
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-29-2022 11:00 AM

Developing an Efficient Real-Time Terrestrial Infrastructure Developing an Efficient Real-Time Terrestrial Infrastructure

Inspection System Using Autonomous Drones and Deep Learning Inspection System Using Autonomous Drones and Deep Learning

Marlin Manka, The University of Western Ontario

Supervisor: Haque, Anwar, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Marlin Manka 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Manka, Marlin, "Developing an Efficient Real-Time Terrestrial Infrastructure Inspection System Using
Autonomous Drones and Deep Learning" (2022). Electronic Thesis and Dissertation Repository. 8834.
https://ir.lib.uwo.ca/etd/8834

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8834?utm_source=ir.lib.uwo.ca%2Fetd%2F8834&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Unmanned aerial vehicles (UAV), commonly referred to as drones (Dynamic Remotely

Operated Navigation Equipment), show promise for deploying regular, automated

structural inspections remotely. Deep learning has shown great potential for robustly

detecting structural faults from collected images, through convolutional neural networks

(CNN). However, running computationally demanding tasks (such as deep learning

algorithms) on-board drones is difficult due to on-board memory and processing

constraints. Moreover, the potential for fully automating drone navigation for structural

data collection while optimizing deep learning models deployed to computationally

constrained on-board processing units has yet to be realized for infrastructure inspection.

Thus, an efficient, fully autonomous drone infrastructure inspection system is introduced.

Using inertial sensors, mounted time-of-flight (ToF) and optical sensors to calculate

distance readings for obstacle avoidance, a drone can autonomously track around

structures. The drone can localize and extract faults in real-time on low-power processing

units, through pixel-wise segmentation of faults from structural images collected by an on-

board digital camera. Furthermore, proposed modifications to a CNN-based U-Net

architecture show notable improvements to the baseline U-Net, in terms of pixel-wise

segmentation accuracy and efficiency on computationally constrained on-board devices.

After fault segmentation, the fault points corresponding to the predicted fault pixels are

passed into a custom fault tracking algorithm; based on a robust line estimation technique,

modifications are proposed using a quadtree data structure and a smart sampling approach.

Using this approach, the drone is capable of following along faults robustly and efficiently

during inspection to better gauge the extent of the spread of the faults.

Keywords

UAV, Drone Infrastructure Inspection, Structural Health Monitoring, Robust Line

Estimation, Deep Learning

iii

Summary for Lay Audience

Timely and high-quality structural inspections are necessary. However, manual inspection

practices are still widely adopted, which have proven to be costly, time-consuming, and

risky to inspectors who must manually assess these structures close-up. Technological

advances in recent years have opened the possibility of automating parts of the inspection

process: the data collection process and the analysis of collected data. Aerial vehicles called

drones can be controlled by an offboard pilot and are beginning to be used to perform close-

up structural inspections as opposed to humans. Instead of human senses and hand-held

apparatuses respectively collecting qualitative and quantitative measurements, cameras and

other sensors can be mounted on the drone to automatically collect this information during

fly-by. However, processing this information is difficult on drones, due to their limited

processing capabilities. Sensors also enable the possibility for fully autonomous navigation

without the need for a human pilot. Yet, most current applications of drones for structural

inspection require drones to be manually piloted.

Thus, proposed is a fully autonomous inspection system that uses a drone that can navigate

on its own without the need for a manual pilot. This drone, mounted with a camera, can

collect and process images during structural inspection in an efficient manner, to extract

possible structural defects and faults (such as cracks) in live time, while also tracking along

these faults during the inspection.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Anwar Haque, for his guidance and inspiration for

new ideas. I would also like to thank Dr. Haque for providing a lab space for drone testing

and development, and for his continual involvement in the progress of our work.

Next, I would like to thank Kirk, Muhammad, Jerry and Bhavya, graduate students whom

I had the pleasure of working alongside in the lab. I learned a lot from them and found great

value in sharing ideas together. I would also like to thank Gopi, a former graduate student

under Dr. Haque’s supervision, who helped set me on the right track in terms of drone

development. Also, special mention to Dr. Ayan Sadhu, who provided me with insights

into his lab work regarding structural health monitoring, which inspired my deep learning

approach.

Finally, I would like to thank my family and friends who have supported me throughout

the entire journey of my graduate studies.

v

Table of Contents

Abstract ... ii

Summary for Lay Audience ... iii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... viii

List of Figures ... x

Chapter 1 ... 1

1 Introduction .. 1

1.1 Challenges of Drone Infrastructure Inspection ... 2

1.1.1 Manual Operational Constraints .. 2

1.1.2 On-board Computational Constraints .. 3

1.2 Thesis Contribution ... 3

1.3 Thesis Outline ... 4

Chapter 2 ... 6

2 Background .. 6

2.1 Defining Structural Faults ... 6

2.2 Identifying Faults in Images ... 7

2.2.1 Edge Detection ... 8

2.2.2 Deep Learning .. 9

2.3 Drones ... 17

2.3.1 Classifying Drones ... 17

2.3.2 Drone Connectivity .. 18

vi

Chapter 3 ... 20

3 Literature Review ... 20

3.1 Analysis of CNN-Based Fault Assessment Approaches 20

3.1.1 Image Classification ... 20

3.1.2 Object Detection .. 22

3.1.3 Semantic Segmentation .. 25

3.2 Analysis of Drone-Based Inspection Solutions .. 30

Chapter 4 ... 35

4 Proposed Autonomous Drone Inspection System .. 35

4.1 High-Level Architecture ... 35

4.1.1 Autonomous Infrastructure Tracking ... 36

4.1.2 Image Processing ... 37

4.2 System Design Choices... 38

4.2.1 Drone Communication ... 38

4.2.2 Inter-Module Communication ... 38

4.3 Development Platforms .. 39

Chapter 5 ... 43

5 Drone Tracking Method ... 43

5.1 Structural Tracking ... 43

5.2 Fault Tracking ... 45

5.3 Evaluation Criteria .. 50

5.4 Experimental Results .. 51

Chapter 6 ... 56

6 Pixel-wise Fault Segmentation ... 56

vii

6.1 Analysis of Architectures Designed for Efficiency and Performance 56

6.1.1 Efficient Neural Network (ENet) ... 56

6.1.2 Squeeze-and-Excitation Networks ... 58

6.1.3 MobileNets ... 61

6.1.4 EfficientNets .. 64

6.2 Proposed Efficient U-Net Architecture ... 65

6.2.1 Network Architecture ... 65

6.2.2 Design Choices .. 69

6.2.3 Proposed Modifications to Efficient U-Net ... 71

6.3 Evaluation Criteria .. 74

6.3.1 Training Metrics ... 74

6.3.2 Validation Metrics ... 75

6.3.3 Model Complexity Metrics .. 77

6.4 Experimental Results .. 78

6.4.1 Data .. 78

6.4.2 Evaluation .. 79

Chapter 7 ... 95

7 Discussion and Conclusions ... 95

7.1 Limitations and Future Work .. 96

Bibliography ... 99

Appendices .. 106

Curriculum Vitae .. 107

viii

List of Tables

Table 1: Summary of 10 CNN Image-Based Drone Infrastructure Inspection Papers

Published between 2017-2022 ... 32

Table 2: Comparison of processing and memory specifications 80

Table 3: Comparison of the best validation results of the proposed Efficient U-Net model

and its variants on the merged dataset ... 83

Table 4: Comparison of the best validation results of the proposed Efficient U-Net model

and its variants on the Crack500 dataset .. 83

Table 5: Comparison of the best validation results of the proposed Efficient U-Net model

and its variants on the GAPs384 dataset .. 83

Table 6: Comparison of the best validation results of the proposed Efficient U-Net model

and its variants on the CrackForest dataset .. 84

Table 7: Comparison of the parameter and computational efficiency 88

Table 8: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv Efficient U-

Net models on the merged dataset ... 92

Table 9: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv Efficient U-

Net models on the Crack500 dataset .. 92

Table 10: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv Efficient

U-Net models on the GAPs384 dataset ... 92

Table 11: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv Efficient

U-Net models on the CrackForest dataset ... 92

Table 12: Comparison of the model size, number of parameters and computational

efficiency .. 94

ix

Table 13: Running times and FPS on a Jetson Nano (Fastest times bolded) 106

Table 14: Running times and FPS on a GeForce GTX 1060 (Fastest times bolded) 106

x

List of Figures

Figure 1: Deep Neural Network [88] ... 10

Figure 2: Convolutional Neural Network with Fully Connected Layers [85] 11

Figure 3: FCN performing semantic segmentation. The number of channels (feature space

size) produced by each convolutional layer is indicated [42] .. 14

Figure 4: Residual block in ResNet [28].. 17

Figure 5: Left – rotary-wing drone [89]; right – fixed-wing drone [90] 18

Figure 6: Crack detection result shown with bounding boxes [57] 23

Figure 7: Output of an FCN used for semantic segmentation of cracks 26

Figure 8: Progressively finer output label maps [42]... 27

Figure 9: U-Net Architecture [43] ... 28

Figure 10: 3 × 3 convolutions with different dilation rates: (a) – 1, (b) – 2, (c) – 4 [29] ... 29

Figure 11: A fire module used in Squeeze U-Net [45] .. 30

Figure 12: High-Level Proposed System Architecture .. 35

Figure 13: The Crazyflie 2.X system architecture [80] ... 40

Figure 14: AI-deck system architecture [61] ... 41

Figure 15: (a) Changing the drone direction of motion; (b) rotating the drone 44

Figure 16: Spatial representation (top) and conceptual representation (bottom) of quadtrees

[84] ... 47

Figure 17: Top left – Point set. Top right – a generated candidate line intersecting a

quadtree (represented as voxels), with the dashed lines representing the inlier threshold.

xi

Bottom Left and Right – the complete quadtree, approximating the density of the points

[65] ... 48

Figure 18: Mapping extracted fault points to x, y coordinate view frame: (a) more points in

the mapped to the upper half of the view frame; (b) more points in the mapped to the lower

half of the view frame; (c) loop closure detected .. 50

Figure 19: The MSE between the resulting line of best fits and corresponding inliers at

different standard deviations of the data .. 52

Figure 20: The MSE between the predicted slopes and actual slopes at different standard

deviations of the data ... 53

Figure 21: The relationship between the number of points and the running time when σ =

10.. 54

Figure 22: The relationship between the number of points and the running time when σ =

20.. 54

Figure 23: The relationship between the number of points and the running time when σ =

40.. 55

Figure 24: Performance of the modified RANSAC algorithm on detection of a line with

Gaussian noise (left) and on detection of points associated to a crack (right) 55

Figure 25: (a) ENet initial block; (b) ENet down-sampling bottleneck block [63] 57

Figure 26: An cSE block, the conventional SE block [67] .. 59

Figure 27: An sSE block [67] .. 60

Figure 28: An scSE block [67] ... 60

Figure 29: The architecture of (a) a residual block and (b) an inverted residual block [68] 62

Figure 30: The impact of the inclusion and location of shortcut residual connections on the

accuracy and number of operations [68] .. 62

xii

Figure 31: The impact of non-linearity on the accuracy and number of operations [68] 63

Figure 32: The differences between an MBConv and Fused-MBConv block [70] 65

Figure 33: Proposed Efficient U-Net Architecture. Blue blocks represent feature maps,

with the width denoting feature space and height denoting resolution 66

Figure 34: Encoder block in Efficient U-Net ... 67

Figure 35: Atrous Waterfall Block included in the bottleneck layer of Efficient U-Net. A

feature map of 256 channels is taken in as input and the final 1 × 1 convolution reduces the

output channel space to 128 channels .. 68

Figure 36: Attention Gate in Efficient U-Net .. 68

Figure 37: Implemented SE block variants in the decoder block of the network: (a) sSE

block; (b) scSE block ... 72

Figure 38: Modifying the proposed Efficient U-Net with (a) two Fused-MBConv blocks in

the encoder and (b) two MBConv blocks in the bottleneck ... 73

Figure 39: The Precision-Recall Curves (PRC) and corresponding AUPRC scores for the

Efficient U-Net models without the atrous waterfall block ... 84

Figure 40: The Precision-Recall Curves (PRC) and corresponding AUPRC scores for the

Efficient U-Net models with the atrous waterfall block .. 85

Figure 41: The image, ground truth, and corresponding predicted label maps of each model

version on the merged dataset .. 86

Figure 42: The image, ground truth, and corresponding predicted label maps of each model

version on the Crack500 dataset .. 87

Figure 43: The image, ground truth, and corresponding predicted label maps of each model

version on the GAPs384 dataset .. 87

xiii

Figure 44: The image, ground truth, and corresponding predicted label maps of each model

version on the CrackForest dataset .. 88

Figure 45: The effect of adding the atrous waterfall block and using different attention

gates on the Dice score (achieved on the merged dataset) and number of parameters 89

Figure 46: The effect of adding the atrous waterfall block and using different attention

gates on the dice score and number of computations (GMACs) ... 90

Figure 47: The Precision-Recall Curves (PRC) and corresponding AUPRC scores for the

U-Net (baseline), Efficient U-Net, and MBConv Efficient U-Net models 93

1

Chapter 1

1 Introduction

The maintenance of terrestrial structures, including civil and mechanical structures,

requires timely and periodic inspection. The risk of failure is heightened due to the steep

increase of aging infrastructure in recent years. According to the National Highway System

(NHS) of Canada, between 2006 and 2010, the number of bridges 50 years or older

increased by over 50%, compared to just 10% for bridges less than 10 years old [1]. In the

United States of America, the 2021 Infrastructure Report Card released by the American

Society of Civil Engineers (ASCE) found that 42% of all bridges are 50 years or older,

7.5% of which are structurally deficient [2]. Although structurally deficient bridges are not

necessarily likely to imminently collapse, they require more frequent assessment to

mitigate potential failure [3]. Due to the significant number of older bridges, the emphasis

has shifted to maintaining existing bridges.

However, the rate and quality of inspection have been questioned. In a recent Audit by the

Office of the Auditor General of Ontario, it was found that the Ministry of Transportation

is unaware of whether structural maintenance is being done in a timely manner by separate

regions [4]. Bridges and structures deteriorate at their own rate, and some are at greater

risk of failure than others. Prioritizing frequent monitoring of bridges that are in fair or

poor condition is paramount to early rehabilitation, to prevent further costs in repairs down

the line and mitigate the potential risk of collapse. The quality of inspection is also an area

of great concern. The Ministry of Transportation found numerous instances of missing,

incomplete, or inaccurate inspection files due to incorrect recorded measurements and

limitations in the inspection itself [4].

It is evident that the need for higher quality and more frequent inspection of bridges and

terrestrial structures is greater than ever. However, current manual inspection methods

consume significant man-hours and require expensive equipment and personnel to

coordinate and perform inspections. In the United States of America, the average

inspection cost per bridge is between $4,500 and $10,000 [6]. Furthermore, acquiring and

2

investing in the equipment for manual inspection, such as ladders, under-bridge trucks [5],

man-lifts and scaffolding is costly [7]. Most inspection procedures last several days,

depending on the size of the infrastructure. As a result, the time cost through man-hours

spent manually conducting inspections is significant, limiting the feasibility of more

frequent inspections.

With the recent advances in technology, the potential of improving upon traditional

inspection processes through automation is beginning to be realized and tested. Unmanned

aerial vehicles (UAV) – also referred to as drones – have been realized as a viable solution

to automate infrastructure inspection, providing the possibility for more frequent,

continuous, and high-quality inspections at a lower cost. Drones equipped with sensors and

cameras can enable autonomous navigation, while remotely collecting structural data to be

post-processed for structural health assessment. However, most of the current work focuses

on optimizing parts of the inspection process through automation, while manual

supervision and intervention is still required at some stage.

1.1 Challenges of Drone Infrastructure Inspection

Typically, drones are controlled by an off-board human operator for infrastructure

inspection. As a result, challenges arise due to accessibility and cost limitations. Another

approach is to autonomously control a drone via radio using ground control stations, such

as computers or smartphones, which send position waypoints for the drone to fly to.

Ground control stations can also process data collected by the drone during structural

inspection. However, in remote inspections where the drone must fly beyond the range of

the ground control station and where wireless connectivity is limited, an on-board

companion computer mounted to the drone is a necessary alternative, which presents its

own challenges. Both manually operated and automated approaches present challenges to

inspection.

1.1.1 Manual Operational Constraints

Due to the complexity of some structures, some elements may be inaccessible for close

observation to inspectors. For instance, tall structures present a challenge for close

3

inspection in high and poorly supported areas, such as windmills and cell towers. This

presents a safety risk to inspectors – even with the aid of equipment, the risk of injury and

death is heightened. Drones can help alleviate such risks, as they can be deployed and

manually operated from a safer distance, using a transmitter that sends radio signals to the

drone. The operator would need to be able to see the drone and obstacles around it, either

directly via their line-of-sight or through a camera mounted onto the drone, capable of

streaming a live feed to the operator. However, cameras can provide misleading depth

perception for real-time avoidance. Thus, drones typically rely on other multi-directional

sensors that measure precise distances to nearby objects, although it would be difficult for

an operator to interpret such distance readings in real-time. Also, when inspecting more

complex structures in busy environments, the radio signals from the transmitter can get

obstructed and the operator’s line-of-sight can get occluded, posing an elevated risk of

unintentional drone collision. Moreover, drones need to be manually controlled by an

operator in relative proximity to the inspection site, resulting in notable travel and manual

operational costs that may limit more frequent, regular inspection.

1.1.2 On-board Computational Constraints

The companion computer communicates in close-range with the flight controller, which

responds to commands and controls the speed of the motors accordingly using built-in

sensors. Autonomous navigation makes use of sensors to enable the drone to ‘sense’ its

environment and estimate self-position for localization. For real-time localization,

algorithms must be not only accurate but also efficient; these algorithms must be

inexpensive to enable real-time processing on low-power companion computers.

Furthermore, memory and power-constrained companion computers limit the feasibility of

performing intensive data processing tasks on drones – even more so for real-time

applications.

1.2 Thesis Contribution

Given the limitations that arise due to manual operational costs and on-board power and

memory constraints, the main contribution of this thesis is in realizing an efficient, fully

4

autonomous inspection system using drones. Namely, this thesis aims to address the

following areas:

- Regular deployment of a drone equipped with a camera and sensors that can

autonomously navigate and track around a structure without the need for manual

control, while capturing and sending an image stream to a companion computer for

further processing.

- Pixel-wise extraction and localization of structural faults using a semantic

segmentation deep learning method, with the U-Net architecture at the core.

- Proposal of further modifications to the U-Net architecture to enable accurate, real-

time fault localization on low-power processing units on-board the drone. An

investigation is also conducted to compare the modified architectures with the state-

of-the-art baseline U-Net architecture, in terms of performance and efficiency.

- Real-time fault tracking to better gauge the spread of faults along structural walls

during inspection. Namely, a modified random sampling consensus approach is

used to estimate the fitting line robustly and efficiently for a set of extracted fault

points corresponding to the fault pixels predicted by the deep learning method.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides background information

regarding the types of structural faults, image processing methods for identifying faults,

and the viability of drones for inspection. Chapter 3 provides a literature review of the deep

learning approaches for structural fault assessment and the application of such approaches

for drone inspection. Chapter 4 provides a high-level overview of the proposed inspection

system architecture and platforms developed upon. Chapter 5 provides a more thorough

description of the proposed structural and fault tracking algorithms implemented to address

the goal of accurate and efficient autonomous drone navigation. Chapter 6 proposes a

5

modified deep learning semantic segmentation approach for real-time fault extraction on

low-power edge devices that can be equipped to drones. Finally, in chapter 7, a conclusion

summarizing the findings of the proposed methods along with future enhancements is

provided.

6

Chapter 2

2 Background

This chapter will provide background information about terrestrial infrastructure faults, as

well as image-based approaches for identifying faults. Then, the application of drones is

discussed.

2.1 Defining Structural Faults

There are different types of faults that highlight structural problems. Cracks are a common

fault found on the material surface of infrastructures. Cracks are of particular interest since

they are important to determining the severity of structural damage, based on

characteristics such as crack width, depth and change in direction. Such information is

important to determining how quickly the fault should be repaired before further damage

occurs. Cracks can be classified into two broad groups: active cracks, which are

characterized as long and multidirectional, with noticeable displacement and misalignment

in depth, width, and direction over an area; and dormant cracks, which show no such

change in direction, and are typically characterized as hairlike or irregular [8]. Although

both types of cracks may become enlarged over time, active cracks are particularly

concerning as they may be caused by structural overloading, flaws in the design of the

structure, or detrimental external conditions [9]. Being able to detect and distinguish active

cracks is vital to initiating the timely repair of a structure and preventing failure.

