

summed up in the entities of the matrix
Step 3: Re-generate the matrix M for the found u

Step 4: Implement [c0, c1, · · · , cm−1]
T
= M · [b0, b1, · · · , bm−1]

T
.

(b)

Figure 3.5: The general architecture of the bit-parallel Montgomery multiplier over
GF (2m) with r = xu, 1 ≤ u ≤ m− 1: (a) architecture, (b) algorithm.

have shown the steps to construct the bit-parallel Montgomery multiplier in Figure

3.5b.

Proposition 3.3. Assume an ω-nomial irreducible polynomial is used to construct

GF (2m). In this case, the architecture shown in Fig. 3.5a requires m2 AND gates

and (m− 1)(m+ ω − 2) XOR gates.

Proof. In the architecture shown in Fig. 3.5a, the AND gates are only required in the

AND network. So, the total number of AND gates is m2. In this architecture, XOR

gates are used in two XOR networks. The �rst XOR network obtains the matrix

M and each column of this matrix requires (ω − 2) XOR gates except the column
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corresponding to A′(0) which requires no XOR gate. Thus, (m− 1)(ω− 2) XOR gates

are required in the �rst XOR network. In the second one, m XOR trees are used to

obtain ci for i = 0 to m− 1, where each XOR tree adds m terms. Thus, this network

requires m(m − 1) XOR gates. As a result, the architecture presented in Fig. 3.5a

requires (m− 1)(m+ ω − 2) XOR gates.

Remark 3.4. The proposed architecture for the bit-parallel MM is di�erent from the

structure proposed in [38] and [85]. In our structure, �rst the entries of matrix M are

obtained by an XOR network which consists of XOR gates, then an AND network

performs AND operations between the entries of the matrix M and the coordinates

of B. Finally, another XOR network is used to obtain ci for i = 0 to m − 1. In

the algorithm proposed in [38], which is also used to design the original bit-parallel

Montgomery multiplier in [85], an AND network followed by an XOR network are

only used.

To consider the architecture of the bit-parallel Montgomery multiplier in details,

we design bit-parallel Montgomery multipliers for two important classes of irreducible

polynomials, namely irreducible trinomials and a special class of irreducible pen-

tanomials.

3.3 Bit-Parallel Montgomery Multiplier for Irreducible

Trinomials

By presenting the following lemma, we consider the properties of the matrix M to

�nd the most e�cient Montgomery factors (Step 2 in Algorithm 7).

Lemma 3.1. Let F (z) = zm + zk + 1 be an irreducible trinomial and x be the root of

F (z). Then, the Montgomery factor r = xu is obtained from the following in order

to design a fast Montgomery multiplier,

u =

1, k = 1,

k or k − 1, k > 1.
(3.11)

In this case, the entries of the matrix M will be the additions of at most two terms.

Proof. Using (3.9), we need to reduce the following polynomial by F (x) for negative

([−u,−1]) and positive ([1,m− u− 1]) values of i
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Axi = a0x
i + a1x

i+1 + · · ·+ am−1x
m+i−1. (3.12)

First, we consider (3.12) for i ∈ [1,m − u − 1] and it is easy to notice that the

following requires no further reduction, xm+i−1 modF (x) = xk+i−1+xi−1, if i ≤ m−k
(or k + i− 1 ≤ m− 1). Note that xm+i−1 is the greatest power of x in (3.12). Thus,

for i ≤ m− k, we can rewrite (3.12) by one step of reduction as

A′(i) =
m−1−i∑
j=0

ajx
j+i +

m−1∑
j=m−i

ajx
j+i,

=
m−1−i∑
j=0

ajx
j+i +

i−1∑
j=0

am−i+j(x
k+j + xj).

(3.13)

It is clear from (3.13) that there are at most two terms at each position. Thus, we

substitute i in (3.13) with the greatest positive power of x from (3.9), i.e., i = m−u−1,

and we can conclude that i ≤ m− k⇒ m− u− 1 ≤ m− k, which results in

u ≥ k − 1. (3.14)

Now, we consider (3.12) for i ∈ [−u,−1]. From trinomial representation, one can

�nd 1 = xm + xk and by multiplying both sides by xi we have

xi = xm+i + xk+imodF (x). (3.15)

Note that in (3.15), m+ i is a positive number for i ∈ [−u,−1]. Therefore, (3.15)

will be in the PB representation if k + i ≥ 0. . Thus, for k + i ≥ 0 we can use (3.15)

to simplify A′(i) by one step of reduction as

A′(i) =
m−1∑
j=|i|

ajx
j+i +

|i|−1∑
j=0

ajx
j+i modF (x),

=
m−1∑
j=|i|

ajx
j+i +

|i|−1∑
j=0

aj(x
m+i+j + xk+i+j) modF (x).

(3.16)

Note that xi is the least power of x in (3.12) which is in the PB representation

for k + i ≥ 0. As a result, (3.16) is in the PB representation for k + i ≥ 0 and again

there are at most two terms in each position. By replacing i with the least value of i

from (3.9), i.e., −u, we have
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0 ≤ k + i⇒ u ≤ k. (3.17)

It can be concluded from (3.14) and (3.17) that the elements of the matrix M are

summations of at most two terms if k − 1 ≤ u ≤ k, and the proof is complete.

Now, we can present the following proposition to determine the area complexity

of the Montgomery multiplier based on the values of u obtained from Lemma 3.1.

Proposition 3.4. Assume the Montgomery factor is chosen based on (3.11). Then,

the bit-parallel Montgomery multiplier using irreducible trinomials requires (m2 − 1)

two-input XOR gates if k 6= m
2
. Otherwise, i.e., k = m

2
, it requires (m2− m

2
) two-input

XOR gates. In both cases, the multiplier also requires m2 AND gates.

Proof. Using Proposition 3.3, the proof is straightforward.

Now, the entries in each row of the matrix include single or two-term elements

(Step 3 in Algorithm 7). Those entries should �nally be summed up by using an

XOR tree after the AND operation with the corresponding coordinates of B (Step 4

in Algorithm 7). To reduce the delay of the MM it is possible to use the method of

[14]. This involves doing a part of the �nal addition operation in parallel with the

computation of the elements of the matrix M. In other words, while we compute the

two-term elements of the matrix M, it is possible to add the single term elements

pair-wise after the bit-wise AND operation with the corresponding coordinates of B.

In this regard, Table 3.1 shows the number of single-term and two-term elements in

each row (position) of the matrix M for two Montgomery factors mentioned in Lemma

3.1. We use Table 3.1 to obtain the time complexity of the MM using irreducible

trinomials and we can present the following proposition.

Proposition 3.5. Assuming F (z) = zm+zk+1 is an irreducible trinomial, the delay

of the bit-parallel Montgomery multiplier using F (z) is as followsTA + dlog2 (2m− u− 1)eTX , u ≤ m−1
2

TA + dlog2 (m+ u)eTX , u > m−1
2

,

where u is de�ned in (3.11).

Proof. It is noted that the worst delay occurs in the position (row of the matrix

M) that includes the maximum number of two-term elements. The reason is that
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Table 3.1: The Number of the Elements in the Matrix M for Irreducible Trinomials

Position
u = k − 1 u = k

Single-term Two-term Single-term Two-term
x0 m 0 m− 1 1
x1 m− 1 1 m− 2 2
...

...
...

...
...

xk−1 m− k + 1
(m− u)

k − 1
(u)

m− k
(m− u)

k
(u)

xk k
(u+ 1)

m− k
(m− u− 1)

k + 1
(u+ 1)

m− k − 1
(m− u− 1)

xk+1 k + 1 m− k − 1 k + 2 m− k − 2
...

...
...

...
...

xm−1 m− 1 1 m 0

two-term elements will be ready after TX and during this delay, we can add the single-

term elements pair-wise. Thus, if we have less two-term elements, more single term

elements can be added pair-wise. Using Table 3.1, one can see that the worst case

will be in the position xk−1 or xk, which include u and m− u− 1 two-term elements,

as shown in the corresponding positions in Table 3.1. In other words, ck or ck−1 have

the longest critical path delay. In this regard and based on the Montgomery factor

r = xu, we study two possible cases:

Case I: If u ≤ m−1
2

(or u ≤ m−u− 1), then in the position xk, which now has the

maximum number of two-term elements, there are m− u− 1 two-term elements and

u + 1 single-term elements (see Table 3.1). The u + 1 single-term elements can be

added (after bit-wise AND with the corresponding coordinates of B) by one level of

XOR gates which results in d(u+ 1) /2e terms. At the same time, the computation

of the m − u − 1 two-term elements is also complete and we can AND them with

the corresponding coordinates of B. Thus, the total delay of the multiplication in

the position xk to generate ck is TA +
(
1 +

⌈
log2(m− u− 1 +

⌈
u+1
2

⌉⌉)
TX = TA +

dlog2(2m− u− 1)eTX .
Case II: If u > m−1

2
(or u > m−u−1), the maximum number of two-term elements

occurs in the position xk−1, where there are u two-term elements and m−u single-term
elements (see Table 3.1). Therefore, similar to Case I, the total delay of the whole

operation in the position xk−1 to generate ck−1 is TA+(1 + dlog2 (d(m+ u) /2e)e)TX =

TA + dlog2 (m+ u)eTX .
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3.4 Bit-Parallel Montgomery Multiplier for Irreducible

Pentanomials

Irreducible pentanomials form another family of irreducible polynomials which are

used in �nite �eld arithmetic, e.g., [14], [29], [64], [69], and [71], where there is no

irreducible trinomial of the desired degree m. Generally, they can be formulated as

F (z) = zm + zk3 + zk2 + zk1 + 1, 1 ≤ k1 < k2 < k3 < m. (3.18)

We assume that r = xu is the Montgomery factor. The matrix M plays an impor-

tant role in designing e�cient bit-parallel Montgomery multipliers. If each column

of the matrix M is computed with one step of reduction, then the matrix M can

be obtained faster. In this regard, we use a special type of irreducible pentanomials.

This type of irreducible pentanomials, known as type-II irreducible pentanomials, is

de�ned as F (z) = zm + zn+2 + zn+1 + zn + 1, where 2 ≤ n ≤
⌊
m
2

⌋
− 1 [71]. Now, we

can present the following remark.

Remark 3.5. Assume F (z) is an irreducible pentanomial (see (3.18)), F (x) = 0 and

r = xu is the Montgomery factor. The computation of matrix M de�ned in (3.10) is

very fast for type-II irreducible pentanomials (Step 2 of Algorithm 7). In this case,

for any u, there is at least one value for i, where the computation of A′(i) will require

two steps of reduction. If u = n or u = n + 1, then the matrix M will be in the

simplest form regarding the steps of reduction, where for u = n (resp. u = n + 1)

only the term A′(m−u−1) (resp. A
′
(−u)) will require two steps of reduction.

To verify the above remark, we start by considering the computation of A′(i), where

i ∈ [−u,−1]. Similar to the proof of Lemma 3.1, it is easy to show that we should

have u ≤ k1. Similarly, in order to have one step of reduction for computation of

A′(i), i ∈ [1,m− u− 1], the following condition should also be met, m− u− 1 + k3 ≤
m ⇒ u ≥ k3 − 1. Therefore, u should satisfy both u ≤ k1 and u ≥ k3 − 1 which

is impossible. In such cases, at least k3 − k1 − 1 columns of the matrix M require

more than one steps of reduction. So, if one minimizes k3− k1− 1, then less columns

of the matrix M will require two steps of reduction which means it will be easier

to obtain the matrix M. Thus, k1, k2, and k3 should be three consecutive numbers

which means the pentanomial should be a type-II irreducible pentanomial. In this

case, only one column will require more than one step of reduction. Now, if we choose

u = k1 = n, then only A′(m−u−1) will require two steps of reduction. Similarly, if we

choose u = k3 − 1 = n+ 1, then only A′(−u) will require two steps of reduction.
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Figure 3.6: The matrix M for type-II irreducible pentanomials using u = n.

In this chapter, we obtain the time and area complexities of the bit-parallel Mont-

gomery multiplier for r = xn. We note that the same results can be obtained by using

r = xn+1 and this is not considered due to the page limit. The matrix M for type-II

irreducible pentanomials is shown in Fig. 3.6. Here, we show how it is obtained (i.e.,

Step 3 of Algorithm 7). We assume that A = A′(0) = am−1x
m−1 + · · ·+ a1x+ a0. The

coe�cients of A′(0) are shown with black nodes in Fig. 3.6 in the column A′(0). Then,

A′(1) can be obtained by

A′(1) = A′(0)xmodF (x),

=
m−2∑
i=0

aix
i+1 + am−1(x

n+2 + xn+1 + xn + 1).
(3.19)

It is clear that the coe�cients of (3.19) are obtained by shifting the coe�cients of

A′(0) to left and reducing the term am−1x
m by F (x). In this regard, the shifted terms,

which are shifted vertically in the matrix M, are depicted by black nodes in Fig. 3.6.

Thus, in column A′(1) four new terms (am−1) are added to the positions x0, xn, xn+1,

and xn+2. Those new terms are depicted by white nodes in Fig. 3.6. Thus, (3.19) can

be obtained with the delay of an XOR gate and using three two-input XOR gates.

Similarly, as depicted in Fig. 3.6, A′(2) can be obtained with the same delay and

the same number of gates. Now, we can consider the general case of two consecutive
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columns. We assume that 2 ≤ j ≤ m− n− 3 and we obtain A′(j+1) by

A′(j) =

m−1−j∑
i=0

aix
i+j +

m−1∑
i=m−j

ai(x
n+2+i−(m−j)+

xn+1+i−(m−j) + xn+i−(m−j) + xi−(m−j)),

(3.20)

and

A′(j+1) =

m−j−2∑
i=0

aix
i+j+1 + am−j−1(x

n+2 + xn+1 + xn + 1)

+
m−1∑
i=m−j

ai(x
n+2+i−(m−j−1) + xn+1+i−(m−j−1)+

xn+i−(m−j−1) + xi−(m−j−1)).

(3.21)

By comparing (3.20) and (3.21), it is clear that one can obtain (3.21) by shifting

the coe�cients of (3.20) to left, or equivalently down-shifting the entries of the column

A′(j) in M down, and adding four new terms in the positions x0, xn, xn+1, and xn+2.

Using (3.21), there are two terms in the position xn, three terms in the position xn+1,

and four terms in the position xn+2. So, we need one new XOR gate in the position

xn and one new XOR gate in the position xn+1. But for the position xn+2, we can use

two approaches. In the �rst approach, we can obtain the entry in the position xn+2

by reusing the shifted coe�cient of A′(j) which is a three-term coe�cient (three black

nodes in Fig. 3.6) and adding it to the new term in the position xn+2 (one white

node in Fig. 3.6). This results in having the delay of 3TX , however we use only one

extra XOR gate. In the second approach, we reuse one of the XOR gates of A′(j) in

the position xn+1 and obtain the �nal result by using two more new XOR gates. This

results in having the delay of 2TX , however we use two additional XOR gates for this

entry. Therefore, we can design two bit-parallel Montgomery multipliers. One is faster

and we call it the Fast Montgomery Multiplier (FMM) and the other one requires

less area and we call it the Low Complexity Montgomery Multiplier (LCMM). Now,

we can conclude that in the FMM (resp. LCMM), each new column in the matrix

M, i.e., A′(j), requires four (resp. three) XOR gates for 3 ≤ j ≤ m − n − 2. For

j = m− n− 2 in (3.20), we have
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A′(m−n−2) =
n+1∑
i=0

aix
i+m−n−2+

m−1∑
i=n+2

ai(x
i + xi−1 + xi−2 + xi−(n+2)).

(3.22)

Note that in (3.22), we have am−1+an+1 in the position x
m−1. Now, the rightmost

column of the matrix M, i.e., A′(m−n−1), is obtained by multiplying (3.22) by x and

reducing with F (x). Therefore, the term am−1 + an+1 will be in the positions x0,

xn, xn+1, and xn+2. This is shown with white nodes in the column A′(m−n−1) in Fig.

3.6. As am−1 + an+1 is computed in A′(1), it does not require any new gate. Now, in

the column A′(m−n−1), there is a �ve-term element in the position xn+2. This element

is a summation of a three-term and a two-term elements, which are reused. Here

again, we have two possibilities. In the LCMM, these two can be summed up in the

�nal XOR tree. So, we need two XOR gates to obtain A′(m−n−1) (one for the position

xn and one for the position xn+1). For the LCMM, we can compute the �ve term

element directly with the delay of 3TX and by using one new XOR gate. As a result,

A′(m−n−1) requires three XOR gates. Note that the matrix M can be obtained for

negative values of i similarly. However, no column requires two steps of reduction.

