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Abstract 

Unmanned aerial vehicles (UAV), commonly referred to as drones (Dynamic Remotely 

Operated Navigation Equipment), show promise for deploying regular, automated 

structural inspections remotely. Deep learning has shown great potential for robustly 

detecting structural faults from collected images, through convolutional neural networks 

(CNN). However, running computationally demanding tasks (such as deep learning 

algorithms) on-board drones is difficult due to on-board memory and processing 

constraints. Moreover, the potential for fully automating drone navigation for structural 

data collection while optimizing deep learning models deployed to computationally 

constrained on-board processing units has yet to be realized for infrastructure inspection. 

Thus, an efficient, fully autonomous drone infrastructure inspection system is introduced. 

Using inertial sensors, mounted time-of-flight (ToF) and optical sensors to calculate 

distance readings for obstacle avoidance, a drone can autonomously track around 

structures. The drone can localize and extract faults in real-time on low-power processing 

units, through pixel-wise segmentation of faults from structural images collected by an on-

board digital camera. Furthermore, proposed modifications to a CNN-based U-Net 

architecture show notable improvements to the baseline U-Net, in terms of pixel-wise 

segmentation accuracy and efficiency on computationally constrained on-board devices. 

After fault segmentation, the fault points corresponding to the predicted fault pixels are 

passed into a custom fault tracking algorithm; based on a robust line estimation technique, 

modifications are proposed using a quadtree data structure and a smart sampling approach. 

Using this approach, the drone is capable of following along faults robustly and efficiently 

during inspection to better gauge the extent of the spread of the faults.  

 

Keywords 

UAV, Drone Infrastructure Inspection, Structural Health Monitoring, Robust Line 

Estimation, Deep Learning 
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Summary for Lay Audience 

Timely and high-quality structural inspections are necessary. However, manual inspection 

practices are still widely adopted, which have proven to be costly, time-consuming, and 

risky to inspectors who must manually assess these structures close-up. Technological 

advances in recent years have opened the possibility of automating parts of the inspection 

process: the data collection process and the analysis of collected data. Aerial vehicles called 

drones can be controlled by an offboard pilot and are beginning to be used to perform close-

up structural inspections as opposed to humans. Instead of human senses and hand-held 

apparatuses respectively collecting qualitative and quantitative measurements, cameras and 

other sensors can be mounted on the drone to automatically collect this information during 

fly-by. However, processing this information is difficult on drones, due to their limited 

processing capabilities. Sensors also enable the possibility for fully autonomous navigation 

without the need for a human pilot. Yet, most current applications of drones for structural 

inspection require drones to be manually piloted. 

Thus, proposed is a fully autonomous inspection system that uses a drone that can navigate 

on its own without the need for a manual pilot. This drone, mounted with a camera, can 

collect and process images during structural inspection in an efficient manner, to extract 

possible structural defects and faults (such as cracks) in live time, while also tracking along 

these faults during the inspection. 
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Chapter 1  

1 Introduction 

The maintenance of terrestrial structures, including civil and mechanical structures, 

requires timely and periodic inspection. The risk of failure is heightened due to the steep 

increase of aging infrastructure in recent years. According to the National Highway System 

(NHS) of Canada, between 2006 and 2010, the number of bridges 50 years or older 

increased by over 50%, compared to just 10% for bridges less than 10 years old [1]. In the 

United States of America, the 2021 Infrastructure Report Card released by the American 

Society of Civil Engineers (ASCE) found that 42% of all bridges are 50 years or older, 

7.5% of which are structurally deficient [2]. Although structurally deficient bridges are not 

necessarily likely to imminently collapse, they require more frequent assessment to 

mitigate potential failure [3]. Due to the significant number of older bridges, the emphasis 

has shifted to maintaining existing bridges.  

 

However, the rate and quality of inspection have been questioned. In a recent Audit by the 

Office of the Auditor General of Ontario, it was found that the Ministry of Transportation 

is unaware of whether structural maintenance is being done in a timely manner by separate 

regions [4]. Bridges and structures deteriorate at their own rate, and some are at greater 

risk of failure than others. Prioritizing frequent monitoring of bridges that are in fair or 

poor condition is paramount to early rehabilitation, to prevent further costs in repairs down 

the line and mitigate the potential risk of collapse. The quality of inspection is also an area 

of great concern. The Ministry of Transportation found numerous instances of missing, 

incomplete, or inaccurate inspection files due to incorrect recorded measurements and 

limitations in the inspection itself [4].  

It is evident that the need for higher quality and more frequent inspection of bridges and 

terrestrial structures is greater than ever. However, current manual inspection methods 

consume significant man-hours and require expensive equipment and personnel to 

coordinate and perform inspections. In the United States of America, the average 

inspection cost per bridge is between $4,500 and $10,000 [6]. Furthermore, acquiring and 
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investing in the equipment for manual inspection, such as ladders, under-bridge trucks [5], 

man-lifts and scaffolding is costly [7]. Most inspection procedures last several days, 

depending on the size of the infrastructure. As a result, the time cost through man-hours 

spent manually conducting inspections is significant, limiting the feasibility of more 

frequent inspections. 

With the recent advances in technology, the potential of improving upon traditional 

inspection processes through automation is beginning to be realized and tested. Unmanned 

aerial vehicles (UAV) – also referred to as drones – have been realized as a viable solution 

to automate infrastructure inspection, providing the possibility for more frequent, 

continuous, and high-quality inspections at a lower cost. Drones equipped with sensors and 

cameras can enable autonomous navigation, while remotely collecting structural data to be 

post-processed for structural health assessment. However, most of the current work focuses 

on optimizing parts of the inspection process through automation, while manual 

supervision and intervention is still required at some stage.  

1.1 Challenges of Drone Infrastructure Inspection 

Typically, drones are controlled by an off-board human operator for infrastructure 

inspection. As a result, challenges arise due to accessibility and cost limitations. Another 

approach is to autonomously control a drone via radio using ground control stations, such 

as computers or smartphones, which send position waypoints for the drone to fly to. 

Ground control stations can also process data collected by the drone during structural 

inspection. However, in remote inspections where the drone must fly beyond the range of 

the ground control station and where wireless connectivity is limited, an on-board 

companion computer mounted to the drone is a necessary alternative, which presents its 

own challenges. Both manually operated and automated approaches present challenges to 

inspection. 

1.1.1 Manual Operational Constraints 

Due to the complexity of some structures, some elements may be inaccessible for close 

observation to inspectors. For instance, tall structures present a challenge for close 
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inspection in high and poorly supported areas, such as windmills and cell towers. This 

presents a safety risk to inspectors – even with the aid of equipment, the risk of injury and 

death is heightened. Drones can help alleviate such risks, as they can be deployed and 

manually operated from a safer distance, using a transmitter that sends radio signals to the 

drone. The operator would need to be able to see the drone and obstacles around it, either 

directly via their line-of-sight or through a camera mounted onto the drone, capable of 

streaming a live feed to the operator. However, cameras can provide misleading depth 

perception for real-time avoidance. Thus, drones typically rely on other multi-directional 

sensors that measure precise distances to nearby objects, although it would be difficult for 

an operator to interpret such distance readings in real-time. Also, when inspecting more 

complex structures in busy environments, the radio signals from the transmitter can get 

obstructed and the operator’s line-of-sight can get occluded, posing an elevated risk of 

unintentional drone collision. Moreover, drones need to be manually controlled by an 

operator in relative proximity to the inspection site, resulting in notable travel and manual 

operational costs that may limit more frequent, regular inspection.  

1.1.2 On-board Computational Constraints 

The companion computer communicates in close-range with the flight controller, which 

responds to commands and controls the speed of the motors accordingly using built-in 

sensors. Autonomous navigation makes use of sensors to enable the drone to ‘sense’ its 

environment and estimate self-position for localization. For real-time localization, 

algorithms must be not only accurate but also efficient; these algorithms must be 

inexpensive to enable real-time processing on low-power companion computers. 

Furthermore, memory and power-constrained companion computers limit the feasibility of 

performing intensive data processing tasks on drones – even more so for real-time 

applications. 

1.2 Thesis Contribution 

Given the limitations that arise due to manual operational costs and on-board power and 

memory constraints, the main contribution of this thesis is in realizing an efficient, fully 
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autonomous inspection system using drones. Namely, this thesis aims to address the 

following areas: 

- Regular deployment of a drone equipped with a camera and sensors that can 

autonomously navigate and track around a structure without the need for manual 

control, while capturing and sending an image stream to a companion computer for 

further processing.  

 

- Pixel-wise extraction and localization of structural faults using a semantic 

segmentation deep learning method, with the U-Net architecture at the core. 

 

- Proposal of further modifications to the U-Net architecture to enable accurate, real-

time fault localization on low-power processing units on-board the drone. An 

investigation is also conducted to compare the modified architectures with the state-

of-the-art baseline U-Net architecture, in terms of performance and efficiency. 

 

- Real-time fault tracking to better gauge the spread of faults along structural walls 

during inspection. Namely, a modified random sampling consensus approach is 

used to estimate the fitting line robustly and efficiently for a set of extracted fault 

points corresponding to the fault pixels predicted by the deep learning method. 

 

1.3 Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 provides background information 

regarding the types of structural faults, image processing methods for identifying faults, 

and the viability of drones for inspection. Chapter 3 provides a literature review of the deep 

learning approaches for structural fault assessment and the application of such approaches 

for drone inspection. Chapter 4 provides a high-level overview of the proposed inspection 

system architecture and platforms developed upon. Chapter 5 provides a more thorough 

description of the proposed structural and fault tracking algorithms implemented to address 

the goal of accurate and efficient autonomous drone navigation. Chapter 6 proposes a 
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modified deep learning semantic segmentation approach for real-time fault extraction on 

low-power edge devices that can be equipped to drones. Finally, in chapter 7, a conclusion 

summarizing the findings of the proposed methods along with future enhancements is 

provided. 



6 

 

 

 

Chapter 2  

2 Background 

This chapter will provide background information about terrestrial infrastructure faults, as 

well as image-based approaches for identifying faults. Then, the application of drones is 

discussed. 

2.1 Defining Structural Faults 

There are different types of faults that highlight structural problems. Cracks are a common 

fault found on the material surface of infrastructures. Cracks are of particular interest since 

they are important to determining the severity of structural damage, based on 

characteristics such as crack width, depth and change in direction. Such information is 

important to determining how quickly the fault should be repaired before further damage 

occurs. Cracks can be classified into two broad groups: active cracks, which are 

characterized as long and multidirectional, with noticeable displacement and misalignment 

in depth, width, and direction over an area; and dormant cracks, which show no such 

change in direction, and are typically characterized as hairlike or irregular [8]. Although 

both types of cracks may become enlarged over time, active cracks are particularly 

concerning as they may be caused by structural overloading, flaws in the design of the 

structure, or detrimental external conditions [9]. Being able to detect and distinguish active 

cracks is vital to initiating the timely repair of a structure and preventing failure.  

 

Given that most structural elements use concrete or reinforced concrete, faults that occur 

on concrete surfaces that are of notable concern to structural integrity are listed below [8] 

[10]: 

 

- Hairline cracks: Thin but deep cracks, which can result in more serious cracking 

over time. It is caused by improper settlement of the concrete while curing. 
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- Spalling: Concrete surface depressions in which the parts of the surface have 

cracked and delaminated. It is caused by pressure underneath the surface of the 

concrete, typically by poorly constructed joints or corrosion in the rebar in the 

reinforced concrete. Spalling can result in the corroded metal to become exposed, 

which is prone to further corrosion through exposure to air and water, undermining 

the integrity of the structural element. 

 

- Scaling: Like spalling, but not as expansive or deep. Delamination occurs as air and 

water pockets rise to the concrete surface, forming blisters which break open. 

 

- D-Cracking: Cracks that form parallel to or stem from longitudinal and transverse 

joints, due to periodic freezing and thawing. These cracks are deeper than surface 

cracks and expand outward towards the center of the concrete element over time. 

 

- Offset Cracking: Cracks where the concrete is at different levels on either side of 

the crack. This is due to uneven surfaces below the concrete element. 

 

- Diagonal Corner Cracking: Cracks that form from a corner joint of the concrete 

element. These cracks are the result of curling or warping at the corners of the 

concrete; since these corners have empty space below them, weight overload from 

above structural elements can cause these corners to crack downwards into the 

space.  

Thus, it is important to not only be able to detect if a fault exists in an inspected area, but 

to also localize the region of the fault and determine how it is expanding or changing 

direction, to better gauge its severity according to the different fault types. 

2.2 Identifying Faults in Images 

Structural health monitoring (SHM) is a strategy for continuously evaluating and 

monitoring structural health. It is widely adopted as it can dynamically respond to adverse 

structural changes [11]. SHM relies on a periodic stream of measurements, which can be 
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provided through contact sensors such as inertial measurement units (IMU), fiber optic 

sensors, light detection and ranging (LiDAR) sensors, and ultrasonic wave sensors. 

However, in recent times, non-contact sensors such as digital cameras have gained 

popularity: they are easy to deploy, cost-effective, and inherently work with image-based 

processing techniques with minimal preprocessing. In a camera, each pixel is a sensor, so 

it can collect a large amount of structural data, represented as an RGB or grayscale image. 

Image-based processing within the field of computer vision has shown promising results 

for automated fault identification from images [12]. 

2.2.1 Edge Detection 

Many of the traditional image processing techniques extract features using filter-based 

methods. A filter is an operation performed on an image to modify it from its original state. 

Commonly, a filter is applied to output a new image highlighting a target feature. The filter 

is applied to a neighbourhood of pixels surrounding each pixel in the input image [13]. 

Therefore, the output of each pixel depends on its neighbourhood and the values encoded 

in the filter. In edge detection, filters are used to preprocess images by removing noise and 

are the basis for detecting pixels corresponding to edges. Thus, filters are particularly useful 

for detecting edges and boundaries that correspond to cracks. Several filter-based methods 

that have been tested for crack detection include the fast Haar transform, fast Fourier 

transform, Morphological operator, Canny filter and Sobel edge detector. One major 

downside of these filter-based methods is that they use local features to determine cracks, 

which are susceptible to differing illumination conditions, distortion, local element 

material and occlusion from other outdoor elements due to lacking knowledge of the global 

context [14]. 

Moreover, some methods use intensity-thresholding techniques as a post-processing tool 

to further distinguish high intensity pixels from low intensity pixels that are often 

associated to cracks. Otsu thresholding is a popular thresholding method that aims to 

separate pixels into a foreground and background class, wherein the spread of the pixel 

intensities mapped to a specific class, also known as the variance, is minimized, while the 

variance between the two classes is maximized [15]. However, because cracks typically 
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make up a small percentage of an image and thus only a fraction of the low intensity points, 

Otsu thresholding can be unreliable in extracting pixels associated to cracks. Adaptive 

thresholding is another method which considers only local neighbourhoods of pixels when 

thresholding. However, this method is also vulnerable to similar pitfalls as filter-based 

methods. In general, using an intensity threshold is not always reliable, as pixels associated 

to noise, stains, and low-reflectance materials can also be classified as low-intensity [16].  

Although parameters and features can be fine-tuned to improve detection performance on 

specific datasets, it would be difficult to generalize and scale these traditional image-based 

approaches to real-world situations. 

2.2.2 Deep Learning 

Machine learning is an area of artificial intelligence (AI) that has been heavily explored 

and tested in SHM research. These approaches rely on large datasets and require powerful 

computers for training. The purpose of training is to minimize the error between predictions 

and ground truth, by adjusting the parameters, each defining the weighted value of a feature 

over a feature space of the dataset. This error can be defined by a loss function or objective 

function, which takes the parameters as input, with the goal of finding the optimal 

parameter values [12]. 

Machine learning algorithms rely heavily on features that are acquired from image 

processing methods described in section 2.1. Therefore, features must be carefully selected 

to obtain meaningful results from machine learning-based algorithms, especially with the 

goal of identifying structural faults. Plus, machine learning-based methods have been 

shown to be less than suitable for full-scale infrastructures, where fault patterns are too 

complex to be captured and defined by a manually-extracted set of features [12]. 

Deep learning, inspired by the adaptability of the human brain, is a more powerful concept 

enabling machine learning to take upon human-like tasks more accurately. Deep learning 

is powerful as it is capable of automatically and optimally extracting features as part of the 

learning process. The more data provided, the more accurate these algorithms are [12]. The 

basis for deep learning methods is neural networks, in which input data is passed through 
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a network of computational layers that operate over the data to get a final classification 

result. Each of these layers is connected via neurons, also referred to as nodes. Nodes are 

responsible for combining data from previous layers via weighted connections, where each 

weight corresponds to the value of the feature that the network learns. The weighted sum 

of the inputs is then evaluated by a node’s activation function, to determine the extent to 

which the weighted sum will impact the learning process in later layers. For each data 

sample, a forward pass is completed through the network, and after each pass, these weights 

are adjusted to minimize or optimize the output of a defined loss function. Deep neural 

networks (DNN) are essentially neural networks with many computational layers between 

an input and output layers, as shown in Figure 1 below. These computational layers, also 

known as hidden layers, is where the learning occurs, hence the notion of deep learning. 

With multiple hidden layers, these deep networks can learn from many layers of abstraction 

as opposed to shallower networks [17]. 

 

Figure 1: Deep Neural Network [88] 

2.2.2.1 Convolutional Neural Networks 

Visual data in the form of images and videos can also be passed into DNNs called 

convolutional neural networks (CNN). The motivation behind CNNs for use in structural 

fault identification is that they are more robust to external factors such as lighting and fault 

irregularities, compared to traditional image processing and traditional machine learning 

approaches. It has also been shown that the performance of deep learning-based methods 
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is typically better than traditional methods for detecting faults. However, they require many 

training images that account for variations due to external factors representative of the real-

world [14]. Furthermore, CNNs can also be computationally intensive. 

