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Abstract

In this thesis, we study the first three cohomology groups of the quotients of the

descending central series of a free pro-p-group. We analyse the Lyndon-Hochschild-

Serre spectral sequence up to degree three and develop what we believe is a new

technique to compute the third cohomology group. Using Fox-Calculus we express

the cocycles of a finite p-group G with coefficients on a certain module M as the kernel

of a matrix composed by the derivatives of the relations of a minimal presentation

for G. We also show a relation between free groups and finite fields, this is a new

exiting recent development. We do this by showing the explicit bijection between

basic commutators and the irreducible polynomials over a certain finite field.

Keywords: cohomology, spectral sequences, central series, profinite groups, Fox cal-

culus, irreducible polynomials, basic commutators.
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Introduction

We start this thesis by recalling the concept of a profinite group in the first chapter.

We follow the basic references of L. Ribes [24] and J. Wilson [29]. The profinite

groups, first called “Groups of Galois Type”, appear early in particular examples in

number theory as the p-adic integers that were defined by Hensel in 1908. The Galois

groups are equipped with a natural topology called “the Krull Topology”.

In chapter two we recall the definition of cohomology of groups and the Lyndon-

Hochschild-Serre spectral sequence. For more details about the cohomology of profi-

nite groups we refer the reader to the book of J. Neukirch, A. Schmidt, K. Wingberg

[22]. If S is a free pro-2-group and S(m) is the m-th term in its lower 2-central series

the cohomology groups Hi(S/S(m),F2), i = 1, 2, 3, together with their multiplica-

tive structure, appear as the key obstruction in proving the conjecture established

in [18], by Karagueuzian, Labute and Mináč, about a special case of central series

for minimal presentations. This conjecture is related to the Bloch-Kato Conjecture,

also known for p = 2 as the Milnor conjecture. Computing the cohomology groups

Hi(S/S(m),F2) was our first motivation and the goal of this project.

We proceed to define in chapter three the lower 2-central series of a pro-2-group.

In this chapter we concentrate on the case p = 2. In 1996, Mináč and Spira published

[21] in the Annals of Mathematics, which showed the importance of the third quotient

group S/S(3) of the lower 2-central series, and its connection with Galois cohomology

and quadratic forms. In the paper [6] written by S. Chebolu, I. Efrat and J. Mináč

it is shown how this group determines the Galois Cohomology of the absolute Galois

Group. In this chapter we give a partial solution to our original problem. We prove in

3.3.3 that the inflation map between the groups H3(S[m])→ H3(S[m+1]) is not trivial

but based on calculations done in the example 3.3.7 for m = 3 we conjecture that the

1



2

composition of two of these inflation maps is in fact trivial. In 3.3.2 we compute the

dimension over F2 of the vector space of decomposable elements of H3(S[m],F2) is

n(d1 + · · ·+ dm)− dm+1

where the di’s are the Witt numbers define in the chapter three.

In chapter four we show a relation between elements of free groups and finite

extensions of the field Fp for any prime p. This is a new exiting recent development.

We do this by showing the explicit bijection between basic commutators and the irre-

ducible polynomials over a certain finite field. The basic commutators were described

by Marshall Hall in his book [12] which form a natural basis for the quotients of the

lower p-central series. The main theorem 4.3.1 of chapter four is the explicit bijections

Top Elements
Wording−−−−−→ Circular Words

Bracketing−−−−−−−→ Basic Commutators,

where for a given finite extension F/Fp of finite fields the top elements are the

elements in F that are not in any proper intermediate field. In this case there is

always a normal basis determined for a special element α. The Wording bijection

relies on expressing top elements in this normal basis. The Bracketing is defined in

[12] and recalled in chapter four.

In chapter five, we use Fox Calculus to give a new interpretation of the third

cohomology group H3(G,Fp), for a finite p-group G and a prime number p, as the

kernel of a certain matrix. Let 1 → R → S → G → 1 be a minimal presentation

for G. We showed that the module H1(R,Fp) is the dual of the module generated

by the image of R under the Fox derivatives where the action of G over this image

is left multiplication. It follows from Llyndon-Hochschild-Serre spectral sequence

applied to the minimal presentation of H3(G,Fp) ' H1(G,H1(R,Fp)). With the

notation above we proved in 5.3.1 that the dimension over Fp of the coboundaries
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B1(G,H1(R,Fp)) of G with coefficients in H1(R,Fp) is

dimB1(G,H1(R,Fp)) = 1 + |G|(dimH1(G,Fp)− 1)− dimH2(G,Fp).

Our main theorem 5.3.2 gives an explicit description for the cocycles in terms of

the kernel of the matrix given by the Fox derivatives of the relations acting on copies

of the module H1(R,Fp). The set of cocycles Z1(G,H1(R,Fp)) is the kernel of the

matrix

D =

(
∂ri
∂xj

)
ij

:
d⊕
H1(R,Fp)→

l⊕
Fp[G].

Where d = dimH1(G,Fp) and l = dimH2(G,Fp). It is expected that the method

in this thesis can be refined and used to give a the full structure of the cohomology

groups Hi(S[m],Fp) for i = 1, 2, 3 and their multiplicative structure.



Chapter 1

Profinite groups

In this chapter we describe the notion and basic properties of profinite groups, free

pro-p-groups, which will be used throughout this thesis. We also show its connection

with Galois groups. We will follow [29] and [24].

1.1 Projective limits

Let I denote a directed set, that is, I is a set with a binary relation “�” satisfying

the following conditions:

(1) i � i for i ∈ I;

(2) i � j and j � k imply i � k for i, j, k ∈ I;

(3) i � j and j � i imply i = j for i, j ∈ I;

(4) if i, j ∈ I there exists some k ∈ I such that i, j � k.

A projective system of topological groups over I, consists of a collection {Xi|i ∈

I} of topological groups indexed by I, and a collection of continuous group homo-

morphisms ϕij : Xi → Xj defined whenever j � i, such that for all i, j, k ∈ I with

k � j � i the following diagram is commutative.

Xi Xk

Xj

ϕik //

ϕij

��555555555555

ϕjk

DD												

(1.1)

4
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In addition we assume that ϕii is the identity mapping idXi
on Xi. We shall denote

such a system by {Xi, ϕij , I}.

Let Y be a topological group, and let ψi : Y → Xi be a continuous homo-

morphism for each i ∈ I. The maps ψi are said to be compatible if ϕijψi = ψj ,

∀i, j ∈ I.

A topological group X together with a compatible set of continuous homo-

morphisms ϕi : X → Xi, i ∈ I is called a projective limit of the inverse system

{Xi, ϕij , I} if whenever Y is a topological group and ψi : Y → Xi, i ∈ I, is a set

of compatible continuous homomorphisms, then there is a unique continuous homo-

morphism ψ : Y → X such that ϕiψ = ψi for all i ∈ I. i.e. the following diagram is

commutative.

Y X

Xi.

ψ! //____

ψi
��;;;;;;;;;;;;;

ϕi

��

(1.2)

Theorem 1.1.1. Let {Xi, ϕij , I} be an inverse system of topological groups over a

directed set I. Then

(1) There exists an inverse limit of the inverse system {Xi, ϕij , I};

(2) This limit is unique in the following sense: If (X,ϕi) and (Y, ψi) are two limits

of the inverse system {X,ϕij , I}, then there is a unique topological isomorphism

ϕ : X → Y such that ψiψ = ϕi for every i ∈ I.

Proof. (1) Define X as the subgroup of the direct product

∏
i∈I

Xi
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of topological groups consisting of those tuples (xi) that satisfy the condition

ϕij(xi) = xj if j � i. Let ϕi : X → Xi to denote the restriction of the canonical

projection. Then one easily checks that each ϕi is a continuous homomorphism

and that (X,ϕi) is an inverse limit.

(2) Suppose (X,ϕi) and (Y, ϕi) are two inverse limits of the inverse system {Xi, ϕij , I}.

X Y

Xi

ϕ //____

ψ
oo_ _ _ _

ϕi ��?????

ψi�������
(1.3)

Since the maps ψi : Y → Xi are compatible, the universal property of the

inverse limit (X,ϕi) shows that there exists a unique continuous homomorphism

ψ : Y → X such that ϕiψ = ψi for all i ∈ I. Similarly, there is a unique

continuous homomorphism ϕ : X → Y such that ψiϕ = ϕi for all i ∈ I.

Observe that

X X

Xi

ϕψ //____
//

idX

_ _ _ _

ϕi ��?????

ϕi�������
(1.4)

commutes for each i ∈ I. Then by definition ϕψ = idX , similarly ψϕ = idY .

We shall denote the inverse system of {Xi, ϕij, I} by lim←−i∈IXi or just lim←−Xi.

Proposition 1.1.2. If {Xi, ϕij , I} is an inverse system of Hausdorff topological

groups, then lim←−Xi is isomorphic to a closed subgroup of
∏
i∈I Xi.

Proof. Let (xi) ∈ (
∏
Xi) \

(
lim←−Xi

)
. Then there are r, s ∈ I with s � r and

ϕrs(xr) 6= xs. Choose open disjoint neighbourhoods U and V of ϕrs(xr) and xs in Xs,

respectively. Let U ′ be an open neighbourhood of xr in Xr, such that ϕrs(U
′) ⊆ U .
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Consider the open neighbourhood of (xi) in
∏
Xi, W =

∏
i∈I Vi where Vr = U ′,

Vs = V and Vi = Xi for i 6= r, s. Note that W
⋂

lim←−Xi = ∅.

Proposition 1.1.3. A projective limit of non-empty finite sets is not empty.

Proof. For each j ∈ I define a subset Yj of
∏
Xi to consist of those (xi) with the

property ψjk(xj) = xk whenever k � j. Using the axiom of choice and an argument

similar to the one used above, one easily checks that each Yj is a non-empty closed

subset of
∏
Xi where the topology of

∏
Xi is the product topology. Observe that if

j � k then Yj ⊇ Yk, it follows that the collection of subsets {Yj |j ∈ I} has the finite

intersection property. Then from Tychonoff and the compactness of Xi one deduces

that

lim←−Xi =
⋂
j∈I

Yj

is non-empty.

1.2 Profinite groups

A topological group which is the projective limit of finite groups, each given the

discrete topology, is called a profinite group. Such group is totally disconnected and

compact by Tychonoff’s theorem and Proposition 1.1.2.

Proposition 1.2.1. A compact totally disconnected topological group is profinite.

Proof. Let G be such a group. Since G is totally disconnected and locally compact,

the open subgroups of G form a base of neighbourhoods of 1. Such a group U has

finite index because G is compact; hence its conjugates gUg−1 (g ∈ G) are finite in

number and their intersection V is both normal and open in G. Such V ’s are thus a

base of neighbourhood’s of 1; the map G→ lim←−G/V is injective, continuous, and its

image is dense, then by the compactness of G is clear that it is an isomorphism.
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Example 1.2.2. (1) Let L/K be a Galois extension of fields. The Galois group

G(L/K) of this extension is, as we will see later, the projective limit of the

Galois groups G(Li/K) of the finite Galois extensions Li/K which are contained

in L/K; thus it is a profinite group.