Now, we consider Step 4 in Algorithm 7. Remark 3.5 and Fig. 3.6 show that it is

not possible to compute all of the polynomials A′(i) by one step of reduction. It means

that if we obtain the matrix M for type-II pentanomials, at least one of the elements

of the matrix will be a summation of �ve terms. Having �ve terms in an entry of the

matrix implies that direct computation of the matrix M requires the delay of 3TX

and 2TX for the LCMM and the FMM, respectively. Then, the LCMM and the FMM

require the total delay of TA + (3 + dlog(m)e)TX and TA + (2 + dlog(m+ 1)e)TX
respectively. In the case of the Montgomery multiplication with type-II irreducible

pentanomials, similar procedure for trinomials can be used to reduce the delay. The

main point is that, similar to the discussion for trinomials, while we are computing

the elements of the matrix which are summations of three or four elements, we can

build a part of the �nal XOR tree for the elements of the matrix M which are single

terms or summation of two terms. This process is shown in Fig. 3.7 to obtain cn+1

for n ≤ m−1
2

in the FMM. It is noted that this architecture is slightly di�erent from

the architecture depicted in Fig. 3.5. The main di�erence is that the order of the

AND and XOR operations. Now, we can present two propositions for the area and

complexities of the bit-parallel Montgomery multipliers.
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Figure 3.7: The architecture of the FMM for type-II irreducible pentanomials to
compute cn+1 for u = n ≤ m−1

2
.

Proposition 3.6. Let r = xn (u = n) be the Montgomery factor. The fast bit-parallel

Montgomery Multiplier (FMM) using type-II irreducible pentanomials of degree m

requires m2 two-input AND gates and m2 + 3m − 9 two-input XOR gates. Also,

it has the time complexity of TA + (1 + dlog2 (m+ n)e)TX , if n ≥ m−1
2

and TA +

(1 + dlog2 (2m− n− 2)e)TX , if n < m−1
2

.

Proof. As stated above and shown in Fig. 3.6, the column A′(0) requires no XOR gate.

Four columns of the matrix M, i.e., (A′(−2) ,A
′
(−1) ,A

′
(1) , and A

′
(2)), require three XOR

gates, one column (A′(m−n−1)) requires two XOR gates and the rest of the columns

require four XOR gates. As a result, the total number of the XOR gates to obtain

the matrix M equals (m − 6) × 4 + 4 × 3 + 2 = 4m − 10. Finally, the elements

should be summed up by using m XOR trees (one for each position). There are

(m+ 1) elements in the position xn+2 as we break up the �ve-term element into two

elements. The rest of the positions have m elements. Thus, the XOR trees require

(m − 1) × (m − 1) + m = m2 −m + 1 XOR gates and consequently, the multiplier

requires m2 + 3m − 9 two-input XOR gates. Now, we can compute the number of

AND gates. In the matrix M, (m − 1) columns have m elements. The rightmost

column, i.e., A′(m−n−1), has (m + 1) elements as we break up the �ve-term element

into two parts. But the resulted two-term part is also used in the position x0. Thus,

in each column we need m AND gates and consequently, the multiplier requires m2

two-input AND gates.

Now, we consider the time complexity of the multiplier. The maximum delay
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occurs in a position (a row of the matrix M) which contains the maximum number of

elements with addition of more than two terms. Rows 0 to n− 1 and n+ 1 to m− 1

contain single term elements for positive and negative values of i in A′(i), respectively

(see Fig. 3.6). Thus, the maximum delay will be in one of the positions xn+1 or xn

which have m−n− 2 and n three/four-term elements, respectively. This is shown by

dashed lines in Fig. 3.6. We can consider the two possible cases.

Case I: If n ≤ m−1
2

(or n ≤ m− n− 2), then the position xn+1 will have the most

three/four-term elements. As depicted in Fig. 3.6, it has n + 1 two-term elements

(the columns A′(1), and A
′
(−1) to A

′
(−n)), m− n− 3 three-term elements (the columns

A′(2) to A
′
(m−n−2)), one four-term element (the column A′(m−n−1)), and one single-term

element (the column A′(0)). We compute the elements with three or four terms by

the delay of 2TX . Meanwhile, it is possible to compute two-term elements, so after

the delay of TX , we will have n + 1 single terms. We also have another single-term

element in the column A′(0) which results in having n+ 2 single terms after the delay

of TX . Now, we can AND them with the corresponding coordinates of B. Therefore,

after another delay of a two-input XOR gate, we will have
⌈
n+2
2

⌉
single terms. At

the same time, the computation of the three/four-term elements are complete and we

can AND them with the corresponding coordinates of B. At this point of time, we

have (1 + m − n − 3 +
⌈
n+2
2

⌉
) single terms and consequently, the total delay equals

TA +
(
2 +

⌈
log2

(
1 +m− n− 3 +

⌈
n+2
2

⌉)⌉)
TX = TA + (1 + dlog2 (2m− n− 2)e)TX .

This is shown in Fig. 3.7.

Case II: If n ≥ m−1
2

(or n > m− n− 2), then the position xn will have the most

three/four-term elements, where there are m−n− 1 two-term elements (the columns

A′(−1) and A′(1) to A′(m−n−2)), n elements with three terms (the columns A′(m−n−1)
and A′(−2) to A

′
(−n)), and one element with one term (the column A′(0)). Thus, the

delay of the bit-parallel Montgomery multiplier is TA+
(
2 +

⌈
log2

(
n+

⌈
m−n
2

⌉)⌉)
TX =

TA + (1 + dlog2 (m+ n)e)TX .

Note that the same area/time complexity can be obtained by using r = xn+1.

Now, we present the following proposition for the LCMM.

Proposition 3.7. Assuming r = xn (u = n) is used as the Montgomery factor,

the low complexity bit-parallel Montgomery multiplier (LCMM) using the type-II irre-

ducible pentanomial F (z) requires m2 two-input AND gates and m2+2m−3 two-input

XOR gates. Also, it has the time complexity of TA+
(
1 +

⌈
log2

(⌈
m−u
2

⌉
+ 4u− 5

)⌉)
TX ,

if u > m−1
2

and TA +
(
1 +

⌈
log2

(⌈
u+1
2

⌉
+ 4m− 4u− 9

)⌉)
TX , if u ≤ m−1

2
.

Proof. In this case, we need m two-input AND gates in each column and totally the
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multiplier requires m2 two-input AND gates. Now, we can obtain the number of the

XOR gates. The column A′(0) requires no XOR gate. The rest of the columns require

three two-input XOR gates. So, the matrix M is obtained by using 3×(m−1) = 3m−3

two-input XOR gates. Each of the �nal XOR trees have m elements in each position,

so they require m2 − m two-input XOR gates. Therefore, this multiplier requires

m2 + 2m− 3 two-input XOR gates.

Now, we can obtain the time complexity of this multiplier. In this case, the

number of four/�ve-term elements will determine the delay of the multiplier. Fig. 3.6

shows that the maximum number of four/�ve-term elements occurs in the positions

xn+2 or xn−1 which have m − u − 3 and u − 2 four/�ve-term elements, respectively.

So, we study the two possible cases as follows.

Case I: If u−2 ≤ m−u−3 or u ≤ m−1
2
, then the position xn+2 will have the most

four/�ve-term elements. In this column, we have u+1 single-term elements, one two-

term element, one three-term element and m−u−3 four/�ve-term elements. Similar

to Proposition 6, we have the delay of TA+
(
1 +

⌈
log2

(⌈
u+1
2

⌉
+ 4m− 4u− 9

)⌉)
TX .

Case II: If u − 2 > m − u − 3 or u > m−1
2
, then the position xn−1 will have the

most four-term elements. In this column, we have m − u single-term elements, one

two-term element, one three-term element and u − 2 four/�ve-term elements. This

results in the delay of TA +
(
1 +

⌈
log2

(⌈
m−u
2

⌉
+ 4u− 5

)⌉)
TX .

The following example illustrates the proposed multipliers. Note that the same

area/time complexity can be obtained by using u = n+ 1.

Example 3.1. Assuming F (z) = z7 +z4 +z3 +z2 +1 and using u = 2, we can obtain

the matrix M for the bit-parallel Montgomery multiplication as follows.

( 2) ( 1) (0) (1) (2) (3) (4)

2 0 1 0 6 5 4 3 6

3 0 1 2 0 1 0 6 5 4

4 0 1 3 0 2 1 6 0 5 6 4 5 3 6

5 1 4 0 3 2 6

                                                              A A A A A A A

a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a a a a a a

  
! ! ! ! ! ! !

" "

" " "

" " " " " " " "

" " "# 1 6 5 0 5 4 6 4 3 6

6 5 4 3 6 2 6 5 1 6 5 4 0 5 4 3 6
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The column A′(0) requires no XOR gate. The Column A′(1) requires three XOR

gates to compute (a1 + a6), (a2 + a6) , and (a3 + a6). The Column A′(2) also requires

three XOR gates, one to compute (a0 + a5), one for ((a1 + a6) + a5) as (a1 + a6)

is reused, and one for ((a2 + a6) + a5), as (a2 + a6) is reused. In Column A′(3), one

XOR is required for (a6 + a4) and one for ((a0 + a5) + a4), as (a0 + a5) is reused .

In the FMM, (a1 + a6 + a5 + a4) is obtained by ((a1 + a6) + (a5 + a4)) with reusing
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(a1 +a6) which results in using two XOR gates with the delay of 2TX . In the LCMM,

(a1 + a6 + a5 + a4) is obtained by ((a1 + a6 + a5) + a4) with reusing (a1 + a6 + a5).

In this case, one XOR gate is required but the delay is 3TX . In the column A′(4), one

XOR gate is required for obtaining (a5 + (a3 + a6)) as (a3 + a6) is reused. Obtaining

((a6 + a4) + (a3 + a6)) requires one XOR gate as both (a6 + a4) and (a3 + a6) are

reused. There are two possibilities to compute (a0 + a5 + a4 + a3 + a6). In the FMM,

it is considered as ((a0 + a5 + a4) + (a3 + a6)), where both (a0 + a5 + a4) and (a3 + a6)

are reused. But the addition is postponed to the �nal XOR tree, thus no XOR gate

is required. In the LCMM, ((a0 + a5 + a4) + (a3 + a6)) is obtained by an XOR gate

and the delay of 3TX . Note that A
′
(−1) and A

′
(−2) are obtained similarly.

The maximum delay in FMM occurs in the position x3 (in computing c3), where

c3 = ((a5 +a1)b0 + (a4 +a0)b1) + (a3b2 + (a2 +a6)b3) + ((a1 +a6) +a5)b4 + ((a0 +a5) +

a4)b5+((a3+a6)+(a6+a4))b6. By implementing the terms with the order represented

by the brackets, c3 is obtained with the delay of TA + (2 + dlog2(5)e)TX = TA + 5TX .

Note that the delay of the LCMM can be obtained similarly.

3.5 Montgomery Squaring over GF (2m)

After multiplication, squaring is the most important operation in �nite �eld arith-

metic. This operation is considered in polynomial basis by Wu in [84] for the general

case of irreducible polynomials and irreducible trinomials as a special case. In [38],

some general squarers are proposed using the MM algorithm. An optimized squarer

is proposed in [85] for irreducible trinomials using the MM algorithm. That squarer

is designed using r = xk as the Montgomery factor for irreducible trinomials and it

is shown that it has the delay of TX , whereas the delay of squaring in PB is at most

2TX .

Our proposed bit-serial and bit-parallel multipliers can be used to do the squaring

for general case of irreducible polynomials. However, it is possible to design e�cient

squarers for some important cases of special irreducible polynomials. For irreducible

trinomials, the Montgomery factor r = xk−1 can be used to design squarers as well.

However, the results will be similar to those of [85]. Therefore, we do not consider

the squaring operation for irreducible trinomials and instead, we focus on bit-parallel

squaring using type-II irreducible pentanomials. Squaring using the Montgomery

multiplication can be formulated as



53

C = A2 · x−umodF (x)

=

(
m−1∑
i=0

aix
2i

)
· x−umodF (x).

(3.23)

Now, we show that e�cient squarers can be designed using the Montgomery factors

xn or xn+1. Let xn be the Montgomery factor. In this case, (3.23) can be rewritten

as

C =
m−1∑
i=0

aix
2i−nmodF (x). (3.24)

Here, we only consider odd values of m as they are more important than even

values of m [67]. First, we assume that m and n are odd numbers. As a result, (3.24)

can be written as

C =am−1x
2m−n−2 +

m−2∑
i=m+n

2

aix
2i−n

+

m+n−2
2∑

i=n+1
2

aix
2i−n +

n−1
2∑
i=0

aix
2i−nmodF (x).

(3.25)

Now, we present the following lemma to �nd the area and time complexities of

Montgomery Squaring (MS) using type-II irreducible pentanomials.

Lemma 3.2. Let m and n be odd positive integers and n < m−3
2
, and F (z) = zm +

zn+2 + zn+1 + zn+ 1 be an irreducible polynomial. In this case, C = A2 ·x−nmodF (x)

can be obtained with the maximum delay of 2TX using at most
(
m−3
2

+m+ 4
)
two-

input XOR gates.

Proof. Let us represent (3.25) in the �rst row of Fig. 3.8, where the gray and white

cells represent the coordinates of A and zeros, respectively. There are three sums in

(3.25). The second sum in (3.25) does not require any reduction and is shown in the

middle part of the �rst row in Fig. 3.8 indicated by indices from 1 to m − 2. The

last sum produces negative powers of x and using the fact that xj = xm+j +xn+2+j +

xn+1+j + xn+j for negative j's, it can be reduced as
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n−1
2∑
i=0

aix
2i−n =

n−1
2∑
i=0

aix
m+2i−n +

n−1
2∑
i=0

aix
2i+2

+

n−1
2∑
i=0

aix
2i+1 +

n−1
2∑
i=0

aix
2i.

(3.26)

Four sums on the right side of (3.26) are shown in rows 2-5 of Fig. 3.8. The

�rst sum in (3.25) produces terms with degrees greater or equal to m and using

xm+j = xn+2+j + xn+1+j + xn+j + xj for j ≥ 0, it is reduced as

m−2∑
i=m+n

2

aix
2i−n =

m−2∑
i=m+n

2

aix
2i−m+2 +

m−2∑
i=m+n

2

aix
2i−m+1

+
m−2∑
i=m+n

2

an+i
2
x2i−m +

m−2∑
i=m+n

2

an+i
2
x2i−n−m.

(3.27)

The four sums in (3.27) are shown in rows 6-9 of Fig. 3.8. Finally, the term

am−1x
2(m−1)−n is reduced as

am−1x
2m−n−2 = am−1(x

m + xm−1 + xm−2 + xm−n−2)

= am−1(x
m−1 + xm−2 + xm−n−2 + xn+2

+ xn+1 + xn + 1)modF (x).

This is shown in the last row of Fig. 3.8. Considering the overlaps between the

odd and even powers of x separately, at most four terms (gray cells) contribute to

any position which results in the delay of 2TX .

To obtain the area complexity of squaring using Fig. 3.8, we start from position 0

and consider all the overlaps. For even i's satisfying 0 ≤ i ≤ n−1 (n+1
2

coordinates), ci

is a summation of three terms. For odd i's satisfying 1 ≤ i ≤ n−2 (n−1
2

coordinates),

ci is a summation of two terms. The coordinates cn, cn+1, and cn+2 are summations of

four terms however, one XOR gate is reused twice (�rst cells of rows 7-9 overlapping

with row 10). For even i's satisfying n + 3 ≤ i ≤ m − 1 (m−n−2
2

coordinates), ci

is a summation of two terms. For odd i's satisfying n + 4 ≤ i ≤ m − 2 (m−n−4
2

coordinates), ci is a summation of three terms. Thus, there are m−3
2

two-term, m−3
2

three-term, and 3 four-term coordinates (reusing one XOR gate twice), which results

in using at most
(
m−3
2

+m+ 4
)
two-input XOR gates to obtain the coordinates of

C.

We present the explicit formulation to obtain ci below, where m and n are odd
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 1
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n
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!
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!
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Figure 3.8: Squaring for odd values of m and n, n < m−3
2
.

numbers and n < m−3
2
. Note that in all of the cases, i is increased by 2 (e.g.,

i = 1, · · ·n− 2 means i = 1, 3, · · · , n− 4, n− 2).

ci =



a0 + am+n
2

+ am−1 i = 0

a i−1
2

+ an+1
2

+ i−1
2

i = 1, · · · , n− 2

a i
2
−1 + a i

2
+ am+n+i

2
i = 2, · · · , n− 1

an−1
2

+ an + am+n
2

+ am−1 i = n

an−1
2

+ am+n
2

+ i = n+ 1

am+2n+1
2

+ am−1

an+1 + am+n
2

+ i = n+ 2

am+n
2

+1 + am−1

am+i−1
2

+ am+n
2

+ i
2

i = n+ 3, · · · ,m− n− 2

an+1
2

+ i−1
2

+ i = n+ 4, · · · ,m− 2

am+i
2
−1 + am+i

2

a i−(m−n)
2

+ am+i−1
2

i = m− n, · · · ,m− 1.

