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Abstract

The elliptic curve cryptography is an important branch in public-key cryptography.
In this thesis, we consider the elliptic curve cryptography over binary extension fields
from two different points of view. First, we investigate the underlying arithmetic
operations in the elliptic curve cryptography. The main arithmetic operation is the
scalar multiplication. This operation is based on two elliptic curve operations, known
as the point addition and point doubling. Implementing these two elliptic curve oper-
ations requires finite field arithmetic, specifically, finite field addition, multiplication,
squaring, and inversion. We focus on two finite field operations, namely finite field
multiplication and squaring. For the finite field multiplication, we consider Mont-
gomery multiplication algorithm and shifted polynomial basis to design bit-serial,
digit-serial, bit-parallel, semi-systolic and systolic multipliers. In case of finite field
squaring, we use the Montgomery multiplication algorithm for squaring using special
type of irreducible pentanomials. We also investigate the finite field multiplication
from the concurrent error detection point of view. This is due the fact that fault
attacks have become a serious concern in cryptographic applications. In this regard,
we design concurrent error detection schemes for different Montgomery multipliers.
Our comparison results show that our proposed arithmetic units and concurrent error

detection scheme provide improvements over their existing counterparts.

Keywords: Finite field multiplication, squaring, systolic-arrays, concurrent error

detection, elliptic curve cryptography
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Chapter 1
Introduction and Preliminaries

HE elliptic curve cryptography is proposed independently in [36] and [58] for
T public-key cryptography and has gained significant attention in the literature.
The most important operation in elliptic curve cryptography is multiplying a point
on the curve by an integer. This operation is known as the scalar multiplication or
the point multiplication.

Finite field arithmetic plays an important role in elliptic curve cryptography. All
the low-level operations are carried out in finite fields. The most common finite field
operations used in elliptic curve cryptography are addition, multiplication, squar-
ing, and inversion. In hardware implementations of the finite field arithmetic units,
different issues are considered. Mainly, they include the representation basis (e.g.,
polynomial basis [54], normal basis [53], shifted polynomial basis [13], etc.), the hard-
ware structure (e.g., bit-serial [6], digit-serial |79], bit-parallel [54], and pipelined
structures [87]), and the irreducible polynomials (e.g., irreducible trinomials [82] and

pentanomials [69]).

1.1 Binary Extension Field Arithmetic

GF(2™) is a finite field [51] that contains 2™ different elements. This finite field is
an extension of GF'(2) which contains 0 and 1. The extended binary field, GF(2™),

is associated with an irreducible polynomial of degree m over GF'(2), i.e.,

F('Z) :fmzm—i_fmflzmil+"'+f12+f07 (11)

where f; € GF(2) and fo = f,, = 1.



1.1.1 Representation Basis

The field elements in GF(2™) can be represented using different representation bases.
Here, we briefly explain some of the important ones that are used in this thesis.
Polynomials Basis

Assuming x is a root of F(z) , i.e., F(x) = 0, each element of GF(2™) can be

represented as a polynomial of degree up to m — 1 over GF(2), i.e.,

m—1 m—1
A= Z a;x', B = Z bix', (1.2)
i=0 i=0

where a;,b; € {0,1}, i € [0,m — 1].

This representation is called the polynomial basis (PB) representation. In this
case, the addition of any two elements is easily performed by the exclusive-or (XOR)
operation. However, the multiplication and squaring operations are complicated as

the intermediate product needs further reduction by F(z).

Shifted Polynomial Basis

Assuming v is an integer, 0 < v < m — 1, and the set {1,z,22 ....,2™ '} is a
polynomial basis for GF(2™), the Shifted Polynomial Basis (SPB) for GF(2™) is
defined as the set {x=%, z=*"1 ... 2™ v~1} [13|. Similar to the polynomial basis, it
is possible to represent each field element using the SPB. For example, if A and B

are two elements of GF'(2™), one can write

m—1 m—1
A= Z a;x"", B = Z bzt Y, (1.3)
i=0 i=0

where a;,b; € {0,1} for i =0 to m — 1.
The addition of two field elements, represented in the SPB, is carried out by the
XOR operation. However, the multiplication of two field elements is complicated and

requires more resources.

Normal Basis

It is shown that there exists a normal basis for the binary extension field GF'(2™) for

all positive integers m. The normal basis is constructed by finding a field element [,



where {8, 8%,---, 62" '} is a basis for GF(2™). In this case, if A € GF(2™), then it

can be represented as

m—1

21'

A= E aiﬁ ’
1=0

where a; € GF(2) for i =0 to m — 1.

1.1.2 Operations

In this section, we explain the main operations in binary extension fields.

Addition

Let A and B be two field elements in GF(2™) represented by (a;,—1,- - ,a1,a0) and
(b—1, -+ ,b1,bp), respectively. Now, C' = A+ B can be obtained by pair-wise addition
of the coordinates of A and B over GF(2) (i.e., modulo 2 addition), that is

¢ =a; + by,

for i = 0 to m — 1, where + represents the bit-wise XOR operation. Note that the
representation basis can be the polynomial basis [54], shifted polynomial basis [13],

or the normal basis [81].

Multiplication

The multiplication over GF(2™) is much more complicated than addition. This op-
eration has been considered by researchers from different points of view. The most
common approaches are based on the polynomial basis |6, 30, 40, 69|, normal basis
[37, 81], dual basis [71, 86], the Montgomery multiplication [38, 3, 28], and the shifted
polynomial basis [13, 14] algorithms. Each of these categories offers different time and
area complexities and has its own advantages and disadvantages.

Assuming A and B are two field elements, the multiplication using the polynomial

basis and the shifted polynomial basis is formulated as

C =A-Bmod F(z).

The multiplication using the normal basis is formulated as C' = A - B, where C
is represented using {3, 52,---,%" '}. The Montgomery multiplication algorithm
has been proposed in [60] for fast modular integer multiplication. In [38], Ko¢ and



Acar have introduced a class of algorithms for Montgomery multiplication over binary
extension fields. Defining r as a polynomial satisfying ged(r, F'(z)) = 1, the general

case of the Montgomery multiplication over GF(2™) is formulated as

C=A-B-r'mod F(z), (1.4)

where
77"t mod F(z) = 1.

Squaring

Squaring over GF(2™) is a special case of multiplication and as a result, requires less
resources. The normal basis offers the best squaring operation which is performed by
a circular left shift. The squaring in polynomial basis and shifted polynomial basis
is more complicated and the complexity depends on the irreducible polynomial F'(z).

The Montgomery multiplication can also be used for squaring and is based on (1.4).

Inversion

Inversion over binary extension fields is considered an expensive operation. Assuming
A € GF(2™), the objective is to find a field element A~', where A - A~! = 1. For
hardware implementations, the algorithm proposed by Itoh and Tsuji [31] is widely
used for inversion [1]. This algorithms is based on the fact that A?"~2 = A=, In order
to obtain A%" 2, (m —1) squarings and |loga(m — 1) |+ H(m — 1) — 1 multiplications
are required, where H(m — 1) represents the Hamming weight of (m —1). For further

information, one can refer to [31].

1.2 Elliptic Curve Arithmetic

We consider the elliptic curves defined over GF(2™). Let E be an elliptic curve
defined as

v’ +ay = 2% + ax® +b. (1.5)

where a,b € GF(2™), and b # 0. A pair (z,y) is a point on the elliptic curve FE if it
satisfies (1.5).



Let P, and P, be two points on the elliptic curve E represented by the affine
coordinates (x1,y1) and (za,y2), respectively. Also, let P3 = (z3,y3) = P + P, and
Py = (x4,y4) = 2P. The coordinates of P; and P, can be obtained using [11]

2
T3 = <y2+y1> + Y2+y1 +21+20+a

T2+x1 r2+x] (16)
ys = <%> (z1 + 23) + 23 + Y1,
and
2, b
Ty =T + =
Lo (1.7)

m :x%+<x1+g—1>x4+x4.

Note that obtaining P3; and P, are known as point addition and point doubling,
respectively.

By inspecting (1.6) and (1.7), one can notice that finite field inversion is required
to obtain P; and P,;. As mentioned before, it is known that inversion is an expen-
sive operation in finite fields and as a result, some alternative approaches have been
considered as well. The projective-coordinate approach proposed by Lopez and Da-
hab in [52] is one of the high performance approaches. In this method, the points
P, and P, are represented as (X1,Y7, 7)) and (X, Y5, Z5). Note that in this repre-
sentation, (Xi,Y7, Z;) represents the affine point (X;/Z;, X;/Z%) when Z; # 0 and
P, = (1,0,0) otherwise.

Using the Lopez-Dahab approach, the coordinate of P; = (X3,Y3,7Z3) and Py =
(X4, Yy, Z4) are obtained as

Zs = (X1-Zy+ Xy Z,)
X3 ::IJ-Zg+(X1-Z2)-(X2-Zl),

(1.8)
and

X, =X{+b-2¢

(1.9)
Z, =272 X2

It can be noticed that (1.8) and (1.9) do not require any inversions.
The main operation in the elliptic curve cryptography is the scalar multiplication,

also known as the point multiplication. This operation is defined as



Q=kP=P+P+---+P.
k

where P and () are two points on F and k is an integer. There are different algorithms
available to compute (). One of the efficient algorithms is knows as the Montgomery
ladder scalar multiplication. The corresponding algorithm is shown in Algorithm
1.1 |52| using Lopez and Dahab coordinates. Note that the main operations in this
algorithm are point addition and point doubling denoted as subroutines ADD and
DBL, respectively [52]. The last step of Algorithm 1.1, denoted as Mxy, converts the
Lopez-Dahab coordinates to affine ones and it is the only operation in this algorithm

which requires inversion.

Algorithm 1.1 Lopez-Dahab Scalar Multiplication [52]

Inputs: An integer k£ > 0 and P = (z,y) € E
Output: Q = kP

Step 1: if k = 0 or 2 = 0 then output(0,0) and stop.
Step 2: k= (kj_1 - k1ko)2

Step 3: X, =2, Z;1:=1, Xy :=2* + b, Z := 22
Step 4: For i :=1— 2 down to 0

if k; = 1 then

Step 5: ADD(Xy, Z1, Xs, Z5), DBL( X3, Z5)
else

Step 6: ADD(Xs, Z5, X4, Z7), DBL(X;, Z1)

Step 7: return QQ = Mzy(Xy, 21, Xa, Z3)

1.3 Application

Security is a crucial need in modern applications to protect important data and pri-
vacy. Today, due to rapid developments in Internet and wireless technologies, individ-
ual and organizational data are more exposed to threats. Cryptographic algorithms
are used to ensure the security requirements in many applications. These applica-
tion can be normal daily tasks such as checking emails, paying bills online, using a
cellphone or critical applications in military.

Elliptic curve cryptography can be used to satisfy the mentioned needs. This
public-key cryptography based approach can be used in applications such as hand-
held devices and Radio Frequency Identification (RFID) tags as well. The results



of this thesis can be used to implement elliptic curve cryptography more efficiently,

especially in time-critical applications.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we will review some of
the existing works in the literature. In Chapter 3, we will present new bit-serial and
bit-parallel Montgomery multipliers. Also, we will present a Montgomery squarer for
a special class of irreducible pentanomials. In Chapter 4, we will consider finite field
multiplication in shifted polynomial basis and propose digit-serial algorithms and
architectures. In Chapter 5, we will propose semi-systolic and systolic multipliers
using the shifted polynomial basis. In Chapter 6, we will present concurrent error
detection schemes for different classes of Montgomery multipliers. Finally in Chapter

7, we will summarize our contributions.



Chapter 2
Literature Review

In this chapter, we will review some of the major works available in the literature on
finite field multiplication/squaring and concurrent error detection schemes proposed

for finite field operations.

2.1 Finite Field Multiplication

Finite field multiplication operation has gained lots of attention in the literature which
makes it unpractical to review all of them in this section. However, we review some
of the key papers which have considered different aspects of the finite field multi-
plication. Considering the structure of the multiplication algorithm in terms of the
number of bits processed at each step, the multipliers over binary extension fields can
be classified into three main categories, namely, bit-serial, digit-serial, and bit-parallel
multipliers. In bit-serial multipliers, only one bit of the operand is processed in any
cycle. This results in reducing the required hardware for implementing the multipli-
cation algorithm. However, bit-serial multipliers are generally slow. Therefore, this
type of multiplication algorithms is suitable for the applications where the low-area
complexity is preferred over the time complexity. On the other hand, bit-parallel mul-
tipliers have opposite properties. In this type of multipliers, the coordinates of the
operands are processed in parallel, which results in a good time complexity; however
they require much more area than the bit-serial multipliers do. Digit-serial multipli-
ers are alternatives for bit-serial and bit-parallel multipliers depending on the amount
of the resources available. In this type of multipliers, one can trade off between the
speed and the area of the multipliers by choosing different digit sizes. In general,
greater digit sizes result in faster multipliers with more area.

The finite filed multiplication can be performed using different representation



bases. We begin with the polynomial basis multiplication. The bit-serial polynomial
basis multipliers proposed in [6] are the classic bit-serial multipliers which yet have
practical merit. Systolic array implementation of the polynomial basis multiplication
has started in |87] and [83] and continued in recent papers including [43| and |56]. For
digit-serial implementation of the polynomial basis multiplication, one can refer to [79|
which outlines two important digit-serial multiplication algorithms. The optimization
of these multipliers can be found in [40|. An important work on bit-parallel polynomial
basis multiplication is presented in [54]. More bit-parallel polynomial basis multipliers
can be found in [69] for different irreducible polynomials.

Most of the available papers on normal basis multiplication are mainly based on
the work presented in [53|. To study different normal basis multipliers, one can refer
to [81], [68], and [62], to name a few.

In [14], bit-parallel multipliers are designed based on the shifted polynomial basis
for irreducible trinomials and type-II pentanomials, which are faster than the best
known polynomial basis and dual basis multipliers. Using the this basis, a new
approach for designing subquadratic area complexity parallel multipliers is outlined
in [15], where the reported multipliers are better than the other similar ones in terms
of area and time complexities. Also using the shifted polynomial basis, different bit-
parallel multipliers are designed for irreducible pentanomials and trinomials in [64]
and [63], respectively.

In [38], Kog and Acar have introduced a class of algorithms for bit-serial, digit-
serial, and, bit-parallel Montgomery multiplication over binary extension fields. They
have proposed that by choosing the Montgomery factor » = 2™, the multiplication can
be efficiently implemented in hardware and software. The Montgomery multiplica-
tion is used to design an Elliptic Curve Cryptography (ECC) based crypto-processor
in [72|. Also, it is implemented with a semi-systolic array structure in [57]. In [9],
another semi-systolic array structure is designed for the Montgomery multiplication
which uses r = ™. A digit-serial Montgomery multiplication algorithm is proposed
in [3] which is based on the algorithm proposed in [38] and the polynomial basis
multiplication. Also in the literature, some scalable architectures are proposed for
the Montgomery multiplication over finite fields, e.g., [76], [27], and [18]. In [28],
the Montgomery multiplication is implemented using systolic arrays for all-one poly-
nomials and trinomials. A new Montgomery factor has been considered by Wu in
[85] for the Montgomery multiplication. His design is based on the method proposed
in [38] and he has shown that choosing the middle term of the irreducible trinomial

F(z) = 2™ + 2 + 1 as the Montgomery factor, i.e., r = z*, results in more effi-
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cient bit-parallel multipliers and squarers. Although the Montgomery multiplication
is suitable for designing scalable and versatile multipliers, according to [38] and [85]
the important advantage of the Montgomery multiplication over GF(2™) is its low
time complexity.

Semi-systolic array structures provide low latency in comparison to systolic array
implementations and require fewer latches. Also, they can be pipelined to increase the
throughput of the system. In the literature, semi-systolic array implementations have
been presented for the finite field multiplication, see for example [42], [32], [9], [3], and
[55]. In the case of the PB, a classic multiplication structure is proposed in [42] which
is studied in [32] comprehensively. In the case of the Montgomery multiplication, [9]
introduces a semi-systolic array structure. Also, [3] and [55] introduce low-latency
semi-systolic Montgomery multipliers.

In systolic array structures, the global lines are avoided and the connections are
limited to local ones. This results in more efficient VLSI implementations. In case
of the PB multiplication, [87] and [83] outline two structures for general irreducible
polynomials, respectively. In [44] and [41], optimized structures are proposed for the
PB multiplication using general irreducible polynomials and irreducible trinomials.
A low latency bit-parallel systolic structure is proposed in [47] for all-one and equally
spaced polynomials. Moreover, digit-serial systolic PB multipliers are proposed in
|21], |34], and [35] for general irreducible polynomials. A systolic implementation of
the PB multiplication is proposed in [43| for irreducible trinomials with a low latency.
In case of the Montgomery multiplication, [46] proposes very low latency systolic
multipliers for special irreducible polynomials including irreducible trinomials. Also,

two scalable structures are proposed in [45] and [8§].

2.1.1 Polynomial Basis Multipliers

PB multipliers form a popular category of finite field multipliers. In the literature
there are different designs for this category, see for example [79], [30], [82], and [69].
In this section, we show the general architecture of bit-serial and bit-parallel PB mul-
tipliers [6], [54]. Assuming A and B are two polynomials over GF(2™), the objective
is to do the multiplication C' = A - Bmod F(z). We know that A and B can be

represented in the PB as

A= (ap 2™+ tar+ay) = Z a;x’, (2.1)
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m—1
B = (bm_ll’m_l + -+ bll’ + bo) == Z bll’l (22)
=0
Then, C' can be represented in the PB as
m—1
C= Z cir' = A (b1 2™+ -+ b + bg) mod F(x). (2.3)
=0

2.1.1.1 Bit-Serial PB Multiplication

Based on the way the bits are processed, there are two kinds of bit-serial polyno-
mial basis multipliers. They are called the LSB-first and the MSB-first bit-serial

polynomial basis multipliers [6]. In this section, we study these bit-serial multipliers.

LSB-first bit-serial polynomial basis multiplier

In the LSB-first bit-serial algorithm, the bits are processed by starting from the LSB.
To obtain the LSB-first bit-serial PB multiplier, one can rewrite (2.3) as

C =bp 1 Ax™ 4+ - + b Az + Abymod F (). (2.4)

or

C =by_1 (Az" ' mod F(z)) + - -+ + by (Az mod F(x)) + Abymod F(z).

Fig. 2.1a shows the LSB-first polynomial basis multiplication algorithm. Let A®
and C'® denote the content of A’ and C’ at the i-th iteration of Algorithm 1. Now,

we can write the following for step 4 of Algorithm 1

A = AD gl mod F(z),
= (@@ a4 a2 4 a((f):z:) mod F'(z).

m—1

(2.5)
We know that z is a root of the irreducible polynomial F'(z) which results in

fn®™ 4 fra 2™+ iz fo =0, (2.6)

Also, we know that for any irreducible polynomial fy =1 and f,, = 1. As a result,

(2.6) can be written as
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2" = frox™ Vo flo+ 1. (2.7)

By replacing (2.7) in (2.5), one can obtain

AT —(al) 4 af)y fme)a™ (0l ag) fa)a ™

o | (2.8)
+ (@Y +ad% )t +al) |

Fig. 2.1b shows the architecture of the LSB-first bit-serial polynomial basis mul-
tiplication algorithm, where the LSB of the coordinates of B, i.e., by, is processed
first. The architecture of the xz-module is depicted in Fig. 2.2 for general irreducible
polynomials, which implements(2.7). In other words, this module multiplies A% by
x and reduces the results by F(z). In this figure, A" and C’ are two m-bit latches,
which store values of A® and C@, respectively. There are two main loops in Fig.
2.1b. The right loop calculates the value of C’ in Step 3 of Algorithm 1 and includes
m two-input XOR gates. The left loop calculates the value of A’ in Step 4 Algorithm
5 using the z-module. It is clear that if F(z) is an w-nomial, i.e., w non-zero terms in
(2.6), then we will need w — 2 two-input XOR gates to obtain AV in (2.8). So, for
general irreducible polynomials of degree m, it includes at most (m — 1) two-input
AND gates, as well as (m—1) two-input XOR gates to realize (2.8). Besides this mod-
ule, we need m two-input AND gates to compute b; A" in Step 3 of Algorithm 5. As a
result, the LSB-first bit-serial polynomial basis multiplier requires (2m —1) two-input
AND gates and (2m — 1) two-input XOR gates for general irreducible polynomials of
degree m.

Now, we obtain the critical path delay and latency of the LSB-first bit-serial
polynomial basis. It is clear from Fig. 2.1b that two loops can be computed in parallel.
Thus, a cycle of the multiplication algorithm requires the delay of T4y + Tx, where
T4 and Ty represent the delays of a two-input AND gate and a two-input XOR gate,
respectively. Also, the latency of the LSB-first bit-serial polynomial basis multiplier
equals m clock cycles. The following summarizes the area and time complexities of

the proposed multiplier.

The MSB-first bit-serial polynomial basis multiplier

The other bit-serial polynomial basis multiplier is the MSB-first bit-serial multiplier.

To design this bit-serial multiplier, one can use the Horner’s rule to rewrite (2.4) as
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Algorithm 1 The LSB-first bit-serial PBM
Inputs: A, B € GF(2™), F(z)

Output:C = A - Bmod F'(x)

Step : A := A, Y :=0

Step 2:For i :=0tom — 1

Step 3: Y =pA +Y

Step4: A':=A"-xmod F(x)

Step 5:C' :=Y

\ — NV
x A

/ 4
A(t’) A(Z'H)

b

m—1

b7"72 e blb(]

(b)

Figure 2.1: The LSB-first bit-serial polynomial basis multiplication (PBM) [6]: (a)
algorithm, (b) architecture.

(4)

m—1

a’'fa),  a

(i+1)
am72

(i+1)
m—1

a

Figure 2.2: The architecture of the x-module for general irreducible polynomials.
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Algorithm 2 The MSB-first bit-serial PBM
Inputs: A, B € GF(2™), F(x)

Output:C' = A - Bmod F(x)

Step 1: A" :=0

Step 2:For 7 := m — 1 downto 0

Step3: A=A -zmodF(z)+b;-A
Step 4:C := A’

(a)

| ¢

)

b

m—1

bme U blbO

(b)
Figure 2.3: The MSB-first bit-serial PBM [6]: (a) algorithm, (b) architecture.

C =(-+ (bp—1Axmod F(z) + by,_2A)z mod F(x)+

(2.9)
<o+ b A)zmod F(x) + by A.

In this multiplication algorithm, as shown in Fig. 2.3a, the bits are processed by
starting from the MSB (Most Significant Bit) of B, i.e.,b,,_1. The multiplication of
A" by x followed by the reduction by F(z) is the same as (2.8). The architecture
of this multiplier is depicted in Fig. 2.3b. In this case, we need two m-bit latches
to hold the value of A and A’. Also, we need m two-input AND gates as well as m
two-input XOR gates as labeled with AND and XOR in Fig. 2.3b. The xz-module in
Fig. 2.3b is the same as introduced for Algorithm 1 in Fig. 2.2. This architecture
requires (2m — 1) two-input AND gates, (2m — 1) two-input XOR gates, and two
m-bit latches. The critical path delay of this multiplier equals Ty + 27Ty as there are
one multiplication and two additions in the critical path. Finally,the latency of the

MSB-first polynomial basis multiplication algorithm is m clock cycles.
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2.1.1.2 Digit-Serial Polynomial Basis Multiplication

Digit-serial multiplication algorithms provide a flexible area and time complexity.
Using this type of algorithms, it is possible to trade off between the speed and the
amount of required resources by choosing different digit size. By increasing the digit
size, the algorithm becomes faster but requires more hardware resources.

We define D > 2 to be the digit size, which means each digit has D bits. We start
from the LSB of the operand B, i.e., by, and group D consecutive bits as a digit. This

results in having n = [m/D] digits in operand B. Consequently, we obtain

n—1
B=) Bua', (2.10)
i=0
where
D-1 ‘
szi+ij7 OSZSTZ—2
i=0
B; = 7]71—1—D(n—1) ' (2.11)
Z bDH_jZL'], 1=n—1
j=0

Using (2.10) and (2.11), one can write the polynomial basis multiplication as

n—1
C =AY Bir'PmodF(x).
; (2.12)
= AB, 12" VP 4+ ... 4+ AB;2” + ABymod F(z)
In this case, it is possible to derive two digit-serial polynomials basis. We study

them in the following subsections.