Different levels of abstraction of the input image can be learned at different layers of a 

CNN. The initial layers typically extract lower-level information, such as edges and 

colours, whereas deeper layers later in the network extract higher level features such as 

shapes and objects, that provide more contextual information [17]. A CNN consists of 

several different types of layers: an input layer, convolutional layers, subsampling layers, 

fully connected layers, and an output layer. The input layer is passed a batch of images, in 

which each image has a defined width, height and channel size. For example, an input may 

consist of A images with height M and width N, and each image is a colour image defined 

by three channels of size C: a red, blue, and green channel. Such an input can be defined 

as a tensor of shape (A × M × N × C).  

 

Figure 2: Convolutional Neural Network with Fully Connected Layers [85] 

Convolutional Layers: A convolutional layer applies a filter, otherwise referred to as a 

kernel, over local regions of the input images, performing element-element multiplication 

to produce a filter response as an extracted feature map from the images. A convolutional 

layer is parameterized by the kernel size, the number of channels, the stride factor, and the 

padding [17]. The kernel is a window of size f × f × C, where f is the height and width 

equal to or less than the width and height of the input image size. The kernel slides across 

the input image, passing over a certain number of pixels at a time, defined as the stride s, 

and outputs a new pixel value in the same manner as a traditional filter. The padding p 
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adjusts the size of the output feature map near the borders, which may be useful in 

situations where the height and width of the feature map must match that of the input image. 

Given that k kernels are applied with a stride s to the input image of resolution M × N, the 

convolutional output size Hout × Wout  × C can be expressed as follows [18]: 

(⌊
𝑀 − 𝑓

𝑠
⌋ + 1)  ×  (⌊

𝑁 − 𝑓

𝑠
⌋ + 1)  ×  𝑘 

The values of k and s are specific to the current convolutional layer and are not necessarily 

constant throughout the network. In the case that the output spatial dimensions should 

match those of the input spatial dimensions, padding p is applied, which modifies the above 

expression as follows: 

(⌊
𝑀 + 2𝑝 − 𝑓

𝑠
⌋ + 1)  ×  (⌊

𝑁 + 2𝑝 − 𝑓

𝑠
⌋ + 1)  ×  𝑘 

Activation Function: After each convolutional layer typically follows an activation 

function. The activation function is applied to the sum of the values of each pixel in the 

kernel, where each pixel is a weight, multiplied with each pixel in the input image within 

the receptive field of the kernel. In other words, if there are k kernels to apply, with each 

kernel i having a weight matrix Wi, a bias bi, and xs denoting the receptive field captured 

by the kernel, applying an activation function a will produce a convolution of xs as follows 

[18]: 

𝑍𝑖,𝑠 = 𝑎[sum(𝑊𝑖𝑥𝑠) +  𝑏𝑖] 

Commonly used activation functions in CNNs introduce non-linearity – this is important 

for updating the weights after each forward pass. The process of updating the weights is 

called backpropagation. It works by taking the derivative of the loss or objective function 

with respect to each of the weights, using the chain rule. These partial derivates are also 

referred to as the gradients. Finding such gradients also involves taking the derivative of 

the activation functions when passing back through the network. Activation functions take 

the input value as its parameter. Hence, when deriving linear activation functions with 

respect to the input, the result will be the coefficient of the input, which is a constant. Thus, 
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the weights would only be updated by a constant factor and prevent any real improvement 

to the output of loss or objective function. One of the most used non-linear activation 

functions is the rectified linear unit (ReLU), a piecewise linear activation function. It is 

simple, fast, and results in a more predictable gradient during backpropagation, compared 

to other non-linear activation functions. 

Subsampling Layers: CNNs also typically have subsampling layers, also referred to as 

pooling layers. Their purpose is to down-sample, or reduce the dimensionality of the data, 

either by averaging or finding the maximum value in each region of the feature map from 

previous layers and passing the resulting value into the next layer. Average pooling refers 

to taking the average of a region, whereas max pooling takes the maximum value of a 

region. 

Regularizer: Optionally, CNNs can also have dropout layers, which act as a regularizer to 

prevent overfitting on training data in large networks with many weights. This layer 

randomly sets some of the terms in the weighted sum in the output of convolutional layers 

to 0 with a pre-determined probability, such that these weighted terms do not contribute to 

the forward pass and backpropagation process. By doing this, the reliance between 

weighted features is diminished, allowing the network to learn features more robustly on 

randomly selected weighted terms [24]. 

Fully Connected Layers: These layers may also be used in CNNs after several rounds of 

convolution and subsampling. These layers follow the structure of a neural network, with 

nodes in each layer connected to every node in another layer. There are used when the 

expected output of the network is a classification result. However, there are CNNs have 

been designed that output an annotated image instead of a class, with the intent of fine-

grain localization of where in an image an object is identified. In such networks, the fully 

connected layers are replaced with convolutional layers that up-sample feature maps to an 

approximate representation of the original input image. These networks are called fully 

convolutional networks (FCNs). Applications include object detection and finer 

segmentation of areas of interest in images. Semantic segmentation is a technique used to 

label pixels that are associated to separate classes, and is commonly used for multi-class 
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segmentation, although it can also be applied to binary class problems. In Figure 3 below, 

an FCN is used to produce a pixel-wise output label map matching the input image 

resolution, with the predicted classes annotated.  

 

Figure 3: FCN performing semantic segmentation. The number of channels (feature 

space size) produced by each convolutional layer is indicated [42] 

Output Layer: In the final output layer, a final classification value for each class or a 

segmentation map in the case of semantic segmentation is outputted. Typically, the raw 

output values are passed through a SoftMax function, which normalizes the real output 

values to a set of real values between 0 and 1, such that all values sum to 1. These 

normalized values can be interpreted as probabilities for each individual class, and then 

outputs the class with the highest probability as the final classification result. SoftMax can 

also be used for multi-class classification. The SoftMax function is a generalization of the 

sigmoid function used in binary classification. The SoftMax function is expressed as 

follows: 

𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1
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2.2.2.2 Network Architectures 

There are several key CNN architectures that have been developed, which have proven 

instrumental in advancing their performance.  

 

AlexNet: Developed by researchers from the University of Toronto [24], the AlexNet 

architecture was keyed as one of breakthrough CNN-based models, trained on a large 

image dataset called ImageNet [25]. The ImageNet dataset consists of over 15 million 

labelled high-resolution images, classified into around 22,000 categories [24]. AlexNet 

trained on this dataset showed a significant reduction in the error rate compared to the state-

of-the art methods at the time and other models trained on ImageNet. The architecture 

consists of an initial layer with 11 × 11 convolutional filters, followed by max pooling and 

other convolutional layers with filters of varying size, resulting in around 60 million 

weights, or parameters. To prevent overfitting, the authors perform transformations on the 

images – referred to as augmentations – and use dropouts in the first two fully connected 

layers with a probability set to 0.5.  

 

VGGNet: The Visual Geometry Group (VGGNet) was developed by researchers from 

Oxford University [26]. It uses smaller 3 × 3 convolutional filters compared to those used 

in AlexNet, with a padding of 1 applied to maintain equal dimensionality in the input and 

output images. Layers that use these convolutional filters preserve image resolution over 

multiple convolutional layers, enabling deeper networks with reduced loss of image 

dimensionality. There are several versions of VGGNet, each with a different number of 

layers: VGGNet with 11 layers, 13 layers, 16 layers, and 19 layers. The network consists 

of between 133-144 million parameters, depending on the number of layers. 

 

GoogLeNet: A deeper CNN-based network developed by researchers in collaboration with 

Google [27]. This network consists of 22 layers and roughly 5 million parameters, which 

is significantly fewer compared to AlexNet and VGGNet. The reduction in parameters is 

attributed to stacked sub-networks called inception modules [12]. A naïve inception 

module consists of multiple convolutional filters of different sizes and a max pooling layer 
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performed in parallel, with the outputs concatenated. However, larger convolutional filters, 

along with the concatenation of filters leading to many filters passed into subsequent layers, 

can result in a significant increase in the number of computations. Thus, a modified version 

of this module is also proposed, which performs a projection of the number of filters into 

a smaller feature dimensional space. This projection is achieved through 1 × 1 convolution, 

preserving the input image width and height while reducing the number of number of 

features in an efficient manner. Stacking these projection-based inception modules makes 

this network computationally efficient for deeper learning. 

 

ResNet: More layers can be beneficial to the learning process to a certain extent. However, 

the more layers added, the closer the gradients of the loss function computed through 

backpropagation tend towards zero, impeding a deep network’s ability to train effectively. 

This is referred to as the vanishing gradient problem, which has largely been addressed 

through the initial and intermediate batch normalization of the data [28]. Another issue 

with deep networks is known as the degradation problem: a phenomenon that causes the 

accuracy to get saturated with increased network depth. In [28], a residual network 

architecture called ResNet is proposed to address degradation. The authors found that the 

loss of accuracy can be attributed to diminishing returns in what each deeper layer learns. 

That is, deeper layers that learn very little, which are sequentially connected to previous 

layers, will obscure the outputs computed in earlier layers, as these deep layers tend 

towards learning the zero function. In a residual network, residual blocks (as shown in 

Figure 4) take the output from earlier layers and add them to the output of latter layers. 

This way, the network saves what was previously learned as an identity map (an unchanged 

output) and adds this identity to subsequent outputs in deeper layers. Consequently, 

residual networks tend towards learning the identity function rather than the zero function. 

It has been shown that the deeper the residual networks, the lower the error rate, while also 

being efficient in terms of the number of parameters as deeper networks can facilitate the 

feasibility of many small layers. 
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Figure 4: Residual block in ResNet [28] 

2.3 Drones 

Drones are key area of research and have been realized to have great potential for a wide 

variety of real-world applications, such as the delivery of goods, search and rescue 

missions, agriculture, and surveillance. Drones have also been verified to be safe, cost 

effective, and operable to the extent of being used for SHM purposes. Drones equipped 

with high-resolution cameras that capture high-quality images are proving a more reliable, 

cost-effective, and safe alternative that keeps inspectors distanced from potential hazards. 

Moreover, the images captured by drones provide comparable results to traditional 

inspection practices, especially for identifying faults such as spalling and cracks [3]. In a 

recent survey of state departments of transportation (DOT) within the United States of 

America, 56% of respondents stated that they were currently using or planning to use 

drones for bridge inspections, illustrating their growing use and applicability in the industry 

[19]. 

2.3.1 Classifying Drones 

There are two main types of drones: rotary-wing and fixed-wing drones. Rotary-wing 

drones have multiple rotors, such as quadcopters. Fixed-wing drones have a single rigid 

wing akin to airplanes. As a result, the fixed-wing only requires energy to move the drone 

forward as it lifts rather than rotary-wing drones that spend energy to maintain their vertical 

height while moving forward. This makes fixed-wing drones more energy-efficient and 

allows them to have a longer battery life compared to rotary drones. With this longer battery 
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life comes increased flight time, which is ideal for tasks such as drone delivery over long 

distances. On the other hand, rotary-wing drone are preferred for tasks such as surveillance, 

search, and inspection, due to their high maneuverability and hovering capabilities [20]. 

 

 

Figure 5: Left – rotary-wing drone [89]; right – fixed-wing drone [90] 

2.3.2 Drone Connectivity 

Typically, drones are controlled by an off-board operator via radio transmission. A drone 

can be equipped with a radio receiver that responds to controls from an operator-controlled 

radio transmitter. Drones can also be controlled via radio by ground control stations, such 

as computers or smartphones, which send position waypoints for the drone to fly to. A 

common configuration is to have a radio connected to the ground control station, which 

sends data via wireless telemetry to the radio receiver on the drone. More specifically, the 

drone can communicate with the ground control station on specific radio frequency bands 

– most drones operate at frequencies of 2.4 GHz and 5.8 GHz. At lower frequencies, drones 

can travel further from ground control stations, travelling up to 6-7 km but at lower data 

rates compared to higher frequency bands. Ground control stations can also communicate 

with the drone via Wireless Fidelity (Wi-Fi) telemetry, which has higher data rates but 

shorter range than telemetry radios [21]. Existing ground control station software can also 

be used to create autonomous missions by setting pre-determined waypoints or regions of 

interest. Through the ground control station, missions can be uploaded to the drone’s flight 

controller via telemetry. The flight controller is the brain of the drone, responding to 

commands and controlling the speed of the motors accordingly using built-in sensors. 
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However, in remote applications where the drone must fly beyond the range of the ground 

station, an on-board companion computer that is mounted to the drone is a necessary 

alternative. The companion computer communicates in close-range with the flight 

controller via a serial cable connected directly to the flight controller or Wi-Fi [22]. 

Commonly used companion computers on drones are based upon the open-source, 

programmable Arduino circuit boards, which are lightweight and portable 

microcontrollers.  

To correctly respond to waypoint position commands, drones require a positioning system 

to position themselves accurately in the world. As a result, most drones used in outdoor 

settings require the Global Positioning System (GPS) and a GPS signal receiver for 

positioning. For the most part, GPS works adequately well in open outdoor spaces, but 

suffers from signal occlusion in congested areas, such as near large infrastructure, which 

can hamper the drone’s ability to accurately position itself. GPS-based navigation, coupled 

with autonomous localization and positioning that uses sensors to enable the drone to 

‘sense’ its environment and estimate self-position, is a solution to this problem. Drones 

send back position estimation data to the companion computer as feedback that these 

algorithms take in to continuously update the drone’s position for autonomous flight. 

Besides providing drone position data, drones can also send task-specific data, such as 

sensor readings and images, that can be processed in real-time or offline. Processing 

information, particularly images, using deep learning with CNNs for the purposes of 

extracting semantic information, such as identifying faults in images for the purposes of 

SHM, can be highly intensive – more so performing such operations in real-time. Hence, 

on-board companion computers with limited processing capabilities present restrictions for 

these applications.  
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Chapter 3  

3 Literature Review 

This chapter will provide an analysis of the CNN image-based structural fault assessment 

approaches. Ways of making these approaches more computationally efficient are 

discussed, as well as the extent to which image-based solutions are being used in drone-

based infrastructure inspection. 

3.1 Analysis of CNN-Based Fault Assessment Approaches 

CNNs have become a heavily researched area of image-based processing since the early 

2010s. Although CNNs were first introduced in the 1990s, limited training data and 

computational resources were available at the time. With larger datasets becoming widely 

available in online public domains, along with increased computing power through 

Graphics Processing Units (GPU) enabling parallel processing of data, training these deep 

learning algorithms to achieve accurate results within a reasonable time frame has become 

a more attainable task for various image processing tasks, including SHM. 

3.1.1 Image Classification 

An area of interest in image processing is distinguishing observations with similar features 

into individual classes, known as classification. Binary classification consists of predicting 

observations to be in one of two classes, rather than more than two classes in the more 

general multi-class classification case. A binary classifier determines which class an 

observation belongs to, based on a probability and threshold value: the probability value, 

with respect to the threshold, determines whether the observation belongs to one class or 

another. Thus, the resulting output to a binary classifier is a categorical value, typically 

denoted as ‘0’ or ‘1’. 

This binary classification approach is important to single out a specific target amongst 

observations, which is especially useful in the case of identifying anomalies. As a result, 

binary classification techniques have been used extensively to identify faults in structural 
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images. CNNs are commonly used to facilitate binary classification of images, where each 

image is assigned a class label. Thus, distinguishing fault images is a matter of identifying 

the existence of faults in an image, rather than localizing them. Typically, in the context of 

classifying structural images, the typical structure of CNNs – as described in section 2.2.2.1 

– is followed, with fully connected layers following the convolutional layers. However, the 

fully connected layers can be replaced by other final classifier layers. In [17], the authors 

perform a comparison between different classifiers for pavement crack detection in images. 

Using a base VGG-16 (VGGNet with 16 layers) pre-trained on ImageNet, they replace the 

fully connected layers with a single layer neural network classifier, a Support Vector 

Machine (SVM) and Random Forest (RF) classifier. 

Due to the rarity in occurrence of faults in images, classes tend to be unbalanced, with most 

observations falling into the non-fault class. This can negatively impact the learner, as it 

would tend to classify observations as part of the non-fault, or negative class rather than 

classify them as part of the fault, or positive class. This can lead to an increase in false 

negatives, in which the classifier incorrectly outputs that an observation is a non-fault when 

in fact it is. Different approaches are proposed to mitigate this phenomenon. One approach 

is to weigh the positive class more heavily during the training process such that false 

negatives are penalized more heavily. In [31], a class-balancing weight is introduced to 

balance the contribution of the positives and negatives to the loss in detecting pavement 

cracks. Another approach is to intentionally resample positive-labelled samples, called 

oversampling. Also, particularly in the case of semantic segmentation, a crude yet effective 

approach is to take smaller crops of images that contain a greater fraction of the positive 

class than the entire image. In [30], an algorithm is implemented to extract random patches 

from training images of pavement surface cracks for pixel-level segmentation, such that 

each patch contains 60% of the target, or ‘crack’ class. The authors find that this ratio 

optimizes the precision while minimizing the false positive rate. Another more novel 

approach for semantic segmentation is used in [29], in which pixel-level crack 

segmentation is performed. Due to cracks being narrow and having a small area relative to 

the entire image, the authors find that the pixel annotation inaccuracies deter the 

performance of their CNN-based classifier. To handle this, they use pixel tolerances to 

allow positively labelled pixels by the classifier within a certain pixel range of a true label 
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to be considered a true positive. They find this significantly improved the performance of 

their classifier. 

Another issue is that the images collected for training and validation are usually captured 

using high-resolution cameras. However, passing large, high-resolution images into a CNN 

is highly inefficient as the number of convolutional operations increases significantly. 

Some pre-trained networks also require that images of a relatively small, fixed size be 

passed in. Plus, large images need to be down-sampled significantly, and as a result, 

information describing relatively small, yet complex faults can get reduced or lost, given 

that faults cover a small proportion of entire images [32].  