Given that most structural elements use concrete or reinforced concrete, faults that occur

on concrete surfaces that are of notable concern to structural integrity are listed below [8]

[10]:

- Hairline cracks: Thin but deep cracks, which can result in more serious cracking

over time. It is caused by improper settlement of the concrete while curing.

7

- Spalling: Concrete surface depressions in which the parts of the surface have

cracked and delaminated. It is caused by pressure underneath the surface of the

concrete, typically by poorly constructed joints or corrosion in the rebar in the

reinforced concrete. Spalling can result in the corroded metal to become exposed,

which is prone to further corrosion through exposure to air and water, undermining

the integrity of the structural element.

- Scaling: Like spalling, but not as expansive or deep. Delamination occurs as air and

water pockets rise to the concrete surface, forming blisters which break open.

- D-Cracking: Cracks that form parallel to or stem from longitudinal and transverse

joints, due to periodic freezing and thawing. These cracks are deeper than surface

cracks and expand outward towards the center of the concrete element over time.

- Offset Cracking: Cracks where the concrete is at different levels on either side of

the crack. This is due to uneven surfaces below the concrete element.

- Diagonal Corner Cracking: Cracks that form from a corner joint of the concrete

element. These cracks are the result of curling or warping at the corners of the

concrete; since these corners have empty space below them, weight overload from

above structural elements can cause these corners to crack downwards into the

space.

Thus, it is important to not only be able to detect if a fault exists in an inspected area, but

to also localize the region of the fault and determine how it is expanding or changing

direction, to better gauge its severity according to the different fault types.

2.2 Identifying Faults in Images

Structural health monitoring (SHM) is a strategy for continuously evaluating and

monitoring structural health. It is widely adopted as it can dynamically respond to adverse

structural changes [11]. SHM relies on a periodic stream of measurements, which can be

8

provided through contact sensors such as inertial measurement units (IMU), fiber optic

sensors, light detection and ranging (LiDAR) sensors, and ultrasonic wave sensors.

However, in recent times, non-contact sensors such as digital cameras have gained

popularity: they are easy to deploy, cost-effective, and inherently work with image-based

processing techniques with minimal preprocessing. In a camera, each pixel is a sensor, so

it can collect a large amount of structural data, represented as an RGB or grayscale image.

Image-based processing within the field of computer vision has shown promising results

for automated fault identification from images [12].

2.2.1 Edge Detection

Many of the traditional image processing techniques extract features using filter-based

methods. A filter is an operation performed on an image to modify it from its original state.

Commonly, a filter is applied to output a new image highlighting a target feature. The filter

is applied to a neighbourhood of pixels surrounding each pixel in the input image [13].

Therefore, the output of each pixel depends on its neighbourhood and the values encoded

in the filter. In edge detection, filters are used to preprocess images by removing noise and

are the basis for detecting pixels corresponding to edges. Thus, filters are particularly useful

for detecting edges and boundaries that correspond to cracks. Several filter-based methods

that have been tested for crack detection include the fast Haar transform, fast Fourier

transform, Morphological operator, Canny filter and Sobel edge detector. One major

downside of these filter-based methods is that they use local features to determine cracks,

which are susceptible to differing illumination conditions, distortion, local element

material and occlusion from other outdoor elements due to lacking knowledge of the global

context [14].

Moreover, some methods use intensity-thresholding techniques as a post-processing tool

to further distinguish high intensity pixels from low intensity pixels that are often

associated to cracks. Otsu thresholding is a popular thresholding method that aims to

separate pixels into a foreground and background class, wherein the spread of the pixel

intensities mapped to a specific class, also known as the variance, is minimized, while the

variance between the two classes is maximized [15]. However, because cracks typically

9

make up a small percentage of an image and thus only a fraction of the low intensity points,

Otsu thresholding can be unreliable in extracting pixels associated to cracks. Adaptive

thresholding is another method which considers only local neighbourhoods of pixels when

thresholding. However, this method is also vulnerable to similar pitfalls as filter-based

methods. In general, using an intensity threshold is not always reliable, as pixels associated

to noise, stains, and low-reflectance materials can also be classified as low-intensity [16].

Although parameters and features can be fine-tuned to improve detection performance on

specific datasets, it would be difficult to generalize and scale these traditional image-based

approaches to real-world situations.

2.2.2 Deep Learning

Machine learning is an area of artificial intelligence (AI) that has been heavily explored

and tested in SHM research. These approaches rely on large datasets and require powerful

computers for training. The purpose of training is to minimize the error between predictions

and ground truth, by adjusting the parameters, each defining the weighted value of a feature

over a feature space of the dataset. This error can be defined by a loss function or objective

function, which takes the parameters as input, with the goal of finding the optimal

parameter values [12].

Machine learning algorithms rely heavily on features that are acquired from image

processing methods described in section 2.1. Therefore, features must be carefully selected

to obtain meaningful results from machine learning-based algorithms, especially with the

goal of identifying structural faults. Plus, machine learning-based methods have been

shown to be less than suitable for full-scale infrastructures, where fault patterns are too

complex to be captured and defined by a manually-extracted set of features [12].

Deep learning, inspired by the adaptability of the human brain, is a more powerful concept

enabling machine learning to take upon human-like tasks more accurately. Deep learning

is powerful as it is capable of automatically and optimally extracting features as part of the

learning process. The more data provided, the more accurate these algorithms are [12]. The

basis for deep learning methods is neural networks, in which input data is passed through

10

a network of computational layers that operate over the data to get a final classification

result. Each of these layers is connected via neurons, also referred to as nodes. Nodes are

responsible for combining data from previous layers via weighted connections, where each

weight corresponds to the value of the feature that the network learns. The weighted sum

of the inputs is then evaluated by a node’s activation function, to determine the extent to

which the weighted sum will impact the learning process in later layers. For each data

sample, a forward pass is completed through the network, and after each pass, these weights

are adjusted to minimize or optimize the output of a defined loss function. Deep neural

networks (DNN) are essentially neural networks with many computational layers between

an input and output layers, as shown in Figure 1 below. These computational layers, also

known as hidden layers, is where the learning occurs, hence the notion of deep learning.

With multiple hidden layers, these deep networks can learn from many layers of abstraction

as opposed to shallower networks [17].

Figure 1: Deep Neural Network [88]

2.2.2.1 Convolutional Neural Networks

Visual data in the form of images and videos can also be passed into DNNs called

convolutional neural networks (CNN). The motivation behind CNNs for use in structural

fault identification is that they are more robust to external factors such as lighting and fault

irregularities, compared to traditional image processing and traditional machine learning

approaches. It has also been shown that the performance of deep learning-based methods

11

is typically better than traditional methods for detecting faults. However, they require many

training images that account for variations due to external factors representative of the real-

world [14]. Furthermore, CNNs can also be computationally intensive.

Different levels of abstraction of the input image can be learned at different layers of a

CNN. The initial layers typically extract lower-level information, such as edges and

colours, whereas deeper layers later in the network extract higher level features such as

shapes and objects, that provide more contextual information [17]. A CNN consists of

several different types of layers: an input layer, convolutional layers, subsampling layers,

fully connected layers, and an output layer. The input layer is passed a batch of images, in

which each image has a defined width, height and channel size. For example, an input may

consist of A images with height M and width N, and each image is a colour image defined

by three channels of size C: a red, blue, and green channel. Such an input can be defined

as a tensor of shape (A × M × N × C).

Figure 2: Convolutional Neural Network with Fully Connected Layers [85]

Convolutional Layers: A convolutional layer applies a filter, otherwise referred to as a

kernel, over local regions of the input images, performing element-element multiplication

to produce a filter response as an extracted feature map from the images. A convolutional

layer is parameterized by the kernel size, the number of channels, the stride factor, and the

padding [17]. The kernel is a window of size f × f × C, where f is the height and width

equal to or less than the width and height of the input image size. The kernel slides across

the input image, passing over a certain number of pixels at a time, defined as the stride s,

and outputs a new pixel value in the same manner as a traditional filter. The padding p

12

adjusts the size of the output feature map near the borders, which may be useful in

situations where the height and width of the feature map must match that of the input image.

Given that k kernels are applied with a stride s to the input image of resolution M × N, the

convolutional output size Hout × Wout × C can be expressed as follows [18]:

(⌊
𝑀 − 𝑓

𝑠
⌋ + 1) × (⌊

𝑁 − 𝑓

𝑠
⌋ + 1) × 𝑘

The values of k and s are specific to the current convolutional layer and are not necessarily

constant throughout the network. In the case that the output spatial dimensions should

match those of the input spatial dimensions, padding p is applied, which modifies the above

expression as follows:

(⌊
𝑀 + 2𝑝 − 𝑓

𝑠
⌋ + 1) × (⌊

𝑁 + 2𝑝 − 𝑓

𝑠
⌋ + 1) × 𝑘

Activation Function: After each convolutional layer typically follows an activation

function. The activation function is applied to the sum of the values of each pixel in the

kernel, where each pixel is a weight, multiplied with each pixel in the input image within

the receptive field of the kernel. In other words, if there are k kernels to apply, with each

kernel i having a weight matrix Wi, a bias bi, and xs denoting the receptive field captured

by the kernel, applying an activation function a will produce a convolution of xs as follows

[18]:

𝑍𝑖,𝑠 = 𝑎[sum(𝑊𝑖𝑥𝑠) + 𝑏𝑖]

Commonly used activation functions in CNNs introduce non-linearity – this is important

for updating the weights after each forward pass. The process of updating the weights is

called backpropagation. It works by taking the derivative of the loss or objective function

with respect to each of the weights, using the chain rule. These partial derivates are also

referred to as the gradients. Finding such gradients also involves taking the derivative of

the activation functions when passing back through the network. Activation functions take

the input value as its parameter. Hence, when deriving linear activation functions with

respect to the input, the result will be the coefficient of the input, which is a constant. Thus,

13

the weights would only be updated by a constant factor and prevent any real improvement

to the output of loss or objective function. One of the most used non-linear activation

functions is the rectified linear unit (ReLU), a piecewise linear activation function. It is

simple, fast, and results in a more predictable gradient during backpropagation, compared

to other non-linear activation functions.

Subsampling Layers: CNNs also typically have subsampling layers, also referred to as

pooling layers. Their purpose is to down-sample, or reduce the dimensionality of the data,

either by averaging or finding the maximum value in each region of the feature map from

previous layers and passing the resulting value into the next layer. Average pooling refers

to taking the average of a region, whereas max pooling takes the maximum value of a

region.

Regularizer: Optionally, CNNs can also have dropout layers, which act as a regularizer to

prevent overfitting on training data in large networks with many weights. This layer

randomly sets some of the terms in the weighted sum in the output of convolutional layers

to 0 with a pre-determined probability, such that these weighted terms do not contribute to

the forward pass and backpropagation process. By doing this, the reliance between

weighted features is diminished, allowing the network to learn features more robustly on

randomly selected weighted terms [24].

Fully Connected Layers: These layers may also be used in CNNs after several rounds of

convolution and subsampling. These layers follow the structure of a neural network, with

nodes in each layer connected to every node in another layer. There are used when the

expected output of the network is a classification result. However, there are CNNs have

been designed that output an annotated image instead of a class, with the intent of fine-

grain localization of where in an image an object is identified. In such networks, the fully

connected layers are replaced with convolutional layers that up-sample feature maps to an

approximate representation of the original input image. These networks are called fully

convolutional networks (FCNs). Applications include object detection and finer

segmentation of areas of interest in images. Semantic segmentation is a technique used to

label pixels that are associated to separate classes, and is commonly used for multi-class

14

segmentation, although it can also be applied to binary class problems. In Figure 3 below,

an FCN is used to produce a pixel-wise output label map matching the input image

resolution, with the predicted classes annotated.

Figure 3: FCN performing semantic segmentation. The number of channels (feature

space size) produced by each convolutional layer is indicated [42]

Output Layer: In the final output layer, a final classification value for each class or a

segmentation map in the case of semantic segmentation is outputted. Typically, the raw

output values are passed through a SoftMax function, which normalizes the real output

values to a set of real values between 0 and 1, such that all values sum to 1. These

normalized values can be interpreted as probabilities for each individual class, and then

outputs the class with the highest probability as the final classification result. SoftMax can

also be used for multi-class classification. The SoftMax function is a generalization of the

sigmoid function used in binary classification. The SoftMax function is expressed as

follows:

𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

15

2.2.2.2 Network Architectures

There are several key CNN architectures that have been developed, which have proven

instrumental in advancing their performance.

AlexNet: Developed by researchers from the University of Toronto [24], the AlexNet

architecture was keyed as one of breakthrough CNN-based models, trained on a large

image dataset called ImageNet [25]. The ImageNet dataset consists of over 15 million

labelled high-resolution images, classified into around 22,000 categories [24]. AlexNet

trained on this dataset showed a significant reduction in the error rate compared to the state-

of-the art methods at the time and other models trained on ImageNet. The architecture

consists of an initial layer with 11 × 11 convolutional filters, followed by max pooling and

other convolutional layers with filters of varying size, resulting in around 60 million

weights, or parameters. To prevent overfitting, the authors perform transformations on the

images – referred to as augmentations – and use dropouts in the first two fully connected

layers with a probability set to 0.5.

VGGNet: The Visual Geometry Group (VGGNet) was developed by researchers from

Oxford University [26]. It uses smaller 3 × 3 convolutional filters compared to those used

in AlexNet, with a padding of 1 applied to maintain equal dimensionality in the input and

output images. Layers that use these convolutional filters preserve image resolution over

multiple convolutional layers, enabling deeper networks with reduced loss of image

dimensionality. There are several versions of VGGNet, each with a different number of

layers: VGGNet with 11 layers, 13 layers, 16 layers, and 19 layers. The network consists

of between 133-144 million parameters, depending on the number of layers.

GoogLeNet: A deeper CNN-based network developed by researchers in collaboration with

Google [27]. This network consists of 22 layers and roughly 5 million parameters, which

is significantly fewer compared to AlexNet and VGGNet. The reduction in parameters is

attributed to stacked sub-networks called inception modules [12]. A naïve inception

module consists of multiple convolutional filters of different sizes and a max pooling layer

16

performed in parallel, with the outputs concatenated. However, larger convolutional filters,

along with the concatenation of filters leading to many filters passed into subsequent layers,

can result in a significant increase in the number of computations. Thus, a modified version

of this module is also proposed, which performs a projection of the number of filters into

a smaller feature dimensional space. This projection is achieved through 1 × 1 convolution,

preserving the input image width and height while reducing the number of number of

features in an efficient manner. Stacking these projection-based inception modules makes

this network computationally efficient for deeper learning.

ResNet: More layers can be beneficial to the learning process to a certain extent. However,

the more layers added, the closer the gradients of the loss function computed through

backpropagation tend towards zero, impeding a deep network’s ability to train effectively.

This is referred to as the vanishing gradient problem, which has largely been addressed

through the initial and intermediate batch normalization of the data [28]. Another issue

with deep networks is known as the degradation problem: a phenomenon that causes the

accuracy to get saturated with increased network depth. In [28], a residual network

architecture called ResNet is proposed to address degradation. The authors found that the

loss of accuracy can be attributed to diminishing returns in what each deeper layer learns.

That is, deeper layers that learn very little, which are sequentially connected to previous

layers, will obscure the outputs computed in earlier layers, as these deep layers tend

towards learning the zero function. In a residual network, residual blocks (as shown in

Figure 4) take the output from earlier layers and add them to the output of latter layers.

This way, the network saves what was previously learned as an identity map (an unchanged

output) and adds this identity to subsequent outputs in deeper layers. Consequently,

residual networks tend towards learning the identity function rather than the zero function.

It has been shown that the deeper the residual networks, the lower the error rate, while also

being efficient in terms of the number of parameters as deeper networks can facilitate the

feasibility of many small layers.

17

Figure 4: Residual block in ResNet [28]

2.3 Drones

Drones are key area of research and have been realized to have great potential for a wide

variety of real-world applications, such as the delivery of goods, search and rescue

missions, agriculture, and surveillance. Drones have also been verified to be safe, cost

effective, and operable to the extent of being used for SHM purposes. Drones equipped

with high-resolution cameras that capture high-quality images are proving a more reliable,

cost-effective, and safe alternative that keeps inspectors distanced from potential hazards.

Moreover, the images captured by drones provide comparable results to traditional

inspection practices, especially for identifying faults such as spalling and cracks [3]. In a

recent survey of state departments of transportation (DOT) within the United States of

America, 56% of respondents stated that they were currently using or planning to use

drones for bridge inspections, illustrating their growing use and applicability in the industry

[19].

2.3.1 Classifying Drones

There are two main types of drones: rotary-wing and fixed-wing drones. Rotary-wing

drones have multiple rotors, such as quadcopters. Fixed-wing drones have a single rigid

wing akin to airplanes. As a result, the fixed-wing only requires energy to move the drone

forward as it lifts rather than rotary-wing drones that spend energy to maintain their vertical

height while moving forward. This makes fixed-wing drones more energy-efficient and

allows them to have a longer battery life compared to rotary drones. With this longer battery

18

life comes increased flight time, which is ideal for tasks such as drone delivery over long

distances. On the other hand, rotary-wing drone are preferred for tasks such as surveillance,

search, and inspection, due to their high maneuverability and hovering capabilities [20].

Figure 5: Left – rotary-wing drone [89]; right – fixed-wing drone [90]

2.3.2 Drone Connectivity

Typically, drones are controlled by an off-board operator via radio transmission. A drone

can be equipped with a radio receiver that responds to controls from an operator-controlled

radio transmitter. Drones can also be controlled via radio by ground control stations, such

as computers or smartphones, which send position waypoints for the drone to fly to. A

common configuration is to have a radio connected to the ground control station, which

sends data via wireless telemetry to the radio receiver on the drone. More specifically, the

drone can communicate with the ground control station on specific radio frequency bands

– most drones operate at frequencies of 2.4 GHz and 5.8 GHz. At lower frequencies, drones

can travel further from ground control stations, travelling up to 6-7 km but at lower data

rates compared to higher frequency bands. Ground control stations can also communicate

with the drone via Wireless Fidelity (Wi-Fi) telemetry, which has higher data rates but

shorter range than telemetry radios [21]. Existing ground control station software can also

be used to create autonomous missions by setting pre-determined waypoints or regions of

interest. Through the ground control station, missions can be uploaded to the drone’s flight

controller via telemetry. The flight controller is the brain of the drone, responding to

commands and controlling the speed of the motors accordingly using built-in sensors.

19

However, in remote applications where the drone must fly beyond the range of the ground

station, an on-board companion computer that is mounted to the drone is a necessary

alternative. The companion computer communicates in close-range with the flight

controller via a serial cable connected directly to the flight controller or Wi-Fi [22].

Commonly used companion computers on drones are based upon the open-source,

programmable Arduino circuit boards, which are lightweight and portable

microcontrollers.

To correctly respond to waypoint position commands, drones require a positioning system

to position themselves accurately in the world. As a result, most drones used in outdoor

settings require the Global Positioning System (GPS) and a GPS signal receiver for

positioning. For the most part, GPS works adequately well in open outdoor spaces, but

suffers from signal occlusion in congested areas, such as near large infrastructure, which

can hamper the drone’s ability to accurately position itself. GPS-based navigation, coupled

with autonomous localization and positioning that uses sensors to enable the drone to

‘sense’ its environment and estimate self-position, is a solution to this problem. Drones

send back position estimation data to the companion computer as feedback that these

algorithms take in to continuously update the drone’s position for autonomous flight.

Besides providing drone position data, drones can also send task-specific data, such as

sensor readings and images, that can be processed in real-time or offline. Processing

information, particularly images, using deep learning with CNNs for the purposes of

extracting semantic information, such as identifying faults in images for the purposes of

SHM, can be highly intensive – more so performing such operations in real-time. Hence,

on-board companion computers with limited processing capabilities present restrictions for

these applications.

20

Chapter 3

3 Literature Review

This chapter will provide an analysis of the CNN image-based structural fault assessment

approaches. Ways of making these approaches more computationally efficient are

discussed, as well as the extent to which image-based solutions are being used in drone-

based infrastructure inspection.

3.1 Analysis of CNN-Based Fault Assessment Approaches

CNNs have become a heavily researched area of image-based processing since the early

2010s. Although CNNs were first introduced in the 1990s, limited training data and

computational resources were available at the time. With larger datasets becoming widely

available in online public domains, along with increased computing power through

Graphics Processing Units (GPU) enabling parallel processing of data, training these deep

learning algorithms to achieve accurate results within a reasonable time frame has become

a more attainable task for various image processing tasks, including SHM.