For other values of m and n, C can be obtained similarly. The results are presented

as follows and veri�ed (compared) by Visual C++ simulations. Similar results can be

obtained by using r = xn+1 as the Montgomery factor. For odd m and n, n ≥ m+1
2
,

we have
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ci =



a0 + am+n
2

+ am−1 i = 0

ab i
2c + abn2 c+1+b i

2c i = 1, · · · , n− 2

a i
2
−1 + a i

2
+ am+n

2
+ i

2
i = 2, · · · ,m− n− 2

a i−(m−n)
2

+ a i
2
−1 + a i

2
i = m− n, · · · , n− 1

abn2 c + an + am+n
2

+ am−1 i = n

a 2n−m+1
2

+ abn2 c + am+n
2

+ am−1 i = n+ 1

an+1 + am+n
2

+ am+n
2

+1 + am−1 i = n+ 2

a i−(m−n)
2

+ am+n
2

+ i−n
2

i = n+ 3, · · · ,m− 1

abn2 c+1+b i
2c + am+i

2
−1 + am+i

2
i = n+ 4, · · · ,m− 2

which requires at most
(
m−3
2

+m+ 4
)
XOR gates. For odd m, even n, and

n < m−3
2
, we have

ci =



a0 + an
2

+ am−1 i = 0

ab i
2c + abm+n+2

2 c+b i
2c i = 1, · · · , n− 1

a i
2
−1 + a i

2
+ an

2
+ i

2
i = 2, · · · , n− 2

an
2
−1 + an + am−1 i = n

abm+n+2
2 c + abm+n+2

2 c+bn+1
2 c i = n+ 1

+am−1

a 2n+2
2

+ abm+n+2
2 c + am−1 i = n+ 2

abm+n
2 c+ i−n−1

2
+ abm+n

2 c+ i−n+1
2

i = n+ 3, · · · ,m− n− 2

+abm+n+2
2 c+b i

2c
an

2
+ i

2
+ abm+n

2 c+b i−n+1
2 c i = n+ 4, · · · ,m− 1

a i−(m−n)
2

+ abm+n
2 c+ i−n−1

2
i = m− n, · · · ,m− 2

+abm+n
2 c+ i−n+1

2

which requires at most
(
m−3
2

+m+ 2
)
two-input XOR gates. For odd m, even n,

and n ≥ m+1
2
, we have
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ci =



a0 + an
2

+ am−1 i = 0

ab i
2c + abm+n

2 c+1+b i
2c i = 1, · · · ,m− n− 2

a i
2
−1 + a i

2
+ an

2
+ i

2
i = 2, · · · , n− 2

a i−(m−n)
2

+ ab i
2c i = m− n, · · · , n− 1

an
2
−1 + an + am−1 i = n

a 2n−m+1
2

+ abm+n+2
2 c + am−1 i = n+ 1

an
2
+n+2

2
+ abm+n+2

2 c + am−1 i = n+ 2

a i−(m−n)
2

+ abm+n
2 c+ i−n−1

2
+ i = n+ 3, · · · ,m− 2

abm+n
2 c+ i−n+1

2

an
2
+ i

2
+ abm+n

2 c+b i−n+1
2 c i = n+ 4, · · · ,m− 1

3.6 Comparison

In this section, we compare our results to their best counterparts from the same

category available in the literature. Table 3.2 compares our proposed bit-serial Mont-

gomery multipliers to those of [6] and [38]. Note that these multipliers can be derived

from the digit-serial multipliers of [79] and [38], respectively if the digit size is equal

to one. Although our bit-serial multipliers can be used for the general Montgomery

factor r = xu, 1 ≤ u ≤ m, they are only compared for two values of u = m − 1 and

u = m. This is because no pre-computation is required in the initialization step of

the multiplication algorithms. The critical path delay of the multiplier proposed in

[38] is 2TA + 2TX and it has the latency of m clock cycles. Our proposed LSB-�rst

bit-serial multiplier of Fig. 3.3 has the critical path delay of TA+2TX and the latency

of (m + 1) and m clock cycles for r = xm and r = xm−1, respectively. We have also

proposed an MSB-�rst bit-serial multiplier (Fig. 3.1) which has the critical path delay

of TA + TX and the latency of (m+ 1) and m clock cycles for r = xm and r = xm−1,

respectively. Thus, both of our bit-serial multipliers are faster than the bit-serial

multiplier of [38]. Note that our MSB-�rst bit-serial Montgomery multiplier is faster

than the existing bit-serial Montgomery multiplier in the literature. All of these three

bit-serial Montgomery multipliers require (2m − 1) XOR gates and (2m − 1) AND

gates and two m-bit registers. As seen from Table 3.2, the LSB-�rst bit-serial PB

multiplier and our MSB-�rst Montgomery multiplier have the same and least time

complexity. Thus, our MSB-�rst MM (with the LSB-�rst PB multiplier) can be used
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in the digit-serial MM algorithms, such as the one presented in [3], to reduce the

overall time complexity (see Remark 3.1). Also, the LSB-�rst bit-serial PB multiplier

and our MSB-�rst Montgomery multiplier have the same area/time complexity.

We compare our proposed bit-parallel Montgomery multiplier using irreducible

trinomials with the Montgomery multiplier [85], two PB multipliers [30], [69], and an

SPB multiplier as shown in Table 3.3. Note that although bit-parallel multipliers can

be derived from digit-serial multipliers using the digit size m, they are not optimized.

Based on Table 3.3 all of the multipliers have the same area complexity. The time

complexity of our multiplier is lower than those of [30], [69], and [85] and equal to

the ones proposed in [14].

Our second bit-parallel Montgomery multiplier is designed for Type-II irreducible

pentanomials. In this case, we have proven that two Montgomery factors can result

in e�cient hardware implementation. Then, we have designed two bit-parallel multi-

pliers. Here, we compare our multipliers to the multipliers of [14] and [71] which are

based on type-II irreducible pentanomials. The results are shown in Table 3.4. The

multiplier of [14] uses v = n+ 1 for the shifted polynomial basis (SPB) and it has the

same time complexity as our FMM. However, our multiplier uses two Montgomery

factors, i.e., u = n, n+ 1, and requires a few gates less than the one presented in [14].

The multiplier of [71] has higher delay than our fast multiplier, but it requires less

hardware. The comparison of the multiplier of [71] and our LCMM depends on the

value of n. For some value of n, our LCMM is faster and for some values of n, they

have the same delay. Note that in [71], n should satisfy 2 ≤ n ≤
⌊
m
2

⌋
− 1, whereas in

our design it should satisfy 2 ≤ n ≤ m− 3. The area complexity of [71] also depends

on n. For some values of n, it has less XOR gates than our LCMM, whereas for some

values of n our LCMM requires less XOR gates. To show the di�erences among those

multipliers, we use m = 163 which is recommended by NIST for elliptic curve digital

signatures algorithm [67]. There are three irreducible pentanomials of degree 163 and

2 ≤ n ≤
⌊
m
2

⌋
− 1. We present the complexity of the multipliers using these three

pentanomials in Table 3.5.

To the best knowledge of the authors, squaring using type-II irreducible pen-

tanomials has not been considered before. However in [84], it is shown that at most

4(m− 1) additions are required for squaring using general irreducible pentanomials.

In [20], the complexity of squaring is presented for some pentanomials after optimiza-

tion. We compare the results reported in [84] and [20] to ours in Table 3.6. It is clear

that in our presented squarers, the delay is reduced to 2TX for type-II irreducible

pentanomials with slightly less number of XOR gates. This delay is equal to the
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Table 3.5: Comparison of Multipliers for Irreducible Pentanomials

Multiplier Type #AND #XOR Delay
F (z) = z163 + z68 + z67 + z66 + 1

[14] SPB 26569 27051 TA + 10TX
[71] DB 26569 27008 TA + 11TX

Proposed FMM
MM

26569 27049 TA + 10TX
Proposed LCMM 26569 26892 TA + 10TX

F (z) = z163 + z70 + z69 + z68 + 1
[14] SPB 26569 27051 TA + 10TX
[71] DB 26569 27014 TA + 11TX

Proposed FMM
MM

26569 27049 TA + 10TX
Proposed LCMM 26569 26892 TA + 10TX

F (z) = z163 + z72 + z71 + z70 + 1
[14] SPB 26569 27051 TA + 9TX
[71] DB 26569 27020 TA + 11TX

Proposed FMM
MM

26569 27049 TA + 9TX
Proposed LCMM 26569 26892 TA + 10TX

Table 3.6: Comparison of Squarers for Irreducible Pentanomials

Irreducible Polynomial #XOR Delay

Polynomial Basis

F (z) = zm + zk3 + zk2 + zk1 + 1 [84] ≤ 4(m− 1) -
F (z) = z163 + z7 + z6 + z3 + 1 [20] 246 3TX

Proposed Montgomery squaring

F (z) = zm + zn+2 + zn+1 + zn + 1
≤

m−3
2

+m+4
2TX

e.g., F (z) = z163 + z72 + z71 + z70 + 1 245 2TX
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delay of squaring in the PB using trinomials (xm + xk + 1), where m + k is an odd

number. Therefore, our squarer together with our proposed FMM can be used to

accelerate scalar multiplication in ECC.
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Chapter 4

Digit-Serial Structures for the Shifted

Polynomial Basis Multiplication over

Binary Extension Fields

In the previous chapter, we presented �nite �eld multipliers using the Montgomery

multiplication algorithm. In this chapter, we study digit-serial shifted polynomial

basis multiplication. It is noted that in a digit-serial multiplier, one digit of an

operand is processed at each cycle. In this regard, we present the general formulation

for the digit-serial multiplication using the shifted polynomial basis and derive an

MSD-�rst digit-serial multiplication algorithm. Then, we choose e�cient values to

construct the shifted polynomial basis, which reduce the time and area complexities

of the general digit-serial multiplication operation. Based on the presented formula-

tion and the algorithm, we also propose an additional digit-serial shifted polynomial

basis multiplication algorithm. This multiplication algorithm, which is denoted as

hybrid, uses parallel operations to obtain the multiplication product. We compare

the proposed multiplication algorithms to the digit-serial polynomial basis multipli-

cation algorithms and show that their complexities match or outperform them. More

importantly, the presented hybrid algorithm reduces the latency of the multiplication

to half of the latency in polynomial basis multiplication, while it has the same critical

path delay. The digit-serial multipliers presented in this chapter can also be found in

[24].

The rest of this chapter is organized as follows. In Section 4.1, we consider digit-

serial shifted polynomial basis multiplication. Then in Section 4.2, we provide our

discussions and comparisons.



65

4.1 Digit-Serial Shifted Polynomial Basis Multipli-

cation

In a digit-serial multiplier, the bits are grouped as digits and at each cycle, one digit

is processed. We de�ne D ≥ 2 to be the digit size, which means each digit has D bits.

We start from the Least Signi�cant Bit (LSB) of the operand B, i.e., b0, and group

D consecutive bits as a digit. This results in having n = dm/De digits in operand B.

Consequently, we obtain

B =
n−1∑
i=0

Bix
iD−v, (4.1)

where

Bi =


D−1∑
j=0

bDi+jx
j, 0 ≤ i ≤ n− 2

m−1−D(n−1)∑
j=0

bDi+jx
j, i = n− 1

(4.2)

Using (4.1) and

C = A ·BmodF (x), (4.3)

one can write the general formulation of the digit-serial SPB multiplication as

C =B0Ax
−v +B1Ax

D−v + · · ·+Bn−1Ax
(n−1)D−v modF (x). (4.4)

Now, we try to �nd appropriate values for v to design e�cient digit-serial SPB

multipliers. By inspecting (4.4), we propose to choose v = (n − 1)D. The reason is

that in this case we have Ax(n−1)D−v = A and there is no need to compute Ax(n−1)D−v

before processing the digits of B. As a result, we are interested in (n− 1)D− v = 0,

which results in the proposed value for v. Now using v = (n− 1)D, we rewrite (4.4)

as

C = B0Ax
−(n−1)D +B1Ax

−(n−2)D + · · ·+Bn−1AmodF (x). (4.5)

Now, we can propose a digit-serial SPB multiplication algorithm, namely the Most

Signi�cant Digit (MSD)-�rst digit-serial SPB multiplication algorithm based on (4.5).
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4.1.1 The MSD-First Digit-Serial SPB Multiplier

Using (4.5), one can design the MSD-�rst digit-serial SPB multiplier in which the

operand B is processed from its MSD, i.e., Bn−1. We show the algorithm correspond-

ing to this multiplier in Algorithm 4.1 for general irreducible polynomials. Note that

v = (n−1)D is chosen to construct the shifted polynomial basis. Step 1 in Algorithm

4.1 is the initialization and the main operations of the algorithm include a multipli-

cation followed by an addition in Step 3 and a multiplication by x−D followed by a

reduction by F (x) in Step 4. In this algorithm, A′ and C ′ can be represented as

A′ =
m−1∑
i=0

a′ix
i−v, C ′ =

m+D−2∑
i=0

c′ix
i−v. (4.6)

Algorithm 4.1 The MSD-�rst digit-serial SPB multiplication

Inputs: A, B, F (x), n = dm/De , v = (n− 1)D
Output:C = A ·BmodF (x)
Step 1: A′ := A, C ′ := 0
Step 2: For i := 0 to n− 1
Step 3: C ′ := Bn−i−1A

′ + C ′

Step 4: A′ := A′ · x−DmodF (x)
Step 5: C := C ′modF (x)

The structure of the MSD-�rst digit-serial SPB multiplier is shown in Fig. 4.1.

This structure includes two loops. The right and the left loops implement Step 3 and

Step 4 of Algorithm 4.1, respectively. The module represented by × multiplies A′

(a polynomial of degree m − v − 1) by a digit of B, i.e., Bi (a polynomial of degree

D − 1), for i = 0 to n − 1, and as a result, its output has m + D − 1 bits. This

module is shown in Fig. 4.2a for m = 11, D = 3, and v = 9, where Bi,j means the

j-th bit of the i-th digit. The module represented by XOR adds the result of the

×-module with the current value of C ′ and stores it in C ′ again. In this structure,

C ′ is an (m + D − 1)-bit register which contains the coordinates of the polynomial

C ′ shown in (4.6). The x−D-module multiplies A′ by x−D and reduces the result by

F (x) as shown in Fig. 4.2b. The �nal result, shown in (4.6), is stored in A′ using

an m-bit register. The �nal mod F (x) module implements Step 5 of Algorithm 4.1,

which is the �nal step and is a reduction of a polynomial of degree (m− v +D − 2)

by F (x). This operation has a similar structure to Fig. 4.2b, however in this case,

(D− 1) terms which are of degree m− v to (m− v+D− 2) should be reduced. As a
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result, there should be (D− 1) rows in Fig. 4.2b for this operation. Note that in Fig.

4.1, A′(i) and C ′(i) show the content of the registers A′ and C ′ at the i-th iteration of

Algorithm 4.1, respectively.

× XORA C  
D

x
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1 2 3 1 0n n n
B B B B B

! ! !
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Figure 4.1: The MSD-�rst digit-serial SPB multiplier.

In Algorithm 4.1, Step 3 and Step 4 are performed in parallel. As a result, the

critical path delay of the multiplier is equal to the maximum of the delays in Step 3

and Step 4. In Step 3 of Algorithm 4.1, the m-bit A′ is multiplied by the D-bit Bn−i−1

and then, the result is added to C ′. Let TA and TX represent the delay of a two-input

AND gate and the delay of a two-input XOR gate, respectively. This Step requires

the delay of TA to obtain the partial products, and then the delay of dlog2(D+ 1)eTX
to sum up D rows of partial products with C ′ using an XOR tree in the general case

(see Fig. 4.2a). As a result, it requires the delay of TA + dlog2(D + 1)eTX . In Step

4 of Algorithm 4.1, the m-bit A′ is multiplied by x−D followed by the modulo F (x)

reduction. Generally, this can be obtained by the delay of D(TA+TX) (see Fig. 4.2b).

Consequently, the multiplier associated with Algorithm 4.1 has the critical path delay

of D(TA+TX). Also, the latency of this multiplier is n+1 clock cycles or equivalently,

dm/De+ 1 clock cycles, including the �nal mod F (x) operation.

Note that it is possible to do the reduction each time in Step 3 of Algorithm 4.1,

however it increases the critical path delay of the multiplication, especially when the

time complexity of the multiplication by x−D followed by the modulo F (x) reduction

is optimized.

In Fig. 4.1, the ×-module and the XOR module together require D×m two-input

AND gates and D×m two-input XOR gates. The x−D-module requires D× (m− 1)

two-input AND gates and D × (m − 1) two-input XOR gates, and the mod F (x)

operation requires (D − 1) × (m − 1) two-input AND gates and (D − 1) × (m − 1)

two-input XOR gates for the general case of irreducible polynomials. Also, there are

(2m+D−1) registers in this architecture. As a result, we can conclude the following

to obtain the complexities of the proposed MSD-�rst digit-serial SPB multiplier.