LSD-first digit-serial polynomial basis multiplication

The first digit-serial polynomial basis multiplication algorithm is based on processing
the Least Significant Digit (LSD) first and is called the LSD-first digit-serial polyno-

mial basis multiplication. It is possible to write (2.12) as

C =B, (A;p(”—l)D mod F(z)) 4 - - + By (Az” mod F(z)) + ByAmod F(z) (2.13)

Based on (2.13), the LSD-first digit-serial polynomial basis multiplication is shown
in Algorithm 2.1.
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Algorithm 2.1 The LSD-first digit-serial polynomial basis multiplication [79|

Inputs: A, B, F(z), n=[m/D]
Output:C' = A - Bmod F(z)

Step 1: A':=A, C":=0

Step 2: Fori:=0ton—1

Step 3: C" .= BA + ('

Step 4: A=A 2P mod F(z)
Step 5: C':= C"mod F(z)

I

Figure 2.4: The LSD-first digit-serial polynomial basis multiplier.

mod

™ Fz)

o

The structure of this algorithm is shown in Fig. 2.4 which includes two loops. The
right and the left loops implement Step 3 and Step 4 of Algorithm 2.1, respectively.
The 2P-module multiplies A’ by x” and reduces the result by F(x). The final result,
which is a polynomial of degree m — 1, is stored in A" using an m-bit latch.

The module represented by x multiplies A’ (a polynomial of degree m — 1) by a
digit of B, i.e., B; (a polynomial of degree D — 1), for i = 0 to n — 1, and as a result,
its output has m + D — 1 bits. The module represented by XOR adds the result of
the x-module with the current value of C’ and stores it in C” again. In this structure,
C"is an (m + D — 1)-bit latch which contains the coordinates of of a polynomial of
degree m + D — 2. The final mod F'(z) module implements Step 5 of Algorithm 2.1,
which is the final step and is a reduction of a polynomial of degree (m + D — 2) by
F(x). Note that in Fig. 2.4, A and C"®) show the content of the latches A’ and C’
at the i-th iteration of Algorithm 2.4, respectively.

The module represented by xrequires the delay of T4 to obtain the partial prod-
ucts, and then the delay of [logs(D + 1)]Tx to sum up D rows of partial products
with C” using an XOR tree in the general case (see Fig. 4.2a). As a result, it requires
the delay of Ty + [loga(D + 1)|Tx. The x-module and the XOR module together
require D x m two-input AND gates and D x m two-input XOR gates.

The zP-module requires D x (m — 1) two-input AND gates and D x (m — 1)
two-input XOR gates, and the mod F(z) operation requires (D — 1) x (m — 1) two-
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m+D—1

Figure 2.5: The structure of the x-module.
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Figure 2.6: xP-module

input AND gates and (D — 1) x (m — 1) two-input XOR gates for the general case
of irreducible polynomials. This is shown in Fig. 2.5. Also, there are (2m + D — 1)
latches in this architecture. As a result, the LSD-first digit-serial polynomial basis
multiplier requires D x (3m—2)—m+1 two-input AND gates and D x (3m—2)—m+1
two-input XOR gates and (2m + D — 1) latches. This multiplier has the critical path
delay of D(Ts + Tx) and the latency of n + 1 clock cycles.

MSD-first digit-serial polynomial basis multiplication

In the algorithm, we start processing the digits of B from its Most Significant Digit.

To derive this algorithm, we use Honrner’s rule and write (2.12) as

C =((Bp_1Amod F(z))z” + B,_2A) mod F(z))az” 4 - - -

(2.14)
2P 4+ BiA) mod F(x))2” 4+ ByAmod F(z).

Based on (2.13), the MSD-first digit-serial polynomial basis multiplication is pre-
sented in 2.2. The main operation in this algorithm are a multiplication by x”
followed by a reduction and the multiplication of A by a digit of B. In this algorithm,
(" is of degree m + D — 1 and so when it is multiplied by =, it is efficient to have
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two operations. First, we multiply the coordinates 0 to m — 1 of C’ by z” without
reduction. Then, the coordinates m to m + D — 1 of C” are reduced first and then
multiplied by x”. Finally, the two results are added.

The structure of Algorithm 2.2 is shown in Fig. 2.7. The used modules are similar
to those of the LSD-first digit-serial polynomial basis algorithm. This algorithms
requires D x (3m — 2) two-input AND gates and D x (3m — 2) two-input XOR gates
and (2m + D — 1) latches. Also, it has the critical path delay of D(T4 + Tx) + Tx
and the latency of n + 1 clock cycles.

Algorithm 2.2 The MSD-first digit-serial polynomial basis [79]

Inputs:A, B, F(x), n = [m/D]

Output:C' = A - Bmod F(z)

Step 1: A':=A, C":=0

Step 2: Fori:=0ton—1

Step 3: C":=C"-zPmod F(z) + B;A
Step 4: C':= C"mod F(z)

m+D-1 . B
oliaz) C’'o
z” c’ p(modio o
m+D-1 Fz)|™

BB, B _,B

n—2"n-1

Figure 2.7: The MSD-first digit-serial polynomial basis multiplier.

2.1.1.3 Bit-Parallel Polynomial Basis Multiplication

In bit-parallel multipliers the bits of the operands are processed in parallel. Fig. 2.8
depicts the architecture of the conventional bit-parallel polynomial basis multiplier
which realizes C' = byA + bjAx + -+ + by, Az™ ' mod F(x). This is composed of
some z-modules which multiply their inputs by = and reduce the results by F'(x) |70].

Bit-parallel PB multiplication has been improved in some works (see for exam-
ple [69]) using special cases of irreducible polynomials such as all-one polynomials,

trinomials, and pentanomials.
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Figure 2.8: The bit-parallel PB multiplier.

2.1.2 Montgomery Multiplication over GF(2™)

Let o and /8 be two elements of GF'(2™) to be multiplied, and ¢ = a- fmod F(x) be
their multiplication product. Also, let A and B be two Montgomery residues defined

as

A=a-rmodF(z) = Zaixi, (2.15)
i=0
and
m—1
B = -rmodF(z) = Z bix', (2.16)
i=0

where, r, a polynomial satisfying ged(r, F(x))=1, is called the Montgomery factor
and gcd means the greatest common divisor. Then, the Montgomery Multiplication
(MM) algorithm over GF'(2™) can be formulated as [3§]

C=A-B-r'modF(z), (2.17)

where

ror 4 F(z)- F(z) =1, (2.18)

and 7! is the inverse of  modulo F(z), i.e., 7-r~! = 1 mod F(x). Note that F(z) is
the inverse of F'(z) modulo r. Based on [38], the MM over GF'(2™) can be carried out
by using Algorithm 3 shown in Fig. 2.9a. The polynomial r plays an important role in
the complexity of the algorithm as we need to do modulo r multiplication and a final

division by r. In [38], r is chosen as 2™, and this is because the modular operation
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using » = x™ only requires ignoring the terms whose powers of = are greater than or
equal to m. Furthermore, dividing a polynomial by r = 2™ can be easily carried out
by m right shifts. In [38], an LSB-first bit-serial MM algorithm is also introduced.
This algorithm is shown in Fig. 2.9b.

Using the definition of the Montgomery residue as shown in (2.15) and (2.16), one

can write (2.17) as

C=(a-r)-(B-7)-7'mod F(z) = ¢-rmod F(x).

In other words, C' is the Montgomery residue of ¢. This makes it possible to con-
vert the operands to Montgomery residues once at the beginning and then, do several
consecutive multiplications/squarings, and convert the final result to the original rep-
resentation. The final conversion is a multiplication by r~! followed by a reduction by
F(x),ie.,» = C-r~'mod F(x). The elliptic curve cryptography can be a good exam-
ple. A straightforward implementation of the Montgomery scalar multiplication using
projective coordinates requires up to (m —1)(6M +3A+5S) + (10M +TA+4S +1)
clock cycles, where M, A, S, and I represent the number of clock cycles for multi-
plication, addition, squaring, and inversion, respectively [1]. Furthermore, inversion
using Itoh-Tsujii algorithm requires |logy(m — 1)] + H(m —1) — 1 multiplications and
m — 1 squarings, where H(m — 1) denotes the Hamming weight of (m — 1) [1]. For in-
stance, inversion over GF'(2'%) requires 9 multiplications and 162 squarings. Hence,
the scalar multiplication requires 991M + 9765 + 493 A clock cycles for m = 163.
If the designer changes the operands to the original form, it is only enough to do
the conversion once before and once after the scalar multiplication. It is worthwhile
to mention that in the general case, where r = z%, the conversion requires at most
3u XOR gates and has the delay of at most 27Tx for irreducible trinomials and pen-
tanomials [64]. Note that multiplication using the shifted polynomial basis requires
the same conversions as well (see [64], Section 2). As a result, using an efficient Mont-
gomery multiplication /squaring with low delay can reduce the overall time complexity
of the scalar point multiplication and hence, increase the speed of the elliptic curve
processor.

The Montgomery multiplication has been improved in [85] using irreducible tri-
nomials. This has been achieved by changing the Montgomery factor based on the
chosen trinomial. Consequently, a fast squaring architecture has been proposed for

irreducible trinomials.
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Algorithm 3 The MM over GF(2™)
Inputs: A, B € GF(2™),r, F(x), F'(x)
Output:C = A - B - r~' mod F(x)

Step 1:t:=A-B

Step 2:u :=1t - F'(z) modr

Step 3:C := (t +u- F(x))/r

(a)

Algorithm 4 The bit-level MM over GF(2™)
Inputs: A, B € GF(2™), F(x)

Output:C = A- B -z~ ™ mod F(x)

Step 1: C':=0

Step 2:For 7:=0 to m—1

Step 3: C:=C+0bA

Step 4: C:=C+coF(x)

Step5:  C:=CJx

(b)

Figure 2.9: (a) The Montgomery multiplication (MM) over GF(2™) [38], (b) The
bit-serial MM [38].

2.2  Fault Detection

The Cryptographic systems are utilized to ensure the protection of data within an
application or organization. To achieve this objective, a cryptographic system should
satisfy security requirements such as the ones proposed by the National Institute
of Standards and Technology (NIST, FIPS 140-2) which include physical security,
mitigation of attacks, authentication, self-tests, etc. Mitigation of attacks includes
different mechanisms against the various attacks that are common for cryptographic
systems. Fault induction is one of the attacks which has received considerable atten-
tion [19]. In this type of attacks, the attacker manipulates the cryptosystem (through
laser, glitch, magnetic attacks, etc.) and induces errors in cryptographic algorithms.
To overcome the problems which might be caused by this type of attacks, differ-
ent countermeasures are used. In this section, we will study the countermeasure for
the implementations of cryptosystems based on Elliptic Curve Cryptography (ECC).
These countermeasures will be reviewed for the ECC and the underlying finite field
operations. More precisely, we will consider concurrent error detection/correction in
finite field arithmetic operations and then we will briefly review the countermeasures

based on input randomization, point validation, and concurrent error detection for
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the ECC.

Concurrent error detection is a process used to test the operation of a system while
it is operating normally [59]. Different techniques [39] are used in this regard which
include hardware duplication, parity codes, time redundancy, redundant residue num-
ber system [78], etc. Due to the fact that fault injection and active attacks are used
against cryptosystems (cf. [19], [2]), it is very important to increase the reliability of
the elliptic curve-based cryptosystems, and in particular, its main arithmetic opera-
tion, i.e., multiplication. There are different works available in the literature which
consider concurrent error detection for finite field multiplication. In [16], a parity-
based approach is used to detect errors in bit-serial polynomial and normal basis
multipliers. A similar technique is used in [70] for bit-serial and bit-parallel polyno-
mial basis multipliers. This scheme is extended to a multi-bit parity approach in [4]
for error detection in bit-serial and bit-parallel polynomial basis multipliers. Based
on interlacing parity codes, another approach is proposed in |7| for a bit-parallel poly-
nomial basis multiplier. In addition to the parity based approaches, time redundancy
is also used for error detection in finite field multiplication. This technique is mainly
used for semi-systolic and systolic implementations of the finite field multiplication.
In [5], time-redundancy based error detection techniques are proposed for different
pipelined systolic multipliers. For more time-redundancy based approaches, one can
refer to [10], [48], and [49], to name a few.

Concurrent error detection for the Montgomery multiplication over binary fields
has been considered in the literature. In [9], a time redundancy based error detec-
tion approach is used for the semi-systolic array implementation of the Montgomery
multiplication [9]. Their approach uses REcomputing with Shifted Operands (RESO)
and alternate data retry.

The work on concurrent error detection in elliptic curve cryptography is not as
extensive as the work on error detection in finite field arithmetic. However, it is
gaining more attention due to the introduction of the fault attacks on the high level
elliptic curve cryptography operations (see for example [17]). The concurrent error
detection approach proposed in [80] is based on time-redundancy and covers the
underlying finite field arithmetic operations. In [12], error-detecting and fault-tolerant

schemes are presented for the elliptic curve scalar multiplication.
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2.2.1 Parity-Code based Fault Detection

In [16], a single-bit parity-code based approach has been proposed to implement on-
line error detection for All-One-Polynomial (AOP) multipliers. The AOP is defined
as F((z) = 2™+ 2™ ! 4+ ... + 2 + 1 and the multiplication is done modulo F(z), i.e.,
C = A-Bmod F(x), where x is a root of F(z). This multiplication is carried out by

the following matrix formulation using the extended PB {1,z,--- ,z™ ! 2™}
[ Cm | [ ag ai -+ Gy 1T b |
Cm—1 Ay Qg 0 Qi bim—_1
=| ¢ o Co (2.19)
C1 as as --- ay bl
Co ay az -+ Qo bo

where A =3"" a;z', B=3Y " bz’ and C = > 1" c;a".

Now, let A" and B’ be the parities of the operands A and B using the redundant
representation, respectively. It is easy to write the following for the parity of C, i.e.,
C”, based on (2.19)

C'=AB.

Another multiplier has also been considered in [16] which is the modified AOP
multiplier. This is achieved by forcing a,, = 0 and b,, = 0 in (2.19) which results in

the following equation

i c T ap a2 Am—2 Am-1 0
m
Qo crr Amp—3 Gpm—2 Qm-—1 bmfl
Cm—1 0 .
A4 -3 Qm—2 :
= ' . (2.20)
T : : : by
(&1
as Qa4 --- 0 Qo aq b()
Co
- - | az as -+ Qm-1 0 agp ]

Using (2.20), one can write the following on parity prediction in this multiplier

m—1
é = AE + Z aibm—ia
i=1
where fl, é, and C are the parities of A, B, and C' using the standard polynomial

basis, respectively.
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The third multiplier considered in [16] is a bit-serial Massey-Omura multiplier.
This multiplier is defined using the normal basis {8, 52,---,58%" '}, where 8 €
GF(Qm). The normal basis multiplication is defined as C' = A - B, where A =
S tas, B =" 087, € =S e, and ay, by, ¢ € GF(2). The Massey-
Omura multiplier is constructed using the function f(ag, a1, -+, am_1,b0,b1, , bym_1)-
To generate the coordinates of C, the inputs of the function f are shifted cyclically
|53]. The following lemma has been presented in [16] to derive the parity prediction

formulation for the Massey-Omura multiplier.

Lemma 2.1. Let A = Y7 a,8%, B = S0 0,67, and C = 7 e be field
elements of GF(2™), where C' = A-B. Also, let A, B, and C be the parity bits of A, B,
and C, respectively. Now, using a cyclic function HY) = H(aotj, G14j, 5 Qm—14j),

the parity of the multiplication product, é, can be obtained as follows [16]

~

where the index addition in H is modulo m.

The generation of C using the function H resembles the generation of the coordi-
nates of C using the function F' by shifting the coordinates of A.

In [70], a single-bit parity code is used for fault detection in bit-serial and bit-
parallel PB multipliers. To explain this work, we recall that F'(xz) = 0, and as a result

one can write

2™ = frx™ 4+ fiz+ fo (2.21)

First, we present the following note to show a property of the irreducible polyno-
mial F'(z).

Note 2.1. Since F(z) is an irreducible polynomial, it is not divisible by (x + 1) and
consequently F(1) = 1. It is also concluded that 7" f; = 0 [70].

We start with the LSB-first bit-serial PB multiplier which is shown in Fig. 2.10a
using white blocks. This multiplier includes two m-bit registers (X and Y'), the z-
module which does a multiplication by z followed by a reduction modulo F'(z). Also,
the AND and XOR blocks perform logical AND and XOR operations, respectively. To
study the fault detection circuit for this multiplier, the following lemma is presented
first.



25

Lemma 2.2. Let Q = A-x mod F(x) and A = Z?jol a; be the parity bit of A. Then,
the parity bit of Q, i.e., Q, is obtained as follows [70]

Q = A + Am—1,
where a,,—1 is the most significant coordinate of A defined in (1.2).

Proof. Using (1.2) and (2.21), one can write () as

m—1
* -1
Q=am E Jit" + @™ + - + agz.
i=0

Now using Note 2.1, one can notice that the parity of @) is Q = A+a,_; and the

proof is complete. O

The other two operations in the LSB-first PB multiplier are field addition and

multiplication by a bit. For these operations, one can define the following properties.

Property 2.1. Let A and B be two field elements of GF(2™), and A and B be their
parity bits, respectively. The parity bit of Q = A+ B can be obtained as Q = A+ B.

Property 2.2. Let A be a field element of GF(2™) and A be its parity bit. The
parity bit of Q = b- A can be obtained as Q = b - A, where b € GF(2).

The fault detections scheme for LSB-first bit-serial PB multiplier using a single-bit
parity code can be obtained using Lemma 2.2 and the Properties 2.1 and 2.2. The
fault detection in the x-module is based on Lemma 2.2. The fault detection in the
XOR and AND blocks are based on Properties 2.1 and 2.2, respectively. The final
fault detection circuit for the LSB-first bit-serial PB multiplier is shown in Fig. 2.10a
using gray blocks.

The other bit-serial PB multiplier is based on an MSB-first multiplication algo-
rithm and is shown in Fig. 2.10b. The building blocks of this multiplier are similar
to the ones of the LSB-first multiplier. The fault detection circuit of this multiplier
is shown in Fig. 2.10b using gray blocks.

Traditionally, the bit-parallel PB multiplication can be performed based on the

following formulation

3
L

C=A-Bmod F(x)

b; - ((Az") mod F(x)). (2.22)

~
Il
o
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Figure 2.10: (a) The LSB-first bit-serial PB multiplier with fault detection, (b) The
MSB-first bit-serial PB multiplier with fault detection.
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Figure 2.11: Traditional Bit-Parallel Polynomial Basis Multiplier.

Assuming AW = - A=Y mod F(z) for 1 <i<m — 1, and A® = A, (2.22) can

be written as follows

C=>) b-AY (2.23)

The structure of the traditional bit-parallel PB multiplier is shown in Fig. 2.11
based on (2.23). The main components of this multiplier are the same as the ones
discussed for bit-serial PB multipliers and consequently, the fault detection circuits
for this multiplier can be designed similarly.

Another approach for fault detection in bit-parallel PB multiplication has been
proposed in [7]. This approach is based on using multiple interlacing parity bits.

Using this method, the parity bits for the operand A can be defined as follows
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i - Z;%)akrﬂ» m—sr<i<r

YoroWkrri 0 <i<m—sr,
where 7 is the number of parity bits and s = |™/r| is the minimum number of the
coordinates of A represented by a parity bit. Note that if m = sr each parity bit
covers s coordinates of A. Otherwise (which is the common case in ECC), some parity

bits cover s bits and the rest cover s 4 1 bits.

Predicting the parity of the final multiplication product C'is done in two steps.
First, the parity prediction is performed for the first network shown in Fig. 2.11
which includes the x-modules. The following lemma addresses the parity prediction

in the z-modules.

Lemma 2.3. Assuming AT and ACY are the input of the x-module and its parity,

respectively, the parity of the x-module’s output A can be obtained as follows [7]

i—1), £ ~(i—1 .

S (= LRI T S
J i-1) £ ~(i—1 . .

am—l)Fj"‘Aqu))modr 0<j<r,jg#m—sr,

where Fj is the jth parity bit of F(z).

The formulation above can be used in each z-module to predict the parity. The
second network of the bit-parallel PB multiplier shown in Fig. 2.11 is based on (2.23)
and consists of AND operations with the coordinates of B and the final sum using

XOR gates. The parity prediction formulation for this network is as follows

3

-1
éj: bzﬁgz),0§j<7’

i

Il
=)

The parity based approach used in |[70] to design fault detection circuits for the
PB multipliers has been extended in [4]| using the multiple-bit parity codes. The
multipliers considered in [4] include the LSB-first bit-serial PB multiplier (shown in
Fig. 2.10a using white blocks) and the traditional bit-parallel PB multiplier (shown
in Fig. 2.11).

Assuming A = Y7 ' a;2" is a field element of GF(2™) and a; € GF(2), the
multiple-bit parity of A is defined by dividing A into k parts. Assuming m is divisible
by k (for simplicity), the jth part of A is defined as

-1
_ gk i
Aj =X E Ajk+il s
i=0
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where 0 < j < k and [ = m/k. Now, the parity bit is computed for each part, i.e., A;,
and denoted as flj. Also, the parity is defined for the irreducible polynomial F'(x) by
excluding the term 2™ and the jth parity bit is denoted as Fj, 0<j<k.

The z-module is the main building block in both the bit-serial and bit-parallel PB
multipliers. The following lemma can be presented to obtain the parity prediction

formulation for this module using the multiple-bit parity code.

Lemma 2.4. Let A and A be the wput of the x-module and its k-bit parity, respec-
tively. The parity of the output of the x-module, i.e., A’ = A-x mod F(x), is obtained
as follows [4]

121;- = -1+ Aj + aG+1)-1 + amflﬁ}‘-

The remaining blocks of the bit-serial and bit-parallel PB multipliers are the XOR
and AND blocks. Similar to the single-bit parity approach, the parity prediction in
these blocks are performed using Properties 2.1 and 2.2, respectively.

An alternative approach is proposed in [4] to partition A and F'(z) which in fact
results in an interlacing parity code and is similar to the approach proposed in [7].

In |74], a modified multiple-bit parity-code based approach has been proposed
which uses the parities of both operands A and B. In this approach, the partitioning
of the operands is similar to the one explained for [4], i.e., the operands are divided
into k [-bit slices. The parity prediction in the x-module is the same as the one
outlined in Lemma 2.4. However, the parity prediction in the XOR and AND blocks
should be modified to incorporate the parity of the operand B. In [74], it has been
shown that using multiple-bit parity for both operands increases the fault detection
capability in comparison to the approach used in [4]. However, this approach also has
a greater area overhead in comparison to the one proposed in [4].

In [75], a fault detection approach has been presented for bit-serial (shown in Fig.
2.10a using white blocks) and bit-parallel (shown in Fig. 2.11) PB multipliers using
(n,m) linear codes. The codeword is defined as V' = (vg,v1, -+ ,v,-1) and the code
polynomial is a polynomial whose coefficients are the components of V. A polynomial
of degree n — m is used to generate the code polynomials of degree n — 1 or less and

is defined as follows

G@)=2""" 4 gpma 2™ " b g + i+ 1,

where G(x) is known as the generator polynomial and g; € GF'(2) for 1 <i <n—m.
Let A, B, and @ be the field elements of GF(2™), and b € GF(2). Also, assume A,
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B, and Q be the encoding of A, B, and @, respectively. Now, the following properties
can be defined [75].

Property 2.3. f Q =b- A, then Q =b- Asince Q =Q-G(z) =b- A.G(z) =b- A.

Property 2.4. If Q = A+ B, then Q = A+ B since Q = Q-G(z) = (A+B)-G(x) =
A+ B.