3.1.1 Image Classification

An area of interest in image processing is distinguishing observations with similar features

into individual classes, known as classification. Binary classification consists of predicting

observations to be in one of two classes, rather than more than two classes in the more

general multi-class classification case. A binary classifier determines which class an

observation belongs to, based on a probability and threshold value: the probability value,

with respect to the threshold, determines whether the observation belongs to one class or

another. Thus, the resulting output to a binary classifier is a categorical value, typically

denoted as ‘0’ or ‘1’.

This binary classification approach is important to single out a specific target amongst

observations, which is especially useful in the case of identifying anomalies. As a result,

binary classification techniques have been used extensively to identify faults in structural

21

images. CNNs are commonly used to facilitate binary classification of images, where each

image is assigned a class label. Thus, distinguishing fault images is a matter of identifying

the existence of faults in an image, rather than localizing them. Typically, in the context of

classifying structural images, the typical structure of CNNs – as described in section 2.2.2.1

– is followed, with fully connected layers following the convolutional layers. However, the

fully connected layers can be replaced by other final classifier layers. In [17], the authors

perform a comparison between different classifiers for pavement crack detection in images.

Using a base VGG-16 (VGGNet with 16 layers) pre-trained on ImageNet, they replace the

fully connected layers with a single layer neural network classifier, a Support Vector

Machine (SVM) and Random Forest (RF) classifier.

Due to the rarity in occurrence of faults in images, classes tend to be unbalanced, with most

observations falling into the non-fault class. This can negatively impact the learner, as it

would tend to classify observations as part of the non-fault, or negative class rather than

classify them as part of the fault, or positive class. This can lead to an increase in false

negatives, in which the classifier incorrectly outputs that an observation is a non-fault when

in fact it is. Different approaches are proposed to mitigate this phenomenon. One approach

is to weigh the positive class more heavily during the training process such that false

negatives are penalized more heavily. In [31], a class-balancing weight is introduced to

balance the contribution of the positives and negatives to the loss in detecting pavement

cracks. Another approach is to intentionally resample positive-labelled samples, called

oversampling. Also, particularly in the case of semantic segmentation, a crude yet effective

approach is to take smaller crops of images that contain a greater fraction of the positive

class than the entire image. In [30], an algorithm is implemented to extract random patches

from training images of pavement surface cracks for pixel-level segmentation, such that

each patch contains 60% of the target, or ‘crack’ class. The authors find that this ratio

optimizes the precision while minimizing the false positive rate. Another more novel

approach for semantic segmentation is used in [29], in which pixel-level crack

segmentation is performed. Due to cracks being narrow and having a small area relative to

the entire image, the authors find that the pixel annotation inaccuracies deter the

performance of their CNN-based classifier. To handle this, they use pixel tolerances to

allow positively labelled pixels by the classifier within a certain pixel range of a true label

22

to be considered a true positive. They find this significantly improved the performance of

their classifier.

Another issue is that the images collected for training and validation are usually captured

using high-resolution cameras. However, passing large, high-resolution images into a CNN

is highly inefficient as the number of convolutional operations increases significantly.

Some pre-trained networks also require that images of a relatively small, fixed size be

passed in. Plus, large images need to be down-sampled significantly, and as a result,

information describing relatively small, yet complex faults can get reduced or lost, given

that faults cover a small proportion of entire images [32].

In [33], a GoogLeNet-based network is applied to images of concrete bridge surfaces to

identify crack images. The authors use Inception modules to enhance the efficiency of their

network. Moreover, 1,455 images with 4,160 × 3,120 pixel resolutions are collected. These

images are cropped into smaller images of 256 × 256 pixels, which increases the dataset

size to 60,000 images, providing more data for the model to train on. These cropped images

are also downsized to 224 × 224 to match the required input size for the GoogLeNet

architecture. In [32], images are divided into grids of different scales for road crack

detection. The authors reason that due to the weights of the cracks being small relative to

other larger-scale features in the images, crack information is limited. They argue it is

necessary to divide the image such that the weight of the cracks in the individual patches

becomes more significant. In this way, each grid is evaluated as a separate image to be

classified. In [34], a sliding-window approach is used to scan across patches of crack

images larger than 256 × 256 pixel resolutions. These patches are passed into a custom-

trained CNN, classifying each patch of the original image separately.

3.1.2 Object Detection

The key difference between image classification and object detection in images is the

ability for a classifier to localize the areas of faults from a single input image. CNNs can

be repurposed as object detectors that output not only whether a fault exists in certain

regions of an input image, but also the coordinates enclosing the regions where these faults

occur [38] [39] [41] [54] [55] [57].

23

Figure 6: Crack detection result shown with bounding boxes [57]

A sliding window approach, as discussed in section 3.1.2, can be used to scan across small,

sequential patches of an input image in a brute-force manner. However, this would be very

computationally expensive for object detection, as many different locations and scales

encapsulating possible objects of varying size and aspect ratio in the image would need to

be considered and fed into a CNN. To address this, Region-Proposal Networks (RPN) use

traditional image processing techniques to identify edges and shapes, to output a set of

rectangular regions of interest where objects are likely to occur in an image. This set of

proposed regions is much smaller than the number of regions considered by the brute-force

method, making it more computationally feasible to feed through a CNN. In [35], RPNs

are combined with CNNs to produce regions with CNN features, called R-CNN. A faster

and more performant alternative is proposed in [36], coined as Fast R-CNN: instead of

taking crops of proposed regions separately, Fast R-CNN feeds the entire image through

convolutional layers to produce a feature map from which region proposals are extracted.

By using a feature map, the network shares computations. Although this method is shown

to be more computationally efficient than previous methods, the region proposal stage is

still a bottleneck. Thus, Faster R-CNN is introduced in [37] to allow the network to predict

24

region proposals through a unified network. The authors also draw a comparison to

methods that use pyramids of images and feature maps at different scales, for multi-scale

feature extraction. They note that although multi-scale feature extraction may be superior

in terms of accuracy, Faster R-CNN is considerably faster. In [38], a Faster R-CNN-based

structural vision inspection method is proposed for quasi real-time detection of multiple

damage types.

Nevertheless, multi-scale feature extraction is still a prevalent method for object detection,

including fault detection. Modifications to multi-scale feature pyramid networks have

shown promise for fault detection in real-time applications. In [39], a real-time crack

detection algorithm for pavement crack detection is developed using a CNN with multi-

scale feature layers. The initial convolutional layers are based on a truncated VGG-16

network which outputs feature maps. The feature maps are then passed into a multi-scale

feature extraction block, where for each feature map at a different scale, the feature map of

the next layer is computed and the predicted bounding boxes at the current scale are

produced through 3 × 3 kernel convolutions. After this block, the predicted boxes from

different feature maps are summed together in the output. Instead of fully connected layers,

convolutional layers are used to allow for input images of varying sizes. Furthermore,

convolutions reduce the amount of memory and computations required compared to fully

connected layers; the fully connected layers consider all possible weighted connections

between neurons in different layers, whereas convolutional layers only consider

connections based on spatially local features. Using this methodology, the authors achieve

a high accuracy while reaching a detection rate of 96.6 FPS on video frames of resolution

576 × 1,024.

The aforementioned methods apply a model to an image at multiple locations and scales.

Another approach is to apply a single convolutional network to the entire input image and

simultaneously predict bounding boxes and class probabilities for each box. One such

approach is called You Only Look Once (YOLO) [40]. Unlike region-proposal based

approaches, YOLO can garner greater contextual information by looking at the entire input

image. Furthermore, it is fast, making it suitable for real-time detection. In [41], YOLOv3,

25

a newer version of the original YOLO, is modified to develop a lightweight aircraft crack

detection system, YOLOv3-Lite. The system is comprised of a backbone network to extract

crack features, a feature pyramid that combines crack features from different scales, and a

YOLOv3 module to perform bounding box regression. In the backbone network, the

authors use depth-wise separable convolutions, which is a form of factorized convolutions

that reduces the number of multiplication operations and parameters of a standard

convolution. Namely, depth-wise separable convolutions separate a standard convolution

into two parts: a depth-wise convolution that applies a single filter to each channel of the

input image, and a point-wise convolution that applies 1 × 1 convolutional filters to

combine the channel outputs from the depth-wise convolution. The authors in [41]

highlight a reduction in the number of computations by 8 to 9 times, compared to a standard

convolution. A feature pyramid is then employed to capture crack feature maps at different

scales, which are combined through concatenation of these feature maps using residual

connections. Through concatenation, the fusion of lower-level features from large feature

maps and higher-level semantic contextual features from small feature maps can effectively

be achieved. Since smaller feature maps have a larger receptive field, larger cracks can be

detected, whereas larger feature maps have a relatively smaller receptive field, making it

possible to detect smaller, narrower cracks. The detection speed of YOLOv3-Lite is 50%

faster than that of YOLOv3, while achieving an average precision close to that of YOLOv3.

3.1.3 Semantic Segmentation

Although object detection methods can localize the area of an object in an image,

sometimes it is necessary to extract finer-level details about an object, such as its pose,

shape, and spatial dimensions. Particularly with faults, it is advantageous to extract more

detailed information about their width, height, and spread to better gauge their severity.

Thus, pixel-wise segmentation of an image would be ideal to ascertain such details. In

semantic segmentation, each pixel is assigned a class label. Fully convolutional networks

(FCN) have been shown to be superior to other semantic segmentation approaches, in terms

of performance and efficiency [42] [48] [49]. The output to an FCN that classifies each

pixel as either a fault or background class is a segmented label map that annotates the

classes of interest [29] [30] [31] [44] [48] [49] [53] [59].

26

Figure 7: Output of an FCN used for semantic segmentation of cracks

To retrieve a label map, down-sampled feature maps are up-sampled to the matching spatial

dimensions of the input image, with the number of output feature channels denoting the

number of classes to be labelled. However, simply up-sampling from a down-sampled

feature map that encodes high-level features results in a loss of finer details. As shown in

[42], up-sampling by a stride factor of 32 from the final down-sampled feature map results

in a very coarse output label map – this network is denoted FCN-32. To retrieve a finer,

more detailed map, the feature maps from a shallower layer with lower-level details are

fused with the deep, coarse up-sampled feature maps, similar to feature pyramids. The

authors denote the copying of shallower layers as skip connections. In their

implementation, a 1 × 1 convolution is applied to the feature map passed through each skip

connection, before being fused with the corresponding up-sampled feature map through

element-wise addition. The up-sampling layer increases the spatial dimensions of the

feature map from the deeper layer by a factor of 2. Up-sampling is performed here through

bilinear interpolation, which takes the distance-weighted average of the four nearest pixels

to compute the resulting up-sampled pixel. The authors in [42] compare the fusion of the

second-deepest layer with a final up-sampling layer of stride 16, denoted FCN-16, and the

fusion of the third and second-deepest layers with a final up-sampling layer of stride 8,

27

denoted FCN-8. The results show progressively finer output maps, with FCN-8 achieving

the best precision.

Figure 8: Progressively finer output label maps [42]

A well-known FCN-based network is SegNet [47]. This network consists of two main

parts: an encoder that down-samples the feature maps at each step to gather greater context,

and a decoder that reconstructs the segmented output image map through up-sampling

layers. For each block in the encoder, there is a corresponding decoder block. The encoder

consists of 13 convolutional layers from VGG-16. At the max-pooling step of each encoder

block, the pooling indices are saved and passed to the corresponding decoder block via a

skip connection, which is used to produce the sparse up-sampled feature maps. By passing

the pooling indices instead of entire feature maps, the network memory is reduced. In [48],

a SegNet-like network is proposed for segmentation and density evaluation in concrete

surfaces. In [49], A pavement crack recognition system is developed using SegNet, in

which the authors show its superior performance over FCN-8.

Expanding upon the idea of skip connections, [43] proposes an FCN-based end-to-end

architecture for biomedical image segmentation, called U-Net. Similar to SegNet, the

architecture of U-Net consists of an encoder as the contracting path, and a symmetric

decoding expansive path that enables precise localization of low-level features. Unlike

SegNet, in the contracting path, before down-sampling, a skip connection passes the entire

feature map from the current block to the corresponding level in the expansive path, where

28

it is concatenated with an up-sampled feature map. The up-sampling layer consists of a

bilinear interpolation followed by a 2 × 2 convolution that halves the number of feature

channels. At each block of the contracting path and corresponding expansive path

following the up-sampling and concatenation, two VGGNet-inspired unpadded 3 × 3

convolutions are applied. The U-Net architecture achieves very good performance for

biomedical applications. U-Net has also been widely used for fault-based image

segmentation, as it is able to perform segmentation precisely and efficiently.

Figure 9: U-Net Architecture [43]

In [29], the authors propose modifications to improve the performance of U-Net for defect

segmentation. One improvement is the addition of residual blocks at each block of the

contracting and expanding paths, based on the residual connections introduced in ResNet.

Another improvement is the inclusion of dilated convolutions that expand the kernel size

by skipping pixels in the receptive field. By applying dilation at different rates, multiscale

context can be extracted.

29

Figure 10: 3 × 3 convolutions with different dilation rates: (a) – 1, (b) – 2, (c) – 4

[29]

The authors in [29] propose applying multiple dilated convolutions in the bottleneck layer

of U-net, which connects the output of the contracting path with the input of the expansive

path. Furthermore, the authors note that instead of applying these dilated convolutions in

parallel, a waterfall scheme that reuses the output of one dilation convolution as input to

the next dilation convolution can outperform the parallel approach for segmentation tasks.

A final addition is an attention block applied before the concatenation of the skipped

connection and up-sampled feature map at each level. The attention block is used to

amplify relevant information from the previous up-sampled layer while reducing the

impact of background features. Testing combinations of these modified architectures on

three different crack-based datasets, it was found that networks with residual blocks and

the dilated convolutions outperformed the base U-net on all datasets, whereas the waterfall-

based dilated approach and inclusion of attention block resulted in improved performance

on one of the respective datasets.

Another U-Net based approach for pavement crack segmentation is proposed in [44].

Similar to [29], residual blocks are used in the contracting path, using a pretrained ResNet-

34 network. In the expansive path, fire modules, introduced by the SqueezeNet architecture

[50], are applied after concatenation. A fire module consists of a projection that decreases

the feature space, and two parallel paths of different convolutional filter sizes to capture

missing features from the previous layer, from which the outputs of each path are

concatenated. Fire modules are very similar to the inception modules used in GoogLeNet.

30

Figure 11: A fire module used in Squeeze U-Net [45]

Fire modules are shown to improve the performance of the base U-Net architecture.

Moreover, fire modules reduce the number of parameters considerably compared to a

standard convolution, making them useful for real-time applications where computational

power is limited. In [45], the authors propose a network called Squeeze U-Net that uses

fire modules for efficient image segmentation. They are used in [46] to enable real-time

segmentation for autonomous driving.

3.2 Analysis of Drone-Based Inspection Solutions

In this section, a review of the studies that use image processing methods for drone

structural fault inspection is conducted. Given the prevalence of deep learning for SHM,

only studies published from 2017 onwards that use deep learning for image-based fault

identification are considered. Although other variants of deep learning on multimedia exist,

such as Deep Belief Networks (DBN), Auto Encoders (AE), and Recurrent Neural

Networks (RNN), CNNs are the only deep learning approach to be investigated as they are

the most prevalent in recent studies, particularly for images [12]. The studies are analyzed

based on several key criteria:

31

- Computational Constraints: Studies that propose reductions to the model size for

deployment to computationally and memory constrained on-board companion

computers

- Real-Time Capability: Branching off computational constraints, whether the model

is capable of real-time fault identification.

- Fault Identification Method: Indicates whether classification (C), fault detection

(D), or semantic segmentation (S) of faults was used.

- Automated Drone Tracking: If tested on physical drones, it indicates whether the

drone is automated to track around structures to some extent.

- Obstacle Avoidance: Indicates whether obstacle avoidance is employed.

32

Table 1: Summary of 10 CNN Image-Based Drone Infrastructure Inspection Papers

Published between 2017-2022

Reference Computational

Constraints

Considered

Real-Time

Capability

Fault

Identification

Method

Automated

Drone

Tracking

Obstacle

Avoidance

[17] x x C  

[51]  x S x x

[52] x x C  

[53] x  S x x

[54]   D x x

[55] x x D + S x x

[56] x x C x x

[57] x x C + D x x

[58]   C x x

[59] x x S x 

According to Table 1, most drone-based solutions do not aim to reduce the complexity of

their proposed models, with only 30% of the papers focusing on improvements for model

efficiency on low-power drone-mountable devices. [54] and [58] leverage MobileNet, an

efficient architecture designed specifically for mobile and embedded platforms [60]. The

key behind the efficiency of MobileNet are depth-wise separable convolutions that replace

standard convolutions. A variant of MobileNet designed for single-shot detection (SSD) of

asphalt pavement distresses is used in [54] for real-time detection. MobileNet-V2, the next

version of MobileNet, is used in [58] to enable on-board drone processing, while achieving

high accuracy and real-time image processing at 7.4 FPS.

Also, most studies focus on the automated post-processing of images once collected by a

drone but require the drone to be manually operated or make no explicit comments as to

33

how the drone tracks around civil structures during inspection. In [17], a Hexacopter drone

is used to collect close-up image of structures, as it is highly stable and enables precise

control. The drone is equipped with state-of-the-art sensors, enabling autonomous flight

with minimal human intervention. However, the degree of autonomy is unclear.

Furthermore, for the crack detection aspect, transfer learning is used to speed up training

and reuse previously learned weights of a VGG-16 network pre-trained on ImageNet. The

aim is to make training accurate and fast, rather than reducing the inference time for real-

time applications. In [52], a simultaneous localization and mapping (SLAM) algorithm is

used for autonomous navigation of a quadrotor drone in GPS-denied environments.

Furthermore, a path revisit planning tool is integrated to revisit key points of the structure

during inspection. The revisit planner takes in the output of a CNN that identifies cracks,

to make informed decisions on potential crack points to revisit. However, there is a greater

emphasis on providing real-time state estimation and obstacle avoidance for efficient

autonomous drone navigation and less so on improving the efficiency of the crack detector.

Moreover, the navigation system was only tested in indoor environments.

In general, there is minimal work that has been done to maximize autonomy for drone flight

and tracking while optimizing CNN-based fault assessment models for resource-

constrained, real-time applications. Many of the studies analyzed in chapter 3.1 look to

reduce model complexity with the aim of achieving faster inference and a reduced memory

footprint while approximating or achieving state-of-the-art performance. However, many

of these studies validate and test their models with readily available datasets of pre-

processed fault images captured in desirable conditions from ideal distances, which may

fail to generalize to real-world images captured by drones. Most of the drone-based

solutions focus on the post-processing of images once collected. Realizing a fully

autonomous drone that can track around structures without any manual intervention is

important to reducing manual operational barriers and costs. Another important aspect is

the reduction of the computational overhead on power-constrained on-board devices. By

reducing the power required to run these deep learning algorithms, the drone can preserve

greater battery life to achieve longer flight times for continuous inspection and achieve

real-time fault identification, opening the possibility of real-time decision-making during

34

inspection. The proposed system aims to address these aspects, as discussed in the later

chapters.

35

Chapter 4

4 Proposed Autonomous Drone Inspection System

In this chapter, the proposed fully autonomous drone-based structural inspection system is

described. Namely, the components that drive the collection, communication, and

processing of structural image data are explained at a high-level.

4.1 High-Level Architecture

The importance of a fully autonomous inspection system has been made apparent in the

previous chapters. In light of the shortcomings of current drone inspection systems, the

proposed system looks to address several key areas.

Figure 12: High-Level Proposed System Architecture

36

4.1.1 Autonomous Infrastructure Tracking

Fully automating drone navigation for infrastructure tracking is one key area the proposed

system aims to address. To accomplish this, the drone is equipped with time-of-flight (ToF)

ranging sensors, each one facing a certain direction (up, down, left, right, forward, back).

A ToF sensor is a form of contact sensor that uses stimulated emission of electromagnetic

radiation (laser) technology to perform distance calculations to objects, based on the time

required to receive the reflected signal. Using these distance readings, the drone can

determine its proximity to a given structure, enabling obstacle avoidance and exterior

structural wall tracking. The downward-facing ToF sensor is particularly important to

determining the drone’s vertical height. Besides a downward-facing ToF sensor, a

downward-facing camera can detect and measure the horizontal motion of surfaces as the

drone navigates, enabling the drone to travel to desired setpoints. The ToF sensor distance

readings, as well as the drone’s position estimated by the flight controller, are sent to the

tracking module running on the companion computer, from which it can determine

setpoints to track along. Thus, the drone can be deployed from a station close to the

structure of interest for regular autonomous inspection. Once the drone approaches the

structure, several courses of action could happen:

- If the forward sensing ToF sensor on the drone detects that it is within a distance D

≤ the distance threshold T of the structure, the drone will begin to track along it to

the right.