Proposition 4.1. The MSD-�rst digit-serial SPB multiplier of Fig. 4.1 requires
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Figure 4.2: (a) Multiplication by Bi, (b) multiplication by x
−D followed by reduction.

D× (3m−2)−m+1 two-input AND gates and D× (3m−2)−m+1 two-input XOR

gates and (2m + D − 1) registers. Also, it has the critical path delay of D(TA + TX)

and the latency of n+ 1 clock cycles.

It is interesting to note that the proposed MSD-�rst digit-serial SPB multiplication

algorithm has the same area and time complexities in comparison with the LSD-�rst

polynomial basis multiplication algorithm proposed in [79].

4.1.2 Hybrid Digit-Serial SPB Multiplication

From (4.4), the SPB multiplication can be formulated as

C =B0Ax
−v +B1Ax

D−v + · · ·+Bbn
2
cAx

bn
2
cD−v+

· · ·+Bn−1Ax
(n−1)D−v modF (x).

(4.7)

Now, we choose v = bn
2
cD to rewrite (4.7) as

C =B0Ax
−bn

2
cD +B1Ax

D−bn
2
cD + · · ·+Bbn

2
c−1Ax

−D+

Bbn
2
cA+Bbn

2
c+1Ax

D · · ·+Bn−1Ax
bn−2

2
cD modF (x).

(4.8)
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It is clear from (4.8) that C includes two parts. One part is based on the positive

powers of x and the other part is based on the negative powers of x. We can show

this fact by

C = C ′ + C ′′, (4.9)

where

C ′ =B0Ax
−bn

2
cD +B1Ax

D−bn
2
cD + · · ·+

Bbn
2
c−1Ax

−D modF (x),
(4.10)

and

C ′′ =Bbn
2
cA+Bbn

2
c+1Ax

D + · · ·+
Bn−1Ax

bn−2
2
cD modF (x).

(4.11)

We note that obtaining C ′ is a digit-serial SPB multiplication which considers the

bn
2
c least signi�cant digits of the operand B. On the other hand, obtaining C ′′ is a

digit-serial polynomial basis multiplication which involves the n−bn
2
c most signi�cant

digits of the operand B. As explained in the previous section, these two parallel

operations can be implemented with an equal critical path delay. A similar approach

is outlined in [3] for the digit-serial Montgomery multiplication over binary extension

�elds. However, two parallel operations of the algorithm in [3] have di�erent critical

path delays for general irreducible polynomials. For example, in the simplest case, i.e.,

one-bit digits, one of the parallel operations (the polynomial basis multiplication) has

the critical path delay of TA+TX , but the other one (the Montgomery multiplication)

has the critical path delay of 2TA + 2TX . Also, this technique is applied on the

Montgomery multiplication of integers in [33].

Now, based on our proposed MSD-�rst digit-serial SPB multiplier and also the

available LSD-�rst digit-serial polynomial basis, e.g., [79], we propose an algorithm to

reduce the time complexity of the digit-serial SPB multiplication. This algorithm is

shown in Algorithm 4.2. Note that in this algorithm B−1 and Bn are equal to zero. It

is seen from Algorithm 4.2 that two multiplications are carried out in parallel and two

partial products are summed up and reduced by F (x) in Step 7. In this algorithm,

A′, A′′, C ′, and C ′′ can be represented as
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A′ =
m−1∑
i=0

a′ix
i−v, C ′ =

m+D−2∑
i=0

c′ix
i−v,

A′′ =
m−1∑
i=0

a′′i x
i−v, C ′′ =

m+D−2∑
i=0

c′′i x
i−v.

Algorithm 4.2 Hybrid digit-serial SPB multiplication

Inputs: A, B, F (x), n = dm/De , v = bn
2
cD

Output:C = A ·BmodF (x)
Step 1: A′ := A, C ′ := 0, C ′′ = 0,A′′ := A
Step 2: For i := 0 to bn

2
c

Step 3: A′ := A′ · x−DmodF (x)
Step 4: C ′ := C ′ +Bbn

2
c−1−iA

′

Step 5: C ′′ := C ′′ +Bbn
2
c+iA

′′

Step 6: A′′ := A′′ · xDmodF (x)
Step 7: C := C ′ + C ′′modF (x)

The hardware structure of Algorithm 4.2 is shown in Fig. 4.3. In this �gure, the

top structure obtains (4.10) and the bottom structure obtains (4.11). The modules of

this �gure are similar to the ones used in Fig. 4.1. The module labeled xD performs

a multiplication by xD followed by a reduction by F (x). Also, A′ and A′′ are m-bit

registers, whereas C ′ and C ′′ are (M +D − 1)-bit registers.

It is noted that for odd values of n, there are bn
2
c terms in (4.10) and bn

2
c + 1

terms in (4.11). Obtaining C ′ requires bn
2
c + 1 clock cycles and it is because the

polynomial Ax−DmodF (x) should be pre-computed. As a result, a zero is fed to

the top structure in Fig. 4.3 to perform the pre-computation. But, the �rst term in

obtaining C ′′ is Bbn
2
cA which does not require any pre-computation. Consequently,

both C ′ and C ′′ can be obtained after bn
2
c + 1 clock cycles. For even values of n,

both (4.10) and (4.11) include n
2
terms. However, C ′ needs n

2
+ 1 clock cycles and

C ′′ requires n
2
clock cycles. We explain the complexity of this algorithm in the next

section.

4.2 Discussion and Comparison

In this section, we consider the time complexity of the proposed digit-serial SPB

multipliers in more details and extend the results of [79] to the proposed digit-serial
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Figure 4.3: Architecture of the hybrid digit-serial SPB multiplication (Algorithm 4.2).

SPB multipliers.

The main operation in Algorithm 4.1 is the multiplication by x−D followed by a

reduction by F (x). Thus, by making this operation faster, one can reduce the critical

path delay of the proposed multipliers. Assuming T ∈ GF (2m), we have the following

T · x−D =(tm−1x
m−v−1 + · · ·+ tDx

D−v + tD−1x
D−v−1 + · · ·

+ t1x
−v+1 + t0x

−v) · x−DmodF (x),

=(tm−1x
m−v−D−1 + · · ·+ tDx

−v + tD−1x
−v−1 + · · ·

+ t1x
−v−D+1 + t0x

−v−D)modF (x).

(4.12)

There are D terms in (4.12) which should be reduced by F (x) i.e., (tD−1x
−v−1 +

· · ·+ t1x
−v−D+1 + t0x

−v−D)modF (x). As a result, the complexity of (4.12) depends

on the irreducible polynomial F (x) and the value of D. In this regard, we present

the following proposition.

Proposition 4.2. Assume F (z) = zm +
m−1∑
i=l+1

fiz
i + flz

l + 1 is an irreducible polyno-

mial over GF (2) and x is a root of F (z). In this case, no reduction is required to

represent x−v−k in the shifted polynomial basis if k ≤ l.

Proof. We can write
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F (x) =xm +
m−1∑
i=l+1

fix
i + flx

l + 1 = 0,

⇒x−v−k × (xm +
m−1∑
i=l+1

fix
i + flx

l + 1) = 0,

or

xm−v−k +
m−1∑
i=l+1

fix
i−v−k + flx

l−v−k = x−v−k.

So, if l − v − k ≥ −v, then the left side of the equation above is already in the

SPB, Thus, no reduction is required for l ≥ k and the proof is complete.

Now, we can propose the following lemma which is used to obtain the complexity

results of the proposed digit-serial SPB multipliers.

Lemma 4.1. Let {x−v, x−v+1, . . . , xm−v−1} be the SPB and A be a �eld element,

where x is a root of the irreducible polynomial F (z) = zm+
m−1∑
i=l+1

fiz
i+flz

l +1. Then,

A · x−DmodF (x) can be represented in the shifted polynomial basis by only one step

of reduction if D ≤ l, where D is the digit size. In this case, A · x−DmodF (x) is

obtained with the delay of TA + dlog2(D + 1)eTX for the general case.

Proof. We can represent A ∈ GF (2m) as

A = am−1x
m−v−1 + · · ·+ a2x

−v+2 + a1x
−v+1 + a0x

−v,

and consequently,

A · x−D = am−1x
m−v−1−D + · · ·+ a2x

−v+2−D + a1x
−v+1−D + a0x

−v−D.

By using proposition 4.2, it is clear that the terms whose powers of x are between

−v − 1 and −v −D, i.e., aD−1x
−v−1 and a0x

−v−D, can be represented in the shifted

polynomial basis by only one step of reduction if D ≤ l. These D terms can be

reduced in parallel with the delay of TA and then, they should be summed up with

the other term of A · x−D. This requires the total delay of TA + dlog2(D+ 1)eTX .

Obtaining A · x−DmodF (x) for D ≤ l is depicted in Fig. 4.4. In this case, D

terms should be reduced by the irreducible polynomial which requires D × (m − l)
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Figure 4.4: Multiplication by x−D followed by reduction for D ≤ l.

two-input AND gates as fm = 1. Then, they should be added to the rest of the terms

in A · x−D by using D × (m− l + 1) XOR gates.

Remark 4.1. The area and time complexities of the proposed hybrid digit-serial SPB

multiplier can be obtained using the results presented for the MSD-�rst digit-serial

SPB multipliers. This algorithm has the critical path of the MSD-�rst digit-serial

SPB multiplication algorithm, however its latency is almost the half of that of the

MSD-�rst digit-serial SPB multiplication algorithm. One can achieve this latency

using the LSD-�rst digit-serial polynomial basis multipliers if the digit size 2D is

chosen. However, this results in doubling the critical path delay in the general case

or adding an extra delay of an XOR gate in the special cases. The hardware overhead

of the hybrid digit-serial SPB multiplier with the digit size D in comparison to the

digit-serial polynomial basis multiplier with digit size 2D is 2m registers and m+D−1

XOR gates. In general, the time×area factor of the hybrid digit-serial SPB multiplier

is equal to that of the MSD-�rst digit-serial SPB multiplier. However, better results

can be achieved if di�erent structures like semi-systolic arrays used to implement the

hybrid digit-serial algorithms. This is because the lower latency results in reducing

the number of the required rows of the semi-systolic array and as a result, even for

equal digit sizes, the hardware overhead will be very low.

By using Lemma 4.1, the time complexity of the proposed digit-serial SPB multi-

pliers is presented in Table 4.1.

It is possible to construct the shifted polynomial basis using v = m − 1 which

extends the range of the e�cient digit sizes. In this case, the operand B is represented

as B = bm−1+bm−2x
−1+ · · ·+a0x

−(m−1). This time, instead of grouping the bits from

right to left (e.g., starting from the LSB), we start from the MSB of B and group D

consecutive terms to form a digit of degree at most −(D − 1), i.e.,
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Table 4.1: Time Complexity of the Digit-Serial Multipliers over Binary Extension
Fields

Algorithm Type Critical Path delay Latency

F (z) = zm + fwz
w +

w−1∑
i=l+1

fiz
i + flz

l + 1, D > min{ l,m− w}
Algorithm 4.1: MSD-�rst SPB D(TA + TX) n+ 1
Algorithm 4.2: Hybrid SPB D(TA + TX)

⌊
n
2

⌋
+ 2

F (z) = zm + fwz
w +

w−1∑
i=1

fiz
i + 1, D > m− w

MSD-�rst [79] Polynomial basis D(TA + TX) + TX n+ 1
LSD-�rst [79] Polynomial basis D(TA + TX) n+ 1

F (z) = zm + fwz
w +

w−1∑
i=l+1

fiz
i + flz

l + 1, 2 ≤ D ≤ min{ l,m− w}
Algorithm 4.1: MSD-�rst SPB TA + dlog2(D + 1)eTX n+ 1
Algorithm 4.2: Hybrid SPB TA + dlog2(D + 1)eTX

⌊
n
2

⌋
+ 2

F (z) = zm + fwz
w +

w−1∑
i=1

fiz
i + 1, 2 ≤ D ≤ m− w

MSD-�rst [79] Polynomials basis TA + dlog2(2D + 1)eTX n+ 1
LSD-�rst [79] Polynomials basis TA + dlog2(D + 1)eTX n+ 1

B′i =


D−1∑
j=0

bm−Di−j−1x
−j, 0 ≤ i ≤ n− 2

m−1−D(n−1)∑
j=0

bm−Di−j−1x
−j, i = n− 1

(4.13)

So, B = B′0 +B′1x
−D + ..+B′n−1x

−(n−1)D. An algorithm similar to Algorithm 4.1

can be used as well. However in this case, the coe�cients of C ′ in Step 3 of Algorithm

4.1 have degrees between −v −D + 1 and m− v −D. This is depicted in Fig. 4.5a

for m = 11, v = 10, and D = 5, where B′i,j represents the j-th bit of B′i. Note

that the partial products are shifted to the right in this case. The complexity of the

multiplication of a �eld element by B′i is the same as the one shown in Fig. 4.2a.

Therefore, the reductions in Steps 3 and 4 of Algorithm 4.1 are similar in this case

and as a result, the digit size should satisfy 2 ≤ D ≤ l for the fast multiplication.

An example: We use m = 163 which is recommended by NIST for elliptic curve

digital signatures algorithm [67]. Considering F (z) = z163 + z97 + z96 + z95 + 1

as an irreducible pentanomial, the digit size in Algorithm 4.1 should satisfy 2 ≤
D ≤ 66 which results in e�cient implementation. For the digit-serial polynomial

basis multiplication algorithms of [79], the digit size should satisfy 2 ≤ D ≤ 66 to

provide the same complexity. As a result, the digit-size for the hybrid digit-serial SPB
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Figure 4.5: Multiplication by B′i using (a) single accumulator, (b) double accumulator.

multipliers should satisfy 2 ≤ D ≤ 66. Using v = m−1 and grouping the coordinates

of B from left to right, the digit size should satisfy 2 ≤ D ≤ 95.

The techniques introduced in [40] can be extended to the SPB to reduce the time

complexity of the digit-serial multipliers as well. In this case, multiple accumulators

are used to implement the multiplication A × B′i. This is shown in Fig. 4.5b using

two accumulators. The main di�erence is that the results of [40] are presented for the

multiplication by xD followed by a reduction. However, it is possible to extend them

to the multiplication by x−D followed by a reduction used in the SPB.
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Chapter 5

Digit-Level Semi-Systolic and Systolic

Structures for the Shifted Polynomial

Basis Multiplication over Binary

Extension Fields

In the previous chapter, we showed new digit-serial shifted polynomial basis mul-

tipliers. In this chapter, we implement shifted polynomial basis multipliers using

semi-systolic and systolic array structures. The two contributions of this chapter are

stated as follows. The �rst contribution of this chapter is introducing a new low

time-complexity digit-level semi-systolic array structure for the SPB multiplication.

The proposed structure is based on a similar technique used in [3], [55], [33], and

the one proposed in Chapter 4. In our proposed structure, the parallel operations are

balanced and have the same critical path delay. The semi-systolic structure presented

in this chapter is a low-latency pipelined multiplier with low critical path delay. We

show that our proposed semi-systolic multiplier has the least time complexity among

the existing ones available in the literature including [42], [32], [9], [3], [55], and [61].

The second contribution is to propose a digit-level systolic array SPB multiplier which

o�ers a better time complexity, in terms of the combination of the critical path delay

and latency, than the existing counterparts for general irreducible polynomials such

as [87], [83], [41], [35], [45], and [8]. The structures presented in this chapter are also

available in [22]

The rest of this chapter is organized as follows. In Section 5.1, we present our

semi-systolic array implementation of the SPB multiplication. In Section 5.2, we

propose a digit-level systolic array structure for the SPB multiplication. Finally in
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Section 5.3, we provide our implementation results and comparisons.

5.1 Semi-Systolic SPB Multiplication

By expanding B, the SPB multiplication C =
m−1∑
i=0

cix
i−v = A · BmodF (x) can be

written as

C =b0Ax
−v + b1Ax

−v+1 + · · ·+ bv−1Ax
−1

+ bvA+ · · ·+ bm−1Ax
m−v−1modF (x).

(5.1)

Now, we split C in (5.1) into two polynomials as follows

C ′ = b0Ax
−v + b1Ax

−v+1 + · · ·+ bv−1Ax
−1modF (x), (5.2)

C ′′ = bvA+ bv+1Ax+ · · ·+ bm−1Ax
m−v−1modF (x). (5.3)

Our objective is to implement (5.2) and (5.3) independently and in parallel. In

this regard, for (5.2) we de�ne a recursive equation as

A′(i+1) = A′(i) · x−1modF (x), (5.4)

where A′(0) = A, and i = 1, · · · , v − 1 and we write (5.2) as C ′ = b0A
(v) + b1A

(v−1) +

· · ·+ bv−1A
(1). Now, another recursive equation is de�ned as

C ′(i+1) = bv−iA
′(i) + C ′(i), i = 1, · · · , v, (5.5)

where C ′(0) = C ′(1) = 0 and C ′ = C ′(v+1). As a result, C ′ is obtained after v + 1

iterations (i.e., clock cycles). This is because one extra iteration is required to compute

A′(1). Let A′(i) be represented as a
′(i)
m−1x

m−1 + · · ·+ a
′(i)
1 x+ a

′(i)
0 . Now, (5.4) is written

as A′(i+1) =

(
a
′(i)
m−1x

m−2 + · · ·+ a
′(i)
1 + a

′(i)
0 x−1

)
· x−v mod F (x). (5.6)

Using the fact that F (x) = 0, it follows x−1 = xm−1 + fm−1x
m−2 + · · ·+ f1. Thus,

(5.6) is rewritten as

A′(i+1) = (a
′(i)
0 xm−1−v + (a

′(i)
0 fm−1 + a

′(i)
m−1)x

m−2−v+

· · ·+ (a
′(i)
0 f1 + a

′(i)
1 )x−v.