The fault detection in the AND and XOR blocks of the bit-serial and bit-parallel
PB multipliers can be implemented using Properties 2.3 and 2.4, respectively. Now,

the main remaining block in these multipliers is the z-module. The following lemma

can be presented to implement the fault detection circuit in this module [75].

Lemma 2.5. Let A = 3.7 Laa’ and A = 3. a2t be the input of the z-module

and its encoding, respectively. The encoded output of the x-module, i.e., /1’, can be

obtained as follows

A = 2A + 4, 1 F(x),
where A’ = A -z mod F(x) and F(x) is the encoding of F(x).

Lemma 2.5 and Properties 2.3 and 2.4 are enough to implement the fault detection

circuit for the bit-serial and bit-parallel PB multipliers using linear codes.

2.2.2 Time Redundancy

The second common approach for fault detection in finite field arithmetic operations
is based on time-redundancy and has been used in many works such as [9], [10],
[48], [49], and [5] to name a few. This approach is efficient for pipelined multipliers
including systolic and semi-systolic array multipliers. The time redundancy based
approach takes advantage of some well-known techniques such as recomputing with
shifted operands (RESO) [66], [65] or alternate-data retry [77]. In this section, we
study some of the existing works for fault detection in finite field arithmetic using
time-redundancy.

In [49], an RESO based approach has been proposed for fault detection in a
semi-systolic implementation of the PB multiplication. In this approach first the
multiplication is performed using the main inputs A, B € GF(2™) which results in
C = A-Bmod F(z). In the second round, A and B are represented using the
basis {1, 2,22, -+ ,2™ ! 2™} and the final result is converted to the main basis, i.e.,

{1,z,2% -+ ,2™ '} and compared with C.
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A time redundancy based approach is proposed in [9] for semi-systolic imple-
mentation of the Montgomery multiplication. The first set of the inputs used in
this approach are A and B € GF(2™) and the multiplication result is C' = A -
B mod F(zx). The second set of the inputs are the Montgomery residues defined as
A=A 2" mod F(z) and B = B - 2™ mod F(x). The output of this operation is
C =A-B-127™mod F(z). After completing both multiplication, one can compute
C - 2™ mod F(x) and compare it with C to detect the errors. To increase the fault
detection capability, the operation is repeated by shifting the operands A and A as
well.

The approach proposed in [9] has been modified in 23] to reduce the overheads.
The difference between [9] and [23] is that the latter uses a multiplication by x~*
modulo F(z) for the inputs and a multiplication by z modulo F(x) for the output
which results in lower time and area overheads.

In [5], time redundancy based techniques are proposed for polynomial basis, dual
basis, and normal basis finite field arithmetic units. Here, we briefly study the tech-
niques without considering the architecture of the arithmetic unit which is a pipelined
architecture.

In the case of polynomial basis multiplication, four finite field arithmetic opera-
tions have been considered in [5] and the fault detection techniques can be summarized

as follows:

e Addition: The main inputs are A, B € GF(2™) and the main output is obtained
as C = A+ B. The second set of inputs are A" = A - xmod F(z), B' =
B -z mod F(z) € GF(2™) and therefore, the second output is obtained as
C' = A’ + B'. Now, compute C’ -z~ mod F(x) and compare it with C.

e Multiplication: The main inputs are A, B € GF(2™) and the main output
is obtained as C' = A - Bmod F(x). The second set of inputs are A" = A -
x mod F(z), B' = B -z mod F(x) € GF(2™) and therefore, the second output
is obtained as C' = A’ - B’ mod F(x). Now, compute C’' - 272 mod F(z) and

compare it with C.

e Inversion: The main input is A € GF(2™) and the main output is obtained
as A7 = 1/A mod F(z). The second input is A’ = A -z mod F(z) and the
second output is A~! =1/A’ mod F(z). Now, compute A~ - x mod F(z) and

compare it with A~!.

e Division: The main inputs are A, B € GF'(2™) and the main output is obtained
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as C' = A/B. The second set of inputs are A’ = A -2z mod F(z), B = B -
r~ ! mod F(z) € GF(2™) and the corresponding output is C' = A’/B’. Now,

compute C" - 72 and compare it with C.

Fault detection in the dual basis arithmetic operations presented in [5] is similar to
the one explained above for the polynomial basis operations.

In the case of normal basis, it is well-known that the squaring and taking the
square root operations are performed by a circular left-shift and a circular right-shift,
respectively at no cost. Therefore, the following techniques are used for fault detection

in normal basis arithmetic units |5].

e Addition: The main inputs are A, B € GF(2™) and the main output is obtained
as C' = A + B. The second set of inputs are A’ = A%, B’ = B? and the output
is C" = A’ + B’. Now, take the square root of C' and compare it with C.

e Multiplication: The main inputs are A, B € GF(2™) and the main output is
obtained as C' = A - B. The second set of inputs are A’ = A?, B’ = B? and the
output is ¢" = A’ - B’. Now, take the square root of C’ and compare it with C.

e Inversion: The main input and output are A € GF(2™) and A™' = 1/A,
respectively. The second input is A’ = 1/A? and the corresponding output is

O’ = A7, Now, take the square root of C' and compare it with C.

e Division: The main inputs are A, B € GF'(2™) and the main output is obtained
as C = A/B. The second inputs are A’ = A% B’ = B? and the output is
¢’ = A'/B'. Now, take the square root of C" and compare it with C.
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Chapter 3

Bit-Serial and Bit-Parallel
Montgomery Multiplication and
Squaring over GF(2'")

UR objective in this chapter is to reduce the time complexity of Montgomery
O multipliers and squarers to accelerate scalar multiplication in ECC. The ECC
is included in the recent standards such as FIPS 186-2, ANSI X9.62, and IEEE 1363-
2000. To achieve this, we use a different approach to formulate the Montgomery
multiplication and then, we study different Montgomery factor to find the most effi-
cient ones. We begin by presenting two new bit-serial algorithms and their hardware
architectures and then, by unfolding one of the algorithms, we design a new general
bit-parallel multiplication architecture which is different from the architecture pro-
posed in [38] and [85]. Due to the popularity of irreducible trinomials and pentanomi-
als in cryptography, we optimize our general architecture using efficient Montgomery
factors for faster implementation. Finally, we design an efficient squarer for a family
of irreducible pentanomials. Note that ECC is typically implemented with a fixed
field size (e.g., [1], [50], and [73]) using the recommendations by NIST [67] for Elliptic
Curve Digital Signature Algorithm (ECDSA). Therefore, to avoid any area, time, or,
power overheads, we design our multipliers assuming that the field size is fixed.

In this chapter, we propose two bit-serial Montgomery multipliers and study
two classes of irreducible polynomials. The first class is the irreducible trinomials
(F(z) = 2™ + 2% + 1). For this class, we prove that two Montgomery factors result
in an efficient hardware implementation, where their complexity results match the
best results reported in the literature for different bit-parallel finite field multipliers
including [14], [30], [69], and [85]. Also, we consider the irreducible pentanomials
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and we show that type-II irreducible pentanomials defined in [71] are very suitable
for our general bit-parallel architecture. In this regard, we propose two Montgomery
factors which result in very efficient implementations. Then, we propose two differ-
ent bit-parallel Montgomery multipliers for this class of irreducible polynomials and
compare their complexities with the ones of recent bit-parallel multipliers. We show
that our results outperform the existing Montgomery multipliers in the literature. Fi-
nally, we consider squaring over GF'(2™) and present a squarer for type-II irreducible
pentanomials. The proposed squarer has the constant delay of two XOR gates which
is the lowest reported delay for squaring using pentanomials. The result presented in
this chapter can be found in [25].

The rest of the chapter is organized as follows. In Section 3.1, we introduce
two new bit-serial algorithms as well as a new Montgomery factor. In Section 3.2,
we consider a new general formulation of bit-parallel Montgomery multipliers and we
study it for two special cases of irreducible polynomials, namely, irreducible trinomials
and irreducible pentanomials in Section 3.3 and Section 3.4, respectively. In Section
3.5, we consider squaring over binary extension fields. Finally in Section 3.6, we

present our comparison results.

3.1 New Bit-Serial Montgomery Multipliers

Using r = 2%, 1 < u < m, as the general Montgomery factor, the Montgomery

multiplication over GF'(2") can be formulated as

C=A-B-z “modF(z). (3.1)

Using (2.16), one can rewrite (3.1) as

C =byAzr™" + by Az + o 4+ by A2 " T mod F(z). (3.2)

We know that z is a root of the polynomial F'(z), F'(z) = 0, and using (1.1) one

can write

fn™ + fro1z™ P+ iz + fo = 0. (3.3)

For any irreducible polynomial, we have fy =1 and f,, = 1. Thus, using this fact,

multiplying both sides of (3.3) by z7!, and rearranging the terms, one can obtain

r ' mod F(x)=2™"' 4 -+ + foxr + f1. (3.4)
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Algorithm S The MSB-first bit-serial MM
Inputs: A, B € GF(2™), F(x)

Output:C = A- B -z~ " mod F(z)

Step 1: A©) := Az~ mod F(z), C© :=0
Step 2:For ¢ :=0tom —1

Step 3:  CUtD :=p,,_; 1 AO 4 OO

Step 41 AGTD .= A . x=1mod F(x)

Step 5:C := C(™)

(a)
Reg. Reg.
1 C
T »| A — AND }—3p{ XOR |- C’ —~1>
A® | Module m A6+
Preload 0
*m A( ) 1 bmbm—lbm—Q ’ blb()
(b)

Figure 3.1: The proposed MSB-first bit-serial Montgomery multiplication (MM) using
r = z*: (a) algorithm, (b) architecture.

In [9], (3.4) is used to design a semi-systolic array structure for the MM using
r = a™. In the following sections, we use (3.4) to develop two different bit-serial
multiplication algorithms based on (3.2) using r = 2%, 1 < u < m. Then, we show

that the efficient Montgomery factor for such bit-serial structures is r = ™71,

3.1.1 MSB-First Bit-Serial MM

In an MSB-first bit-serial MM algorithm, the operand B is processed from its MSB,
i.e., by,_1, and one bit at each cycle is considered. By rewriting (3.2) and changing

the order of addition, one can obtain

C =bp 1 Az™ " oo by Az 4 by Ar " mod F (7). (3.5)

Now, we introduce Algorithm 5 based on (3.5) using the general Montgomery
factor r = 2% in Fig. 3.1a, where A® and C® denote the intermediate results
at the i-th iteration. It is clear from (3.5) that first, we need to pre-compute
A©® = Agm=v~lmod F(x) as it is shown in Step 1 of this algorithm. As a result,
the complexity of the MSB-first bit-serial MM depends on the complexity of Step 1
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Figure 3.2: The architecture of the z—'-module for general irreducible polynomials.

and the complexity of the main multiplication in Steps 2 to 5. First, we consider Step

4 in this algorithm as

ATD = AO . 2= mod F(x),

(3.6)
=@ 2" 2+ +d" + a2 mod F(z).
Now similar to [9], we substitute (3.4) in (3.6) and write the result as
AU+ :a(i)wm—l + (@) + a S 24 ...
s ) e .

+(a§i)+a0 f2)x +( ‘l‘%)f)

Consequently, the architecture of Algorithm 5 is depicted in Fig. 3.1b. In this fig-
ure, A’ and C" are two m-bit registers, which store values of A® and C®, respectively.
We assume A’ is loaded with A©®) = Az™~“~'mod F(x) at the beginning. There are
two main loops in Fig. 3.1b. The right loop calculates the value of C+Y) in Step
3 of Algorithm 5 and includes m two-input XOR gates. The left loop calculates the
value of A“D in Step 4 Algorithm 5 using the z='-module. This module multiplies
A® by 27! and reduces the results by F(z). The architecture of the z~'-module,
which is obtained from (3.7), is depicted in Fig. 3.2. It is clear that if F(x) is an
w-nomial, i.e., w non-zero terms in (1.1), then we will need w — 2 two-input XOR
gates to obtain ATV in (3.7). So, for general irreducible polynomials of degree m in
(1.1), it includes at most (m — 1) two-input AND gates, as well as (m — 1) two-input
XOR gates to realize (3.7). Besides this module, we require m two-input AND gates
to compute b,,_;,_1A® in Step 3 of Algorithm 5. As a result, Steps 2 to 5 of the
MSB-first bit-serial Montgomery multiplier require (2m — 1) two-input AND gates
and (2m — 1) two-input XOR gates for general irreducible polynomials of degree m.
It is clear from Fig. 3.1b that two loops can be computed in parallel. Thus, a

cycle of the multiplication algorithm requires the delay of T4 + Ty, where T’y and T'x
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represent the delays of a two-input AND gate and a two-input XOR gate, respectively.
Also, the latency of the MSB-first bit-serial Montgomery multiplier equals m clock
cycles.

Now, we consider the complexity of Axz™ “'mod F(z). For u < m —1, this oper-
ation requires multiplications by positive powers of x followed by a reduction by F(z).
Implementing this operation with minimum hardware requires one multiplication by
x followed by a reduction by F(z) in a cycle, which has the time complexity of T4 +Tx
[6]. Consequently, Az™ “~!mod F(z) is obtained with the linear time complexity of
(m —u — 1)(T4 + Tx). Note that a multiplication by z results in including extra
hardware. If u = m, we need to pre-compute Azr~'mod F(z) which requires the time
complexity of T4 + T'x using an ~'-module as explained above.

It is clear that simplifying Step 1 of Algorithm 5 results in better time and area
complexities. Here, the Montgomery factor plays an important role in simplifying
this operation. The ideal case is Az™ %! = A or 2™ “ ! = 1. This results in

m=1 as a new efficient Montgomery factor. In this

u = m — 1, which suggests r = x
case, Step 1 is just a load operation of the coordinates of A into the register A’. The
following summarizes the area and time complexities of the proposed multiplier using

the Montgomery factor r = ™ 1.

Proposition 3.1. Using the new Montgomery factor v = ™1 for a general irre-
ducible polynomial of degree m, the proposed MSB-first bit-serial MM over GF(2™)
can be realized by using (2m—1) two-input AND gates, (2m—1) two-input XOR gates
and two m-bit registers. The critical path delay and the latency of this multiplier are

Ty + Tx and m clock cycles, respectively.

Remark 3.1. The proposed MSB-first bit-serial multiplier is as efficient as the best
bit-serial PB multiplier (LSB-first). One can use such a multiplier to improve the
multiplication algorithm proposed in [3|, which splits the multiplication into two
concurrent multiplications: one PB and one MM. It is noted that the Montgomery
multiplier of [3], which is used in [72]| to design an ECC processor, is based on the
algorithm proposed in [38] and has the critical path delay of 2(T4+Tx). By replacing
their Montgomery multiplier with our MSB-first multiplier and using the LSB-first
bit-serial PB algorithm, the critical path delay can be reduced from 2(T4 + Tx) to

Ty + T'x with the same latency as (%w

Finally, note that the MSB-first bit-serial Montgomery multiplier using r = 2™
can be obtained by modifying Fig. 3.1b with adding a zero to the MSB of the operand
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Algorithm 6 The LSB-first bit-serial MM

Inputs: A, B € GF(2™), F(x)

Output:C = A - B - z~*mod F'(z)

Step 1: T := 0,4 = Ag™~“~1 mod F(x)

Step 2:For 2 :=0tom —1

Step 3: T+ .= T . =1 mod F(z) + b; - A©)
Step 4:C :=T(™)

T(i+1) ReS. T<7)
Ly ! 7 LAY
Module m
Reg.
A
bmbmflbm72 e blbO

Figure 3.3: The proposed LSB-first bit-serial MM using r = z*: (a) algorithm, (b)
architecture.

B (i.e., 0by,—1 -~ bibg). Therefore, the latency of the MSB-first bit-serial MM using

r = a™ is increased to m + 1 clock cycles. Note that A’ is loaded with A.

3.1.2 LSB-First Bit-Serial MM

To design the LSB-first bit-serial MM, we rewrite (3.5) by using Horner’s rule and
AO) = Apm=v=lmod F(z) to obtain

C =(-- (A2 mod F(z) + by A®)2~" mod F(z)+

(3.8)
et by A2 mod F(z) + b1 A9,

Similar formulation has previously been outlined in [9] using u = m to design a
semi-systolic array structure for the MM. Based on (3.8), we can propose Algorithm 6
(Fig. 3.3a) for the MM algorithm over GF(2™) using the general Montgomery factor
r = x*. In this algorithm, we begin processing the operand B from its L.SB and again,

we only process one bit at each cycle.
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Similar to the discussion for the MSB-first bit-serial MM, in this case again we are
interested in A® = Az™ "~ mod F(x) = A to simplify the multiplication process.
This results in w = m — 1 or r = 2™ ! as the new efficient Montgomery factor.

m—1

The hardware architecture of Algorithm 6 using r = x can be obtained by
similar means to that of Algorithm 5. This is shown in Fig. 3.3b. In this case, we
require two m-bit registers to hold the value of 7® and A. Also, we require m two-
input AND gates as well as m two-input XOR gates as labeled with AND and XOR
in Fig. 3.3b. The z7'-module in Fig. 3.3b is the same as introduced for Algorithm 5

in Fig. 3.2. We summarize the complexity results by the following proposition.

Proposition 3.2. Let r = 2™ be the Montgomery factor. Then, the proposed LSB-
first bit-serial Montgomery multiplier over GF(2™) requires (2m — 1) two-input AND
gates, (2m —1) two-input XOR gates, and two m-bit registers. The critical path delay

of this multiplier equals T'yx + 2Tx and its latency is m clock cycles.

Similar to the MSB-first bit-serial MM algorithm, we can present the following
remark for the LSB-first bit-serial MM algorithm.

Remark 3.2. Assuming r = 2™ is the Montgomery factor, the LSB-first bit-serial
MM over GF(2™) has the latency of m + 1 clock cycles. In this case, Fig. 3.3b is
modified by adding a zero to the MSB of the operand B (i.e., 0b,,_1 - - - bibp).

Finally, we present the following remark.

Remark 3.3. It is interesting to note that using our proposed Montgomery factor
r = ™!, one can simplify the semi-systolic array structure proposed in [9]. As a
result, its latency is reduced from m + 1 to m clock cycles. Also, the number of the

required cells is reduced from m x (m + 1) to m x m.

3.2 Bit-Parallel Montgomery Multiplication

Based on the formulation used in the previous sections, we present a new bit-parallel
Montgomery multiplier over GF'(2™) in this section. As shown in (2.17), the MM in
general can be formulated as C = A - B - r~'mod F(z), where r can be chosen as
r =a" 0 <u < m. The algorithm proposed in [38] uses u = m and generates (3.1)
which can be rewritten as (3.2). Fig. 3.4 depicts a new architecture of the bit-parallel
Montgomery multiplier for w = m. This architecture is also obtained by unfolding the
loop in Algorithm 6. In this architecture, the AND modules multiply a field element
by a bit, whereas the XOR modules add two field elements. The architecture shown in
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> 0

Figure 3.4: The architecture of the bit-parallel Montgomery multiplier over GF'(2™)
with r = 2™.

Fig. 3.4 is very similar to the architecture of the conventional bit-parallel polynomial
basis multiplier. However in the latter, instead of z~'-modules, z-modules are used
which perform a multiplication by z followed by a reduction modulo F'(x). Also, the

order of processing the coordinates of B is reverse. Note that the 2!

-module in Fig.
3.4 is shown in Fig. 3.2 for general irreducible polynomials.
By choosing u in the range of [1,m — 1], we can rewrite the Montgomery multi-

plication as

C =boAz™" + bjAz™" " + ... 4 b, Az + b, A

(3.9)
+ by Ar + - 4 by Ax™ T mod F(x).

In this case, the main difference is that we multiply A by negative and positive
powers of x to calculate the terms in (3.9). We can rewrite (3.9) as C' = C + Cy,
where C} = bpAx ™"+ by Ax™" 1 4. +b, 1Az ' mod F(z) and Cy = b, A+ b, 1Az +
<+ by 1 Az™ " P mod F(z). Now, we can design the new architecture of the general
case of the MM with » = z* as depicted in Fig. 3.5a. Note that for 1 <u < m — 1,
the number of the z and z~'-modules is m — 1, as b, A is obtained directly from A.

Based on the architecture depicted in Fig. 3.5a, the first step of the multiplication
is to compute the terms Az’ mod F(x), for i € [~u,m —u — 1]. In this chapter, we
use A, to represent Ax"mod F(x). This can be done by using the matrix M, whose
columns show the PB representation of A, for i € [~u,m —u —1]. So, the matrix

M has m rows and m columns. Then, the MM over GF(2™) can be formulated as

[coscis s Cmot]” =M+ [bo,bi, - ba]” (3.10)

Note that this formulation is similar to the Mastrovito multiplication [54]. We
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XOR Network A

AND Network

XOR Network

Algorithm 7 Bit-parallel MM

Inputs: A, B € GF(2™), F(x)

Output:C' = A - B -z~ " mod F(z)

Step 1: Generate the matrix M for the given irreducible polynomial
F(x) using general u

Step 2:Find an efficient v to minimize the number of terms
summed up in the entities of the matrix

Step 3: Re-generate the matrix M for the found u

Step 4: Implement [cq, 1, - - -, cm_l]T =M [bo, b1, b1

]T

(b)

Figure 3.5: The general architecture of the bit-parallel Montgomery multiplier over
GF(2™) with r = 2", 1 <u <m — 1: (a) architecture, (b) algorithm.

have shown the steps to construct the bit-parallel Montgomery multiplier in Figure

3.5b.

Proposition 3.3. Assume an w-nomial irreducible polynomial is used to construct
GF(2™). In this case, the architecture shown in Fig. 8.5a requires m*> AND gates
and (m —1)(m 4+ w —2) XOR gates.

Proof. In the architecture shown in Fig. 3.5a, the AND gates are only required in the
AND network. So, the total number of AND gates is m?. In this architecture, XOR
gates are used in two XOR networks. The first XOR network obtains the matrix

M and each column of this matrix requires (w — 2) XOR gates except the column
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corresponding to Ay which requires no XOR gate. Thus, (m — 1)(w —2) XOR gates
are required in the first XOR network. In the second one, m XOR trees are used to
obtain ¢; for ¢ = 0 to m — 1, where each XOR tree adds m terms. Thus, this network
requires m(m — 1) XOR gates. As a result, the architecture presented in Fig. 3.5a
requires (m — 1)(m + w — 2) XOR gates. O

Remark 3.4. The proposed architecture for the bit-parallel MM is different from the
structure proposed in [38| and [85]. In our structure, first the entries of matrix M are
obtained by an XOR network which consists of XOR gates, then an AND network
performs AND operations between the entries of the matrix M and the coordinates
of B. Finally, another XOR network is used to obtain ¢; for « = 0 to m — 1. In
the algorithm proposed in [38], which is also used to design the original bit-parallel
Montgomery multiplier in [85|, an AND network followed by an XOR network are

only used.

To consider the architecture of the bit-parallel Montgomery multiplier in details,
we design bit-parallel Montgomery multipliers for two important classes of irreducible
polynomials, namely irreducible trinomials and a special class of irreducible pen-

tanomials.

3.3 Bit-Parallel Montgomery Multiplier for Irreducible

Trinomials

By presenting the following lemma, we consider the properties of the matrix M to

find the most efficient Montgomery factors (Step 2 in Algorithm 7).

Lemma 3.1. Let F(z) = 2™+ 2%+ 1 be an irreducible trinomial and x be the root of
F(z). Then, the Montgomery factor r = x* is obtained from the following in order

to design a fast Montgomery multiplier,

1, k=1,
kork—1, k>1.

In this case, the entries of the matriz M will be the additions of at most two terms.

Proof. Using (3.9), we need to reduce the following polynomial by F'(x) for negative

([—u, —1]) and positive ([1,m —u — 1]) values of i
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Azt = qprt + apx - F ap ™ (3.12)

First, we consider (3.12) for i € [1,m —u — 1] and it is easy to notice that the
following requires no further reduction, 2™~ mod F'(z) = 2%~ 1+ 21~ if i <m—k
(or k+i—1<m—1). Note that 2! is the greatest power of z in (3.12). Thus,

for i < m — k, we can rewrite (3.12) by one step of reduction as

m—1—i m—1

- j+i j+i
G = E a;x’ " + E a;x’ ™",

=0 J=m (3.13)

m—1—i i—1

= Z a;zlt 4 Z Ui (27T 4 27).