(2) Let G be a discrete topological group, and let Ĝ be the projective limit of the

finite quotients of G. The profinite group Ĝ is called the completion of G, the

kernel of G→ Ĝ is the intersection of all subgroups of finite index in G.

(3) If M is a torsion abelian group, its dual M∗ = Hom(M,Q/Z), given the topol-

ogy of pointwise convergence, is a commutative profinite group. Thus one ob-

tains the anti-equivalence between torsion abelian groups and commutative profi-

nite groups.

1.3 Free pro-p-groups

Let p be a prime number. A profinite group G is called a pro-p-group if it is a

projective limit of p-groups. A map α : I → G from a set I to a profinite group G

is said to be 1-convergent if the set {x ∈ I|α(x) 6∈ N} is finite for each open normal

subgroup N of G.

Definition 1.3.1. The free pro-p-group on a set I is a pro-p-group S together with a

1-convergent map j : I → S with the following universal property: whenever ξ : I →

G is a 1-convergent map to a profinite group G, there is a unique homomorphism

ξ̄ : S → G such that ξ = ξ̄j.

S G

I

ξ̄ //___
OO

j
66

ξnnnnnnnnnn
(1.5)

Let X be a set, and let S(X) be the free discrete group generated by the

elements x ∈ X. Consider the family I of normal subgroups N of S(X) such that:
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• S(X)/N is a finite p-group,

• N contains all the x’s but finitely many.

Let SX be the inverse limit lim←−S(X)/N over the set I.

Proposition 1.3.2. The group SX is the free pro-p-group on the set I, with the map

j : x 7→ (Nx)

Proof. The kernels of the projections pN : SX → S(X)/N form a base of open

neighbourhoods of 1 in SX and j(x) ∈ kerpN if and only if x ∈ N , therefore j is

1-convergent.

We have j = ει, where ι : X → E is the inclusion map and ε is the canonical

map from S(X) to its completion SX . Now let ξ : X → H be a 1-convergent map

to a pro-p-group H. By the universal property of the free abstract group, there is

a unique homomorphism µ : S(X) → H with ξ = µι. Since all but finitely many

elements of X map to 1 in H, we have that kerµ ∈ I, and so µ in continuous with

respect to the topology on S(X) having I as a base of open neighbourhoods of 1.

Therefore the universal property of the completion SX gives a map ξ̄ : SX → H

completing the commutative diagram

X S(X) SX

H

ι //
ε

//

ξ

��?????????????

µ

�� ξ̄
���������������

(1.6)

and so satisfying ξ̄j = ξ. However if ξ̄1 : SX → H is a homomorphism satisfying

ξ̄1 = ξ then we have (ξ̄ε)ι = ξ. It follows from the universal property of S(X) that

ξ̄1ε = ξε, and hence from the universal property of SX that ξ̄1 = ξ̄. The uniqueness

is a routine argument.



10

Example 1.3.3. • Let I be a set containing just one element, then SI
∼= Zp

• Let k be a field of prime characteristic p, with algebraic closure k̄, and write k(p)

for the join of all finite Galois extensions L/k of p-power degree with L ≤ k̄.

Let I be a basis of the Fp-space {xpi − xi|xi ∈ k} of k. Then G(k(p)/k) is the

free pro-p-group on I.

• Let k be a field extension of finite degree n of the field of p-adics numbers Qp,

suppose that k does not contain pth roots of 1, and write k(p) for the subfield

of an algebraic closure of k generated by all Galois extensions of k of p-power

degree. Shafarevich [27] proved that G(k(p)/k) is the free pro-p-group on a set

with n+ 1 elements.

• Let k be an algebraically closed field and let k(t) be the algebraic closure of the

field of rational functions over k. Then G(k(t)/k(t)) is the free profinite group

on the set k. This was proved by Douady [8] when char k = 0 and by Harbater

[13] for char k 6= 0.

1.4 Galois extensions

Let K/k be an algebraic extension, finite or infinite. K/k is called a Galois extension

if it is both normal and separable. The Galois group G(K/k) of an algebraic extension

is defined to be the group of all automorphisms of K fixing each element of k. Write

F = {L|L is a subfield of K such that L/k is a finite Galois extension}.

We define a topology in G(K/k) by taking as a base of open neighbourhoods of 1 the

family of subgroups

N = {G(K/L)|L ∈ F}.
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Proposition 1.4.1. G(K/k) is the inverse limit of the finite groups G(L/k) with

L ∈ F ; in particular, G(K/k) is a profinite subgroup.

Proof. Observe that each group G(L/k) is finite for L ∈ F , now if L1, L2 ∈ F

with L1 ⊂ L2, then the restriction map σ 7→ σ�L1 from G(L2/k) to G(L1/k) is an

epimorphism, and the groups G(L/k) together with these restriction maps clearly

form an inverse system over F .

The restriction maps G(K/k)→ G(L/k) yield a group homomorphism

ϕ : G(K/k)→
∏
L∈F

G(L/k)

clearly the image of ϕ is contained in lim←−G(L/k). Let (σL) ∈ lim←−G(L/k), for x ∈ K

define

ψ : lim←−G(L/k)→ G(K/k)

by ψ((σL))(x) = σM (x), for some M ∈ F with x ∈ M ; this is well defined. It

is easy to check that ψ((σL)) ∈ G(K/k) and that ψ is the inverse of the map ϕ,

so that ϕ is an isomorphism of abstract groups. Now, for N ∈ F , the subgroup

ϕ(G(K/N)) consists of the elements of lim←−G(L/k) whose projection in G(N/k) is

trivial, and so ϕ maps the base N of open neighbourhoods of 1 in G(K/k) to a base

of open neighbourhoods of 1 in the inverse limit lim←−G(L/k). It follows that ϕ is also

an isomorphism of topological groups.

Theorem 1.4.2 (The Fundamental Theorem of Galois Theory). Let K/k be a Galois

extension. Then the map Φ defined by

Φ(M) = Gal(K/M)

is an inclusion-reversing bijection from the set of intermediate fields M of K/k to the
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set of closed subgroups of G(K/k). Its inverse Φ−1 is defined by

Φ−1(H) = KH = {the field of all elements fixed by H}.

Proof. Since every intermediate field is a union of finite field extensions of k, and

G(K/N) is an open subgroup of G(K/k) for any finite extension of k, it follows that

the image of Φ is closed with respect to intersections and that the members of this

image are closed in G(K/k). If M1,M2 are intermediate fields satisfying M1 ≤ M2

then clearly Φ(M2) ≤ Φ(M1).

Let M be an intermediate field. From above, G(K/M) ≤ G(K/k), and clearly

M ≤ KG(K/M). Let x ∈ K −M , then x is the zero of an irreducible polynomial of

degree greater than 1 over M ; let y be another zero in K. The two fields generated

by x, y over M are isomorphic, under an isomorphism mapping x to y and fixing all

elements of M . It follows that x is not fixed by G(K/M), then M = KG(K/M).

It remains now to show that H = G(K/KH) for each subgroup H of G(K/k).

However if H = G(K/M) for some intermediate field M then KH = M from the

above and then H = G(K/KH). Therefore is sufficient to show that every subgroup

of G(K/k) is of the form G(K/M). Indeed, since the image of Φ is closed with respect

to intersections of subgroups, it is enough to show that if H is an open subgroup then

H = G(K/M). Since H is open, it contains G(K/L) for some intermediate field L

with L/k a finite Galois extension. Then, by classic Galois theory results we can

conclude that H = G(K/M) for some subfield M of L.

Lemma 1.4.3. Let θ be a homomorphism from a profinite group G to the Galois

group G(K/k) for some algebraic extension K/k. For x ∈ K suppose that Gx
1 is

open for each x, and that the subfield fixed by θ(G) is k. Then K/k is a Galois

extension, and θ is continuous and surjective.

1. For each x write Gx for the group of elements of G whose images under θ fix x.
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Proof. Write Rx for the intersection of the conjugates of Gx in G, for each x ∈ K.

Since Gx is open, it contains a open normal subgroup, and so Rx is open. Let

x1, · · · , xr ∈ K and write L for the subfield generated by k and all images of

x1, · · · , xr under the elements of θ(G). Thus G induces automorphisms of L, and

if g ∈ G then θ(g) fixes each element of L if and only if g ∈ Rx1 , · · · , Rxr . It follows

that the image of G in G(L/k) is finite and that its fixed field is k. A result of Artin in

classical Galois theory states that H is a finite group automorphisms of a field F and

if the fixed field is F0, then the extension F/F0 is Galois and H = G(F/F0). From

here it follows that L/k is a finite Galois extension, and that G maps onto G(L/k).

Since K is a union of such fields L, K/k is a Galois extension. The image of

θ(G) in G(L/k) under the map G(K/k) → G(L/k) is G(L/k); since this map has

kernel G(K/L) it follows that

G(K/k) = θ(G)G(K/L)

for each L. Each subgroup θ−1(G(K/L)) is open and because the subgroups G(K/L)

form a base of neighbourhoods of 1 in G(K/k), the map θ is continuous. Therefore θ

is closed and surjective.

Theorem 1.4.4. Every profinite group G is isomorphic as a topological group, to a

Galois group.

Proof. Let F be an arbitrary field. Write S for the disjoint union of the sets G/N

with N an open normal subgroup of G. Let K = F (Xs|s ∈ S), where the elements Xs

are independent transcendentals over F in bijective correspondence with the elements

of S. The natural action of G on S induces a homomorphism θ : G → aut(K). If

u ∈ K suppose u ∈ F (Xs1 , · · · , Xsr), and if si = giNi, for i = 1, · · · r then

Gu ≥ N1 ∩ · · · ∩Nr
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which is open. Let k be the fixed field of G. The map θ : G → G(K/k) is clearly

an injective homomorphism, and by the lemma above an isomorphism of profinite

groups.



Chapter 2

Cohomology of profinite groups

In this chapter we recall the definition of cohomology of groups and the Lyndon-

Hochschild-Serre spectral sequence. For more details we refer the reader to [22].

Although cohomology is fundamental for mathematicians today, it was not until 1935,

that the first ideas appeared in three papers in a Moscow conference. Later on in

the mid-40’s, Eilenberg and Mac Lane defined cohomology groups in their influences

series of papers published in annals of mathematics.

2.1 Definitions

Let G be a profinite group, A a G-module and n a positive integer. By a G-module

A we mean an abelian topological group which is also a G-module and the map

G × A → A defining the module structure on A is continuous. We assume that all

G-modules are discrete.

(1) Consider the map di : Gn+1 → Gn by

(g0, · · · , gn) 7→ (g0, · · · , ĝi, · · · , gn)

where by ĝi we indicate that we have omitted gi from the (n+1)-tuple (g0, · · · , gn).

G acts on Gn by left multiplication.

(2) Define the G-modules Xn = Map(Gn+1, A) with the G action is given by

(g · σ)(g0, · · · , gn) := gσ(g−1g0, · · · , g−1gn)

15
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(3) The maps di induce G-homomorphisms d∗i : Xn−1 → Xn and we form the

alternating sum

∂n =
n∑
i=0

(−1)nd∗i .

(4) To the exact sequence of G-modules 0→ A→ X0 → X1 → · · · we now apply

the fixed module functor. We set for n ≥ 0

Cn(G,A) = Xn(G,A)G.