(5.7)
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It can be concluded from (5.7) that for general irreducible polynomials, this oper-

ation has the critical path delay of TA + TX , where TA and TX represent the delay of

a two-input AND gate and a two-input XOR gate, respectively. The second recursive

equation, (5.5), is written as C ′(i+1) = (bv−ia
′(i)
m−1 + c

′(i)
m−1)x

m−1−v + · · · + (bv−ia
′(i)
0 +

c
′(i)
0 )x−v. One can notice that this operation has the critical path delay of TA+TX for

general irreducible polynomials as well. As (5.4) and (5.5) are computed in parallel,

the computation of C ′ in (5.2) has the critical path delay of TA + TX and requires

v + 1 clock cycles (i.e., iterations).

Next, we consider (5.3). The structure proposed in [32] can be used to implement

this part. First, the following recursive equation is de�ned with the maximum degree

of m− v − 1 using the SPB

A′′(i+1) = A′′(i) · xmodF (x), (5.8)

where A′′(0) = A and i = 0, · · · ,m − v − 2. By rewriting (5.3) and using (5.8), one

obtains C ′′ = bvA
(0) + bv+1A

(1) + · · · + bm−1A
(m−v−1), which results in the following

recursive equation

C ′′(i+1) = bv+iA
′′(i) + C ′′(i), i = 0, · · · ,m− v − 1, (5.9)

where C ′′(0) = 0 and C ′′ = C ′′(m−v). Therefore, C ′′ is obtained after m− v iterations

(i.e., clock cycles). Using the fact that xm = fm−1x
m−1 + · · · + f1x + 1 and similar

to (5.7), (5.8) can be realized in hardware with the critical path delay of TA + TX .

Similarly, (5.9) can be implemented with the critical path delay of TA + TX .

Similar to C ′, C ′′ is obtained by computing (5.8) and (5.9) in parallel. As a result,

this operation has the critical path delay of TA + TX and requires m− v clock cycles

(i.e., iterations). It is noted that (5.2) is a SPB multiplication which only processes

v least signi�cant bits of the operand B. Also, (5.3) is a PB multiplication which

processes m − v most signi�cant bits of the operand B. As a result, the delay of

obtaining C directly depends on the maximum delay of computing (5.2) and (5.3)

which require v + 1 and m − v clock cycles with the critical path delay of TA + TX ,

respectively. As C ′ and C ′′ are computed in parallel, it is e�cient to have equal

latencies in computing (5.2) and (5.3). Thus, we are interested in the following

v + 1 = m− v ⇒ v =
⌊m

2

⌋
. (5.10)

Note that (5.10) implies that m is an odd integer which is the common case in

cryptographic applications [67]. Therefore, based on (5.10), the SPB multiplication



79

2

m
b0

1
2

m
b

1
2

m
b

A

A

1m
b

0
b

PE
v0

PE
1

PE PE

0,1
PE

0,0
PE

1,1
PE

1,0
PE

,1
PE

v

,0
PE

v

1 1 1 1 1 1

m

m

m

m

m

m

m

m

m

m

m

CC

C

Figure 5.1: One-dimensional semi-systolic SPB multiplier.

can be performed e�ciently if we choose v =
⌊
m
2

⌋
. The algorithm associated with

this SPB multiplication is shown in Algorithm 5.1. In each cycle of this algorithm,

two bits of B are processed. In Steps 4 and 5 of this algorithm, we compute C ′ =∑v
i=0 bv−1−i

(
A · x−(i+1) mod F (x)

)
and C ′′ =

∑v
i=0 bv+i (A · xi mod F (x)) which are

equal to (5.2) and (5.3), respectively. Note that in Algorithm 5.1, b−1 = 0.

Algorithm 5.1 Low time-complexity SPB multiplication algorithm

Inputs: A, B ∈ GF (2m), F (x), v =
⌊
m
2

⌋
Output:C = A ·B mod F (x)
Step 1: A′ := A, C ′ := 0,A′′ := A, C ′′ := 0
Step 2: For i := 0 to

⌊
m
2

⌋
Step 3: A′ := A′ · x−1 mod F (x)
Step 4: C ′ := bv−1−iA

′ + C ′

Step 5: C ′′ := bv+iA
′′ + C ′′

Step 6: A′′ := A′′ · x mod F (x)
Step 7: C := C ′ + C ′′ mod F (x)

Now, we present a semi-systolic structure for Algorithm 5.1 in Fig. 5.1 using (5.4),

(5.5), (5.8), and (5.9). The main loop in Algorithm 5.1 (Step 2) has v + 1 iterations

and consequently, the semi-systolic array structure requires v+ 1 processing elements

(PEs). The PEs represented by PEi for i = 0 to v in Fig. 5.1 implement Steps

3-6 of Algorithm 5.1. To show the parallel operations, these PEs are split into two

smaller PEs. The PEs represented by PEi,0 implement Steps 3 and 4, and the ones

represented by PEi,1 implement Steps 5 and 6 of the algorithm. This means that

PEi,0 realizes (5.4) and (5.5), and PEi,1 realizes (5.8) and (5.9). Finally, the last step
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of the algorithm (Step 7) requires a di�erent PE which is labeled as PE ′ in Fig. 5.1.

Now, we present this semi-systolic array structure in more details as shown in Fig.

5.2a. The cells are shown with two indices represented by (i, j), where 0 ≤ i ≤
⌈
m
2

⌉
is

the row number starting from the top row, and 0 ≤ j ≤ m− 1 is the column number

starting from the right-hand side column. The row i in Fig. 5.2a represents PEi

shown in Fig. 5.1. To explain this structure, we show the internal structure of the

main cell (i, j) in Fig. 5.2b. Note that PEi,0 and PEi,1 have been merged. However,

to distinguish between di�erent PEs, we have shown the internal structures of PE i,0

and PEi,1 with gray and white gates, respectively. Corresponding to Steps 3-4 and

5-6, these two sets of gates work in parallel without any interaction. The last row of

the structure implements Step 7 of Algorithm 5.1 (i.e., PE ′ is Fig. 5.1) which includes

m two-input XOR gates. Note that in the �rst row of Fig. 5.2a, one of the inputs b

(the bottom horizontal line) is zero since in (5.2), A(1) = A · x−1 mod F (x) should be

obtained �rst.

Considering Fig. 5.2b, it follows that the critical path delay of this structure is

TA + TX and its latency is
(⌊

m
2

⌋
+ 2
)
clock cycle. This structure has two types of

cells. As mentioned before,
(⌊

m
2

⌋
+ 1
)
�rst rows perform the multiplication (PE0 to

PEv) and the last row performs the �nal addition (PE ′). As a result, one can state

the following for the complexity of this multiplier.

Proposition 5.1. The semi-systolic implementation of the SPB multiplication in-

cludes m ×
(⌊

m
2

⌋
+ 1
)
cells of the �rst type (as shown in Fig. 5.2), each of which

contains four two-input AND gates, four two-input XOR gates, and �ve latches for

general irreducible polynomials. Also, the last row requires m two-input XOR gates.

The cells shown in Fig. 5.2b can be further simpli�ed in some cases. Some of the

inputs of the cells located on the top row are zero. This results in removing some of

the the XOR gates. The same case happens in the leftmost and rightmost columns

as well, where a′
(i−1)
j+1 = 0 and a′′

(i−1)
j−1 = 0, respectively. Also, all the cells located on

the row labeled
⌊
m
2

⌋
only produce C ′ and C ′′. Consequently, all the gates required

to generate the other outputs can be removed. Fig 5.2c shows a case where the cells

located on the leftmost column have been optimized based on a′
(i−1)
j+1 = 0 and fm = 1.
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5.2 Systolic Array Implementation of the SPB Mul-

tiplication using General Irreducible Polynomi-

als

In this section, we design a digit-level systolic SPB multiplier using general irreducible

polynomials. From Fig. 5.2a, one can notice that the inputs bis, 0 ≤ i < m, are

connected to the cells using global lines which should be removed to achieve a systolic

structure. Therefore, it is required to latch all the horizontal connections as well.

Without lack of generality and for sake of simplicity, we set the digit size to d = 2.

Each basic cell in Fig. 5.2a processes two bits of the operand B. Here, we modify the

basic cells shown in Fig. 5.2a to process two bits of the operand A as well. In this

regard, we combine two neighboring cells to form a new cell which is shown in Fig.

5.3. The small dots on the interconnections show the necessary latches.

Using the new cells, Fig. 5.4 shows the digit-level systolic SPB multiplier using

general irreducible polynomials. The new cell (i′, j′) in Fig. 5.4 is formed by merging

the cells (i′, 2j′) and (i′, 2j′+1) in Fig. 5.2a. Since m is chosen to be an odd number in

cryptographic applications, the cells in the leftmost column have a simpler structure

similar to the one shown in Fig. 5.2b. The small rectangular blocks on inputs bis,

0 ≤ i < m, and outputs of row
⌊
m
2

⌋
represent the number of delay units required to be

considered on the corresponding connection. The delay units for the vertical inputs

of the �rst row of the digit-level systolic array have not been depicted in Fig. 5.4 for

simplicity. Here again some of the cells shown in Fig. 5.4 can be further simpli�ed.

This includes all the cells of the �rst row, where some inputs are �xed to zero and

the cells on the second last row where just C ′ and C ′′ should be computed.

From Fig. 5.3 and Fig. 5.4, the critical path delay of this structure is TA+TX with

the latency of 3
⌈
m
2

⌉
+ 2 and each cell requires 8 two-input AND gates, 8 two-input

XOR gates, and 28 latches. The total number of the cells is
⌈
m
2

⌉2
plus m two-input

XOR gates for the last row.

The presented structure can be generalized for other even digit sizes as well.

Assuming d is the digit size, the general structure is constructed by merging the cells

of d/2 rows and d columns in Fig. 5.2a. Then, the cut-set systolization technique

should be applied. As a result, each cell will process d bits of both A and B.
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5.3 Complexity Analysis and Comparisons

The complexity results of the semi-systolic array implementation of the �nite �eld

multipliers are summarized in Table 5.1. For all the designs, it is assumed that the

input F (x) is latched. Also, TX3 and TM represent the delay of a three-input XOR

gate and a multiplexer, respectively. Assuming m is an odd positive integer [67], this

structure (without simpli�cation) requires 2m more two-input XOR gates and 2m

more AND gates in comparison with [32]. However, the proposed structure requires

about 0.5m2− 6m less latches than [32] and its latency is almost a half of the latency

of the other classic semi-systolic �nite �eld multipliers (e.g., [42], [32], and [9]). In

comparison to the existing parallel structures with d = 2 (i.e., [3], [55], and [61]),

our proposed multiplier o�ers the least critical path delay with a similar latency and

area complexity. Note that the multiplier of [61] requires some multiplexers and they

have not been included in Table 5.1. Also, the area complexity of the multiplier

proposed in [55] is presented in Table 5.1 for general irreducible polynomials without

any simplifying assumption.

To further evaluate the proposed semi-systolic SPB multiplier, it has been imple-

mented on 65 nm Complementary Metal-Oxide-Semiconductor (CMOS) ASIC tech-

nology using the Synopsys® Design Analyzer® and structural VHDL. We have also

implemented the LSB-�rst semi-systolic PB multiplier of [32] as a good comparison

benchmark. The Map E�ort was set to medium with a target clock period of 1 ns.

The results are presented in Table 5.2 for some values of m up to 131 based on our

available resources in the laboratory (i.e., memory constraints of the Sun machines).

As one can see from the table, both structures have the same critical path delay.

Since the proposed structure requires less latches than the multiplier of [32] does, it

has lower area and power consumption.

The proposed digit-level systolic multiplier is compared to the existing systolic

multipliers in Table 5.3. Note that we have included the multipliers which mostly have

been designed for general irreducible polynomials to have a fair comparison. However,

some of the multipliers included in this table are designed for trinomials which are

expected to have better time and area complexities. It can be seen from the table

that the proposed multiplier has the critical path delay of TA +TX and the latency of

3
⌈
m
2

⌉
+ 2. One can notice from Table 5.3 that the proposed digit-level systolic array

SPB multiplier has a better time complexity while its area complexity is comparable

to the existing structures reported in [87], [83], [41], and [35]. In comparison to [45]

and [8], our proposed multiplier is faster however it has a higher area complexity.
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Table 5.1: Comparison of the Semi-Systolic Array Finite Field Multipliers

Structure #Cells A cell CPD Latency

[42]: PB m2 XOR3: 1 AND: 2
Latch: 3

TA+TX3 m

[32]: PB m2 XOR: 2 AND: 2
Latch: 3

TA + TX m

[9]: MM m× (m+ 1)
XOR3: 1 AND: 2

Latch: 3
TA+TX3 m+ 1

[61]: PB

(⌊
m
2

⌋
+ 1
)
×m

plus m XOR
gates

XOR: 6 AND: 4
Latch: 5

TA +
TX3 +
TM

⌊
m
2

⌋
+ 2

[3]: MM

(⌊
m
2

⌋
+ 1
)
×m

plus m XOR
gates

XOR: 4 AND: 4
Latch: 5

TA +
2TX

⌊
m
2

⌋
+ 2

[55]: MM

(⌊
m
2

⌋
+ 1
)
×m

plus m XOR
gates

XOR3: 2
AND: 4
Latch: 6

TA+TX3

⌊
m
2

⌋
+ 2

Fig. 5.2: SPB

(⌊
m
2

⌋
+ 1
)
×m

plus m XOR
gates

XOR: 4 AND: 4
Latch: 5

TA + TX
⌊
m
2

⌋
+ 2

Table 5.2: ASIC Implementation of Semi-Systolic Structures

Multiplier Critical path delay (ns) Latency Area (µm2) Power (mW )
m = 31

PB [32] 0.21 31 46, 767.75 54.23
SPB 0.21 17 41, 307.23 47.56

m = 91
PB [32] 0.28 91 417, 292.71 485.66
SPB 0.28 47 362, 039.06 405.99

m = 131
PB [32] 0.28 131 863, 966.36 1, 002.43
SPB 0.28 67 752, 009.93 836.67
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The multiplier reported in [46] for irreducible trinomials has a better time and area

complexities (the lower bound of the area has been reported in Table 5.3). It is

noted that this is expected since having the restriction of the polynomial to be a

trinomial simpli�es the multiplication algorithm and the hardware implementation.

However, our multiplier is designed for general irreducible polynomials without any

assumptions. It can be concluded from Table 5.3 that our proposed multiplier is

faster than the existing ones designed for general irreducible polynomials.
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Chapter 6

Concurrent Error Detection in

Montgomery Multiplication over

Binary Extension Fields

As mentioned in chapter 2, fault attacks have been common against cryptographic

algorithms. Concurrent error detection is one of the countermeasures used to protect

the crypto-processors in case of such attacks. In this chapter, we propose concurrent

error detection circuits for di�erent Montgomery multipliers which can be used as a

countermeasure against natural faults and fault attacks in cryptography. First, we

consider bit-serial Montgomery multiplication and propose a concurrent error detec-

tion circuit for the bit-serial multiplier of [38]. Then, we consider digit-serial Mont-

gomery multiplication and propose a multi-bit concurrent error detection circuit for

the digit-serial Montgomery multiplier of [38]. We note that to the best our knowl-

edge, no previous work has considered error detection in digit-serial polynomial basis

multiplication. Finally, we choose the bit-parallel Montgomery multiplier proposed in

Chapter 3 and derive the concurrent error detection structure. We have implemented

the proposed structures in ASIC and simulated their error detection capability us-

ing C++ for various cases. The results show that the area and time overheads are

small and the error detection capability is signi�cant. The material presented in this

chapter can also be found in [26].

The remainder of this paper is organized as follows. In Section 6.1, we present a

brief introduction to our error detection approach. In Section 6.2, we present a concur-

rent error detection circuit for bit-serial Montgomery multiplication. In Sections 6.3

and 6.4, we consider concurrent error detection in digit-serial and bit-parallel Mont-

gomery multiplication, respectively. Finally in Section 6.5, we present our analysis
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and complexity results in terms of error simulations and ASIC implementations.