- When the forward sensing ToF sensor detects that D > T, the drone will move

forward into the open space.

- If the left-sensing ToF sensor on the drone detects that D ≤ T of the structure, the

drone will rotate counter-clockwise by angle 𝜃 to face the wall, then track right

along it.

37

- If the left and forward sensing ToF sensors detect that the drone is in a corner, and

is within the threshold distance of the structure, the drone will rotate clockwise by

angle 𝜃 to face the next wall, then track right along it.

- Once the drone detects a loop closure, such that it has completed the inspection

around the entire structure, it will return to the base station.

In achieving this autonomous navigation, several assumptions are made:

- The GPS location of the structure is known, and the drone can travel to the GPS-

specified location accordingly.

- During inspection, any obstacles near the structure, such as trees or telephone poles,

can be avoided and disregarded for post-processing of the collected imagery.

- Rotation angle 𝜃 = 90o, as tests are conducted on straight-edged structural walls

that orthogonally intersect each other.

- No loss of data during transmission to and from the drone.

4.1.2 Image Processing

As the drone navigates around the structure, it captures grayscale images in real-time.

Mounted onto the drone is a front-facing camera capturing the images, which are sent to

the processing unit on the companion computer. The companion computer is pre-loaded

with a CNN-based model that can process and segment faults from images in real-time.

Once processed and segmented, points corresponding to predicted fault pixels are extracted

and mapped to the x, y coordinate system, from which they are sent to the exterior wall

tracking module on the companion computer. If a sufficient number of fault points are sent

to the tracking module, a subroutine is invoked to track along the detected fault in real-

time. This real-time dynamic tracking is important to determining the spread of a fault

along certain areas of the structure without having to revisit such areas, saving drone flight

38

time and valuable battery life. Furthermore, a live stream of the fault-annotated images is

sent via Wi-Fi to a client, for real-time visualization purposes.

4.2 System Design Choices

4.2.1 Drone Communication

Communication between the flight controller and companion computer is two-way. From

the flight controller, estimated drone position and sensor readings are sent to the companion

computer, and the companion computer uses this data to send back trajectory setpoints for

the drone to travel along. In the proposed system, this communication can be done either

UART, a serial hardware communication protocol, or via radio transmission. The images

taken from the camera mounted to the drone are also sent to the companion computer,

either via UART or Wi-Fi. On the hardware platform developed upon, the UART

communication is limited in that only single characters can be sent at a time [61]. Thus, the

proposed system uses radio transmission for communicating with the flight controller and

Wi-Fi to stream images to the companion computer for processing. This image

transmission approach via Wi-Fi is viable, given that the drone has its own access point

(AP), to which the companion computer – with networking capabilities – in its proximity

can connect to. In this setup, it is assumed that there is no loss in data as images are sent

over Wi-Fi.

4.2.2 Inter-Module Communication

To facilitate communication between the modules running on the companion computer, a

publisher-subscriber scheme is adopted. Each module has a node that either exchanges or

receives messages over named buses called topics. Nodes that send data at a fixed rate to

topics are called publishers, whereas nodes that subscribe to topics to receive messages

sent by publishers are called subscribers. A node can publish data to multiple topics and

can also have subscriptions to multiple topics, enabling one-to-many, many-to-many, and

many-to-many communication [62]. The data message type can also be customized to

better fit the needs of the application and reduce processing effort in packing and unpacking

such messages. Moreover, data of any size can be sent at once, unlike socket connections

39

which fragment large data into smaller network packets. The publisher-subscriber scheme

is important in the proposed system, as it enables continuous publishing of fault points

from the image processing module to subscribing nodes that pass these fault points to the

tracking module. Adopting this communication model allows the modules to run

simultaneously as separate processes, rather than sequentially being invoked.

4.3 Development Platforms

ROS: The inspection system is built upon the Robotics Operating System (ROS), providing

a set of tools and libraries for embedded development. ROS enables access and control of

messages between nodes that operate a robotic system [78]. In the case of the proposed

drone inspection system, ROS is used to facilitate the communication between different

modules by providing a programmable interface for creating nodes – executable processes

– that communicate with each other through publisher and subscriber topics over the ROS

graph. ROS also provides predefined message types that are wrappers for ROS data types

that can be sent to topics. In the proposed system, extracted points from the image

processing module are passed to a publishing node, which publishes the points to a topic t

that accepts a custom-built message type consisting of a list of points. Each point is defined

as a Point type provided by the ROS geometry_msgs package, which contains wrappers for

geometric primitive types such as points, vectors, and poses. On the other end, the tracking

module then receives this list of points through a ROS subscriber node that subscribes to

the custom Point list messages from t.

Crazyflie: The Crazyflie 2.1 is a miniature quadcopter developed by Bitcraze and is used

to prototype the proposed system. The Crazyflie comes in a ready-to-built kit, including

four 7 mm coreless DC-motors which can lift up to 42 g, including the weight of the

Crazyflie itself without additional mounted hardware (27 g). The Crazyflie 2.X hardware

platform is built on top of two microprocessors: an STM32F405 that handles all low-level

and high-level flight control, including sensor reading, motor control, and telemetry, and

an NRF51822 that handles radio communication and power management. The Crazyflie

2.1 is also equipped with a built-in inertial measurement unit (IMU) with 10 degrees-of-

freedom. Furthermore, expansion decks can be mounted onto an expansion port to provide

40

enhanced capabilities in terms of sensing and positioning. The expansion decks

communicate with the STM32F405 microprocessor over an expansion bus, which exposes

communication buses and GPIO pins [79][80].

Figure 13: The Crazyflie 2.X system architecture [80]

For the proposed system’s use-case, the expansion decks used include the following:

- Flow deck v2: Provides the Crazyflie with the ability to navigate by sensing both

vertical motion through a VL53L1x ToF sensor that can measure vertical distances

up to 4 m with mm precision, and horizontal motion through a PMW3901 optical

flow sensor that measures horizontal movements in the x, y coordinate space,

relative to the starting position [81].

- Multi-ranger deck: Gives the Crazyflie the ability to sense surrounding objects

through VL53L1x ToF sensors pointing in five directions: front, back, left, right,

and up. This deck enables obstacle avoidance for the proposed system [81].

- AI-deck: Capable of performing artificial intelligence-based workloads. It also

consists of a Wi-Fi module and provides a Wi-Fi AP to stream images captured by

an ultra-low power 320 × 320 Himax HM01B0 grayscale camera attached to the

41

AI-deck. However, given the constrained size and capabilities of the low power AI-

deck processor and the limited UART communication between the AI-deck

processor and the STM32F405 microprocessor on the Crazyflie [61], the image

stream from the Himax HM01B0 camera is sent to an external device for

processing. Also, due to the limited range of the access point on the AI-deck, this

external device must be in close proximity, as stated in section 4.2.1. Thus, a larger,

more powerful, yet portable edge device, that could viably be repurposed as a

companion computer performing deep artificial intelligence operations on larger

scale quadcopters is used in this study.

Figure 14: AI-deck system architecture [61]

From the software point-of-view, Bitcraze also provides a programmable interface to

control the drone. Specifically, the Bitcraze client library, developed in the Python

programming language, is leveraged to interface with drone commands for controlling the

drone via radio transmission; the base commander [82] is used to send target setpoints for

the x, y, z coordinates and drone rotation (yaw). The target setpoint is then sent as a packet

to the Crazyflie via radio transmission using a packet protocol called Crazy Realtime

Protocol (CRTP), designed to optimize packet prioritization enabling real-time control of

the Crazyflie drone [83].

42

Jetson Nano: The Nvidia Jetson Nano Developer Kit is an embedded system-on-a-

module, which is used as the companion computer in the prototype setup. It includes an

integrated 128-core GPU, important for performing deep learning operations. Since the

Jetson Nano is too large to be mounted onto a Crazyflie quadcopter, it is stationed near it,

such that it is within range of the AP on the AI-deck.

43

Chapter 5

5 Drone Tracking Method

In this chapter, the algorithmic approaches used for autonomous drone tracking, as well as

the experimental results of the approach for structural fault tracking are described in detail.

5.1 Structural Tracking

While tracking around a structure, the drone can perform rotations, horizontal, and vertical

movements. The drone is framed within the global coordinate system, where its position

can be described by three degrees of freedom corresponding to the translational movements

along the x, y and z axes; and its rotation can be described by one degree of freedom around

the z axis. The drone also has its own its frame of reference in 3D space, based on its

orientation, denoted as the body coordinate system. Affine transformations in 3D space

enable the manipulation of 3D objects by altering their position and orientation. A 3D

affine transformation can be expressed in matrix form as:

𝑀 = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

0 0 0 1

]

That is, a position point 𝑃 = (𝑥, 𝑦, 𝑧)𝑇 can be transformed into position point 𝑃’ =

 (𝑥’, 𝑦’, 𝑧’)𝑇 with matrix M by applying matrix multiplication as 𝑃’ = 𝑀𝑃. M can be

expressed with a translation matrix as:

𝑇 = [

1 0 0 𝑥′ − 𝑥
0 1 0 𝑦′ − 𝑦

0 0 1 𝑧′ − 𝑧
0 0 0 1

]

M can also be expressed with a rotation matrix. Rotation around the z-axis can be expressed

as follows, with 𝜃 denoting the angle of rotation:

44

𝑅 = [

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 − cos 𝜃 0 0

0 0 1 0
0 0 0 1

]

This rotation matrix can be used to rotate P around the origin. However, being able to rotate

around any arbitrary point in 3D space is necessary for transforming the drone’s current

position and orientation. To rotate P around a point C instead of the origin, C must first be

translated to the origin of the global coordinate system before the rotation is applied. After

performing the rotation, C is then translated back to where it was originally:

𝑃′ = 𝑇(𝐶) 𝑅(𝜃) 𝑇(−𝐶)

The goal is to rotate P to P’, to make the drone move in an opposing direction or update

the axes of the body coordinate system when it yaws (rotation around the z-axis) by a

certain angle. By letting P be the next setpoint without any transformation applied, with C

being the current estimated drone position, the initial direction vector 𝑟 =

(𝑃. 𝑥 – 𝐶. 𝑥, 𝑃. 𝑦 – 𝐶. 𝑦, 𝑃. 𝑧 – 𝐶. 𝑧)𝑇 is rotated to get a new direction vector 𝑠 =

 (𝑃’. 𝑥 – 𝐶. 𝑥, 𝑃’. 𝑦 – 𝐶. 𝑦, 𝑃’. 𝑧 – 𝐶. 𝑧)𝑇 that the drone travels along when instructed to

change its direction of motion. The same approach is used to rotate the axes of the body

coordinate system after yawing, such that subsequent direction commands would alter the

drone’s direction of motion according to its own coordinate system. Both scenarios are

illustrated in Figure 15 below.

Figure 15: (a) Changing the drone direction of motion; (b) rotating the drone

45

5.2 Fault Tracking

When a fault is identified in real-time, the aim is to have drone react accordingly to follow

along it. The direction of the fault spread can be determined given the extracted fault points.

The direction can simply be defined by a linear model that best fits the fault points. Several

methods exist for determining the best fitting linear model: Least Squares line fitting to

minimize the sum of squared residuals between the predicted line and actual data points,

and Principal Component Analysis (PCA), which determines the dimensions that

contribute the most to the variance of the data. However, these approaches are sensitive to

outliers. A more robust line fitting method that takes into the consideration the outliers is

called Random Sample Consensus (RANSAC). The RANSAC algorithm takes in a dataset

to find an optimal fitting result amongst the data points, by excluding outliers to find a

linear model based upon the inliers. RANSAC uses a voting scheme to iteratively select

the minimal set of random data points to fit the candidate model, forming a consensus set.

This iterative process continues until a sufficiently high probability that all sampled points

are inliers is satisfied. The number of iterations k required depends on several parameters:

the determined outlier ratio e of the dataset, the probability p of sampling only inliers in all

k iterations, and n minimum number of sampled data points required to estimate the model

parameters. Hence, the inlier ratio is 1 − 𝑒; this means the probability of sampling only

inliers in a single iteration is (1 − 𝑒)𝑛, whereas the opposite probability of sampling at

least one outlier is 1 − (1 − 𝑒)𝑛. Furthermore, the probability of sampling at least one

outlier in all k iterations is (1 − (1 − 𝑒)𝑛)𝑘, such that probability 1 − 𝑝 of sampling at

least one outlier in each of the iterations can be formalized as 1 − 𝑝 = (1 − (1 − 𝑒)𝑛)𝑘.

Rearranging for k results in the following equation:

𝑘 =
log(1 − 𝑝)

log(1 − (1 − 𝑒)𝑛)𝑘

After k iterations, the model with the most inlier points within a defined threshold distance

t is chosen as the best fitting model.

46

RANSAC is used in the proposed solution to determine the slope of the line corresponding

to the estimated direction of the fault in 2D space. In each iteration, two points are sampled

as the minimum inlier set for estimating the model parameters. Although RANSAC is

robust to outliers, it can be expensive, due to the number of points and the number of

iterations, particularly when the outlier ratio is high. Hence, to reduce the number of points

that need to be considered in each iteration, the 2D point space is spatially divided into

voxels and hierarchically stored into a quadtree. In a quadtree, each voxel is represented

conceptually as a node in the tree, where each node has a defined capacity of points and

four children nodes. If the capacity of a voxel V is exceeded, the points are split amongst

four sub-voxels, represented conceptually as children of the node for V.

47

Figure 16: Spatial representation (top) and conceptual representation (bottom) of

quadtrees [84]

Inspired by the approach in [65], all extracted fault points from each image frame are

inserted into a quadtree. Once the capacity of the node is exceeded, the points in the parent

node are passed into the corresponding children node, based on where their boundaries fall

spatially in 2D space. As such, once all points are inserted, only the leaf nodes of the

quadtree contain points. Then, a candidate line model is recursively generated using

RANSAC and intersected with the quadtree’s leaf nodes to determine which nodes

intersect with the line – only points within these nodes are considered for determining

inliers to the model. Namely, points within a threshold distance t of the generated candidate

line intersecting the leaf nodes containing these points are considered inliers. As a result,

only points within these intersection leaf nodes are considered, rather than the entire point

set, resulting in a reduction of the time complexity for point-to-line comparisons to a

logarithmic factor of the number of points. Euclidean distance is used to define the distance

between a point p on the candidate line and a fault point q in n-dimensional space, where

𝑛 = 2 in this case:

𝑑(𝑝, 𝑞) = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

48

Figure 17: Top left – Point set. Top right – a generated candidate line intersecting a

quadtree (represented as voxels), with the dashed lines representing the inlier

threshold. Bottom Left and Right – the complete quadtree, approximating the

density of the points [65]

Another improvement proposed for a more efficient RANSAC approach is a smart-

sampling approach that takes advantage of the hierarchical nature of the quadtree to reduce

the randomness of the minimum inlier sampling process. Namely, instead of sampling two

random points from the 2D model space, an initial point is randomly sampled, and a

subsequent point in relative proximity to that point is sampled. First, a randomly selected

neighbouring leaf node to that from which the first point was sampled is checked for any

points. If enough points exist, a random point from that neighbour is chosen as the

subsequent point. Otherwise, the next randomly neighbouring leaf node is checked. If all

the neighbouring leaf nodes – children to the current parent – have been visited and none

of them contain enough points, the quadtree is recursed upwards, and the grandchild leaves

that have not already been visited are checked. By sampling two points that are relatively

close to each other, there may be a greater probability that these two points represent a

coherent model, rather than two randomly sampled points, thus a greater probability that a

more optimal solution can be reached within k iterations. As shown in [86], carefully

49

selecting samples in close proximity to each other reduces the number of iterations required

to detect a shape with a certain probability. However, points that are too close to each other,

or in other words, within the same node may lead to spurious model estimations. Hence,

points from the same leaf node are not selected, unless no other nodes contain enough

points. To prevent selection of points in a sparsely populated node that are unlikely to

model the dataset, only nodes with a cardinality greater than or equal to half the node

capacity are chosen.

50

Although the modified RANSAC algorithm is tailored to find the general slope of the fault

direction, it is still indeterminant whether the drone should travel up or down along this

slope. Hence, the spread of the fault points mapped to the x, y coordinate system is

determined, such that more fault points in the upper half of the view frame signals the drone

to travel upwards at the predetermined slope; and conversely, more points in the lower half

signals the drone to travel downwards at the predetermined slope when the drone is within

a threshold distance 𝐷 ≤ 𝑇 of the structural wall. Given that the drone may travel in one

direction initially, and then travel back along with opposite direction once the endpoint of

a fault is reached, a loop closure detector is included to determine if the drone returns to

the initial position where it first detected the fault; once reached, the drone will stop

tracking along the fault and continue its default tracking around the structure.

Figure 18: Mapping extracted fault points to x, y coordinate view frame: (a) more

points in the mapped to the upper half of the view frame; (b) more points in the

mapped to the lower half of the view frame; (c) loop closure detected

5.3 Evaluation Criteria

To evaluate the performance of modified RANSAC algorithm, the mean squared error

(MSE) metric is used, which calculates the average of the squared differences between the

predicted values and actual values. MSE is calculated as follows:

1

𝑛
 ∑ (𝑌𝑖 − 𝑌̂𝑖

𝑛

𝑖=0
)2

51

Where n is the number of data points, 𝑌𝑖 are the actual values, and 𝑌̂𝑖 are the predicted

values. MSE always results in a positive error value, and is a standard metric for evaluating

the loss, particularly for determining how well a line fits a set of data points. However,

since MSE is a squared loss function, it penalizes large errors more heavily. Since large

errors are particularly undesirable for estimating the line of best fit produced by RANSAC

on the inlier points, MSE is useful for this purpose.

Also evaluated is the running time to determine the efficiency of the modified RANSAC

algorithm and its viability for real-time performance.

5.4 Experimental Results

Test Setup and Parameters: The original (baseline) and modified RANSAC algorithms are

tested and compared on a system with 13 GB of RAM and an Intel Xeon CPU at 2.20 GHz.

Several user-defined parameters values are chosen based on empirical testing. Namely, in

performing RANSAC, an inlier threshold of 10 is set, and a probability of selecting only

inliers in all iterations is set to 0.9999. The outlier ratio is determined programmatically,

based on the spread of each data point in relation to the mean, determined by the z-score:

𝑍 =
(𝑥 − µ)

𝜎

Where x is the observed value, µ is the mean of all observations, and 𝜎 is the standard

deviation of all observations. The user-defined condition for an observed data point

belonging to the inlier set is if -2 < z-score < 2; otherwise, the observation is considered an

outlier. Also, for initializing the quadtree used in the modified RANSAC algorithm, each

node in the quadtree is set with a capacity of 1/10 the total number of points.

Study One: The line fitting performance of the baseline and proposed modified RANSAC

algorithms are evaluated in this study. The MSE of the resulting line of best fit on the inlier

set outputted by RANSAC is determined at varying distributions of the data defined by σ.

At each σ value, RANSAC is run 100 times to ensure reliability in the results and tested

upon points that form a line, with random Gaussian noise introduced. As shown in Figure

19 below, the MSE for both the baseline and modified RANSAC increases as σ increases,

52

as expected. However, as σ approaches larger values, the MSE of the baseline begins to

increase more quickly relative to the modified RANSAC.

Figure 19: The MSE between the resulting line of best fits and corresponding inliers

at different standard deviations of the data

Study Two: In this study, the predicted slopes of the outputted RANSAC models are

compared to the actual slope. MSE is used to measure the sum of squared differences

between the predicted slope value and a user-defined target slope value at different values

of σ. As in study one, at each σ, RANSAC is run 100 times and tested upon points that

form a line, with random Gaussian noise introduced. As shown in Figure 20 below, the

MSE of the modified RANSAC is generally lower than that of the baseline, with the

exceptions occurring at σ = 10, σ = 15, and σ = 30.

53

Figure 20: The MSE between the predicted slopes and actual slopes at different

standard deviations of the data

Study Three: In this study, the running times of the baseline and modified RANSAC

algorithms are compared. Investigated is the impact on the running time as a) the number

of total points in the sample varies and b) the value of σ impacting the sample distribution

varies. Thus, RANSAC is run at varying samples sizes, where at each size, it is run 10

times to ensure enough reliability in the results. For each of the 10 runs, the average running

time is used. In Figure 21 below, when σ = 10, as the number of points in the sample

increases, the running time of the modified RANSAC increases more quickly than that of

the baseline. This is due to the overhead in rebuilding the quadtree for each RANSAC

innovation when a new data sample is introduced (each frame). However, in Figures 22

and 23 below, when σ = 20 and σ = 40 respectively, the running time of the modified

RANSAC grows less quickly relative to the baseline as the number of points increases.