(5) We obtain the homogeneous cochain complex of G with coefficients in A

C0(G,A)→ C1(G,A)→ C2(G,A)→ · · ·

which in general is no longer exact. We now set:

• The n-cocycles Zn(G,A) = ker(Cn(G,A)→ Cn+1(G,A)).

• The n-coboundaries Bn(G,A) = im(Cn−1(G,A)→ Cn(G,A)).

• and finally the n-dimensional cohomology group of G with coefficients

in A

Hn(G,A) = Zn(G,A)/Bn(G,A).

Let A be a R module then the short exact sequence 1→ R→ S → G→ 1 induce an

action of G over R by conjugation and this action also induce and action of G over

H∗(R,A) by action over the cocycles f : Rn → A by the rule (g · f)(r) = gf(g−1r).

2.1.1 An alternative definition

Let G be a profinite group, A a G-module and n a positive integer. We denote Cn

the set of all continuous maps from Gn to A.1 The elements of C are called the

1. Gn equipped with the product topology.
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inhomogeneous n-cochains.

(1) We have then the isomorphism Cn(G,A)→ Cn(G,A),

σ(g0, · · · , gn) 7→ σ̃(g1, · · · , gn) = σ(1, g1, g1g2, · · · , g1g2 · · · gn)

with inverse given by

σ̃(g1, · · · , gn) 7→ σ(g0, · · · , gn) = g0σ̃(g−1
0 g1, g

−1
1 g2, · · · , g−1

n−1gn).

(2) With these isomorphisms the coboundary operators ∂n are transformed into the

homomorphisms ∂n+1 : Cn(G,A)→ Cn+1(G,A) given by:

(∂f)(g1, · · · , gn+1) = g1 · f(g2, · · · , gn+1)

+
n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+(−1)n+1f(g1, · · · , gn).

(3) Setting

• The inhomogeneous n-cocycles Zn(G,A) = ker(Cn(G,A)→ Cn+1(G,A)).

• The inhomogeneous n-coboundaries Bn(G,A) = im(Cn−1(G,A) →

Cn(G,A)).

• We have induced isomorphisms

Hn(G,A) ' Zn(G,A)/Bn(G,A).

As usual, H0(G,A) = AG is the subgroup of fixed points of G in A. H1(G,A) is

the group of classes of continuous crossed-homomorphism of G into A and H2(G,A)

is the group of classes of continuous factor systems from G to A. If G a pro-p-group,
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then dimFp H
1(G,Fp) is the minimum numbers of topological generators of G and

dimFp H
2(G,Fp) is the number of relations. [25]

We shall say that a short exact sequence 0 → A
i−→ B

j−→ C → 0 of abelian

topological groups is well adjusted if

• the map i induces a homeomorphism from A to its image and

• there is a continuous section τ for j.

The following theorem shows us how to recover the cohomology of profinite

groups from the cohomology of finite groups.

Theorem 2.1.1. Let {Gi, ϕij , i} be an inverse system of topological groups over a

directed poset I with projective limit G = lim←−Gi, and let {Ai, τij , i} be a direct system

of discrete abelian groups over I, with direct limit A = lim−→Ai. Suppose that Ai is a

Gi-module for each i and that each pair (ϕij , τij) is compatible. Then

Hn(G,A) = lim−→H
n(Gi, Ai).

Proof. Note that the abelian groups Cn(Gi, Ai) together with the induced maps

γji = (ϕij , τji)
∗ : Cn(Gi, Ai)→ Cn(Gj , Aj)

form a direct system, with direct limit Cn(G,A) and induced maps

γi = (ϕi, τi)
∗ : Cn(Gi, Ai)→ Cn(G,A).

The abelian groups Hn(Gi, Ai) together with the induced map

ηji = (ϕij , τji)
∗ : Hn(Gi, Ai)→ Hn(Gj , Aj)



19

comprise a direct system, and the induced maps

ηi = (ϕi, τi)
∗ : Hn(Gi, Ai)→ Hn(G,A)

satisfy ηjηji = ηi for i ≤ j. First let us prove that Hn(G,A) = ∪iim(ηi)

Let f + Bn(G,A) ∈ Hn(G,A). Thus f ∈ Zn(G,A); say f = γi(fi) where

fi ∈ Cn(Gi, Ai). Then 0 = δf = γi(δfi), so that 0 = γji(δfj) = δ(γij(fi)) for some

j ≥ i. Hence the element

hj = γji(fi) +Bn(Gj , Aj)

lies in Hn(Gj , Aj) and we have

ηj(hj) = γjγji(fi) +Bn(G,A) = f +Bn(G,A).

This shows that Hn(G,A) = ∪imηi.

Now let gi +Bn(Gi, Ai) be an element of Hn(Gi, Ai) which is mapped to zero

by ηi. Thus γi(gi) ∈ Bn(G,A). Write γi(gi) = δg ∈ Cn−1(G,A) and g = γj(g
′
j) with

g′j ∈ C
n−1(G,A). For k ≥ i, j we have γk(γki(gi)− δγkj(g′j)) = γi(gi)− δγj(g′j) = 0,

and so there is an index l ≥ k such that

0 = γlk(γki(gi)− δγkj(g′j)) = γli(gi)− δγlj(g′j).

Hence

ηi(gi +Bn(Gi, Ai)) = γli(gi) +Bn(Gl, Al) = Bn(Gl, Al).
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2.2 The LHS spectral sequence

Given a 2-group G we will illustrate by some examples how to compute H∗(G) =

H∗(G,F2) using the Lyndon-Hochschild-Serre (LHS) spectral sequence. Given a short

exact central sequence 1→ N → G→ Q→ 1, where N is a normal closed subgroup

of G, the second page of the LHS spectral sequence is the bigraded differential algebra

E
s,t
2 = Hs(Q,Ht(N,F2)).

The spectral sequence consists of a series of differential algebras

{Es,tr , ∂r, r ≥ 2}

such that

(1) ∂r ◦ ∂r = 0.

(2) E
s,t
r+1 =

ker(∂r:E
s,t
r →E

s+r,t−r+1
r )

im(∂r:E
s−r,t+r−1
r →Es,t

r )
.

(3) If a ∈ Es,tr , b ∈ Ep,qr then

∂r(ab) = ∂r(a)b+ a∂r(b). (2.1)

(4) There is a filtration of H∗(G)

Hn(G) = F 0 ⊃ · · · ⊃ Fn = 0

such that

E
s,t
∞ ' F s/F s+1. (2.2)
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Example 2.2.1. We compute in detail the mod 2 cohomology of the 2-adics integers

Z2. We know that

Z2 = lim←−
n
C2n

where Cm is the cyclic group of order m. The projective system is then

· · · → C2n → · · · → C4 → C2

which induces the injective system in cohomology

H∗(C2)→ H∗(C4)→ · · · → H∗(C2n)→ · · ·

Let’s compute the cohomology groups using the LHS spectral Sequence and denote

H∗(C2) = F2[x].

C4 is determined by the extension associated to y2 ∈ H2(C2) where the second

copy of C2 has cohomology F2[y]

1→ C2 → C4 → C2 → 1

in this case the second page of the spectral sequence looks like

0 1 2

0

1

2

1 y y2

x xy xy2

x2 x2y x2y2

$$JJJJJJJJJJJ

(2.3)
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Then the third page is

0 1 2 3

0

1

2

1 y

x2 x2y

""EEEEEEEEEEEEEEEEEEE

(2.4)

Therefore E3 = E∞ and

H∗(C4) = F2[z2, y2]/(y2
2)

with |y2| = 1, |z2| = 2.

Now, C8 is determined by an element z2 ∈ H2(C4) in

1→ C2 → C8 → C4 → 1

then the second page of the spectral sequence is

0 1 2

0

1

2

1 y2 z2

x xy2 xz2

x2 xy2
2 x2z2

$$JJJJJJJJJJJ

(2.5)
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and the third page is

0 1 2 3

0

1

2

1 y2

x2 x2y2

))RRRRRRRRRRRRRRRR

(2.6)

Therefore E3 = E∞ and

H∗(C8) = F2[z3, y3]/(y2)

with |y3| = 1, |z3| = 2. It follows that

H∗(C2n) = F2[zn, yn]/(y2
n)

with |yn| = 1, |zn| = 2.

Note that in the Spectral Sequence of C8 (2.5) and (2.6)

H∗(C4) = E
0,∗
2 → E

0,∗
3 ⊂ H∗(C8)

then we have the well known inflation function

inf : H∗(C4)→ H∗(C8)

y2 7→ y3

z2 7→ 0
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and obviously

inf : H∗(C2n)→ H∗(C2n+1)

yn 7→ yn+1

zn 7→ 0

then for the cohomology of the 2-adics integers we have

H∗(Z2) = lim−→
n
H∗(C2n) = lim−→F2[zn, yn]/(y2

n) = F2[y]/(y2)

With |y| = 1.

Example 2.2.2. Let D8 denote the dihedral group of order eight given by the central

extension

1→ C2 → D8 → C2 × C2 → 1

Here the second page of the LHS spectral sequence is given by E2 = F2[x, y, z] with

differential

∂2(z) = xy

where H∗(C2) = F2[z], H∗(C2×C2) = F2[x, y] and the extension is associated to the

element xy ∈ H2(C2 × C2) then the spectral sequence collapses in the third page this

is

E3 = E∞ = F2[x, y, w]/(xy)

with |x| = |y| = 1 and |w| = 2.

Example 2.2.3. Consider Q8 the quaternion group with extension

1→ C2 → Q8 → C2 × C2 → 1

associated to the element x2 + xy + y2 ∈ H2(C2 × C2). This example is a little bit
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more complicated because the LHS spectral sequence collapse at the fourth page and

H∗(Q8) = E4 = E∞ = F2[x, y, w]/(x2 + xy + y2, xy2 + yx2)

with |x| = |y| = 1 and |w| = 4.

Example 2.2.4. Consider the central extension

1→
3⊕
C2 → G→

2⊕
C2 → 1.

defined by the quadratic forms

H∗(
3⊕
C2) = F2[a, b, c] → H∗(

2⊕
C2) = F2[x, y]

a 7→ x2

b 7→ y2

c 7→ xy.

This group can be viewed as the finitely presented group

G = 〈x, y|x4 = y4 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉

and its LHS spectral sequence collapses in the third page

H∗(G) = E3 = E∞ =
F2[α, β, γ, x, y, u, v]

(x2, y2, xy, xu, yv, xv + yu, u2, v2, uv)
.

A generalization of this result can be found in [2] and [19].



Chapter 3

The 2-descending central series

We recall in this chapter the lower 2-central series of a pro-2-group. In this chapter

we concentrate on the case p = 2 because of the connection in the case p = 2 with

the W -group and quadratic forms as explained in [21]. For any prime p the lower

p-central series arises most frequently in computational group theory. In particular,

when computing with finite p-groups, there is a very efficient algorithm known as the

nilpotent quotient, which takes a finite p-group and computes the terms of its lower

p-central series. This series can also be used to compute the automorphism group of

a finite p-group inductively.

Our first attempt to compute the cohomology groups use the Lyndon-Hochschild-

Serre spectral sequence1. We illustrate the spectral sequences in some cases and then,

we apply these sequences to the quotients of the 2-descending central series of a free

pro-2-group.