=0 =0
It is clear from (3.13) that there are at most two terms at each position. Thus, we
substitute 7 in (3.13) with the greatest positive power of x from (3.9), i.e., i = m—u—1,

and we can conclude that : < m — k= m —u — 1 < m — k, which results in
u>k—1. (3.14)
Now, we consider (3.12) for ¢ € [—u, —1]. From trinomial representation, one can
find 1 = 2™ + ¥ and by multiplying both sides by z’ we have
2t =™ 4 2F i mod F(x). (3.15)

Note that in (3.15), m + i is a positive number for i € [—u, —1]. Therefore, (3.15)
will be in the PB representation if k£ + ¢ > 0. . Thus, for k£ +4 > 0 we can use (3.15)
to simplify A’(i) by one step of reduction as

m—1 lz]—1
Ay = Z a;z’t + Z a;z’ " mod F (),
=i =0
- o (3.16)
= Z a;zit 4 Z a; (x4 P mod F(x).
=l =

Note that 2 is the least power of z in (3.12) which is in the PB representation
for k+14 > 0. As a result, (3.16) is in the PB representation for k£ 4 ¢ > 0 and again
there are at most two terms in each position. By replacing ¢ with the least value of ¢

from (3.9), i.e., —u, we have
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0<k+i=u<k (3.17)

It can be concluded from (3.14) and (3.17) that the elements of the matrix M are

summations of at most two terms if £ — 1 < wu < k, and the proof is complete. O

Now, we can present the following proposition to determine the area complexity

of the Montgomery multiplier based on the values of u obtained from Lemma 3.1.

Proposition 3.4. Assume the Montgomery factor is chosen based on (3.11). Then,
the bit-parallel Montgomery multiplier using irreducible trinomials requires (m* — 1)
two-input XOR gates if k # % . Otherwise, i.e., k = %, 2
XOR gates. In both cases, the multiplier also requires m? AND gates.

it requires (m” —1) two-input

Proof. Using Proposition 3.3, the proof is straightforward. O]

Now, the entries in each row of the matrix include single or two-term elements
(Step 3 in Algorithm 7). Those entries should finally be summed up by using an
XOR tree after the AND operation with the corresponding coordinates of B (Step 4
in Algorithm 7). To reduce the delay of the MM it is possible to use the method of
[14]. This involves doing a part of the final addition operation in parallel with the
computation of the elements of the matrix M. In other words, while we compute the
two-term elements of the matrix M, it is possible to add the single term elements
pair-wise after the bit-wise AND operation with the corresponding coordinates of B.

In this regard, Table 3.1 shows the number of single-term and two-term elements in
each row (position) of the matrix M for two Montgomery factors mentioned in Lemma
3.1. We use Table 3.1 to obtain the time complexity of the MM using irreducible

trinomials and we can present the following proposition.

Proposition 3.5. Assuming F(z) = 2™+ 2"+ 1 is an irreducible trinomial, the delay

of the bit-parallel Montgomery multiplier using F'(z) is as follows

[y

Ty+ [logy (2m —u—1)]Tx, u< 2=

w‘

3
L

Ta + [logy (m+u)] Tx, u > =

where u is defined in (3.11).

Proof. Tt is noted that the worst delay occurs in the position (row of the matrix

M) that includes the maximum number of two-term elements. The reason is that
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Table 3.1: The Number of the Elements in the Matrix M for Irreducible Trinomials

- u=k—1 u=k
Position Single-term Two-term Single-term Two-term
20 m 0 m—1 1
| m— 1 1 m— 2 2
P m—k+ 1 E—1 m—k k
(m —u) (u) (m — u) (1)
o L m—k k+1 m—k—1
() | m-u-1 | (u+D) | (m-u-1)
s k+1 m—Fk—1 k+2 m—k—2
1 m—1 1 m 0

two-term elements will be ready after T'x and during this delay, we can add the single-
term elements pair-wise. Thus, if we have less two-term elements, more single term
elements can be added pair-wise. Using Table 3.1, one can see that the worst case

k=1 or ¥, which include u and m — u — 1 two-term elements,

will be in the position x
as shown in the corresponding positions in Table 3.1. In other words, ¢, or ¢;_; have
the longest critical path delay. In this regard and based on the Montgomery factor
r =", we study two possible cases:

Case I If u < ’”T_l (or u < m —wu— 1), then in the position ¥, which now has the
maximum number of two-term elements, there are m — u — 1 two-term elements and
u + 1 single-term elements (see Table 3.1). The u + 1 single-term elements can be
added (after bit-wise AND with the corresponding coordinates of B) by one level of
XOR gates which results in [(u 4+ 1) /2] terms. At the same time, the computation
of the m — u — 1 two-term elements is also complete and we can AND them with
the corresponding coordinates of B. Thus, the total delay of the multiplication in
the position z* to generate ¢, is Tu + (14 [logy(m —u—1+ [“E]]) Ty = Ta +
[logy(2m —u — 1)] Tx.

Case IT: If u > % (or u > m—u—1), the maximum number of two-term elements

occurs in the position zF~!

, where there are u two-term elements and m—wu single-term
elements (see Table 3.1). Therefore, similar to Case I, the total delay of the whole
operation in the position 2%~ to generate c;_; is T4+ (1 + [log, ([(m +u) /2])]) Tx =

Ty + [logy (m +u)] Tx. O
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3.4 Bit-Parallel Montgomery Multiplier for Irreducible

Pentanomials

Irreducible pentanomials form another family of irreducible polynomials which are
used in finite field arithmetic, e.g., [14], [29], [64], [69], and [71], where there is no

irreducible trinomial of the desired degree m. Generally, they can be formulated as

F(z):zm+zk3+zk2+zk1—l—1,1§k1<k2<k3<m. (318)

We assume that » = x* is the Montgomery factor. The matrix M plays an impor-
tant role in designing efficient bit-parallel Montgomery multipliers. If each column
of the matrix M is computed with one step of reduction, then the matrix M can
be obtained faster. In this regard, we use a special type of irreducible pentanomials.
This type of irreducible pentanomials, known as type-II irreducible pentanomials, is
defined as F(z) = 2™ + 2"*2 + 2" 4 2" 4+ 1, where 2 <n < [2] — 1 [71]. Now, we

can present the following remark.

Remark 3.5. Assume F'(z) is an irreducible pentanomial (see (3.18)), F'(z) = 0 and
r = a" is the Montgomery factor. The computation of matrix M defined in (3.10) is
very fast for type-II irreducible pentanomials (Step 2 of Algorithm 7). In this case,
for any u, there is at least one value for 7, where the computation of A’(Z.) will require
two steps of reduction. If u = n or v = n + 1, then the matrix M will be in the

simplest form regarding the steps of reduction, where for u = n (resp. uw = n + 1)

/

only the term A(mfufl)

(resp. A/(fu)) will require two steps of reduction.

To verify the above remark, we start by considering the computation of A’(i), where
i € [—u,—1]. Similar to the proof of Lemma 3.1, it is easy to show that we should
have u < k;. Similarly, in order to have one step of reduction for computation of
A’(i), i € [1,m —u — 1], the following condition should also be met, m —u — 1+ k3 <
m = u > kg — 1. Therefore, u should satisfy both v < k; and u > k3 — 1 which
is impossible. In such cases, at least k3 — k; — 1 columns of the matrix M require
more than one steps of reduction. So, if one minimizes k3 — k; — 1, then less columns
of the matrix M will require two steps of reduction which means it will be easier
to obtain the matrix M. Thus, kq, ko, and k3 should be three consecutive numbers
which means the pentanomial should be a type-II irreducible pentanomial. In this
case, only one column will require more than one step of reduction. Now, if we choose

u = k; = n, then only A’( will require two steps of reduction. Similarly, if we

m—u—1)

choose u = k3 —1 =n+ 1, then only A’(fu) will require two steps of reduction.
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Figure 3.6: The matrix M for type-II irreducible pentanomials using v = n.

In this chapter, we obtain the time and area complexities of the bit-parallel Mont-
gomery multiplier for » = ™. We note that the same results can be obtained by using
r = 2"! and this is not considered due to the page limit. The matrix M for type-II
irreducible pentanomials is shown in Fig. 3.6. Here, we show how it is obtained (i.e.,
Step 3 of Algorithm 7). We assume that A = A/(o) = ap_1 2™+ +a;x+ag. The
coefficients of A/(o) are shown with black nodes in Fig. 3.6 in the column Al(o)- Then,

A’(l) can be obtained by

Ay = Algyzmod F(x),

m=2 (3.19)
=Y ai@ a2 2" 2" 1),

i=0

It is clear that the coefficients of (3.19) are obtained by shifting the coefficients of
Al to left and reducing the term a,,—12™ by F(x). In this regard, the shifted terms,
which are shifted vertically in the matrix M, are depicted by black nodes in Fig. 3.6.
Thus, in column Af,) four new terms (a,,—1) are added to the positions 20, ", ",

and "2

. Those new terms are depicted by white nodes in Fig. 3.6. Thus, (3.19) can
be obtained with the delay of an XOR gate and using three two-input XOR gates.
Similarly, as depicted in Fig. 3.6, A,(z) can be obtained with the same delay and

the same number of gates. Now, we can consider the general case of two consecutive
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columns. We assume that 2 < j < m —n — 3 and we obtain A/(j+1) by
m—1—j m—1
=0 i=m—j (3.20)
xn+1+’i*(mfj) _i_anrif(mfj) _i_xif(mfj))?
and
m—j—2
A,(j+1) - Z ai[L‘i+j+l + am—j—l(xn+2 + xn—i—l + 2" + 1)
i=0
s (3.21)
+ ai(xn+2+z‘—(m—j—1) 4 gt (m—j=1) :
i=m—J

gtim(m=i=1) 4 gi=(m=j-1))

By comparing (3.20) and (3.21), it is clear that one can obtain (3.21) by shifting
the coefficients of (3.20) to left, or equivalently down-shifting the entries of the column

0 n+2

A’(j) in M down, and adding four new terms in the positions 2%, 2", z"*!, and x

Using (3.21), there are two terms in the position x™, three terms in the position x™*!,
and four terms in the position 2"™2. So, we need one new XOR gate in the position
2™ and one new XOR gate in the position 2"*!. But for the position 2”2, we can use
two approaches. In the first approach, we can obtain the entry in the position z"*2
by reusing the shifted coefficient of A'( i) which is a three-term coefficient (three black

"2 (one white

nodes in Fig. 3.6) and adding it to the new term in the position x
node in Fig. 3.6). This results in having the delay of 3Ty, however we use only one
extra XOR gate. In the second approach, we reuse one of the XOR gates of A’(j) in
the position 2" and obtain the final result by using two more new XOR gates. This
results in having the delay of 27y, however we use two additional XOR gates for this
entry. Therefore, we can design two bit-parallel Montgomery multipliers. One is faster
and we call it the Fast Montgomery Multiplier (FMM) and the other one requires
less area and we call it the Low Complexity Montgomery Multiplier (LCMM). Now,
we can conclude that in the FMM (resp. LCMM), each new column in the matrix
M, i.e., A’(j), requires four (resp. three) XOR gates for 3 < 7 < m —n — 2. For
j=m—n—2in (3.20), we have
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n+1
A,(mfnf2) _ Z aixi+m—n—2+
=0
m—1
Z ai(xi_i_xifl +xif2+xif(n+2))'
i=n-+2

(3.22)

Note that in (3.22), we have a,, 1 +a,1 in the position 2!, Now, the rightmost

’(m_n_l), is obtained by multiplying (3.22) by x and
0

reducing with F'(z). Therefore, the term a,,_1 + a,4; will be in the positions z°,

column of the matrix M, i.e., A

2", 2" and 2"*2. This is shown with white nodes in the column Al in Fig.
3.6. As a,,_1 + a,1 is computed in A’(l), it does not require any new gate. Now, in

n+2

the column A’( there is a five-term element in the position x"7*. This element

m—n—1)
is a summation of ; three-term and a two-term elements, which are reused. Here
again, we have two possibilities. In the LCMM, these two can be summed up in the
final XOR tree. So, we need two XOR gates to obtain A’(m_n_l) (one for the position
2™ and one for the position z"™1). For the LCMM, we can compute the five term
element directly with the delay of 37Tx and by using one new XOR gate. As a result,
A
negative values of ¢ similarly. However, no column requires two steps of reduction.
Now, we consider Step 4 in Algorithm 7. Remark 3.5 and Fig. 3.6 show that it is

not possible to compute all of the polynomials A’(i) by one step of reduction. It means

requires three XOR gates. Note that the matrix M can be obtained for

m—n—1)

that if we obtain the matrix M for type-II pentanomials, at least one of the elements
of the matrix will be a summation of five terms. Having five terms in an entry of the
matrix implies that direct computation of the matrix M requires the delay of 37y
and 27Ty for the LCMM and the FMM, respectively. Then, the LCMM and the FMM
require the total delay of Ty + (3 + [log(m)])Tx and T4 + (2+ [log(m + 1)]) T'x
respectively. In the case of the Montgomery multiplication with type-II irreducible
pentanomials, similar procedure for trinomials can be used to reduce the delay. The
main point is that, similar to the discussion for trinomials, while we are computing
the elements of the matrix which are summations of three or four elements, we can
build a part of the final XOR tree for the elements of the matrix M which are single
terms or summation of two terms. This process is shown in Fig. 3.7 to obtain ¢,
for n < mT_l in the FMM. It is noted that this architecture is slightly different from
the architecture depicted in Fig. 3.5. The main difference is that the order of the
AND and XOR operations. Now, we can present two propositions for the area and

complexities of the bit-parallel Montgomery multipliers.
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Figure 3.7: The architecture of the FMM for type-II irreducible pentanomials to
m—1

compute ¢,y for u=n < 75

Proposition 3.6. Let r = 2™ (u = n) be the Montgomery factor. The fast bit-parallel
Montgomery Multiplier (FMM) using type-1I irreducible pentanomials of degree m
requires m?* two-input AND gates and m? + 3m — 9 two-input XOR gates. Also,
it has the time complezity of Ta + (1+ [logy (m+n)])Tx, if n > " and Ty +
(1+ [logy (2m —n—2)])Tx, if n < 254 .

Proof. As stated above and shown in Fig. 3.6, the column A/(o) requires no XOR gate.
Four columns of the matrix M, i.e., (A’(_Q) ,A’(_l) ,A’(l) , and A’(Q)), require three XOR
gates, one column (A/(mfnfl)) requires two XOR gates and the rest of the columns
require four XOR gates. As a result, the total number of the XOR gates to obtain
the matrix M equals (m — 6) x 4 +4 x 3+ 2 = 4m — 10. Finally, the elements
should be summed up by using m XOR trees (one for each position). There are
(m + 1) elements in the position 272 as we break up the five-term element into two
elements. The rest of the positions have m elements. Thus, the XOR trees require
(m—1)x (m—1)+m =m? —m + 1 XOR gates and consequently, the multiplier
requires m? + 3m — 9 two-input XOR gates. Now, we can compute the number of
AND gates. In the matrix M, (m — 1) columns have m elements. The rightmost

column, i.e., A has (m + 1) elements as we break up the five-term element

/(m—n—l)’
into two parts. But the resulted two-term part is also used in the position 2°. Thus,
in each column we need m AND gates and consequently, the multiplier requires m?
two-input AND gates.

Now, we consider the time complexity of the multiplier. The maximum delay
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occurs in a position (a row of the matrix M) which contains the maximum number of
elements with addition of more than two terms. Rows O ton —1and n+1tom —1
contain single term elements for positive and negative values of 7 in A’(i), respectively

Lor zn

(see Fig. 3.6). Thus, the maximum delay will be in one of the positions ™"
which have m —n — 2 and n three/four-term elements, respectively. This is shown by
dashed lines in Fig. 3.6. We can consider the two possible cases.

Case I: If n < =1 (or n < m — n — 2), then the position "™ will have the most
three/four-term elements. As depicted in Fig. 3.6, it has n + 1 two-term elements

(the columns A{;), and A{_,, to A{_, ), m —n — 3 three-term elements (the columns

/

Al to A, ), one four-term element (the column A

}); and one single-term
element (the column Af;). We compute the elements with three or four terms by
the delay of 27x. Meanwhile, it is possible to compute two-term elements, so after
the delay of Ty, we will have n + 1 single terms. We also have another single-term
element in the column A/(o) which results in having n + 2 single terms after the delay

of Tx. Now, we can AND them with the corresponding coordinates of B. Therefore,

n+2
2

the same time, the computation of the three/four-term elements are complete and we

after another delay of a two-input XOR gate, we will have { W single terms. At
can AND them with the corresponding coordinates of B. At this point of time, we
have (1+m —n —3+ (”T”]) single terms and consequently, the total delay equals
Ta+ (2+ [logy (1+m—n—3+[2])]) Tx = Ta+ (1+ [log, (2m —n —2)]) Tx .
This is shown in Fig. 3.7.

Case II: If n > ™= (or n > m — n — 2), then the position 2™ will have the most
three/four-term elements, where there are m —n — 1 two-term elements (the columns
A’(fl) and A’(l) to A’(
and A(_, to A/_)), and one element with one term (the column Af, ). Thus, the
delay of the bit-parallel Montgomery multiplier is T4+ (2 + ﬂog2 (n + [m_"w ﬂ) Tx =

Ta+ (14 [logy (m+n)])Tx . 2 O

77177172)), n elements with three terms (the columns A’(mfnfl)

Note that the same area/time complexity can be obtained by using r = 2",

Now, we present the following proposition for the LCMM.

Proposition 3.7. Assuming r = 2™ (u = n) is used as the Montgomery factor,
the low complexity bit-parallel Montgomery multiplier (LCMM) using the type-11 irre-
ducible pentanomial F(z) requires m? two-input AND gates and m?+2m—3 two-input
XOR gates. Also, it has the time complexity of TA—i-(l + ﬂog2 ((m;ﬂ + 4u — 5)}) Tx,
if u > mT_l and Ty + (1+ [logQ((“T“w +4m—4u—9ﬂ)Tx, if u < mT_l .

Proof. In this case, we need m two-input AND gates in each column and totally the



o1

multiplier requires m? two-input AND gates. Now, we can obtain the number of the
XOR gates. The column A/(o) requires no XOR gate. The rest of the columns require
three two-input XOR gates. So, the matrix M is obtained by using 3x (m—1) = 3m—3
two-input XOR gates. Each of the final XOR trees have m elements in each position,

2 — m two-input XOR gates. Therefore, this multiplier requires

so they require m
m? + 2m — 3 two-input XOR gates.

Now, we can obtain the time complexity of this multiplier. In this case, the
number of four/five-term elements will determine the delay of the multiplier. Fig. 3.6
shows that the maximum number of four/five-term elements occurs in the positions
"2 or "' which have m — u — 3 and u — 2 four/five-term elements, respectively.
So, we study the two possible cases as follows.

"+2 will have the most

Case: If u—2<m-u—3oru< mT’l, then the position x
four /five-term elements. In this column, we have u+ 1 single-term elements, one two-
term element, one three-term element and m —u — 3 four/five-term elements. Similar
to Proposition 6, we have the delay of T+ (1 + [log2 ((“T“W +4m — 4u — 9)}) Tx.

Case I fu—2>m—u—3oru> mT’l, then the position 2"~ will have the
most four-term elements. In this column, we have m — u single-term elements, one
two-term element, one three-term element and w — 2 four/five-term elements. This

results in the delay of T4 + (1 + ﬂog2 ({m;“] + 4u — 5)}) Tx. O

The following example illustrates the proposed multipliers. Note that the same

area/time complexity can be obtained by using u = n + 1.

Example 3.1. Assuming F(2) = 2"+ 2* + 2%+ 2%+ 1 and using u = 2, we can obtain

the matrix M for the bit-parallel Montgomery multiplication as follows.

AL g) Ay Ay 4y Ay As) Ay
aQ, Q, Q a

ag +a o 0 6 5 4 ag + ag 2’
agtagta; ay+a; @ a, ag as a, 2t
(14—0—(10-1-(11 a3+a0 Qs al-i-aﬁ a0+a5 a6+a4 a5+a3+a6 xQ

as +a;  ag+ay a3 ayt+ag a tagta;  ay+ag+a, ag+ay+ag+a5 |2°

ag ag ay a3+a6 a2+a6+a5 a1+a6+a5+a4 a0+a5+a4+a3+a6 x4
ag ag ag ay ag +a6 aq + ag -+ ag a + Qg +a5 —|—a4 3;5
a ag g a ay ag + ag Qg + Qg + Qs $6

The column A/(o) requires no XOR gate. The Column A’(l) requires three XOR
gates to compute (a; + ag), (a2 + ag) , and (a3 + ag). The Column A’(z) also requires
three XOR gates, one to compute (ag + as), one for ((a; + ag) + as) as (a1 + ag)
is reused, and one for ((as + ag) + as), as (a2 + ag) is reused. In Column Al one
XOR is required for (ag + a4) and one for ((ag + as) + a4), as (ag + as) is reused .
In the FMM, (a; + ag + a5 + a4) is obtained by ((a1 + ag) + (a5 + a4)) with reusing
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(a1 4 ag) which results in using two XOR gates with the delay of 27’x. In the LCMM,
(a1 + as + as + a4) is obtained by ((a; + as + as5) + a4) with reusing (a; + as + as).
In this case, one XOR gate is required but the delay is 3Tx. In the column A’(4), one
XOR gate is required for obtaining (as + (a3 + ag)) as (as + ag) is reused. Obtaining
((ag + a4) + (as + ag)) requires one XOR gate as both (ag + a4) and (a3 + ag) are
reused. There are two possibilities to compute (ag + a5 + a4 + ag + ag). In the FMM,
it is considered as ((ag+ as + a4) + (a3 + ag)), where both (ag + a5+ a4) and (a3 + ag)
are reused. But the addition is postponed to the final XOR tree, thus no XOR gate
is required. In the LCMM, ((ag + a5 + a4) + (a3 + ag)) is obtained by an XOR gate
and the delay of 3Tx. Note that A/(q) and A’(72) are obtained similarly.

The maximum delay in FMM occurs in the position z3 (in computing c3), where
c3 = ((as+ a1)bo+ (as+ ag)br) + (agbe + (az + ag)bs) + ((a1 + ag) + as)bs + ((ao + as) +
a4)bs+ ((a3+ag)+(ag+ay))bg. By implementing the terms with the order represented
by the brackets, c3 is obtained with the delay of Ty + (2 + [logy(5)]) Tx = Ta + 5Tx.
Note that the delay of the LCMM can be obtained similarly.

3.5 Montgomery Squaring over GF(2™)

After multiplication, squaring is the most important operation in finite field arith-
metic. This operation is considered in polynomial basis by Wu in [84] for the general
case of irreducible polynomials and irreducible trinomials as a special case. In [38],
some general squarers are proposed using the MM algorithm. An optimized squarer
is proposed in [85] for irreducible trinomials using the MM algorithm. That squarer
is designed using r = 2* as the Montgomery factor for irreducible trinomials and it
is shown that it has the delay of Tx, whereas the delay of squaring in PB is at most
2T.

Our proposed bit-serial and bit-parallel multipliers can be used to do the squaring
for general case of irreducible polynomials. However, it is possible to design efficient
squarers for some important cases of special irreducible polynomials. For irreducible

k=1 can be used to design squarers as well.

trinomials, the Montgomery factor » = x
However, the results will be similar to those of [85]. Therefore, we do not consider
the squaring operation for irreducible trinomials and instead, we focus on bit-parallel
squaring using type-II irreducible pentanomials. Squaring using the Montgomery

multiplication can be formulated as
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C =A% 27"mod F(z)

= (ni:l awgi) -z~ " mod F(x) (3:23)

i=0
Now, we show that efficient squarers can be designed using the Montgomery factors
x" or "1, Let 2" be the Montgomery factor. In this case, (3.23) can be rewritten

as

m—1
C= Z a;z*" " mod F(x). (3.24)

i=0
Here, we only consider odd values of m as they are more important than even
values of m [67]. First, we assume that m and n are odd numbers. As a result, (3.24)

can be written as

m+n—2 n—1 (325)

j=ntl i=0

Now, we present the following lemma to find the area and time complexities of

Montgomery Squaring (MS) using type-II irreducible pentanomials.