This is likely because the greater spread of the data imposed by a larger σ increases the

outlier ratio, which in turn increases the number of iterations in each invocation of the

RANSAC algorithm; increased iterations means more points that need to compared to the

candidate line, and since the modified version reduces the point-to-candidate line

comparisons, this reduction overrides the overhead in reconstructing the quadtree when the

sample size is large (>= 10,000). Although fault points extracted in a single image frame

may be small in comparison to the total pixels in a frame, higher resolution frames where

54

faults only account for 5-10% of pixels can still easily produce 10,000 or more points,

making the modified algorithm a viable approach for near real-time fault tracking, even

when the number of fault points is large, reaching a maximum of 0.6 seconds processing

time on a sample of 10,000 points with σ = 40. However, further optimizations in

initializing and constructing the quadtree may result in further decreased running times.

Figure 21: The relationship between the number of points and the running time

when σ = 10

Figure 22: The relationship between the number of points and the running time

when σ = 20

55

Figure 23: The relationship between the number of points and the running time

when σ = 40

Study Four: Also investigated is the visual performance of the modified RANSAC

algorithm, on simulated data points with Gaussian noise and actual crack points with noise

introduced. As shown in Figure 24 below, modified RANSAC is robust to outliers, as it

can still pick out the points best representing a linear relationship in the data amongst noise.

Figure 24: Performance of the modified RANSAC algorithm on detection of a line

with Gaussian noise (left) and on detection of points associated to a crack (right)

56

Chapter 6

6 Pixel-wise Fault Segmentation

In this chapter, a semantic segmentation model for pixel-wise image fault segmentation is

proposed. Pixel-wise segmentation enables more precise tracking of faults along structural

exteriors. The aim is to reduce the number of parameters and convolutional operations for

real-time, low-power operation on edge devices, while achieving at or above a benchmark

level of performance. U-Net is used as the base architecture for the proposed model, given

that it is designed specifically for semantic segmentation tasks and is known for its ability

to extract cracks precisely and efficiently at the pixel level. The proposed model is

modified, in which the modified versions are compared in terms of several key metrics to

determine which modifications most affect performance and inference speed on edge

devices.

6.1 Analysis of Architectures Designed for Efficiency and
Performance

The proposed model architecture uses some of the design choices employed by several key

architectures that focus on efficiency through reduced network latency during inference as

well as increased performance through spatial and feature attention. These networks are

chosen due to their popularity and efficient performance.

6.1.1 Efficient Neural Network (ENet)

In [63], a novel CNN architecture named ENet (efficient neural network) is proposed for

low latency operations in mobile applications. This architecture employs an encoder-

decoder scheme similar to U-Net and SegNet. Namely, an input image is passed into an

initial block, which performs a 3 × 3 convolution with stride 2 in parallel with max pooling,

with the respective results concatenated. The rest of the network consists of bottleneck

blocks (inspired by ResNet), which perform a single 3 × 3 convolution on projected lower-

dimensionality feature maps on an extension branch in parallel with max pooling on the

main branch when down-sampling (or 2 × 2 transpose convolutions with stride 2 when up-

sampling), with the respective results summed.

57

Figure 25: (a) ENet initial block; (b) ENet down-sampling bottleneck block [63]

The authors note several key design choices to improve the efficiency and performance of

ENet, based on experimental results and intuition:

- Reduced Down-sampling: Although down-sampling is important to gathering

greater context from reduced feature map resolutions, heavy down-sampling can

lead to loss of spatial information, such as edge shape – this can be detrimental to

detecting fault edges, particularly those belonging to cracks. Also, strong down-

sampling requires equally strong up-sampling, which increases the model size and

computations. Thus, the authors aim to limit down-sampling, and aim to garner

greater context from down-sampled feature maps through dilated convolutions.

- Early Down-sampling: Processing large input feature maps early in the network is

expensive. Visual information is highly spatial redundant and can be reduced into

a compressed feature map for classification purposes. In ENet, the first two blocks

focus on down-sampling with minimal feature maps produced.

- Saving Max Pooling Indices: As proposed in SegNet, the indices of the max pooling

are saved and passed to the corresponding decoder block, reducing the memory

requirements compared to copying the entire feature map.

58

- Parallel Convolution and Pooling: The authors in [63] note that pooling after a

convolution is computationally expensive. By performing the pooling in parallel

with the convolution and concatenating the resulting feature maps, a 10-fold speed-

up of the inference time of the initial block was achieved.

- Projection: In each bottleneck block, projection reduces the dimensionality of the

feature maps before a convolutional filter is applied, greatly reducing the number

of the parameters and convolutional operations.

- Factorizing Filters: In addition to dilated convolutions, asymmetric convolutions

decompose an n × n convolution into two smaller convolutions of 1 × n and n × 1

size. The authors use asymmetric convolutions with n = 5, noting that the cost of 5

× 1 and 1 × 5 together are similar to that of a single 3 × 3 convolution. This enables

increasing the receptive field of the filter without significant additional

computational cost.

6.1.2 Squeeze-and-Excitation Networks

Being able to highlight meaningful features and spatial regions across input channels while

suppressing less relevant ones can allow CNNs to better focus on salient properties. In

accordance with this notion, Squeeze-and-Excitation networks are introduced in [66],

which consist of Squeeze-and-Excitation (SE) blocks that act as an attention mechanism to

adaptively reweight feature map responses across the channel space. The SE block

squeezes spatially to aggregate all feature maps across their spatial dimension and excites

the squeezed tensor along the channel dimension to produce a set of per-channel weights,

also known as a spatial squeeze and channel excitation block (cSE). Formally speaking,

this involves taking a feature map tensor U as input, where U ϵ ℝN x C x H x W, with N

representing the batch size, H and W representing the feature map spatial resolution and C

representing the channel space. Performing a squeeze operation reduces U to Û ϵ ℝN x C x 1

x 1 through a global average pooling layer, before it is passed into an excitation module

consisting of a multi-layer perceptron bottleneck, followed by a sigmoid activation

function applied to the output tensor to rescale the activations to [0, 1]. The resulting tensor

59

ÛcSE consisting of the recalibrated per-channel weights is then element-wise multiplied

with the original U. By performing the squeeze operation, this ensures lower computational

complexity compared to computing the per-channel weights over the full tensor and

encapsulates information from the entire spatial receptive field in computing each

reweighted feature map c of U. Moreover, SE blocks are relatively simple in structure, and

thus can be easily used in existing architectures, adding only a slight increase in model

complexity and computational cost. In the case of FCNs, applying SE blocks as an attention

mechanism at the skip connections can suppress irrelevant regions and poor feature

representation [66].

Figure 26: An cSE block, the conventional SE block [67]

Variations of the traditional cSE block have also been proposed. A channel squeeze and

spatial excitation block (sSE) reduces the feature map tensor by applying a squeeze

operation over the channel dimension and exciting over the spatial dimension, to highlight

more relevant spatial locations and suppress irrelevant ones. This involves taking U as

input, where U ϵ ℝN x C x H x W and performing a squeeze operation to reduce U to U ϵ ℝN x 1

x H x W, by applying a 1 × 1 convolution to project the number of channels C to 1. Each

value of the projected tensor represents a linear combination of the representation of C for

a spatial location (i, j). Next, a sigmoid activation function is applied to the reduced tensor.

The resulting tensor ÛsSE consisting of the recalibrated spatial weights is then element-wise

multiplied with the original U, where each value in ÛsSE corresponds to a weight of the

importance of a spatial location [67].

60

Figure 27: An sSE block [67]

Another variation of the cSE block involves a combination of cSE and sSE, which

concurrently reweights both the spatial and channel-wise feature map responses through

concurrent spatial and channel squeeze and channel excitation (scSE). Taking U as input,

where U ϵ ℝN x C x H x W, U is passed in parallel through to an cSE and sSE block, where the

resulting tensors ÛcSE and ÛsSE
 are element-wise summed to produce ÛscSE. The scSE block

more heavily reweights a location (i, j, c) in U where there is a higher activation response

denoting a location of high relevance [67].

Figure 28: An scSE block [67]

To determine the complexity (in terms of the number of parameters) of an FCN consisting

of scSE blocks within encoder-decoder blocks, consider an output feature map of C

channels. An cSE block introduces C2 weights and an sSE block introduces C weights. So,

the model complexity with n encoder-decoder blocks is:

61

∑(𝐶𝑖
2 + 𝐶𝑖)

𝑛

𝑖=1

Where Ci is the number of output channels for the ith encoder/decoder block [67]. Based

on experiments conducted in [67], the scSE block increases the number of parameters by

1.5%, which is a small increase to the overall network complexity.

6.1.3 MobileNets

In [60], MobileNets are introduced as a class of efficient models designed for embedded

deep learning applications on mobile and edge devices. The main contributions in [60] are

the use of depth-wise separable convolutions replacing each standard convolution layer in

the network, and the introduction of hyperparameters that present a tradeoff between the

model latency, size, and accuracy: a width multiplier α that reduces the number of channels

in each layer and a resolution multiplier ρ that reduces the input image resolution and every

subsequent feature map resolution.

In [68], MobileNetV2 is proposed as an improvement to the original MobileNets, which

introduces inverted residual blocks with depth-wise separable convolutions and linear

bottlenecks. A conventional bottleneck block first reduces the channel dimension of the

input tensor of size N × C × H × W by a factor of s, through a 1 × 1 projection, resulting

in a tensor of size N ×
𝐶

𝑠
 × H × W. Next, a 3 × 3 convolution is applied to the reduced

tensor, before it is projected back to the original size through another 1 × 1 convolution.

In MobileNetV2, the 3 × 3 convolution is replaced with a depth-wise separable

convolution in all bottleneck layers (excluding the initial layer). The bottleneck layers are

inverted, such that the dimensionality of the input tensor is first increased by a factor s

through a 1 × 1 projection, resulting in a tensor of size N × sC × H × W, before being

decreased back to the original size N × C × H × W. When down-sampling, a stride of 2 is

used instead of pooling. Furthermore, a shortcut residual connection is conditionally added

to perform element-wise addition between the input feature map and outputted bottleneck

feature map – residual connections are omitted when down-sampling, as the 3 × 3 depth-

62

wise separable convolution performs a stride of 2. The inverted bottleneck layers and the

shortcut residual connection make up the inverted residual block.

Figure 29: The architecture of (a) a residual block and (b) an inverted residual

block [68]

The importance of using these shortcut residual connections stems from the vanishing

gradient and degradation problems addressed in ResNet, and the fact that the bottlenecks

contain the necessary information needed to be saved and passed to the next block. As

shown in Figure 30 below, the shortcut between bottlenecks results in the highest accuracy

and fewest operations.

Figure 30: The impact of the inclusion and location of shortcut residual connections

on the accuracy and number of operations [68]

The inverted residual block also uses considerably less memory than the conventional

residual block. This is due to the inverted design, the shortcut residual connection between

the bottlenecks, and the depth-wise separable convolutions; the total memory usage would

63

be dominated by the size of the bottleneck tensors, given that the expansive part consists

of a memory-inexpensive depth-wise separable convolution. They are inexpensive because

the depth-wise convolution part is performed on a per-channel basis of an inner tensor L,

enabling L to be represented as a channel-wise concatenation of t intermediate tensors. If

L consists of n channels, then each of the t tensors is of channel size 𝑛/𝑡. Given the

constraint that only one intermediate block of size 𝑛/𝑡 is always required in memory, and

that a depth-wise convolution operates independently on single channels, this means n = t,

such that only 1 channel is required to be kept in memory.

Linear bottlenecks are also introduced in MobileNetV2, wherein the non-linear activation

function applied after the last convolution of the residual block is replaced with a linear

activation function. Experimental evidence shows that non-linear activation functions,

such as ReLU, can result in information loss as values less than 0 get discarded. Reducing

the feature space from a higher to lower dimension, as does the final convolution of the

inverted residual block, while applying a non-linear activation function, discards a

significant amount of information. Hence, a linear transformation that preserves non-zero

values is applied after the final convolution instead. As shown in Figure 31 below, not only

does a linear bottleneck result in better accuracy, but also fewer operations.

Figure 31: The impact of non-linearity on the accuracy and number of operations

[68]

64

6.1.4 EfficientNets

A family of models, called EfficientNets, is introduced in [69]. The authors study the impact

of uniformly scaling the network depth, width, and image resolution, and apply this scaling

method to obtain the EfficientNet models. The depth refers to a coefficient of the number

of layers at each stage of the network, whereas the width denotes a coefficient of the

number of channels produced by each convolution. By carefully balancing these

hyperparameters using a compound scaling coefficient, better performance is achieved.

EfficientNets showed improved accuracy and efficiency compared to state-of-the-art

CNNs. The EfficientNet architecture makes use of the inverted residuals introduced in

MobileNetV2 – denoted as the mobile inverted bottleneck MBConv block – with the

addition of an SE block as an optimization step performed after the depth-wise convolution

and prior to the point-wise convolution.

In [70], EfficientNetV2 is introduced as a new family of models that uses neural architecture

search (NAS) to optimize training and parameter efficiency through non-uniform scaling.

Furthermore, progressively resizing images and adaptively adjusting regularization during

training resulted in improved training speeds and accuracy. Namely, an 11-fold increase in

the training speed and up to 6.8x better parameter efficiency was reported on various

datasets, including ImageNet. EfficientNetV2 also uses MBConv blocks. However, in

earlier stages of the network, depth-wise convolutions are found to be slower and less

effective than in later stages. Although depth-wise convolutions have fewer parameters and

require less floating-point operations (FLOPs) than standard convolutions, the authors

found they cannot fully use modern accelerators. Thus, the Fused-MBConv block is

introduced as a replacement for MBConv blocks in earlier stages of the network, in which

the initial 1 × 1 and depth-wise convolutions are replaced with a standard 3 × 3

convolution, as shown in Figure 32 below.

65

Figure 32: The differences between an MBConv and Fused-MBConv block [70]

6.2 Proposed Efficient U-Net Architecture

Using several of the network architectural designs described in section 6.1, together with

U-Net and modifications to U-Net proposed in [29], a customized network architecture

called Efficient U-Net is proposed. A description of the network architecture is provided,

followed by the reasoning behind several key design choices. Then, modifications to the

proposed architecture are discussed.

6.2.1 Network Architecture

The architecture follows the encoder-decoder scheme employed in U-Net but has some key

differences.

66

Figure 33: Proposed Efficient U-Net Architecture. Blue blocks represent feature

maps, with the width denoting feature space and height denoting resolution

Initial Block: The initial encoder block follows closely to that of the initial block proposed

in ENet (as shown in Figure 25a.). One addition is another extension branch that performs

a convolutional operation to output a feature map of channel size matching that of the up-

sampled feature map in the corresponding decoder of U-Net, which is necessary for

concatenation.

Encoder Block: Following the initial encoder block, each subsequent down-sampling

encoder block employs the ResNet-inspired parallel-branch scheme proposed in the down-

sampling bottleneck blocks of ENet: a main branch performs the max pooling operation

and an extension branch performs a 2 × 2 convolution with stride 2, as suggested in ENet,

to project the input feature map into a dimensionality reduced feature space ¼th of the

feature space size passed into the encoder block. Then, two 3 × 3 convolutions, as proposed

in U-Net, are applied to the dimensionality-reduced feature map, before a 1 × 1 expansion

is applied to the resulting feature map to increase the channel size to that of the desired

output size. A batch normalization and activation function are applied between all

convolutions. A regularizer is applied after the final expansion, with a dropout of

probability set to 0.1. The resulting feature map is copied over a skip connection to be

67

concatenated with the corresponding decoder block (as in U-Net) before it is summed with

the result of max pooling from the main branch. After the final summation, another

activation function is applied.

Figure 34: Encoder block in Efficient U-Net

Bottleneck Block: A modified U-Net bottleneck block is proposed. This block has two

phases. The first phase consists of a parallel-branch scheme with a main branch that

performs a 1 × 1 convolution to adjust the number of features, and an extension branch

that performs a 1 × 1 projection, followed by two 3 × 3 convolutions and a subsequent 1

× 1 expansion. Besides this, other operations are the same as those proposed in the encoder

block. The second phase is inspired by the atrous (dilated) waterfall scheme described in

[29]. The outputted feature map of phase one is passed as input to phase two consisting of

three main blocks: each block consists of a 1 × 1 projection reducing the feature

dimensionality by a factor of 4, followed by a 3 × 3 dilated convolution with a rate r, and

a 1 × 1 feature expansion. The output of each block is copied to a concatenation operation

and passed to the next block, except for the last block. Blocks one, two and three apply

dilated convolutions with r = 1, r = 2 and r = 4, respectively. As with the encoder blocks,

a batch normalization and activation function are applied between each of the convolutions.

68

Figure 35: Atrous Waterfall Block included in the bottleneck layer of Efficient U-

Net. A feature map of 256 channels is taken in as input and the final 1 × 1

convolution reduces the output channel space to 128 channels

Decoder Block: Consists of a bottleneck block symmetric to the encoder block, except that

the main branch consists of a 1 × 1 convolution to adjust the number of features, and the 2

× 2 projection with stride is replaced with a 1 × 1 projection. Moreover, the feature map

from the previous decoder block is up-sampled via bilinear interpolation and applied a 2 ×

2 convolutional filter reducing the feature space. Based on [29], an attention gate is applied

to the up-sampled feature map and the skip connection before they are concatenated

together prior to being passed to the decoder. The cSE variant of the SE block is

implemented in the attention gate, using an adaptive max pooling operation to squeeze the

spatial dimensions.

Figure 36: Attention Gate in Efficient U-Net

69

6.2.2 Design Choices

Here, design choices for the proposed Efficient U-Net architecture are explained, based on

heuristics and results achieved in related works, with the goal of reducing the model size

and number of computations while maintaining a high performance for fault segmentation.

Network Width: In the original U-Net, the initial encoder block outputs a feature map of

channel size = 64, with subsequent encoder blocks increasing the channel size by a factor

of 2. To reduce model size and parameter complexity, the initial block increases the

channel size to only 32 and is increased by the same factor of 2 in subsequent encoder

blocks.

Early and Limited Down-sampling: Following the intuition of early down-sampling, the

proposed architecture uses an initial block performing only a single convolution.

Furthermore, down-sampling is limited in the proposed model: down-sampling only occurs

three times – once in the initial block and twice more afterwards – whereas the original U-

Net performs down-sampling four times.

Projection: As shown in ENet, the number of parameters and convolutional operations can

be decreased significantly through projection of the feature space to a lower dimension.

Also noted in [63] is that in the down-sampling bottleneck block, simply doing a 1 × 1

projection with a stride of 2 discards 75% of the input feature map, which is not ideal,

particularly when extracting faults that take up a small proportion of the input. Hence, the

proposed encoder block increases the filter size to 2 × 2, to take the full input feature map

into account.

Smaller Feature Maps: Unlike U-Net, which produces large feature maps, with the

bottleneck block of U-Net outputting the largest feature map size of channel size = 1024,

the bottleneck block in the proposed architecture outputs a feature of channel size = 256.

As a result, the number of parameters and operations is greatly reduced.

Atrous Waterfall Block: As proposed for U-Net by the authors in [29], a waterfall scheme

for atrous convolutions is employed in the bottleneck block of the proposed architecture.

Additional to [29], each block of the proposed Efficient U-Net waterfall scheme performs

70

a projection before an atrous convolution, reducing the feature size by a factor of 4. Not

only does this reduce the number of parameters and computations, but also increases the

receptive field of the convolutional filter. Intuitively, the increase of the receptive field,

coupled with the atrous convolutions at different rates, would capture a greater range of

contextual information, which is important to distinguish faults from non-fault objects in

the global scene. As suggested in [29], dilation rates of 1, 2 and 4 are used, given that faults

are relatively small in scale compared to the rest of the scene.

Feature Map Saving: Following the U-Net architecture, the feature maps produced by each

encoder block are saved and copied over skip connections instead of the max pooling

indices. Particularly when segmenting small and narrow faults, saving just the indices from

the dimensionality-reduced feature map produced from max pooling can result in a loss of

lower-level fault information. Although saving the entire feature map requires more

memory, it is a reasonable trade-off given that the initial block already considerably

compresses the input image, amongst other memory-reducing design choices proposed –

any further reduction in the features extracted at each level would effectively result in

sparse up-sampled feature maps, insufficient for segmenting granular faults.