Let S a free pro-2-group. Denoted its 2-descending central series by

S = S(1) ⊃ S(2) ⊃ · · · ⊃ S(m) ⊃ · · ·

1. In 1954, spectral sequences enabled Jean-Pierre Serre to discover connections between
the homotopy groups of a space and homology groups and to prove important results on
the homotopy groups of spheres. He was awarded the Fields Medal for this work. A decade
before, in 1946, the hydrodynamics expert Jean Leray introduced the notion of spectral
sequence. This French mathematician made substantial contributions to the mathematical
study of fluid dynamics before the second world war and served as an army officer in 1939.
In 1940 he was captured by the Germans and was taken to an officer’s prison camp in
Austria until the end of the war in 1945. He hid his skill in applied mathematics from his
captors because he feared that if they knew of it he would be forced to work for the war.
Instead, he claimed to be a topologist and worked on this new subject for him.

26
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given by

S(1) = S

S(m+1) = [S, S(m)](S(m))2.

Observe that S(m)/S(m+1) is the elementary abelian 2-group of dimension km

S(m)/S(m+1) =

km⊕
C2

with km = d1 + · · ·+ dm and da = 1
a

∑
b|a n

a/bµ(b) where µ is the Moebius function.

This was proved by Shafarevich in [26]. These numbers di above are known as the

Witt numbers.

Define the quotient groups

S[m] = S/S(m).

We have the extension

1→ S(m)

S(m+1)
→ S[m+1] → S[m] → 1. (3.1)

which implies that |S[m+1]| = 2k1+···+km . 2

These quotient groups have been introduced as the Galois Groups of certain

extension of fields F (3)/F in [21]. In fact for m = 3 the group S[m] is called the

W-group of F and determines the Galois extension. Also in [2] they show that the

absolute Galois group characterize the W -group and reflect important properties of

the field. In [2] they construct a topological model to compute its cohomology.

2. This quotient group S[m] is isomorphic to the quotient H [m] of a free abstract group
H, see 3.2.2 [24]
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Theorem 3.0.5. [9.20 in Holt] If S/S(2) is generated by the images of a1, · · · , ad,

then S(2)/S(3) is generated by the images of a2
i where 1 ≤ i ≤ d and [aj , ai] where

1 ≤ i < j ≤ d. More generally, for m > 0, let X be a subset of S which generates

S modulo S(2) and let T generates S(m) modulo S(m+1). Then S(m+1) is generated

modulo S(m+2) by [x, t] for x ∈ X, t ∈ T and t2 for t ∈ T

These generators are know as Basic Commutators. We will talk about them in

the next chapter.

Example 3.0.6. In two generators the presentation for the first four groups and the

Witt numbers are

d1 = 2, d2 = 1, d3 = 2, d4 = 3 and

• S/S(2) = 〈x, y〉

• S(2)/S(3) = 〈x2, y2, [x, y]〉

• S(3)/S(4) = 〈x4, y4, [x, y]2, [x, [x, y]], [y, [x, y]]〉

• S(4)/S(5) = 〈x8, y8, [x, y]4, [x, x, y]2, [y, x, y]2, [x, x, x, y], [y, y, x, y], [y, x, x, y]〉

In this chapter we will try to give a good description of the first three cohomol-

ogy groups of S[m].

3.1 The first cohomology group

Lemma 3.1.1. Let A,B,C be pro-p-groups. Denote by d(B) the minimal number of

topological generators of B. Let

1→ A→ B
ϕ−→ C → 1

be a short exact sequence. Then d(C) ≤ d(B).
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Proof. Let B = {bi|i ∈ I} be a set of minimal topological generators of B. Consider

the set

C = {ci|ci = ϕ(bi), i ∈ I}.

We will show that the abstract group Ĉ generated by the set C is dense in C. Let

c ∈ C, then there is an element b ∈ B such that ϕ(b) = c. Let U be an open neigh-

bourhood of c = ϕ(b). Because ϕ is continuous ϕ−1(U) is an open neighbourhood of

b. Since the subgroup B̂ generated by B is dense in B there is an element b̂ such that

b̂ ∈ ϕ−1(U) ∩ B̂

then ϕ(b̂) = ĉ ∈ Ĉ ∩ U as required.

Theorem 3.1.2. Let S be a pro-2-group, and S[m] as above. Then

dimF2 H
1(S[m]) = dimF2 H

1(S[m+1])

for m ≥ 2.

Proof. It suffices to prove that d(S[m]) = d(S[m+1]). Consider the exact sequence

1→ S(m)

S(m+1)
→ S[m+1] → S[m] → 1.

By the lemma above we have that d(S[m+1]) ≥ d(S[m]). From the extension

1→ S(m) → S → S[m] → 1. (3.2)

we have d(S) ≥ d(S[m]). Clearly d(S) = d(S[2]) therefore

n = d(S) ≥ d(S[m+1]) ≥ d(S[m]) ≥ · · · ≥ d(S[2]) = n.
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3.2 The second cohomology group

Theorem 3.2.1. From the short exact sequence (3.1) consider its associated five term

exact sequence

0→ H1(S[m])
inf−−→ H1(S[m+1])

res−−→ H1

(
S(m)

S(m+1)

)S[m]

tr−→ H2(S[m])
inf−−→ H2(S[m+1]).

Then the homomorphism

tr : H1

(
S(m)

S(m+1)

)S[m]

→ H2(S[m])

is an isomorphism.

Proof. Let β ∈ H2(S[m]). Then β is represented by an extension

1→ F2 → G→ S[m] → 1

for some group G. Because S is a free pro-2-group there is a morphism

α :
S(m)

S(m+1)
→ F2

such that the following diagram is commutative:

1 S(m)

S(m+1) S[m+1] S[m] 1

1. F2 G S[m] 1

//

//

//

//

//

//

//

//

�� ��

(3.3)

Hence tr(β) = α, therefore surjective. Because

inf : H1(S[m])→ H1(S[m+1])
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is an isomorphism from the theorem 3.1.2 it follows that

tr : H1

(
S(m)

S(m+1)

)S[m]

→ H2(S[m])

is injective.

Observe that the induce action of S[m] on S(m)

S(m+1) is trivial because the extension

of groups 3.1 is a central extension.

Corollary 3.2.2. With the hypothesis of the last theorem

dimF2 H
2(S[m]) = dimF2

(
S(m)

S(m+1)

)
= km = d1 + · · ·+ dm.

Corollary 3.2.3. With the hypothesis of the last theorem we also have that

inf : H2(S[m])→ H2(S[m+1])

is trivial.

We have now a description for first three columns in the second page E2(S[m+1])

in the LHS spectral sequence associated to (3.1)

0 1 2

0

1

2

1 n km

km &&

&& &&LLLLLLLL

(3.4)

Proposition 3.2.4. For m = 3

1→ S(2)

S3
→ S[3] → S[2] → 1
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the morphisms ∂t,1, for t = 1, 2, · · · is always surjective.

Proof. Let E
t,0
2 (S[3]) = Ht(S(2)) = F2[x1, · · · , xn] then for w ∈ Hk(S(2)) we have

that w = w1w2 with w1, w2 in H2(S(2)), Hk−2(S(2)) respectively. Then there is an

element α ∈ E0,1
2 such that ∂0,1(α) = w1 therefore ∂k−2,1(α⊗w2) = w1w2 = w.

This group S[3] have been studied in [2] and example 2.2.4 there are conclusions

about its cohomology using the fact that is an extension of two elementary abelian

groups. We can also say something about the second cohomology groups in general.

Lemma 3.2.5. In the E(S[m+1]) LHS Spectral Sequence associated to extension 3.1.

Then dim(E
0,2
3 (S[m])) is km.

Proof. Let E
0,∗
2 = H∗(S(m)/S(m+1)) = F2[y1, · · · , ykm ]. Then E

0,2
2 is generated as

F2-module by the products yiyj for i, j = 1, · · · , km. Observe that

• ∂0,2(y2
i ) = 0

• ∂0,2(yiyj) = ∂0,2(yi)⊗ yj + ∂0,2(yj)⊗ yi

but the set {∂0,2(yi) : i = 1, · · · , km} is linearly independent. Therefore E
0,2
3 is

generated by the {y2
i : i = 1, · · · , km}.

This result is showing a beautiful conclusion about the second cohomology

group of S[m] and its maps. We will see that this km elements are indecomposable

elements of degree two.

Theorem 3.2.6. Let

res : H2(S[m+1])→ H2

(
S(m)

S(m+1)

)

be the restriction map associated to the extension 3.1. Then the image of the map res

has dimension km.
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Proof. We will start from the two following well known facts. First the image of the

restriction of S[m+1] is just E
0,2
∞ which is a submodule of E

0,2
3 . By the lemma above

we know that dim(E
0,2
3 ) = km. The second fact is that we can associate to each

generator αi of H2(S(m+1)/S(m+1)) an extension

1→ C2 → Hi → S[m+1] → 1.

With the notation of the lemma above, we will show that for every groupHi associated

to the element y2
i ∈ H

2(S(m)/S(m+1)) this means that

Hi =

km−1⊕
1

C2

⊕ C4

there is a group Gi associated to an element βi ∈ H2(S[m+1]) such that the following

diagram is commutative

C2 Hi
S(m)

S(m+1)

C2 Gi S[m+1]
OO�
�
�
� ?�

OO
// //

// //

// //

// //

Suppose that S[m+1] = 〈x1, · · · , xn|r2
1, · · · r

2
km−1

, t1, · · · , tdm+1
〉 is a presentation for

S[m+1] with the r’s the relations for S[m] and the t’s are the new or higher basic

commutators. Let the group Gi be the group define by the presentation

Gi = 〈x1, · · · , xn|r2
1, · · · , r

4
i , · · · , r

2
km−1

, t1, · · · , tdm+1
〉

The we have a short exact sequence 1→ C2 → Gi → S[m+1] → 1 were C2 = 〈r2
i |r

4
i 〉.

Observe that S(m)/S(m+1) is the subgroup of S[m+1] generated by the set {ri : i =

1, · · · , km−1}. Therefore the restriction of Gi is the subgroup Hi of Gi generated by

{ri : i = 1, · · · , km−1}. This is the sequence 1→ C2 → Hi → S(m)/S(m+1) → 1 and
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then the diagram is commutative.

Example 3.2.7. Consider the free group on two generators and the third element of

the 2-descending central series, this is m = 3 and n = 2 then the r’s are {x2, y2, [x, y]}

and the t’s are {[x, [x, y]], [y, [x, y]]} with the notation of the theorem 3.2.6 we have

• S[3] = 〈x, y|x4, y4, [x, y]2, [x, [x, y]], [y, [x, y]]〉.

• S2/S3 is the subgroup of S[3] generated by {x2, y2, [x, y]}.

• G1 = 〈x, y|x8, y4, [x, y]2, [x, [x, y]], [y, [x, y]]〉.

• H1 is the subgroup of G1 generated by {x2, y2, [x, y]}.

• The cyclic group with two elements is generated by x4 in G1.

For the following corollaries E(S[m+1]) is the LHS spectral sequences associated

to 3.1. We are now given a precise description of the second cohomology group of

S[m+1] in the LHS spectral sequence.