Lemma 3.2. Let m and n be odd positive integers and n < ™32, and F(z) = 2™ +
224 2T 2" 1 be an irreducible polynomial. In this case, C = A?- 27" mod F(z)
can be obtained with the mazimum delay of 2Tx using at most (mT—g +m + 4) two-

input XOR gates.

Proof. Let us represent (3.25) in the first row of Fig. 3.8, where the gray and white
cells represent the coordinates of A and zeros, respectively. There are three sums in
(3.25). The second sum in (3.25) does not require any reduction and is shown in the
middle part of the first row in Fig. 3.8 indicated by indices from 1 to m — 2. The
last sum produces negative powers of x and using the fact that 27 = ™7 4+ g"+2+7 4

"I g™t for negative j’s, it can be reduced as
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n—1 n—1 n—1
2 T2 T2
E aisz—n — § aixm-‘er—n + § aix21+2
=0 =0 i=0
o o (3.26)
T2 2
+ E a;z? T g a; x>,
i=0 =0

Four sums on the right side of (3.26) are shown in rows 2-5 of Fig. 3.8. The
first sum in (3.25) produces terms with degrees greater or equal to m and using

M = g2 gt et ) for § > 0, it is reduced as

m—2 m—2 m—2
E azx%fn — § aix2zfm+2 + E : azx227m+1
i= m+n = m-+n i= m+4n
2 2 2
2
m—2 m—2 (3 7)
+ A n+i :C217m —|— A n+i x2linim.
2 2
m+n m+n

The four sums in (3.27) are shown in rows 6-9 of Fig. 3.8. Finally, the term

Ay 22D ig reduced as

am_lem—n—2 — am_l(xm + l,m—l + xm—? + xm—n—?)
— am_1($m—1 +l’m_2 + xm—n—Z + xn+2
+ 2" + 2" + 1) mod F(z).

This is shown in the last row of Fig. 3.8. Considering the overlaps between the
odd and even powers of x separately, at most four terms (gray cells) contribute to
any position which results in the delay of 27T.

To obtain the area complexity of squaring using Fig. 3.8, we start from position 0

and consider all the overlaps. For even ¢’s satisfying 0 <17 < n—1 ("T“ coordinates), ¢;

is a summation of three terms. For odd ¢’s satisfying 1 <i <n—2 (”T_l coordinates),
¢; is a summation of two terms. The coordinates ¢, ¢,11, and ¢, 12 are summations of

four terms however, one XOR gate is reused twice (first cells of rows 7-9 overlapping

m—n—2
2

is a summation of two terms. For odd i’s satisfying n +4 < i < m — 2 (

with row 10). For even i’s satisfying n +3 < i < m —1 ( coordinates), ¢;

m—n—4
2
m—3 i m—3
5 two-term, ==

three-term, and 3 four-term coordinates (reusing one XOR gate twice), which results

coordinates), ¢; is a summation of three terms. Thus, there are

in using at most (mT_?’ +m + 4) two-input XOR gates to obtain the coordinates of

C. ]

We present the explicit formulation to obtain ¢; below, where m and n are odd
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Figure 3.8: Squaring for odd values of m and n, n < mT_?’

numbers and n < mT_?’ Note that in all of the cases, i is increased by 2 (e.g.,
i=1,---n—2means i =1,3,--- ,n—4,n—2).
( .
a0~|—amT+n—|—am_1 1=0
(lz;1 +anT+1+% i=1,---,n—2
ai_l—i_ai—i_am ’];:27...,71_1
2 2 2

An=1 + ap, + Amtn + A1 =N
2 2

An-1 +am+n+ Z:n+1
2 2
Am+2nt1 + Qpp—1
Ci = 3 2 _
Apy1 + Qmin + 1t=n+2

Clm;—n_i_l + Ay —1

Amti=1 + Qmin i t=n+3,--- ,m—n—2
2 2

[SIE

Ant1 i1+ t=n+4,---,m—2
2 2

a/m+i71 + A m+i
2 2

Ai—(m-n) + Amti-1 t=m-—mn,---,m-—1.
\ 2 2

For other values of m and n, C' can be obtained similarly. The results are presented
as follows and verified (compared) by Visual C++ simulations. Similar results can be
obtained by using r = 2"*! as the Montgomery factor. For odd m and n, n > mTH,

we have



C;, =

(
ag + am;n + Q1

3] T L)L)
R R

aif(mfn) + ai_l + ai
2 2 2

Al n| + Qp + Amtn + A1
5] 2

Giztmon) + @mgn | ion
2 2 2

S R

1= 2, ,m—n—2
t=m-—n,--,n—1
1=n

A 2n—m+1 +a|_QJ +amin +Qp_1 t=n-+1
2 2 2

1t=n+2
t=n+3,---,m—1
t=n+4,---,m—2
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which requires at most (mTfs’ —i—m—|—4) XOR gates. For odd m, even n, and

n < mT’g, we have

(
Qg + g +

RETRES SR

ai_,+tai +a
2 1 2

n
2

[SIEY

an_q + a, + -1

Oz T g | 22
+a,—1

Q2nt2 + GL%J + Q1
Omgn | 4ig=t T O mgn | imgs
RS ST

Oy 0 o o g

ai_(rg_n) -+ aLmTJrnJJrif’gfl

R e

i=n
1=n+1
t1=n+2

t=n+3,--,m—n-—2

i=n+4,,m—1

t=m-n,---,m—2

which requires at most (’”T_3 +m+ 2) two-input XOR gates. For odd m, even n,

and n > mTH, we have
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ap + an + Q1 1=20
@l +aLm;nJ+1+L%J 1=1, ,m—n—2
a1,1+a%+a%+% Z:2, ,n—2

aif(mfn)‘i_atj t=m-—mn,---,n—1
2

i
2
an_i + ap + Am—1 1=n

a2n—2m+1 + CLLm+n+2J +am1 t=n-+1
2

a/ﬂ+’ﬂ+2 + a/|-m+n+2J + am_l 7/ =N + 2
2 2 2
Qi (m—n) +aLm+nJ+i—n—1+ i:n+3,--- ,m—2
2 2 2

O mpn gt

Qppf+ O mn| || E=nbd m—]

3.6 Comparison

In this section, we compare our results to their best counterparts from the same
category available in the literature. Table 3.2 compares our proposed bit-serial Mont-
gomery multipliers to those of [6] and [38]. Note that these multipliers can be derived
from the digit-serial multipliers of [79] and [38], respectively if the digit size is equal
to one. Although our bit-serial multipliers can be used for the general Montgomery
factor r = 2%, 1 < u < m, they are only compared for two values of ©u = m — 1 and
u = m. This is because no pre-computation is required in the initialization step of
the multiplication algorithms. The critical path delay of the multiplier proposed in
|38] is 274 + 2T'x and it has the latency of m clock cycles. Our proposed LSB-first
bit-serial multiplier of Fig. 3.3 has the critical path delay of T’y +2Tx and the latency
of (m + 1) and m clock cycles for r = 2™ and r = 2™}, respectively. We have also
proposed an MSB-first bit-serial multiplier (Fig. 3.1) which has the critical path delay
of Ta + Tx and the latency of (m + 1) and m clock cycles for r = 2™ and r = 2™,
respectively. Thus, both of our bit-serial multipliers are faster than the bit-serial
multiplier of [38]. Note that our MSB-first bit-serial Montgomery multiplier is faster
than the existing bit-serial Montgomery multiplier in the literature. All of these three
bit-serial Montgomery multipliers require (2m — 1) XOR gates and (2m — 1) AND
gates and two m-bit registers. As seen from Table 3.2, the LSB-first bit-serial PB
multiplier and our MSB-first Montgomery multiplier have the same and least time
complexity. Thus, our MSB-first MM (with the LSB-first PB multiplier) can be used
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in the digit-serial MM algorithms, such as the one presented in [3], to reduce the
overall time complexity (see Remark 3.1). Also, the LSB-first bit-serial PB multiplier
and our MSB-first Montgomery multiplier have the same area/time complexity.

We compare our proposed bit-parallel Montgomery multiplier using irreducible
trinomials with the Montgomery multiplier [85], two PB multipliers [30], [69], and an
SPB multiplier as shown in Table 3.3. Note that although bit-parallel multipliers can
be derived from digit-serial multipliers using the digit size m, they are not optimized.
Based on Table 3.3 all of the multipliers have the same area complexity. The time
complexity of our multiplier is lower than those of [30], [69], and [85] and equal to
the ones proposed in [14].

Our second bit-parallel Montgomery multiplier is designed for Type-II irreducible
pentanomials. In this case, we have proven that two Montgomery factors can result
in efficient hardware implementation. Then, we have designed two bit-parallel multi-
pliers. Here, we compare our multipliers to the multipliers of |14| and |71| which are
based on type-II irreducible pentanomials. The results are shown in Table 3.4. The
multiplier of [14] uses v = n+1 for the shifted polynomial basis (SPB) and it has the
same time complexity as our FMM. However, our multiplier uses two Montgomery
factors, i.e., u = n,n+ 1, and requires a few gates less than the one presented in [14].
The multiplier of [71] has higher delay than our fast multiplier, but it requires less
hardware. The comparison of the multiplier of |71] and our LCMM depends on the
value of n. For some value of n, our LCMM is faster and for some values of n, they
have the same delay. Note that in [71], n should satisfy 2 < n < L%J — 1, whereas in
our design it should satisfy 2 < n < m — 3. The area complexity of [71] also depends
on n. For some values of n, it has less XOR gates than our LCMM, whereas for some
values of n our LCMM requires less XOR gates. To show the differences among those
multipliers, we use m = 163 which is recommended by NIST for elliptic curve digital
signatures algorithm |67|. There are three irreducible pentanomials of degree 163 and
2<n< L%J — 1. We present the complexity of the multipliers using these three
pentanomials in Table 3.5.

To the best knowledge of the authors, squaring using type-II irreducible pen-
tanomials has not been considered before. However in [84], it is shown that at most
4(m — 1) additions are required for squaring using general irreducible pentanomials.
In |20], the complexity of squaring is presented for some pentanomials after optimiza-
tion. We compare the results reported in [84] and [20] to ours in Table 3.6. It is clear
that in our presented squarers, the delay is reduced to 27x for type-II irreducible

pentanomials with slightly less number of XOR gates. This delay is equal to the
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Table 3.5: Comparison of Multipliers for Irreducible Pentanomials

Multiplier | Type | #AND | #XOR | Delay

F(z) = 2'% 4 2% 4 274 % 41

[14] SPB | 26569 | 27051 | T4+ 10T

[71] DB 26569 | 27008 | T4+ 11T

Proposed FMM MM 26569 | 27049 | T4+ 10T

Proposed LCMM 26569 | 26892 | Ty + 10T
F(2) = 210 4 270 4 209 1 .88 1

[14] SPB | 26569 | 27051 | T4+ 10T

[71] DB 26569 | 27014 | Tq+ 11T

Proposed FMM MM 26569 | 27049 | T4+ 10T%

Proposed LCMM 26569 26892 | Ty + 10Tx
F(2) =218 4272421 42104+ 1

[14] SPB | 26569 | 27051 | Ta+ 9Tk

[71] DB 26569 | 27020 | T4+ 11T

Proposed FMM MM 26569 | 27049 | Ta+ 9T

Proposed LCMM 26569 | 26892 | T4 + 10T

Table 3.6: Comparison of Squarers for Irreducible Pentanomials

’ Irreducible Polynomial ‘ #XOR ‘ Delay ‘
‘ Polynomial Basis ‘
F(z)=z2m+z2F 42k 420 1 1[84] | <4(m—1) -

F(2) =219 4+ 27 + 26 4+ 23 + 1 [20] 246 3T
Proposed Montgomery squaring
<

— m n+2 n+1 n =
F(z)=z2z" 42" 420 42" 4+ 11 S T 2Tx

e.g., F(z) =213 4 27 4 2™ 4 270 41 245 2T
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delay of squaring in the PB using trinomials (2™ + 2* + 1), where m + k is an odd
number. Therefore, our squarer together with our proposed FMM can be used to

accelerate scalar multiplication in ECC.
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Chapter 4

Digit-Serial Structures for the Shifted
Polynomial Basis Multiplication over

Binary Extension Fields

In the previous chapter, we presented finite field multipliers using the Montgomery
multiplication algorithm. In this chapter, we study digit-serial shifted polynomial
basis multiplication. It is noted that in a digit-serial multiplier, one digit of an
operand is processed at each cycle. In this regard, we present the general formulation
for the digit-serial multiplication using the shifted polynomial basis and derive an
MSD-first digit-serial multiplication algorithm. Then, we choose efficient values to
construct the shifted polynomial basis, which reduce the time and area complexities
of the general digit-serial multiplication operation. Based on the presented formula-
tion and the algorithm, we also propose an additional digit-serial shifted polynomial
basis multiplication algorithm. This multiplication algorithm, which is denoted as
hybrid, uses parallel operations to obtain the multiplication product. We compare
the proposed multiplication algorithms to the digit-serial polynomial basis multipli-
cation algorithms and show that their complexities match or outperform them. More
importantly, the presented hybrid algorithm reduces the latency of the multiplication
to half of the latency in polynomial basis multiplication, while it has the same critical
path delay. The digit-serial multipliers presented in this chapter can also be found in
[24].

The rest of this chapter is organized as follows. In Section 4.1, we consider digit-
serial shifted polynomial basis multiplication. Then in Section 4.2, we provide our

discussions and comparisons.
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4.1 Digit-Serial Shifted Polynomial Basis Multipli-

cation

In a digit-serial multiplier, the bits are grouped as digits and at each cycle, one digit
is processed. We define D > 2 to be the digit size, which means each digit has D bits.
We start from the Least Significant Bit (LSB) of the operand B, i.e., by, and group
D consecutive bits as a digit. This results in having n = [m/D] digits in operand B.

Consequently, we obtain

n—1
B=> B’ (4.1)
i=0
where
D-1 ‘
EbDiJrjx]y 0<1<n—-2
=0
B; = gz—l—D(n—l) (4.2)
> bpitjr!, i=n-—1
7=0
Using (4.1) and
C = A-Bmod F(z), (4.3)

one can write the general formulation of the digit-serial SPB multiplication as

C =ByAz™" + By Az~ + . + B, 1 Az VP"" mod F(x). (4.4)

Now, we try to find appropriate values for v to design efficient digit-serial SPB
multipliers. By inspecting (4.4), we propose to choose v = (n — 1)D. The reason is
that in this case we have Az(»~DP~v = A and there is no need to compute Az"—1P-v
before processing the digits of B. As a result, we are interested in (n —1)D —v =0,
which results in the proposed value for v. Now using v = (n — 1)D, we rewrite (4.4)

as

C = ByAz~""VP 4 B Az==2D 4 ... 4+ B, Amod F(z). (4.5)

Now, we can propose a digit-serial SPB multiplication algorithm, namely the Most
Significant Digit (MSD)-first digit-serial SPB multiplication algorithm based on (4.5).
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4.1.1 The MSD-First Digit-Serial SPB Multiplier

Using (4.5), one can design the MSD-first digit-serial SPB multiplier in which the
operand B is processed from its MSD, i.e., B,,_;. We show the algorithm correspond-
ing to this multiplier in Algorithm 4.1 for general irreducible polynomials. Note that
v = (n—1)D is chosen to construct the shifted polynomial basis. Step 1 in Algorithm
4.1 is the initialization and the main operations of the algorithm include a multipli-
cation followed by an addition in Step 3 and a multiplication by =" followed by a

reduction by F(x) in Step 4. In this algorithm, A" and C’ can be represented as

m—1 m+D—2
A = g ax'™", O = g ca' . (4.6)
=0 =0

Algorithm 4.1 The MSD-first digit-serial SPB multiplication

Inputs: A, B, F(z),n=[m/D|,v=(n—-1)D
Output:C' = A - Bmod F(z)

Step 1: A':=A, C":=0

Step 2: Fori:=0ton—1

Step 3: C':=B,_i A+

Step 4: A=Az P mod F(z)

Step 5: C':= C"mod F(z)

The structure of the MSD-first digit-serial SPB multiplier is shown in Fig. 4.1.
This structure includes two loops. The right and the left loops implement Step 3 and
Step 4 of Algorithm 4.1, respectively. The module represented by x multiplies A’
(a polynomial of degree m — v — 1) by a digit of B, i.e., B; (a polynomial of degree
D —1), for i = 0 to n— 1, and as a result, its output has m + D — 1 bits. This
module is shown in Fig. 4.2a for m = 11, D = 3, and v = 9, where B, ; means the
j-th bit of the ¢-th digit. The module represented by XOR adds the result of the
x-module with the current value of C’ and stores it in C” again. In this structure,
C" is an (m + D — 1)-bit register which contains the coordinates of the polynomial
C’ shown in (4.6). The z~P-module multiplies A’ by 2~ and reduces the result by
F(z) as shown in Fig. 4.2b. The final result, shown in (4.6), is stored in A’ using
an m-bit register. The final mod F'(z) module implements Step 5 of Algorithm 4.1,
which is the final step and is a reduction of a polynomial of degree (m — v+ D — 2)
by F(z). This operation has a similar structure to Fig. 4.2b, however in this case,
(D —1) terms which are of degree m — v to (m — v+ D — 2) should be reduced. As a
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result, there should be (D — 1) rows in Fig. 4.2b for this operation. Note that in Fig.
4.1, A’ and C"® show the content of the registers A’ and C’ at the i-th iteration of
Algorithm 4.1, respectively.

m m+D-1 C/(z‘)
A/(i+1) A/(L) Cl(i+1)

P A R e o mod C
[ P : m+D- F(z) |

B anfQanS e BIBO

Figure 4.1: The MSD-first digit-serial SPB multiplier.

In Algorithm 4.1, Step 3 and Step 4 are performed in parallel. As a result, the
critical path delay of the multiplier is equal to the maximum of the delays in Step 3
and Step 4. In Step 3 of Algorithm 4.1, the m-bit A’ is multiplied by the D-bit B,,_; 1
and then, the result is added to C’. Let T4 and Tx represent the delay of a two-input
AND gate and the delay of a two-input XOR gate, respectively. This Step requires
the delay of T4 to obtain the partial products, and then the delay of [loga(D+1)]|7Tx
to sum up D rows of partial products with C’ using an XOR tree in the general case
(see Fig. 4.2a). As a result, it requires the delay of Ty + [loga(D + 1)|Tx. In Step
4 of Algorithm 4.1, the m-bit A’ is multiplied by 2z~ followed by the modulo F(z)
reduction. Generally, this can be obtained by the delay of D(Tx+Tx) (see Fig. 4.2b).
Consequently, the multiplier associated with Algorithm 4.1 has the critical path delay
of D(Ta+Tx). Also, the latency of this multiplier is n+1 clock cycles or equivalently,
[m/D] + 1 clock cycles, including the final mod F(z) operation.

Note that it is possible to do the reduction each time in Step 3 of Algorithm 4.1,
however it increases the critical path delay of the multiplication, especially when the
time complexity of the multiplication by x~? followed by the modulo F(z) reduction
is optimized.

In Fig. 4.1, the x-module and the XOR module together require D x m two-input
AND gates and D x m two-input XOR gates. The z~”-module requires D x (m — 1)
two-input AND gates and D x (m — 1) two-input XOR gates, and the mod F(x)
operation requires (D — 1) x (m — 1) two-input AND gates and (D — 1) x (m — 1)
two-input XOR gates for the general case of irreducible polynomials. Also, there are
(2m+ D — 1) registers in this architecture. As a result, we can conclude the following

to obtain the complexities of the proposed MSD-first digit-serial SPB multiplier.
Proposition 4.1. The MSD-first digit-serial SPB multiplier of Fig. 4.1 requires
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Figure 4.2: (a) Multiplication by B;, (b) multiplication by 2~ followed by reduction.

D x (3m—2) —m+1 two-input AND gates and D x (3m —2) —m+1 two-input XOR
gates and (2m + D — 1) registers. Also, it has the critical path delay of D(Ta + Tx)
and the latency of n+ 1 clock cycles.

It is interesting to note that the proposed MSD-first digit-serial SPB multiplication
algorithm has the same area and time complexities in comparison with the LSD-first

polynomial basis multiplication algorithm proposed in [79].

4.1.2 Hybrid Digit-Serial SPB Multiplication

From (4.4), the SPB multiplication can be formulated as

C =ByAz"" + BleD—v 4+t BI_%JA'IL%JD_’U—}_

(4.7)
oo 4 By Az YD mod F(x).
Now, we choose v = [ 5] D to rewrite (4.7) as
C =ByAz~31P 4 B AzP-131D ... 4 BLgJ—le*DjL s

BizjA+ By Az -+ B, Azl"2 1P mod F(x).
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It is clear from (4.8) that C' includes two parts. One part is based on the positive
powers of x and the other part is based on the negative powers of x. We can show
this fact by

C=C+C", (4.9)
where
C' =ByAz~13I0 4 B AgP-15ID .. 4 (4.10)
Bz 1 Az~" mod F(x),
and
C" =Bz A+ BigjAx? 4o+ (4.11)

By 1Azl"7 1P mod F(z).

We note that obtaining C” is a digit-serial SPB multiplication which considers the
| 5] least significant digits of the operand B. On the other hand, obtaining C" is a
digit-serial polynomial basis multiplication which involves the n— | % | most significant
digits of the operand B. As explained in the previous section, these two parallel
operations can be implemented with an equal critical path delay. A similar approach
is outlined in [3] for the digit-serial Montgomery multiplication over binary extension
fields. However, two parallel operations of the algorithm in |3] have different critical
path delays for general irreducible polynomials. For example, in the simplest case, i.e.,
one-bit digits, one of the parallel operations (the polynomial basis multiplication) has
the critical path delay of T'x 4+ T, but the other one (the Montgomery multiplication)
has the critical path delay of 274 + 2Tx. Also, this technique is applied on the
Montgomery multiplication of integers in [33].

Now, based on our proposed MSD-first digit-serial SPB multiplier and also the
available LSD-first digit-serial polynomial basis, e.g., |79|, we propose an algorithm to
reduce the time complexity of the digit-serial SPB multiplication. This algorithm is
shown in Algorithm 4.2. Note that in this algorithm B_; and B,, are equal to zero. It
is seen from Algorithm 4.2 that two multiplications are carried out in parallel and two
partial products are summed up and reduced by F(z) in Step 7. In this algorithm,
A, A", C', and C" can be represented as
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m—1 m+D—2

A = Z agxi_”, C' = Z C;{L‘i_v,
i=0 1=0
m—1 m+D—2

A — Z &gl’i_v, " = Z C;/l’i_v.
1=0 =0

Algorithm 4.2 Hybrid digit-serial SPB multiplication

Inputs: A, B, F(z),n = [m/D],v=[5|D
Output:C' = A- Bmod F(z)

Step1: A=A, C":=0,C"=0,A":=A
Step 2: For i :=0 to ||
Step 3: A=Az P mod F(x)
Step 4: C' =0+ BL%J—I—iA/
Step 5: c"=0C"+ BL%J—H’AH
Step 6: A" = A" 2P mod F(z)
Step 7: C':=C" 4+ C"mod F(x)

The hardware structure of Algorithm 4.2 is shown in Fig. 4.3. In this figure, the
top structure obtains (4.10) and the bottom structure obtains (4.11). The modules of
this figure are similar to the ones used in Fig. 4.1. The module labeled z” performs
a multiplication by z? followed by a reduction by F(z). Also, A’ and A” are m-bit
registers, whereas C” and C" are (M + D — 1)-bit registers.