Attention Gate: When identifying the presence of structural faults in images, it is important

to consider the fault from various layers of abstraction; it is not only important to extract

the edges that define the lower-level features of a fault, but to also extract higher level

features unique to faults within a global context that may be littered with noise and non-

fault objects part of a greater scene. Thus, the importance of using attention gates to

highlight faults from the background may be key to helping the model generalize to noisy

real-world imagery. Moreover, attention gates applied on skip connections may help to

suppress poor feature representation passed from earlier layers. The attention gate takes in

the feature map passed through the skip connection and the up-sampled feature map and

performs element-wise summation between both feature map tensors – if both tensor sizes

do not match along the spatial dimensions, the up-sampled feature map tensor is resized

accordingly. The element-wise summation will cause aligned weights to become larger,

acting as an additional attention step before the summed tensor is passed through a ReLU

activation and then through to an cSE block to highlight features of interest through

71

reweighting of the channel space. The resulting feature map is then element-wise

multiplied with the original up-sampled feature map.

Activation Function: In [63], the authors replace the ReLU activation function in the initial

layers of ENet with Parametric ReLUs (PReLU) [64], which uses an additional parameter

per feature map to learn the negative slope of non-linearities; it was found that replacement

earlier in the network improved the results. The authors in [63] hypothesize the poor

performance of ReLUs in the initial layers to be attributed to the limited depth of the ENet

architecture, compared to deep networks such as ResNet. As a result, since the proposed

Efficient U-Net architecture is also relatively shallow, the PReLU activation function is

used in the initial, encoder, and bottleneck blocks. PReLU is also used in the cSE block to

prevent further information loss from the squeeze operation followed by a 1 × 1 projection

in lower dimensional feature space.

6.2.3 Proposed Modifications to Efficient U-Net

Modifications to the Efficient U-Net architecture are proposed and implemented to further

analyze the impact of certain design choices on performance and model efficiency.

Namely, besides benchmarking to the state-of-the-art U-Net, there are two key areas of

interest that are investigated. The first area of interest is how important attention gating is,

and whether a) reweighting the feature map responses across the spatial, channel, or

combination of both dimensions results in better fault segmentation, and b) adding attention

gating earlier in the network influences the fault segmentation performance. The second

area of interest is investigating how the parameter space, number of computations, and

inference time is impacted in relation to the fault segmentation performance by a)

introducing mobile inverted residual blocks into the network, and b) removing the atrous

waterfall block. The key areas of investigation are formalized below.

Spatial Versus Channel Attention: Focusing attention on spatial pixel regions where faults

are more likely to occur intuitively makes sense, given the relatively small percentage of

pixels that correspond to faults. Furthermore, highlighting spatial information from an up-

sampled feature map concatenated with the corresponding down-sampled feature map

helps retain spatial information from earlier in the network that may have been lost during

72

down-sampling. However, given the down-sampled feature map provides a more limited

set of lower-level features whereas the up-sampled feature map has a richer set of features

that better encapsulates properties pertaining to faults, concatenation may result in poorer

feature representation. Hence, this motivates the importance of channel attention as well as

spatial attention for fault segmentation. To assess the effectiveness of different attention

mechanisms, several versions of Efficient U-Net are implemented, in which each version

implements an attention gate with one of the following SE blocks: an cSE block, an sSE

block, and an scSE block. Additionally, a version of the model is implemented without an

attention gate to further assess the importance of attention gating.

Figure 37: Implemented SE block variants in the decoder block of the network: (a)

sSE block; (b) scSE block

Attention Early Versus Later in the Network: The role an SE block performs depends on

where in the network they are used; earlier in the network, they strengthen shared low-level

feature representations by equally exciting informative features, whereas later in the

network, they become more specialized in more heavily reweighting relevant features of

interest [66]. To analyze the impact of implementing attention earlier in the network on

model performance, a modified version of Efficient U-Net is implemented, in which the

convolutional branch of each of the encoders, decoders and bottleneck are replaced with

73

customized MBConv and Fused-MBConv blocks consisting of an SE block, as described

in [69] and [70].

Figure 38: Modifying the proposed Efficient U-Net with (a) two Fused-MBConv

blocks in the encoder and (b) two MBConv blocks in the bottleneck

As shown in Figure 38 above, based on the inverted residual block, two consecutive

MBConv blocks are added at each of the encoders, decoders, and at the bottleneck to

replace the double convolution in the projected lower dimensional feature space. Each

MBConv block increases the feature space by a factor of 4, inverse to the projection factor

performed by the base Efficient U-Net architecture. In the encoder, the first of the two

MBConv blocks reduces the feature map resolution with a 2 × 2 convolution of stride 2.

74

The second MBConv block doubles the feature dimensionality by a factor of 2. In the

bottleneck, since the input and output feature map resolution and the number of features

remains constant, a residual connection is included in each of the MBConv blocks.

MBConv on Model Performance and Complexity: Following closely to [70], the MBConv

blocks in the encoder are replaced with Fused-MBConv to optimize the use of accelerators.

Also, depth-wise separable convolutions performed in the expansive part of the MBConv

block may be more suitable than standard convolution performed in projected lower-

dimensional feature space. Projection may compress information to the extent that finer-

grain details of faults may get lost in the features extracted by convolutions on the

dimensionality-reduced feature maps. On the other hand, depth-wise separable

convolutions can reduce the number of computations without feature dimensionality

reduction, which is important to preserving fault information. Thus, the projections and

subsequent standard 3 × 3 convolutions in the extension branches and waterfall-based

dilation phase are replaced with depth-wise separable convolutions, following the original

MBConv block.

Atrous Waterfall Block on Model Performance and Complexity: Although the atrous

waterfall block can capture a greater range of contextual information in the bottleneck stage

of the network, this may come at the cost of a notable increase in the number of

computations and parameters. Thus, the atrous waterfall block is omitted in some of the

modified versions of the model and replaced with a 1 × 1 convolution.

6.3 Evaluation Criteria

To evaluate the performance and complexity of the proposed Efficient U-Net model in

relation to the state-of-the-art U-Net model and the modified networks, several key metrics

are considered for model training, validation, and complexity.

6.3.1 Training Metrics

To evaluate the loss during training, the cross-entropy loss function is commonly used to

measure the likelihood of the output with respect to the true labels. Cross-entropy is

calculated by taking the sum of the products of each true label and corresponding

75

probability of the prediction for that label in the output. The logarithmic function is applied

to each probability to avoid the likelihood from going to zero due to multiplication with

small probability values:

𝐿𝐶𝐸 = −
∑ 𝑥𝑖

𝑁
𝑖=1 log(𝑥̇𝑖)

𝑁

Where 𝐿𝐶𝐸 is the cross-entropy loss, 𝑥𝑖 is ith pixel value in the ground truth label matrix,

𝑥̇𝑖 is the ith pixel value probability in the model prediction matrix, and N is the total

number of pixels.

For the proposed binary pixel-wise classification, a variant of the cross-entropy loss

function called binary cross-entropy loss is used. Binary cross-entropy considers the

likelihood of an observation belonging to each of the classes. That is, the probability of the

predicted class multiplied by the corresponding true class label, added to the probability of

predicting the opposite class multiplied by the opposite class label. The binary cross-

entropy loss 𝐿𝐵𝐶𝐸 is expressed as follows:

𝐿𝐵𝐶𝐸 = −
∑ 𝑥𝑖

𝑁
𝑖=1 log(𝑥̇𝑖) + (1 − 𝑥𝑖) log(1 − 𝑥̇𝑖)

𝑁

6.3.2 Validation Metrics

Although cross-entropy loss is a useful tool for evaluating the loss during the training

process, it can be difficult to interpret. When validating the performance of a classifier,

other metrics are typically used. Accuracy, also known as the error rate, is a standard

evaluation metric, as it is intuitive and measures how often a classifier makes correct

predictions, on average. Accuracy in classification problems is computed as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where TP is the number of true positives in which the classifier correctly predicts the

positive class, TN is the number of true negatives wherein the classifier correctly predicts

the negative class, FP is the number of false positives in which the classifier incorrectly

predicts a label to be part of the positive class, and FN is the number of false negatives.

76

However, due to the inherent nature of unbalanced classes in anomaly detection,

particularly in pixel-wise image fault segmentation, accuracy can be rather misleading.

Take, for example, a dataset in which 95% of the true labels are negative. In this case, a

classifier that simply predicts every observation to be negative will still achieve 95%

accuracy as the baseline accuracy. Thus, without applying any of the previously discussed

preprocessing techniques on unbalanced classes, accuracy is not an ideal metric for

evaluating such classes. Instead, it would be advantageous to consider other several key

indicators that are more robust to class imbalances. Two important indicators include the

number of true positives identified out of all positive predictions – referred to as the

precision – and the proportion of all positives from the dataset correctly identified –

referred to as the recall.

A more reliable validation metric than accuracy that is commonly used in pixel-wise

segmentation for measuring the degree of overlap between the predicted label map and

ground truth label map is called the intersection over union (IoU). This metric takes the

intersection between the predicted label and ground truth, divided by the union of the

predicted label and ground truth. The output is a value between 0 and 1, with an IoU closer

to 1 corresponding to a greater overlap of the predicted label and ground truth. This can be

expressed as follows:

𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁

The Dice score is another important validation metric that measures the degree of overlap

between prediction and ground truth while taking recall and precision into account.

Namely, the Dice score, also known as the F1-score, is equivalent to the harmonic mean

of the precision and recall [29], and is formulated as follows:

𝐷𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

In other words, the Dice score takes the intersection multiplied by 2, divided by the

intersection plus the union. This expression can also be rearranged with respect to precision

and recall:

77

𝐷𝑆𝑐𝑜𝑟𝑒 =
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

That is, the greater the precision and recall, the higher and better the dice score (between 0

and 1). Due to the nature of the harmonic mean, the Dice score will penalize very low

precision or recall values, such that the more balanced the precision and recall, the higher

the Dice score. Hence, the Dice score is a good metric for optimizing the precision and

recall tradeoff. Moreover, the Dice score tends to give a measure of the average

performance, whereas the IoU approximates the worst-case performance, which makes it

advantageous to consider both metrics during evaluation.

6.3.3 Model Complexity Metrics

Network latency: To assess inference time or network latency when predicting upon a

single image, time (measured in milliseconds) is used. Specifically, only the feed-forward

of the neural network is measured, omitting the time required for GPU initialization and

the transfer of data from the CPU to GPU. Network latency is also expressed in terms of

FPS (frames per second), for benchmarking in relation to real-time inference.

Computations: The number of computations required in a single pass through a network is

measured using multiply-accumulate operations (MAC). A MAC is an operation that

includes one multiplication and one addition, each of which can be floating point

operations. Roughly speaking, one MAC is equal to two floating point operations (FLOP).

One possible advantage to using MACs over FLOPs is that neural networks compute

mainly on multiply-accumulate operations, and thus improvements in the number of MACs

would generally be more emphasized than those in the number of FLOPs.

Parameters: The number of parameters is also measured to further assess network

complexity in terms of the number of weights and biases in each convolutional layer. The

number of parameters for each convolution is 𝐶 × 𝑤 × ℎ × 𝐶’ + 1, where C is the input

channel space size, w is the width of the kernel, h is the height of the kernel, and C’ is the

output channel space size, with an addition of 1 to account for the bias term of each kernel.

78

6.4 Experimental Results

6.4.1 Data

Publicly available datasets of structural faults captured in real-world environments are used

for training and validation of the proposed Efficient U-Net models as well as the baseline

U-Net.

Crack500: One of the datasets training and validation is performed upon is a crack-based

dataset called Crack500 [31][71]. The original dataset contains 500 road pavement color

images of resolution 2,000 × 1,500, taken with cellular phones. Each image is accompanied

with a pixel-wise annotated segmentation map.

GAPs384: Based on the German Asphalt Pavement Distress (GAPs) dataset presented in

[72], the original GAPs384, a subset of GAP, consists of 353 training and 27 validation

grayscale images of resolution 1920 × 1080, captured with a specialized imaging system

with photogrammetrically calibrated monochrome cameras. Captured images include

cracks, potholes, and inlaid patches. Moreover, each image is accompanied with a pixel-

wise annotated segmentation map.

CrackForest: The CrackForest dataset [73][74] consists of 118 RGB color images of 480

× 320 resolution captured with an iPhone 5 camera. Captured images include cracks

amongst noise such as oil stains, road markings, shoes, and shadows. As with the Crack500

and GAPs384 datasets, the images are accompanied with pixel-wise annotated

segmentation maps. 89 samples are used for training, with 29 samples set aside for

validation.

Merged Dataset: Samples from the Crack500, GAPs384, and CrackForest dataset, along

with samples from the Cracktree200 [75], Aigle-RN & ESAR & LCMS [76], DeepCrack

[87] and masonry crack [77] datasets are combined into a merged dataset consisting of

9,793 training samples and 1,745 validation samples of 448 × 448 resolution. In particular,

the Cracktree200 dataset introduces further noise, occlusion, shadows, and low contrast.

Furthermore, non-crack samples are included in the merged dataset, capturing corners,

79

edges, and brick mortar that resemble cracks to allow the model training upon such samples

to better distinguish between cracks and non-cracks. By combining diverse samples of

various structures – pavement, concrete, and masonry – captured using different equipment

within noisy and occluded environments, a model trained upon the merged dataset may

better generalize to real-world settings.

Data Preparation: The image resolutions in the Crack500 and GAPs384 datasets are quite

large, posing a constraint on the network scalability due to the limited amount of GPU

memory (6 GB graphics-card memory). Thus, cropped images and accompanying

annotated pixel-wise segmentation maps of resolution 640 × 360 from the original

Crack500 dataset are used, resulting in 1,896 training images and 348 validation images.

Similarly, a modified version of the GAPs384 dataset is used in this experiment, consisting

of a cropped subset of 465 training and 44 validation images of 540 × 440 resolution.

Images in the CrackForest dataset are scaled to 320 × 320 resolution before training. Each

dataset is also augmented through random image rotation between -90° and 90°, and

horizontal and vertical flipping with a probability p = 0.5. Due to some instances of low

lighting, particularly in the GAPs384 dataset, a random brightness factor in the range of (-

0.2, 0.2) is applied. It is also observed that there is a small fraction of labelled fault pixels

in comparison to non-fault pixels. Hence, an oversampling approach is used to intentionally

sample more of the pixels associated to the fault class during the data loading phase prior

to training; class weights are used to determine the ratio of fault pixels to non-fault pixels,

to more evenly sample pixels corresponding to observations from each class. Data is also

shuffled prior to training on every dataset to ensure randomness in the sampling.

6.4.2 Evaluation

The models, training, and evaluation scripts are written in Python, using the PyTorch

framework. Model training and validation, as well as inference speed testing, is conducted

on an Nvidia GeForce GTX 1060 6 GB GPU. Inference speed testing is also performed on

an Nvidia Jetson Nano Developer Kit, which provides a good indicator of performance on

an edge device with constrained GPU processing and memory.

80

Table 2: Comparison of processing and memory specifications

Machine Memory

(GB)

CUDA Cores Floating-Point

Performance (GFLOPs)

Jetson Nano 4 128 472

Nvidia GeForce GTX 6 1280 4357

Training Settings and Hyperparameters: Each model is trained and validated on the

Crack500, GAPs384, and CrackForest datasets. As illustrated in [29], a model trained

solely on the CrackForest dataset is very sensitive to noise and lighting. Furthermore, the

CrackForest and GAPs384 datasets are relatively small and limited in terms of the amount

of encoded information; images in the CrackForest dataset are relatively small in

resolution, whereas the grayscale images in the GAPs384 dataset only encode one channel.

As a result, models trained on these datasets fail to generalize and struggle to distinguish

faults in unseen images, as found in [29]. Thus, in this experiment, each of the models are

first pretrained on the merged dataset before being trained on the individual datasets,

wherein the weights learned during pretraining are saved and reused. Reusing the weights

may result in the model reaching faster convergence during training and generalizing better

on unseen data, since pretraining is performed on a wide variety of data in the merged

dataset. Based on hyperparameters chosen in the literature, pretraining on the merged

dataset is conducted for 15 epochs, with a learning rate of 0.001 at the start. A scheduled

reduction in the learning rate by half every 5 epochs is performed, to prevent the model

from overshooting the local minima of the loss. After pretraining, the models are trained

on the individual datasets (Crack500, GAPs384 and CrackForest) for an additional 15

epochs, with a learning rate of 0.0005 at the start and a scheduled reduction by half every

5 epochs. The Adam optimizer is used to update the network weights during

backpropagation. Moreover, a batch size of 4 is used. Only pixels with sigmoid values

outputted from the model of 0.5 or greater – in the range of [0,1] – are considered as part

of the fault class. On every epoch, the performance on the validation data is evaluated based

on the Dice score and IoU, with the best values reported.

Study One: To compare the proposed Efficient U-Net variants based on performance,

several sets of tests are conducted in this study. Two groups of models are constructed,

with one group of models including the atrous waterfall block, and the other group omitting

81

the atrous waterfall block. Each group consists of a version with a separate implementation

of the modified attention gate described in section 6.2.3. Within each group, the impact of

attention gating is investigated on fault segmentation performance. Across both groups of

models, the effect of omitting an atrous waterfall block on fault segmentation performance

and efficiency is analyzed on each of the datasets. All other variables are controlled. The

tested architectures are as follows:

- Baseline Efficient U-Net without attention gates nor the atrous waterfall block (EU-

Net);

- Efficient U-Net with attention gates using an cSE block (EU-Net + cSE);

- Efficient U-Net with attention gates using an sSE block (EU-Net + cSE);

- Efficient U-Net with attention gates using an scSE block (EU-Net + scSE);

- Efficient U-Net with an atrous waterfall block (EU-Net + AWF);

- Efficient U-Net with an atrous waterfall block and attention gates implemented

using an cSE block (EU-Net + AWF + cSE);

- Efficient U-Net with an atrous waterfall block and attention gates implemented

using an sSE block (EU-Net + AWF + sSE);

- Efficient U-Net with an atrous waterfall block and attention gates implemented

using an scSE block (EU-Net + AWF + scSE);

The performance of the Efficient U-Net model and its variants are compared according to

the best Dice score and IoU achieved on the merged and individual validation datasets

during training. Also reported is the Area Under the Precision-Recall Curve (AUPRC),

which represents the recall and precision tradeoff at varying thresholds; the AUPRC is

particularly useful in the case of imbalanced classes. The AUPRC, IoU, and Dice scores

for each model are given in Tables 3-6, with the superior results bolded. Each table reports

the results of each model on a specific dataset. The Dice Score and IoU are shown to

correspond directly to each other, as models with the highest Dice Scores in each dataset,

82

except for the merged dataset, have the highest IoU. Similarly, the AUPRC tends in line

with the Dice score and IoU across all the datasets – the higher the Dice score and IoU, the

higher the AUPRC.

On 3 out of the 4 datasets, the addition of an attention gate (AG) results in improved Dice

scores. The atrous waterfall (AWF) and non-AWF models that implement scSE attention

gating have superior Dice scores compared to their respective non-AG and AG

counterparts on the merged and Crack500 datasets (Tables 3 and 4). Similarly, attention

gating results in improved performance on the GAPs384 dataset (Table 5), with sSE

attention gating resulting in the highest Dice score amongst the AG and non-AG

counterparts. Only on the CrackForest dataset (Table 6) does attention gating not result in

the highest Dice scores. However, it was found that cSE attention gating results in notably

lower Dice scores in the GAPs384 and CrackForest datasets, for both the AWF and non-

AWF model versions.

Comparing each non-AWF model with its AWF counterpart, each of the AWF models in

the Crack500 dataset, whereas all AWF models, except the scSE attention gating model on

the merged dataset and the non-AG model on the CrackForest dataset, result in improved

Dice scores on their non-AWF counterparts. However, in the GAPs384 dataset, only the

non-AG AWF model results in a higher Dice score compared to its non-AWF counterpart

– the AG AWF models only have slightly lower Dice scores compared to their non-AG

AWF counterparts. The relatively poorer results on the CrackForest dataset may be due in

part to the scaling down of the images prior to training, as described in section 6.4.1.

Overall, the best resulting models in each dataset included some combination of AWF

and/or AG blocks, with scSE attention gating performing particularly well on larger

merged and Crack500 datasets. On the merged dataset, the best Dice score achieved is

0.6287 (EU-Net + scSE), a notable increase from the baseline (no AWF and no AG) of

0.5635. On the Crack500 dataset, the best Dice score achieved is 0.7789 (EU-Net + AWF

+ scSE), an increase from 0.7215 achieved by the baseline. On the GAPs384 dataset, the

best Dice score achieved is 0.4875 (EU-Net + sSE), an increase from 0.4281 achieved by

83

the baseline. On the CrackForest dataset, the best Dice score achieved is 0.6818 (EU-Net

+ AWF), an increase from 0.6191 achieved by the baseline.