6.1 Preliminaries

6.1.1 Concurrent Error Detection Approach

Here, we explain our approach to implement concurrent error detection circuits for

di�erent Montgomery multipliers. In this approach, the residue of one of the operands

(A as shown in Fig. 6.1) modulo a �xed polynomial (xl + 1) is computed and the

residue of the multiplication product modulo the same polynomial is predicted (i.e.,

C mod (xl + 1)). Di�erent polynomials can be used to compute the residues. In this

chapter, we choose xl + 1, where 1 < l < m is the number of the redundant bits used

for concurrent error detection. Note that using l = 1 is equivalent to the single-bit

parity-based approach, whereas 1 < l < m results in an l-bit interlacing parity code.

Throughout this chapter, we will use the hat notation to denote modulo (xl + 1)

reduction, i.e.,

Â = A mod (xl + 1) = âl−1x
l−1 + · · ·+ â1x+ â0,

where A ∈ GF (2m), âi ∈ {0, 1}, and 0 ≤ i ≤ l − 1. Also, we will use the following

properties of modular reduction

(A+B) mod (xl + 1) = Â+ B̂, (6.1)

where A and B are two �eld elements of GF (2m) and

(b · A) mod (xl + 1) = b · Â, (6.2)

where b ∈ GF (2).

The concurrent error detection approach has been depicted in Fig. 6.1. It is

assumed that A and Â are given at the same time, and the multiplication and con-

current error detection blocks run in parallel. The output of the concurrent error

detection block is the predicted C mod (xl + 1). To �nd the possible errors, the ac-

tual Ĉ is computed using the output of the multiplier (i.e., C) and compared to the

predicted one. The error signal is asserted high if the actual and predicted residues

are di�erent. Note that there is a connection between the Concurrent Error Detection

module and the multiplier in Fig. 6.1.
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Figure 6.1: Concurrent error detection scheme.

6.2 Concurrent Error Detection in the Bit-serial Mont-

gomery Multiplication over GF (2m)

In this section, we consider the concurrent error detection scheme for the bit-serial

Montgomery multiplier proposed in [38] using multi-bit parities to improve the error

detection capability of this multiplier.

Algorithm 6.1 shows the bit-serial Montgomery multiplication algorithm proposed

in [38]. Combining Steps 4 and 5 of this algorithm, one can obtain

Algorithm 6.1 Bit-Serial Montgomery Multiplication over GF (2m) [38]

Inputs: A,B, F (x)
Output: C = A ·B · x−m modF (x)
Step 1: T := 0
Step 2: For i := 0 to m− 1
Step 3: T ′ := T + biA
Step 4: T ′′ := T ′ + t′0F (x)
Step 5: T := T ′′/x
Step 6: C := T
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Algorithm 6.2 The Modi�ed Bit-Serial Montgomery Multiplication over GF (2m)

Inputs: A,B, F (x)
Output: C = A ·B · x−m modF (x)
Step 1: T := 0
Step 2: For i := 0 to m− 1
Step 3: T ′ := T + biA
Step 4: T := T ′ · x−1 mod F (x)
Step 6: C := T

T = (T ′ + t′0F (x))/x. (6.3)

It can be shown that the operation formulated in (6.3) is equivalent to T = T ′ ·
x−1 mod F (x). This is because one can write the following

F ′(x) = F (x)/x = x−1 mod F (x)

= fmx
m−1 + fm−1x

m−2 + · · ·+ f1.
(6.4)

Then, (6.3) can be written as

T =
(
t′m−1x

m−2 + · · ·+ t′1
)

+ t′0F
′(x) = T ′ · x−1 mod F (x). (6.5)

By replacing Steps 4 and 5 of Algorithm 6.1 with T = T ′ · x−1 mod F (x), one

can obtain the modi�ed algorithm as shown in Algorithm 6.2. The corresponding

hardware architecture of this multiplier has been depicted in Fig. 6.2. In this �gure,

A and T are two m-bit registers initialized with the coordinates of the operand A

and 0 ∈ GF (2m), respectively. Also, the module represented by ×x−1 performs a

multiplication by x−1 followed by a reduction by F (x). In this chapter, this module

is named as the x−1-module and Fig. 6.3 shows its hardware implementation using

white gates.

The other modules denoted by AND and XOR in Fig. 6.2 perform logical opera-

tions corresponding to Step 3 of Algorithm 6.2 (i.e., T ′ := T +biA) using m two-input

AND gates and m two-input XOR gates, respectively.

6.2.1 Formulation

To design a concurrent error detection mechanism for this multiplier, we consider

each step in Algorithm 6.2 separately. We begin with Step 3 of this algorithm and

present the following lemma.
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Lemma 6.1. Assume that T (i−1) is the content of T at the (i − 1)th iteration of

Algorithm 6.2 and T̂ (i−1) = t̂
(i−1)
l−1 xl−1 + · · ·+ t̂

(i−1)
1 x+ t̂

(i−1)
0 . Now, the coordinates of

T̂ ′(i) in Step 3 of Algorithm 6.2 can be computed as t̂′
(i)

j = t̂
(i−1)
j + biâj, 0 ≤ j < l.

Proof. Using the computation of T ′(i) = T (i−1) + biA in Step 3 of Algorithm 6.2,

and the properties (6.1) and (6.2), one can obtain T̂ ′(i) = T̂ (i−1) + biÂ. Thus, the

coordinates of T̂ ′(i) can be obtained from

t̂′
(i)

j = t̂
(i−1)
j + biâj, 0 ≤ j < l (6.6)

and the proof is complete.

Step 4 of Algorithm 6.2 performs T (i) = T ′(i) ·x−1 mod F (x). Thus, by computing

the both sides of this equation modulo (xl + 1), one can obtain

T̂ (i) =
(
T ′(i) · x−1 mod F (x)

)
mod (xl + 1).

To consider the concurrent error detection for this operation, we �rst present the

following lemma for Step 4 of Algorithm 6.2.

Lemma 6.2. Let T ′ and T = T ′ · x−1 mod F (x) be two �eld elements in GF (2m)

constructed by the irreducible polynomial F (z) and F (x) = 0. Also, assume T̂ ′ =

t̂′l−1x
l−1 + · · ·+ t̂′1x+ t̂′0 and F̂

′(x) = f̂ ′l−1x
l−1 + · · ·+ f̂ ′1x+ f̂ ′0, where F

′(x) is de�ned

in (6.4). Then, the coordinates of T̂ = T mod (xl + 1) can be found as follows

t̂j =

t̂′j+1 + t′0f̂
′
j 0 ≤ j < l − 1

t̂′0 + t′0

(
1 + f̂ ′l−1

)
j = l − 1.

Proof. Computing (6.5) modulo (xl + 1), one can write the following

T̂ =
(
t′m−1x

m−2 + · · ·+ t′1 + t′0F
′(x)
)

mod (xl + 1). (6.7)

First, we consider the �rst m terms in (6.7) and write (t′m−1x
m−2 + · · ·+ t′1) mod

(xl + 1) =

((
t′m−1x

m−1 + · · ·+ t′1x+ t′0
)
· x−1 + t′0x

−1) mod (xl + 1),

which can be rewritten as

((
t̂′l−1x

l−1 + · · ·+ t̂′1x+ t̂′0
)
· x−1 + t′0x

−1) mod (xl + 1),
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or

(
t̂′l−1x

l−2 + · · ·+ t̂′1 + t̂′0x
−1 + t′0x

−1) mod (xl + 1). (6.8)

Taking into account that x−1 mod (xl + 1) = xl−1 and by applying the properties

mentioned in (6.1) and (6.2) on (6.7) and (6.8), one can write

T̂ =
(
t̂′0 + t′0

(
1 + f̂ ′l−1

))
xl−1 + · · ·+

(
t̂′2 + t′0f̂

′
1

)
x+

(
t̂′1 + t′0f̂

′
0

)
, which completes

the proof.

6.2.2 Architecture

The hardware structure of the x−1-module with its error detection mechanism is

shown in Fig. 6.3 for the general irreducible polynomial F (x) and l = 2. In this

�gure, the white gates perform the normal function of the module and the gray gates

are the overhead to perform the error detection. It is noted that F (x) is usually �xed

in cryptographic applications and as a result, most of the gates shown in Fig. 6.3 can

be removed.

Remark 6.1. The concurrent error detection circuit in the x−1-module requires at

most l two-input XOR gates for a �xed irreducible polynomial F (z). However assum-

ing F (z) is an ω-nomial (i.e., F (z) has ω non-zero coordinates), this circuit requires

at most min(ω, l) two-input XOR gates. Note that in practical cryptographic appli-

cations ω equals 3 or 5 [67].

The overhead circuit to perform concurrent error detection in the bit-serial Mont-

gomery multiplier is shown in Fig. 6.4. In this �gure, T̂ ′ and Â are two l-bit registers

which store T ′ mod (xl+1) and A mod (xl+1), respectively. The gray blocks labeled

AND and XOR perform logical operations based on Lemma 1, and the block labeled

×x−1 CED, is constructed using Lemma 6.2 and is similar to the left-hand side of

Fig. 6.3. Finally, t′0 = t
(i−1)
0 + bia0 is the LSB of T ′ computed by the multiplier shown

in Fig. 6.2.

The bit-serial Montgomery multiplier shown in Fig. 6.2 requires 2m−1 two-input

XOR gates and 2m − 1 two-input AND gates for general irreducible polynomials.

Also, it requires two m-bit registers to store T and A. The critical path delay of this

multiplier is 2TA + 2TX , where TA and TX represent the delays of a two-input AND

gate and a two-input XOR gate, respectively.

Since both Fig. 6.2 and Fig. 6.4 have the critical path delay of 2TA + 2TX ,

implementing the proposed concurrent error detection mechanism imposes time and
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Â

0
t "

Figure 6.4: Concurrent error detection for the bit-serial Montgomery multiplier.

area overheads as a result of the comparison and modulo (xl + 1) blocks in Fig. 6.1.

Besides these two components, the area overhead of the concurrent error detection

circuit (without �xing the irreducible polynomial) is 2l two-input AND gates, 2l two-

input XOR gates, and 2l �ip-�ops.

Remark 6.2. Using Lemma 6.1, one can design similar concurrent error detection

circuits for bit-serial multipliers of Chapter 3.

6.3 Concurrent Error Detection in Digit-Serial Mont-

gomery Multiplication over GF (2m)

In this section, we consider concurrent error detection for the digit-serial Montgomery

multiplier proposed in [38]. In this multiplier, the operand B is split into D-bit digits

(D ≥ 2) as

B = Bn−1x
(n−1)D + · · ·+B1x

D +B0,

where n =
⌈
m
D

⌉
, Bi =

∑D−1
j=0 biD+jx

j for 0 ≤ i ≤ n−2 and Bn−1 =
∑m−1−D(n−1)

j=0 b(n−1)D+jx
j.

This Montgomery multiplication algorithm is shown in Algorithm 6.3.

From (2.18), it follows that F (x) · Ḟ (x) = 1 mod xD for the Montgomery mul-

tiplication over binary extension �elds and r = xm. It is noted that the following

property also holds [38]
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Algorithm 6.3 Digit-serial Montgomery Multiplication over GF (2m) [38]

Inputs: A, B, , F (x), Ḟ0(x)
Output:C = A ·B · x−nDmodF (x)
Step 1: C := 0
Step 2: For i := 0 to n− 1
Step 3: C ′ := C +BiA

Step 4: M := C ′0 · Ḟ0(x)mod xD

Step 5: C ′′ := C ′ +M · F (x)
Step 6: C := C ′′/xD

Algorithm 6.4 The Modi�ed Digit-Serial Montgomery Multiplication over GF (2m)

Inputs: A, B, , F (x)
Output:C = A ·B · x−nDmodF (x)
Step 1: C := 0
Step 2: For i := 0 to n− 1
Step 3: C ′ := C +BiA
Step 4: C := C ′ · x−D mod F (x)

F0(x) · Ḟ 0(x) = 1 mod xD, (6.9)

where F0(x) and Ḟ0(x) in (6.9) are polynomials with the degree of at most (D − 1)

and represent the least signi�cant digits of F (x) and Ḟ (x), respectively. One can

notice that Ḟ 0(x) = 1 simpli�es the digit-serial Montgomery multiplication. Now, we

assume that the irreducible polynomial is of the form F (x) = xm+
∑m−1

i=k+1 fix
i+xk+1,

where k is the degree of the second smallest non-zero term in F (x). In this case, for

D ≤ k we always have F0(x) = 1. Replacing F0(x) with 1 in (6.9) results in Ḟ 0(x) = 1

which simpli�es Step 4 of Algorithm 6.3 to M := C ′0mod xD = C ′0.

Now, Steps 5 and 6 of Algorithm 6.3 can be combined as

C = (C ′ + C ′0F (x)) /xD. (6.10)

Similar to (6.3), (6.10) can be written as follows

C = C ′ · x−D mod F (x). (6.11)

It is shown in Chapter 4 that this operation is optimized for the shifted polynomial
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basis if D ≤ k. It is also true for the Montgomery multiplication and is compatible

with our previous assumption to have Ḟ 0(x) = 1. Thus, we will use the condition

D ≤ k in the rest of this chapter. Replacing Steps 5 and 6 of Algorithm 6.3 with

(6.11), the modi�ed digit-serial Montgomery multiplication algorithm is shown in

Algorithm 6.4.

6.3.1 Formulation

Now, we design the concurrent error detection scheme for this multiplier where D ≤ k.

Let Bi, 0 ≤ i < n, denote the ith digit of B in Step 3 of Algorithm 6.4 and Bi,j,

0 ≤ j < D represent its jth coordinate. It can be represented in the polynomial basis

as

Bi = Bi,D−1x
D−1 + · · ·+Bi,1x+Bi,0. (6.12)

Using (6.12), the multiplication of A by Bi in Step 3 of Algorithm 6.4 modulo

(xl + 1) can be written as

A ·Bi mod (xl + 1) =
D−1∑
j=0

Bi,j · A · xj mod (xl + 1). (6.13)

The following lemma is used to evaluate (6.13).

Lemma 6.3. Let A be a �eld element in GF (2m) and Â = A mod (xl + 1)=
l−1∑
t=0

âtx
t.

Then, A ·xj mod (xl+1) can be obtained by j-bit circular left shift of Â, where j ≥ 0.

Proof. If j = 0, the lemma is clear. For j > 0, �rst we compute A · x mod (xl + 1) as

A · x mod (xl + 1) =

(
x ·

l−1∑
t=0

âtx
t

)
mod (xl + 1). (6.14)

Taking into account that xl mod (xl + 1) = 1, (6.14) can be written as

A · x mod (xl + 1) =
l−2∑
t=0

âtx
t+1 + âl−1. (6.15)

One can notice that A · x mod (xl + 1) in (6.15) is obtained by one-bit circular

left shift of Â. Similarly, it can be shown that A ·xj mod (xl + 1) is obtained by j-bit

circular left shift of Â.
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Assuming Â(j) = A · xj mod (xl + 1), (6.13) can be rewritten as

A ·Bi mod (xl + 1) =
D−1∑
j=0

Bi,j · Â(j).

Consequently, from Step 3 of Algorithm 6.4 and using the property mentioned in

(6.1), one can obtain the following

Ĉ ′ = Ĉ +
D−1∑
j=0

Bi,j · Â(j), (6.16)

where Ĉ =
l−1∑
t=0

ĉtx
t.

Step 4 of Algorithm 6.4 performs a multiplication by x−D followed by a reduction

by F (x) and we present the following lemma to design the concurrent error detection

circuit for this operation.

Lemma 6.4. Let S and S ′ = S · x−D mod F (x) be two �eld elements in GF (2m)

constructed by the irreducible polynomial F (z) = zm +
∑m−1

j=k+1 fjz
j + zk + 1 and

F (x) = 0. Assuming Ŝ = ŝl−1x
l−1 + · · ·+ ŝ1x+ ŝ0, then Ŝ

′ is obtained as

Ŝ ′ =
l−1∑
i=0

ŝ|i+D|x
i +

D−1∑
i=0

six
|−D+i| +

D−1∑
j=0

sD−1−j

l−1∑
i=0

f̂ ′|i+j|x
i,

where D ≤ k and F̂ ′(x) = F ′(x) mod (xl + 1) =
∑l−1

i=0 f̂
′
ix
i.

Proof. We begin deriving the error detection formulation with

S ′ =(sm−1x
m−D−1 + · · ·+ sD+1x

+ sD + sD−1x
−1 + · · ·+ s0x

−D) mod F (x).
(6.17)

For D ≤ k and 1 ≤ i < D, one can write the following recursive formulation

x−(i+1) mod F (x) = x−(i) · x−1 mod F (x),

where

x−1 mod F (x) = F ′(x) = fmx
m−1 + · · ·+ xk−1.