It is noted that for odd values of n, there are |§] terms in (4.10) and [§] +1
terms in (4.11). Obtaining C’ requires [5] + 1 clock cycles and it is because the
polynomial Az~ mod F(z) should be pre-computed. As a result, a zero is fed to
the top structure in Fig. 4.3 to perform the pre-computation. But, the first term in
obtaining C” is B|z A which does not require any pre-computation. Consequently,
both C" and C" can be obtained after |7 | + 1 clock cycles. For even values of n,
both (4.10) and (4.11) include § terms. However, C' needs § + 1 clock cycles and
C" requires 4 clock cycles. We explain the complexity of this algorithm in the next

section.

4.2 Discussion and Comparison

In this section, we consider the time complexity of the proposed digit-serial SPB

multipliers in more details and extend the results of [79] to the proposed digit-serial
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Figure 4.3: Architecture of the hybrid digit-serial SPB multiplication (Algorithm 4.2).

SPB multipliers.
The main operation in Algorithm 4.1 is the multiplication by = followed by a

reduction by F'(x). Thus, by making this operation faster, one can reduce the critical

path delay of the proposed multipliers. Assuming 7' € GF(2™), we have the following

T-27P =ty a™ o tpaP ™+ tp 2P

+ 7 4 tor™) - 2P mod F(x),

(4.12)
:(tm_lxm_v_D_l + - + tDI_U + tD_lx—’U—l + -

+t P oz Py mod F(x).

There are D terms in (4.12) which should be reduced by F(z) i.e., (tp_127""! +
coe+ TP o DY mod F(z). As a result, the complexity of (4.12) depends

on the irreducible polynomial F'(z) and the value of D. In this regard, we present

the following proposition.

m—1

Proposition 4.2. Assume F(z) =z"+ Y fiz' + fiz' + 1 is an irreducible polyno-
i=l+1
mial over GF(2) and x is a root of F(z). In this case, no reduction is required to

represent x~""F in the shifted polynomial basis if k <.

Proof. We can write
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m—1
F(z) =™+ Z fixt + fizt +1 =0,
=41

m—1
=z77F x (2™ + Z fix' + fixt +1) =0,
i=1+1
or

m—1
mm—v—k_’_ § fixz—v—k ‘I’flxl_v_k — w—v—k.
i=l+1

So, if | — v — k > —wv, then the left side of the equation above is already in the
SPB, Thus, no reduction is required for [ > k£ and the proof is complete. O

Now, we can propose the following lemma which is used to obtain the complexity

results of the proposed digit-serial SPB multipliers.

Lemma 4.1. Let {70, 27" ... 2™ 71} be the SPB and A be a field element,

m—1 )

where x is a root of the irreducible polynomial F(2) = 2™+ Y. fiz'+ fiz' +1. Then,
i=1+1

A -2 P mod F(x) can be represented in the shifted polynomial basis by only one step

of reduction if D < I, where D is the digit size. In this case, A -z~ mod F(z) is
obtained with the delay of Ta + [loga(D + 1)|Tx for the general case.

Proof. We can represent A € GF(2™) as

A=qp 2™ P T gz

and consequently,

A- IE_D —_ am_lxm—v—l—D S GQI_U+2_D + alm—v—l—l—D + aox—v—D

By using proposition 4.2, it is clear that the terms whose powers of x are between

v—1 v=D can be represented in the shifted

—v—1and —v— D, ie., ap_1x~ and agx~
polynomial basis by only one step of reduction if D < [. These D terms can be
reduced in parallel with the delay of T4 and then, they should be summed up with

the other term of A-xz~". This requires the total delay of T + [loga(D +1)]Tx. O

Obtaining A - 7P mod F(x) for D < [ is depicted in Fig. 4.4. In this case, D

terms should be reduced by the irreducible polynomial which requires D x (m — )
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Figure 4.4: Multiplication by =P followed by reduction for D < .

two-input AND gates as f,, = 1. Then, they should be added to the rest of the terms
in A-2z7P by using D x (m — [+ 1) XOR gates.

Remark 4.1. The area and time complexities of the proposed hybrid digit-serial SPB
multiplier can be obtained using the results presented for the MSD-first digit-serial
SPB multipliers. This algorithm has the critical path of the MSD-first digit-serial
SPB multiplication algorithm, however its latency is almost the half of that of the
MSD-first digit-serial SPB multiplication algorithm. One can achieve this latency
using the LSD-first digit-serial polynomial basis multipliers if the digit size 2D is
chosen. However, this results in doubling the critical path delay in the general case
or adding an extra delay of an XOR gate in the special cases. The hardware overhead
of the hybrid digit-serial SPB multiplier with the digit size D in comparison to the
digit-serial polynomial basis multiplier with digit size 2D is 2m registers and m+ D —1
XOR gates. In general, the time xarea factor of the hybrid digit-serial SPB multiplier
is equal to that of the MSD-first digit-serial SPB multiplier. However, better results
can be achieved if different structures like semi-systolic arrays used to implement the
hybrid digit-serial algorithms. This is because the lower latency results in reducing
the number of the required rows of the semi-systolic array and as a result, even for

equal digit sizes, the hardware overhead will be very low.

By using Lemma 4.1, the time complexity of the proposed digit-serial SPB multi-
pliers is presented in Table 4.1.

It is possible to construct the shifted polynomial basis using v = m — 1 which
extends the range of the efficient digit sizes. In this case, the operand B is represented
as B = b1 +bpm_ox '+ - -+agx— Y. This time, instead of grouping the bits from
right to left (e.g., starting from the LSB), we start from the MSB of B and group D

consecutive terms to form a digit of degree at most —(D — 1), i.e.,
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Table 4.1: Time Complexity of the Digit-Serial Multipliers over Binary Extension
Fields

Algorithm \ Type \ Critical Path delay \ Latency
w—1
F(z)=2"+ f,2+ > fiz' + fiz' +1, D > min{[,m — w}
=141
Algorithm 4.1: MSD-first SPB D(T4 + Tx) n+1
Algorithm 4.2: Hybrid SPB D(Ty + Tx) (5] +2
w—1
Fz)=z2"+4 fuz"+ > fiz*+1,D>m—w
i=1
MSD-first [79| Polynomial basis D(Ta+Tx)+Tx n+1
LSD-first [79| Polynomial basis D(Ty+Tx) n+1
w—1
F(z)=2"+ f,2"+ > fiz' + iz +1,2< D < min{l,m — w}
i=lt1
Algorithm 4.1: MSD-first SPB Ta+[logo(D+1)|Tx | n+1
Algorithm 4.2: Hybrid SPB Ta+ [logo(D + 1)]Tx | [2] +2
w—1
F(z)=2"+ fu2¥+ > fiz' +1,2<D<m-w
i=1
MSD-first [79] Polynomials basis | T4 + [logo(2D + 1)[Tx | n+1
LSD-first [79| Polynomials basis | T4 + [logo(D +1)|Tx | n+1
D-1 .
> bm—pi—jo1x7, 0<i<n-—2
=0
Bi = rjn—1—D(n—1) A (4.13)
> bn-pi—j1r™?, i=n-—1

j=0
So, B= B\ + B,z P+ ..+ B! _,z=(YP_ An algorithm similar to Algorithm 4.1
can be used as well. However in this case, the coefficients of C” in Step 3 of Algorithm
4.1 have degrees between —v — D 4+ 1 and m — v — D. This is depicted in Fig. 4.5a
for m = 11, v = 10, and D = 5, where B;; represents the j-th bit of B]. Note
that the partial products are shifted to the right in this case. The complexity of the
multiplication of a field element by B} is the same as the one shown in Fig. 4.2a.
Therefore, the reductions in Steps 3 and 4 of Algorithm 4.1 are similar in this case
and as a result, the digit size should satisty 2 < D <[ for the fast multiplication.
An example: We use m = 163 which is recommended by NIST for elliptic curve
digital signatures algorithm |67]. Considering F(z) = 210 4+ 297 4+ 29 4 2% 4+ 1
as an irreducible pentanomial, the digit size in Algorithm 4.1 should satisfy 2 <
D < 66 which results in efficient implementation. For the digit-serial polynomial
basis multiplication algorithms of |79|, the digit size should satisfy 2 < D < 66 to
provide the same complexity. As a result, the digit-size for the hybrid digit-serial SPB
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Figure 4.5: Multiplication by B; using (a) single accumulator, (b) double accumulator.

multipliers should satisfy 2 < D < 66. Using v = m — 1 and grouping the coordinates
of B from left to right, the digit size should satisfy 2 < D < 95.

The techniques introduced in [40] can be extended to the SPB to reduce the time
complexity of the digit-serial multipliers as well. In this case, multiple accumulators
are used to implement the multiplication A x B]. This is shown in Fig. 4.5b using
two accumulators. The main difference is that the results of |40| are presented for the
multiplication by z? followed by a reduction. However, it is possible to extend them

to the multiplication by =P followed by a reduction used in the SPB.
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Chapter 5

Digit-Level Semi-Systolic and Systolic
Structures for the Shifted Polynomial
Basis Multiplication over Binary

Extension Fields

In the previous chapter, we showed new digit-serial shifted polynomial basis mul-
tipliers. In this chapter, we implement shifted polynomial basis multipliers using
semi-systolic and systolic array structures. The two contributions of this chapter are
stated as follows. The first contribution of this chapter is introducing a new low
time-complexity digit-level semi-systolic array structure for the SPB multiplication.
The proposed structure is based on a similar technique used in [3], [55], [33], and
the one proposed in Chapter 4. In our proposed structure, the parallel operations are
balanced and have the same critical path delay. The semi-systolic structure presented
in this chapter is a low-latency pipelined multiplier with low critical path delay. We
show that our proposed semi-systolic multiplier has the least time complexity among
the existing ones available in the literature including [42], [32], [9], [3], [55], and [61].
The second contribution is to propose a digit-level systolic array SPB multiplier which
offers a better time complexity, in terms of the combination of the critical path delay
and latency, than the existing counterparts for general irreducible polynomials such
as [87], [83], [41], [35], [45], and [8]. The structures presented in this chapter are also
available in [22]

The rest of this chapter is organized as follows. In Section 5.1, we present our
semi-systolic array implementation of the SPB multiplication. In Section 5.2, we

propose a digit-level systolic array structure for the SPB multiplication. Finally in
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Section 5.3, we provide our implementation results and comparisons.

5.1 Semi-Systolic SPB Multiplication

m—1

By expanding B, the SPB multiplication C = Y ¢;z"™¥ = A - Bmod F(z) can be
i=0

written as

C :boA.%i’U + b1A$7U+1 + -+ bvflAiCil

(5.1)
+ by A4+ by Az™ " mod F(x).
Now, we split C' in (5.1) into two polynomials as follows
C' = bgAx™" + by Az~ " -+ b, Ar ' mod F(x), (5.2)
C" = byA+by 1 Ax + - + by A2™ " mod F(x). (5.3)

Our objective is to implement (5.2) and (5.3) independently and in parallel. In

this regard, for (5.2) we define a recursive equation as
A = A " mod F(z), (5.4)
where A’©) = A andi=1,--- ,v — 1 and we write (5.2) as C’ = byA®) + b AP~ 4
-+ b,_1 AN Now, another recursive equation is defined as
O = b, AD 4 OO =1, 0, (5.5)

where C'© = ') = 0 and ¢" = C'®*D. As a result, C’ is obtained after v + 1
iterations (i.e., clock cycles). This is because one extra iteration is required to compute
AW Let A be represented as ') 2™ + -+ + Pz + a\”. Now, (5.4) is written

as A+ —

(a;gi)_l:cm*2 +oot a4 al? ) Y mod F(z). (5.6)
Using the fact that F(z) = 0, it follows 27! = 2™ 1 + f,, 1™ 2+ .-+ f;. Thus,

(5.6) is rewritten as

A+ (ag(i)xmfl v (aO Finet +a/(1) ) m—2-v 4
+ (ag(i)fl + all))m’”.
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It can be concluded from (5.7) that for general irreducible polynomials, this oper-
ation has the critical path delay of T’y + T'x, where T4 and T'x represent the delay of
a two-input AND gate and a two-input XOR gate, respectively. The second recursive
equation, (5.5), is written as C't) = (b,_;a/" | 4 W Yam=1=v 44 (by_sal? +
cg(i))x_”. One can notice that this operation has the critical path delay of T4 + Ty for
general irreducible polynomials as well. As (5.4) and (5.5) are computed in parallel,
the computation of C” in (5.2) has the critical path delay of Ty + Tx and requires
v+ 1 clock cycles (i.e., iterations).

Next, we consider (5.3). The structure proposed in [32] can be used to implement
this part. First, the following recursive equation is defined with the maximum degree

of m — v — 1 using the SPB

A,,(H_l) _ A//(i) . rmod F(.T), (58)

where A”® = A and i = 0,---,m — v — 2. By rewriting (5.3) and using (5.8), one
obtains C” = b,A® + b, ;AL 4 ... 4 b, 1 A=v=D which results in the following

recursive equation

O = b, A"D L 07D =0, m— v — 1, (5.9)

where C”(©) = 0 and C” = C"("=). Therefore, C” is obtained after m — v iterations
(i.e., clock cycles). Using the fact that 2™ = f,, 2™ '+ .-+ + fiz + 1 and similar
to (5.7), (5.8) can be realized in hardware with the critical path delay of T4 + Tk.
Similarly, (5.9) can be implemented with the critical path delay of T4 + T.

Similar to C’, C" is obtained by computing (5.8) and (5.9) in parallel. As a result,
this operation has the critical path delay of T4 + T'x and requires m — v clock cycles
(i.e., iterations). It is noted that (5.2) is a SPB multiplication which only processes
v least significant bits of the operand B. Also, (5.3) is a PB multiplication which
processes m — v most significant bits of the operand B. As a result, the delay of
obtaining C' directly depends on the maximum delay of computing (5.2) and (5.3)
which require v + 1 and m — v clock cycles with the critical path delay of T4 + Tx,
respectively. As C’ and C” are computed in parallel, it is efficient to have equal

latencies in computing (5.2) and (5.3). Thus, we are interested in the following

v+1:m—v:>U:{%J. (5.10)

Note that (5.10) implies that m is an odd integer which is the common case in

cryptographic applications |67|. Therefore, based on (5.10), the SPB multiplication
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Figure 5.1: One-dimensional semi-systolic SPB multiplier.

can be performed efficiently if we choose v = [%J The algorithm associated with

this SPB multiplication is shown in Algorithm 5.1. In each cycle of this algorithm,
two bits of B are processed. In Steps 4 and 5 of this algorithm, we compute C’ =
S obomi—i (A 27 mod F(z)) and C” = Y7 bysi (A~ 2" mod F(z)) which are
equal to (5.2) and (5.3), respectively. Note that in Algorithm 5.1, b_; = 0.

Algorithm 5.1 Low time-complexity SPB multiplication algorithm

Inputs: A, B € GF(2™), F(z),v = | 2|
Output:C = A- B mod F(z)

Step1: A=A, C":=0,A":=A,C":=0
Step 2: For i := 0 to L%J
Step 3: A= A" 27 mod F(x)
Step 4: C'i=b,_1;A +C
Step 5: C":=b, A"+ C"

Step 6: A" := A"z mod F(x)
Step 7: C':=C" 4+ C" mod F(z)

Now, we present a semi-systolic structure for Algorithm 5.1 in Fig. 5.1 using (5.4),
(5.5), (5.8), and (5.9). The main loop in Algorithm 5.1 (Step 2) has v + 1 iterations
and consequently, the semi-systolic array structure requires v+ 1 processing elements
(PEs). The PEs represented by PE; for ¢ = 0 to v in Fig. 5.1 implement Steps
3-6 of Algorithm 5.1. To show the parallel operations, these PEs are split into two
smaller PEs. The PEs represented by PE;( implement Steps 3 and 4, and the ones
represented by PE;; implement Steps 5 and 6 of the algorithm. This means that
PE,  realizes (5.4) and (5.5), and PE;; realizes (5.8) and (5.9). Finally, the last step
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Figure 5.2: (a) Two-dimensional semi-systolic SPB multiplier, (b) the cell (4, 7), (c)

the leftmost column cells (the black dots represent latches).
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of the algorithm (Step 7) requires a different PE which is labeled as PE’ in Fig. 5.1.

Now, we present this semi-systolic array structure in more details as shown in Fig.
5.2a. The cells are shown with two indices represented by (i, 5), where 0 < i < (%w is
the row number starting from the top row, and 0 < j < m — 1 is the column number
starting from the right-hand side column. The row ¢ in Fig. 5.2a represents PE;
shown in Fig. 5.1. To explain this structure, we show the internal structure of the
main cell (7, 7) in Fig. 5.2b. Note that PE,;, and PE; ; have been merged. However,
to distinguish between different PEs, we have shown the internal structures of PE,
and PE;; with gray and white gates, respectively. Corresponding to Steps 3-4 and
5-6, these two sets of gates work in parallel without any interaction. The last row of
the structure implements Step 7 of Algorithm 5.1 (i.e., PE’ is Fig. 5.1) which includes
m two-input XOR gates. Note that in the first row of Fig. 5.2a, one of the inputs b
(the bottom horizontal line) is zero since in (5.2), A® = A-27! mod F(x) should be
obtained first.

Considering Fig. 5.2b, it follows that the critical path delay of this structure is
Ty + Tx and its latency is (L%J + 2) clock cycle. This structure has two types of
cells. As mentioned before, (L%J + 1) first rows perform the multiplication (PE, to
PE,) and the last row performs the final addition (PE’). As a result, one can state
the following for the complexity of this multiplier.

Proposition 5.1. The semi-systolic implementation of the SPB multiplication in-
cludes m X (L%J + 1) cells of the first type (as shown in Fig. 5.2), each of which
contains four two-input AND gates, four two-input XOR gates, and five latches for

general irreducible polynomials. Also, the last row requires m two-input XOR gates.

The cells shown in Fig. 5.2b can be further simplified in some cases. Some of the
inputs of the cells located on the top row are zero. This results in removing some of

the the XOR gates. The same case happens in the leftmost and rightmost columns
(
J
the row labeled L%J only produce C" and C”. Consequently, all the gates required

to generate the other outputs can be removed. Fig 5.2c shows a case where the cells

as well, where a’ i+_11) = 0 and a”g-:l) = 0, respectively. Also, all the cells located on

located on the leftmost column have been optimized based on a’g.i:ll) =0and f,, =1.
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5.2 Systolic Array Implementation of the SPB Mul-
tiplication using General Irreducible Polynomi-

als

In this section, we design a digit-level systolic SPB multiplier using general irreducible
polynomials. From Fig. 5.2a, one can notice that the inputs b;s, 0 < ¢ < m, are
connected to the cells using global lines which should be removed to achieve a systolic
structure. Therefore, it is required to latch all the horizontal connections as well.

Without lack of generality and for sake of simplicity, we set the digit size to d = 2.
Each basic cell in Fig. 5.2a processes two bits of the operand B. Here, we modify the
basic cells shown in Fig. 5.2a to process two bits of the operand A as well. In this
regard, we combine two neighboring cells to form a new cell which is shown in Fig.
5.3. The small dots on the interconnections show the necessary latches.

Using the new cells, Fig. 5.4 shows the digit-level systolic SPB multiplier using
general irreducible polynomials. The new cell (7, ') in Fig. 5.4 is formed by merging
the cells (¢/,27") and (¢/,25"+1) in Fig. 5.2a. Since m is chosen to be an odd number in
cryptographic applications, the cells in the leftmost column have a simpler structure
similar to the one shown in Fig. 5.2b. The small rectangular blocks on inputs b;s,
0 <i < m, and outputs of row L%J represent the number of delay units required to be
considered on the corresponding connection. The delay units for the vertical inputs
of the first row of the digit-level systolic array have not been depicted in Fig. 5.4 for
simplicity. Here again some of the cells shown in Fig. 5.4 can be further simplified.
This includes all the cells of the first row, where some inputs are fixed to zero and
the cells on the second last row where just C’ and C” should be computed.

From Fig. 5.3 and Fig. 5.4, the critical path delay of this structure is T4 +7'x with
the latency of 3 (%w + 2 and each cell requires 8 two-input AND gates, 8 two-input
XOR gates, and 28 latches. The total number of the cells is {%-‘2 plus m two-input
XOR gates for the last row.

The presented structure can be generalized for other even digit sizes as well.
Assuming d is the digit size, the general structure is constructed by merging the cells
of d/2 rows and d columns in Fig. 5.2a. Then, the cut-set systolization technique
should be applied. As a result, each cell will process d bits of both A and B.
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Figure 5.3: Digit-level systolic array cell (the black dots represent latches).
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5.3 Complexity Analysis and Comparisons

The complexity results of the semi-systolic array implementation of the finite field
multipliers are summarized in Table 5.1. For all the designs, it is assumed that the
input F'(x) is latched. Also, T'xs and T); represent the delay of a three-input XOR
gate and a multiplexer, respectively. Assuming m is an odd positive integer |67|, this
structure (without simplification) requires 2m more two-input XOR gates and 2m
more AND gates in comparison with [32]. However, the proposed structure requires
about 0.5m? — 6m less latches than |32| and its latency is almost a half of the latency
of the other classic semi-systolic finite field multipliers (e.g., [42], [32], and [9]). In
comparison to the existing parallel structures with d = 2 (i.e., [3], [55], and [61]),
our proposed multiplier offers the least critical path delay with a similar latency and
area complexity. Note that the multiplier of [61] requires some multiplexers and they
have not been included in Table 5.1. Also, the area complexity of the multiplier
proposed in [55] is presented in Table 5.1 for general irreducible polynomials without
any simplifying assumption.

To further evaluate the proposed semi-systolic SPB multiplier, it has been imple-
mented on 65 nm Complementary Metal-Oxide-Semiconductor (CMOS) ASIC tech-
nology using the Synopsys@®) Design Analyzer®) and structural VHDL. We have also
implemented the LSB-first semi-systolic PB multiplier of [32] as a good comparison
benchmark. The Map Effort was set to medium with a target clock period of 1 ns.
The results are presented in Table 5.2 for some values of m up to 131 based on our
available resources in the laboratory (i.e., memory constraints of the Sun machines).
As one can see from the table, both structures have the same critical path delay.
Since the proposed structure requires less latches than the multiplier of [32] does, it
has lower area and power consumption.