Table 3: Comparison of the best validation results of the proposed Efficient U-Net

model and its variants on the merged dataset

Merged (Pretraining) AUPRC IoU Dice

EU-Net (Baseline) 0.3432 0.4094 0.5635

EU-Net + cSE 0.6031 0.4311 0.5896

EU-Net + sSE 0.6298 0.4235 0.5806

EU-Net + scSE 0.7077 0.4717 0.6287

EU-Net + AWF 0.6624 0.4515 0.6111

EU-Net + AWF + cSE 0.6235 0.4446 0.6022

EU-Net + AWF + sSE 0.6535 0.4400 0.5968

EU-Net + AWF + scSE 0.5945 0.4718 0.6286

Table 4: Comparison of the best validation results of the proposed Efficient U-Net

model and its variants on the Crack500 dataset

Crack500 AUPRC IoU Dice

EU-Net (Baseline) 0.6520 0.5847 0.7215

EU-Net + cSE 0.7531 0.6025 0.7419

EU-Net + sSE 0.6853 0.5946 0.7283

EU-Net + scSE 0.8076 0.6126 0.7490

EU-Net + AWF 0.7853 0.6206 0.7562

EU-Net + AWF + cSE 0.7660 0.6153 0.7527

EU-Net + AWF + sSE 0.6238 0.5950 0.7304

EU-Net + AWF + scSE 0.8545 0.6463 0.7789

Table 5: Comparison of the best validation results of the proposed Efficient U-Net

model and its variants on the GAPs384 dataset

GAPs384 AUPRC IoU Dice

EU-Net (Baseline) 0.5462 0.2772 0.4281

EUNet + cSE 0.4663 0.1804 0.3010

EU-Net + sSE 0.5600 0.3276 0.4875

EU-Net + scSE 0.5269 0.3027 0.4543

EU-Net + AWF 0.5531 0.3233 0.4844

EU-Net + AWF + cSE 0.4719 0.1799 0.2960

EU-Net + AWF + sSE 0.5127 0.3256 0.4868

EU-Net + AWF + scSE 0.5604 0.2998 0.4535

84

Table 6: Comparison of the best validation results of the proposed Efficient U-Net

model and its variants on the CrackForest dataset

Also compared are the precision-recall curves of each set of models on each dataset, as

shown in Figures 39 and 40. On the merged and Crack500 datasets, the AUPRCs of the

scSE attention gated models are superior to its AG and non-AG counterparts. On the GAPs

and CrackForest datasets, the AUPRCs of the non-AWF, sSE attention gated models are

superior to its AG and non-AG counterparts, whereas the AUPRCs of the AWF, non-AG

models are superior to its AG counterparts.

Figure 39: The Precision-Recall Curves (PRC) and corresponding AUPRC scores

for the Efficient U-Net models without the atrous waterfall block

CrackForest AUPRC IoU Dice

EU-Net (Baseline) 0.6367 0.4513 0.6191

EU-Net + cSE 0.3527 0.1518 0.2618

EU-Net + sSE 0.6392 0.4495 0.6167

EU-Net + scSE 0.6206 0.4095 0.5756

EU-Net + AWF 0.6437 0.5203 0.6818

EU-Net + AWF + cSE 0.3598 0.2017 0.3299

EU-Net + AWF + sSE 0.5973 0.4972 0.6609

EU-Net + AWF + scSE 0.5851 0.4009 0.5680

85

Figure 40: The Precision-Recall Curves (PRC) and corresponding AUPRC scores

for the Efficient U-Net models with the atrous waterfall block

Although statistical performance can provide a good indication of performance, it is hard

to interpret the segmentation quality from that alone. A visual investigation is also

conducted to assess the properties of the segmented label maps produced by each model

while drawing comparisons between the visual results and the statistical results obtained.

As shown in Figures 41-44, there is a noticeable distinction between the baseline (No AG,

No AWF) and the other models. For every dataset sample, the sSE attention gated models

appear to outperform the baseline in segmenting narrow cracks (Figures 41-44),

segmenting cracks captured in low brightness (Figure 43), and segmenting cracks impeded

by shadows (Figure 41). Conversely, for every dataset, the cSE attention gates models

appear to perform worse in extracting various cracks, resulting in thicker segmentations

with some discontinuities (Figure 42) and completely missing very narrow cracks (Figures

41, 43 and 44) and cracks in low contrast (Figure 44). The cSE segmentations tend closer

in line with statistical results, particularly for the GAPs384 (Figure 43) and CrackForest

(Figure 44) dataset samples. However, the scSE model segmentation label map results are

not much better than the cSE label maps, even in the merged (Figure 41) dataset in which

86

the scSE performed statistically well. However, similar could be said about the mismatch

between the relatively high statistical cSE results compared to the baseline in the merged

and Crack500 (Figure 42) datasets and the relatively poor segmentation results on their

respective samples. This mismatch between statistical and visual results, particularly for

the scSE models, may be due in part to a greater decrease in false positives than the

baseline, than the decrease in true positives compared to the baseline, particularly for less

frequent, fine cracks (Figures 41 and 43), which do not have many true positives to begin

with. Thus, in these cases, the segmentation results may be visually poorer in comparison

to the corresponding statistical results.

Comparing the segmentation label maps of the AWF and non-AWF models, it appears that

the AWF + sSE models output finer extractions compared to the non-AWF + sSE models,

which is particularly apparent in Figures 41 and 43. Across all the datasets, the AWF

models tend to output finer segmentation label maps compared to their non-AWF

counterparts, with little to no loss in detail, while also noticeably reducing the number of

false positives on the merged dataset sample and better segmenting the extremely narrow

crack in the top left of the CrackForest data sample and the bottom left of the Crack500

data sample. In general, the visual segmentation results tend in line with the statistical

results for the AWF versus non-AWF models.

Figure 41: The image, ground truth, and corresponding predicted label maps of

each model version on the merged dataset

Raw Ground Truth No AG AG with cSE AG with sSE

AG with scSE

No AWF

AWF

87

Figure 42: The image, ground truth, and corresponding predicted label maps of

each model version on the Crack500 dataset

Figure 43: The image, ground truth, and corresponding predicted label maps of

each model version on the GAPs384 dataset

Raw Ground Truth No AG AG with cSE AG with sSE

AG with scSE

No AWF

AWF

Raw Ground Truth No AG AG with cSE AG with sSE

AG with scSE

No AWF

AWF

88

Figure 44: The image, ground truth, and corresponding predicted label maps of

each model version on the CrackForest dataset

To investigate the parameter and computational efficiency, the number of parameters and

GMACs required during inference are also analyzed and reported. Based on Table 7, as

predicted, the models without the AWF block have a noticeable decrease in the number of

parameters, by an average reduction of approximately 30%. Also, there is some reduction

in the number of computations for non-AWF models, with an average reduction of

approximately 17% in the GMACs reported compared to the AWF models. Furthermore,

there is little additional computational overhead introduced by the AG models, compared

to their non-AG counterparts: a 5% increase in the number of parameters in the scSE AG

model compared to the non-AG model is the largest amongst the AG models, whereas less

than a 1% increase in the GMACs is the largest amongst the AG models in relation to the

non-AG models.

Table 7: Comparison of the parameter and computational efficiency

Model Version #Params GMACs

320 × 320 448 × 448 540 × 440 640 × 360

EU-Net (Baseline) 425.32k 1.46 2.88 3.40 3.31

EU-Net + cSE 446.83k 1.47 2.89 3.41 3.31

EU-Net + sSE 425.54k 1.47 2.89 3.41 3.31

EU-Net + scSE 447.05k 1.47 2.89 3.41 3.32

EU-Net + AWF 603.88k 1.77 3.47 4.09 3.98

EU-Net + AWF + cSE 625.39k 1.77 3.47 4.09 3.99

EU-Net + AWF + sSE 604.11k 1.77 3.47 4.09 3.99

EU-Net + AWF + scSE 625.61k 1.77 3.48 4.10 3.99

Raw Ground Truth No AG AG with cSE AG with scSE

AG with sSE

No AWF

AWF

89

The tradeoff between the model performance and computational and parameter efficiency

is illustrated in Figures 45 and 46 below. The Dice score is evaluated in relation to the

number of parameters (Figure 45) and the number of computations reported as GMACs on

each resolution setting according to the image resolutions of each dataset (Figure 46). In

Figure 45, apart from the scSE AG models, the addition of the AWF block results in notably

higher Dice scores and number of parameters. In Figure 46, across the datasets, the addition

of the AWF block results in increased Dice score and GMACs. However, there are some

exceptions, including on the merged dataset where the non-AWF scSE AG model has

nearly the same Dice score as the AWF + scSE model, but requires notably less

computations. Similarly, the non-AWF cSE and sSE AG models produces higher Dice

scores than their AWF counterparts on the GAPs384 dataset, while requiring less

computations. These exceptions are illustrative of models that may provide good efficiency

in terms of their fault segmentation capability per parameter and computation.

Figure 45: The effect of adding the atrous waterfall block and using different

attention gates on the Dice score (achieved on the merged dataset) and number of

parameters

No AG
(Baseline)

cSE

sSE

scSE

No AG

cSE

sSE

scSE

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

300 400 500 600 700

D
ic

e
Sc

o
re

Number of Parameters (Thousands)

No Atrous Waterfall Atrous Waterfall

90

Figure 46: The effect of adding the atrous waterfall block and using different

attention gates on the dice score and number of computations (GMACs)

Study Two: In this study, the best performing model on each dataset in study one, in terms

of the Dice score, is modified with MBConv blocks as described in section 6.2.3. The

performance of each MBConv model is then compared to its non-MBConv counterpart and

the baseline state-of-the-art U-Net model in terms of segmentation performance, parameter

and computational efficiency, model size, and the average inference time per frame. Note

that since the AWF and Non-AWF scSE models have nearly identical Dice scores and IoU

on the merged dataset in study one, both models are considered in this study on the merged

dataset.

No AG (Baseline)

cSE

sSE

scSE

No AG

cSE

sSE

scSE

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

2.5 3 3.5 4

D
ic

e
Sc

o
re

GMACs

Merged (448 x 448)

No Atrous Waterfall Atrous Waterfall

No AG
(Baseline)

cSE

sSE

scSE

No AG

cSE

sSE

scSE

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

2.5 3.5 4.5

D
ic

e
Sc

o
re

GMACs

Crack500 (640 x 360)

No Atrous Waterfall Atrous Waterfall

No AG
(Baseline)

sSE

scSE

No AG

sSE

scSE

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

2.5 3.5 4.5

D
ic

e
Sc

o
re

GMACs

GAPs384 (540 x 440)

No Atrous Waterfall Atrous Waterfall

sSE

No AG (Baseline)

scSE

No AG

sSE

scSE

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

1 1.5 2 2.5

D
ic

e
Sc

o
re

GMACs

CrackForest (320 x 320)

No Atrous Waterfall Atrous Waterfall

91

In Tables 8-11, the best AUPRC, IoU, and Dice scores achieved on the validation set of

each dataset, as well as the average FPS achieved for each model is reported, with the

superior results bolded. The FPS reported in Tables 8-11 are based on tests run on a Jetson

Nano with images of 320 × 320 and 640 × 360 resolution, the former being sufficient for

prototyping with the AI-deck camera mounted on the Crazyflie 2.1 quadcopter, and the

latter suitable for larger-scale, real-world image fault segmentation applications. Each

model is run for 300 repetitions to ensure reliable time measurement, with the average

running time reported and converted to FPS. On all datasets except the CrackForest dataset

(Table 11), a modified version of the Efficient U-Net model outperforms the baseline U-

Net model in Dice score, IoU, and AUPRC, while the FPS of all evaluated modified

Efficient U-Net models is significantly higher compared to U-Net. On the merged dataset

(Table 8), the best Dice score of 0.6461 is achieved (MBConv-EU-Net + AWF + scSE), a

significant increase from a Dice score of 0.5723 achieved on U-Net, while performing 1.6x

faster than U-Net. On the Crack500 dataset (Table 9), the best Dice score of 0.7890 is

achieved (MBConv-EU-Net + AWF + scSE), a significant increase from 0.7087 achieved

on U-Net, while performing 1.6x faster than U-Net. On the GAPs384 dataset (Table 10),

the best Dice of 0.4875 is achieved (EU-Net + sSE), an increase from 0.4524 achieved on

U-Net, while respectively performing 3.9x and 4.1x faster on 320 × 320 and 640 × 360

resolution images compared to U-Net, which is the maximal speedup reported in Table 10.

In Table 8, a 3.1x and 3.3x speedup on respective 320 × 320 and 640 × 360 resolution

images are maximally achieved. In Table 9, a 2.6x and 2.9x speedup on respective 320 ×

320 and 640 × 360 resolution images are maximally achieved. In Table 11, a 3.6x and 3.9x

speedup on respective 320 × 320 and 640 × 360 resolution images are maximally achieved.

Next, the MBConv models and their non-MBConv counterparts are compared. On the

merged and Crack500 datasets, the MBConv variant outperforms the non-MBConv model

counterpart in Dice score and IoU, which may be due in part to the addition of attention

gating earlier in the network. However, the FPS achieved on the MBConv models is lower

than their non-MBConv counterparts; this slowdown may be attributed to the depth-wise

convolutions not optimally utilizing modern accelerators as noted in [70], despite the

replacement of the depth-wise convolutions with standard convolutions in earlier layers.

92

Table 8: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv

Efficient U-Net models on the merged dataset

Merged (Pretraining) AUPRC IoU Dice FPS

320 × 320 640 × 360

U-Net (Baseline) 0.5854 0.4164 0.5723 4.7 2.2

EU-Net + scSE 0.7077 0.4717 0.6287 14.7 7.2

MBConv-EU-Net + scSE 0.6769 0.4466 0.6010 7.9 3.7

EU-Net + AWF + scSE 0.5945 0.4718 0.6286 12.1 6.3

MBConv-EU-Net + AWF + scSE 0.6855 0.4871 0.6461 7.6 3.6

Table 9: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv

Efficient U-Net models on the Crack500 dataset

Crack500 AUPRC IoU Dice FPS

320 × 320 640 × 360

U-Net (Baseline) 0.5384 0.5706 0.7087 4.7 2.2

EU-Net + AWF + scSE 0.8545 0.6463 0.7789 12.1 6.3

MBConv-EU-Net + AWF + scSE 0.8848 0.6578 0.7890 7.6 3.6

Table 10: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv

Efficient U-Net models on the GAPs384 dataset

GAPs384 AUPRC IoU Dice FPS

320 × 320 640 × 360

U-Net (Baseline) 0.5401 0.2998 0.4524 4.7 2.2

EU-Net + sSE 0.5600 0.3276 0.4875 18.2 9.1

MBConv-EU-Net + sSE 0.5306 0.3066 0.4634 9.7 4.5

Table 11: Comparison of the U-Net (baseline), Efficient U-Net, and MBConv

Efficient U-Net models on the CrackForest dataset

CrackForest AUPRC IoU Dice FPS

320 × 320 640 × 360

U-Net (Baseline) 0.6921 0.5427 0.7011 4.7 2.2

EU-Net + AWF 0.6437 0.5203 0.6818 16.9 8.5

MBConv-EU-Net + AWF 0.6596 0.4427 0.6085 8.1 3.9

93

Figure 47: The Precision-Recall Curves (PRC) and corresponding AUPRC scores

for the U-Net (baseline), Efficient U-Net, and MBConv Efficient U-Net models

In Table 12 below, the number of parameters, model size, and GMACs required during

inference for the baseline U-Net, Efficient U-Net and MBConv counterparts are reported.

The Efficient U-Net models have significantly less parameters and computations than U-

Net, with an average decrease of 77% in the number of parameters. Moreover, the Efficient

U-Net model sizes are significantly decreased compared to U-Net, with an average 76%

size reduction. There is also a notable computational and parameter size reduction with the

MBConv models in comparison to their non-MBConv counterparts, which makes sense

given that the depth-wise separable convolutions in the MBConv blocks reduce the number

of computations and parameters.

94

Table 12: Comparison of the model size, number of parameters and computational

efficiency

Model Version #Params Model

Size (MB)

GMACs

320 × 320 448 × 448 540 × 440 640 × 360

U-Net (Baseline)
1927.01k 22.1 16.35 32.07 37.93 36.81

EU-Net + scSE
447.05k 5.24 1.47 2.89 3.41 3.32

MBConv-EU-Net

+ scSE

372.38k 4.51 0.90 1.77 2.10 2.03

EU-Net + AWF +

scSE

625.61k 7.34 1.77 3.48 4.10 3.99

MBConv-EU-Net

+ AWF + scSE

377.52k 4.62 0.91 1.79 2.12 2.05

EU-Net + sSE
425.54k 4.99 1.47 2.89 3.41 3.31

MBConv-EU-Net

+ sSE

369.69k 4.46 0.89 1.74 2.07 2.00

EU-Net + AWF
603.88k 7.08 1.77 3.47 4.09 3.98

MBConv-EU-Net

+ AWF

376.12k 4.59 0.91 1.79 2.12 2.05

95

Chapter 7

7 Discussion and Conclusions

The need for automated infrastructure inspection calls for the application of drones, which

have the capability to autonomously navigate structures and process data. In remote

environments, due to limited connectivity, a companion computer mounted onto a drone is

the most viable solution. However, given the processing and memory constraints of

companion computers, achieving real-time processing for fault segmentation and tracking

is a difficult task.

In this thesis, a prototype of a fully autonomous drone infrastructure inspection system is

proposed and developed for real-time fault segmentation, designed for computationally

constrained environments. To develop this prototype, a Crazyflie 2.1 quadcopter is

equipped with a flow deck for navigation, a multi-ranger deck for obstacle avoidance, and

an AI-deck with an attached 320 × 320 grayscale camera for capturing and sending a live

image stream via Wi-Fi to the Jetson Nano, a viable companion computer. Next, robust

line estimation algorithms are investigated, wherein a modified version of the RANSAC

algorithm is implemented, using a quadtree and a smart sampling approach. The modified

RANSAC is evaluated in comparison to the baseline RANSAC algorithm. The modified

RANSAC implementation achieves lower MSE on the outputted inlier set, particularly for

larger σ, and generally achieves a lower MSE between the predicted slope of the fitted line

and the actual slope. Also, as the outlier ratio and sample size increases, the greater the

reduction is in the running time achieved by the modified RANSAC over the baseline

RANSAC algorithm, with processing times well below the 1 second mark without GPU

acceleration. Thus, by using the modified RANSAC algorithm for robust line estimation,

the direction line of the faults can be efficiently determined for near real-time drone fault

tracking.

Also proposed and developed in this thesis is the Efficient U-Net CNN architecture, based

upon U-Net, ENet, Squeeze-and-Excitation Networks, and the addition of attention gating

and an atrous waterfall block inspired by [29]. Further investigated is the importance of

attention gating, with variations of the cSE, sSE and scSE blocks implemented in different

96

models. Experimental results show that scSE attention gating works well on the larger

trained datasets, and that in general, AG models outperform the non-AG models in Dice

score and IoU. Specifically, on visual investigation of the segmented label maps, sSE

attention gating appears superior, capable of extracting fine, narrow cracks. Also

investigated is the importance of the atrous waterfall block, in which it was found that

models including such block generally outperformed the models omitting it, in terms of

statistical and visual performance. Furthermore, the best performing models from the above

study are evaluated and compared against versions of the models wherein the standard

bottleneck blocks are replaced with MBConv blocks. In the larger merged and crack500

datasets, the MBConv model outperforms the non-MBConv model in Dice score and IoU

but achieves a lower FPS. All custom models except those tested on the CrackForest dataset

outperform U-Net, with the MBConv models in the merged and Crack500 datasets

achieving an increase of 0.0738 and 0.0803 in the Dice score, respectively. Also, all models

run faster at inference than U-Net, with 18.2 FPS being the highest achieved on 320 × 320

images processed on a Jetson Nano, compared to 4.7 FPS achieved by the baseline U-Net.

Thus, the proposed Efficient U-Net model variants can achieve real-time or near real-time

speeds for fault segmentation on a computationally constrained device, while

outperforming the baseline U-Net model in both inference speed and segmentation

capability. This enables the drone to adequately extract the faults in real-time during the

inspection, which holds promise for larger-scale drone inspection applications.