Corollary 3.2.8. The F2-dimension of E
0,2
∞ (S[m+1]) is km.

Proof. The proposition 3.2.6 show that the dimension is at least km and the Lemma

3.2.5 shows the other inequality.

The theorem 3.2.1 with corollaries 3.2.2 and 3.2.8 proved the following result.

Corollary 3.2.9. The F2-dimension of E
1,1
∞ (S[m+1]) is dm+1.

This can be prove it directly for m = 3 by the proposition 3.2.4, in fact

dim ker(∂
1,1
2 ) = dimE

1,1
2 (S[3])− dim{im(∂

1,1
2 )}

= nk2 −
(
n+ 2

3

)
=

n3 − n
3

= d3.
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Corollary 3.2.10. The morphism ∂
0,2
3 in the third page of the LHS spectral sequence

is trivial and therefore E
3,0
3 (S[m+1]) = E

3,0
∞ S[m+1].

Proof. By Lemmas 3.2.5 and 3.2.8.

3.3 The third cohomology Group

Theorem 3.3.1. An element w ∈ H3(S[m]) is decomposable if and only if is in the

image of d
1,1
2 .

Proof. Suppose w = x1x2 with xi ∈ Hi(S[m]) then there is an element y ∈ H1(S(m)/S(m+1))

such that d
1,1
2 (y) = x2 then w = d

1,1
2 (x1y). On the other hand if w = d

1,1
2 (xy) =

xd
1,1
2 (y) which complete the proof.

Therefore the third page of the LHS spectral sequence E3(S[m+1]) is

0 1 2

0

1

2

1

dm+1

n 0

0

Im

(3.5)

Where Im is the number of indecomposable elements in H3(S[m]).

Corollary 3.3.2. The F2-dimension of the decomposable elements Dm of H3(S[m])

is n ∗ km − dm+1.

Proof. It follows from theorem 3.3.1 and the corollaries 3.2.8 and 3.2.9.

Corollary 3.3.3. The inflation map inf : H3(S[m])→ H3(S[m+1]) is not trivial.
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Proof. By corollary 3.2.10 we know that dimension of E
3,0
∞ is Im, i.e. the number of

indecomposable elements in H3(S[m]) that is the image of the inflation map.

In the following propositions we will try to give a brief description of the third

cohomology group of S[m+1] in the LHS spectral sequence E(S[m+1]) associated as-

sociated to the extension 3.1 with E
0,∗
2 = F2[x1, · · · , xkm−1 ].

Proposition 3.3.4. The F2-dimension of E
0,3
3 (S[m+1]) is zero.

Proof. For ∂
0,3
2 : E

0,3
2 (S[m+1])→ E

2,2
2 (S[m+1]) observe that

• ∂0,3
2 (x2

i xj) = x2
i ⊗ ∂

0,3
2 (xj) for 1 ≤ i ≤ j ≤ km−1

• ∂0,3
2 (xixjxk) = xixj ⊗ ∂

0,3
2 (xk) + xixk ⊗ ∂

0,3
2 (xj) + xjxk ⊗ ∂

0,3
2 (xi)

where the ∂
0,3
2 (xi) are linearly independent, then ∂

0,3
2 is injective.

Proposition 3.3.5. The F2-dimension of E
1,2
3 (S[m+1]) is at least n ∗ km.

Proof. We showed that E
1,0
∞ (S[m+1]) = n and E

0,2
∞ (S[m+1]) = km therefore by the

filtration of the spectral sequence its product E
1,0
∞ (S[m+1])⊗E0,2

∞ (S[m+1]) should be

in

E
1,2
∞ (S[m+1])

⋃
E

2,1
∞ (S[m+1])

⋃
E

3,0
∞ (S[m+1])

but they are already in E
1,2
3 (S[m+1]) because they are permanent cocycles.

We conclude that the dimension of E
1,2
∞ (S[m+1]) id nkm plus maybe some

indecomposable elements, also in E
2,1
∞ (S[m+1]) we only will have indecomposable

elements and E
3,0
∞ (S[m+1]) will be just Im.

Conjecture 3.3.6. The composition of the two inflation maps

H3(S[m])
inf−−→ H3(S[m+1])

inf−−→ H3(S[m+2])

is trivial.
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There are some reasons why this could be true. In fact

S = lim←−S
[m]. =⇒ H∗(S) = lim−→H

∗(S[m]).

and Hn(S) is trivial for n > 1 for S a free pro-2-group. We also proved in theorem

3.2.1 that inf1 : H1(S[m]) → H1(S[m+1]) is a bijection and that inf2 : H2(S[m]) →

H2(S[m+1]) is trivial, we can say that inf3 : H3(S[m])→ H3(S[n+?]) will be eventu-

ally trivial.

In theorem 3.3.1 we proved that inf3 kills all the decomposable elements of

H3(S[m]) and is injective in the indecomposable elements of H3(S[m]) this suggests

that the indecomposable elements of H3(S[m]) eventually became decomposable. The

conjecture is saying that this happens in the first step i.e. in H3(S[m+1]). This

appears to be clear for m = 3 in the following example.

Example 3.3.7. From the description of S[3] given in [2] and the work above we

know that the dimension of H3(S[m]) is nk2 +
d4
3 decomposable elements plus nd4−d5

indecomposable.

We saw in corollary 3.3.2 that there are nk4 − d5 decomposable elements in

H3(S[4]) where nk3 elements are in E
1,2
∞ (S[4]), note that

nk4 − d5 = nk3 + (nd4 − d5)

therefore we have nd4−d5 “new” decomposable elements in H3(S[4]) theses elements

have to be the image of the map inf3 : H3(S[3])→ H3(S[4]) and therefore the compo-

sition of the inflation maps in the conjecture is trivial.

Proposition 3.3.8. The F2-dimension of H3(S(m)) is at most nkm+1−dm+1−dm+2

for m > 3.

Proof. By the conjecture 3.3.6 the indecomposable elements Im in H3(S(m)) be-

came decomposable in H3(S(m+1)). The dimension of decomposable elements in



38

H3(S[m+1]) is nkm+1− dm+2, Corollary 3.3.2, but there are at least nkm decompos-

able elements in H3(S[m+1]) by proposition 3.3.5 therefore Im ≤ nkm+1−dm+2−nkm

and then

dimH3(S[m]) = Dm + Im

≤ (nkm − dm+1) + (nkm+1 − dm+2 − nkm)

= nkm+1 − dm+1 − dm+2.

Example 3.3.9 (S[3]). For the case m = 2 using the formulas found in [2] we have

a description of E∞ = E3(S[3])

0 1 2

0

1

2

3

3

1 n 0 0

0 d3
d4
3

k2
nk2+

I3

0

(3.6)

Example 3.3.10 (S[m+1]). In general we have E∞ = E3(S[m+1]) is

0 1 2

0

1

2

3

3

1 n 0 Im

0 dm+1 ?

km
nkm+

?

0

(3.7)



Chapter 4

Irreducible polynomials and basic

commutators

We saw that the minimal number of generators for the quotient of the lower p-central

series of a free pro-p-group is given by the Witt numbers. In this chapter we call these

generators basic commutators. The Witt numbers are also counting the number of

irreducible polynomials over certain finite fields. In this chapter we show the explicit

connection between basic commutators and irreducible polynomials of a fixed degree

with coefficients in Fp.

4.1 Basic commutators

Let S be a free group over the variables x1, · · · , xn. For the following definitions

we will follow [10] and [12]. By the commutator of x and y in the group S we note

[x, y] = x−1y−1xy.

Definition 4.1.1 (Basic Commutators). The set A of basic Commutators of the

group S is defined inductively as follows

(1) Each basic commutator c has a weight w(c) taking one of the values 1, 2, · · ·

(2) The Basic commutators of weight 1 are x1, · · · , xn. A basic commutator of

weight > 1 is of the form c = [c1, c2] where c1, c2 are previously defined basic

commutators and w(c) = w(c1) + w(c2).

(3) Basic commutators are ordered so as to satisfy the following:

39
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• Basic commutators of the same weight are lexicographically, i.e. x1 <

x2 < · · · < xn and (c1, c2) < (c′1, c
′
2) if and only if c1 < c′1 or c1 = c′1 and

c2 < c′2.

• If w(c) < w(c′) then c < c′.

(4) • If w(c) > 1 and c = [c1, c2] then c1 < c2.

• If w(c) > 2 and c = [c1, [c2, c3]] then c1 ≥ c2.

Example 4.1.2. Let S be a free group on the letters x, y, z then the basic commutators

in S are

• Weight = 1: x < y < z.

• Weight = 2: [x, y] < [x, z] < [y, z]

• Weight = 3: [x, [x, y]] < [x, [x, z]] < [y, [x, y]] < [y, [x, z]] < [y, [y, z]] <

[z, [x, y]] < [z, [x, z]] < [z, [y, z]].1

Definition 4.1.3. (1) A word a1a2 · · · an is circular if a1 is regarded as following

an where a1a2 · · · an, a2 · · · ana1, · · · , ana1 · · · an−1 are all regarded as the same

word.

(2) A circular word c of length n may be given by repeating a segment of letters n/d

times, where d|n. We say that c is of period d in this case.

We will consider as the alphabet the set A of basic commutators, for example

x[x, [x, y]][y, z] and [y, z]x[x, [x, z]]

are the same circular words in the three basic commutators x, [y, z], [x, [x, z]].

1. Note that [x, [y, z]] is not a basic commutator.
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4.1.1 The bracketing process

Given a circular word w of the same length and period and a basic commutator c we

define Br(c, w) the bracketing of c in the word w as the following process

(1) If c is neither at the end nor at the beginning, i.e. w = acb then

w 7→ Br(c, w) = a[c, b]

(2) If c appears more than once consecutively, i.e. w = acc · · · cb then

w 7→ Br(c, w) = a[c, [c, · · · , b] · · · ]

(3) If c appears at the end of w = ac, then consider the word w = ca and then

apply 1.

(4) If c does not appear in w then there is nothing to do.

Note that the word cc · · · c is impossible because the period and the length are

the same.

4.1.2 The process

Given a circular word w of the same length and period in the basic commutators of

weight 1 we will show how to get a basic commutator applying the following rules:

(1) Find the minimal basic commutator mc of the word w.

(2) Apply the bracketing process Br(mc, w) for mc in w.

(3) Go back to 1 using the new word Br(mc, w) instead of w.
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Proposition 4.1.4. Given any circular word w in the alphabet A of basic commuta-

tors with the same length and period, the process ends with a word w′ which is also a

basic commutator. More over the number of circular words of length and period n is

the same number as basic commutators of weight n.

Proof. We will show by induction that if w is a circular word of basic commutators

then after applying the bracketing process for a the minimal basic commutator c in

w the result is also a circular word of basic commutators.

• Base Case: Let w be a circular word in basic commutators of weight one.

Suppose xi is its minimal basic commutator then apply Br(xi, w). The new

word Br(xi, w) consist of basic commutators of weight one and commutators

[xi, xj ] for j > i.

• Inductive case: Let w be a word in the basic commutators. Let c be its minimal

basic commutator. Then if c2 is a commutator of Br(c, w) there are three

options

– c2 is a word of w, i.e. the bracketing did not affect it.