So, x−(i+1) mod F (x) can be obtained by shifting F ′(x) i bits to the right. Con-

sequently, (x−(i+1) mod F (x)) mod (xl + 1), 1 ≤ i < D, can be computed by i-bit

circular right shift of F ′(x) mod (xl + 1). As a result, for 1 ≤ i < D one can write
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(
x−(i+1) mod F (x)

)
mod (xl + 1) =f̂ ′i−1x

l−1 + · · ·+
f̂ ′i+1x+ f̂ ′i.

(6.18)

Let us represent S ′ shown in (6.17) as

S ′ = S · x−D mod F (x) = S ′2 + S ′1,

where

S ′1 = (sD−1x
−1 + · · ·+ s0x

−D) mod F (x),

and

S ′2 = (sm−1x
m−D−1 + · · ·+ sD+1x+ sD).

To obtain Ŝ ′1 = S ′1 mod (xl + 1), we use (6.18) and write

Ŝ ′1 =
D−1∑
j=0

sD−1−j

l−1∑
i=0

f̂ ′|i+j|x
i, (6.19)

where |i+ j| = (i+ j) mod l. Also, Ŝ ′2 = S ′2 mod (xl + 1) can be written as

Ŝ ′2 = (S · x−D + sD−1x
−1 + · · ·+ s0x

−D) mod (xl + 1).

Note that S ·x−D mod (xl+1) is obtained by D-bit circular right shift of Ŝ. Thus,

Ŝ ′2 can be written as

Ŝ ′2 =
l−1∑
i=0

ŝ|i+D|x
i +

D−1∑
i=0

six
|−D+i|. (6.20)

Now using (6.19) and (6.20), one can conclude that

Ŝ ′ =
l−1∑
i=0

ŝ|i+D|x
i +

D−1∑
i=0

six
|−D+i| +

D−1∑
j=0

sD−1−j

l−1∑
i=0

f̂ ′|i+j|x
i,

and the proof is complete.

For the special case where D ≤ k and D ≤ l, the coordinates of Ŝ ′ are obtained

as ŝ′i = ŝi+D +
∑D−1

j=0 sD−1−j f̂
′
i+j, when 0 ≤ i < l −D, and ŝ′i = ŝi−(l−D) + si−(l−D) +∑D−1

j=0 sD−1−j f̂
′
i+j, when l −D ≤ i ≤ l − 1.
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Figure 6.5: Concurrent error detection in digit-serial Montgomery multiplication.

6.3.2 Architecture

The concurrent error detection scheme for the digit-serial Montgomery multiplication

algorithm is shown in Fig 6.5. In this �gure, the module labeled ×x−D CED, imple-

ments Lemma 6.4 and the modules labeled × and XOR, realize (6.16). Also, Â and Ĉ

are two l-bit registers which are initialized with the coordinates of A mod (xl+1) and

0, respectively. We present the following example to explain the structure of these

modules in details.

Example 6.1. Let m = 11, D = k = l = 4, C ′ =
∑13

i=0 c
′
ix
i, and Ĉ ′ = C ′ mod (x4 +

1) = ĉ′3x
3 + ĉ′2x

2 + ĉ′1x+ ĉ′0. In this case, ĉ′0 = c′0 + c′4 + c′8 + c′12, ĉ
′
1 = c′1 + c′5 + c′9 + c′13,

ĉ′2 = c′2 + c′6 + c′10, and ĉ
′
3 = c′3 + c′7 + c′11. We assume that Â = â3x

3 + â2x
2 + â1x

1 + â0.

For this example, the hardware realization of (6.16) has been depicted on the left-

hand side of Fig. 6.6a using gray cells and gates. The right-hand side of this �gure

implements Step 3 of Algorithm 6.4. The dashed line labeled with XOR shows that

all the cells in the same column should be added together using XOR trees in order

to obtain C ′ and Ĉ ′. Now,

C ′ · x−4 = c′13x
9 + · · ·+ c′4 + c′3x

−1 + · · ·+ c′0x
−4,

and C ′ · x−4 mod F (x) can be written as

c′13x
9 + · · ·+ c′4 + c′3F (x) · x−1 + · · ·+ c′0F (x) · x−4. (6.21)
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Since k = 4, F (x) ·x−1 to F (x) ·x−4 are obtained by right-shifting the coordinates

of F (x). Note that F (x) · x−1 is named F ′(x). The implementation of this operation

is shown in Fig. 6.6b using the cells and gates drawn in white.

Now, one can use (6.21) to obtain (C = C ′ · x−D mod F (x)) mod (x4 + 1). The

results are as follows: ĉ0 = c′4 + c′8 + c′12 + c′3f̂
′
0 + c′2f̂

′
1 + c′1f̂

′
2 + c′0f̂

′
3, ĉ1 = c′5 +

c′9 + c′13 + c′3f̂
′
1 + c′2f̂

′
2 + c′1f̂

′
3 + c′0f̂

′
0, ĉ2 = c′6 + c′10 + c′3f̂

′
2 + c′2f̂

′
3 + c′1f̂

′
0 + c′0f̂

′
1, and

ĉ3 = c′7 + c′11 + c′3f̂
′
3 + c′2f̂

′
0 + c′1f̂

′
1 + c′0f̂

′
2. Using the coordinates of Ĉ ′ de�ned in this

example, the coordinates of Ĉ can be rewritten as ĉ0 = ĉ′0+c′0+c′3f̂
′
0+c′2f̂

′
1+c′1f̂

′
2+c′0f̂

′
3,

ĉ1 = ĉ′1 + c′1 + c′3f̂
′
1 + c′2f̂

′
2 + c′1f̂

′
3 + c′0f̂

′
0, ĉ2 = ĉ′2 + c′2 + c′3f̂

′
2 + c′2f̂

′
3 + c′1f̂

′
0 + c′0f̂

′
1, and

ĉ3 = ĉ′3 + c′3 + c′3f̂
′
3 + c′2f̂

′
0 + c′1f̂

′
1 + c′0f̂

′
2.

Fig. 6.6b shows the x−D module with the concurrent error detection scheme. As

mentioned previously, the white cells and gates implement the normal function of this

block (i.e., a multiplication by x−D followed by a reduction by F (x)). The gray cells

and gates in this �gure implement the concurrent error detection mechanism. Note

that the last row in this �gure represents C and Ĉ = C mod (xl + 1). Each cell in

this row is obtained by summing up all the cells in its corresponding column (shown

by a dashed line, labeled XOR).

The digit-serial Montgomery multiplier of Algorithm 6.3 requires two m-bit reg-

isters to store A and C. The ×-module requires D × m two-input AND gates and

(D − 1) × (m − 1) two-input XOR gates. The XOR module requires m two-input

XOR gates. Finally, the x−D module requires D × (m − k) two-input AND gates

and D × (m− k + 1)− 1 two-input XOR gates. Note that all the AND gates in the

x−D module can be removed if F (z) is �xed. The critical path delay of the ×-module

together with the XOR block is TA + dlog2(D + 1)e ·TX . Also, the critical path delay

of the x−D-module is dlog2(D + 1)e · TX for a �xed F (z). As a result, the maximum

critical path delay of this multiplier is TA + 2 dlog2(D + 1)e · TX .
The concurrent error detection for the ×-module is implemented using D× l two-

input AND gates and (D−1)×l two-input XOR gates. Two l-bit registers are required

to store Â and Ĉ. The number of the gates in the ×x−D-CED module depends on the

values of D and l. For example, the special case mentioned in Corollary 6.3.1 requires

D× l two-input AND gates and (D+1)× l two-input XOR gates. Note that the AND

gates in this block can be removed if F (z) is �xed. Finally, the XOR block requires l

two-input XOR gates. For the special case mentioned in Corollary 6.3.1, the critical

path delay of the error detection scheme is TA+(dlog2(D + 1)e+ dlog2(D + 2)e) ·TX .
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Figure 6.6: Concurrent error detection for m = 11, D = k = l = 4: (a) the × module,
(b) the x−D module.

6.4 Concurrent Error Detection in Bit-Parallel Mont-

gomery Multiplication over GF (2m)

In this section, we study concurrent error detection for the bit-parallel Montgomery

multiplication. We apply the concurrent error detection approach used in this chapter

on the general bit-parallel Montgomery multiplier of Chapter 3. This multiplier is

based on a more general case of the Montgomery multiplication which generates

C = A ·B · x−u mod F (x), (6.22)
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where 0 < u ≤ m. In this case, (6.22) can be written as

C =
(
bm−1x

m−u−1 + · · ·+ bu + · · ·+ b0x
−u) · A mod F (x),

or

C = bm−1Ax
m−u−1 + · · ·+ buA+ · · ·+ b0Ax

−u mod F (x). (6.23)

In this section, we use A(i) to represent

A(i) = Axi mod F (x). (6.24)

The multiplication shown in (6.23) can be done by using the matrix M, whose

columns show the representation of A(i) with respect to the polynomial basis for

i ∈ [−u,m − u − 1]. So, the matrix M has m rows and m columns and this matrix

should be computed in the �rst step. Then, the Montgomery multiplication over

GF (2m) can be formulated as

C = M ·BT , (6.25)

where C = [c0, c1, · · · , cm−1]T and B = [b0, b1, · · · , bm−1]. Therefore, the second step

of the bit-parallel Montgomery multiplication obtains (6.25) which can be written as

C = bm−1A
(m−u−1) + · · ·+ buA+ · · ·+ b0A

(−u). (6.26)

6.4.1 Formulation

We have explained the procedure to detect errors in the x−1-module in Lemma 6.2.

For the x-modules, �rst we de�ne the following

F ′′(x) = xm mod F (x) = fm−1x
m−1 + · · ·+ f1x+ 1, (6.27)

and represent F ′′(x) mod (xl + 1) as

F̂ ′′ = F ′′(x) mod (xl + 1) =
l−1∑
t=0

f̂ ′′t x
t. (6.28)

Now, we present the following lemma which is similar to the results obtained in

[4] and [7].
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Lemma 6.5. Let S and S ′′ = S · x mod F (x) be two �eld elements in GF (2m)

constructed by the irreducible polynomial F (z) and F (x) = 0. Assuming Ŝ = S mod

(xl + 1) = ŝl−1x
l−1 + · · ·+ ŝ1x+ ŝ0, the coordinates of Ŝ ′′ = S ′′ mod (xl + 1) equal

ŝ′′j =

ŝ|j−1| + sm−1

(
1 + f̂ ′′j

)
if j = m mod l

ŝ|j−1| + sm−1f̂
′′
j otherwise,

where |j − 1|represents (j − 1) mod l.

Proof. The �eld element S can be represented as S =
∑m−1

t=0 stx
t. Then, S · x =

sm−1x
m + · · ·+ s1x

2 + s0x. Using (6.27), one can write the following

S · x mod F (x) =sm−1F
′′(x)+

sm−2x
m−1 + · · ·+ s1x

2 + s0x.
(6.29)

Using (6.28) and the property mentioned in (6.2), one can obtain the following

sm−1F
′′(x) mod (xl + 1) = sm−1

l−1∑
t=0

f̂ ′′t x
t. (6.30)

The rest of the terms in (6.29) can be written as

sm−2x
m−1 + · · ·+ s1x

2 + s0x = S · x+ sm−1x
m. (6.31)

For the right-hand side of (6.31), one can write (S · x+ sm−1x
m) mod (xl + 1) =

(ŝl−1x
l−1 + · · ·+ ŝ1x+ ŝ0) · x+ sm−1x

|m|,

where |m| = m mod l. Taking into account that xl mod (xl + 1) = 1, one can obtain

(S · x+ sm−1x
m) mod (xl + 1) =

l−2∑
t=0

ŝtx
t+1 + ŝl−1

+ sm−1x
|m|.

(6.32)

Now using (6.29), (6.30), and (6.32), Ŝ ′′ can be written as

Ŝ ′′ = S ′′ mod (xl + 1) =sm−1

l−1∑
t=0

f̂ ′′t x
t +

l−2∑
t=0

ŝtx
t+1 + ŝl−1

+ sm−1x
|m|,

and the proof is complete.
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So far, we have obtained the concurrent error detection for A(i), i ∈ [−u,m−u−1].

We denote A(i) mod (xl + 1) as Â(i). To design the concurrent error detection scheme

for obtaining (6.25), we present the following lemma.

Lemma 6.6. Assuming A(i), i ∈ [−u,m − u − 1], is de�ned based on (6.24) and

Â(i) = A(i) mod (xl+1) =
l−1∑
t=0

â
(i)
t x

t, the coordinates of Ĉ = C mod (xl+1) =
l−1∑
t=0

ĉtx
t

can be obtained by ĉt =
∑m−1

j=0 bj · â
(j−u)
t .

Proof. To obtain Ĉ, one can compute both sides of (6.26) modulo (xl + 1) and use

the properties mentioned in (6.1) and (6.2) to obtain

C mod (xl + 1) = bm−1 · Â(m−u−1) + · · ·+ buÂ+ · · ·+ b0Â
(−u).

This results in the following

ĉt =
m−1∑
j=0

bj · â(j−u)t , (6.33)

where 0 ≤ t < l, and the proof is complete.

6.4.2 Architecture

Using Lemmas 6.2 and 6.5, one can design the concurrent error detection circuit

for the �rst step of the bit-parallel Montgomery multiplication (i.e., computing the

matrix M). The x−1-module with concurrent error detection was shown before in

Fig. 6.3. The concurrent error detection circuit for the x-module is shown in Fig.

6.7 for l = 2. Note that most of the gates can be removed if one �xes the irreducible

polynomial. However in the general case, the x-module requires (m − 1) two-input

AND gates and (m − 1) two-input XOR gates. Also, its concurrent error detection

circuit requires l two-input AND gates and l two-input XOR gates. The critical path

delay of this module is still TA + TX . The following remark provides more details

about the area complexity.

Remark 6.3. The concurrent error detection in the x-module requires at most l

two-input XOR gates for a �xed irreducible polynomial. Assuming F (z) is an ω-

nomial, this circuit requires at most min(ω, l) two-input XOR gates, where in practical

cryptographic applications ω is 3 or 5 [67].

First, we investigate the time and area complexities of concurrent error detection

in computing the matrix M. We assume that there are λ and σ gray XOR gates in
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Figure 6.7: Error detection in the x-module using l = 2.

x−1 and x modules, respectively. For irreducible trinomials (resp. pentanomials), the

maximum value of λ and σ is 3 (resp. 5). As a result, the concurrent detection scheme

for the matrix M requires at most u · λ + (m − u − 1) · σ two-input XOR gates. In

this case, obtaining Â(i) for i ∈ [−u,−1] has the delay of
⌈
u·λ
l

⌉
·TX and obtaining Â(i)

for i ∈ [1,m− u− 1] has the delay of
⌈
(m−u−1)σ

l

⌉
· TX . Consequently, the theoretical

time complexity of the concurrent error detection to obtain the matrix M is

Y = max

(⌈
u · λ
l

⌉
· TX ,

⌈
(m− u− 1) · σ

l

⌉
· TX

)
. (6.34)

It is interesting to note that u instances of the x−1-module and (m−u−1) instances

of the x-module are cascaded in the bit-parallel Montgomery multiplication, whereas

in bit-parallel polynomial basis multiplication (m− 1) instances of the x-module are

cascaded [7]. This results in reducing the time overhead of the concurrent error

detection process in the Montgomery multiplication.

Now, we consider the time and area complexities of the concurrent error detection

scheme for the second step (i.e., obtaining (6.25)). Obtaining (6.33) requires l ×m
two-input AND gates and l XOR-trees with m inputs. Thus, the total number of XOR

gates required to obtain (6.33) is l×(m−1). The time complexity of computing (6.33)

is TA + TXORm, where TXORm represents the delay of an XOR tree with m inputs.

One can notice that this time complexity is equal to the time complexity of obtaining

(6.25). As a result, obtaining Â(i), i ∈ [−u,m−u−1], accounts for the time overhead

of concurrent error detection scheme in this multiplier.

The following example explains the concurrent error detection in GF (27).

Example 6.2. We consider bit-parallel Montgomery multiplication over GF (27) us-

ing F (z) = z7 + z4 + z3 + z2 + 1, where F (x) = 0. Choosing x2 as the Montgomery

factor, we have C = A · B · x−2 mod F (x). Using the notation presented before, this
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can be written as

C = b7 · A(4) + · · ·+ b2 · A(0) + · · ·+ b0 · A(−2).

The matrix M corresponding to this multiplication is shown in Fig. 6.8 using the

white gates. As it can be seen from the �gure, there are two x−1-modules and four

x-modules. Each of these modules includes three two-input XOR gates. The critical

path delay of this part is 3 · TX .
To obtain the concurrent error detection circuit, two polynomials are de�ned as

F ′(x) = x6 + x3 + x2 + x, and F ′′(x) = x4 + x3 + x2 + 1. It is assumed that l = 3 and

consequently, F ′(x) mod (x3 + 1) = 1 ·x2 + 1 ·x+ 0, which means f̂ ′2 = 1, f̂ ′1 = 1, and

f̂ ′0 = 0. Also, F ′′(x) mod (x3+1) = 1·x2+1·x+0, meaning f̂ ′′2 = 1, f̂ ′′1 = 1, and f̂ ′′0 = 0.