In [33], a GoogLeNet-based network is applied to images of concrete bridge surfaces to 

identify crack images. The authors use Inception modules to enhance the efficiency of their 

network. Moreover, 1,455 images with 4,160 × 3,120 pixel resolutions are collected. These 

images are cropped into smaller images of 256 × 256 pixels, which increases the dataset 

size to 60,000 images, providing more data for the model to train on. These cropped images 

are also downsized to 224 × 224 to match the required input size for the GoogLeNet 

architecture. In [32], images are divided into grids of different scales for road crack 

detection. The authors reason that due to the weights of the cracks being small relative to 

other larger-scale features in the images, crack information is limited. They argue it is 

necessary to divide the image such that the weight of the cracks in the individual patches 

becomes more significant. In this way, each grid is evaluated as a separate image to be 

classified. In [34], a sliding-window approach is used to scan across patches of crack 

images larger than 256 × 256 pixel resolutions. These patches are passed into a custom-

trained CNN, classifying each patch of the original image separately.  

3.1.2 Object Detection 

The key difference between image classification and object detection in images is the 

ability for a classifier to localize the areas of faults from a single input image. CNNs can 

be repurposed as object detectors that output not only whether a fault exists in certain 

regions of an input image, but also the coordinates enclosing the regions where these faults 

occur [38] [39] [41] [54] [55] [57].  
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Figure 6: Crack detection result shown with bounding boxes [57] 

A sliding window approach, as discussed in section 3.1.2, can be used to scan across small, 

sequential patches of an input image in a brute-force manner. However, this would be very 

computationally expensive for object detection, as many different locations and scales 

encapsulating possible objects of varying size and aspect ratio in the image would need to 

be considered and fed into a CNN. To address this, Region-Proposal Networks (RPN) use 

traditional image processing techniques to identify edges and shapes, to output a set of 

rectangular regions of interest where objects are likely to occur in an image. This set of 

proposed regions is much smaller than the number of regions considered by the brute-force 

method, making it more computationally feasible to feed through a CNN. In [35], RPNs 

are combined with CNNs to produce regions with CNN features, called R-CNN. A faster 

and more performant alternative is proposed in [36], coined as Fast R-CNN: instead of 

taking crops of proposed regions separately, Fast R-CNN feeds the entire image through 

convolutional layers to produce a feature map from which region proposals are extracted. 

By using a feature map, the network shares computations. Although this method is shown 

to be more computationally efficient than previous methods, the region proposal stage is 

still a bottleneck. Thus, Faster R-CNN is introduced in [37] to allow the network to predict 
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region proposals through a unified network. The authors also draw a comparison to 

methods that use pyramids of images and feature maps at different scales, for multi-scale 

feature extraction. They note that although multi-scale feature extraction may be superior 

in terms of accuracy, Faster R-CNN is considerably faster. In [38], a Faster R-CNN-based 

structural vision inspection method is proposed for quasi real-time detection of multiple 

damage types.  

 

Nevertheless, multi-scale feature extraction is still a prevalent method for object detection, 

including fault detection. Modifications to multi-scale feature pyramid networks have 

shown promise for fault detection in real-time applications. In [39], a real-time crack 

detection algorithm for pavement crack detection is developed using a CNN with multi-

scale feature layers. The initial convolutional layers are based on a truncated VGG-16 

network which outputs feature maps. The feature maps are then passed into a multi-scale 

feature extraction block, where for each feature map at a different scale, the feature map of 

the next layer is computed and the predicted bounding boxes at the current scale are 

produced through 3 × 3 kernel convolutions. After this block, the predicted boxes from 

different feature maps are summed together in the output. Instead of fully connected layers, 

convolutional layers are used to allow for input images of varying sizes. Furthermore, 

convolutions reduce the amount of memory and computations required compared to fully 

connected layers; the fully connected layers consider all possible weighted connections 

between neurons in different layers, whereas convolutional layers only consider 

connections based on spatially local features. Using this methodology, the authors achieve 

a high accuracy while reaching a detection rate of 96.6 FPS on video frames of resolution 

576 × 1,024. 

 

The aforementioned methods apply a model to an image at multiple locations and scales. 

Another approach is to apply a single convolutional network to the entire input image and 

simultaneously predict bounding boxes and class probabilities for each box. One such 

approach is called You Only Look Once (YOLO) [40]. Unlike region-proposal based 

approaches, YOLO can garner greater contextual information by looking at the entire input 

image. Furthermore, it is fast, making it suitable for real-time detection. In [41], YOLOv3, 
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a newer version of the original YOLO, is modified to develop a lightweight aircraft crack 

detection system, YOLOv3-Lite. The system is comprised of a backbone network to extract 

crack features, a feature pyramid that combines crack features from different scales, and a 

YOLOv3 module to perform bounding box regression. In the backbone network, the 

authors use depth-wise separable convolutions, which is a form of factorized convolutions 

that reduces the number of multiplication operations and parameters of a standard 

convolution. Namely, depth-wise separable convolutions separate a standard convolution 

into two parts: a depth-wise convolution that applies a single filter to each channel of the 

input image, and a point-wise convolution that applies 1 × 1 convolutional filters to 

combine the channel outputs from the depth-wise convolution. The authors in [41] 

highlight a reduction in the number of computations by 8 to 9 times, compared to a standard 

convolution. A feature pyramid is then employed to capture crack feature maps at different 

scales, which are combined through concatenation of these feature maps using residual 

connections. Through concatenation, the fusion of lower-level features from large feature 

maps and higher-level semantic contextual features from small feature maps can effectively 

be achieved. Since smaller feature maps have a larger receptive field, larger cracks can be 

detected, whereas larger feature maps have a relatively smaller receptive field, making it 

possible to detect smaller, narrower cracks. The detection speed of YOLOv3-Lite is 50% 

faster than that of YOLOv3, while achieving an average precision close to that of YOLOv3. 

3.1.3 Semantic Segmentation 

Although object detection methods can localize the area of an object in an image, 

sometimes it is necessary to extract finer-level details about an object, such as its pose, 

shape, and spatial dimensions. Particularly with faults, it is advantageous to extract more 

detailed information about their width, height, and spread to better gauge their severity. 

Thus, pixel-wise segmentation of an image would be ideal to ascertain such details. In 

semantic segmentation, each pixel is assigned a class label. Fully convolutional networks 

(FCN) have been shown to be superior to other semantic segmentation approaches, in terms 

of performance and efficiency [42] [48] [49]. The output to an FCN that classifies each 

pixel as either a fault or background class is a segmented label map that annotates the 

classes of interest [29] [30] [31] [44] [48] [49] [53] [59].  
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Figure 7: Output of an FCN used for semantic segmentation of cracks 

To retrieve a label map, down-sampled feature maps are up-sampled to the matching spatial 

dimensions of the input image, with the number of output feature channels denoting the 

number of classes to be labelled. However, simply up-sampling from a down-sampled 

feature map that encodes high-level features results in a loss of finer details. As shown in 

[42], up-sampling by a stride factor of 32 from the final down-sampled feature map results 

in a very coarse output label map – this network is denoted FCN-32. To retrieve a finer, 

more detailed map, the feature maps from a shallower layer with lower-level details are 

fused with the deep, coarse up-sampled feature maps, similar to feature pyramids. The 

authors denote the copying of shallower layers as skip connections. In their 

implementation, a 1 × 1 convolution is applied to the feature map passed through each skip 

connection, before being fused with the corresponding up-sampled feature map through 

element-wise addition. The up-sampling layer increases the spatial dimensions of the 

feature map from the deeper layer by a factor of 2. Up-sampling is performed here through 

bilinear interpolation, which takes the distance-weighted average of the four nearest pixels 

to compute the resulting up-sampled pixel. The authors in [42] compare the fusion of the 

second-deepest layer with a final up-sampling layer of stride 16, denoted FCN-16, and the 

fusion of the third and second-deepest layers with a final up-sampling layer of stride 8, 
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denoted FCN-8. The results show progressively finer output maps, with FCN-8 achieving 

the best precision. 

 

Figure 8: Progressively finer output label maps [42] 

A well-known FCN-based network is SegNet [47]. This network consists of two main 

parts: an encoder that down-samples the feature maps at each step to gather greater context, 

and a decoder that reconstructs the segmented output image map through up-sampling 

layers. For each block in the encoder, there is a corresponding decoder block. The encoder 

consists of 13 convolutional layers from VGG-16. At the max-pooling step of each encoder 

block, the pooling indices are saved and passed to the corresponding decoder block via a 

skip connection, which is used to produce the sparse up-sampled feature maps. By passing 

the pooling indices instead of entire feature maps, the network memory is reduced. In [48], 

a SegNet-like network is proposed for segmentation and density evaluation in concrete 

surfaces. In [49], A pavement crack recognition system is developed using SegNet, in 

which the authors show its superior performance over FCN-8. 

Expanding upon the idea of skip connections, [43] proposes an FCN-based end-to-end 

architecture for biomedical image segmentation, called U-Net. Similar to SegNet, the 

architecture of U-Net consists of an encoder as the contracting path, and a symmetric 

decoding expansive path that enables precise localization of low-level features. Unlike 

SegNet, in the contracting path, before down-sampling, a skip connection passes the entire 

feature map from the current block to the corresponding level in the expansive path, where 
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it is concatenated with an up-sampled feature map. The up-sampling layer consists of a 

bilinear interpolation followed by a 2 × 2 convolution that halves the number of feature 

channels. At each block of the contracting path and corresponding expansive path 

following the up-sampling and concatenation, two VGGNet-inspired unpadded 3 × 3 

convolutions are applied. The U-Net architecture achieves very good performance for 

biomedical applications. U-Net has also been widely used for fault-based image 

segmentation, as it is able to perform segmentation precisely and efficiently.  

 

Figure 9: U-Net Architecture [43] 

In [29], the authors propose modifications to improve the performance of U-Net for defect 

segmentation. One improvement is the addition of residual blocks at each block of the 

contracting and expanding paths, based on the residual connections introduced in ResNet. 

Another improvement is the inclusion of dilated convolutions that expand the kernel size 

by skipping pixels in the receptive field. By applying dilation at different rates, multiscale 

context can be extracted.  
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Figure 10: 3 × 3 convolutions with different dilation rates: (a) – 1, (b) – 2, (c) – 4 

[29] 

The authors in [29] propose applying multiple dilated convolutions in the bottleneck layer 

of U-net, which connects the output of the contracting path with the input of the expansive 

path. Furthermore, the authors note that instead of applying these dilated convolutions in 

parallel, a waterfall scheme that reuses the output of one dilation convolution as input to 

the next dilation convolution can outperform the parallel approach for segmentation tasks. 

A final addition is an attention block applied before the concatenation of the skipped 

connection and up-sampled feature map at each level. The attention block is used to 

amplify relevant information from the previous up-sampled layer while reducing the 

impact of background features. Testing combinations of these modified architectures on 

three different crack-based datasets, it was found that networks with residual blocks and 

the dilated convolutions outperformed the base U-net on all datasets, whereas the waterfall-

based dilated approach and inclusion of attention block resulted in improved performance 

on one of the respective datasets. 

Another U-Net based approach for pavement crack segmentation is proposed in [44]. 

Similar to [29], residual blocks are used in the contracting path, using a pretrained ResNet-

34 network. In the expansive path, fire modules, introduced by the SqueezeNet architecture 

[50], are applied after concatenation. A fire module consists of a projection that decreases 

the feature space, and two parallel paths of different convolutional filter sizes to capture 

missing features from the previous layer, from which the outputs of each path are 

concatenated. Fire modules are very similar to the inception modules used in GoogLeNet. 
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Figure 11: A fire module used in Squeeze U-Net [45] 

Fire modules are shown to improve the performance of the base U-Net architecture. 

Moreover, fire modules reduce the number of parameters considerably compared to a 

standard convolution, making them useful for real-time applications where computational 

power is limited.  In [45], the authors propose a network called Squeeze U-Net that uses 

fire modules for efficient image segmentation. They are used in [46] to enable real-time 

segmentation for autonomous driving. 

3.2 Analysis of Drone-Based Inspection Solutions 

In this section, a review of the studies that use image processing methods for drone 

structural fault inspection is conducted. Given the prevalence of deep learning for SHM, 

only studies published from 2017 onwards that use deep learning for image-based fault 

identification are considered. Although other variants of deep learning on multimedia exist, 

such as Deep Belief Networks (DBN), Auto Encoders (AE), and Recurrent Neural 

Networks (RNN), CNNs are the only deep learning approach to be investigated as they are 

the most prevalent in recent studies, particularly for images [12].  The studies are analyzed 

based on several key criteria: 
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- Computational Constraints: Studies that propose reductions to the model size for 

deployment to computationally and memory constrained on-board companion 

computers 

- Real-Time Capability: Branching off computational constraints, whether the model 

is capable of real-time fault identification. 

- Fault Identification Method: Indicates whether classification (C), fault detection 

(D), or semantic segmentation (S) of faults was used. 

- Automated Drone Tracking: If tested on physical drones, it indicates whether the 

drone is automated to track around structures to some extent. 

- Obstacle Avoidance: Indicates whether obstacle avoidance is employed. 
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Table 1: Summary of 10 CNN Image-Based Drone Infrastructure Inspection Papers 

Published between 2017-2022 

Reference Computational 

Constraints 

Considered 

Real-Time 

Capability 

Fault 

Identification 

Method 

Automated 

Drone 

Tracking 

Obstacle 

Avoidance 

[17] x x C  

[51]  x S x x 

[52] x x C  

[53] x  S x x 

[54]   D x x 

[55] x x D + S x x 

[56] x x C x x 

[57] x x C + D x x 

[58]   C x x 

[59] x x S x 

According to Table 1, most drone-based solutions do not aim to reduce the complexity of 

their proposed models, with only 30% of the papers focusing on improvements for model 

efficiency on low-power drone-mountable devices. [54] and [58] leverage MobileNet, an 

efficient architecture designed specifically for mobile and embedded platforms [60]. The 

key behind the efficiency of MobileNet are depth-wise separable convolutions that replace 

standard convolutions. A variant of MobileNet designed for single-shot detection (SSD) of 

asphalt pavement distresses is used in [54] for real-time detection. MobileNet-V2, the next 

version of MobileNet, is used in [58] to enable on-board drone processing, while achieving 

high accuracy and real-time image processing at 7.4 FPS. 

Also, most studies focus on the automated post-processing of images once collected by a 

drone but require the drone to be manually operated or make no explicit comments as to 
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how the drone tracks around civil structures during inspection. In [17], a Hexacopter drone 

is used to collect close-up image of structures, as it is highly stable and enables precise 

control. The drone is equipped with state-of-the-art sensors, enabling autonomous flight 

with minimal human intervention. However, the degree of autonomy is unclear. 

Furthermore, for the crack detection aspect, transfer learning is used to speed up training 

and reuse previously learned weights of a VGG-16 network pre-trained on ImageNet. The 

aim is to make training accurate and fast, rather than reducing the inference time for real-

time applications. In [52], a simultaneous localization and mapping (SLAM) algorithm is 

used for autonomous navigation of a quadrotor drone in GPS-denied environments. 

Furthermore, a path revisit planning tool is integrated to revisit key points of the structure 

during inspection. The revisit planner takes in the output of a CNN that identifies cracks, 

to make informed decisions on potential crack points to revisit. However, there is a greater 

emphasis on providing real-time state estimation and obstacle avoidance for efficient 

autonomous drone navigation and less so on improving the efficiency of the crack detector. 

Moreover, the navigation system was only tested in indoor environments. 

In general, there is minimal work that has been done to maximize autonomy for drone flight 

and tracking while optimizing CNN-based fault assessment models for resource-

constrained, real-time applications. Many of the studies analyzed in chapter 3.1 look to 

reduce model complexity with the aim of achieving faster inference and a reduced memory 

footprint while approximating or achieving state-of-the-art performance. However, many 

of these studies validate and test their models with readily available datasets of pre-

processed fault images captured in desirable conditions from ideal distances, which may 

fail to generalize to real-world images captured by drones. Most of the drone-based 

solutions focus on the post-processing of images once collected. Realizing a fully 

autonomous drone that can track around structures without any manual intervention is 

important to reducing manual operational barriers and costs. Another important aspect is 

the reduction of the computational overhead on power-constrained on-board devices. By 

reducing the power required to run these deep learning algorithms, the drone can preserve 

greater battery life to achieve longer flight times for continuous inspection and achieve 

real-time fault identification, opening the possibility of real-time decision-making during 
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inspection. The proposed system aims to address these aspects, as discussed in the later 

chapters. 
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Chapter 4  

4 Proposed Autonomous Drone Inspection System 

In this chapter, the proposed fully autonomous drone-based structural inspection system is 

described. Namely, the components that drive the collection, communication, and 

processing of structural image data are explained at a high-level.  

4.1 High-Level Architecture 

The importance of a fully autonomous inspection system has been made apparent in the 

previous chapters. In light of the shortcomings of current drone inspection systems, the 

proposed system looks to address several key areas. 

 

Figure 12: High-Level Proposed System Architecture 
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4.1.1 Autonomous Infrastructure Tracking 

Fully automating drone navigation for infrastructure tracking is one key area the proposed 

system aims to address. To accomplish this, the drone is equipped with time-of-flight (ToF) 

ranging sensors, each one facing a certain direction (up, down, left, right, forward, back). 