– c2 = [c, a] where c < a and if a = [r, s] then r < c.

– c2 = [c, [c, · · · , [c, a] · · · ].

In all the cases the bracketing is giving a new word made only of basic commu-

tators. To prove the second statement just note that “forgetting” the brackets

or unbracketing is the inverse process.

4.2 Irreducible polynomials

Let p be a prime number and q = pl a power of p. Let Fq be the field with q elements

and F
ql

its extension of degree l.
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Definition 4.2.1. A top element of the extension F
ql
/Fq is an element in the F

ql

that does not belong to any intermediate field.

Note that the number of irreducible monic polynomials with coefficients in Fq

equals the number of top elements in the extension F
ql
/Fq divided by l the degree

of the extension. This is the key idea of the connection between the irreducible

polynomials and the basic commutators.

The Galois group of F
ql

over Fq is cyclic and is generated by the Frobenius

map: α 7→ αq for α ∈ F
ql

. A normal basis of F
ql

over Fq is a linearly independent set

of the form: {α, αq, · · · , αql−1} for some α ∈ F
ql

. The Normal Basis theorem claim

that this element α always exist.

Let us rename the elements of the base field by Fq = {x1, · · · , xn}. For a

element β ∈ F
ql

we define the wording process of β by expressing β in a normal basis

and then associate a word, i.e.

β =
l∑

i=1

xbiα
qi−1 7→ xb1xb2 · · ·xbl .

We are now ready for the main theorem.

4.3 Main theorem

With the notation from the section above we can state the following theorem.

Theorem 4.3.1. The explicit bijection between the irreducible polynomials and basic

commutators is given by the Wording and the bracketing process, i.e.

Top Elements
Wording−−−−−→ Circular Words

Bracketing−−−−−−−→ Basic Commutators

Proof. Let β be a top element in the extension F
ql
/Fq. If β̄ is a conjugate of β observe

that the wording process gives the same circular word for β and β̄. Moreover this
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circular word has the same length and period, otherwise β would be in an interme-

diate field. This Wording process is then a bijection between circular words and Top

elements module conjugates.

β 7→
l∑

i=1

xbiα
qi−1 Wording−−−−−→ xb1xb2 · · ·xbl

Bracketing−−−−−−−→ A Basic Commutator

4.4 Examples

The Finite Field F8

Consider the irreducible polynomial p(z) = z3 +z2 +1 over the field F2 = {x, y} with

a root α. It is clear that {α, α2, α4} is a basis for F8 since α4 = 1 +α+α2 As before

the top elements of F8 over F2 are

{α, 1 + α, α2, 1 + α2, α + α2, 1 + α + α2}.

The we will have 6/3 = 2 Basic Commutators

(1) α = 1α + 0α2 + 0α4 7→ xyy 7→ [y, [x, y]]

(2) 1 + α = 0α + 1α2 + 1α4 7→ yxx 7→ [x, [x, y]].

The Finite Field F16

Let p(z) = 1 + z + z2 + z3 + z4 over F2 = {x, y} , then F16 is the splitting field of

p(z). Let α ∈ F16 be a root for p(z). The set

{α, α2, α4, α8}

is a basis for F16 over F2 with α4 = 1 + α+ α2 + α3 and α8 = α3. In this case

we only need to consider three top elements
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(1) α = 1α + 0α2 + 0α4 + 0α8 7→ xyyy 7→ [y, [y, [x, y]]]

(2) 1 + α = 0α + 1α2 + 1α4 + 1α8 7→ xyyy 7→ [x, [x, [x, y]]]

(3) α + α2 = 1α + 1α2 + 0α4 + 0α8 7→ xxyy 7→ [y, [x, [x, y]]]

The Finite Field F27

Let p(z) = 1 + z+ 2z2 + z3 over F3 = {x, y, z} . F27 is the splitting field of p(z). Let

α ∈ F27 be a root for p(z). The set

{α, α3, α9}

is a basis for F27 over F3

(1) α = 1α + 0α3 + 0α9 7→ yxx 7→ [x, [x, y]]

(2) 1 + α = 0α + 2α3 + 2α9 7→ xzz 7→ [z, [x, z]]

(3) 2 + α = 2α + 1α3 + 1α9 7→ zyy 7→ [y, [y, z]]

(4) 2α = 2α + 0α3 + 0α9 7→ zxx 7→ [x, [x, z]]

(5) 1 + 2α = 1α + 2α3 + 2α9 7→ yzz 7→ [z, [y, z]]

(6) 2 + 2α = 0α + 1α3 + 1α9 7→ xyy 7→ [y, [x, y]]

(7) α2 = 2α + 0α3 + 1α9 7→ zxy 7→ [z, [x, y]]

(8) 2α2 = 1α + 0α3 + 2α9 7→ yxz 7→ [y, [x, z]].



Chapter 5

Fox calculus

In this chapter, we use Fox Calculus to give a new interpretation to the third coho-

mology group H3(G,Fp). Fox Calculus is a construction in the theory of free groups

developed in five papers in the Annals of Mathematics in 1953 by the American math-

ematician Ralph Fox. It has mainly applications to knot theory. Fox Calculus was

originally developed by Fox in [11] to solve the problem of the topological classifica-

tion of the 3-dimensional lens spaces which involves a generalization of Alexander’s

polynomial.

Let G be a finite p-group and p be a prime number. Let 1→ R→ S → G→ 1

be a minimal presentation for G. We show that the module H1(R,Fp) is the dual of

the module generated by the image of R under the Fox derivatives where the action

of G on this image is given by left multiplication.

Let G be a pro-p-group finitely generated with minimal presentation

1→ R→ S → G→ 1 (5.1)

where S is a free pro-p-group. In section 3 we mentioned that

dimH1(G,Fp) = dimH1(S,Fp) = Number of generators

dimH2(G,Fp) = dimH1(R,Fp)G = Number of relations.

This follows from the 5-term exact sequence associated to 5.1. Now, from the LHS
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spectral sequence can easily deduce that

H1(G,H1(R)) ' H3(G).1

This guides our attention to understand the G-module H1(R). In order to do this we

will introduce the Fox Calculus. First observe that

(
R

[R,R]Rp

)∗
' H1(R)

are dual modules as Fp-modules.

The Fox-Calculus concept was developed for the case of G a finite group and

the ring of the integers Z in [17] and also for G a free pro-p-group and the ring of the

p-adics integer Zp in [16].

5.1 Fox differentials

Let G be a finite p-group finitely generated with minimal presentation as in 5.1.

Definition 5.1.1. The augmentation ideal U is the kernel of the morphism of

ε : Fp[G] → Fp∑
ngg 7→

∑
ng.

Proposition 5.1.2. If G is finitely generated by the set {x1 · · · , xd} then U is gen-

erated by {x1 − 1, · · · , xd − 1} as a G-module.

Proof. {xi − 1 : i = 1, · · · , d} is a subset of U since ε(x− 1) = 1− 1 = 0. Let u ∈ U

such that u =
∑
ngg with

∑
ngg = 0 then u =

∑
ng(g − 1), we just have to show

1. Hn(G) means Hn(G,Fp) in this section.
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by induction on the length of g that g − 1 is in U . For the inductive step suppose

g = hx1 then g − 1 = (h− 1)x+ (x− 1).

Let 1 → R → S → G be a minimal presentation for G. Suppose that G is

generated by the set {x1, · · · , xd} define the epimorphism β of G-modules by

β :
d⊕

Fp[G] → U (5.2)

(γ1, · · · , γd) →
d∑
i=1

γi(xi − 1) (5.3)

Let M ⊂
⊕d Fp[G] be kernel of β then there is an exact sequence of G-modules

1→M →
d⊕

Fp[G]
β−→ Fp[G]→ Fp → 0

Our next goal is to prove that

M ' R

[R,R]Rp
' (H1(R))∗.

Definition 5.1.3. Let S be a free group over the set {x1, · · · , xd}.2 For every xi

define the Fox differential of xi

∂

∂xi
: S → Fp[S]

by the rules

(1)
∂xj
∂xi

= δij.

(2) ∂uv
∂xi

= ∂u
∂xi

+ u ∂v∂xi

Proposition 5.1.4. Let w be an element in S. Then w − 1 =
∑d
i=1

∂w
∂xi

(xi − 1).

2. By abuse of notation we will see the xi’s as generator of S as well as of G.
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Proof. By induction on the length of w. The Base case w = xi is obvious. Let w be

x1w2 then

d∑
i=1

∂w

∂xi
(xi − 1) =

d∑
i=1

(
∂x1

∂xi
+ x1

∂w2

∂xi

)
(xi − 1) = (x1 − 1) + x1(w2 − 1)

= x1w2 − 1 = w − 1.

In the presentation 5.1 observe that the homomorphism S → G induces

φ : Fp[S]→ Fp[G]

a homomorphism of rings, which also induce

Φ :
d⊕

Fp[S]→
d⊕

Fp[G].

The Fox differentials also induce a map

∂ : S →
d∑

Fp[S] (5.4)

w →
(
∂w

∂x1
, · · · , ∂w

∂xxd

)
. (5.5)

Proposition 5.1.5. Consider the composition map

S
∂−→

d⊕
Fp[S]

Φ−→
d⊕

Fp[G].

Let v be an element in S. Then Φ(∂(v)) = 0 if and only if v ∈ [R,R]Rp.
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Proof. Suppose v = [a, b], therefore

∂v

∂xi
=

∂a−1

∂xi
+ a−1∂b

−1

∂xi
+ a−1b−1 ∂a

∂xi
+ a−1b−1a

∂b

∂xi

= (a−1b−1 − a)
∂a

∂xi
+ (a−1b−1a− a−1b−1)

∂b

∂xi
.

Now if v = ap then

∂v

∂xi
= (1 + a+ · · ·+ ap−1)

∂a

∂xi
.

If a, b ∈ R then Φ(a) = Φ(b) = 1 and therefore ∂(Φ(v)) = 0 for v ∈ [R,R]Rp. On the

other hand. Let v ∈ S such that ∂(Φ(v)) = 0. We will prove by induction that v ∈

[R,R]Rp. Since each term on the left is a monomial in the variables {x±1
1 , · · · , x±1

d }

and each one of these belongs to the basis G of F[G] as a vector space over Fp, the

letters of v are partitioned into pairs with equal subscript i, opposite sign and their

contributions to Φ( ∂v∂xi
) cancelling out, i.e.

v = axibx
−1
i c with

∂v

∂xi
= (a− axibx−1

i )
∂xi
∂xi

+ · · ·

this implies that b ∈ R. Let x−εi be the first letter of v whose partner preceded it, so

that if xδj is the letter immediately preceding x−εi , its partner must occur later. thus

v = axεi bx
δ
jx
−ε
i cx−δj d

and as above bxδj and x−εc are in R. Modulo [R,R]Rp we have

v = axεi (bx
δ
j)(x

−ε
i c)x−δj d ≡ axεi (x

−ε
i c)(bxδj)x

−δ
j d ≡ acbd = v′

Then the length of v′ is less than the length of v

∂v

∂xi
=
∂v′

∂xi
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the proof now follows by induction.