The proposed digit-level systolic multiplier is compared to the existing systolic
multipliers in Table 5.3. Note that we have included the multipliers which mostly have
been designed for general irreducible polynomials to have a fair comparison. However,
some of the multipliers included in this table are designed for trinomials which are
expected to have better time and area complexities. It can be seen from the table
that the proposed multiplier has the critical path delay of Ty +Tx and the latency of
3 (%W + 2. One can notice from Table 5.3 that the proposed digit-level systolic array
SPB multiplier has a better time complexity while its area complexity is comparable
to the existing structures reported in [87|, [83|, [41], and [35]. In comparison to [45]

and [8|, our proposed multiplier is faster however it has a higher area complexity.
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Structure #Cells A cell CPD Latency
XOR3: 1 AND: 2
: 2
[42]: PB m Latch: 3 Ta+Tx3 m
XOR: 2 AND: 2
: 2
[32]: PB m Latch: 3 Ty+Tx m
XOR3: 1 AND: 2
[9]: MM m x (m+1) Latch: 3 Ta+Txs3 m+1
(Lz]+1)xm . . Ta+
[61]: PB plus m XOR XOR: 6 A_ND' 4 Txs + 2] 42
Latch: 5
gates Ty
(5] +Dxm T vop ganpia | 7
. : : A+ m
[3]: MM plusgzze)S(OR Latch: 5 oT, 2] +2
(12] +1)xm XOR3: 2
[55]: MM plus m XOR AND: 4 Ta+Txs | |2Z]+2
gates Latch: 6
(5] +1)xm . |
Fig. 5.2: SPB | plus m XOR | 04 A_ND' Yol mry 2] +2
cates Latch: 5

Table 5.2: ASIC Implementation of Semi-Systolic Structures

Multiplier | Critical path delay (ns) | Latency | Area (um?) | Power (mW)

m = 31
PB [32] 0.21 31 46,767.75 54.23
SPB 0.21 17 41, 307.23 47.56
m =91
PB [32] 0.28 91 417,292.71 485.66
SPB 0.28 47 362,039.06 405.99
m = 131
PB [32] 0.28 131 863, 966.36 1,002.43
SPB 0.28 67 752,009.93 836.67
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The multiplier reported in [46] for irreducible trinomials has a better time and area
complexities (the lower bound of the area has been reported in Table 5.3). It is
noted that this is expected since having the restriction of the polynomial to be a
trinomial simplifies the multiplication algorithm and the hardware implementation.
However, our multiplier is designed for general irreducible polynomials without any
assumptions. It can be concluded from Table 5.3 that our proposed multiplier is

faster than the existing ones designed for general irreducible polynomials.
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Chapter 6

Concurrent Error Detection in
Montgomery Multiplication over

Binary Extension Fields

As mentioned in chapter 2, fault attacks have been common against cryptographic
algorithms. Concurrent error detection is one of the countermeasures used to protect
the crypto-processors in case of such attacks. In this chapter, we propose concurrent
error detection circuits for different Montgomery multipliers which can be used as a
countermeasure against natural faults and fault attacks in cryptography. First, we
consider bit-serial Montgomery multiplication and propose a concurrent error detec-
tion circuit for the bit-serial multiplier of [38]. Then, we consider digit-serial Mont-
gomery multiplication and propose a multi-bit concurrent error detection circuit for
the digit-serial Montgomery multiplier of [38]. We note that to the best our knowl-
edge, no previous work has considered error detection in digit-serial polynomial basis
multiplication. Finally, we choose the bit-parallel Montgomery multiplier proposed in
Chapter 3 and derive the concurrent error detection structure. We have implemented
the proposed structures in ASIC and simulated their error detection capability us-
ing C++ for various cases. The results show that the area and time overheads are
small and the error detection capability is significant. The material presented in this
chapter can also be found in [26].

The remainder of this paper is organized as follows. In Section 6.1, we present a
brief introduction to our error detection approach. In Section 6.2, we present a concur-
rent error detection circuit for bit-serial Montgomery multiplication. In Sections 6.3
and 6.4, we consider concurrent error detection in digit-serial and bit-parallel Mont-

gomery multiplication, respectively. Finally in Section 6.5, we present our analysis
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and complexity results in terms of error simulations and ASIC implementations.

6.1 Preliminaries

6.1.1 Concurrent Error Detection Approach

Here, we explain our approach to implement concurrent error detection circuits for
different Montgomery multipliers. In this approach, the residue of one of the operands
(A as shown in Fig. 6.1) modulo a fixed polynomial (z! + 1) is computed and the
residue of the multiplication product modulo the same polynomial is predicted (i.e.,
C mod (z' + 1)). Different polynomials can be used to compute the residues. In this
chapter, we choose 2! 4+ 1, where 1 < [ < m is the number of the redundant bits used
for concurrent error detection. Note that using [ = 1 is equivalent to the single-bit
parity-based approach, whereas 1 < [ < m results in an [-bit interlacing parity code.
Throughout this chapter, we will use the hat notation to denote modulo (2! + 1)

reduction, i.e.,

A=Amod (2! +1) = g2  + - - + a12 + ao,

where A € GF(2™), a; € {0,1}, and 0 < i <[ — 1. Also, we will use the following

properties of modular reduction

(A4 B)mod (2! +1) = A+ B, (6.1)

where A and B are two field elements of GF(2™) and

~

(b-A)mod (2! +1) =b- A, (6.2)

where b € GF(2).

The concurrent error detection approach has been depicted in Fig. 6.1. It is
assumed that A and A are given at the same time, and the multiplication and con-
current error detection blocks run in parallel. The output of the concurrent error
detection block is the predicted C' mod (z! + 1). To find the possible errors, the ac-
tual C' is computed using the output of the multiplier (i.e., C') and compared to the
predicted one. The error signal is asserted high if the actual and predicted residues
are different. Note that there is a connection between the Concurrent Error Detection

module and the multiplier in Fig. 6.1.
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Figure 6.1: Concurrent error detection scheme.

6.2 Concurrent Error Detection in the Bit-serial Mont-

gomery Multiplication over GF(2")

In this section, we consider the concurrent error detection scheme for the bit-serial
Montgomery multiplier proposed in [38] using multi-bit parities to improve the error
detection capability of this multiplier.

Algorithm 6.1 shows the bit-serial Montgomery multiplication algorithm proposed
in [38]. Combining Steps 4 and 5 of this algorithm, one can obtain

Algorithm 6.1 Bit-Serial Montgomery Multiplication over GF'(2™) [38|
Inputs: A, B, F(z)

Output: C' = A- B -2z " mod F(z)

Step 1: T :=0

Step 2: For i:=0 to m—1

Step 3: T =T+ bhA

Step 4:  T" =T+t F(x)

Step 5: T :=T"/z

Step 6: C':=T
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Algorithm 6.2 The Modified Bit-Serial Montgomery Multiplication over GF(2™)
Inputs: A, B, F(z)

Output: C' = A- B -2 " mod F(z)

Step 1: T :=0

Step 2: For ¢:=0 to m—1

Step 3: T =T+ bh;A

Step4:  T:=T -2 ' mod F(z)

Step 6: C':=T

T = (T’ + t)F(z))/z. (6.3)

It can be shown that the operation formulated in (6.3) is equivalent to 7" = 7" -

x7 ! mod F(z). This is because one can write the following

F'(z) = F(z)/z = 7' mod F(z)

(6.4)
— fmxm—l +fm_1xm—2 4o +f1
Then, (6.3) can be written as
T = (th,_j 2" 2+ +t)) +toF () =T - 27" mod F(z). (6.5)

By replacing Steps 4 and 5 of Algorithm 6.1 with 7' = T” - x7! mod F(x), one
can obtain the modified algorithm as shown in Algorithm 6.2. The corresponding
hardware architecture of this multiplier has been depicted in Fig. 6.2. In this figure,
A and T are two m-bit registers initialized with the coordinates of the operand A
and 0 € GF(2™), respectively. Also, the module represented by xz~! performs a
multiplication by z~! followed by a reduction by F(z). In this chapter, this module
is named as the z7'-module and Fig. 6.3 shows its hardware implementation using
white gates.

The other modules denoted by AND and XOR in Fig. 6.2 perform logical opera-
tions corresponding to Step 3 of Algorithm 6.2 (i.e., 77 := T +b; A) using m two-input
AND gates and m two-input XOR gates, respectively.

6.2.1 Formulation

To design a concurrent error detection mechanism for this multiplier, we consider
each step in Algorithm 6.2 separately. We begin with Step 3 of this algorithm and

present the following lemma.
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Figure 6.2: Modified Bit-serial Montgomery multiplication over GF(2™).
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Figure 6.3: The x~'-module with error detection using [ = 2. The gray gates show

the overhead.
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Lemma 6.1. Assume that TU™V is the content of T at the (i — 1)th iteration of
Algorithm 6.2 and 76D = fl(i__ll)xl_l +-+ Ltgi_l)x + f(()i_l). Now, the coordinates of
T'D in Step 3 of Algorithm 6.2 can be computed as f’;l) = fg-i_l) +bia;, 0<j <.

Proof. Using the computation of 7™ = TG-Y 4 b, A in Step 3 of Algorithm 6.2,
and the properties (6.1) and (6.2), one can obtain 7"® = TG~ 4 p;A. Thus, the

coordinates of 7"@ can be obtained from

(%)

i) =1 4 ba;,0 < j < (6.6)

and the proof is complete. O

Step 4 of Algorithm 6.2 performs 7% = 7'%) . z=! mod F(x). Thus, by computing

the both sides of this equation modulo (2! + 1), one can obtain

T = (T'9 . 27 mod F(z)) mod (' + 1).

To consider the concurrent error detection for this operation, we first present the

following lemma for Step 4 of Algorithm 6.2.

Lemma 6.2. Let T’ and T = T’ - 27! mod F(z) be two field elements in GF(2™)
constructed by the irreducible polynomial F(z) and F(x) = 0. Also, assume T’ =
it el b and F'(z) = fl_ 2 4o+ flo + ff, where F'(z) is defined
in (6.4). Then, the coordinates of T =T mod (2! + 1) can be found as follows
) t o f] 0<j<l—1
b (1A =t

Proof. Computing (6.5) modulo (z' + 1), one can write the following

~

T=(t

m—1

22 )+ ) F (2)) mod (2 + 1), (6.7)

First, we consider the first m terms in (6.7) and write (¢/, 2™ 2+ - +t}) mod
(2" +1) =

((thz™ 4+t + 1) 27 + tyz7") mod (2! + 1),

which can be rewritten as

(e + o+ o+ dp) o7 4+t mod (o +1),
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or

(224 + 8 +Hgr + tgz7 ") mod (2! +1). (6.8)

Taking into account that ~! mod (z! + 1) = 2/~! and by applying the properties
mentioned in (6.1) and (6.2) on (6.7) and (6.8), one can write

7= (fg Tt (1 + f;,l)) N (fg Tt f{) T+ (fg Tt fé), which completes
the proof.

6.2.2 Architecture

The hardware structure of the x~!-module with its error detection mechanism is
shown in Fig. 6.3 for the general irreducible polynomial F(z) and [ = 2. In this
figure, the white gates perform the normal function of the module and the gray gates
are the overhead to perform the error detection. It is noted that F'(x) is usually fixed
in cryptographic applications and as a result, most of the gates shown in Fig. 6.3 can

be removed.

L_module requires at

Remark 6.1. The concurrent error detection circuit in the x~
most [ two-input XOR gates for a fixed irreducible polynomial F'(z). However assum-
ing F(z) is an w-nomial (i.e., F'(z) has w non-zero coordinates), this circuit requires
at most min(w, () two-input XOR gates. Note that in practical cryptographic appli-

cations w equals 3 or 5 [67].

The overhead circuit to perform concurrent error detection in the bit-serial Mont-
gomery multiplier is shown in Fig. 6.4. In this figure, T’ and A are two [-bit registers
which store 7" mod (2! +1) and A mod (2! +1), respectively. The gray blocks labeled
AND and XOR perform logical operations based on Lemma 1, and the block labeled
xz~! CED, is constructed using Lemma 6.2 and is similar to the left-hand side of
Fig. 6.3. Finally, t{ = t(()i_l) + b;ag is the LSB of T” computed by the multiplier shown
in Fig. 6.2.

The bit-serial Montgomery multiplier shown in Fig. 6.2 requires 2m — 1 two-input
XOR gates and 2m — 1 two-input AND gates for general irreducible polynomials.
Also, it requires two m-bit registers to store 7" and A. The critical path delay of this
multiplier is 274 + 2T, where Ty and Tx represent the delays of a two-input AND
gate and a two-input XOR gate, respectively.

Since both Fig. 6.2 and Fig. 6.4 have the critical path delay of 274 + 2T,

implementing the proposed concurrent error detection mechanism imposes time and
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Figure 6.4: Concurrent error detection for the bit-serial Montgomery multiplier.

area overheads as a result of the comparison and modulo (x' + 1) blocks in Fig. 6.1.
Besides these two components, the area overhead of the concurrent error detection
circuit (without fixing the irreducible polynomial) is 2! two-input AND gates, 2 two-
input XOR gates, and 2/ flip-flops.

Remark 6.2. Using Lemma 6.1, one can design similar concurrent error detection

circuits for bit-serial multipliers of Chapter 3.

6.3 Concurrent Error Detection in Digit-Serial Mont-

gomery Multiplication over GF'(2™)

In this section, we consider concurrent error detection for the digit-serial Montgomery
multiplier proposed in |38|. In this multiplier, the operand B is split into D-bit digits
(D >2) as

B =B, 12" VP ...+ Bz’ + By,

where n = (%L B, = ZJ.D:_OI bipy;jz? for0 <i<n—2and B, = Z;”:_OI_D("_U bin—1)D+j2 .
This Montgomery multiplication algorithm is shown in Algorithm 6.3.

From (2.18), it follows that F(z) - F(z) = 1 mod z” for the Montgomery mul-
tiplication over binary extension fields and r = z™. It is noted that the following

property also holds 38|
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Algorithm 6.3 Digit-serial Montgomery Multiplication over GF'(2™) |38]

Inputs: A, B, , F(z), Fy(z)
Output:C = A - B - z7"P mod F(x)
Step 1: C':=0

Step 2: Fori:=0ton—1

Step 3: C'":=C+ B;A

Step 4: M := C} - Fy(z) mod z
Step 5: C":=C"+M - F(x)
Step 6: C:=0"/zP

Algorithm 6.4 The Modified Digit-Serial Montgomery Multiplication over GF(2™)

Inputs: A, B, , F(z)

Output:C = A - B - 27" mod F(x)
Step 1: C':=0

Step 2: Fori:=0ton—1

Step 3: C'":=C+ B;A

Step 4: C:=C"- 2P mod F(z)

Fy(x) - Fo(z) = 1 mod z?, (6.9)

where Fy(z) and Fy(z) in (6.9) are polynomials with the degree of at most (D — 1)
and represent the least significant digits of F(z) and F(z), respectively. One can
notice that Fo(z) = 1 simplifies the digit-serial Montgomery multiplication. Now, we
assume that the irreducible polynomial is of the form F(z) = 2™ +3>"7 1| fizi+aP+1,
where k is the degree of the second smallest non-zero term in F'(z). In this case, for
D < k we always have Fy(z) = 1. Replacing Fy(z) with 1 in (6.9) results in Fio(z) = 1
which simplifies Step 4 of Algorithm 6.3 to M := C} mod 2” = C{,.
Now, Steps 5 and 6 of Algorithm 6.3 can be combined as

C = (C'+ C\F(x)) /2. (6.10)

Similar to (6.3), (6.10) can be written as follows

C=C"2"mod F(x). (6.11)

It is shown in Chapter 4 that this operation is optimized for the shifted polynomial
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basis if D < k. It is also true for the Montgomery multiplication and is compatible
with our previous assumption to have Fo(z) = 1. Thus, we will use the condition
D < k in the rest of this chapter. Replacing Steps 5 and 6 of Algorithm 6.3 with
(6.11), the modified digit-serial Montgomery multiplication algorithm is shown in
Algorithm 6.4.

6.3.1 Formulation

Now, we design the concurrent error detection scheme for this multiplier where D < k.
Let B;, 0 < ¢ < n, denote the ith digit of B in Step 3 of Algorithm 6.4 and B, ;,
0 < j < D represent its jth coordinate. It can be represented in the polynomial basis

as

B’i = Bi’Dfll'Dil + -+ Bi,lx + Bi,O- (612)

Using (6.12), the multiplication of A by B; in Step 3 of Algorithm 6.4 modulo

(2! + 1) can be written as

D-1
A-B;ymod (2 +1) = Z Bi;- A2 mod (z' + 1). (6.13)

=0
The following lemma is used to evaluate (6.13).

-1

Lemma 6.3. Let A be a field element in GF(2™) and A = A mod (2! +1)= Zdtxt.
=0

Then, A-x9 mod (2 +1) can be obtained by j-bit circular left shift of A, where j > 0.

Proof. 1f j = 0, the lemma is clear. For j > 0, first we compute A -z mod (x! + 1) as

A-rmod (2! +1 ( Zat:c) mod (z! +1). (6.14)

Taking into account that z! mod (2! + 1) = 1, (6.14) can be written as

1—
A-rmod (#' +1) =Y aa™ +a . (6.15)

t

[\

Il
o

One can notice that A -z mod (2! + 1) in (6.15) is obtained by one-bit circular
left shift of A. Similarly, it can be shown that A-z7 mod (2! + 1) is obtained by j-bit
circular left shift of A. O
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Assuming A(j) = A2/ mod (2! + 1), (6.13) can be rewritten as

~
L

A- Bz mod (ZL’I + 1) = Bz’,j . A(])

J

Il
=)

Consequently, from Step 3 of Algorithm 6.4 and using the property mentioned in

(6.1), one can obtain the following

D—-1
C'=C+> Bi;- Ay, (6.16)
=0
-1

where C = E ¢t

Step 4 of Algorithm 6.4 performs a multiplication by =% followed by a reduction
by F(z) and we present the following lemma to design the concurrent error detection

circuit for this operation.

Lemma 6.4. Let S and S’ = S - 7P mod F(z) be two field elements in GF(2™)
constructed by the irreducible polynomial F(z) = 2™ + Z;n:_kl-f—l ;70 + 28+ 1 and
F(z) =0. Assuming S =G 12 4+ 4§11+ 8o, then S’ is obtained as

-1 D—1 D— -1

o ~ % —D+1 R

§'= 2 Speppt 4y sia P4 Z 15 D Fiwg®
=0 =0 7=0 =0

where D < k and F'(x) = F'(x) mod (z! + 1) = Y2120 flat.
Proof. We begin deriving the error detection formulation with

! —-D-1
S" =(spm_1z™ + -+ Spix

(6.17)
+sp+spoirt 4+ 5027 P) mod F(x).

For D <k and 1 <7 < D, one can write the following recursive formulation

2~ mod F(z) = 2= . 27! mod F(z),

where

r ' mod F(z) = F'(z) = fua™ ' + -+ 2"

So, 2=t mod F(x) can be obtained by shifting F'(z) i bits to the right. Con-
sequently, (z~(*Y mod F(z)) mod (2! + 1), 1 < i < D, can be computed by i-bit
circular right shift of F’(x) mod (2! 4+ 1). As a result, for 1 <4 < D one can write
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(x’(”l) mod F(z)) mod (z' + 1) =fr a4

] ) (6.18)
fliar + 1
Let us represent S’ shown in (6.17) as
S'=S-27” mod F(x) = S, + 5],
where
St = (sp_ixz ™'+ + 5oz ") mod F(x),
and
Sy = (8™ P 4o 4 spix 4 sp).
To obtain S} = S} mod (2! + 1), we use (6.18) and write
D-1 -1
St = Sp—1—j flﬂ‘a: (6.19)
=0 =0

where |i + j| = (i + j) mod [. Also, S} = S, mod (2! + 1) can be written as

A

Sy=(S 2P +sp x4+ +spr ) mod (z' + 1).

Note that S22 mod (2! 41) is obtained by D-bit circular right shift of 5. Thus,

S4 can be written as

-1 D—-1
Sy = Syp’ + Y sl P (6.20)
=0 =0

Now using (6.19) and (6.20), one can conclude that

-1 D—1 D— -1
CED STINEES SR EES S yr e
i=0 i=0 5=0 i=0
and the proof is complete. O

For the special case where D < k and D < [, the coordinates of S’ are obtained
as 8 = Sip+ Yo Sp-1-fiy;, when 0 <i <l—D, and & = &_q_p) + si_q-p) +
Zf_olsD 1- ]flﬂ, when | — D < <[ —1.
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Figure 6.5: Concurrent error detection in digit-serial Montgomery multiplication.

6.3.2 Architecture

The concurrent error detection scheme for the digit-serial Montgomery multiplication
algorithm is shown in Fig 6.5. In this figure, the module labeled x2z~” CED, imple-
ments Lemma 6.4 and the modules labeled x and XOR, realize (6.16). Also, A and C
are two [-bit registers which are initialized with the coordinates of A mod (z!+1) and
0, respectively. We present the following example to explain the structure of these

modules in details.

Example 6.1. Let m =11, D=k =1=4,C" =3, ¢,

B dat, and ¢’ = ¢’ mod (z* +
1) = &’ + & + &x + ¢ In this case, ¢) = )+ )+ g+ o, & = &+t + cy+ i3,
&y = cy+ s+, and & = s+ &5 +¢),. We assume that A = G52 + G2 + ay2" + do.
For this example, the hardware realization of (6.16) has been depicted on the left-
hand side of Fig. 6.6a using gray cells and gates. The right-hand side of this figure
implements Step 3 of Algorithm 6.4. The dashed line labeled with XOR shows that
all the cells in the same column should be added together using XOR, trees in order

to obtain ¢’ and C". Now,
/,.—4

! —4 /.9 / /-1
C'-x " =c0”+ -+t + g,

and C" - =% mod F(z) can be written as

A’ + - F ey GF(x) - b P () 2 (6.21)
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Since k = 4, F(x)-27! to F(z)-x~* are obtained by right-shifting the coordinates
of F(x). Note that F/(x)- 2! is named F’(x). The implementation of this operation
is shown in Fig. 6.6b using the cells and gates drawn in white.

Now, one can use (6.21) to obtain (C = C" -z~ mod F(x)) mod (z* + 1). The
results are as follows: ¢y = ¢, + ¢ + chy + &fL + f] + & fs + b fs, & = ¢ +
y+ g+ A+ Gy + Afi+ cofiy 2 = o+ o+ s+ A fi+ A fo + ¢ ff, and
C3 = b+ )y + A f+ A f) + ) ff + ¢y fs. Using the coordinates of C” defined in this
example, the coordinates of C' can be rewritten as ¢y = & +c)+cy fo+cy 14, fy+ch f4,
L= 8+ O L s+ A fs+ b ft, Co =+ S+ s+ Ay + ¢ fy + cyfi, and
b3 = &+ 4 s+ b fy + L+ b fs

Fig. 6.6b shows the 2= module with the concurrent error detection scheme. As
mentioned previously, the white cells and gates implement the normal function of this
block (i.e., a multiplication by z~ followed by a reduction by F(x)). The gray cells
and gates in this figure implement the concurrent error detection mechanism. Note
that the last row in this figure represents C' and C' = C' mod (z! 4+ 1). Each cell in
this row is obtained by summing up all the cells in its corresponding column (shown
by a dashed line, labeled XOR).

The digit-serial Montgomery multiplier of Algorithm 6.3 requires two m-bit reg-
isters to store A and C'. The x-module requires D x m two-input AND gates and
(D —1) x (m — 1) two-input XOR gates. The XOR module requires m two-input
XOR gates. Finally, the 2= module requires D x (m — k) two-input AND gates
and D x (m —k + 1) — 1 two-input XOR gates. Note that all the AND gates in the
272 module can be removed if F(z) is fixed. The critical path delay of the x-module
together with the XOR block is T4 + [loga(D + 1)] - T'x. Also, the critical path delay
of the x=P-module is [logy(D + 1)] - Tx for a fixed F(z). As a result, the maximum
critical path delay of this multiplier is T4 4 2 [logs(D + 1)] - Tx.

The concurrent error detection for the x-module is implemented using D x [ two-
input AND gates and (D —1) %[ two-input XOR gates. Two [-bit registers are required
to store A and C. The number of the gates in the x2~P-CED module depends on the
values of D and [. For example, the special case mentioned in Corollary 6.3.1 requires
D x [ two-input AND gates and (D+1) x [ two-input XOR gates. Note that the AND
gates in this block can be removed if F'(z) is fixed. Finally, the XOR block requires [
two-input XOR gates. For the special case mentioned in Corollary 6.3.1, the critical
path delay of the error detection scheme is T4 + ([logz(D + 1)]| + [loga(D + 2)]) - Tx.
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Figure 6.6: Concurrent error detection for m = 11, D = k = [ = 4: (a) the X module,
(b) the 2= module.

6.4 Concurrent Error Detection in Bit-Parallel Mont-

gomery Multiplication over GF(2™)

In this section, we study concurrent error detection for the bit-parallel Montgomery
multiplication. We apply the concurrent error detection approach used in this chapter
on the general bit-parallel Montgomery multiplier of Chapter 3. This multiplier is

based on a more general case of the Montgomery multiplication which generates

C=A-B- -z “mod F(x), (6.22)
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where 0 < uw < m. In this case, (6.22) can be written as

C = (bm,lxmfufl +oee by + e+ box’“) - Amod F(x),

or

C=bp 1 Az™ " g by A+ -+ b Az~ mod F(z). (6.23)

In this section, we use A® to represent

A = Az’ mod F(z). (6.24)

The multiplication shown in (6.23) can be done by using the matrix M, whose
columns show the representation of A® with respect to the polynomial basis for
i € [—u,m —u —1]. So, the matrix M has m rows and m columns and this matrix
should be computed in the first step. Then, the Montgomery multiplication over
GF(2™) can be formulated as

C=M-B", (6.25)
where C = [cg, ¢q, - - - ,cm_l]T and B = [bg, by, -+ ,b,_1]. Therefore, the second step
of the bit-parallel Montgomery multiplication obtains (6.25) which can be written as

C =bp 1AM D f L h At 4 b AT, (6.26)

6.4.1 Formulation

1

We have explained the procedure to detect errors in the x~"-module in Lemma 6.2.