A ToF sensor is a form of contact sensor that uses stimulated emission of electromagnetic 

radiation (laser) technology to perform distance calculations to objects, based on the time 

required to receive the reflected signal. Using these distance readings, the drone can 

determine its proximity to a given structure, enabling obstacle avoidance and exterior 

structural wall tracking. The downward-facing ToF sensor is particularly important to 

determining the drone’s vertical height. Besides a downward-facing ToF sensor, a 

downward-facing camera can detect and measure the horizontal motion of surfaces as the 

drone navigates, enabling the drone to travel to desired setpoints. The ToF sensor distance 

readings, as well as the drone’s position estimated by the flight controller, are sent to the 

tracking module running on the companion computer, from which it can determine 

setpoints to track along. Thus, the drone can be deployed from a station close to the 

structure of interest for regular autonomous inspection. Once the drone approaches the 

structure, several courses of action could happen: 

- If the forward sensing ToF sensor on the drone detects that it is within a distance D 

≤ the distance threshold T of the structure, the drone will begin to track along it to 

the right.  

 

- When the forward sensing ToF sensor detects that D > T, the drone will move 

forward into the open space.  

 

- If the left-sensing ToF sensor on the drone detects that D ≤ T of the structure, the 

drone will rotate counter-clockwise by angle 𝜃 to face the wall, then track right 

along it. 
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- If the left and forward sensing ToF sensors detect that the drone is in a corner, and 

is within the threshold distance of the structure, the drone will rotate clockwise by 

angle 𝜃 to face the next wall, then track right along it. 

 

- Once the drone detects a loop closure, such that it has completed the inspection 

around the entire structure, it will return to the base station.  

In achieving this autonomous navigation, several assumptions are made: 

- The GPS location of the structure is known, and the drone can travel to the GPS-

specified location accordingly. 

 

- During inspection, any obstacles near the structure, such as trees or telephone poles, 

can be avoided and disregarded for post-processing of the collected imagery. 

 

- Rotation angle 𝜃 = 90o, as tests are conducted on straight-edged structural walls 

that orthogonally intersect each other. 

 

- No loss of data during transmission to and from the drone. 

4.1.2 Image Processing 

As the drone navigates around the structure, it captures grayscale images in real-time. 

Mounted onto the drone is a front-facing camera capturing the images, which are sent to 

the processing unit on the companion computer. The companion computer is pre-loaded 

with a CNN-based model that can process and segment faults from images in real-time. 

Once processed and segmented, points corresponding to predicted fault pixels are extracted 

and mapped to the x, y coordinate system, from which they are sent to the exterior wall 

tracking module on the companion computer. If a sufficient number of fault points are sent 

to the tracking module, a subroutine is invoked to track along the detected fault in real-

time. This real-time dynamic tracking is important to determining the spread of a fault 

along certain areas of the structure without having to revisit such areas, saving drone flight 
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time and valuable battery life. Furthermore, a live stream of the fault-annotated images is 

sent via Wi-Fi to a client, for real-time visualization purposes. 

4.2 System Design Choices 

4.2.1 Drone Communication 

Communication between the flight controller and companion computer is two-way. From 

the flight controller, estimated drone position and sensor readings are sent to the companion 

computer, and the companion computer uses this data to send back trajectory setpoints for 

the drone to travel along. In the proposed system, this communication can be done either 

UART, a serial hardware communication protocol, or via radio transmission. The images 

taken from the camera mounted to the drone are also sent to the companion computer, 

either via UART or Wi-Fi. On the hardware platform developed upon, the UART 

communication is limited in that only single characters can be sent at a time [61]. Thus, the 

proposed system uses radio transmission for communicating with the flight controller and 

Wi-Fi to stream images to the companion computer for processing. This image 

transmission approach via Wi-Fi is viable, given that the drone has its own access point 

(AP), to which the companion computer – with networking capabilities – in its proximity 

can connect to. In this setup, it is assumed that there is no loss in data as images are sent 

over Wi-Fi. 

4.2.2 Inter-Module Communication 

To facilitate communication between the modules running on the companion computer, a 

publisher-subscriber scheme is adopted. Each module has a node that either exchanges or 

receives messages over named buses called topics. Nodes that send data at a fixed rate to 

topics are called publishers, whereas nodes that subscribe to topics to receive messages 

sent by publishers are called subscribers. A node can publish data to multiple topics and 

can also have subscriptions to multiple topics, enabling one-to-many, many-to-many, and 

many-to-many communication [62]. The data message type can also be customized to 

better fit the needs of the application and reduce processing effort in packing and unpacking 

such messages. Moreover, data of any size can be sent at once, unlike socket connections 
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which fragment large data into smaller network packets. The publisher-subscriber scheme 

is important in the proposed system, as it enables continuous publishing of fault points 

from the image processing module to subscribing nodes that pass these fault points to the 

tracking module. Adopting this communication model allows the modules to run 

simultaneously as separate processes, rather than sequentially being invoked. 

4.3 Development Platforms 

ROS: The inspection system is built upon the Robotics Operating System (ROS), providing 

a set of tools and libraries for embedded development. ROS enables access and control of 

messages between nodes that operate a robotic system [78]. In the case of the proposed 

drone inspection system, ROS is used to facilitate the communication between different 

modules by providing a programmable interface for creating nodes – executable processes 

– that communicate with each other through publisher and subscriber topics over the ROS 

graph. ROS also provides predefined message types that are wrappers for ROS data types 

that can be sent to topics. In the proposed system, extracted points from the image 

processing module are passed to a publishing node, which publishes the points to a topic t 

that accepts a custom-built message type consisting of a list of points. Each point is defined 

as a Point type provided by the ROS geometry_msgs package, which contains wrappers for 

geometric primitive types such as points, vectors, and poses. On the other end, the tracking 

module then receives this list of points through a ROS subscriber node that subscribes to 

the custom Point list messages from t. 

Crazyflie: The Crazyflie 2.1 is a miniature quadcopter developed by Bitcraze and is used 

to prototype the proposed system. The Crazyflie comes in a ready-to-built kit, including 

four 7 mm coreless DC-motors which can lift up to 42 g, including the weight of the 

Crazyflie itself without additional mounted hardware (27 g). The Crazyflie 2.X hardware 

platform is built on top of two microprocessors: an STM32F405 that handles all low-level 

and high-level flight control, including sensor reading, motor control, and telemetry, and 

an NRF51822 that handles radio communication and power management. The Crazyflie 

2.1 is also equipped with a built-in inertial measurement unit (IMU) with 10 degrees-of-

freedom. Furthermore, expansion decks can be mounted onto an expansion port to provide 
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enhanced capabilities in terms of sensing and positioning. The expansion decks 

communicate with the STM32F405 microprocessor over an expansion bus, which exposes 

communication buses and GPIO pins [79][80].  

 

Figure 13: The Crazyflie 2.X system architecture [80] 

For the proposed system’s use-case, the expansion decks used include the following: 

- Flow deck v2: Provides the Crazyflie with the ability to navigate by sensing both 

vertical motion through a VL53L1x ToF sensor that can measure vertical distances 

up to 4 m with mm precision, and horizontal motion through a PMW3901 optical 

flow sensor that measures horizontal movements in the x, y coordinate space, 

relative to the starting position [81].   

- Multi-ranger deck: Gives the Crazyflie the ability to sense surrounding objects 

through VL53L1x ToF sensors pointing in five directions: front, back, left, right, 

and up. This deck enables obstacle avoidance for the proposed system [81]. 

- AI-deck: Capable of performing artificial intelligence-based workloads. It also 

consists of a Wi-Fi module and provides a Wi-Fi AP to stream images captured by 

an ultra-low power 320 × 320 Himax HM01B0 grayscale camera attached to the 
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AI-deck. However, given the constrained size and capabilities of the low power AI-

deck processor and the limited UART communication between the AI-deck 

processor and the STM32F405 microprocessor on the Crazyflie [61], the image 

stream from the Himax HM01B0 camera is sent to an external device for 

processing. Also, due to the limited range of the access point on the AI-deck, this 

external device must be in close proximity, as stated in section 4.2.1. Thus, a larger, 

more powerful, yet portable edge device, that could viably be repurposed as a 

companion computer performing deep artificial intelligence operations on larger 

scale quadcopters is used in this study. 

        

Figure 14: AI-deck system architecture [61] 

From the software point-of-view, Bitcraze also provides a programmable interface to 

control the drone. Specifically, the Bitcraze client library, developed in the Python 

programming language, is leveraged to interface with drone commands for controlling the 

drone via radio transmission; the base commander [82] is used to send target setpoints for 

the x, y, z coordinates and drone rotation (yaw). The target setpoint is then sent as a packet 

to the Crazyflie via radio transmission using a packet protocol called Crazy Realtime 

Protocol (CRTP), designed to optimize packet prioritization enabling real-time control of 

the Crazyflie drone [83].  
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Jetson Nano: The Nvidia Jetson Nano Developer Kit is an embedded system-on-a-

module, which is used as the companion computer in the prototype setup. It includes an 

integrated 128-core GPU, important for performing deep learning operations. Since the 

Jetson Nano is too large to be mounted onto a Crazyflie quadcopter, it is stationed near it, 

such that it is within range of the AP on the AI-deck. 
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Chapter 5  

5 Drone Tracking Method 

In this chapter, the algorithmic approaches used for autonomous drone tracking, as well as 

the experimental results of the approach for structural fault tracking are described in detail. 

5.1 Structural Tracking 

While tracking around a structure, the drone can perform rotations, horizontal, and vertical 

movements. The drone is framed within the global coordinate system, where its position 

can be described by three degrees of freedom corresponding to the translational movements 

along the x, y and z axes; and its rotation can be described by one degree of freedom around 

the z axis. The drone also has its own its frame of reference in 3D space, based on its 

orientation, denoted as the body coordinate system. Affine transformations in 3D space 

enable the manipulation of 3D objects by altering their position and orientation. A 3D 

affine transformation can be expressed in matrix form as: 

𝑀 = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

0 0 0 1

] 

That is, a position point 𝑃 =  (𝑥, 𝑦, 𝑧)𝑇 can be transformed into position point 𝑃’ =

 (𝑥’, 𝑦’, 𝑧’)𝑇  with matrix M by applying matrix multiplication as 𝑃’ =  𝑀𝑃. M can be 

expressed with a translation matrix as: 

𝑇 = [

1 0 0 𝑥′ − 𝑥
0 1 0 𝑦′ − 𝑦

0 0 1 𝑧′ − 𝑧
0 0 0 1

] 

M can also be expressed with a rotation matrix. Rotation around the z-axis can be expressed 

as follows, with 𝜃 denoting the angle of rotation: 
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𝑅 = [

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 − cos 𝜃 0 0

0 0 1 0
0 0 0 1

] 

This rotation matrix can be used to rotate P around the origin. However, being able to rotate 

around any arbitrary point in 3D space is necessary for transforming the drone’s current 

position and orientation. To rotate P around a point C instead of the origin, C must first be 

translated to the origin of the global coordinate system before the rotation is applied. After 

performing the rotation, C is then translated back to where it was originally: 

𝑃′ =  𝑇(𝐶) 𝑅(𝜃) 𝑇(−𝐶)  

The goal is to rotate P to P’, to make the drone move in an opposing direction or update 

the axes of the body coordinate system when it yaws (rotation around the z-axis) by a 

certain angle. By letting P be the next setpoint without any transformation applied, with C 

being the current estimated drone position, the initial direction vector 𝑟 = 

(𝑃. 𝑥 –  𝐶. 𝑥, 𝑃. 𝑦 –  𝐶. 𝑦, 𝑃. 𝑧 –  𝐶. 𝑧)𝑇  is rotated to get a new direction vector 𝑠  =

 (𝑃’. 𝑥 –  𝐶. 𝑥, 𝑃’. 𝑦 –  𝐶. 𝑦, 𝑃’. 𝑧 –  𝐶. 𝑧)𝑇   that the drone travels along when instructed to 

change its direction of motion. The same approach is used to rotate the axes of the body 

coordinate system after yawing, such that subsequent direction commands would alter the 

drone’s direction of motion according to its own coordinate system. Both scenarios are 

illustrated in Figure 15 below. 

 

Figure 15: (a) Changing the drone direction of motion; (b) rotating the drone 
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5.2 Fault Tracking 

When a fault is identified in real-time, the aim is to have drone react accordingly to follow 

along it. The direction of the fault spread can be determined given the extracted fault points. 

The direction can simply be defined by a linear model that best fits the fault points. Several 

methods exist for determining the best fitting linear model: Least Squares line fitting to 

minimize the sum of squared residuals between the predicted line and actual data points, 

and Principal Component Analysis (PCA), which determines the dimensions that 

contribute the most to the variance of the data. However, these approaches are sensitive to 

outliers. A more robust line fitting method that takes into the consideration the outliers is 

called Random Sample Consensus (RANSAC). The RANSAC algorithm takes in a dataset 

to find an optimal fitting result amongst the data points, by excluding outliers to find a 

linear model based upon the inliers. RANSAC uses a voting scheme to iteratively select 

the minimal set of random data points to fit the candidate model, forming a consensus set. 

This iterative process continues until a sufficiently high probability that all sampled points 

are inliers is satisfied. The number of iterations k required depends on several parameters: 

the determined outlier ratio e of the dataset, the probability p of sampling only inliers in all 

k iterations, and n minimum number of sampled data points required to estimate the model 

parameters. Hence, the inlier ratio is 1 − 𝑒; this means the probability of sampling only 

inliers in a single iteration is (1 − 𝑒)𝑛, whereas the opposite probability of sampling at 

least one outlier is 1 −  (1 − 𝑒)𝑛. Furthermore, the probability of sampling at least one 

outlier in all k iterations is (1 −  (1 − 𝑒)𝑛)𝑘, such that probability 1 − 𝑝 of sampling at 

least one outlier in each of the iterations can be formalized as 1 − 𝑝 =  (1 −  (1 − 𝑒)𝑛)𝑘. 

Rearranging for k results in the following equation: 

𝑘 =
log(1 − 𝑝)

log(1 − (1 − 𝑒)𝑛)𝑘
 

After k iterations, the model with the most inlier points within a defined threshold distance 

t is chosen as the best fitting model.  
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RANSAC is used in the proposed solution to determine the slope of the line corresponding 

to the estimated direction of the fault in 2D space. In each iteration, two points are sampled 

as the minimum inlier set for estimating the model parameters. Although RANSAC is 

robust to outliers, it can be expensive, due to the number of points and the number of 

iterations, particularly when the outlier ratio is high. Hence, to reduce the number of points 

that need to be considered in each iteration, the 2D point space is spatially divided into 

voxels and hierarchically stored into a quadtree. In a quadtree, each voxel is represented 

conceptually as a node in the tree, where each node has a defined capacity of points and 

four children nodes. If the capacity of a voxel V is exceeded, the points are split amongst 

four sub-voxels, represented conceptually as children of the node for V.  
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Figure 16: Spatial representation (top) and conceptual representation (bottom) of 

quadtrees [84] 

Inspired by the approach in [65], all extracted fault points from each image frame are 

inserted into a quadtree. Once the capacity of the node is exceeded, the points in the parent 

node are passed into the corresponding children node, based on where their boundaries fall 

spatially in 2D space. As such, once all points are inserted, only the leaf nodes of the 

quadtree contain points.  Then, a candidate line model is recursively generated using 

RANSAC and intersected with the quadtree’s leaf nodes to determine which nodes 

intersect with the line – only points within these nodes are considered for determining 

inliers to the model. Namely, points within a threshold distance t of the generated candidate 

line intersecting the leaf nodes containing these points are considered inliers. As a result, 

only points within these intersection leaf nodes are considered, rather than the entire point 

set, resulting in a reduction of the time complexity for point-to-line comparisons to a 

logarithmic factor of the number of points. Euclidean distance is used to define the distance 

between a point p on the candidate line and a fault point q in n-dimensional space, where 

𝑛 =  2 in this case:  

𝑑(𝑝, 𝑞) =  √∑(𝑞𝑖 −  𝑝𝑖)2

𝑛

𝑖=1
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Figure 17: Top left – Point set. Top right – a generated candidate line intersecting a 

quadtree (represented as voxels), with the dashed lines representing the inlier 

threshold. Bottom Left and Right – the complete quadtree, approximating the 

density of the points [65] 

Another improvement proposed for a more efficient RANSAC approach is a smart-

sampling approach that takes advantage of the hierarchical nature of the quadtree to reduce 

the randomness of the minimum inlier sampling process. Namely, instead of sampling two 

random points from the 2D model space, an initial point is randomly sampled, and a 

subsequent point in relative proximity to that point is sampled. First, a randomly selected 

neighbouring leaf node to that from which the first point was sampled is checked for any 

points. If enough points exist, a random point from that neighbour is chosen as the 

subsequent point. Otherwise, the next randomly neighbouring leaf node is checked. If all 

the neighbouring leaf nodes – children to the current parent – have been visited and none 

of them contain enough points, the quadtree is recursed upwards, and the grandchild leaves 

that have not already been visited are checked. By sampling two points that are relatively 

close to each other, there may be a greater probability that these two points represent a 

coherent model, rather than two randomly sampled points, thus a greater probability that a 

more optimal solution can be reached within k iterations. As shown in [86], carefully 
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selecting samples in close proximity to each other reduces the number of iterations required 

to detect a shape with a certain probability. However, points that are too close to each other, 

or in other words, within the same node may lead to spurious model estimations. Hence, 

points from the same leaf node are not selected, unless no other nodes contain enough 

points. To prevent selection of points in a sparsely populated node that are unlikely to 

model the dataset, only nodes with a cardinality greater than or equal to half the node 

capacity are chosen. 
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Although the modified RANSAC algorithm is tailored to find the general slope of the fault 

direction, it is still indeterminant whether the drone should travel up or down along this 

slope. Hence, the spread of the fault points mapped to the x, y coordinate system is 

determined, such that more fault points in the upper half of the view frame signals the drone 

to travel upwards at the predetermined slope; and conversely, more points in the lower half 

signals the drone to travel downwards at the predetermined slope when the drone is within 

a threshold distance 𝐷 ≤ 𝑇 of the structural wall. Given that the drone may travel in one 

direction initially, and then travel back along with opposite direction once the endpoint of 

a fault is reached, a loop closure detector is included to determine if the drone returns to 

the initial position where it first detected the fault; once reached, the drone will stop 

tracking along the fault and continue its default tracking around the structure. 