Proposition 5.1.6. Let γ = (γ1, · · · , γd) ∈
⊕d Fp[S]. Consider the composition

map
d⊕

Fp[S]
Φ−→

d⊕
Fp[G]

β−→ U

Then γ ∈ ker(β◦Φ) if and only if there is an element r ∈ R such that Φ(∂(r)) = Φ(γ).

Proof. Let r ∈ R such that Φ(γ) = Φ(∂(r)) then by definition of β and proposition

5.14 is clear that

β(Φ(γ)) = β(Φ(∂(r)) = β(Φ
(
∂r
∂x1

, · · · , ∂r∂xd

)
)

=
∑d
i=1 Φ

(
∂r
∂xi

)
(xi − 1) = Φ(r − 1) = 0.

On the other hand, let γ ∈ ker(β ◦Φ) then
∑n
i=1 Φ(γi)(xi− 1) = 0. Define s ∈ Fp[S]

by

s =
n∑
i=1

γi(xi − 1).

Then Φ(s) = 0 and s can be expressed as a difference of elements in Fp[G]

s =
m∑
j=1

(uj − wj) =
m∑
j=1

(rj − 1)w)j.

with Φ(uj) = Φ(wj) and rj = ujw
−1
j for j = 1, · · · ,m. Because U is freely generated

as a G-module by the set {xi − 1 : i = 1, · · · , d} and by proposition 5.1.4

γi =
∂s

∂xi
=

m∑
j=1

(
∂rj
∂xi

+ (rj − 1)
∂wj
∂xi

)
⇒

φ(γi) =
m∑
j=1

φ

(
∂rj
∂xxi

)
With r = r1r2 · · · rm then

Φ(γ) = Φ(∂(r)).
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Theorem 5.1.7. With the above notation we have the following isomorphism

ζ :
R

[R,R]Rp
Φ◦∂−−−→ M

r̄ 7→ Φ(∂(r)).

Proof. By proposition 5.1.6 ζ(r) ∈ M = ker(β) and if r ∈ [R,R, ]Rp then ζ(r) = 0

by proposition 5.1.5 then is well defined. Observe that

ζ(r1r2) = ζ(r1) + Φ(r1)ζ(r2) = ζ(r1) + ζ(r2)

then the application is an injective homomorphism by proposition 5.1.5 and surjective

by 5.1.6 rest to prove that k is a G-homomorphism. Let w ∈ S such that φ(w) = g ∈

G. ζ(g · r) = ζ(wrw−1) = Φ(∂(w) + w∂(r)− wrw−1∂(w)) = Φ(w∂(r)) = gζ(r)

Corollary 5.1.8. With hypothesis of the theorem above the action of G over M is

given by left multiplication and

ζ([x, r]) = (1− x−1)ζ(r) (5.6)

for r ∈ R and x ∈ S.

Proof. It follows from the proof of the theorem.

5.2 The G-module H1(R) 'M ∗

Let G be a pro-p-group finitely generated with minimal presentation

1→ R→ S → G→ 1.

Our main goal is the G-module H1(G,H1(R)). In this section we will describe the

module M in detail this module. Let R be a subgroup of finite index b in a free group
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S on d free generators. Then Schreier Theorem [12] 7.2.8. says that R is a free group

on 1 + b(d− 1). From this theorem follows the next proposition.

Proposition 5.2.1. The dimension of M as a vector space over Fp is 1 + |G|(n−1).

However the module M can be generated by less elements as a G-module. In

fact if the normal subgroup R of S is the normal closure of the group generated by

r1, · · · , rl then M as a G module is generated by the elements ζ(ri) for i = 1, · · · , l

this follows from corollary 5.1.8.

Example 5.2.2. As in Section 3 consider the p = 2 and the 2-elementary abelian

group S[2] over the two generators {x, y} and minimal presentation

S[2] = 〈x, y|x2 = [x, y] = y2 = 1〉.

Then M is generated by the elements ζ(x2), ζ([x, y]), ζ(y2) as a S[2]-module but with

dimension over F2 given by 1 + |S[2](2− 1)| = 5. To avoid confusion we will denote

F2[S[2]] = {0, 1, σ, τ, στ} with σ = φ(x) and τ = φ(y). It can be easily seen that the

graph for the S[2]-module M is

• • •

• •

ζ(x2) ζ([x, y]) ζ(y2)

(1 + τ)ζ(x2) (1 + σ)ζ(y2)

1+τ

??�����������������

1+τ

??�����������������

1+σ

__?????????????????

1+σ

__?????????????????
(5.7)

Proposition 5.2.3. The graph for the G-module H1(R) 'M∗ is the upside down of

the graph for M ' R/[R,R]Rp.
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Proof. Let a, b ∈M , σ ∈ G and suppose that (1− σ)a = b

•

•

a

b

1+σ

OO

then (1 − σ)a = a − σ(a) ⇒ σ(a) = b − a and σ(b) = b − c for some c ∈ M . In the

dual G-module M∗ we have

(1− σ)(b∗) = b∗ − b∗ ◦ σ

(1− σ)(b∗)(a) = b∗(a)− b∗(σ(a)) = −b∗(a− b) = 1

(1− σ)(b∗)(b) = b∗(b)− b∗(σ(b)) = 1− b∗(b− c) = 1

(1− σ)(b∗) = a∗.

•

•

b∗

a∗

1+σ

OO

Definition 5.2.4. Let G be a finite p-group and M a G-module. The Socle series of

M is the series of submodules

J1 ⊂ J2 ⊂ · · ·M

defined inductively by

• J1 = MG i.e. the fixed point of M by the action of G.

• Ji+1 = ρ−1(M/Ji)
G where ρ : M →M/Ji is the natural projection.

Then length of the series is the first value of i such that Ji = M .
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Example 5.2.5. In the example 5.7 the fixed module MG has dimension two and is

J1 = ker(1− σ)
⋂

ker(1− τ) = 〈(1− τ)ζ(x2), (1− σ)ζ(y2)〉.

The length of the Socle series is two with J2 = M .

Note that the first module in the Socle series are the “end points” of the graph

for the module M , the second module J2 are the “end points” of the graph of M

without the points of J1 and so on. However in the Socle series J∗i for the dual

module M∗ of M the first module J∗1 correspond to the “first points” of the graph of

M this are the generators of M as a G-module.

The original and beautiful proof for the following result can be found in [5],

here we show a different proof using the power of Fox-Calculus.

Theorem 5.2.6. Let S be a free pro-2-group on the d generators {x1, · · · , xn}. Let

G be the quotient group S[2] = S/S(2) as in section 3 and the module M and homo-

morphism ζ as in theorem 5.1.7. Suppose that G is generated by σ1, · · · , σl. Then

the set

Z = {(1− σt1) · · · (1− σtr)dij : 1 ≤ i ≤ j ≤ n, i < t1 < · · · < tr ≤ d},

is a basis for M where dij = ζ([xi, xj ]) if i 6= j and dii = ζ(x2
i ).

Proof. It is clear that the set Z span the whole module because the ring F2[S[2]] is

commutative, is left to prove that is linearly independent. As in [5] the size of Z is

d∑
i=1

(d− i+ 1)2d−i = 1 + 2d(d− 1) = dim(M).

With the observation and the theorem above we have a basis in this particular

case for each dual J∗a in the socle series for M∗ ' H1(R).
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Corollary 5.2.7. With hypothesis of the theorem above. For a fixed integer a the set

Z∗a = {(1− σt1) · · · (1− σta)d∗ij : 1 ≤ i ≤ j ≤ n, i < t1 < · · · < ta ≤ d},

is a basis for J∗a where d∗ij is the dual of ζ([xi, xj ]) if i 6= j and the dual of ζ(x2
i ) if

i = j.

Example 5.2.8. Consider the 2-elementary abelian group S[2] on three generators

with minimal presentation

S[2] = 〈x, y, z|x2 = [x, y] = y2 = [y, z] = z2 = [x, z] = 1〉.

Then M = 〈ζ(x2), ζ([x, y]), ζ(y2), ζ([y, z]), ζ(z2), ζ([x, z])〉 is generated as S[2]-module
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and graph with the action indicated

g1

g2g3

g4

g5 g6

•

••

•

• •

g7

g8

g9g10

g11

g12

g13

g14

g15

•

•

•
•

•

•

•
•

•

g16

g17

g18

•

•

•
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The first module J1 in the Socle series is generated by

g1 = (σ(1 + ε), 0, ε(1 + σ))

g2 = ((1 + σ), 0, 0)

g3 = (σ(1 + τ), τ(1 + σ), 0)

g4 = (0, (1 + τ), 0)

g5 = (0, τ(1 + ε), ε(1 + τ))

g6 = (0, 0, (1 + ε)).
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g1

g2g3

g4

g5 g6

•

••

•

• •

The Module J2 is generated by

g7 = (1 + τ)g1 g8 = (1 + σ)g1 g9 = (1 + τ)g2

g10 = (1 + ε)g3 g11 = (1 + τ)g3 g12 = (1 + ε)g4

g13 = (1 + σ)g5 g14 = (1 + ε)g5 g15 = (1 + σ)g6
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But dim J2 = 8 because g7 + g11 + g15 = 0. This is the subgraph

g7

g8

g9g10

g11

g12

g13

g14

g15

•

•

•
•

•

•

•
•

•

And finally the module J3 is generated by

g16 = (0, (1 + σ)(1 + τ)(1 + ε), 0) = (1 + τ)(1 + ε)g3

g17 = ((1 + σ)(1 + τ)(1 + ε), 0, 0) = (1 + σ)(1 + τ)g1

g18 = (0, 0, (1 + σ)(1 + τ)(1 + ε)) = (1 + ε)(1 + σ)g5

g16

g17

g18

•

•

•

Theorem 5.2.9. Let S be a free pro-p-group over d elements. Let S(m) be the m-Th

group in the descending central central series of S and the quotient group S[m] as in

section 3. Let

H1(S(m))S
[m]

= J∗1 ⊂ J∗2 ⊂ · · · J
∗ = H1(S(m))

be the socle series of the S[m]-module H1(S(m)). Then dim J∗1 = km and dim J∗2 =

km+1.

Proof. Consider the short exact sequence 1 → S(m) → S → S[m] → 1 with its
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associated five term exact sequence

1→ H1(S[m])→ H1(S)→ H1(S(m))S
[m]
→ H2(S[m])→ H2(S).

Because S and S(m) are free groups it is clear that H1(S(m))S
[m] ' H2(S[m]) this

with theorem 3.2.1 proves the first statement. To see the second statement consider

the exact sequence of S[m]-modules

1→ J∗1 → J∗ → J∗

J∗1
→ 1

and the associated long exact sequence in cohomology

1→ J∗1 → J∗ →
(
J∗

J∗1

)S[m]

→ H1(S[m], J∗1 )→ H1(S[m], J∗)→ H1
(
S[m],

J∗

J∗1

)
→ · · ·

then by theorem 3.2.1

J∗2 '
(
J∗

J∗1

)S[m]

' Ker : H1

(
S[m], H1

(
S(m)

S(m+1)

))
→ H1(S[m], H1(S(m)))

The last kernel by theorem 3.3.1 has dimension the Witt number dm+1 where from

it follows the second statement.