For the z-modules, first we define the following
F'(z) = 2™ mod F(x) = frn12™ '+ + fir + 1, (6.27)
and represent F”(x) mod (x! + 1) as
-1
F" = F'(z)mod (' +1) = Y _f/'a". (6.28)
=0

Now, we present the following lemma which is similar to the results obtained in
[4] and [7].
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Lemma 6.5. Let S and S” = S - xmod F(x) be two field elements in GF(2™)
constructed by the irreducible polynomial F(z) and F(x) = 0. Assuming S = S mod
(2 +1) = 412" + - + 812 + 8, the coordinates of 8" = 8" mod (2! + 1) equal

Sgoa+smor (14 ) if j =m mod
81 + Sm_lf]’/ otherwise,
where |j — 1|represents (j — 1) mod I.

Proof. The field element S can be represented as S = Zt 0 s;z'. Then, S -z =

Sm_12™ + -+ + 512% + sogz. Using (6.27), one can write the following

S -2 mod F(z) =s;m_ 1 F"(x)+
(#) =snrF() 6]
SmooZ™ 4 s o+ s

Using (6.28) and the property mentioned in (6.2), one can obtain the following

Sm_1F"(z) mod (2! +1) = s,,_ 12 ” zt (6.30)

The rest of the terms in (6.29) can be written as

Smoo™ V4 f szt Fsgr =5+ Sp_12™. (6.31)

For the right-hand side of (6.31), one can write (S -z + s,,_12™) mod (2! + 1) =

o -1 A N
(S92 + -+ 81 x4+ 8) - x + Sm_12™.

where |m| = m mod [. Taking into account that z! mod (z' + 1) = 1, one can obtain

—2
S -2+ sp_12™) mod (2! + 1) St 5
( ) Z 1 (6.32)

+ sm,lx“”'.
Now using (6.29), (6.30), and (6.32), S” can be written as

1 1—2
S” = 8" mod (2! + 1) =s,,_ g It E St 5
=0

t=0

+ Sm—lxl l:

and the proof is complete. O]
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So far, we have obtained the concurrent error detection for A®, i € [—u, m—u—1].
We denote A® mod (2! +1) as AW To design the concurrent error detection scheme
for obtaining (6.25), we present the following lemma.

Lemma 6.6. Assuming A", i € [—u,m —u — 1], is defined based on (6.24) and
-1

-1

A(l) = A(l) mod (:L'l—l—l) = ngi)xt’ the coordinates Ofé — C mod (Il—f—l) _ Zétxt
=0 t=0

can be obtained by ¢; = Z;n:—ol b; &ga—u)'

Proof. To obtain C, one can compute both sides of (6.26) modulo (2! + 1) and use
the properties mentioned in (6.1) and (6.2) to obtain
Cmod (#' +1) =bp_y - A™ %D 4o p A4+ gAY,

This results in the following

m—1
Go=Y byoap Y, (6.33)
§=0
where 0 <t < [, and the proof is complete. O

6.4.2 Architecture

Using Lemmas 6.2 and 6.5, one can design the concurrent error detection circuit
for the first step of the bit-parallel Montgomery multiplication (i.e., computing the
matrix M). The z~'-module with concurrent error detection was shown before in
Fig. 6.3. The concurrent error detection circuit for the xz-module is shown in Fig.
6.7 for [ = 2. Note that most of the gates can be removed if one fixes the irreducible
polynomial. However in the general case, the z-module requires (m — 1) two-input
AND gates and (m — 1) two-input XOR gates. Also, its concurrent error detection
circuit requires [ two-input AND gates and [ two-input XOR gates. The critical path
delay of this module is still T4 + Tx. The following remark provides more details

about the area complexity.

Remark 6.3. The concurrent error detection in the x-module requires at most [
two-input XOR gates for a fixed irreducible polynomial. Assuming F(z) is an w-
nomial, this circuit requires at most min (w, [) two-input XOR gates, where in practical

cryptographic applications w is 3 or 5 [67].

First, we investigate the time and area complexities of concurrent error detection

in computing the matrix M. We assume that there are A and o gray XOR gates in
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Figure 6.7: Error detection in the z-module using [ = 2.

x~ ' and z modules, respectively. For irreducible trinomials (resp. pentanomials), the
maximum value of A and o is 3 (resp. 5). As a result, the concurrent detection scheme
for the matrix M requires at most u - A+ (m —u — 1) - o two-input XOR gates. In
this case, obtaining AD for i e [—u, —1] has the delay of (“l—w -T'x and obtaining A®
for i € [1,m — u — 1] has the delay of [ww - Tx. Consequently, the theoretical
time complexity of the concurrent error detection to obtain the matrix M is

Y:maxq¥w Ty, [(m_“l_ D'ﬂ -TX). (6.34)

1

It is interesting to note that u instances of the z~'-module and (m—u—1) instances
of the z-module are cascaded in the bit-parallel Montgomery multiplication, whereas
in bit-parallel polynomial basis multiplication (m — 1) instances of the z-module are
cascaded [7]. This results in reducing the time overhead of the concurrent error
detection process in the Montgomery multiplication.

Now, we consider the time and area complexities of the concurrent error detection
scheme for the second step (i.e., obtaining (6.25)). Obtaining (6.33) requires [ x m
two-input AND gates and [ XOR-trees with m inputs. Thus, the total number of XOR,
gates required to obtain (6.33) is [ X (m—1). The time complexity of computing (6.33)
is Tq + Txorm, where Txorm represents the delay of an XOR tree with m inputs.
One can notice that this time complexity is equal to the time complexity of obtaining
(6.25). As a result, obtaining A?, i € [—u, m —u — 1], accounts for the time overhead
of concurrent error detection scheme in this multiplier.

The following example explains the concurrent error detection in GF(27).

Example 6.2. We consider bit-parallel Montgomery multiplication over GF(27) us-
ing F(z) = 2"+ 2 + 23 + 22 + 1, where F(x) = 0. Choosing z? as the Montgomery
factor, we have C' = A- B-x7? mod F(z). Using the notation presented before, this
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can be written as

C=0b- AW 4+ 4 by- AD 4oy A,

The matrix M corresponding to this multiplication is shown in Fig. 6.8 using the

L_modules and four

white gates. As it can be seen from the figure, there are two x~
x-modules. Each of these modules includes three two-input XOR gates. The critical
path delay of this part is 3 - Tx.

To obtain the concurrent error detection circuit, two polynomials are defined as
Fl(z) =25+ 23+ 22 + 2z, and F"(x) = 2* + 23 + 2% + 1. It is assumed that [ = 3 and
consequently, F’(z) mod (*+1) = 1-2%+1-2+0, which means f; =1, f = 1, and
f1'=0. Also, F"(x) mod (2*+1) = 1-22+1-2+0, meaning f/ = 1, f// = 1, and f = 0.
Next, it is assumed that A©® mod (2% +1) = A mod (2% +1) = Ge2? + G127+ do. Now,
A% mod (z® +1), i € [-2, —1], is computed based on Lemma 6.2 using the following

recursive equation

&((]z'): dgi—n
al = alm 4 g™ (6.35)
ay) = ay ",

and A® mod (2 + 1), i € [1,4], is obtained based on Lemma 6.5 using

dg;) _ dgi_n
al! = &l (6.36)
dgi) _ &(1¢—1) n a((ai—l).

Using (6.35) and (6.36), the concurrent error detection for step one has been
depicted in Fig. 6.8 using gray cells. It can be seen from the figure that obtaining
A% mod (z°+1) for i € [—2,4] requires six two-input XOR gates in total. The longest
path in the concurrent error detection includes two XOR gates and as a result, its
delay is 2 - Tx.

The error detection for the second part is straightforward and is obtained using
(6.33) as follows

This requires 21 two-input AND gates and 18 two-input XOR gates and has the
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Figure 6.8: Obtaining the matrix M with concurrent error detection for F(z) =
2T+ 22+ 22+ 1 using u = 2.

critical path delay of Ty + 3 - T'x. Obtaining C' in (6.33) itself requires 49 two-input
AND gates and 42 two-input XOR gates and has the delay of Ty + 3 - Tx. Now,
it can be concluded that concurrent error detection in this example (excluding the
final modulo (z' + 1) operation and comparison) does not impose any time overhead
and requires 42% more AND gates and 40% more XOR gate. It is noted that in the
general case, the time and area overheads depend on the parameters m, [, u, and
F(z).

6.5 Analysis and Simulation results

In this section, we first consider the error detection capability and then, the time and

area overheads of the proposed concurrent error detection circuits.

6.5.1 Error Detection Capability

Theoretically, using modulo (z! + 1) operations to implement error detection, which
is equivalent to the interlacing parity codes in GF'(2™), has the error detection prob-
ability of [7]



Table 6.1: Error Detection Capability

109

No. of { Error Error % [ Error Error %
stuck-at Occurred | Detected Occurred | Detected
faults
Bit-Serial Montgomery Multiplication
2 833,532 | 624,446 | 74.91 | 4 834,018 | 781,552 | 93.70
One 6 833,510 | 820,316 | 98.41 | 8 833,408 | 830,208 | 99.61
10 833,406 | 832,547 | 99.89 | 12 834,156 | 834,043 | 99.99
14 833,825 | 833,788 | 99.99 | 16 833,093 | 833,087 | 99.99
2 971,805 | 730,049 | 75.12 | 4 971,940 | 910,960 | 93.72
Two 6 972,231 | 952,102 | 97.92 | 8 971,998 | 968,250 | 99.61
10 971,998 | 968,322 | 99.62 | 12 | 972,0240 | 969,507 | 99.74
14 972,210 | 970,228 | 99.80 | 16 971,856 | 970,174 | 99.83
2 995,287 | 745,735 | 74.92 | 4 995,361 | 933,014 | 93.73
Three 6 995,287 | 977,263 | 98.18 | 8 995,190 | 991,363 | 99.61
10 995,287 | 992,911 | 99.76 | 12 995,183 | 993,757 | 99.85
14 995,244 | 994,257 | 99.90 | 16 995,249 | 994,369 | 99.91
2 | 1,000,000 | 750,597 | 75.05 | 4 | 1,000,000 | 937,485 | 93.74
Random 6 | 1,000,000 | 984,405 | 98.44 | 8 | 1,000,000 | 996,041 | 99.60
10 | 1,000,000 | 998,980 | 99.89 | 12 | 1,000,000 | 999,758 | 99.97
14 | 1,000,000 | 999,945 | 99.99 | 16 | 1,000,000 | 999,983 | 99.99
Digit-Serial Montgomery Multiplication
2 801,106 | 430,709 | 46.23 | 4 801,071 | 617,556 | 77.09
One 6 801,106 | 709,635 | 88.58 | 8 801,329 | 756,513 | 94.40
10 801,106 | 779,818 | 97.34 | 12 800,857 | 789,178 | 98.54
14 801,535 | 796,377 | 99.35 | 16 801,466 | 798,437 | 99.62
2 960,158 | 521,711 | 54.33 | 4 960,345 | 783,816 | 81.61
Two 6 960,097 | 873,680 | 90.99 | 8 960,100 | 917,279 | 95.53
10 960,097 | 938,094 | 97.70 | 12 960,033 | 947,848 | 98.73
14 960,509 | 953,903 | 99.31 | 16 960,445 | 956,598 | 99.59
2 991,833 | 601,442 | 60.63 | 4 991,904 | 850,098 | 85.70
Three 6 992,134 | 928,674 | 93.60 | 8 991,936 | 961,735 | 96.95
10 991,964 | 976,927 | 98.48 | 12 992,036 | 984,199 | 99.21
14 992,073 | 987,655 | 99.55 | 16 991,989 | 989,562 | 99.75
2 | 1,000,000 | 749,313 | 74.93 | 4 | 1,000,000 | 937,583 | 93.75
Random 6 | 1,000,000 | 984,163 | 98.41 | 8 | 1,000,000 | 996,172 | 99.61
10 | 1,000,000 | 998,961 | 99.89 | 12 | 1,000,000 | 999,745 | 99.97
14 | 1,000,000 | 999,938 | 99.99 | 16 | 1,000,000 | 999,990 | 99.99




110

Table 6.2: Error Detection Capability in Bit-Parallel Montgomery Multiplication

No. of l Error Error % [ Error Error %
stuck-at Occurred | Detected Occurred | Detected

faults
2 365,256 | 363,533 | 99.52 | 4 364,340 | 362,919 | 99.60

One 6 364,340 | 362,902 | 99.60 | 8 364,349 | 362,984 | 99.62
10 364,910 | 364,903 | 99.99 | 12 363,936 | 363,935 | 99.99
14 365,033 | 365,032 | 99.99 | 16 364,914 | 364,914 | 100
2 595,480 | 529,053 | 88.84 | 4 595,826 | 564,350 | 94.71

Two 6 595,480 | 574,907 | 96.54 | 8 596,372 | 593,863 | 99.57
10 595,423 | 595,182 | 99.95 | 12 595,893 | 595,794 | 99.98
14 595,312 | 595,263 | 99.99 | 16 596,145 | 596,099 | 99.99
2 742,037 | 616,635 | 83.10 | 4 741,999 | 681,326 | 91.82

Three 6 741,703 | 702,680 | 94.73 | 8 742,037 | 739,860 | 99.70
10 742,801 | 741.389 | 99.80 | 12 741,874 | 740,983 | 99.87
14 742,526 | 742,303 | 99.96 | 16 741,795 | 741,743 | 99.99
2 | 1,000,000 | 750,472 | 75.04 | 4 | 1,000,000 937565 | 93.75

Random 6 | 1,000,000 | 984,395 | 99.43 | 8 | 1,000,000 | 996,102 | 99.61
10 | 1,000,000 | 999,048 | 99.90 | 12 | 1,000,000 | 999,765 | 99.97
14 | 1,000,000 | 999,924 | 99.99 | 16 | 1,000,000 | 999,986 | 99.99

gm+l _ om 1
Ty T
However, to evaluate the error detection capability of the proposed scheme, we
have modeled all three Montgomery multipliers using C+-+. We have selected the
binary extension field GF(2'%) constructed by the type-II irreducible pentanomial
F(z) =219 4+ 2™ 4+ 2™ 4 270 4+ 1. 1t has been assumed that the faults are permanent
and are injected at the inputs and outputs of the gates or flip-flops. As a result
in all the simulations, for each two-input AND and XOR gate, we have considered
six possible stuck-at fault situations. Also, we have considered two possible stuck-at
faults for the flip-flops. Eight values of [, i.e., | = 2, 4, 6, 8, 10, 12, 14, and 16,
have been chosen. For each of the three Montgomery multipliers considered in this
chapter, we have conducted four experiments and in each experiment, we have used
1,000 random values for A and B, and run the program 1,000 times. In total, each
experiment has been run 1,000,000 times. At each iteration in the first experiment,
we have injected one stuck-at fault at a random location. In the second and third
experiments, two and three stuck-at faults have been injected at random locations,
respectively. The last experiment is carried out by injecting a random number of

stuck-at faults in each iteration at random locations.
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The results of our simulations have been summarized in Tables 6.1 and 6.2. The
column titled “Error Occurred” shows the number of cases, where the fault injection
has resulted in an error. Also, the column titled “Error Detected” shows how many
of erroneous multiplication products have been detected. The table shows that after
injecting random number of stuck-at faults using [ = 8, in the bit-serial, digit-serial
(D = 2), and the bit-parallel Montgomery multipliers 99.6%, 99.61%, and 99.61% of

the errors have been detected.

6.5.2 Time and Area Overheads

We have summarized the theoretical complexity of the presented multipliers with
error detection in Table 6.3. The results for the digit-serial multiplier are for the
special case D < [ using a fixed F(z). Also, for the bit-parallel multiplier, F(z) is
assumed to be fixed and Y is shown in (6.34).

To find the practical overheads, we have described the bit-serial, digit-serial, and
bit-parallel Montgomery multipliers using VHDL and implemented it on 0.18um
CMOS ASIC technology using the Synopsys@®) Design Analyzer(®). The Map Ef-
fort was set to medium and the type-II irreducible pentanomial F(z) = 21 4 2™ +
2™ 4+ 27 4+ 1 is used for all the implementations.

For the bit-serial multiplier, the implementations have been done with a target
clock period of 3.0 ns and the results are obtained for the original multiplier and
the multiplier with error detection capability. We have selected 15 values for [, i.e.,
2 <[ <16, and obtained the area overheads as depicted in Fig. 6.9. Note that this
figure also includes the area overheads of the final modulo (z! + 1) operation and
comparison shown in Fig. 6.1.

Similarly, we have implemented the digit-serial Montgomery multiplier on ASIC
with a target clock period of 10.0 ns. The multiplier has been implemented with two
digit sizes, i.e., D = 2 and D = 8, and the concurrent error detection circuit has been
implemented with 2 <[ < 16. The time and area overheads are shown in Fig. 6.10
and Fig. 6.11, respectively. Note that Fig. 6.11 includes the area overheads of the
final modulo (2! + 1) operation and comparison shown in Fig. 6.1. However, the time
overheads of these modules are negligible in comparison to the time complexity of the
digit-serial Montgomery multiplier and therefore, Fig. 6.10 shows the time overhead
in critical path delay of the multiplier.

Theoretically, the hardware implementation of the bit-parallel Montgomery mul-

tiplier requires 162 x 3 two-input XOR gates to obtain the matrix M. Also, obtaining
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Figure 6.11: ASIC implementation results for the area overhead in digit-serial Mont-
gomery multiplication.

Table 6.4: Theoretical Time and Area Overheads in the Bit-Parallel Montgomery
Multiplication

l 2 3 4 ) 6 7 8 9
#AND | 326 | 489 | 652 | 815 | 978 | 1141 | 1304 | 1467
#XOR | 325 | 648 | 810 | 1296 | 1458 | 1296 | 1782 | 1944

[ 10 11 12 13 14 15 16 -
#AND | 1630 | 1793 | 1956 | 2119 | 2282 | 2445 | 2608 -
#XOR | 2106 | 2592 | 2522 | 2592 | 2754 | 3240 | 3402 -

(6.25) requires 1632 two-input AND gates and 163 x 162 two-input XOR gates. In
total, this multiplier requires 163> = 26,569 AND gates and 166 x 162 = 26,892
XOR gates. To investigate the theoretical overhead of the concurrent error detection
process, we choose 1 < [ < 16, and provide the number of the required gates in Table
6.4. The number of the required AND gates is computed from (6.33) and the number
of the XOR gates is based on (6.33) and Lemmas 6.2 and 6.5.

To have a better evaluation of the proposed concurrent error detection approach
for the bit-parallel Montgomery multiplier, it has been implemented on ASIC with
a target clock period of 30.0 ns using F(z) = 2'% + 2™ 4+ 2™ + 20 + 1 as the
irreducible polynomial. Note that the ASIC implementations also include the final
modulo (2! + 1) operation and comparison modules shown in Fig. 6.1. The ASIC
implementation results for the area overhead are shown in Fig. 6.12. One can observe

that the greatest area overhead occurs when [ = 16 and is equal to 11.32%. The time
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overhead of the concurrent error detection scheme has been depicted in Fig. 6.13 for
1 <1< 16. It is interesting to note that some values of [ (e.g., I =4 and 7) result in
a very low time overhead. The time overhead for | = 8 is 27.80%.

The concurrent error detection schemes for the systolic Montgomery multiplication
have been considered in [9]. This scheme is based on time-redundancy which detect
all the single cells faults. However, the technique is only applicable on pipelined

multipliers.
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204+ 1.
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Chapter 7

Summary and Future Work

7.1 Thesis Contribution

In thesis, we have investigated finite field arithmetic operations knows as multipli-
cation and squaring using different algorithms and architectures. We have also con-
sidered concurrent error detection in the Montgomery multiplication. The following

summarizes the contribution of this work.

e In Chapter 3, which has been published in [25|, we have studied the Montgomery
multiplication and squaring over GF'(2™). Using new Montgomery factors, we
have proposed two bit-serial Montgomery multipliers which are faster than the
previously published Montgomery multipliers. Also, we have proposed new
bit-parallel Montgomery multipliers for the general and two special classes of
irreducible polynomials. The time and area complexities of these multipliers
match the best results reported in the literature. We have shown that amongst
the general irreducible pentanomials, type-II irreducible pentanomials are very
suitable for the proposed multiplier. Then, we have designed two bit-parallel
Montgomery multipliers. Our LCMM requires less hardware than the shifted
polynomials basis multiplier, however for a few irreducible pentanomials, it has
a higher delay. Our FMM multiplier is faster than dual basis multiplier, but
requires more hardware. Also, FMM has the same time complexity in compar-
ison to the SPB multiplier but, it can be implemented with two Montgomery
factors. Moreover, it can be used with our proposed squarer for type-II irre-
ducible pentanomials which has the delay of two XOR gates. This is the lowest

reported delay for squaring using pentanomials.

e In Chapter 4, which has been appeared in |24|, we have studied the SPB mul-
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tiplication over binary extension fields and proposed digit-serial multiplication
algorithms. In this regard, we have proposed two digit-serial SPB multiplica-
tion algorithms. The proposed MSD-first digit-serial algorithm is as efficient
as the LSD-first polynomial basis multiplication algorithm, which is the fastest
algorithm for digit-serial polynomial multiplication. Also, we have studied the
possible cases to reduce the complexity of the digit-serial SPB multipliers based
on the chosen digit size and the irreducible polynomial. We have also proposed
a hybrid algorithm which uses parallel computations to make the multiplication
process faster. This algorithm has half of the latency of the LSD-first digit-
serial polynomial basis multiplier with the same critical path delay, as one of

the fastest digit-serial polynomial basis multipliers.

e In Chapter 5, which has been outlined in |22|, we have proposed a digit-level
semi-systolic array SPB multiplier which has the critical path delay of Ty + Tk
with the latency of |m/2] + 2. This structure outperforms the existing semi-
systolic structures in terms of time complexity (combination of critical path
delay and latency). Also, we have designed a digit-level systolic array SPB
multiplier which has the critical path delay of T4 + Tx and the latency of
3 (%W + 2. The complexity results show that our proposed systolic structure
has a better time complexity (combination of critical path delay and latency)

than the existing counterparts using general irreducible polynomials.

e Finally in Chapter 6, which has been appeared in [26], we have considered
concurrent error detection for the Montgomery multiplication over binary ex-
tension fields. Three different multipliers, namely the bit-serial, digit-serial, and
bit-parallel multipliers, have been considered and the concurrent error detection
scheme has been derived and implemented for each of them. The time and area
overheads of the proposed schemes have been reported and ASIC implementa-
tion have been done to confirm the theoretical overheads. The results show that
the proposed schemes result in small time and area overheads. Furthermore, our
software simulations have shown that the proposed concurrent error detection

has a significant error detection capability.

7.2 Future Work

The scalar multiplication in ECC is performed using multiple finite field multiplica-

tions and squarings. As a future work, our proposed arithmetic units can be utilized
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to implement a crypto-processor based on ECC. This can be done using a bottom-up
approach starting with accelerating the underlying finite field operations based on the
target frequency and area requirements. On the top level, instruction-level pipelin-
ing should be incorporated to reduce the number of clock cycles required to perform
a scalar multiplication. Since there is a possibility of having parallel operations in
ECC scalar multiplication, multiple arithmetic cores would offer a better degree of
parallelism.

Similar approach can be adopted for designing a countermeasure against fault
attacks. Our concurrent error detection schemes would provide reliable bottom-level

arithmetic operations and the top level operations can be built on these operations.
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