 

Figure 18: Mapping extracted fault points to x, y coordinate view frame: (a) more 

points in the mapped to the upper half of the view frame; (b) more points in the 

mapped to the lower half of the view frame; (c) loop closure detected 

5.3 Evaluation Criteria 

To evaluate the performance of modified RANSAC algorithm, the mean squared error 

(MSE) metric is used, which calculates the average of the squared differences between the 

predicted values and actual values. MSE is calculated as follows: 

1

𝑛
 ∑ (𝑌𝑖 − 𝑌̂𝑖

𝑛

𝑖=0
)2 
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Where n is the number of data points, 𝑌𝑖 are the actual values, and 𝑌̂𝑖 are the predicted 

values. MSE always results in a positive error value, and is a standard metric for evaluating 

the loss, particularly for determining how well a line fits a set of data points. However, 

since MSE is a squared loss function, it penalizes large errors more heavily. Since large 

errors are particularly undesirable for estimating the line of best fit produced by RANSAC 

on the inlier points, MSE is useful for this purpose. 

Also evaluated is the running time to determine the efficiency of the modified RANSAC 

algorithm and its viability for real-time performance. 

5.4 Experimental Results 

Test Setup and Parameters: The original (baseline) and modified RANSAC algorithms are 

tested and compared on a system with 13 GB of RAM and an Intel Xeon CPU at 2.20 GHz. 

Several user-defined parameters values are chosen based on empirical testing. Namely, in 

performing RANSAC, an inlier threshold of 10 is set, and a probability of selecting only 

inliers in all iterations is set to 0.9999. The outlier ratio is determined programmatically, 

based on the spread of each data point in relation to the mean, determined by the z-score: 

𝑍 =
(𝑥 −  µ)

𝜎
 

Where x is the observed value, µ is the mean of all observations, and 𝜎 is the standard 

deviation of all observations. The user-defined condition for an observed data point 

belonging to the inlier set is if -2 < z-score < 2; otherwise, the observation is considered an 

outlier. Also, for initializing the quadtree used in the modified RANSAC algorithm, each 

node in the quadtree is set with a capacity of 1/10 the total number of points.  

Study One: The line fitting performance of the baseline and proposed modified RANSAC 

algorithms are evaluated in this study. The MSE of the resulting line of best fit on the inlier 

set outputted by RANSAC is determined at varying distributions of the data defined by σ. 

At each σ value, RANSAC is run 100 times to ensure reliability in the results and tested 

upon points that form a line, with random Gaussian noise introduced. As shown in Figure 

19 below, the MSE for both the baseline and modified RANSAC increases as σ increases, 
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as expected. However, as σ approaches larger values, the MSE of the baseline begins to 

increase more quickly relative to the modified RANSAC.  

 

Figure 19: The MSE between the resulting line of best fits and corresponding inliers 

at different standard deviations of the data 

Study Two: In this study, the predicted slopes of the outputted RANSAC models are 

compared to the actual slope. MSE is used to measure the sum of squared differences 

between the predicted slope value and a user-defined target slope value at different values 

of σ. As in study one, at each σ, RANSAC is run 100 times and tested upon points that 

form a line, with random Gaussian noise introduced. As shown in Figure 20 below, the 

MSE of the modified RANSAC is generally lower than that of the baseline, with the 

exceptions occurring at σ = 10, σ = 15, and σ = 30. 
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Figure 20: The MSE between the predicted slopes and actual slopes at different 

standard deviations of the data 

Study Three: In this study, the running times of the baseline and modified RANSAC 

algorithms are compared. Investigated is the impact on the running time as a) the number 

of total points in the sample varies and b) the value of σ impacting the sample distribution 

varies. Thus, RANSAC is run at varying samples sizes, where at each size, it is run 10 

times to ensure enough reliability in the results. For each of the 10 runs, the average running 

time is used. In Figure 21 below, when σ = 10, as the number of points in the sample 

increases, the running time of the modified RANSAC increases more quickly than that of 

the baseline. This is due to the overhead in rebuilding the quadtree for each RANSAC 

innovation when a new data sample is introduced (each frame). However, in Figures 22 

and 23 below, when σ = 20 and σ = 40 respectively, the running time of the modified 

RANSAC grows less quickly relative to the baseline as the number of points increases. 

This is likely because the greater spread of the data imposed by a larger σ increases the 

outlier ratio, which in turn increases the number of iterations in each invocation of the 

RANSAC algorithm; increased iterations means more points that need to compared to the 

candidate line, and since the modified version reduces the point-to-candidate line 

comparisons, this reduction overrides the overhead in reconstructing the quadtree when the 

sample size is large (>= 10,000). Although fault points extracted in a single image frame 

may be small in comparison to the total pixels in a frame, higher resolution frames where 



54 

 

 

 

faults only account for 5-10% of pixels can still easily produce 10,000 or more points, 

making the modified algorithm a viable approach for near real-time fault tracking, even 

when the number of fault points is large, reaching a maximum of 0.6 seconds processing 

time on a sample of 10,000 points with σ = 40. However, further optimizations in 

initializing and constructing the quadtree may result in further decreased running times. 

 

Figure 21: The relationship between the number of points and the running time 

when σ = 10 

 

Figure 22: The relationship between the number of points and the running time 

when σ = 20 
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Figure 23: The relationship between the number of points and the running time 

when σ = 40 

Study Four: Also investigated is the visual performance of the modified RANSAC 

algorithm, on simulated data points with Gaussian noise and actual crack points with noise 

introduced. As shown in Figure 24 below, modified RANSAC is robust to outliers, as it 

can still pick out the points best representing a linear relationship in the data amongst noise. 

 

Figure 24: Performance of the modified RANSAC algorithm on detection of a line 

with Gaussian noise (left) and on detection of points associated to a crack (right) 
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Chapter 6 

6 Pixel-wise Fault Segmentation 

In this chapter, a semantic segmentation model for pixel-wise image fault segmentation is 

proposed. Pixel-wise segmentation enables more precise tracking of faults along structural 

exteriors. The aim is to reduce the number of parameters and convolutional operations for 

real-time, low-power operation on edge devices, while achieving at or above a benchmark 

level of performance. U-Net is used as the base architecture for the proposed model, given 

that it is designed specifically for semantic segmentation tasks and is known for its ability 

to extract cracks precisely and efficiently at the pixel level. The proposed model is 

modified, in which the modified versions are compared in terms of several key metrics to 

determine which modifications most affect performance and inference speed on edge 

devices. 

6.1 Analysis of Architectures Designed for Efficiency and 
Performance 

The proposed model architecture uses some of the design choices employed by several key 

architectures that focus on efficiency through reduced network latency during inference as 

well as increased performance through spatial and feature attention. These networks are 

chosen due to their popularity and efficient performance. 

6.1.1 Efficient Neural Network (ENet) 

In [63], a novel CNN architecture named ENet (efficient neural network) is proposed for 

low latency operations in mobile applications. This architecture employs an encoder-

decoder scheme similar to U-Net and SegNet. Namely, an input image is passed into an 

initial block, which performs a 3 × 3 convolution with stride 2 in parallel with max pooling, 

with the respective results concatenated. The rest of the network consists of bottleneck 

blocks (inspired by ResNet), which perform a single 3 × 3 convolution on projected lower-

dimensionality feature maps on an extension branch in parallel with max pooling on the 

main branch when down-sampling (or 2 × 2 transpose convolutions with stride 2 when up-

sampling), with the respective results summed. 
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Figure 25: (a) ENet initial block; (b) ENet down-sampling bottleneck block [63] 

The authors note several key design choices to improve the efficiency and performance of 

ENet, based on experimental results and intuition:  

- Reduced Down-sampling: Although down-sampling is important to gathering 

greater context from reduced feature map resolutions, heavy down-sampling can 

lead to loss of spatial information, such as edge shape – this can be detrimental to 

detecting fault edges, particularly those belonging to cracks. Also, strong down-

sampling requires equally strong up-sampling, which increases the model size and 

computations. Thus, the authors aim to limit down-sampling, and aim to garner 

greater context from down-sampled feature maps through dilated convolutions. 

 

- Early Down-sampling: Processing large input feature maps early in the network is 

expensive. Visual information is highly spatial redundant and can be reduced into 

a compressed feature map for classification purposes. In ENet, the first two blocks 

focus on down-sampling with minimal feature maps produced. 

 

- Saving Max Pooling Indices: As proposed in SegNet, the indices of the max pooling 

are saved and passed to the corresponding decoder block, reducing the memory 

requirements compared to copying the entire feature map. 
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- Parallel Convolution and Pooling: The authors in [63] note that pooling after a 

convolution is computationally expensive. By performing the pooling in parallel 

with the convolution and concatenating the resulting feature maps, a 10-fold speed-

up of the inference time of the initial block was achieved.  

 

- Projection: In each bottleneck block, projection reduces the dimensionality of the 

feature maps before a convolutional filter is applied, greatly reducing the number 

of the parameters and convolutional operations. 

 

- Factorizing Filters: In addition to dilated convolutions, asymmetric convolutions 

decompose an n × n convolution into two smaller convolutions of 1 × n and n × 1 

size. The authors use asymmetric convolutions with n = 5, noting that the cost of 5 

× 1 and 1 × 5 together are similar to that of a single 3 × 3 convolution. This enables 

increasing the receptive field of the filter without significant additional 

computational cost. 

6.1.2 Squeeze-and-Excitation Networks 

Being able to highlight meaningful features and spatial regions across input channels while 

suppressing less relevant ones can allow CNNs to better focus on salient properties. In 

accordance with this notion, Squeeze-and-Excitation networks are introduced in [66], 

which consist of Squeeze-and-Excitation (SE) blocks that act as an attention mechanism to 

adaptively reweight feature map responses across the channel space. The SE block 

squeezes spatially to aggregate all feature maps across their spatial dimension and excites 

the squeezed tensor along the channel dimension to produce a set of per-channel weights, 

also known as a spatial squeeze and channel excitation block (cSE). Formally speaking, 

this involves taking a feature map tensor U as input, where U ϵ ℝN x C x H x W, with N 

representing the batch size, H and W representing the feature map spatial resolution and C 

representing the channel space. Performing a squeeze operation reduces U to Û ϵ ℝN x C x 1 

x 1 through a global average pooling layer, before it is passed into an excitation module 

consisting of a multi-layer perceptron bottleneck, followed by a sigmoid activation 

function applied to the output tensor to rescale the activations to [0, 1]. The resulting tensor 
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ÛcSE consisting of the recalibrated per-channel weights is then element-wise multiplied 

with the original U. By performing the squeeze operation, this ensures lower computational 

complexity compared to computing the per-channel weights over the full tensor and 

encapsulates information from the entire spatial receptive field in computing each 

reweighted feature map c of U. Moreover, SE blocks are relatively simple in structure, and 

thus can be easily used in existing architectures, adding only a slight increase in model 

complexity and computational cost. In the case of FCNs, applying SE blocks as an attention 

mechanism at the skip connections can suppress irrelevant regions and poor feature 

representation [66]. 

 

Figure 26: An cSE block, the conventional SE block [67] 

Variations of the traditional cSE block have also been proposed. A channel squeeze and 

spatial excitation block (sSE) reduces the feature map tensor by applying a squeeze 

operation over the channel dimension and exciting over the spatial dimension, to highlight 

more relevant spatial locations and suppress irrelevant ones. This involves taking U as 

input, where U ϵ ℝN x C x H x W and performing a squeeze operation to reduce U to U ϵ ℝN x 1 

x H x W, by applying a 1 × 1 convolution to project the number of channels C to 1. Each 

value of the projected tensor represents a linear combination of the representation of C for 

a spatial location (i, j).  Next, a sigmoid activation function is applied to the reduced tensor. 

The resulting tensor ÛsSE consisting of the recalibrated spatial weights is then element-wise 

multiplied with the original U, where each value in ÛsSE corresponds to a weight of the 

importance of a spatial location [67]. 
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Figure 27: An sSE block [67] 

Another variation of the cSE block involves a combination of cSE and sSE, which 

concurrently reweights both the spatial and channel-wise feature map responses through 

concurrent spatial and channel squeeze and channel excitation (scSE). Taking U as input, 

where U ϵ ℝN x C x H x W, U is passed in parallel through to an cSE and sSE block, where the 

resulting tensors ÛcSE and ÛsSE
 are element-wise summed to produce ÛscSE. The scSE block 

more heavily reweights a location (i, j, c) in U where there is a higher activation response 

denoting a location of high relevance [67].  

 

Figure 28: An scSE block [67] 

To determine the complexity (in terms of the number of parameters) of an FCN consisting 

of scSE blocks within encoder-decoder blocks, consider an output feature map of C 

channels. An cSE block introduces C2 weights and an sSE block introduces C weights. So, 

the model complexity with n encoder-decoder blocks is: 
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2 +  𝐶𝑖)

𝑛

𝑖=1

 

Where Ci is the number of output channels for the ith encoder/decoder block [67]. Based 

on experiments conducted in [67], the scSE block increases the number of parameters by 

1.5%, which is a small increase to the overall network complexity. 

6.1.3 MobileNets 

In [60], MobileNets are introduced as a class of efficient models designed for embedded 

deep learning applications on mobile and edge devices. The main contributions in [60] are 

the use of depth-wise separable convolutions replacing each standard convolution layer in 

the network, and the introduction of hyperparameters that present a tradeoff between the 

model latency, size, and accuracy: a width multiplier α that reduces the number of channels 

in each layer and a resolution multiplier ρ that reduces the input image resolution and every 

subsequent feature map resolution.  

In [68], MobileNetV2 is proposed as an improvement to the original MobileNets, which 

introduces inverted residual blocks with depth-wise separable convolutions and linear 

bottlenecks. A conventional bottleneck block first reduces the channel dimension of the 

input tensor of size N × C × H × W by a factor of s, through a 1 × 1 projection, resulting 

in a tensor of size N × 
𝐶

𝑠
 × H × W. Next, a 3 × 3 convolution is applied to the reduced 

tensor, before it is projected back to the original size through another 1 × 1 convolution. 

In MobileNetV2, the 3 × 3 convolution is replaced with a depth-wise separable 

convolution in all bottleneck layers (excluding the initial layer). The bottleneck layers are 

inverted, such that the dimensionality of the input tensor is first increased by a factor s 

through a 1 × 1 projection, resulting in a tensor of size N × sC × H × W, before being 

decreased back to the original size N × C × H × W. When down-sampling, a stride of 2 is 

used instead of pooling. Furthermore, a shortcut residual connection is conditionally added 

to perform element-wise addition between the input feature map and outputted bottleneck 

feature map – residual connections are omitted when down-sampling, as the 3 × 3 depth-
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wise separable convolution performs a stride of 2. The inverted bottleneck layers and the 

shortcut residual connection make up the inverted residual block.  

 

Figure 29: The architecture of (a) a residual block and (b) an inverted residual 

block [68] 

The importance of using these shortcut residual connections stems from the vanishing 

gradient and degradation problems addressed in ResNet, and the fact that the bottlenecks 

contain the necessary information needed to be saved and passed to the next block. As 

shown in Figure 30  below, the shortcut between bottlenecks results in the highest accuracy 

and fewest operations. 

 

Figure 30: The impact of the inclusion and location of shortcut residual connections 

on the accuracy and number of operations [68] 

The inverted residual block also uses considerably less memory than the conventional 

residual block. This is due to the inverted design, the shortcut residual connection between 

the bottlenecks, and the depth-wise separable convolutions; the total memory usage would 
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be dominated by the size of the bottleneck tensors, given that the expansive part consists 

of a memory-inexpensive depth-wise separable convolution. They are inexpensive because 

the depth-wise convolution part is performed on a per-channel basis of an inner tensor L, 

enabling L to be represented as a channel-wise concatenation of t intermediate tensors. If 

L consists of n channels, then each of the t tensors is of channel size 𝑛/𝑡. Given the 

constraint that only one intermediate block of size 𝑛/𝑡 is always required in memory, and 

that a depth-wise convolution operates independently on single channels, this means n = t, 

such that only 1 channel is required to be kept in memory. 

Linear bottlenecks are also introduced in MobileNetV2, wherein the non-linear activation 

function applied after the last convolution of the residual block is replaced with a linear 

activation function. Experimental evidence shows that non-linear activation functions, 

such as ReLU, can result in information loss as values less than 0 get discarded. Reducing 

the feature space from a higher to lower dimension, as does the final convolution of the 

inverted residual block, while applying a non-linear activation function, discards a 

significant amount of information. Hence, a linear transformation that preserves non-zero 

values is applied after the final convolution instead. As shown in Figure 31 below, not only 

does a linear bottleneck result in better accuracy, but also fewer operations. 

 

Figure 31: The impact of non-linearity on the accuracy and number of operations 

[68] 
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6.1.4 EfficientNets 

A family of models, called EfficientNets, is introduced in [69]. The authors study the impact 

of uniformly scaling the network depth, width, and image resolution, and apply this scaling 

method to obtain the EfficientNet models. The depth refers to a coefficient of the number 

of layers at each stage of the network, whereas the width denotes a coefficient of the 

number of channels produced by each convolution. By carefully balancing these 

hyperparameters using a compound scaling coefficient, better performance is achieved. 

EfficientNets showed improved accuracy and efficiency compared to state-of-the-art 

CNNs. The EfficientNet architecture makes use of the inverted residuals introduced in 

MobileNetV2 – denoted as the mobile inverted bottleneck MBConv block – with the 

addition of an SE block as an optimization step performed after the depth-wise convolution 

and prior to the point-wise convolution. 

In [70], EfficientNetV2 is introduced as a new family of models that uses neural architecture 

search (NAS) to optimize training and parameter efficiency through non-uniform scaling. 