Next, it is assumed that A(0) mod (x3 + 1) = A mod (x3 + 1) = â2x
2 + â1x+ â0. Now,

A(i) mod (x3 + 1), i ∈ [−2,−1], is computed based on Lemma 6.2 using the following

recursive equation 
â
(i)
0 = â

(i−1)
1

â
(i)
1 = â

(i−1)
2 + a

(i−1)
0

â
(i)
2 = â

(i−1)
0 ,

(6.35)

and A(i) mod (x3 + 1), i ∈ [1, 4], is obtained based on Lemma 6.5 using
â
(i)
0 = â

(i−1)
2

â
(i)
1 = â

(i−1)
0

â
(i)
2 = â

(i−1)
1 + a

(i−1)
6 .

(6.36)

Using (6.35) and (6.36), the concurrent error detection for step one has been

depicted in Fig. 6.8 using gray cells. It can be seen from the �gure that obtaining

A(i) mod (x3+1) for i ∈ [−2, 4] requires six two-input XOR gates in total. The longest

path in the concurrent error detection includes two XOR gates and as a result, its

delay is 2 · TX .
The error detection for the second part is straightforward and is obtained using

(6.33) as follows

ĉi =
6∑
j=0

bj · â(j−2)i .

This requires 21 two-input AND gates and 18 two-input XOR gates and has the
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Figure 6.8: Obtaining the matrix M with concurrent error detection for F (z) =
z7 + z4 + z3 + z2 + 1 using u = 2.

critical path delay of TA + 3 · TX . Obtaining C in (6.33) itself requires 49 two-input

AND gates and 42 two-input XOR gates and has the delay of TA + 3 · TX . Now,

it can be concluded that concurrent error detection in this example (excluding the

�nal modulo (xl + 1) operation and comparison) does not impose any time overhead

and requires 42% more AND gates and 40% more XOR gate. It is noted that in the

general case, the time and area overheads depend on the parameters m, l, u, and

F (z).

6.5 Analysis and Simulation results

In this section, we �rst consider the error detection capability and then, the time and

area overheads of the proposed concurrent error detection circuits.

6.5.1 Error Detection Capability

Theoretically, using modulo (xl + 1) operations to implement error detection, which

is equivalent to the interlacing parity codes in GF (2m), has the error detection prob-

ability of [7]
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Table 6.1: Error Detection Capability

No. of
stuck-at
faults

l Error
Occurred

Error
Detected

% l Error
Occurred

Error
Detected

%

Bit-Serial Montgomery Multiplication

One

2 833, 532 624, 446 74.91 4 834, 018 781, 552 93.70
6 833, 510 820, 316 98.41 8 833, 408 830, 208 99.61
10 833, 406 832, 547 99.89 12 834, 156 834, 043 99.99
14 833, 825 833, 788 99.99 16 833, 093 833, 087 99.99

Two

2 971, 805 730, 049 75.12 4 971, 940 910, 960 93.72
6 972, 231 952, 102 97.92 8 971, 998 968, 250 99.61
10 971, 998 968, 322 99.62 12 972, 0240 969, 507 99.74
14 972, 210 970, 228 99.80 16 971, 856 970, 174 99.83

Three

2 995, 287 745, 735 74.92 4 995, 361 933, 014 93.73
6 995, 287 977, 263 98.18 8 995, 190 991, 363 99.61
10 995, 287 992, 911 99.76 12 995, 183 993, 757 99.85
14 995, 244 994, 257 99.90 16 995, 249 994, 369 99.91

Random

2 1, 000, 000 750, 597 75.05 4 1, 000, 000 937, 485 93.74
6 1, 000, 000 984, 405 98.44 8 1, 000, 000 996, 041 99.60
10 1, 000, 000 998, 980 99.89 12 1, 000, 000 999, 758 99.97
14 1, 000, 000 999, 945 99.99 16 1, 000, 000 999, 983 99.99

Digit-Serial Montgomery Multiplication

One

2 801, 106 430, 709 46.23 4 801, 071 617, 556 77.09
6 801, 106 709, 635 88.58 8 801, 329 756, 513 94.40
10 801, 106 779, 818 97.34 12 800, 857 789, 178 98.54
14 801, 535 796, 377 99.35 16 801, 466 798, 437 99.62

Two

2 960, 158 521, 711 54.33 4 960, 345 783, 816 81.61
6 960, 097 873, 680 90.99 8 960, 100 917, 279 95.53
10 960, 097 938, 094 97.70 12 960, 033 947, 848 98.73
14 960, 509 953, 903 99.31 16 960, 445 956, 598 99.59

Three

2 991, 833 601, 442 60.63 4 991, 904 850, 098 85.70
6 992, 134 928, 674 93.60 8 991, 936 961, 735 96.95
10 991, 964 976, 927 98.48 12 992, 036 984, 199 99.21
14 992, 073 987, 655 99.55 16 991, 989 989, 562 99.75

Random

2 1, 000, 000 749, 313 74.93 4 1, 000, 000 937, 583 93.75
6 1, 000, 000 984, 163 98.41 8 1, 000, 000 996, 172 99.61
10 1, 000, 000 998, 961 99.89 12 1, 000, 000 999, 745 99.97
14 1, 000, 000 999, 938 99.99 16 1, 000, 000 999, 990 99.99
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Table 6.2: Error Detection Capability in Bit-Parallel Montgomery Multiplication

No. of
stuck-at
faults

l Error
Occurred

Error
Detected

% l Error
Occurred

Error
Detected

%

One

2 365, 256 363, 533 99.52 4 364, 340 362, 919 99.60
6 364, 340 362, 902 99.60 8 364, 349 362, 984 99.62
10 364, 910 364, 903 99.99 12 363, 936 363, 935 99.99
14 365, 033 365, 032 99.99 16 364, 914 364, 914 100

Two

2 595, 480 529, 053 88.84 4 595, 826 564, 350 94.71
6 595, 480 574, 907 96.54 8 596, 372 593, 863 99.57
10 595, 423 595, 182 99.95 12 595, 893 595, 794 99.98
14 595, 312 595, 263 99.99 16 596, 145 596, 099 99.99

Three

2 742, 037 616, 635 83.10 4 741, 999 681, 326 91.82
6 741, 703 702, 680 94.73 8 742, 037 739, 860 99.70
10 742, 801 741.389 99.80 12 741, 874 740, 983 99.87
14 742, 526 742, 303 99.96 16 741, 795 741, 743 99.99

Random

2 1, 000, 000 750, 472 75.04 4 1, 000, 000 937565 93.75
6 1, 000, 000 984, 395 99.43 8 1, 000, 000 996, 102 99.61
10 1, 000, 000 999, 048 99.90 12 1, 000, 000 999, 765 99.97
14 1, 000, 000 999, 924 99.99 16 1, 000, 000 999, 986 99.99

2m+l − 2m

2m+l
= 1− 1

2l
.

However, to evaluate the error detection capability of the proposed scheme, we

have modeled all three Montgomery multipliers using C++. We have selected the

binary extension �eld GF (2163) constructed by the type-II irreducible pentanomial

F (z) = z163 + z72 + z71 + z70 + 1. It has been assumed that the faults are permanent

and are injected at the inputs and outputs of the gates or �ip-�ops. As a result

in all the simulations, for each two-input AND and XOR gate, we have considered

six possible stuck-at fault situations. Also, we have considered two possible stuck-at

faults for the �ip-�ops. Eight values of l, i.e., l = 2, 4, 6, 8, 10, 12, 14, and 16,

have been chosen. For each of the three Montgomery multipliers considered in this

chapter, we have conducted four experiments and in each experiment, we have used

1, 000 random values for A and B, and run the program 1, 000 times. In total, each

experiment has been run 1, 000, 000 times. At each iteration in the �rst experiment,

we have injected one stuck-at fault at a random location. In the second and third

experiments, two and three stuck-at faults have been injected at random locations,

respectively. The last experiment is carried out by injecting a random number of

stuck-at faults in each iteration at random locations.
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The results of our simulations have been summarized in Tables 6.1 and 6.2. The

column titled �Error Occurred� shows the number of cases, where the fault injection

has resulted in an error. Also, the column titled �Error Detected� shows how many

of erroneous multiplication products have been detected. The table shows that after

injecting random number of stuck-at faults using l = 8, in the bit-serial, digit-serial

(D = 2), and the bit-parallel Montgomery multipliers 99.6%, 99.61%, and 99.61% of

the errors have been detected.

6.5.2 Time and Area Overheads

We have summarized the theoretical complexity of the presented multipliers with

error detection in Table 6.3. The results for the digit-serial multiplier are for the

special case D ≤ l using a �xed F (z). Also, for the bit-parallel multiplier, F (z) is

assumed to be �xed and Y is shown in (6.34).

To �nd the practical overheads, we have described the bit-serial, digit-serial, and

bit-parallel Montgomery multipliers using VHDL and implemented it on 0.18µm

CMOS ASIC technology using the Synopsys® Design Analyzer®. The Map Ef-

fort was set to medium and the type-II irreducible pentanomial F (z) = z163 + z72 +

z71 + z70 + 1 is used for all the implementations.

For the bit-serial multiplier, the implementations have been done with a target

clock period of 3.0 ns and the results are obtained for the original multiplier and

the multiplier with error detection capability. We have selected 15 values for l, i.e.,

2 ≤ l ≤ 16, and obtained the area overheads as depicted in Fig. 6.9. Note that this

�gure also includes the area overheads of the �nal modulo (xl + 1) operation and

comparison shown in Fig. 6.1.

Similarly, we have implemented the digit-serial Montgomery multiplier on ASIC

with a target clock period of 10.0 ns. The multiplier has been implemented with two

digit sizes, i.e., D = 2 and D = 8, and the concurrent error detection circuit has been

implemented with 2 ≤ l ≤ 16. The time and area overheads are shown in Fig. 6.10

and Fig. 6.11, respectively. Note that Fig. 6.11 includes the area overheads of the

�nal modulo (xl + 1) operation and comparison shown in Fig. 6.1. However, the time

overheads of these modules are negligible in comparison to the time complexity of the

digit-serial Montgomery multiplier and therefore, Fig. 6.10 shows the time overhead

in critical path delay of the multiplier.

Theoretically, the hardware implementation of the bit-parallel Montgomery mul-

tiplier requires 162×3 two-input XOR gates to obtain the matrix M. Also, obtaining
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Figure 6.9: ASIC implementation results for the area overhead in bit-serial Mont-
gomery multiplication.
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Figure 6.10: ASIC implementation results for the time overhead in digit-serial Mont-
gomery multiplication.
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Figure 6.11: ASIC implementation results for the area overhead in digit-serial Mont-
gomery multiplication.

Table 6.4: Theoretical Time and Area Overheads in the Bit-Parallel Montgomery
Multiplication

l 2 3 4 5 6 7 8 9
#AND 326 489 652 815 978 1141 1304 1467
#XOR 325 648 810 1296 1458 1296 1782 1944
l 10 11 12 13 14 15 16 -

#AND 1630 1793 1956 2119 2282 2445 2608 -
#XOR 2106 2592 2522 2592 2754 3240 3402 -

(6.25) requires 1632 two-input AND gates and 163 × 162 two-input XOR gates. In

total, this multiplier requires 1632 = 26, 569 AND gates and 166 × 162 = 26, 892

XOR gates. To investigate the theoretical overhead of the concurrent error detection

process, we choose 1 < l ≤ 16, and provide the number of the required gates in Table

6.4. The number of the required AND gates is computed from (6.33) and the number

of the XOR gates is based on (6.33) and Lemmas 6.2 and 6.5.

To have a better evaluation of the proposed concurrent error detection approach

for the bit-parallel Montgomery multiplier, it has been implemented on ASIC with

a target clock period of 30.0 ns using F (z) = z163 + z72 + z71 + z70 + 1 as the

irreducible polynomial. Note that the ASIC implementations also include the �nal

modulo (xl + 1) operation and comparison modules shown in Fig. 6.1. The ASIC

implementation results for the area overhead are shown in Fig. 6.12. One can observe

that the greatest area overhead occurs when l = 16 and is equal to 11.32%. The time
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Figure 6.12: ASIC implementation area overhead percentage of the concurrent error
detection in bit-parallel Montgomery multiplication using F (z) = z163 + z72 + z71 +
z70 + 1.

overhead of the concurrent error detection scheme has been depicted in Fig. 6.13 for

1 < l ≤ 16. It is interesting to note that some values of l (e.g., l = 4 and 7) result in

a very low time overhead. The time overhead for l = 8 is 27.80%.

The concurrent error detection schemes for the systolic Montgomery multiplication

have been considered in [9]. This scheme is based on time-redundancy which detect

all the single cells faults. However, the technique is only applicable on pipelined

multipliers.
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Chapter 7

Summary and Future Work

7.1 Thesis Contribution

In thesis, we have investigated �nite �eld arithmetic operations knows as multipli-

cation and squaring using di�erent algorithms and architectures. We have also con-

sidered concurrent error detection in the Montgomery multiplication. The following

summarizes the contribution of this work.

� In Chapter 3, which has been published in [25], we have studied the Montgomery

multiplication and squaring over GF (2m). Using new Montgomery factors, we

have proposed two bit-serial Montgomery multipliers which are faster than the

previously published Montgomery multipliers. Also, we have proposed new

bit-parallel Montgomery multipliers for the general and two special classes of

irreducible polynomials. The time and area complexities of these multipliers

match the best results reported in the literature. We have shown that amongst

the general irreducible pentanomials, type-II irreducible pentanomials are very

suitable for the proposed multiplier. Then, we have designed two bit-parallel

Montgomery multipliers. Our LCMM requires less hardware than the shifted

polynomials basis multiplier, however for a few irreducible pentanomials, it has

a higher delay. Our FMM multiplier is faster than dual basis multiplier, but

requires more hardware. Also, FMM has the same time complexity in compar-

ison to the SPB multiplier but, it can be implemented with two Montgomery

factors. Moreover, it can be used with our proposed squarer for type-II irre-

ducible pentanomials which has the delay of two XOR gates. This is the lowest

reported delay for squaring using pentanomials.

� In Chapter 4, which has been appeared in [24], we have studied the SPB mul-
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tiplication over binary extension �elds and proposed digit-serial multiplication

algorithms. In this regard, we have proposed two digit-serial SPB multiplica-

tion algorithms. The proposed MSD-�rst digit-serial algorithm is as e�cient

as the LSD-�rst polynomial basis multiplication algorithm, which is the fastest

algorithm for digit-serial polynomial multiplication. Also, we have studied the

possible cases to reduce the complexity of the digit-serial SPB multipliers based

on the chosen digit size and the irreducible polynomial. We have also proposed

a hybrid algorithm which uses parallel computations to make the multiplication

process faster. This algorithm has half of the latency of the LSD-�rst digit-

serial polynomial basis multiplier with the same critical path delay, as one of

the fastest digit-serial polynomial basis multipliers.

� In Chapter 5, which has been outlined in [22], we have proposed a digit-level

semi-systolic array SPB multiplier which has the critical path delay of TA + TX

with the latency of bm/2c + 2. This structure outperforms the existing semi-

systolic structures in terms of time complexity (combination of critical path

delay and latency). Also, we have designed a digit-level systolic array SPB

multiplier which has the critical path delay of TA + TX and the latency of

3
⌈
m
2

⌉
+ 2. The complexity results show that our proposed systolic structure

has a better time complexity (combination of critical path delay and latency)

than the existing counterparts using general irreducible polynomials.

� Finally in Chapter 6, which has been appeared in [26], we have considered

concurrent error detection for the Montgomery multiplication over binary ex-

tension �elds. Three di�erent multipliers, namely the bit-serial, digit-serial, and

bit-parallel multipliers, have been considered and the concurrent error detection

scheme has been derived and implemented for each of them. The time and area

overheads of the proposed schemes have been reported and ASIC implementa-

tion have been done to con�rm the theoretical overheads. The results show that

the proposed schemes result in small time and area overheads. Furthermore, our

software simulations have shown that the proposed concurrent error detection

has a signi�cant error detection capability.

7.2 Future Work

The scalar multiplication in ECC is performed using multiple �nite �eld multiplica-

tions and squarings. As a future work, our proposed arithmetic units can be utilized
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to implement a crypto-processor based on ECC. This can be done using a bottom-up

approach starting with accelerating the underlying �nite �eld operations based on the

target frequency and area requirements. On the top level, instruction-level pipelin-

ing should be incorporated to reduce the number of clock cycles required to perform

a scalar multiplication. Since there is a possibility of having parallel operations in

ECC scalar multiplication, multiple arithmetic cores would o�er a better degree of

parallelism.

Similar approach can be adopted for designing a countermeasure against fault

attacks. Our concurrent error detection schemes would provide reliable bottom-level

arithmetic operations and the top level operations can be built on these operations.
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