7.1 Limitations and Future Work

For fault segmentation, although the MBConv models achieve a high performance, they

perform more slowly than their non-MBConv counterparts, despite requiring less

parameters and computations. This is likely due to the depth-wise convolutions, and as

such, further running time tests should be performed in the future in which all MBConv

blocks are replaced with the Fused-MBConv blocks. This way, all depth-wise convolutions

are replaced with standard convolutions. Furthermore, although the MBConv models

performed better on some datasets, it is not evident enough from testing how much of this

performance improvement is due to the addition of attention gating earlier in the networks.

Thus, further network modifications are needed to better determine the impact of early

97

attention gating. Also, not tested is the impact of introducing pixel tolerances on

segmentation performance. As noted in related works, pixel tolerances can help handle

annotation inconsistencies across different datasets and can result in considerable

improvement in statistical results, as shown in [29].

Although training is performed on various datasets, it may be advantageous to augment the

datasets with images of structural defects captured by the camera mounted onto the drone.

Furthermore, the publicly available datasets used in this thesis are relatively limited in the

number of images with background noise and occlusion, which further motivates the use-

case of augmentation through the addition of drone-captured images during inspection.

Also, prior to each round of training, the data batches are randomly selected during

evaluation; in future studies, using a constant seed to reduce variability in the sampled data

may be worth consideration.

In terms of the modified RANSAC algorithm, although promising results are obtained on

a CPU, modifying the implementation of the algorithm such that it can be executed on the

GPU for further acceleration is another possible area of future investigation.

In structural health monitoring (SHM), being able to not only detect the presence of

structural faults but to also determine where these faults occur on structures is of great

value for localization in three-dimensional (3D) space. Moreover, being able to visualize

the spread of the faults and see the bigger picture would allow engineers to make better

decisions for treating these faults and determining their severity. However, images captured

via digital cameras are limited in terms of how much information they can capture, given

that they only provide a two-dimensional (2D) representation of the physical environment.

Moreover, images taken at a relative proximity to the inspected structure can only capture

a fraction of entire structure; unless taken from afar, it would be very difficult to garner

any topological sense of the structure for mapping and 3D reconstruction purposes from

individual images alone. To address this, it may be advantageous to produce a 3D fault

map, which maps fault points from a 2D camera coordinate system to a 3D global

coordinate system. This can be achieved by approximating structural points based on

sensor distance readings, estimated drone position, and camera pose. Furthermore,

98

quantifying the mapped faults in terms of depth, width and spread would help to better

assess the severity of the structural damage.

The next step for this system as a whole is to scale it up to a larger drone onto which the

Jetson Nano may be mounted, along with multidirectional ToF sensors for obstacle

avoidance and a higher resolution camera for structural image capturing. Such a drone

should be capable of flying outdoors in varying conditions and be deployed remotely

without need for manual intervention on-site. Furthermore, the drone should be able to

locate the structure to travel to via GPS coordinates passed to the system. In the current

system, the drone is only capable of flying to an x, y coordinate location relative to its

starting position. Having the drone autonomously navigate around large structures for

extended periods of time can easily drain its battery life, thus calling for the need to

synchronize multiple drones for continuous inspection.

99

Bibliography

[1] Transport Canada, “Road transportation,” Transport Canada, 13-Jul-2020. [Online].

Available: https://tc.canada.ca/en/corporate-services/policies/road-transportation.

[2] “Bridges,” ASCE's 2021 Infrastructure Report Card |, 21-Jan-2022. [Online].

Available: https://infrastructurereportcard.org/cat-item/bridges/.

[3] Y. Xu and Y. Turkan, “Brim and UAS for bridge inspections and management,”

Engineering, Construction and Architectural Management, vol. 27, no. 3, pp. 785–

807, 2019.

[4] “Value for money audit: Inspection and ... - auditor.on.ca.” [Online]. Available:

https://www.auditor.on.ca/en/content/annualreports/arreports/en21/AR_InspectBrid

ges_en21.pdf.

[5] J. Valença, I. Puente, E. Júlio, H. González-Jorge, and P. Arias-Sánchez,

“Assessment of cracks on concrete bridges using image processing supported by

Laser Scanning survey,” Construction and Building Materials, vol. 146, pp. 668–

678, 2017.

[6] “Design of a bridge inspection system (bis) to reduce time ...” [Online]. Available:

https://catsr.vse.gmu.edu/SYST490/490_2014_BI/BIS_FinalReport.pdf.

[7] A. M. Abdallah, “A Study on Bridge Inspections: Identifying Barriers to New

Practices and Providing Strategies for Change.” Order No. 28547957, Colorado State

University, Ann Arbor, 2021.

[8] “Technical documents,” GSA, 30-Nov-2017. [Online]. Available:

https://www.gsa.gov/node/1100?Form_Load=88348.

[9] “Active crack,” Active Crack - an overview | ScienceDirect Topics. [Online].

Available: https://www.sciencedirect.com/topics/engineering/active-

crack#:~:text=Dormant%20cracks%20may%20be%20induced,cracks%20and%20i

ndicate%20severe%20problems.

[10] /author/concrete-Construction-Staff, “D-cracking of pavements,” Concrete

Construction, 10-Feb-2011. [Online]. Available:

https://www.concreteconstruction.net/how-to/d-cracking-of-pavements_o.

[11] “Structural Health Monitoring,” Structural Health Monitoring - an overview |

ScienceDirect Topics. [Online]. Available:

https://www.sciencedirect.com/topics/engineering/structural-health-

monitoring#:~:text=Structural%20health%20monitoring%20(SHM)%20system,reli

ability%20and%20life%20cycle%20management.

[12] S. Sony, K. Dunphy, A. Sadhu, and M. Capretz, “A systematic review of

convolutional neural network-based structural condition assessment techniques,”

Engineering Structures, vol. 226, p. 111347, 2021.

[13] B. Desai, U.Kushwaha, S.Jha, “Image Filtering -Techniques, Algorithm and

Applications,” GIS Science Journal, vol. 7, p. 970, 2020.

100

[14] Q. Mei and M. Gül, “Multi-level feature fusion in densely connected deep-learning

architecture and depth-first search for crack segmentation on images collected with

smartphones,” Structural Health Monitoring, vol. 19, no. 6, pp. 1726–1744, 2020.

[15] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[16] M. Zhong, L. Sui, Z. Wang, and D. Hu, “Pavement crack detection from Mobile

Laser Scanning Point Clouds using a time grid,” Sensors, vol. 20, no. 15, p. 4198,

2020.

[17] K. Gopalakrishnan, H. Gholami, and A. Agrawal, “Crack damage detection in

unmanned aerial vehicle images of civil infrastructure using pre-trained deep

learning model,” INTERNATIONAL JOURNAL FOR TRAFFIC AND TRANSPORT

ENGINEERING, vol. 8, no. 1, pp. 1–14, 2018.

[18] Q. Zhang, K. Barri, S. K. Babanajad, and A. H. Alavi, “Real-time detection of cracks

on concrete bridge decks using deep learning in the frequency domain,” Engineering,

vol. 7, no. 12, pp. 1786–1796, 2021.

[19] E. Jeong, J. Seo, and J. Wacker, “Literature review and technical survey on bridge

inspection using unmanned aerial vehicles,” Journal of Performance of Constructed

Facilities, vol. 34, no. 6, p. 04020113, 2020.

[20] G. Gugan and A. Haque, “Towards the development of a robust path planner for

autonomous drones,” 2020 IEEE 91st Vehicular Technology Conference (VTC2020-

Spring), 2020.

[21] “# telemetry radios/modems,” Telemetry Radios/Modems | PX4 User Guide.

[Online]. Available: https://docs.px4.io/master/en/telemetry/.

[22] “# basic concepts,” Basic Concepts | PX4 User Guide. [Online]. Available:

https://docs.px4.io/master/en/getting_started/px4_basic_concepts.html.

[23] K. Máthé and L. Buşoniu, “Vision and control for uavs: A survey of general methods

and of inexpensive platforms for infrastructure inspection,” Sensors, vol. 15, no. 7,

pp. 14887–14916, 2015.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp.

84–90, 2017.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

[26] K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," arXiv preprint arXiv: 1409.1556, 2014.

[27] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

101

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[29] R. Augustauskas and A. Lipnickas, “Improved pixel-level pavement-defect

segmentation using a Deep Autoencoder,” Sensors, vol. 20, no. 9, p. 2557, 2020.

[30] M. David Jenkins, T. A. Carr, M. I. Iglesias, T. Buggy, and G. Morison, “A deep

convolutional neural network for semantic pixel-wise segmentation of road and

pavement surface cracks,” 2018 26th European Signal Processing Conference

(EUSIPCO), 2018.

[31] F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature pyramid and

hierarchical boosting network for pavement crack detection,” IEEE Transactions on

Intelligent Transportation Systems, vol. 21, no. 4, pp. 1525–1535, 2020.

[32] L. Xiao, W. Li, J. Huyan, Z. Sun, and S. Tighe, “Crack grid detection and calculation

based on Convolutional Neural Network,” Canadian Journal of Civil Engineering,

vol. 48, no. 9, pp. 1192–1205, 2021.

[33] X. Zhao, S. Li, H. Su, L. Zhou, and K. J. Loh, “Image-based comprehensive

maintenance and inspection method for bridges using Deep Learning,” Volume 2:

Mechanics and Behavior of Active Materials; Structural Health Monitoring;

Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging

Technologies, 2018.

[34] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based crack damage

detection using convolutional neural networks,” Computer-Aided Civil and

Infrastructure Engineering, vol. 32, no. 5, pp. 361–378, 2017.

[35] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” 2014 IEEE Conference on

Computer Vision and Pattern Recognition, 2014.

[36] R. Girshick, “Fast R-CNN,” 2015 IEEE International Conference on Computer

Vision (ICCV), 2015.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object

detection with region proposal networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[38] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk, “Autonomous

structural visual inspection using region-based deep learning for detecting multiple

damage types,” Computer-Aided Civil and Infrastructure Engineering, vol. 33, no.

9, pp. 731–747, 2017.

[39] D. Ma, H. Fang, N. Wang, B. Xue, J. Dong, and F. Wang, “A real-time crack

detection algorithm for pavement based on CNN with multiple feature layers,” Road

Materials and Pavement Design, pp. 1–17, 2021.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

102

[41] Y. Li, Z. Han, H. Xu, L. Liu, X. Li, and K. Zhang, “Yolov3-Lite: A lightweight crack

detection network for aircraft structure based on depth-wise separable convolutions,”

Applied Sciences, vol. 9, no. 18, p. 3781, 2019.

[42] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” Lecture Notes in Computer Science, pp. 234–241,

2015.

[44] S. L. Lau, E. K. Chong, X. Yang, and X. Wang, “Automated pavement crack

segmentation using u-net-based convolutional neural network,” IEEE Access, vol. 8,

pp. 114892–114899, 2020.

[45] N. Beheshti and L. Johnsson, “Squeeze U-net: A memory and energy efficient image

segmentation network,” 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), 2020.

[46] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann, P.

Schuberth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich, and B. Nessler,

“Speeding up semantic segmentation for autonomous driving,” Conference on

Neural Information Processing Systems (NIPS 2016), 2016.

[47] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[48] C. V. Dung and L. D. Anh, “Autonomous concrete crack detection using deep fully

convolutional neural network,” Automation in Construction, vol. 99, pp. 52–58,

2019.

[49] T. Chen, Z. Cai, X. Zhao, C. Chen, X. Liang, T. Zou, and P. Wang, “Pavement crack

detection and recognition using the architecture of segnet,” Journal of Industrial

Information Integration, vol. 18, p. 100144, 2020.

[50] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB

model size,” arXiv preprint arXiv:1602.07360, 2016.

[51] V. Hoskere, Y. Narazaki, T. Hoang, and B. Spencer Jr, “Towards automated post-

earthquake inspections with deep learning-based condition-aware models,” arXiv

preprint arXiv:1809.09195, 2018.

[52] F. Kucuksubasi and A. G. Sorguc, “Transfer learning-based crack detection by

autonomous uavs,” Proceedings of the International Symposium on Automation and

Robotics in Construction (IAARC), 2018.

[53] H. S. Munawar, F. Ullah, A. Heravi, M. J. Thaheem, and A. Maqsoom, “Inspecting

buildings using drones and Computer Vision: A machine learning approach to detect

cracks and damages,” Drones, vol. 6, no. 1, p. 5, 2021.

103

[54] W. Wu, M. A. Qurishee, J. Owino, I. Fomunung, M. Onyango, and B. Atolagbe,

“Coupling deep learning and UAV for Infrastructure Condition Assessment

Automation,” 2018 IEEE International Smart Cities Conference (ISC2), 2018.

[55] J.-H. Lee, S.-S. Yoon, H.-J. Jung, and I.-H. Kim, “Diagnosis of crack damage on

structures based on image processing techniques and R-CNN using Unmanned

Aerial Vehicle (UAV),” Sensors and Smart Structures Technologies for Civil,

Mechanical, and Aerospace Systems 2018, 2018.

[56] L. Ali, N. K. Valappil, D. N. Kareem, M. J. John, and H. Al Jassmi, “Pavement crack

detection and localization using convolutional neural networks (cnns),” 2019

International Conference on Digitization (ICD), 2019.

[57] A. Reddy, V. Indragandhi, L. Ravi, and V. Subramaniyaswamy, “Detection of cracks

and damage in wind turbine blades using artificial intelligence-based Image

Analytics,” Measurement, vol. 147, p. 106823, 2019.

[58] S. Mohan, O. Shoghli, A. Burde, and H. Tabkhi, “Low-power drone-mountable real-

time Artificial Intelligence Framework for road asset classification,” Transportation

Research Record: Journal of the Transportation Research Board, vol. 2675, no. 1,

pp. 39–48, 2020.

[59] Y. Z. Ayele, M. Aliyari, D. Griffiths, and E. L. Droguett, “Automatic Crack

Segmentation for UAV-assisted bridge inspection,” Energies, vol. 13, no. 23, p.

6250, 2020.

[60] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,

and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile

vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[61] K. McGuire, “Do ai decks dream of tutorials?,” Bitcraze. [Online]. Available:

https://www.bitcraze.io/2021/09/do-ai-decks-dream-of-tutorials/.

[62] “Understanding Ros 2 topics,” Understanding ROS 2 topics - ROS 2

Documentation: Foxy documentation. [Online]. Available:

https://docs.ros.org/en/foxy/Tutorials/Topics/Understanding-ROS2-Topics.html.

[63] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network

architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147,

2016.

[64] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification." Proceedings of the IEEE

international conference on computer vision, pp. 1026-1034. 2015.

[65] J. Elseberg, D. Borrmann, and A. Nüchter, “One Billion points in the cloud – an

octree for efficient processing of 3D laser scans,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 76, pp. 76–88, 2013.

[66] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018.

104

[67] A. G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial and channel ‘squeeze

& excitation’ in fully convolutional networks,” Medical Image Computing and

Computer Assisted Intervention – MICCAI 2018, pp. 421–429, 2018.

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted residuals and linear bottlenecks,” 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2018.

[69] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural

networks,” International conference on machine learning, pp. 6105-6114, PMLR,

2019.

[70] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”

International Conference on Machine Learning, pp. 10096-10106, PMLR, 2021.

[71] L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using

deep convolutional neural network,” 2016 IEEE International Conference on Image

Processing (ICIP), 2016.

[72] M. Eisenbach, R. Stricker, D. Seichter, K. Amende, K. Debes, M. Sesselmann, D.

Ebersbach, U. Stoeckert, and H.-M. Gross, “How to get pavement distress detection

ready for deep learning? A systematic approach,” 2017 International Joint

Conference on Neural Networks (IJCNN), 2017.

[73] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, “Automatic road crack detection using

random structured forests,” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 12, pp. 3434–3445, 2016.

[74] L. Cui, Z. Qi, Z. Chen, F. Meng, and Y. Shi, “Pavement distress detection using

random decision forests,” Data Science, pp. 95–102, 2015.

[75] Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “Cracktree: Automatic crack detection

from Pavement Images,” Pattern Recognition Letters, vol. 33, no. 3, pp. 227–238,

2012.

[76] R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, “Automatic crack detection on

two-dimensional pavement images: An algorithm based on minimal path selection,”

IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp. 2718–

2729, 2016.

[77] D. Dais, İ. E. Bal, E. Smyrou, and V. Sarhosis, “Automatic Crack Classification and

segmentation on masonry surfaces using convolutional neural networks and transfer

learning,” Automation in Construction, vol. 125, p. 103606, 2021.

[78] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/Documentation.

105

[79] “Crazyflie Platform Overview,” Bitcraze. [Online]. Available:

https://www.bitcraze.io/documentation/system/platform/.

[80] “Hardware architecture of the crazyflie 2.X,” Bitcraze. [Online]. Available:

https://www.bitcraze.io/documentation/system/platform/cf2-architecture/.

[81] “Diva portal.” [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:1440184/FULLTEXT01.pdf.

[82] Bitcraze, “Crazyflie-lib-python/commander.py at master · bitcraze/Crazyflie-lib-

Python,” GitHub. [Online]. Available: https://github.com/bitcraze/crazyflie-lib-

python/blob/master/cflib/crazyflie/commander.py.

[83] “CRTP - communication with the crazyflie,” Bitcraze. [Online]. Available:

https://www.bitcraze.io/documentation/repository/crazyflie-

firmware/master/functional-areas/crtp/.

[84] D. Eppstein, M. T. Goodrich, and J. Z. Sun, “The skip quadtree,” Proceedings of the

twenty-first annual symposium on Computational geometry - SCG '05, 2005.

[85] C. Kone, “Introducing convolutional neural networks in Deep Learning,” Medium,

06-Nov-2019. [Online]. Available: https://towardsdatascience.com/introducing-

convolutional-neural-networks-in-deep-learning-400f9c3ad5e9.

[86] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-cloud shape

detection,” Computer Graphics Forum, vol. 26, no. 2, pp. 214–226, 2007.

[87] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, “DeepCrack: A deep hierarchical feature

learning architecture for crack segmentation,” Neurocomputing, vol. 338, pp. 139–

153, 2019.

[88] “File:example of a deep neural network.png - Wikimedia Commons.” [Online].

Available:

https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png

.

[89] “File:Quadcopter Camera drone in flight.jpg - Wikimedia Commons.” [Online].

Available:

https://commons.wikimedia.org/wiki/File:Quadcopter_camera_drone_in_flight.jpg.

[90] “File:aeronautics orbiter UAV.jpg - Wikimedia Commons.” [Online]. Available:

https://commons.wikimedia.org/wiki/File:Aeronautics_Orbiter_UAV.jpg.

106

Appendices

Appendix A: Experimental Results

Table 13: Running times and FPS on a Jetson Nano (Fastest times bolded)

Jetson Nano

Time per image (ms) FPS

320 × 320 640 × 360 320 × 320 640 × 360

U-Net (Baseline) 213 465 4.7 2.2

EU-Net + scSE 68 139 14.7 7.2

MBConv-EU-Net + scSE 126 269 7.9 3.7

EU-Net + AWF + scSE 83 158 12.1 6.3

MBConv-EU-Net + AWF + scSE 132 274 7.6 3.6

EU-Net + sSE 55 110 18.2 9.1

MBConv-EU-Net + sSE 103 223 9.7 4.5

EU-Net + AWF 59 118 16.9 8.5

MBConv-EU-Net + AWF 124 259 8.1 3.9

Table 14: Running times and FPS on a GeForce GTX 1060 (Fastest times bolded)

GeForce GTX 1060

Time per image (ms) FPS

640 × 360 1280 × 720 640 × 360 1280 × 720

U-Net (Baseline) 27 104 37.0 9.6

EU-Net + scSE 40 96 25.0 10.4

MBConv-EU-Net + scSE 75 245 13.3 4.1

EU-Net + AWF + scSE 44 103 22.7 9.7

MBConv-EU-Net + AWF + scSE 84 247 11.9 4.0

EU-Net + sSE 25 44 40.0 22.7

MBConv-EU-Net + sSE 63 189 15.9 5.3

EU-Net + AWF 28 47 35.7 21.3

MBConv-EU-Net + AWF 67 202 14.9 5.0

107

Curriculum Vitae

Name: Marlin Manka

Post-secondary M.Sc. Candidate, Computer Science

Education and The University of Western Ontario

Degrees: 2020-2022

B.Sc., Computer Science

The University of Western Ontario

2015-2020

Honours and Dean’s Honor List

Awards: The University of Western Ontario

2016-2020

Related Work Teaching Assistant

Experience The University of Western Ontario

2020-2022

	Developing an Efficient Real-Time Terrestrial Infrastructure Inspection System Using Autonomous Drones and Deep Learning
	Recommended Citation

	tmp.1661923148.pdf.2Qq6k