Furthermore, progressively resizing images and adaptively adjusting regularization during 

training resulted in improved training speeds and accuracy. Namely, an 11-fold increase in 

the training speed and up to 6.8x better parameter efficiency was reported on various 

datasets, including ImageNet. EfficientNetV2 also uses MBConv blocks. However, in 

earlier stages of the network, depth-wise convolutions are found to be slower and less 

effective than in later stages. Although depth-wise convolutions have fewer parameters and 

require less floating-point operations (FLOPs) than standard convolutions, the authors 

found they cannot fully use modern accelerators. Thus, the Fused-MBConv block is 

introduced as a replacement for MBConv blocks in earlier stages of the network, in which 

the initial 1 × 1 and depth-wise convolutions are replaced with a standard 3 × 3 

convolution, as shown in Figure 32 below. 
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Figure 32: The differences between an MBConv and Fused-MBConv block [70] 

6.2 Proposed Efficient U-Net Architecture 

Using several of the network architectural designs described in section 6.1, together with 

U-Net and modifications to U-Net proposed in [29], a customized network architecture 

called Efficient U-Net is proposed. A description of the network architecture is provided, 

followed by the reasoning behind several key design choices. Then, modifications to the 

proposed architecture are discussed. 

6.2.1 Network Architecture 

The architecture follows the encoder-decoder scheme employed in U-Net but has some key 

differences. 
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Figure 33: Proposed Efficient U-Net Architecture. Blue blocks represent feature 

maps, with the width denoting feature space and height denoting resolution 

Initial Block: The initial encoder block follows closely to that of the initial block proposed 

in ENet (as shown in Figure 25a.). One addition is another extension branch that performs 

a convolutional operation to output a feature map of channel size matching that of the up-

sampled feature map in the corresponding decoder of U-Net, which is necessary for 

concatenation.  

Encoder Block: Following the initial encoder block, each subsequent down-sampling 

encoder block employs the ResNet-inspired parallel-branch scheme proposed in the down-

sampling bottleneck blocks of ENet: a main branch performs the max pooling operation 

and an extension branch performs a 2 × 2 convolution with stride 2, as suggested in ENet, 

to project the input feature map into a dimensionality reduced feature space ¼th of the 

feature space size passed into the encoder block. Then, two 3 × 3 convolutions, as proposed 

in U-Net, are applied to the dimensionality-reduced feature map, before a 1 × 1 expansion 

is applied to the resulting feature map to increase the channel size to that of the desired 

output size. A batch normalization and activation function are applied between all 

convolutions. A regularizer is applied after the final expansion, with a dropout of 

probability set to 0.1. The resulting feature map is copied over a skip connection to be 
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concatenated with the corresponding decoder block (as in U-Net) before it is summed with 

the result of max pooling from the main branch. After the final summation, another 

activation function is applied. 

 

Figure 34: Encoder block in Efficient U-Net 

Bottleneck Block: A modified U-Net bottleneck block is proposed. This block has two 

phases. The first phase consists of a parallel-branch scheme with a main branch that 

performs a 1 × 1 convolution to adjust the number of features, and an extension branch 

that performs a 1 × 1 projection, followed by two 3 × 3 convolutions and a subsequent 1 

× 1 expansion. Besides this, other operations are the same as those proposed in the encoder 

block. The second phase is inspired by the atrous (dilated) waterfall scheme described in 

[29]. The outputted feature map of phase one is passed as input to phase two consisting of 

three main blocks: each block consists of a 1 × 1 projection reducing the feature 

dimensionality by a factor of 4, followed by a 3 × 3 dilated convolution with a rate r, and 

a 1 × 1 feature expansion. The output of each block is copied to a concatenation operation 

and passed to the next block, except for the last block. Blocks one, two and three apply 

dilated convolutions with r = 1, r = 2 and r = 4, respectively. As with the encoder blocks, 

a batch normalization and activation function are applied between each of the convolutions.  
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Figure 35: Atrous Waterfall Block included in the bottleneck layer of Efficient U-

Net. A feature map of 256 channels is taken in as input and the final 1 × 1 

convolution reduces the output channel space to 128 channels 

Decoder Block: Consists of a bottleneck block symmetric to the encoder block, except that 

the main branch consists of a 1 × 1 convolution to adjust the number of features, and the 2 

× 2 projection with stride is replaced with a 1 × 1 projection. Moreover, the feature map 

from the previous decoder block is up-sampled via bilinear interpolation and applied a 2 × 

2 convolutional filter reducing the feature space. Based on [29], an attention gate is applied 

to the up-sampled feature map and the skip connection before they are concatenated 

together prior to being passed to the decoder. The cSE variant of the SE block is 

implemented in the attention gate, using an adaptive max pooling operation to squeeze the 

spatial dimensions. 

 

Figure 36: Attention Gate in Efficient U-Net 
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6.2.2 Design Choices 

Here, design choices for the proposed Efficient U-Net architecture are explained, based on 

heuristics and results achieved in related works, with the goal of reducing the model size 

and number of computations while maintaining a high performance for fault segmentation. 

Network Width: In the original U-Net, the initial encoder block outputs a feature map of 

channel size = 64, with subsequent encoder blocks increasing the channel size by a factor 

of 2.  To reduce model size and parameter complexity, the initial block increases the 

channel size to only 32 and is increased by the same factor of 2 in subsequent encoder 

blocks. 

Early and Limited Down-sampling: Following the intuition of early down-sampling, the 

proposed architecture uses an initial block performing only a single convolution. 

Furthermore, down-sampling is limited in the proposed model: down-sampling only occurs 

three times – once in the initial block and twice more afterwards – whereas the original U-

Net performs down-sampling four times.  

Projection: As shown in ENet, the number of parameters and convolutional operations can 

be decreased significantly through projection of the feature space to a lower dimension. 

Also noted in [63] is that in the down-sampling bottleneck block, simply doing a 1 × 1 

projection with a stride of 2 discards 75% of the input feature map, which is not ideal, 

particularly when extracting faults that take up a small proportion of the input. Hence, the 

proposed encoder block increases the filter size to 2 × 2, to take the full input feature map 

into account. 

Smaller Feature Maps: Unlike U-Net, which produces large feature maps, with the 

bottleneck block of U-Net outputting the largest feature map size of channel size = 1024, 

the bottleneck block in the proposed architecture outputs a feature of channel size = 256. 

As a result, the number of parameters and operations is greatly reduced. 

Atrous Waterfall Block: As proposed for U-Net by the authors in [29], a waterfall scheme 

for atrous convolutions is employed in the bottleneck block of the proposed architecture. 

Additional to [29], each block of the proposed Efficient U-Net waterfall scheme performs 
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a projection before an atrous convolution, reducing the feature size by a factor of 4. Not 

only does this reduce the number of parameters and computations, but also increases the 

receptive field of the convolutional filter. Intuitively, the increase of the receptive field, 

coupled with the atrous convolutions at different rates, would capture a greater range of 

contextual information, which is important to distinguish faults from non-fault objects in 

the global scene. As suggested in [29], dilation rates of 1, 2 and 4 are used, given that faults 

are relatively small in scale compared to the rest of the scene.  

Feature Map Saving: Following the U-Net architecture, the feature maps produced by each 

encoder block are saved and copied over skip connections instead of the max pooling 

indices. Particularly when segmenting small and narrow faults, saving just the indices from 

the dimensionality-reduced feature map produced from max pooling can result in a loss of 

lower-level fault information. Although saving the entire feature map requires more 

memory, it is a reasonable trade-off given that the initial block already considerably 

compresses the input image, amongst other memory-reducing design choices proposed – 

any further reduction in the features extracted at each level would effectively result in 

sparse up-sampled feature maps, insufficient for segmenting granular faults. 

Attention Gate: When identifying the presence of structural faults in images, it is important 

to consider the fault from various layers of abstraction; it is not only important to extract 

the edges that define the lower-level features of a fault, but to also extract higher level 

features unique to faults within a global context that may be littered with noise and non-

fault objects part of a greater scene. Thus, the importance of using attention gates to 

highlight faults from the background may be key to helping the model generalize to noisy 

real-world imagery. Moreover, attention gates applied on skip connections may help to 

suppress poor feature representation passed from earlier layers. The attention gate takes in 

the feature map passed through the skip connection and the up-sampled feature map and 

performs element-wise summation between both feature map tensors – if both tensor sizes 

do not match along the spatial dimensions, the up-sampled feature map tensor is resized 

accordingly. The element-wise summation will cause aligned weights to become larger, 

acting as an additional attention step before the summed tensor is passed through a ReLU 

activation and then through to an cSE block to highlight features of interest through 
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reweighting of the channel space. The resulting feature map is then element-wise 

multiplied with the original up-sampled feature map.  

Activation Function: In [63], the authors replace the ReLU activation function in the initial 

layers of ENet with Parametric ReLUs (PReLU) [64], which uses an additional parameter 

per feature map to learn the negative slope of non-linearities; it was found that replacement 

earlier in the network improved the results. The authors in [63] hypothesize the poor 

performance of ReLUs in the initial layers to be attributed to the limited depth of the ENet 

architecture, compared to deep networks such as ResNet. As a result, since the proposed 

Efficient U-Net architecture is also relatively shallow, the PReLU activation function is 

used in the initial, encoder, and bottleneck blocks. PReLU is also used in the cSE block to 

prevent further information loss from the squeeze operation followed by a 1 × 1 projection 

in lower dimensional feature space.  

6.2.3 Proposed Modifications to Efficient U-Net 

Modifications to the Efficient U-Net architecture are proposed and implemented to further 

analyze the impact of certain design choices on performance and model efficiency. 

Namely, besides benchmarking to the state-of-the-art U-Net, there are two key areas of 

interest that are investigated. The first area of interest is how important attention gating is, 

and whether a) reweighting the feature map responses across the spatial, channel, or 

combination of both dimensions results in better fault segmentation, and b) adding attention 

gating earlier in the network influences the fault segmentation performance. The second 

area of interest is investigating how the parameter space, number of computations, and 

inference time is impacted in relation to the fault segmentation performance by a) 

introducing mobile inverted residual blocks into the network, and b) removing the atrous 

waterfall block. The key areas of investigation are formalized below. 

Spatial Versus Channel Attention: Focusing attention on spatial pixel regions where faults 

are more likely to occur intuitively makes sense, given the relatively small percentage of 

pixels that correspond to faults. Furthermore, highlighting spatial information from an up-

sampled feature map concatenated with the corresponding down-sampled feature map 

helps retain spatial information from earlier in the network that may have been lost during 
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down-sampling. However, given the down-sampled feature map provides a more limited 

set of lower-level features whereas the up-sampled feature map has a richer set of features 

that better encapsulates properties pertaining to faults, concatenation may result in poorer 

feature representation. Hence, this motivates the importance of channel attention as well as 

spatial attention for fault segmentation. To assess the effectiveness of different attention 

mechanisms, several versions of Efficient U-Net are implemented, in which each version 

implements an attention gate with one of the following SE blocks: an cSE block, an sSE 

block, and an scSE block. Additionally, a version of the model is implemented without an 

attention gate to further assess the importance of attention gating. 

 

Figure 37: Implemented SE block variants in the decoder block of the network: (a) 

sSE block; (b) scSE block 

Attention Early Versus Later in the Network: The role an SE block performs depends on 

where in the network they are used; earlier in the network, they strengthen shared low-level 

feature representations by equally exciting informative features, whereas later in the 

network, they become more specialized in more heavily reweighting relevant features of 

interest [66]. To analyze the impact of implementing attention earlier in the network on 

model performance, a modified version of Efficient U-Net is implemented, in which the 

convolutional branch of each of the encoders, decoders and bottleneck are replaced with 
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customized MBConv and Fused-MBConv blocks consisting of an SE block, as described 

in [69] and [70]. 

 

Figure 38: Modifying the proposed Efficient U-Net with (a) two Fused-MBConv 

blocks in the encoder and (b) two MBConv blocks in the bottleneck 

As shown in Figure 38 above, based on the inverted residual block, two consecutive 

MBConv blocks are added at each of the encoders, decoders, and at the bottleneck to 

replace the double convolution in the projected lower dimensional feature space. Each 

MBConv block increases the feature space by a factor of 4, inverse to the projection factor 

performed by the base Efficient U-Net architecture. In the encoder, the first of the two 

MBConv blocks reduces the feature map resolution with a 2 × 2 convolution of stride 2. 
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The second MBConv block doubles the feature dimensionality by a factor of 2. In the 

bottleneck, since the input and output feature map resolution and the number of features 

remains constant, a residual connection is included in each of the MBConv blocks. 

MBConv on Model Performance and Complexity: Following closely to [70], the MBConv 

blocks in the encoder are replaced with Fused-MBConv to optimize the use of accelerators.  

Also, depth-wise separable convolutions performed in the expansive part of the MBConv 

block may be more suitable than standard convolution performed in projected lower-

dimensional feature space. Projection may compress information to the extent that finer-

grain details of faults may get lost in the features extracted by convolutions on the 

dimensionality-reduced feature maps. On the other hand, depth-wise separable 

convolutions can reduce the number of computations without feature dimensionality 

reduction, which is important to preserving fault information. Thus, the projections and 

subsequent standard 3 × 3 convolutions in the extension branches and waterfall-based 

dilation phase are replaced with depth-wise separable convolutions, following the original 

MBConv block. 

Atrous Waterfall Block on Model Performance and Complexity: Although the atrous 

waterfall block can capture a greater range of contextual information in the bottleneck stage 

of the network, this may come at the cost of a notable increase in the number of 

computations and parameters. Thus, the atrous waterfall block is omitted in some of the 

modified versions of the model and replaced with a 1 × 1 convolution. 

6.3 Evaluation Criteria 

To evaluate the performance and complexity of the proposed Efficient U-Net model in 

relation to the state-of-the-art U-Net model and the modified networks, several key metrics 

are considered for model training, validation, and complexity. 

6.3.1 Training Metrics 

To evaluate the loss during training, the cross-entropy loss function is commonly used to 

measure the likelihood of the output with respect to the true labels. Cross-entropy is 

calculated by taking the sum of the products of each true label and corresponding 
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probability of the prediction for that label in the output. The logarithmic function is applied 

to each probability to avoid the likelihood from going to zero due to multiplication with 

small probability values: 

𝐿𝐶𝐸 = −
∑ 𝑥𝑖

𝑁
𝑖=1 log(𝑥̇𝑖)

𝑁
 

Where 𝐿𝐶𝐸 is the cross-entropy loss, 𝑥𝑖 is ith pixel value in the ground truth label matrix, 

𝑥̇𝑖 is the ith pixel value probability in the model prediction matrix, and N is the total 

number of pixels. 

For the proposed binary pixel-wise classification, a variant of the cross-entropy loss 

function called binary cross-entropy loss is used. Binary cross-entropy considers the 

likelihood of an observation belonging to each of the classes. That is, the probability of the 

predicted class multiplied by the corresponding true class label, added to the probability of 

predicting the opposite class multiplied by the opposite class label. The binary cross-

entropy loss 𝐿𝐵𝐶𝐸 is expressed as follows:  

𝐿𝐵𝐶𝐸 = −
∑ 𝑥𝑖

𝑁
𝑖=1 log(𝑥̇𝑖) +  (1 − 𝑥𝑖) log(1 − 𝑥̇𝑖)

𝑁
 

6.3.2 Validation Metrics 

Although cross-entropy loss is a useful tool for evaluating the loss during the training 

process, it can be difficult to interpret. When validating the performance of a classifier, 

other metrics are typically used. Accuracy, also known as the error rate, is a standard 

evaluation metric, as it is intuitive and measures how often a classifier makes correct 

predictions, on average. Accuracy in classification problems is computed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where TP is the number of true positives in which the classifier correctly predicts the 

positive class, TN is the number of true negatives wherein the classifier correctly predicts 

the negative class, FP is the number of false positives in which the classifier incorrectly 

predicts a label to be part of the positive class, and FN is the number of false negatives. 
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However, due to the inherent nature of unbalanced classes in anomaly detection, 

particularly in pixel-wise image fault segmentation, accuracy can be rather misleading. 

Take, for example, a dataset in which 95% of the true labels are negative. In this case, a 

classifier that simply predicts every observation to be negative will still achieve 95% 

accuracy as the baseline accuracy. Thus, without applying any of the previously discussed 

preprocessing techniques on unbalanced classes, accuracy is not an ideal metric for 

evaluating such classes. Instead, it would be advantageous to consider other several key 

indicators that are more robust to class imbalances. Two important indicators include the 

number of true positives identified out of all positive predictions – referred to as the 

precision – and the proportion of all positives from the dataset correctly identified – 

referred to as the recall.  

A more reliable validation metric than accuracy that is commonly used in pixel-wise 

segmentation for measuring the degree of overlap between the predicted label map and 

ground truth label map is called the intersection over union (IoU). This metric takes the 

intersection between the predicted label and ground truth, divided by the union of the 

predicted label and ground truth. The output is a value between 0 and 1, with an IoU closer 

to 1 corresponding to a greater overlap of the predicted label and ground truth. This can be 

expressed as follows:  

𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

The Dice score is another important validation metric that measures the degree of overlap 

between prediction and ground truth while taking recall and precision into account. 

Namely, the Dice score, also known as the F1-score, is equivalent to the harmonic mean 

of the precision and recall [29], and is formulated as follows: 

𝐷𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
  

In other words, the Dice score takes the intersection multiplied by 2, divided by the 

intersection plus the union. This expression can also be rearranged with respect to precision 

and recall: 
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𝐷𝑆𝑐𝑜𝑟𝑒 =
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

 

That is, the greater the precision and recall, the higher and better the dice score (between 0 

and 1).  Due to the nature of the harmonic mean, the Dice score will penalize very low 

precision or recall values, such that the more balanced the precision and recall, the higher 

the Dice score. Hence, the Dice score is a good metric for optimizing the precision and 

recall tradeoff. Moreover, the Dice score tends to give a measure of the average 

performance, whereas the IoU approximates the worst-case performance, which makes it 

advantageous to consider both metrics during evaluation. 