Example 5.2.10. As in section 3 consider the quotient group S[3] on two generators.

Then the S[3]-module M∗ = H1(S(3)) has dimension 33 and socle series

H1(S(3))S
[3]

= J∗1 ⊂ J∗2 ⊂ J∗3 ⊂ J∗4 ⊂ J∗5 ⊂ J∗6 ⊂ J∗7 = H1(S(3))

and respectively have dimensions 5 ≤ 8 ≤ 14 ≤ 22 ≤ 28 ≤ 31 ≤ 33 and is generated

by the dual of the k images of the elements of S(3)

x4, y4, [x, y]2, [x, x, y], [y, x, y]

[x4, y], [x4, y2], [x4, [x, y]], [x4, y3]; , [x4, y[x, y]], [x4, y2[x, y]], [x4, y3[x, y]]
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[y4, x], [y4, x2], [y4, [x, y]], [y4, xy], [y4, x3], [y4, x2[x, y]], [y4, xyx2]

[[x, y]2, x], [[x, y]2, y], [[x, y]2, x2], [[x, y]2, y2], [[x, y]2, [x, y]], [[x, y]2, xy2], [[x, y]2, yx2], [[x, y]2, x2y2]

[[x, x, y], x], [[x, x, y], y], [[x, x, y], y2], [[x, x, y], xy], [[x, x, y], y2]

[[y, x, y], y].

5.3 The cohomology group H1(G,H1(R))

In order to compute the cohomology group H1(G,M∗) we will compute the cocycles

and coboundaries. G will denote a finite p-group finitely generated over the set

{x1, · · · , xd} and minimal presentation as in 5.1 and the normal group R as the

normal closure of {r1, · · · , rl} in S.

Theorem 5.3.1. The dimension of the coboundaries of G with coefficients in M∗ is

dimH1(R)− dimH2(G).

Proof. B1(G,M∗) = {ψm : G → M |ψm(g) = (1 + g) ·m, for m ∈ M∗}, and ψm ≡

ψm′ only if ψm − ψm′ ∈ (M∗)G then by theorem 3.2.1 the proof is complete.

With the above proposition and the proposition 5.2.1 there is a beautiful equa-

tion

dimB1(G,M∗) = 1 + |G|(dimH1(G)− 1)− dimH2(G).

Theorem 5.3.2. The Z1(G,M) is given by the kernel of the matrix

D =

(
∂ri
∂xj

)
ij

:
d⊕
M∗ →

l⊕
Fp[G]

where M is the G-module generated by {ζ(ri) : i = 1, · · · , l}.

Proof. The key idea is that the elements of Z1(G,M∗) = {ψ : G → M∗|ψ(ab) =

ψ(a) + aψ(b)} satisfy the Fox-Condition. For a given ψ ∈ Z1(G,M∗) denote ψi :=
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ψ(xi). Observe that every φ can be extended to a function ψ : S →M∗

G M∗

S

ψ //

ψ

??�
�

�
�

�
�

�

OOOO
(5.8)

making ψ(xi) := ψi. Every cocycle ψ ∈ Z1(G,M∗) is of course a cocycle in Z1(S,M∗).

Let ψ be a cocycle in Z1(S,M∗) then it can be restricted to a cocycle ψ ∈ Z1(G,M∗)

if and only if is trivial on the elements of R i.e.

Z1(G,M∗) = {ψ ∈ Z1(S,M∗)|ψ(R) ≡ 0}.

Let ψ as above and suppose that R = 〈r1, · · · , rl〉 is the normal closure of the group

generated by the r′s. With the notation of section 5.1 for r ∈ S because the cocycles

satisfy the Fox-Condition we have

ψ(r) =

(
∂r

∂x1
, · · · , ∂r

∂xd

)
· (ψ1, · · · , ψd) ∈M∗

A cocycle ψ ∈ Z1(S,M∗) can be restricted to a element in Z1(G,M∗) if ψ(ri) = 0

because it is a derivation and a it is determined by the images ψi. Then we are

looking for the element (ψ1, · · · , ψl) such that

d⊕
M∗ →

l⊕
Fp[G]

(ψ1, · · · , ψl) 7→
(
∂ri
∂xj

)
ij

· (ψ1, · · · , ψd) = 0

This is the kernel of the matrix of derivations for the relations of R.

Example 5.3.3. Consider the group S[2] with two generators x, y and presentation

C2 × C2 = S[2] = 〈x, y|x2 = y2 = [x, y]〉.
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To avoid confusion we will denote

F2[S[2]] = {0, 1, σ, τ, σ + τ, 1 + σ, 1 + τ, 1 + σ + τ}.

M is the submodule of
⊕2 F2[S[2]] generated by the images of ζ(x2), ζ(y2) and ζ([x, y])

as a S[2]-module. The dimension of M over F2 is 5. If g1 = ζ(x2) = (1 + σ, 0), g2 =

ζ([x, y]) = (σ(1 + τ), τ(1 + σ)), g3 = ζ(y2) = (0, 1 + τ) and the other generators are

g4 = (1+τ)g1 and g5 = (1+σ)g3 we have the next explicit diagram for the S[2]-module

M .

• • •

• •

g1 g2 g3

g4 g5

1+τ

??�����������������

1+τ

??�����������������

1+σ

__?????????????????

1+σ

__????????????????? (5.9)

With dual module M∗

• • •

• •

g∗1 g∗2 g∗3

g∗4 g∗5

__

1+τ

????????????????? __

1+τ

???????????????????

1+σ

����������������� ??

1+σ

����������������� (5.10)

And Lowey’s Series

J0 = 〈g∗1, g
∗
2, g
∗
3〉 ⊂ J = M∗.
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The dimension of the coboundaries B1(S[2],M∗) equals two represented by

ψg∗4
(x) = g∗1 ψg∗5

(x) = g∗2

ψg∗4
(y) = g∗2 ψg∗5

(y) = g∗3

The cocycles are the kernel of the matrix


1 + σ 0

σ(1 + τ) τ(1 + σ)

0 1 + τ

 :
2⊕

(M∗)→
3⊕

Fp[S[2]].

then ψ1 and ψ2 belongs to ker(1 + σ) and ker(1 + τ) respectively. Then ψ1, ψ2 ∈

〈g1∗, g2∗, g3∗〉 and dimension of Z1(S[2],M∗) is six.

dimH3(S[2]) = dimH1(S[2],M∗) = dimZ1(S[2],M∗)− dimB1(S[2],M∗) = 4.

Conclusion: In this thesis we obtained a complete information of the first

two cohomology groups of certain important quotients of free pro-2-groups. We also

obtained a partial information on the third cohomology of these groups. The key

for this progress is the structure of certain modules. We plan to refine these tech-

niques in order to obtain a full description of all three cohomology groups and their

multiplicative properties. We further found a very interesting connection between

higher commutators and elements in finite fields. We also consider various possible

applications of these connections with in Galois theory and in coding theory.
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Bogotá, Colombia

Master in Mathematics

Universidad de los Andes

Bogot, Colombia

CURRENT STUDIES

Ph.D in Mathematics

Fifth Year

University of Western Ontario

London, ON Canada

68



69

TEACHING EXPERIENCE

• Instructor: University of British Columbia, Vancouver Canada. Calculus III.

Multivariable Calculus. Integral Calculus with Applications. Differencial Cal-

culus for Social Science. 2007 - 2008.

• Instructor: Differential Calculus, Integral Calculus, Linear Algebra, Discrete

Mathematics. 1999-2002, 2004, 2005.(One or two sections per semester) at La

Universidad de los Andes.

• Instructor: Differential and Integral Calculus, Linear Algebra and applications

(Linear Programming). 2004, 2005 at La Universidad Externado de Colombia.

• Instructor: Summer Course. Colegio San Carlos. June 2001.

• Instructor: Summer Course. A Logical Approach to Discrete Math. June 2002.

• Instructor: Colegio Santa Maria. 2002-2003.

COMPUTER EXPERIENCE

• C++, Assembler, Java, LATEX, Office, GAP.

LANGUAGES

• Spanish(Native), English.

RESEARCH WORKS AND PUBLICATIONS

• Extensiones de Grupos. Undergraduate thesis in Mathematics, 2001.

• The Hodge Conjeture in Torics Varieties. Master thesis, 2004.

• Descending Central Series of Free Pro-p-Groups. Ph.D. Thesis.



70

TALKS

• A Problem in Knot Theory, Geometric and Topological Methods for Quantum

Field Theory July 8-27 2003, Villa de Leyva Colombia.

• An Introduction in Graph Theory, The XIII Encuentro de Geometra y sus apli-

caciones (XIII meeting of Geometry and applications), June 19-21 2003.

• Topics In Commutative Algebra, Commutative Algebra with a View Toward

Algebraic Geometry. August - November 2004, Universidad de los Andes, Bogot

Colombia.

• Cohomology of Groups, Learning Seminar in Topology. UBC Vancouver Canada.

April 12, 19 2006.

• The Mod 2 Cohomology Rings of Extra-special 2-groups, Learning Seminar in

Topology. UBC Vancouver Canada. November 6 2006.

CONFERENCES AND WORKSHOPS

• Participant at CIMPA’s Summer School ”Geometrical and Topological Methods

for Quantum Field Theory”, held at Villa de Leyva, Colombia, in July 1999.

• Participant at the II Encuentro Regional de Logica y Computacion (II Regional

meeting in logic and computation), May 20-24 2002, Valle, Colombia.

• Participant (with full support) SOCIEDAD BRASILEA DE MATEMTICAS

(SBM) SOCIEDAD MATEMTICA PERUANA (SMP) , June-19 July-20 2000,

Lima, Peru.

• Participant at the XIII Encuentro de Geometra y sus aplicaciones (XIII meeting

of Geometry and applications), June 20-22 2002.



71

• Participant at the I Encuentro de Aritmtica (I Arithmetic Meeting) 20-22 2002.

• Participant at CIMPA’s Summer School ”Geometrical and Topological Methods

for Quantum Field Theory”, held at Villa de Leyva, Colombia, in July 2003.

(Full Support).

• Participant at II EMALCA Y XV EVM. Mrida, Venezuela . September 8 to 14

2002.

• Participant at III EMALCA 19 to 28 August 2003. Morelia, Michoacn Mxico.

(Full support).

• Participant at II EMALCA Y XV EVM. Mrida, Venezuela . September 8 to 14

2002.

• Participant at III EMALCA 19 to 28 August 2003. Morelia, Michoacn Mexico.

(Full support).

• Participant at the ABC Algebra Workshop. April 8-9, 2006. University of

British Columbia. Vancouver, BC, Canada

• Participant at PIMS/UNAM Algebra Summer School. July 1-6, 2006. Banff In-

ternational Research Station for Mathematical Innovation and Discovery. Banff,

AB.

• Participant at the ABC Algebra Workshop. April 14-15 2007. University of

Alberta. Edmonton, AB.

• Participant at the ABC Algebra Workshop. April 12-14 2008. Simon Fraser

University. Vancouver, BC, Canada.

AREAS OF INTEREST

• Cohomology of Groups.



72

• Galois Cohomology.

• Profinite Groups.


	Descending Central Series of Free Pro-p-Groups
	Recommended Citation

	Descending Central Series of Free Pro-p-Groups