6.3.3 Model Complexity Metrics 

Network latency: To assess inference time or network latency when predicting upon a 

single image, time (measured in milliseconds) is used. Specifically, only the feed-forward 

of the neural network is measured, omitting the time required for GPU initialization and 

the transfer of data from the CPU to GPU. Network latency is also expressed in terms of 

FPS (frames per second), for benchmarking in relation to real-time inference. 

Computations: The number of computations required in a single pass through a network is 

measured using multiply-accumulate operations (MAC). A MAC is an operation that 

includes one multiplication and one addition, each of which can be floating point 

operations. Roughly speaking, one MAC is equal to two floating point operations (FLOP). 

One possible advantage to using MACs over FLOPs is that neural networks compute 

mainly on multiply-accumulate operations, and thus improvements in the number of MACs 

would generally be more emphasized than those in the number of FLOPs.  

Parameters: The number of parameters is also measured to further assess network 

complexity in terms of the number of weights and biases in each convolutional layer. The 

number of parameters for each convolution is 𝐶 ×  𝑤 ×  ℎ ×  𝐶’ + 1, where C is the input 

channel space size, w is the width of the kernel, h is the height of the kernel, and C’ is the 

output channel space size, with an addition of 1 to account for the bias term of each kernel. 
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6.4 Experimental Results 

6.4.1 Data 

Publicly available datasets of structural faults captured in real-world environments are used 

for training and validation of the proposed Efficient U-Net models as well as the baseline 

U-Net. 

Crack500: One of the datasets training and validation is performed upon is a crack-based 

dataset called Crack500 [31][71]. The original dataset contains 500 road pavement color 

images of resolution 2,000 × 1,500, taken with cellular phones. Each image is accompanied 

with a pixel-wise annotated segmentation map.  

GAPs384: Based on the German Asphalt Pavement Distress (GAPs) dataset presented in 

[72], the original GAPs384, a subset of GAP, consists of 353 training and 27 validation 

grayscale images of resolution 1920 × 1080, captured with a specialized imaging system 

with photogrammetrically calibrated monochrome cameras. Captured images include 

cracks, potholes, and inlaid patches. Moreover, each image is accompanied with a pixel-

wise annotated segmentation map.   

CrackForest: The CrackForest dataset [73][74] consists of 118 RGB color images of 480 

× 320 resolution captured with an iPhone 5 camera. Captured images include cracks 

amongst noise such as oil stains, road markings, shoes, and shadows. As with the Crack500 

and GAPs384 datasets, the images are accompanied with pixel-wise annotated 

segmentation maps. 89 samples are used for training, with 29 samples set aside for 

validation. 

Merged Dataset: Samples from the Crack500, GAPs384, and CrackForest dataset, along 

with samples from the Cracktree200 [75], Aigle-RN & ESAR & LCMS [76], DeepCrack 

[87] and masonry crack [77] datasets are combined into a merged dataset consisting of 

9,793 training samples and 1,745 validation samples of 448 × 448 resolution. In particular, 

the Cracktree200 dataset introduces further noise, occlusion, shadows, and low contrast. 

Furthermore, non-crack samples are included in the merged dataset, capturing corners, 
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edges, and brick mortar that resemble cracks to allow the model training upon such samples 

to better distinguish between cracks and non-cracks. By combining diverse samples of 

various structures – pavement, concrete, and masonry – captured using different equipment 

within noisy and occluded environments, a model trained upon the merged dataset may 

better generalize to real-world settings. 

Data Preparation: The image resolutions in the Crack500 and GAPs384 datasets are quite 

large, posing a constraint on the network scalability due to the limited amount of GPU 

memory (6 GB graphics-card memory). Thus, cropped images and accompanying 

annotated pixel-wise segmentation maps of resolution 640 × 360 from the original 

Crack500 dataset are used, resulting in 1,896 training images and 348 validation images. 

Similarly, a modified version of the GAPs384 dataset is used in this experiment, consisting 

of a cropped subset of 465 training and 44 validation images of 540 × 440 resolution. 

Images in the CrackForest dataset are scaled to 320 × 320 resolution before training. Each 

dataset is also augmented through random image rotation between -90° and 90°, and 

horizontal and vertical flipping with a probability p = 0.5. Due to some instances of low 

lighting, particularly in the GAPs384 dataset, a random brightness factor in the range of (-

0.2, 0.2) is applied. It is also observed that there is a small fraction of labelled fault pixels 

in comparison to non-fault pixels. Hence, an oversampling approach is used to intentionally 

sample more of the pixels associated to the fault class during the data loading phase prior 

to training; class weights are used to determine the ratio of fault pixels to non-fault pixels, 

to more evenly sample pixels corresponding to observations from each class. Data is also 

shuffled prior to training on every dataset to ensure randomness in the sampling. 

6.4.2 Evaluation 

The models, training, and evaluation scripts are written in Python, using the PyTorch 

framework. Model training and validation, as well as inference speed testing, is conducted 

on an Nvidia GeForce GTX 1060 6 GB GPU. Inference speed testing is also performed on 

an Nvidia Jetson Nano Developer Kit, which provides a good indicator of performance on 

an edge device with constrained GPU processing and memory. 
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Table 2: Comparison of processing and memory specifications 

Machine Memory 

(GB) 

CUDA Cores Floating-Point 

Performance (GFLOPs) 

Jetson Nano 4 128 472 

Nvidia GeForce GTX 6 1280 4357  

Training Settings and Hyperparameters: Each model is trained and validated on the 

Crack500, GAPs384, and CrackForest datasets. As illustrated in [29], a model trained 

solely on the CrackForest dataset is very sensitive to noise and lighting. Furthermore, the 

CrackForest and GAPs384 datasets are relatively small and limited in terms of the amount 

of encoded information; images in the CrackForest dataset are relatively small in 

resolution, whereas the grayscale images in the GAPs384 dataset only encode one channel. 

As a result, models trained on these datasets fail to generalize and struggle to distinguish 

faults in unseen images, as found in [29]. Thus, in this experiment, each of the models are 

first pretrained on the merged dataset before being trained on the individual datasets, 

wherein the weights learned during pretraining are saved and reused. Reusing the weights 

may result in the model reaching faster convergence during training and generalizing better 

on unseen data, since pretraining is performed on a wide variety of data in the merged 

dataset. Based on hyperparameters chosen in the literature, pretraining on the merged 

dataset is conducted for 15 epochs, with a learning rate of 0.001 at the start. A scheduled 

reduction in the learning rate by half every 5 epochs is performed, to prevent the model 

from overshooting the local minima of the loss. After pretraining, the models are trained 

on the individual datasets (Crack500, GAPs384 and CrackForest) for an additional 15 

epochs, with a learning rate of 0.0005 at the start and a scheduled reduction by half every 

5 epochs. The Adam optimizer is used to update the network weights during 

backpropagation. Moreover, a batch size of 4 is used. Only pixels with sigmoid values 

outputted from the model of 0.5 or greater – in the range of [0,1] – are considered as part 

of the fault class. On every epoch, the performance on the validation data is evaluated based 

on the Dice score and IoU, with the best values reported. 

Study One: To compare the proposed Efficient U-Net variants based on performance, 

several sets of tests are conducted in this study. Two groups of models are constructed, 

with one group of models including the atrous waterfall block, and the other group omitting 
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the atrous waterfall block. Each group consists of a version with a separate implementation 

of the modified attention gate described in section 6.2.3. Within each group, the impact of 

attention gating is investigated on fault segmentation performance. Across both groups of 

models, the effect of omitting an atrous waterfall block on fault segmentation performance 

and efficiency is analyzed on each of the datasets. All other variables are controlled. The 

tested architectures are as follows: 

- Baseline Efficient U-Net without attention gates nor the atrous waterfall block (EU-

Net); 

- Efficient U-Net with attention gates using an cSE block (EU-Net + cSE); 

- Efficient U-Net with attention gates using an sSE block (EU-Net + cSE); 

- Efficient U-Net with attention gates using an scSE block (EU-Net + scSE); 

- Efficient U-Net with an atrous waterfall block (EU-Net + AWF); 

- Efficient U-Net with an atrous waterfall block and attention gates implemented 

using an cSE block (EU-Net + AWF + cSE); 

- Efficient U-Net with an atrous waterfall block and attention gates implemented 

using an sSE block (EU-Net + AWF + sSE); 

- Efficient U-Net with an atrous waterfall block and attention gates implemented 

using an scSE block (EU-Net + AWF + scSE); 

The performance of the Efficient U-Net model and its variants are compared according to 

the best Dice score and IoU achieved on the merged and individual validation datasets 

during training. Also reported is the Area Under the Precision-Recall Curve (AUPRC), 

which represents the recall and precision tradeoff at varying thresholds; the AUPRC is 

particularly useful in the case of imbalanced classes. The AUPRC, IoU, and Dice scores 

for each model are given in Tables 3-6, with the superior results bolded. Each table reports 

the results of each model on a specific dataset. The Dice Score and IoU are shown to 

correspond directly to each other, as models with the highest Dice Scores in each dataset, 
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except for the merged dataset, have the highest IoU. Similarly, the AUPRC tends in line 

with the Dice score and IoU across all the datasets – the higher the Dice score and IoU, the 

higher the AUPRC. 

On 3 out of the 4 datasets, the addition of an attention gate (AG) results in improved Dice 

scores. The atrous waterfall (AWF) and non-AWF models that implement scSE attention 

gating have superior Dice scores compared to their respective non-AG and AG 

counterparts on the merged and Crack500 datasets (Tables 3 and 4).  Similarly, attention 

gating results in improved performance on the GAPs384 dataset (Table 5), with sSE 

attention gating resulting in the highest Dice score amongst the AG and non-AG 

counterparts. Only on the CrackForest dataset (Table 6) does attention gating not result in 

the highest Dice scores. However, it was found that cSE attention gating results in notably 

lower Dice scores in the GAPs384 and CrackForest datasets, for both the AWF and non-

AWF model versions.  

Comparing each non-AWF model with its AWF counterpart, each of the AWF models in 

the Crack500 dataset, whereas all AWF models, except the scSE attention gating model on 

the merged dataset and the non-AG model on the CrackForest dataset, result in improved 

Dice scores on their non-AWF counterparts. However, in the GAPs384 dataset, only the 

non-AG AWF model results in a higher Dice score compared to its non-AWF counterpart 

– the AG AWF models only have slightly lower Dice scores compared to their non-AG 

AWF counterparts. The relatively poorer results on the CrackForest dataset may be due in 

part to the scaling down of the images prior to training, as described in section 6.4.1. 

Overall, the best resulting models in each dataset included some combination of AWF 

and/or AG blocks, with scSE attention gating performing particularly well on larger 

merged and Crack500 datasets. On the merged dataset, the best Dice score achieved is 

0.6287 (EU-Net + scSE), a notable increase from the baseline (no AWF and no AG) of 

0.5635. On the Crack500 dataset, the best Dice score achieved is 0.7789 (EU-Net + AWF 

+ scSE), an increase from 0.7215 achieved by the baseline. On the GAPs384 dataset, the 

best Dice score achieved is 0.4875 (EU-Net + sSE), an increase from 0.4281 achieved by 
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the baseline. On the CrackForest dataset, the best Dice score achieved is 0.6818 (EU-Net 

+ AWF), an increase from 0.6191 achieved by the baseline. 

Table 3: Comparison of the best validation results of the proposed Efficient U-Net 

model and its variants on the merged dataset 

Merged (Pretraining) AUPRC IoU Dice 

EU-Net (Baseline) 0.3432 0.4094 0.5635 

EU-Net + cSE 0.6031 0.4311 0.5896 

EU-Net + sSE 0.6298 0.4235 0.5806 

EU-Net + scSE 0.7077 0.4717 0.6287 

EU-Net + AWF 0.6624 0.4515 0.6111 

EU-Net + AWF + cSE 0.6235 0.4446 0.6022 

EU-Net + AWF + sSE 0.6535 0.4400 0.5968 

EU-Net + AWF + scSE 0.5945 0.4718 0.6286 

Table 4: Comparison of the best validation results of the proposed Efficient U-Net 

model and its variants on the Crack500 dataset 

Crack500 AUPRC IoU Dice 

EU-Net (Baseline) 0.6520 0.5847 0.7215 

EU-Net + cSE 0.7531 0.6025 0.7419 

EU-Net + sSE 0.6853 0.5946 0.7283 

EU-Net + scSE 0.8076 0.6126 0.7490 

EU-Net + AWF  0.7853 0.6206 0.7562 

EU-Net + AWF + cSE 0.7660 0.6153 0.7527 

EU-Net + AWF + sSE 0.6238 0.5950 0.7304 

EU-Net + AWF + scSE 0.8545 0.6463 0.7789 

Table 5: Comparison of the best validation results of the proposed Efficient U-Net 

model and its variants on the GAPs384 dataset 

GAPs384 AUPRC IoU Dice 

EU-Net (Baseline) 0.5462 0.2772 0.4281 

EUNet + cSE 0.4663 0.1804 0.3010 

EU-Net + sSE 0.5600 0.3276 0.4875 

EU-Net + scSE 0.5269 0.3027 0.4543 

EU-Net + AWF 0.5531 0.3233 0.4844 

EU-Net + AWF + cSE 0.4719 0.1799 0.2960 

EU-Net + AWF + sSE 0.5127 0.3256 0.4868 

EU-Net + AWF + scSE  0.5604 0.2998 0.4535 
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Table 6: Comparison of the best validation results of the proposed Efficient U-Net 

model and its variants on the CrackForest dataset 

  

 

 

 

 

Also compared are the precision-recall curves of each set of models on each dataset, as 

shown in Figures 39 and 40. On the merged and Crack500 datasets, the AUPRCs of the 

scSE attention gated models are superior to its AG and non-AG counterparts. On the GAPs 

and CrackForest datasets, the AUPRCs of the non-AWF, sSE attention gated models are 

superior to its AG and non-AG counterparts, whereas the AUPRCs of the AWF, non-AG 

models are superior to its AG counterparts. 

 

Figure 39: The Precision-Recall Curves (PRC) and corresponding AUPRC scores 

for the Efficient U-Net models without the atrous waterfall block 

CrackForest AUPRC IoU Dice 

EU-Net (Baseline) 0.6367 0.4513 0.6191 

EU-Net + cSE 0.3527 0.1518 0.2618 

EU-Net + sSE 0.6392 0.4495 0.6167 

EU-Net + scSE 0.6206 0.4095 0.5756 

EU-Net + AWF 0.6437 0.5203 0.6818 

EU-Net + AWF + cSE 0.3598 0.2017 0.3299 

EU-Net + AWF + sSE 0.5973 0.4972 0.6609 

EU-Net + AWF + scSE 0.5851 0.4009 0.5680 
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Figure 40: The Precision-Recall Curves (PRC) and corresponding AUPRC scores 

for the Efficient U-Net models with the atrous waterfall block 

Although statistical performance can provide a good indication of performance, it is hard 

to interpret the segmentation quality from that alone. A visual investigation is also 

conducted to assess the properties of the segmented label maps produced by each model 

while drawing comparisons between the visual results and the statistical results obtained. 

As shown in Figures 41-44, there is a noticeable distinction between the baseline (No AG, 

No AWF) and the other models. For every dataset sample, the sSE attention gated models 

appear to outperform the baseline in segmenting narrow cracks (Figures 41-44), 

segmenting cracks captured in low brightness (Figure 43), and segmenting cracks impeded 

by shadows (Figure 41). Conversely, for every dataset, the cSE attention gates models 

appear to perform worse in extracting various cracks, resulting in thicker segmentations 

with some discontinuities (Figure 42) and completely missing very narrow cracks (Figures 

41, 43 and 44) and cracks in low contrast (Figure 44). The cSE segmentations tend closer 

in line with statistical results, particularly for the GAPs384 (Figure 43) and CrackForest 

(Figure 44) dataset samples. However, the scSE model segmentation label map results are 

not much better than the cSE label maps, even in the merged (Figure 41) dataset in which 
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the scSE performed statistically well. However, similar could be said about the mismatch 

between the relatively high statistical cSE results compared to the baseline in the merged 

and Crack500 (Figure 42) datasets and the relatively poor segmentation results on their 

respective samples. This mismatch between statistical and visual results, particularly for 

the scSE models, may be due in part to a greater decrease in false positives than the 

baseline, than the decrease in true positives compared to the baseline, particularly for less 

frequent, fine cracks (Figures 41 and 43), which do not have many true positives to begin 

with. Thus, in these cases, the segmentation results may be visually poorer in comparison 

to the corresponding statistical results. 

Comparing the segmentation label maps of the AWF and non-AWF models, it appears that 

the AWF + sSE models output finer extractions compared to the non-AWF + sSE models, 

which is particularly apparent in Figures 41 and 43. Across all the datasets, the AWF 

models tend to output finer segmentation label maps compared to their non-AWF 

counterparts, with little to no loss in detail, while also noticeably reducing the number of 

false positives on the merged dataset sample and better segmenting the extremely narrow 

crack in the top left of the CrackForest data sample and the bottom left of the Crack500 

data sample. In general, the visual segmentation results tend in line with the statistical 

results for the AWF versus non-AWF models. 

 

    

      

      

Figure 41: The image, ground truth, and corresponding predicted label maps of 

each model version on the merged dataset 
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Figure 42: The image, ground truth, and corresponding predicted label maps of 

each model version on the Crack500 dataset 

 

 

        

        

Figure 43: The image, ground truth, and corresponding predicted label maps of 

each model version on the GAPs384 dataset 
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Figure 44: The image, ground truth, and corresponding predicted label maps of 

each model version on the CrackForest dataset 

To investigate the parameter and computational efficiency, the number of parameters and 

GMACs required during inference are also analyzed and reported. Based on Table 7, as 

predicted, the models without the AWF block have a noticeable decrease in the number of 

parameters, by an average reduction of approximately 30%. Also, there is some reduction 

in the number of computations for non-AWF models, with an average reduction of 

approximately 17% in the GMACs reported compared to the AWF models. Furthermore, 

there is little additional computational overhead introduced by the AG models, compared 

to their non-AG counterparts: a 5% increase in the number of parameters in the scSE AG 

model compared to the non-AG model is the largest amongst the AG models, whereas less 

than a 1% increase in the GMACs is the largest amongst the AG models in relation to the 

non-AG models. 

Table 7: Comparison of the parameter and computational efficiency 

Model Version #Params GMACs 

320 × 320 448 × 448 540 × 440 640 × 360 

EU-Net (Baseline) 425.32k 1.46 2.88 3.40 3.31 

EU-Net + cSE 446.83k 1.47 2.89 3.41 3.31 

EU-Net + sSE 425.54k 1.47 2.89 3.41 3.31 

EU-Net + scSE 447.05k 1.47 2.89 3.41 3.32 

EU-Net + AWF 603.88k 1.77 3.47 4.09 3.98 

EU-Net + AWF + cSE 625.39k 1.77 3.47 4.09 3.99 

EU-Net + AWF + sSE 604.11k 1.77 3.47 4.09 3.99 

EU-Net + AWF + scSE 625.61k 1.77 3.48 4.10 3.99 

Raw Ground Truth No AG AG with cSE AG with scSE

 

AG with sSE 

No AWF 

AWF 
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The tradeoff between the model performance and computational and parameter efficiency 

is illustrated in Figures 45 and 46 below. The Dice score is evaluated in relation to the 

number of parameters (Figure 45) and the number of computations reported as GMACs on 

each resolution setting according to the image resolutions of each dataset (Figure 46). In 

Figure 45, apart from the scSE AG models, the addition of the AWF block results in notably 

higher Dice scores and number of parameters. In Figure 46, across the datasets, the addition 

of the AWF block results in increased Dice score and GMACs. However, there are some 

exceptions, including on the merged dataset where the non-AWF scSE AG model has 

nearly the same Dice score as the AWF + scSE model, but requires notably less 

computations. Similarly, the non-AWF cSE and sSE AG models produces higher Dice 

scores than their AWF counterparts on the GAPs384 dataset, while requiring less 

computations. These exceptions are illustrative of models that may provide good efficiency 

in terms of their fault segmentation capability per parameter and computation. 

 

Figure 45: The effect of adding the atrous waterfall block and using different 

attention gates on the Dice score (achieved on the merged dataset) and number of 

parameters 
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Figure 46: The effect of adding the atrous waterfall block and using different 

attention gates on the dice score and number of computations (GMACs) 

Study Two: In this study, the best performing model on each dataset in study one, in terms 

of the Dice score, is modified with MBConv blocks as described in section 6.2.3. The 

performance of each MBConv model is then compared to its non-MBConv counterpart and 

the baseline state-of-the-art U-Net model in terms of segmentation performance, parameter 

and computational efficiency, model size, and the average inference time per frame. Note 

that since the AWF and Non-AWF scSE models have nearly identical Dice scores and IoU 

on the merged dataset in study one, both models are considered in this study on the merged 

dataset. 
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In Tables 8-11, the best AUPRC, IoU, and Dice scores achieved on the validation set of 

each dataset, as well as the average FPS achieved for each model is reported, with the 

superior results bolded. The FPS reported in Tables 8-11 are based on tests run on a Jetson 

Nano with images of 320 × 320 and 640 × 360 resolution, the former being sufficient for 

prototyping with the AI-deck camera mounted on the Crazyflie 2.1 quadcopter, and the 

latter suitable for larger-scale, real-world image fault segmentation applications. Each 

model is run for 300 repetitions to ensure reliable time measurement, with the average 

running time reported and converted to FPS. On all datasets except the CrackForest dataset 

(Table 11), a modified version of the Efficient U-Net model outperforms the baseline U-

Net model in Dice score, IoU, and AUPRC, while the FPS of all evaluated modified 

Efficient U-Net models is significantly higher compared to U-Net. On the merged dataset 

(Table 8), the best Dice score of 0.6461 is achieved (MBConv-EU-Net + AWF + scSE), a 

significant increase from a Dice score of 0.5723 achieved on U-Net, while performing 1.6x 

faster than U-Net. On the Crack500 dataset (Table 9), the best Dice score of 0.7890 is 

achieved (MBConv-EU-Net + AWF + scSE), a significant increase from 0.7087 achieved 

on U-Net, while performing 1.6x faster than U-Net. On the GAPs384 dataset (Table 10), 

the best Dice of 0.4875 is achieved (EU-Net + sSE), an increase from 0.4524 achieved on 

U-Net, while respectively performing 3.9x and 4.1x faster on 320 × 320 and 640 × 360 

resolution images compared to U-Net, which is the maximal speedup reported in Table 10. 

In Table 8, a 3.1x and 3.3x speedup on respective 320 × 320 and 640 × 360 resolution 

images are maximally achieved. In Table 9, a 2.6x and 2.9x speedup on respective 320 × 

320 and 640 × 360 resolution images are maximally achieved. In Table 11, a 3.6x and 3.9x 

speedup on respective 320 × 320 and 640 × 360 resolution images are maximally achieved. 

Next, the MBConv models and their non-MBConv counterparts are compared. On the 

merged and Crack500 datasets, the MBConv variant outperforms the non-MBConv model 

counterpart in Dice score and IoU, which may be due in part to the addition of attention 

gating earlier in the network. However, the FPS achieved on the MBConv models is lower 

than their non-MBConv counterparts; this slowdown may be attributed to the depth-wise 

convolutions not optimally utilizing modern accelerators as noted in [70], despite the 

replacement of the depth-wise convolutions with standard convolutions in earlier layers. 
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Table 8: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv 

Efficient U-Net models on the merged dataset 

Merged (Pretraining) AUPRC IoU Dice FPS 

320 × 320 640 × 360 

U-Net (Baseline) 0.5854 0.4164 0.5723 4.7 2.2 

EU-Net + scSE 0.7077 0.4717 0.6287 14.7 7.2 

MBConv-EU-Net + scSE 0.6769 0.4466 0.6010 7.9 3.7 

EU-Net + AWF + scSE 0.5945 0.4718 0.6286 12.1 6.3 

MBConv-EU-Net + AWF + scSE 0.6855 0.4871 0.6461 7.6 3.6 

Table 9: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv 

Efficient U-Net models on the Crack500 dataset 

Crack500 AUPRC IoU Dice FPS 

320 × 320 640 × 360 

U-Net (Baseline) 0.5384 0.5706 0.7087 4.7 2.2 

EU-Net + AWF + scSE 0.8545 0.6463 0.7789 12.1 6.3 

MBConv-EU-Net + AWF + scSE 0.8848 0.6578 0.7890 7.6 3.6 

Table 10: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv 

Efficient U-Net models on the GAPs384 dataset 

GAPs384 AUPRC IoU Dice FPS 

320 × 320 640 × 360 

U-Net (Baseline) 0.5401 0.2998 0.4524 4.7 2.2 

EU-Net + sSE 0.5600 0.3276 0.4875 18.2 9.1 

MBConv-EU-Net + sSE 0.5306 0.3066 0.4634 9.7 4.5 

Table 11: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv 

Efficient U-Net models on the CrackForest dataset 

CrackForest AUPRC IoU Dice FPS 

320 × 320 640 × 360 

U-Net (Baseline) 0.6921 0.5427 0.7011 4.7 2.2 

EU-Net + AWF 0.6437 0.5203 0.6818 16.9 8.5 

MBConv-EU-Net + AWF 0.6596 0.4427 0.6085 8.1 3.9 



93 

 

 

 

 

Figure 47: The Precision-Recall Curves (PRC) and corresponding AUPRC scores 

for the U-Net (baseline), Efficient U-Net, and MBConv Efficient U-Net models 

In Table 12 below, the number of parameters, model size, and GMACs required during 

inference for the baseline U-Net, Efficient U-Net and MBConv counterparts are reported. 

The Efficient U-Net models have significantly less parameters and computations than U-

Net, with an average decrease of 77% in the number of parameters. Moreover, the Efficient 

U-Net model sizes are significantly decreased compared to U-Net, with an average 76% 

size reduction. There is also a notable computational and parameter size reduction with the 

MBConv models in comparison to their non-MBConv counterparts, which makes sense 

given that the depth-wise separable convolutions in the MBConv blocks reduce the number 

of computations and parameters. 
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Table 12: Comparison of the model size, number of parameters and computational 

efficiency 

Model Version #Params Model 

Size (MB) 

GMACs 

320 × 320 448 × 448 540 × 440 640 × 360 

U-Net (Baseline) 
1927.01k 22.1 16.35 32.07 37.93 36.81 

EU-Net + scSE 
447.05k 5.24 1.47 2.89 3.41 3.32 

MBConv-EU-Net 

+ scSE 

372.38k 4.51 0.90 1.77 2.10 2.03 

EU-Net + AWF + 

scSE 

625.61k 7.34 1.77 3.48 4.10 3.99 

MBConv-EU-Net 

+ AWF + scSE 

377.52k 4.62 0.91 1.79 2.12 2.05 

EU-Net + sSE 
425.54k 4.99 1.47 2.89 3.41 3.31 

MBConv-EU-Net 

+ sSE 

369.69k 4.46 0.89 1.74 2.07 2.00 

EU-Net + AWF 
603.88k 7.08 1.77 3.47 4.09 3.98 

MBConv-EU-Net 

+ AWF 

376.12k 4.59 0.91 1.79 2.12 2.05 
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Chapter 7 

7 Discussion and Conclusions 

The need for automated infrastructure inspection calls for the application of drones, which 

have the capability to autonomously navigate structures and process data. In remote 

environments, due to limited connectivity, a companion computer mounted onto a drone is 

the most viable solution. However, given the processing and memory constraints of 

companion computers, achieving real-time processing for fault segmentation and tracking 

is a difficult task. 

In this thesis, a prototype of a fully autonomous drone infrastructure inspection system is 

proposed and developed for real-time fault segmentation, designed for computationally 

constrained environments. To develop this prototype, a Crazyflie 2.1 quadcopter is 

equipped with a flow deck for navigation, a multi-ranger deck for obstacle avoidance, and 

an AI-deck with an attached 320 × 320 grayscale camera for capturing and sending a live 

image stream via Wi-Fi to the Jetson Nano, a viable companion computer. Next, robust 

line estimation algorithms are investigated, wherein a modified version of the RANSAC 

algorithm is implemented, using a quadtree and a smart sampling approach. The modified 

RANSAC is evaluated in comparison to the baseline RANSAC algorithm. The modified 

RANSAC implementation achieves lower MSE on the outputted inlier set, particularly for 

larger σ, and generally achieves a lower MSE between the predicted slope of the fitted line 

and the actual slope. Also, as the outlier ratio and sample size increases, the greater the 

reduction is in the running time achieved by the modified RANSAC over the baseline 

RANSAC algorithm, with processing times well below the 1 second mark without GPU 

acceleration. Thus, by using the modified RANSAC algorithm for robust line estimation, 

the direction line of the faults can be efficiently determined for near real-time drone fault 

tracking. 

Also proposed and developed in this thesis is the Efficient U-Net CNN architecture, based 

upon U-Net, ENet, Squeeze-and-Excitation Networks, and the addition of attention gating 

and an atrous waterfall block inspired by [29]. Further investigated is the importance of 

attention gating, with variations of the cSE, sSE and scSE blocks implemented in different 
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models. Experimental results show that scSE attention gating works well on the larger 

trained datasets, and that in general, AG models outperform the non-AG models in Dice 

score and IoU. Specifically, on visual investigation of the segmented label maps, sSE 

attention gating appears superior, capable of extracting fine, narrow cracks. Also 

investigated is the importance of the atrous waterfall block, in which it was found that 

models including such block generally outperformed the models omitting it, in terms of 

statistical and visual performance. Furthermore, the best performing models from the above 

study are evaluated and compared against versions of the models wherein the standard 

bottleneck blocks are replaced with MBConv blocks. In the larger merged and crack500 

datasets, the MBConv model outperforms the non-MBConv model in Dice score and IoU 

but achieves a lower FPS. All custom models except those tested on the CrackForest dataset 

outperform U-Net, with the MBConv models in the merged and Crack500 datasets 

achieving an increase of 0.0738 and 0.0803 in the Dice score, respectively. Also, all models 

run faster at inference than U-Net, with 18.2 FPS being the highest achieved on 320 × 320 

images processed on a Jetson Nano, compared to 4.7 FPS achieved by the baseline U-Net. 

Thus, the proposed Efficient U-Net model variants can achieve real-time or near real-time 

speeds for fault segmentation on a computationally constrained device, while 

outperforming the baseline U-Net model in both inference speed and segmentation 

capability. This enables the drone to adequately extract the faults in real-time during the 

inspection, which holds promise for larger-scale drone inspection applications. 

7.1 Limitations and Future Work 

For fault segmentation, although the MBConv models achieve a high performance, they 

perform more slowly than their non-MBConv counterparts, despite requiring less 

parameters and computations. This is likely due to the depth-wise convolutions, and as 

such, further running time tests should be performed in the future in which all MBConv 

blocks are replaced with the Fused-MBConv blocks. This way, all depth-wise convolutions 

are replaced with standard convolutions. Furthermore, although the MBConv models 

performed better on some datasets, it is not evident enough from testing how much of this 

performance improvement is due to the addition of attention gating earlier in the networks. 

Thus, further network modifications are needed to better determine the impact of early 
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attention gating. Also, not tested is the impact of introducing pixel tolerances on 

segmentation performance. As noted in related works, pixel tolerances can help handle 

annotation inconsistencies across different datasets and can result in considerable 

improvement in statistical results, as shown in [29].  

Although training is performed on various datasets, it may be advantageous to augment the 

datasets with images of structural defects captured by the camera mounted onto the drone. 

Furthermore, the publicly available datasets used in this thesis are relatively limited in the 

number of images with background noise and occlusion, which further motivates the use-

case of augmentation through the addition of drone-captured images during inspection. 

Also, prior to each round of training, the data batches are randomly selected during 

evaluation; in future studies, using a constant seed to reduce variability in the sampled data 

may be worth consideration. 

In terms of the modified RANSAC algorithm, although promising results are obtained on 

a CPU, modifying the implementation of the algorithm such that it can be executed on the 

GPU for further acceleration is another possible area of future investigation. 

In structural health monitoring (SHM), being able to not only detect the presence of 

structural faults but to also determine where these faults occur on structures is of great 

value for localization in three-dimensional (3D) space. Moreover, being able to visualize 

the spread of the faults and see the bigger picture would allow engineers to make better 

decisions for treating these faults and determining their severity. However, images captured 

via digital cameras are limited in terms of how much information they can capture, given 

that they only provide a two-dimensional (2D) representation of the physical environment. 

Moreover, images taken at a relative proximity to the inspected structure can only capture 

a fraction of entire structure; unless taken from afar, it would be very difficult to garner 

any topological sense of the structure for mapping and 3D reconstruction purposes from 

individual images alone. To address this, it may be advantageous to produce a 3D fault 

map, which maps fault points from a 2D camera coordinate system to a 3D global 

coordinate system. This can be achieved by approximating structural points based on 

sensor distance readings, estimated drone position, and camera pose. Furthermore, 



98 

 

 

 

quantifying the mapped faults in terms of depth, width and spread would help to better 

assess the severity of the structural damage. 

The next step for this system as a whole is to scale it up to a larger drone onto which the 

Jetson Nano may be mounted, along with multidirectional ToF sensors for obstacle 

avoidance and a higher resolution camera for structural image capturing. Such a drone 

should be capable of flying outdoors in varying conditions and be deployed remotely 

without need for manual intervention on-site. Furthermore, the drone should be able to 

locate the structure to travel to via GPS coordinates passed to the system. In the current 

system, the drone is only capable of flying to an x, y coordinate location relative to its 

starting position. Having the drone autonomously navigate around large structures for 

extended periods of time can easily drain its battery life, thus calling for the need to 

synchronize multiple drones for continuous inspection. 
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Appendices 

Appendix A: Experimental Results 

Table 13: Running times and FPS on a Jetson Nano (Fastest times bolded) 

Jetson Nano 

 

Time per image (ms) FPS 

320 × 320 640 × 360 320 × 320 640 × 360 

U-Net (Baseline) 213 465 4.7 2.2 

EU-Net + scSE 68 139 14.7 7.2 

MBConv-EU-Net + scSE 126 269 7.9 3.7 

EU-Net + AWF + scSE 83 158 12.1 6.3 

MBConv-EU-Net + AWF + scSE 132 274 7.6 3.6 

EU-Net + sSE 55 110 18.2 9.1 

MBConv-EU-Net + sSE 103 223 9.7 4.5 

EU-Net + AWF 59 118 16.9 8.5 

MBConv-EU-Net + AWF 124 259 8.1 3.9 

 

Table 14: Running times and FPS on a GeForce GTX 1060 (Fastest times bolded) 

GeForce GTX 1060 

 

Time per image (ms) FPS 

640 × 360 1280 × 720 640 × 360 1280 × 720 

U-Net (Baseline) 27 104 37.0 9.6 

EU-Net + scSE 40 96 25.0 10.4 

MBConv-EU-Net + scSE 75 245 13.3 4.1 

EU-Net + AWF + scSE 44 103 22.7 9.7 

MBConv-EU-Net + AWF + scSE 84 247 11.9 4.0 

EU-Net + sSE 25 44 40.0 22.7 

MBConv-EU-Net + sSE 63 189 15.9 5.3 

EU-Net + AWF 28 47 35.7 21.3 

MBConv-EU-Net + AWF 67 202 14.9 5.0 
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